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Abstract

Network quantization is an effective and widely-used model compression technique. Re-
cently, several works apply differentiable neural architectural search (NAS) methods to
mixed-precision quantization (MPQ) and achieve encouraging results. However, the nature
of differentiable architecture search can lead to the Matthew Effect in the mixed-precision.
The candidates with higher bit-widths would be trained maturely earlier while the can-
didates with lower bit-widths may never have the chance to express the desired function.
To address this issue, we propose a novel mixed-precision quantization framework. The
mixed-precision search is resolved as a distribution learning problem, which alleviates the
Matthew effect and improves the generalization ability. Meanwhile, different from generic
differentiable NAS methods, search space will grow rapidly as the depth of the network
increases in the mixed-precision quantization search. This makes the supernet harder to
train and the search process unstable. To this end, we add a skip connection with a
gradually decreasing architecture weight between convolutional layers in the supernet to
improve robustness. The skip connection will help the optimization of the search process
and will not participate in the bit width competition. Extensive experiments on CIFAR-10
and ImageNet demonstrate the effectiveness of the proposed methods. For example, when
quantizing ResNet-50 on ImageNet, we achieve a state-of-the-art 156.10x Bitops compres-
sion rate while maintaining a 75.87% accuracy.
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precision quantization

† First Author and Second Author contribute equally to this work.
† Longjun Liu is the Corresponding author.

© 2022 H. Zhou, H. He, W. Liu, Y. Li, H. Zhang & L. Liu.



Zhou He Liu Li Zhang Liu

1. Introduction

Deep convolutional neural networks have become the de-facto method and achieved tremen-
dous success in a wide range of tasks. However, high computation complexity impedes the
development of DCNNs on edge computing systems, such as mobile phones, drones, au-
tonomous robots, etc.

To this end, many prior arts have been proposed, including, but not limited to, network
quantization, network pruning Zhang et al. (2021), knowledge distillation Hinton et al.
(2015), tensor decomposition Zhang et al. (2022), structural re-parameterization Zhou et al.
(2022) and compact model design Sandler et al. (2018). Network quantization reduces the
bit widths of data flowing in a deep neural network, thus allowing the use of lower precision
computation units in hardware.

Most early quantization methods usually quantize all (or most of) the layers of a deep
model into the same bit widths, which can be categorized into uniform precision quantiza-
tion. They have shrunk the model size and accelerated the inference process, but still suffer
from significant accuracy degradation when performing ultra low-bit quantization. Cur-
rently, a wide range of hardware, such as CPUs and FPGAs, have supported mixed-precision
computation. This motivates the research of quantizing different filters/channels into dif-
ferent bit widths to further compress deep models and pursue higher accuracy. However,
optimizing an appropriate bit-width configuration for a mixed-precision network is compu-
tationally expensive. For example, in a neural network with L layers, where each layer has
N candidate bit-widths for weights and M candidate bit-widths for activations, the search
space will have (NM)L configurations for mixed-precision search. To reduce the search
cost, a series of works Cai and Vasconcelos (2020); Wu et al. (2018); Yu et al. (2020) adopt
differentiable architecture search (DARTS) Liu et al. (2019) on mixed-precision quantiza-
tion and achieve encouraging results. In this paper, we use the mixed-precision quantization
search to denote optimizing mixed-precision quantization through NAS methods.

However, there are still several issues that have not been fully considered in prior works.

• The direct optimization of architecture weights can naturally lead to the Matthew
effect Hong et al. (2020). The Matthew effect in differentiable NAS methods refers to
that fewer loss gradients will be propagated to the underperforming operations, which
will make them harder to be trained maturely and their performance much worse. The
Matthew effect in the mixed-precision quantization search can be more severe since
there are natural differences in the expressive abilities of different candidates.

• The DARTS-based optimization used in prior mixed-precision works removes the skip
connection from the search space. Apparently, mixed-precision quantization does not
need a skip connection as a candidate operation. And in some previous works Chu
et al. (2020); Liang et al. (2019), skip connections are even blamed for the performance
collapse of DARTS. However, in the mixed-precision quantization search, search space
will grow rapidly as the depth of the network increases, which increases the difficulty
of supernet training. Hence, if we can utilize the skip connections to help the supernet
training without influencing the quantization competition, it will not reduce stability
but be helpful for mixed-precision quantization.
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In this paper, we propose a novel mixed-precision framework to address the above issues.
First, to alleviate the Matthew Effect, we resolve the mixed-precision quantization search
as a distribution learning problem, which naturally induces stochasticity and encourages
exploration. We treat the architecture weight as random variables sampled from a learnable
Dirichlet distribution. To the best of our knowledge, we are the first paper to leverage
the Dirichlet distribution on mixed-precision quantization. Furthermore, we propose to
add a skip connection between convolutional layers in the supernet. We pre-define the
initial architectural weight of the skip connection and gradually reduce it to zero during
the search process. This skip connection will alleviate gradient vanishing and help training.
Meanwhile, it does not interfere with the search results since it does not participate in the
bit widths competition. And when the weights are trained maturely, the skip connections
have nearly disappeared, which does not influence the architecture of the quantized model.
Moreover, we conduct a series of experiments to evaluate the effectiveness of our framework.

2. Related Work

2.1. Uniform Precision Quantization

Network quantization attempts to reduce the bit-width of weight, activation, or other data
flowing in a neural network and has been long studied since the very beginning of the
blooming era of deep learning. For example, BWN Courbariaux et al. (2015) mainly focuses
on weights quantization, while DoReFa Zhou et al. (2016) quantizes not only weight but also
activation or even gradient and error. For activation quantization, HWGQ-Net Cai et al.
(2017) introduces a clipped ReLU function to avoid the gradient mismatch. PACT Choi
et al. (2018) further replaces ReLU with an activation function with a trainable clipping
parameter. Most of those early works quantize all or most of the layers of a deep network
into the same bit-width, which can be categorized into uniform precision quantization.

2.2. Neural Architecture Search

To the best of our knowledge, Zoph and Le (2017) is the first paper that introduces Neural
Architecture Search (NAS). Since then, NAS has achieved state-of-the-art performances in
many fields and attracted increasing attention. Most pioneers develop prototypes based on
reinforcement learning (RL) Zoph and Le (2017), evolution algorithm Real et al. (2019)
and Bayesian optimization Domhan et al. (2015), but suffer from heavy computation costs
and challenge of scalability. To this end, Differentiable Architecture Search (DARTS) Liu
et al. (2019) resolves the search process as a bilevel optimization problem, which allows the
architecture search to be efficiently performed by a gradient-based optimizer.

DARTS achieves encouraging results and inspires a series of other works. However, there
are still some flaws in differentiable NAS methods, such as the Co-adaption problem and the
Matthew effect Hong et al. (2020), the unfair competition Chu et al. (2020) which leads to
performance collapse. And some endeavors Chu et al. (2020); Zela et al. (2020); Liang et al.
(2019); Chu et al. (2021) are dedicated to solving those problems. Since differentiable NAS
methods are very efficient and easy to implement, several works utilize them to perform
mixed-precision quantization.
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2.3. Mixed Precision Quantization

Even though uniform quantization has achieved success in compressing deep models, it
can be suboptimal since different layers can have different quantization sensitivities. To
address this issue, a series of mixed-precision quantization works have been proposed. Some
works define a dominant metric of quantization sensitivity. HAWQ Dong et al. (2019) and
HAWQv2 Dong et al. (2020) are representatives, which use the eigenvalue/trace of a Hessian
matrix as a metric of quantization sensitivity and then determine the relative quantization
levels of layers based on the metric. ZeroQ Cai et al. (2020) also designs a sensitivity metric
through the KL divergence and uses a Pareto frontier approach to perform mixed-precision
quantization. Liu et al. (2021) adopts the difference of the output of a channel before and
after quantization as the sensitivity metric and constructs the multipoint quantization with
a greedy selection procedure.

Different from those metric-based methods, many other studies do not define a dominant
metric of quantization sensitivity but seek to automatically determine the exact bit preci-
sion configurations. ALQ Qu et al. (2020) proposes a special quantization framework and
incrementally trains an adaptive bit width without gradient approximation. HAQ Wang
et al. (2019) and ADMM Kingma and Ba (2015) leverage the reinforcement learning and
the Alternating Direction Method of Multipliers (ADMM), respectively, to optimize the
bit widths of both weights and activations for each layer on different hardware platforms.
DNAS Wu et al. (2018) applies differentiable neural architecture search on mixed-precision
quantization and optimizes with gradient descent. BP-NAS Yu et al. (2020), EDMIPS
Cai and Vasconcelos (2020) and GMPQ Wang et al. (2021) futher improve the differen-
tiable nerual architecture search framework on MPQ and achieve state-of-the-art results.
HMQ Habi et al. (2020) utilizes the Gumbel-Softmax estimator to simultaneously search
bit widths and threshold of each quantizer. Uhlich et al. (2020) uses stochastic gradient
descent to search the stepsize and dynamic range for each layer, and then infers the bit
width through them. And FleXOR Lee et al. (2020a) achieves fractionally mixed-precision
quantization through designing an encryption algorithm.

However, those previous works do not investigate the Matthew Effect and the robustness
problem in the mixed-precision quantization. In this paper, we propose a novel mixed-
precision quantization search framework to address those problems.

3. Methodology

3.1. Mixed Precision Quantization Search

In this section, we formulate the mixed-precision quantization search problem and define
the model complexity regularizer. Aussming we have a neural network N with L layers. Let
Ow = {bw1 , bw2 , ..., bwn }, Oa = {ba1, ba2, ..., bam} (n,m = |Ow|, |Oa|) denote the set of candidate
bit widths (i.e. the search space) for weight and activation, respectively. In this paper,
we perform a differentiable architecture search to achieve mixed-precision quantization. To
this end, we first build a supernet SN based on the original architecture. Let Q denote the
quantizer (quantization technique) for uniformly quantizing each layer, the forward process
of the lth convolutional layer in the supernet will be:
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Fl =

n∑
i=1

θwl,i[Q(bwi , wi) ∗
m∑
j=1

θal,jQ(baj , Xl)]

=

n∑
i=1

θwl,i · (w
q
i ∗

m∑
j=1

θal,j · a
q
j)

(1)

where Xl, Fl are the input and output of this layer, ∗ denotes the convolution operator,
θwl,i, θal,j are the architecture weight of weight and activation, respectively. And wq

i =

Q(bwi , wi), a
q
j = Q(baj , Xl) are the bwi bit quantized weight and baj bit quantized activation.

For simplicity, we use θ = θw ∪ θa to denote the set of architecture weights.
The goal of mixed-precision quantization is to determine the weight bit width and ac-

tivation bit width for each layer to achieve the optimal trade-off between accuracy and
complexity. Let C(SN , θ) be the model complexity and C0 be the pre-defined model com-
plexity constraint. The mix-precision quantization problem can be formulated as follows:

min
θ

Lval(w
∗(θ), θ)

s.t. w∗(θ) = argmin
w

Ltrain(w, θ)

C(SN , θ) ⩽ C0

(2)

where Ltrain and Lval are the training and the validation loss, respectively. Equation 2
implies a typical bilevel constrained optimization problem, which can be solved by the
method of Lagrange multiplier.

L = Lcls + µLmc (3)

where Lcls, Lmc denote the classification loss and the model complexity loss, respectively. µ
is a hyperparameter to balance the importance of different losses. In this paper, we utilize
the Bit-operations (BOPs) as the metric of model complexity, for it can constrain both
computation and storage cost Cai and Vasconcelos (2020); Wang et al. (2020).

Lmc =

L∑
l=1

n∑
i=1

θwl,ib
w
i ·

m∑
j=1

θal,jb
a
j · FLOPsl (4)

where FLOPsl is the floating-point operations (FLOPs) of the lth layer.
For comparison with prior works, we also define the average weight bit b

w
, the average

activation bit b
a
and the average network bit b for the quantized networks.

b
w
=

Quantized Weights Memory

Float Weights Memory
∗ 32 = Weights Compression rate ∗ 32

b
a
=

Quantized Activations Memory

Float Activations Memory
∗ 32 = Activations Compression rate ∗ 32

b =

√
Quantized Bitops

Float Bitops
∗ 32 =

√
Bitops compression rate ∗ 32

(5)
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Figure 1: An overview of the supernet in our framework. The Dirichlet distribution is used
to re-parameterize the architecture weights, which encourages exploration. The skip con-
nections with gradually decaying architecture weights will be added between convolutional
layers, which helps to stabilize the searching process.

3.2. Distribution Learning for MPQ

The optimization procedure in DARTS will lead to the Co-adaption problem and the
Matthew effect. The same problems will also exist in the mixed-precision quantization
search if it follows a similar search process. In this paper, distinguishing from the generic
NAS, we redefine the Co-adaption problem and the Matthew effect in mixed-precision quan-
tization search: 1) Candidates with some special bit widths would have natural advantages
in the competition and perform better in the early stage of supernet training. While the
architecture parameters of underperforming candidates will be lowered and fewer loss gradi-
ents will be propagated, which will make them harder to be trained maturely and cause the
Matthew Effect. 2) Those candidates with natural advantages would be trained maturely
with fewer epochs and express the desired function earlier than the others. Hence, those
underperforming candidates may rarely have the chance to express the desired function.
This makes the mixed-precision quantization prefer candidate bit widths which have the
natural advantages but not the optimal results.

The Co-adaption problem and the Matthew effect in the generic DARTS can be at-
tributed to the performance gap between different candidate operations over various appli-
cation scenarios. Hence, without the complexity regularizer, those problems can be even
worse in the mixed-precision quantization since there are natural differences in the expres-
sive abilities of candidate bit widths. The higher bit-width candidates will almost always
occupy the advantaged positions. And the performance gap can not be ignored, especially
in pursuing ultra low-bit quantization. Whereas, under the complexity regularizer, the Co-
adaption performance will not be eliminated. Reverse discrimination could be introduced,
and the training of some special bit widths is encouraged while the others are inhibited.

In this paper, we seek to alleviate the Co-adaption problem and the Matthew effect
in mixed-precision quantization without expensive computational cost. Unlike DropNAS
Hong et al. (2020) which utilizes the dropout, we propose to formulate the mixed-precision
problem as a distribution learning, which naturally induces stochasticity and encourages
exploration. Inspired by previous works Blei et al. (2003); Lee et al. (2020b); Joo et al.
(2020); Chen et al. (2021), we leverage Dirichlet distribution to the continuously relaxed
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model architecture weights. Dirichlet distribution is a widely used distribution over the
probability simplex and enjoys a nice property that it enables gradient-based training.

Specifically, we will convert the supernet to a stochastic supernet whose edges are exe-
cuted stochastically and treat the architecture weight θ as random variables sampled from
a Dirichlet distribution. The formulation of the bilevel optimization problem in equation 2
will transfer to:

min
β

Edt(θ|β)[Lval(w
∗(θ), θ)]

s.t. w∗(θ) = argmin
w

Ltrain(w, θ)
(6)

where dt(θ|β) is the distribution of θ parameterized by the Dirichlet concentration parameter
β, i.e. dt(θ|β) ∼ Dir(β). The gradient of β can not be directly calculation, but could be
approximated via pathwise derivative estimators Jankowiak and Obermeyer (2018).

dθi
dβj

= −
∂FBeta
∂βj

(θj |βj , βtot − βj)

βBeta(θj |βj , βtot − βj)
× δi,j − θi

1− θj
i, j = 1, ..., |O| (7)

where FBeta and fBeta denote the CDF and PDF of beta distribution respectively, δi,j is
the indicator function, and βtot is the sum of concentrations. FBeta is the irregularized
incomplete beta function, for which the gradient can be computed by simple numerical
approximation. When the search phase finishes, we select the bit width for the lth layer by
Equation 8.

bwl =argmin
θwi ∈Ow

Edt(θwi |βw
l )[θ

w
i ]

bal =argmin
θai ∈Oa

Edt(θai |βa
l )
[θai ]

(8)

It has been proved that formulating the differentiable architecture search as a distri-
bution learning problem can improve the generalization ability Chen et al. (2021). And
through this transformation, we encourage the exploration of the mixed-precision quanti-
zation search, which alleviates the Matthew effect and the Co-adaption problem.

3.3. Skip Connection to Stabilize Search

A big difference between the mixed-precision quantization and the generic NAS is that the
size of search space in mixed-precision quantization will grow rapidly as the depth of the
network increases. For example, if n = m = 4 and L = 20, the size of search space will be
420 × 420 = 280. But if L = 50, the size of search space will be 450 × 450 = 2200, which is far
greater than 814 × 814 = 2112 in DARTS. The rapidly growing search space size increases
the difficulty of supernet training and makes the search unstable, which motivates us to
pursue a novel component for stabilizing the search process in our framework.

Since ResNet He et al. (2016) constructs a residual block with skip connections and
significantly improves training stability, the skip connection has been widely used. But
in DARTS, superfluous skip connections can cause unfair competition and even lead to
the performance collapse. However, a recent study Chu et al. (2021) claims that the skip
connection in DARTS actually plays twofold roles: an auxiliary connection to stabilize the



Zhou He Liu Li Zhang Liu

Algorithm 1: The whole pipeline of our framework
Input: Network N with L layers; Set of candidate bit widths for weight and activation

Ow, Oa; The quantizer Q; Search epochs Es; Quantization epochs Eq.
Output: The quantized network QN .

1 Build a supernet SN based on Ow, Oa, and N .
2 Add a skip connection between every two layers in the supernet SN .
3 The search process:
4 for e = 1 → Es do
5 Update weights w by descending ∇wLtrain(w, θ(β))

Update concentration parameters β by descending ∇βLval(w, β)

6 end
7 Build the quantization network QN with the searched bit width configurations.
8 Train QN from scratch with Eq and get the quantization network.

supernet training and a candidate operation to build the final network. Motivated by this
conclusion, we propose to add a skip connection between each two layers in the supernet
(Fig. 1) with a special architecture weight η. η is a pre-defined value, which does not
participate in the bit-widths competition but alleviates the gradient vanishing problem.
For simplicity, we use θ to denote θ(β) in this section. When the skip connection is added
to the supernet, the forward process of the kth convolutional layer will be:

F s
k =

n∑
i=1

θwk,i · (w
q
i ∗

m∑
j=1

θak,j · a
q
j) + η ·Xk

η = η0 − g(epoch)

(9)

where F s
k is the output feature, which is used to distinguish with Fk. η0, g are pre-defined

initial value and the decay strategy of η, respectively. epoch is the current search epoch
and we decrease η to 0 in the search phase. Let L stand for the loss fuction, the backward
process of the k-th convolution layer will be:

∂L
∂Xk

=
∂L
∂F s

k

·
∂F s

k

∂Xk
=

∂L
∂F s

k

· (
n∑

i=1

θwk,i · (w
q
i ∗

m∑
j=1

θak,j ·
∂aqj
∂Xk

) + η · 1)

=
∂L
∂F s

k

· ( ∂Fk

∂Xk
+ η · 1) = ∂L

∂F s
L

·
L−k∏
r=1

(
∂Fk+r

∂Xk+r
+ η · 1)

(10)

where 1 denotes a tensor whose items are all ones. In this paper, we set the initial value of
η as η0. According to equation 10, the skip connection can alleviate the gradient vanishing
and stabilize the supernet training when the weights of candidates have not been trained
maturely. And we gradually decrease η in the search phase. When the search is near to
finish, η will tend to be zero, which will not disturb bit-width competition. In conclusion,
the skip connection mainly works in the early stage of search.

The whole pipeline of our quantization algorithm is illustrated in Algorithm 1. We first
search the bit width configurations and then quantize the network from scratch.



A Novel Differentiable Mixed-Precision Quantization Search Framework

Table 1: Comparison with prior arts on CIFAR-10. We abbreviate accuracy as ’Acc’,
compression rate as ’Comp’, weights as ’W’, activations as ’A’, bitops as ’B’ and mixed-
precision as ’MP’, respectively. b

w
, b

a
, b are calculated following Equation 5.

Network Method Acc (%) ∆ Acc (%) b
a

W Comp b
w

B Comp b

ResNet-20

Baseline 92.1 +0.0 32 1 32 1 32

TTQ Zhu et al. (2017) 91.13 -0.97 32 16 2 16 8
HAWQ Dong et al. (2019) 92.22 +0.12 2.43MP 13.11 4 64.49 4
BP-NAS Yu et al. (2020) 92.3 +0.2 3.14MP 10.19 MP 81.53 3.5

Ours 92.62 +0.52 3.59MP 8.91 3.39MP 83.52 3.50

Dorefa Zhou et al. (2016) 89.9 -2.2 3 10.67 3 113.78 3
PACT Choi et al. (2018) 91.1 -1.0 3 10.67 3 113.78 3

LQ-Nets Zhang et al. (2018) 91.6 -0.5 3 10.67 3 113.78 3
BP-NAS Yu et al. (2020) 92.12 +0.02 2.86MP 10.74 MP 95.61 3.3
BP-NAS Yu et al. (2020) 92.04 -0.06 2.65MP 12.08 MP 116.89 2.9

Ours 92.36 +0.26 2.85MP 11.2 3.33MP 113.2 3.00

Dorefa Zhou et al. (2016) 88.2 -3.9 2 16 2 256 2
PACT Choi et al. (2018) 89.7 -2.4 2 16 2 256 2

LQ-Nets Zhang et al. (2018) 90.2 -1.9 2 16 2 256 2
Ours 91.08 -1.02 1.81MP 17.64 2.62MP 258.52 1.99

ResNet-56

Baseline 93.47 +0.0 32 1 32 1 32
TTQ Zhu et al. (2017) 93.56 +0.09 32 16 2 16 8

Ours 93.95 +0.48 3.44MP 9.28 3.63MP 83.57 3.50
Ours 93.40 -0.07 2.60MP 12.21 3.32MP 113.59 3.00
Ours 92.65 -0.82 1.42MP 22.43 2.69MP 258.02 1.99

MobileNetv2

Baseline 95.22 +0.0 32 1 32 1 32
Ours 94.81 -0.41 7.44MP 4.36 7.33MP 29.37 5.90
Ours 94.41 -0.81 6.73MP 5.43 5.88MP 60.28 4.12
Ours 93.47 -1.75 5.96MP 5.96 5.37MP 101.18 3.18

4. Experiments

In this section, we evaluate our framework on classification tasks. First, we provide the
implementation details and compare our method with the prior quantization methods. Be-
sides, we conduct a series of ablation studies to investigate the impact of components in our
framework. All the experiments are accomplished with PyTorch Paszke et al. (2019).

4.1. Network Quantization

We present the experiment results on two widely-used image classification datasets, CIFAR-
10 Krizhevsky (2009) and ImageNet Russakovsky et al. (2015) to illustrate the effectiveness
of the proposed quantization method. We directly quote some results of the existing meth-
ods from previous works.

4.1.1. CIFAR-10

For CIFAR-10, we choose ResNet-20, ResNet-56 He et al. (2016) and MobileNetv2 Sandler
et al. (2018), which are the most popular DNN models in compression works, to demon-
strate the effectiveness of our methods. We utilize HWGQ-Net Cai et al. (2017) for uni-
formly quantizing each layer. First, we search the bit-width configurations under the model
complexity regularizer for 50 epochs, with the same hyper-parameter setting of a batch
size of 256, a weight decay of 5e-4, and the SGD optimizer with a momentum of 0.9. The
learning rate for network parameters is set to 0.1 initially and divided by 10 at every 20
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Table 2: Comparison with Top-1 accuracy of prior arts on ImageNet. We abbreviate accu-
racy as ”Acc”, compression rate as ”Comp”, weights as ”W”, activations as ”A”, bitops as
”B”, mixed-precision as ”MP”, respectively. b

w
, b

a
, b are calculated following Equation 5.

Network Method Acc (%) ∆ Acc (%) b
a

W Comp b
w

B Comp b

ResNet-18

Baseline 69.54 +0.0 32 1 32 1 32

TTQ Zhu et al. (2017) 66.6 -2.94 32 16 2 16 8
Dorefa Zhou et al. (2016) 68.1 -1.44 4 8 4 64 4
PACT Choi et al. (2018) 69.2 -0.34 4 8 4 64 4

LQ-Nets Zhang et al. (2018) 69.3 -0.24 4 8 4 64 4
DSQ Gong et al. (2019) 69.56 +0.02 4 8 4 64 4

EdMIPS Cai and Vasconcelos (2020) ≈ 67.5 -2.04 MP - MP - ≈ 3.5
Ours 69.56 +0.02 3.40MP 8.75 3.66MP 85.98 3.45

Dorefa Zhou et al. (2016) 67.5 -2.04 3 10.67 3 113.78 3
PACT Choi et al. (2018) 68.1 -1.44 3 10.67 3 113.78 3

LQ-Nets Zhang et al. (2018) 68.2 -1.34 3 10.67 3 113.78 3
DSQ Gong et al. (2019) 68.66 -0.88 3 10.67 3 113.78 3

EdMIPS Cai and Vasconcelos (2020) ≈ 66.5 -3.04 MP - MP - ≈ 2.8
Ours 68.72 -0.82 2.99MP 10.66 3.00MP 126.03 2.85
Ours 68.25 -1.29 2.79MP 12.23 2.62MP 174.18 2.42

ResNet-50

Baseline 76.14 +0.0 32 1 32 1 32

Dorefa Zhou et al. (2016) 71.4 -4.74 4 8 4 64 4
LQ-Nets Zhang et al. (2018) 75.1 -1.04 4 8 4 64 4
PACT Choi et al. (2018) 76.5 +0.36 4 8 4 64 4
BP-NAS Yu et al. (2020) 76.67 +0.53 MP - MP 71.65 3.8

EdMIPS Cai and Vasconcelos (2020) ≈ 73.0 -3.14 MP - MP - ≈ 3.5
Ours 76.42 +0.28 3.84MP 8.83 3.62MP 90.96 3.36

Dorefa Zhou et al. (2016) 69.9 -6.24 3 10.67 3 113.78 3
PACT Choi et al. (2018) 75.3 -0.84 3 10.67 3 113.78 3

LQ-Nets Zhang et al. (2018) 74.2 -1.94 3 10.67 3 113.78 3
HAQ Wang et al. (2019) 75.3 -0.84 MP 10.57 MP - -
HAWQ Dong et al. (2019) 75.48 -0.66 2MP 12.28 4MP - -

HAWQv2 Dong et al. (2020) 75.76 - 4MP 2MP 12.24 - -
EdMIPS Cai and Vasconcelos (2020) ≈ 72.5 -3.64 MP - MP - ≈ 2.9

BP-NAS Yu et al. (2020) 75.71 -0.43 MP - MP 118.98 2.9
Ours 75.87 -0.27 3.29MP 12.22 2.62MP 156.10 2.56

epochs, while the learning rate for architecture weights θ is set to 0.01. All concentration
parameters β are initialized to 0.01 to ensure fairness. When the search phase finishes, we
select the bit width for weights and activations following Equation 8. Then, we quantize the
network from scratch for 600 epochs with an initial learning rate of 0.2 and the cosine decay
strategy. For MobileNetv2, we utilize DoReFa Zhou et al. (2016) for uniformly quantizing
each layer and change the initial learning rate of the quantizing phase to 0.025.

The experimental results are summarized in Table 1. Our results compare favorably to
other quantization methods. For example, On ResNet-20, compared with uniform quanti-
zation methods, Dorefa Zhou et al. (2016), PACT Choi et al. (2018) and LQ-Nets Zhang
et al. (2018), our method achieves higher accuracy when quantizing the network to 3 av-
erage bit. Compared with the mixed-precision method HAWQ Dong et al. (2019), which
achieves 92.22% accuracy with a 64.49x Bitops compression rate, our method achieves a
little higher accuracy of 92.36% with an almost double Bitops compression rate 113.2x.

4.1.2. ImageNet

For ImageNet, we use ResNet-18 and ResNet-50 He et al. (2016) as the baseline models.
In the searching phase, the search epoch is set to 25, and the learning rate for network
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Table 3: Comparison of Top-1 accuracies of ResNet-56 on CIFAR-10 with/without Dirichlet
distribution learning and skip connections.

Dirichlet Skip Acc (%) Average network bit

! ! 93.40 3.00

% ! 93.38 3.01

! % 93.25 3.04

% % 93.08 3.01

parameters is set to 0.1 initially and divided by 10 at every 10 epochs. And in the quantizing
phase, the training epoch and weight decay are set to 100 and 1e-4, respectively. The rest
of the hyperparameters are set following CIFAR-10 experiments.

The experimental results are summarized in Table 2. Our method achieves a bet-
ter accuracy-complexity trade-off under various resource constraints. On ResNet-18, our
method achieves an 85.98× Bitops compression rate with a 69.59% accuracy, which is even
higher than the full-precision baseline. On ResNet-50, our method achieves the state-of-
the-art Bitops compression rate 156.10x with maintaining 75.87% accuracy.

4.2. Ablation Study

4.2.1. Skip Connection and Distribution Learning

In this section, we investigate the performance of Dirichlet distribution learning and the
skip connections of our framework when they work alone. We conduct experiments with
the following settings: 1) replacing the Dirichlet distribution with softmax operation, 2)
removing the skip connection in the supernet; 3) enforcing both of the above. The experi-
mental results of quantizing ResNet-56 to about 3 network average bit is shown in Table 3.
The accuracies of the quantized networks drop by 0.02% and 0.15% without Dirichlet dis-
tribution and skip connection, respectively, while their average network bits both increase.
Both of them fail to find the optimal bit allocation. But they still perform better than the
baseline, which proves the effectiveness of Dirichlet distribution and the skip connections.

4.2.2. Stability

2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20
Average Bit

91.7

91.8

91.9

92.0

92.1

92.2

92.3

92.4

92.5

92.6

Ac
cu

ra
cy

ours
baseline

Figure 2: 15 sets of our method and baseline. Line denotes the average accuracies.



Zhou He Liu Li Zhang Liu

Table 4: Comparison of Top-1 accuracies of ResNet-2 on CIFAR-10 with different initial
architecture weight η0

initial η Acc (%) Average network bit
2 90.94 2.02
1 91.08 1.99
0.8 91.10 2.01
0.5 91.17 1.99
0 90.54 2.01

In our framework, we utilize skip connections to stabilize the supernet training. To
verify the robustness, we search several times for quantizing ResNet-20 under the same
complexity decay. The network bit of the baseline (without skip connections) is 2.9963
averagely and scatterd over a -0.1382 to 0.1443 error range with a 5.18e-3 variance, and the
average quantized accuracy is 92.03%. Compared with the baseline, our method achieves
2.9947 average bit networks, whose error only ranges from -0.0781 to 0.0984 with a 2.13e-3
variance. And our method improves the average performance of quantized ResNet-20 to
92.30%. Those experimental results illustrated in Figure 2 demonstrate that our method
can improve the stability of the search.

4.2.3. The initial value of η

The initial value η0 of the architecture weight η on skip connections is an important hy-
perparameter, which influences the power of the auxiliary skip connections in the supernet.
To investigate the influence of different η0, we quantize ResNet-20 to 2 average bit with
η0 ∈ {2, 1, 0.8, 0.5, 0}. Table 4 illustrates that when η0 is within a reasonable range, our
method maintains good performance. However, overlarge or too small η0 leads to worse per-
formance. In conclusion, setting η0 = 1 is a suitable strategy, which avoids the complicated
hyper-parameter tuning process while gaining significant accuracy boost.

4.3. Visualization
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Figure 3: Bit allocation of ResNet-20.
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Figure 4: Bit allocation of ResNet-18.
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In this section, we present the searched bit allocation for ResNet-20 on CIFAR-10 and
ResNet-18 on ImageNet. The bit width curves shown in Fig 3 and 4 illustrates that the
quantization bit for activations or weights of the same layer mostly increases or stays the
same when the average network bit increases. It can be interpreted as that, when the
supernet gets more computational resources, it will reweigh the importance of all layers and
allocate those extra resources to them. This phenomenon demonstrates convincingly that
our method is consistent with different datasets and stable enough to find the inner pattern
of the mixed-precision quantization.

5. Conclusion

In this paper, we propose a novel mixed-precision quantization framework for alleviating
the Matthew effect and improving robustness. We study and redefine the Matthew effect
and the Co-adaption problem in the mixed-precision quantization. Then, we resolve the
mixed-precision quantization search as a distribution learning problem, which encourages
the exploration and alleviates the Matthew effect and the Co-adaption problem. Further-
more, we investigate the lack of skip connections in the search space of mixed-precision
quantization. We propose to add a skip connection between every two convolutional layers
in the supernet, which improves robustness and does not influence the bit-widths com-
petition. Extensive experiments depict the effectiveness of our framework compared with
the state-of-the-art methods. Of note is that our method is simple to implement using
mainstream frameworks.
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