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Abstract
Classical supervised learning generally trains one model from an i.i.d. data according to an
unknown yet fixed distribution. In some real applications such as finance, however, multiple
models may be trained by different companies and interacted in a dynamic environment,
where the data distribution may take shift according to different models’ decisions. In
this work, we study two models for simplicity, and formalize such scenario as a learning
problem of two models over decision-dependent distributions. We develop the Repeated
Risk Minimization (RRM) for two models, and present a sufficient condition to the existence
of stable points for RRM, that is, an equilibrium notion. We further provide the theoretical
analysis for the convergence of RRM to stable points based on data distribution and finite
training sample, respectively. We also study more practical algorithms, such as gradient
descent and stochastic gradient descent, to solve the RRM problem with convergence
guarantees and we finally present some empirical studies to validate our theoretical analysis.
Keywords: Distributional Shift, Performative Prediction, Optimization.

1. Introduction
For classical supervised learning, we always learn one model from training data, drawn i.i.d.
from some fixed and static distribution (Mitchell, 1997; Shalev-Shwartz and Ben-David,
2014; Goodfellow et al., 2016). In real applications, however, we may deal with multiple
interactive models in a dynamic environment, where data distribution is decision-dependent
(Maheshwari et al., 2022), i.e., it may take certain shift according to models’ predictions.
Here we take financial stocks as an example: many financial companies would train their
quantitative trading model to make prediction for stock price and make trading decisions.
In such environment, the stock data distribution makes fluctuations w.r.t. different models,
while each model will also be influenced with stock data distribution and other models.

The interaction phenomenon between data distribution and model prediction has been
known as performativity in real applications such as economics, social network and media
platform (Healy, 2015; Ribeiro et al., 2020). Perdomo et al. (2020) proposed the novel
performative prediction, which aims to learn one model from interactive data distribution.
Mendler-Dünner et al. (2020) presented its convergence analysis based on stochastic gradient
descent. Brown et al. (2020) studied the performativity from a decision-making perspective.
Miller et al. (2021) and Izzo et al. (2021) considered the direct optimization of performative
risk under strong conditions.
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Drusvyatskiy and Xiao (2020) formalized performative prediction as an optimization
problem with decision-dependent distributions, and gave online gradient descent algorithm.
Wood et al. (2022) provided online projected gradient descent for stochastic optimization
with decision-dependent distributions. Ray et al. (2022) studied the problem of decision-
dependent risk minimization with distribution evolves according to a geometrically decaying
process. Recent research in strategic classification (Hardt et al., 2016; Bechavod et al., 2020;
Ghalme et al., 2021) also highlighted the prevalence of this phenomenon. Previous studies
mostly focus on one single model over decision-dependent distribution, whereas we always
confront multiple interactive models in some dynamic environments. This work tries to take
one step on this direction.

A relevant work is the game theory with multiple interactive models (Fudenberg and
Levine, 1998; Nisan et al., 2007), which tries to find some Nash equilibria, a stable status
for players with respect to their payoffs. Recent years have witnessed increasing interests in
combination between machine learning and game theory (Bravo et al., 2018; Chasnov et al.,
2020). For example, the generative adversarial network has been formalized as a two-player
zero-sum game (Heusel et al., 2017; Balduzzi et al., 2018), and Vlatakis-Gkaragkounis et al.
(2019) studied the non-convex non-concave zero-sum games based on gradient descent ascent
method. In most times, game theory tries to solve the minmax problem over some payoff
function or fixed distribution, rather than the shifting decision-dependent data distribution.

Reinforcement learning is another related work (Srinivasan et al., 2018; Zhou and Xu,
2019), which involves interactions among multiple models and the shifted environment.
Generally, reinforcement learning studies how to select actions and maximizes rewards, while
we focus on risk minimization based on data sample or distribution and its convergence rate
to stable points. In addition, our method can be viewed as a special formulation of off-policy
learning, which may shed lights on when off-policy methods converge in a two-agent system.

This work tries to learn multiple interactive models under a decision-dependent dynamic
environment. For simplicity, we formalize such scenario as a learning problem of two
models over decision-dependent distributions, and the main contributions of this work can
be summarized as follows:

• We develop the Repeated Risk Minimization (RRM), which is a simple iterative
optimizing method for two models to learn with decision-dependent distribution. We
present a sufficient condition to the existence of stable points of RRM, that is, an
equilibrium among two interactive models and decision-dependent data distribution.

• We present the linear convergence rate to stable points for RRM under the full
knowledge of data distribution, and an intuitive explanation is that data distribution
should keep relatively stable w.r.t. models, while models should effectively adapt
to decision-dependent distribution. We also present the linear convergence rate to a
small neighborhood of stable points for RRM based on finite training sample.

• We propose more practical algorithms such as gradient descent and stochastic gradient
descent for RRM. For gradient descent, we derive similar linear convergence rate but
with different exponent based on data distribution and finite sample. For stochastic
gradient descent, we present the O(T−1/2) convergence rate, which is comparable to
that of traditional stochastic gradient descent.
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• We finally present empirical studies to verify our theoretical analysis both on synthetic
and semi-synthetic datasets.

The rest of this paper is organized as follows: Section 2 formalizes the learning problem
of two models over decision-dependent distributions. Section 3 presents theoretical analysis
for RRM based on data distribution and Section 4 presents analysis base on finite sample.
Section 5 provided convergence analysis based on gradient descent and stochastic gradient
descent. Section 6 conducts empirical studies, and Section 7 concludes with future work.

2. Learning with Two models over Decision-Dependent Distributions
This section presents a framework on the learning problem of two models over decision-
dependent distributions. For simplicity, denote by 1̂ and 2̂ two learning models, which can
be further parameterized by θ1̂, θ2̂ ∈ Θ, respectively. Here, Θ ⊆ Rm denotes some closed
and convex parameter space, and we could make similar analysis when θ1̂ and θ2̂ belong to
two different parameter spaces.

Traditional statistical learning focuses on a fixed joint distribution D over the product
space Z = X × Y ⊆ Rd with input space X and output space Y. However, the data
distribution D may be affected by multiple learning models in many real applications, such
as stock data, recommend systems, etc. We formalize such distribution as D(θ1̂, θ2̂) in this
work, i.e., data distribution may be changed w.r.t. different models.

For loss functions ℓ1̂ and ℓ2̂, we define the decision-dependent risk of learning models 1̂
and 2̂, respectively, as follows:

DDR1̂(θ
1̂, θ2̂) = Ez∼D(θ1̂,θ2̂)

[
ℓ1̂(z; θ

1̂)
]
,

DDR2̂(θ
1̂, θ2̂) = Ez∼D(θ1̂,θ2̂)

[
ℓ2̂(z; θ

2̂)
]
.

It is not easy to directly optimize such risks because of its non-convexity, even for
convex loss functions. Following Perdomo et al. (2020), we optimize the decision-dependent
risks iteratively under the current fixed distribution and ignore the temporary changes of
distribution. Formally, we define such process as repeated risk minimization:

Definition 1 Given initial models θ1̂0 and θ2̂0, the Repeated Risk Minimization (RRM)
performs the following updates, for i ∈ [2] and t ≥ 0:

θît+1 = argmin
θî∈Θ

{
E
z∼D(θ1̂t ,θ

2̂
t )

[
ℓî(z; θ

î)
]}

.

In each iteration, two models update their parameters according to the current distri-
bution, and then distribution D(θ1̂t , θ

2̂
t ) shifts according to the updated parameters. When

two models reach a stable point without updates over parameters, we call such stable point
as decision-dependent stable point, defined formally as:

Definition 2 For RRM, we say (θ1̂DS, θ
2̂
DS) a decision-dependent stable point if it holds that

θ1̂DS = argminθ1̂∈ΘEz∼D(θ1̂DS,θ
2̂
DS)

[
ℓ1̂(z; θ

1̂)
]
,

θ2̂DS = argminθ2̂∈ΘEz∼D(θ1̂DS,θ
2̂
DS)

[
ℓ2̂(z; θ

2̂)
]
.
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Intuitively, it is not easy to find some stable points for RRM when drastic changes occur
to distribution D(θ1̂t , θ

2̂
t ), and we make the following assumption over distribution D(θ1̂, θ2̂),

which has been used by Perdomo et al. (2020) to analyze performative prediction.

Definition 3 A distribution D(·, ·) is said to be ϵ-Lipschitz continuous if it holds that, for
every θ1̂1, θ

2̂
1, θ

1̂
2, θ

2̂
2 ∈ Θ,

W1

(
D(θ1̂1, θ

2̂
1),D(θ1̂2, θ

2̂
2)
)
≤ ϵ
∥∥(θ1̂1, θ2̂1)− (θ1̂2, θ

2̂
2)
∥∥
2
,

where W1 denotes the Wasserstein-1 distance (Villani, 2009).

We now introduce some basic properties for loss functions in optimization problems
(Nesterov, 2018) as follows:

Definition 4 A loss function ℓ(z; θ) is said to be β-jointly smooth (with β > 0), if it holds
that, for every θ1, θ2 ∈ Θ and z1, z2 ∈ Z,

∥∇θℓ(z1; θ1)−∇θℓ(z1; θ2)∥2 ≤ β∥θ1 − θ2∥2 ,

∥∇θℓ(z1; θ1)−∇θℓ(z2; θ1)∥2 ≤ β∥z1 − z2∥2 .

Definition 5 A loss function ℓ(z; θ) is said to be γ-strongly convex (with γ > 0), if it holds
that, for every θ1, θ2 ∈ Θ and z ∈ Z,

ℓ(z; θ1) ≥ ℓ(z; θ2) +∇θℓ(z; θ2)
T(θ1 − θ2) +

γ

2
∥θ1 − θ2∥22 .

3. Analysis on Repeated Risk Minimization over Data Distribution
We first present the existence analysis of decision-dependent stable points for Repeated
Risk Minimization (RRM, given by Definition 1) as follows:

Theorem 6 There is a decision-dependent stable point (θ1̂DS, θ
2̂
DS) for convex and compact

space Θ and ϵ-Lipschitz continuous distribution D, if loss functions ℓ1̂(z; θ
1̂) and ℓ2̂(z; θ

2̂)
are convex and jointly continuous.

Theorem 6 presents a sufficient condition for the existence of stable point for the
learning problem of two models over decision-dependent distributions, and this theoretically
guarantees the convergence of learning algorithms to some stable points, rather than training
endlessly. The detailed proof is given in Appendix B.2, and the basic idea follows Kakutani’s
fixed point theorem (Kakutani, 1941).

We now present the convergence analysis on RRM (Definition 1) under the full knowledge
of data distribution D. Denote by θt = (θ1̂t , θ

2̂
t ) and θDS = (θ1̂DS, θ

2̂
DS) for simplicity, we have

Theorem 7 For the RRM method after T iterations, we have

∥θT − θDS∥2 ≤ ∥θ0 − θDS∥2
(
ϵ(β2

1̂
+ β2

2̂
)
1
2
/
min{γ1̂, γ2̂}

)T
for ϵ-Lipschitz continuous distribution D, and for βî-jointly smooth, γî-strongly convex
function ℓî(z; θ

î) with i ∈ [2].
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This theorem shows a linear convergence rate for the RRM method under the condition
ϵ < min{γ1̂, γ2̂}

/
(β2

1̂
+ β2

2̂
)1/2, and this condition could correlate data distribution with loss

functions. An intuitive explanation for convergence is that, data distribution should keep
relatively stable according to model parameters, while learning models should adapt to the
changes of data distribution. Here, we present a proof sketch for Theorem 7, and the details
can be found in Appendix B.3.

Proof sketch of Theorem 7. For simplicity, we denote by G(θ) = (G1̂(θ), G2̂(θ)), where

Gî(θ) = argmin
θî∈Θ Ez∼D(θ)

[
ℓî(z; θ

î)
]

for i ∈ [2].

Here, Gî(θ) denotes the output in one-step by RRM method with input θ = (θ1̂, θ2̂). For
i ∈ [2] and t ∈ [T ], denote by

f î
t (θ)=Ez∼D(θt)[ℓî(z, θ)] and f î

DS(θ)=Ez∼D(θDS)[ℓî(z, θ)] .

From the strong convexity and the first-order optimality condition of Gî(θt) and Gî(θDS),
we have, for i ∈ [2],

γî∥Gî(θt)−Gî(θDS)∥22 ≤ (Gî(θDS)−Gî(θt))
T∇f î

t (Gî(θDS)) .

This follows that, from the above inequality with i ∈ [2],

∥G(θt)−G(θDS)∥22min{γ1̂, γ2̂} ≤ (G(θDS)−G(θt))
T∇ft(G(θDS)) ,

with ∇ft(G(θDS)) = (∇f 1̂
t (G1̂(θDS));∇f 2̂

t (G2̂(θDS))). By Cauchy-Schwarz inequality, it is
easy to check that

(G(θt)−G(θDS))
T∇θℓ(z;G(θDS))

is (β2
1̂
+β2

2̂
)1/2∥G(θt)−G(θDS)∥2-Lipschitz continuous w.r.t. variable z. From the ϵ-Lipschitz

continuity of distribution D and its dual formulation of Wasserstein-1 distance, we have

(G(θDS)−G(θt))
T(∇ft(z;G(θDS))−∇fDS(z;G(θDS)))

≤ ϵ(β2
1̂
+ β2

2̂
)1/2∥G(θt)−G(θDS)∥2∥θt − θDS∥2 .

Under the first-order optimality condition, we further have

(G(θDS)−G(θt))
T∇ft(z;G(θDS)) ≤ ϵ(β2

1̂
+ β2

2̂
)1/2∥G(θt)−G(θDS)∥2∥θt − θDS∥2 .

This follows that, by combining with the above and Eqn. (3),

∥θt+1 − θDS∥2 = ∥G(θt)−G(θDS)∥2 ≤ ϵ(β2
1̂
+ β2

2̂
)1/2∥θt − θDS∥2/min{γ1̂, γ2̂} .

This completes the proof by multiplying both sides with t = 0, 1, · · · , T − 1. □

We now introduce an illustrative example for the learning problem of two models over
decision-dependent distributions, and present the convergence curves of two models to
support Theorems 6 and 7 empirically.
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Figure 1: The convergence curves of min{γ1̂, γ2̂}/(β2
1̂
+ β2

2̂
)1/2 for RRM with ϵ = 0.9 (left)

and ϵ = 1.5 (right) in Example 1.

Example 1 We consider the one-dimensional linear regressions for two models as follows:

h1̂(x; θ
1̂) = xθ1̂ − b and h2̂(x; θ

2̂) = xθ2̂ + b ,

where θ1̂, θ2̂ ∈ R and b ∈ R+, and we also consider the ridge regression loss functions

ℓî(z; θ
î) =

1

2

(
y − hî(x; θ

î)
)2

+
γî
2
(θî)2 (i ∈ [2]) ,

where γî > 0. Let input space X = R with the standard Gaussian distribution N (0, 1) over
X , and suppose that the output value, with inputs x ̸= 0, θ1̂ and θ2̂, is given by

y = xθ∗ +
ϵ

2|x|
(
|xθ∗ − h1̂(x; θ

1̂)| − |xθ∗ − h2̂(x; θ
2̂)|
)
,

for constants θ∗ ∈ R and ϵ > 0.

This example can be viewed as a simplification of real problems such as recommend
systems and companies bidding in a competitive environment. For example, suppose that
there are two firms training different models to predict the customer’s “willing to pay”,
and decide whether to send coupons. Hence, each customer wants to modify their features
based on the predictions to get more coupons. In such application, two models interact in
a decision-dependent environment. The term b is added to make two models have distinct
“model space”, and this gap will force them to compete with each other.

For i ∈ [2], it is easy to check that ℓî is γî-strongly convex and |θî|-smooth w.r.t.
the variables θî and z, respectively. We can also observe that the data distribution over
input/output space satisfies the ϵ-Lipschitz continuity, as shown in Appendix B.1. Our
theoretical results show that it suffices to reach a stable point after a few times retrain
when ϵ is small. Note that we could also make similar analysis for d-dimensional regression
with d ≥ 2 in Example 1. For simplicity, the parameters are set as θ∗ = 1, b = 100 and
γ1̂ = γ2̂ = 30. We simulate this example with ϵ = 0.9 and 1.5 respectively.

Figure 1 shows the curves of min{γ1̂, γ2̂}
/
(β2

1̂
+ β2

2̂
)1/2 in Example 1 with respect to

distribution Lipschitz parameter ϵ = 0.9 and ϵ = 1.5. According to the convergence
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Figure 2: The convergence curves of models for RRM with ϵ = 0.9 (left) and ϵ = 1.5 (right)
in Example 1.
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Figure 3: The convergence curves of losses for RRM with ϵ = 0.9 (left) and ϵ = 1.5 (right)
in Example 1.

condition ϵ < min{γ1̂, γ2̂}/(β2
1̂
+ β2

2̂
)1/2 in Theorem 7, we could conclude that the RRM

method would converge to some stable point for ϵ = 0.9, but diverge for ϵ = 1.5.
Figure 2(a) shows the joint convergence curves of two models to some stable points for

RRM after a few iterations when ϵ = 0.9, whereas Figure 2(b) shows the divergence curves
of two models for RRM when ϵ = 1.5. This presents empirical supports to Theorem 7.

Figure 3 presents the curves of losses for two models. It is observable that two models
compete against each other during iterations, i.e., one wins while the other loses. We can
also see the convergence and divergence of the RRM method for ϵ = 0.9 and ϵ = 1.5,
respectively. This is also in agreement with the theoretical argument in Theorem 7.

Moreover, Figure 3 also reveals that when two models diverge, their losses may keep
increasing. This addresses the importance of finding a decision-dependent stable point, since
two models could suffer great increase of loss when they fail to converge to the decision-
dependent stable point.
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4. Analysis on Repeated Risk Minimization over Finite Sample
We are required to know the data distribution D in the optimization of RRM method in
previous theoretical analysis (Section 3). For most learning problems, however, we can
only observe a finite training sample, rather than the whole data distribution. Hence, it is
necessary to further exploit the learning algorithms based on finite training sample, and we
formalize it as repeated empirical risk minimization:

Definition 8 Given initial models θ1̂0 and θ2̂0, the Repeated Empirical Risk Minimization
(RERM) performs the following updates, for every t ≥ 0:

θît+1 = argmin
θî∈Θ

{∑
z∈Si

nt

ℓî(z; θ
î)
/
nt

}
(i ∈ [2]) ,

where S1
nt

and S2
nt

are two training samples of size nt, with each element drawn i.i.d. from
distribution D(θ1̂t , θ

2̂
t ).

Due to the randomness of training sampling, it is difficult to guarantee an exact contrac-
tion to the decision-dependent stable point, whereas we could present the convergence to
a neighborhood around the decision-dependent stable point for sufficient training samples
with high probability.

Denote by θt = (θ1̂t , θ
2̂
t ) and θDS = (θ1̂DS, θ

2̂
DS), and we have

Theorem 9 Let distribution D be ϵ-Lipschitz continuous such that Ez∼D(θ)[exp(µ∥z∥α)] <
+∞ for some positive α and µ and for every θ. Let loss ℓî(z; θ

î) be βî-jointly smooth and
γî-strongly convex for i ∈ [2]. For real r, δ ∈ (0, 1) and integer t > 0, the following holds for
the RERM method in the t-th iteration with probability at least 1 − 6δ/π2t2 over training
samples S1̂

nt
and S2̂

nt

∥θt − θDS∥2 ≤
2ϵ(β2

1̂
+ β2

2̂
)1/2

min{γ1̂, γ2̂}
max

{
r, ∥θt−1 − θDS∥2

}
,

if the sample size nt = O(log(t/δ)/(ϵr)d), where d is the dimensionality of training sample.

For ϵ < min{γ1̂, γ2̂}
/
2(β2

1̂
+ β2

2̂
)1/2 and sufficient training sample, the models by the

RERM method would converge to a small neighborhood of decision-dependent stable point
at linear rate. Specifically speaking, we have

∥θt − θDS∥2 ≤
2ϵ(β2

1̂
+ β2

2̂
)1/2

min{γ1̂, γ2̂}
∥θt−1 − θDS∥2 ,

for ∥θt−1 − θDS∥2 > r, that is, our algorithm converges to a neighborhood of a decision-
dependent stable point at linear rate when they are out of the neighborhood; we also have

∥θt − θDS∥2 ≤ r ,

for ∥θt−1 − θDS∥2 ≤ r, i.e., our algorithm would keep in the neighborhood after entrance.
The proof follows Theorem 7 but with Fournier and Guillin (2015)’s concentration

inequality for Wasserstein distance, and the detailed proof is provided in Appendix B.4.
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5. Repeated Risk Minimization by Gradient Descent and Stochastic
Gradient Descent

It is not easy to directly solve the minimizers of RRM and RERM in Section 3 and 4. Hence,
we resort to more practical algorithms such as gradient descent and stochastic gradient
descent, which are popular optimization methods in machine learning.

We first consider the gradient descent for repeated risk minimization, and formalize it
as repeated gradient descent:

Definition 10 Given initial models θ1̂0 and θ2̂0, the Repeated Gradient Descent (RGD)
performs the following updates, for every t ≥ 0:

θît+1 = ΠΘ

(
θît − ηE

z∼D(θ1̂t ,θ
2̂
t )

[
∇θℓî(z; θ

î
t)
])

(i ∈ [2]) ,

where η > 0 and ΠΘ denote the step size and Euclidean projection operator, respectively.

The RGD method requires to know data distribution D, and makes use of the expected
gradient of loss functions to update models with step size η. We could also present the
convergence to some decision-dependent stable point.

Denote by θt = (θ1̂t , θ
2̂
t ) and θDS = (θ1̂DS, θ

2̂
DS). We have

Theorem 11 Let loss ℓî(z; θ
î) be βî-jointly smooth and γî-strongly convex for i ∈ [2], and

distribution D is ϵ-Lipschitz continuous. For RGD with step size η ≤ 2
√
2/(β̃ +

√
2γmin),

we have, after T iterations,

∥θT − θDS∥2 ≤ ∥θ0 − θDS∥2 exp

[
−Tη

( β̃γmin

β̃ +
√
2γmin

− ϵβ̃(1 + ηβ̃ + 0.5ηϵβ̃)
)]

,

where γmin = min{γ1̂, γ2̂} and β̃ = (β2
1̂
+ β2

2̂
)1/2.

This theorem shows the convergence of the RGD method to some decision-dependent
stable point θDS at a linear rate when ϵ < 2γmin/[(β̃+

√
2γmin)(3ηβ̃+2)]. This is a stronger

condition for convergence than that of Theorem 7, since gradient descent may fail to reach
the minimizer of RRM. The detailed proof is given in Appendix B.5.

We could also consider the finite training sample for the gradient descent of repeated
risk minimization, and formalize it as repeated empirical gradient descent:

Definition 12 Given initial models θ1̂0 and θ2̂0, the Repeated Empirical Gradient Descent
(REGD) performs the following updates with step size η > 0, for every t ≥ 0:

θît+1 = ΠΘ

(
θît − η

∑
z∈Si

nt

∇θℓî(z; θ
î
t)
/
nt

)
(i ∈ [2]) ,

where ΠΘ denotes a Euclidean projection operator, and S1
nt

and S2
nt

are two training samples
of size nt with each element drawn i.i.d. from distribution D(θ1̂t , θ

2̂
t ).

We now analyze the convergence analysis for REGD method. Denote by θt = (θ1̂t , θ
2̂
t )

and θDS = (θ1̂DS, θ
2̂
DS), and we have
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Theorem 13 Let distribution D be ϵ-Lipschitz continuous s.t. Ez∼D(θ)[exp(µ∥z∥α)] < +∞
for some positive α and µ and for every θ. Let loss ℓî(z; θ

î) be βî-jointly smooth and γî-
strongly convex for i ∈ [2]. For real r, δ ∈ (0, 1) and integer t > 0, the following holds for
REGD at the t-th iteration with probability at least 1− 6δ/π2t2 over samples S1̂

nt
and S2̂

nt

∥θt − θDS∥2 ≤ max
{
r, ∥θt−1 − θDS∥2

}(
1− η

( β̃γmin

β̃ +
√
2γmin

− 2ϵ(β̃ + ηβ̃2 + ηϵβ̃2)
))

,

if the step size η ≤ 2
√
2/(β̃ +

√
2γmin) and the sample size nt = O(log(t/δ)/(ϵr)d). Here,

γmin = min{γ1̂, γ2̂}, β̃ = (β2
1̂
+ β2

2̂
)1/2 and d is the dimensionality of training sample.

If ϵ < γmin/[(β̃ +
√
2γmin)(4ηβ̃ + 2)], then this theorem shows that, with probability at

least 1− δ, the REGD method would converge to a neighborhood of the decision-dependent
stable point at linear rate when they are out of the neighborhood, and would keep in the
neighborhood after entrance. The proof is motivated from Theorems 9 and 11, i.e., when
the sample size nt is sufficiently large, they would behave similarly to that on the population
level. We will present the detailed proof in Appendix B.6.

We finally consider the stochastic gradient descent for the repeated risk minimization,
and formalize it as repeated stochastic gradient descent:

Definition 14 Given initial models θ1̂0 and θ2̂0, the Repeated Stochastic Gradient Descent
(RSGD) performs the following updates with step size ηt > 0, for every t ≥ 0:

θît+1 = ΠΘ

(
θît − ηt∇θℓî(z

(t)

î
; θît)

)
(i ∈ [2]) ,

where z
(t)

1̂
and z

(t)

2̂
are drawn i.i.d. according to distribution D(θ1̂t , θ

2̂
t ), and ΠΘ denotes a

Euclidean projection operator.

For RSGD, two models only observe a stochastic gradient in each iteration respectively,
and then update models. Denote by θt = (θ1̂t , θ

2̂
t ) and θDS = (θ1̂DS, θ

2̂
DS). For the convergence

of RSGD, it is necessary to make the second moment bounded assumption on the gradient
of the loss functions as follows:

Assumption 1 Suppose that loss function ℓî(z; θ
î) is βî-jointly smooth and γî-strongly

convex for i ∈ [2], and there exist constants σ2
î

and L2
î

such that, for every θî, θ1̂∗, θ
2̂
∗ ∈ Θ,

Ez∼D(θ1̂∗,θ
2̂
∗)

[
∥∇ℓî(z; θî)∥22

]
≤ σ2

î
+ L2

î

∥∥θî −Gî(θ
1̂
∗, θ

2̂
∗)
∥∥2
2
,

with Gî(θ
1̂
∗, θ

2̂
∗) = argmin

θî
Ez∼D(θ1̂∗,θ

2̂
∗)

[
ℓî(z; θî)

]
.

This assumption has been customarily made in stochastic optimization literature (Bottou
et al., 2018; Mendler-Dünner et al., 2020). Under such assumption, we have the following
theorem for the convergence of RSGD:
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Theorem 15 For ϵ-Lipschitz continuous distribution D and for the RSGD method after T
iterations, we have

E
[
∥θT − θDS∥22

]
≤ max{2σ̃2, 8L2

max∥θ0 − θDS∥22}
(γmin − ϵβ̃)2T + 8L2

max

,

if step size ηt =
(
(γmin−β̃ϵ)t+8L2

max/(γmin−β̃ϵ)
)−1 and ϵ < γmin/β̃. Here, β̃ = (β2

1̂
+β2

2̂
)1/2,

σ̃ = (σ2
1̂
+ σ2

2̂
)1/2, γmin = min{γ1̂, γ2̂} and Lmax = max{L1̂, L2̂}.

This theorem shows the convergence of RSGD to a decision-dependent stable point in
expectation if ϵ < γmin/β̃, and we get the O(T−1/2) convergence rate, which is comparable
to general stochastic gradient descent in machine learning. The detailed proof is presented
in Appendix B.7.

6. Experiments
Following strategic classification (Dalvi et al., 2004) on interaction between classification
rules and strategic agents, we present the empirical studies to verify our theoretical analysis
in two-player strategic classification, where instances modify features to improve outcomes.

We use the hotel-booking dataset (Antonio et al., 2019) to simulate the game for cus-
tomers and two hotels. It consists of two hotels’ book information for customers, and the
label indicates the cancel or not of a booking. We sample 4900 positive and 4900 negative
instances for each hotel from original dataset. Here, two hotels 1̂, 2̂ try to predict the cancel
or not for booking order of a customer, and they use logistic regression parameterized by
θ1̂, θ2̂ with L1-regularization to ensure the strong convexity for loss functions.

Given two models θ1̂ and θ2̂, each instance (x, y) could modify features via maximizing
the utility u(x′, θ1̂, θ2̂) and cost c(x,x′) as follows:

xnew = argmaxx′ u(x′, θ1̂, θ2̂)− c(x,x′) .

Suppose that the customers hope to be classified as negative class for discounts by
optimizing the following linear utility:

u(x, θ1̂, θ2̂) = −λxTθ1̂ − (1− λ)xTθ2̂ with λ ∈ [0, 1] .

We consider the quadratic cost c(x,x′) = 1
2ϵ∥x−x′∥22, and the best response for customers

can be written as

xnew = argmin
x′

λx′Tθ1̂ + (1− λ)x′Tθ2̂ +
1

2ϵ
∥x− x′∥22

= x− ϵ(λθ1̂ + (1− λ)θ2̂) .

It is easy to check the ϵ-Lipschitz continuity for data distribution, since for θ1̂, θ2̂, θ1̂′ , θ2̂′ ∈ Θ,
the following holds for every instance,∥∥x− ϵ(λθ1̂ + (1− λ)θ2̂)− x+ ϵ(λθ1̂

′
+ (1− λ)θ2̂

′
)
∥∥
2

≤ ϵmax{λ, 1− λ}
∥∥(θ1̂ − θ1̂

′
) + (θ2̂ − θ2̂

′
)
∥∥
2

≤ ϵ
∥∥(θ1̂, θ2̂)− (θ1̂

′
, θ2̂

′
)
∥∥
2
.
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Figure 4: The convergence curves of decision-dependent risks (top) and accuracies (bottom)
for RRM with ϵ = 13. Blue line indicates the optimization for models, and red
dotted line indicates the effect caused by decision-dependent distribution shift.

This bounds the transport distance for each instance. Therefore, we can also bound the
Wasserstein-1 distance over the entire data distribution. In the following, we treat the points
in the original dataset as the true distribution, and simulated the strategic classification
with λ = 0.5 for RRM, RGD and RSGD, and adjust the parameter ϵ with different scales.

Figure 4 shows the evolution of the decision-dependent risks and accuracies for two
models with RRM when the distribution Lipschitz parameter ϵ = 13. The optimizing
progress of RRM for two models is shown in blue lines, while red dotted lines denote the
influences caused by updating features of strategic instances. We can clearly observe the
interactions between models and instances, i.e., models try to minimize losses yet instances
try to increase the losses in each iteration. We can also observe the stable convergence of
RMM to a decision-dependent stable point, as expected in Theorem 7.

Figures 5 shows the convergence curves of the distances for RRM with two models after
one iteration. As we can see, RRM could converge to a decision-dependent stable point with
linear rate for small ϵ, but fail to converge for large ϵ. Moreover, the smaller the parameter
ϵ, the faster the convergence. This is nicely in agreement with Theorem 7.

Figures 6 shows the convergence curves of the distances for RGD with two models
after one iteration. We can also observe the convergence and divergence of RGD for small
and large ϵ, respectively. In particularly, the RGD method would enter a chaos status for
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Figure 5: The convergence curves of the normalized distances for two models after one
iteration by RRM with different Lipschitz continuity parameter ϵ.
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(a) Distances of Learner 1 by RGD after one iteration
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(b) Distances of Learner 2 by RGD after one iteration
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Figure 6: The convergence curves of the normalized distances for two models after one
iteration by RGD with different Lipschitz continuity parameter ϵ.

extremely larger ϵ. This verifies Theorem 11 empirically. In comparisons with RRM, we
can also find that RGD requires stronger condition for convergence with slower rate, which
agrees with Theorems 7 and 11 empirically.

Figure 7 shows the convergence curves of accuracies for RSGD with different Lipschitz
continuity parameter ϵ. As we can see, the RSGD method would also converge to some stable
point for small ϵ, but diverge for large ϵ. This well supports our Theorem 15 empirically.
Moreover, we can find that large ϵ result in hard learning problem for models, causing
chaos learning dynamics, leading to low accuracies for both models. This also address the
importance of fast convergence to the decision-dependent stable point.
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Figure 7: The convergence curves of accuracies for RSGD with different Lipschitz continuity
parameter ϵ.

7. Conclusion
This work tries to learn multiple interactive models under a decision-dependent dynamic
environment, where the data distribution may take shift according to different models.
We formalize such scenario as a learning problem of two models over decision-dependent
distributions, and develop the repeated risk minimization method for two models. We
present the existence of stable points for RRM, and provide convergence analysis based
on data distribution and finite training sample. We also study more practical algorithms
with convergence analysis. An interesting future work is to study the learning problem over
decision-dependent distributions with three or more models, and it is also interesting to
exploit practical algorithms in the more general dynamic environment.
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