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Abstract

The AdaBoost algorithm of Freund and Schapire (1997) was designed to combine many
“weak” hypotheses that perform slightly better than a random guess into a “strong” hypo-
thesis that has very low error. We study the rate at which AdaBoost iteratively converges
to the minimum of the “exponential loss” with a fast rate of convergence. Our proofs do not
require a weak-learning assumption, nor do they require that minimizers of the exponential
loss are finite. Specifically, our first result shows that at iteration ¢, the exponential loss of
AdaBoost’s computed parameter vector will be at most € more than that of any parameter
vector of £1-norm bounded by B in a number of rounds that is bounded by a polynomial in
B and 1/e. We also provide rate lower bound examples showing a polynomial dependence
on these parameters is necessary. Our second result is that within C'/e iterations, AdaBoost
achieves a value of the exponential loss that is at most € more than the best possible value,
where C' depends on the dataset. We show that this dependence of the rate on ¢ is optimal
up to constant factors, i.e. at least £2(1/¢) rounds are necessary to achieve within ¢ of the
optimal exponential loss.

Keywords: AdaBoost, optimization, coordinate descent, convergence rate.

1. Introduction

The AdaBoost algorithm of Freund and Schapire (1997) was designed to combine many
“weak” hypotheses that perform slightly better than a random guess into a “strong” hypo-
thesis that has very low error. AdaBoost has been named in 2006 as one of the “top
10” algorithms in data mining (Wu et al., 2008) and has performed favorably with re-
spect to other popular machine learning algorithms in empirical comparisons (Caruana and
Niculescu-Mizil, 2006). Despite AdaBoost’s popularity, basic properties of its convergence
are not well understood. In this work, we focus on one of those properties, namely to find
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convergence rates when there are no simplifying assumptions. For instance, we do not as-
sume that the “weak learning assumption” necessarily holds, that all of the weak hypotheses
perform are at least slightly better than random guessing. If the weak learning assump-
tion holds, or if other assumptions hold, it is easier to prove a fast convergence rate for
AdaBoost. However, in some cases where AdaBoost is commonly applied, such simplifying
assumptions do not necessarily hold, and it is not as easy to find a convergence rate.

AdaBoost can be viewed as a coordinate descent (functional gradient descent) algorithm
that iteratively minimizes an objective function L : R — R called the exponential loss
(Breiman, 1999; Frean and Downs, 1998; Friedman et al., 2000; Friedman, 2001; Mason et al.,
1999; Onoda et al., 1998; Rétsch et al., 2001; Schapire and Singer, 1999). The exponential
loss is constructed from m labeled training examples (x1,y1),. .., (Zm,Ym), where the z;’s
are in some domain X and y; € {—1,+1}, and a set of hypotheses H = {h4,..., hn}, where
each hj : X — {—1,+1}. Specifically, the exponential loss is defined as follows:

m N
L()\) = Zexp —Z)\jyihj(xi)
=1 7j=1

In each iteration, a coordinate descent algorithm moves some distance along some coordinate
direction. For AdaBoost, the coordinate directions are provided by the individual weak
hypotheses. Correspondingly, AdaBoost chooses some weak hypotheses and a step length,
and then adds that to the current combination. The direction and step length are so chosen
that the resulting vector A in iteration ¢ yields a lower value of the exponential loss than
in the previous iteration, L(A!) < L(A'"!). This repeats until it reaches a minimizer if
one exists. It was shown by Collins et al. (2002), and later by Zhang and Yu (2005), that
AdaBoost asymptotically converges to the minimum possible exponential loss. That is,
. t .
Jim LAY = inf L),

though that work did not address a convergence rate to the minimizer of the exponential
loss.

Our work specifically addresses a recent conjecture of Schapire (2010) stating that there
exists a positive constant ¢ and a polynomial poly() such that for all training sets and all
finite sets of weak hypotheses, and for all B > 0,

poly(log N, m, B)

LAY < in L(\ . 1
(}\)_A:HI)I}HI?SB (A)+ o (1)

In other words, the exponential loss of AdaBoost will be at most € more than that of any
other parameter vector X of ¢1-norm bounded by B in a number of rounds that is bounded
by a polynomial in log N, m, B and 1/e. (We require log N rather than N since the number
of weak hypotheses will typically be extremely large.) Along with an upper bound that is
polynomial in these parameters, we also provide lower bound constructions showing some
polynomial dependence on B, e~ is necessary. Without any additional assumptions on the
exponential loss L, and without altering AdaBoost’s minimization algorithm for L, the best
known convergence rate of AdaBoost prior to this work that we are aware of is that of
Bickel et al. (2006) who prove a bound on the rate of the form O(1/y/logt).
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We provide also a convergence rate of AdaBoost to the minimum value of the exponential
loss. Namely, within C'/e iterations, AdaBoost achieves a value of the exponential loss that
is at most € more than the best possible value, where C' depends on the dataset. This
convergence rate is different from the one discussed above in that it has better dependence
on € (in fact the dependence is optimal, as we show), and does not depend on the best
solution within a ball of size B. However, this second convergence rate cannot be used to
prove (1) since in certain worst case situations, we show the constant C' may be larger than
2™ (although usually it will be much smaller).

Within the proof of the second convergence rate, we provide a lemma (called the de-
composition lemma) that shows that the training set can be split into two sets of examples:
the finite margin set, and the zero loss set. Examples in the finite margin set always make
a positive contribution to the exponential loss, and they never lie too far from the decision
boundary. Examples in the zero loss set do not have these properties. If we consider the ex-
ponential loss where the sum is only over the finite margin set (rather than over all training
examples), it is minimized by a finite A. The fact that the training set can be decomposed
into these two classes is the key step in proving the second convergence rate.

This problem of determining the rate of convergence is relevant in the proof of the
consistency of AdaBoost given by Bartlett and Traskin (2007), where it has a direct impact
on the rate at which AdaBoost converges to the Bayes optimal classifier (under suitable
assumptions). It may also be relevant to practitioners who wish to have a guarantee on the
exponential loss value at iteration t.

There have been several works that make additional assumptions on the exponential
loss in order to attain a better bound on the rate, but those assumptions are not true in
general, and cases are known where each of these assumptions are violated. For instance,
better bounds are proved by Rétsch et al. (2002) using results from Luo and Tseng (1992),
but these appear to require that the exponential loss be minimized by a finite A, and also
depend on quantities that are not easily measured. There are many cases where L does not
have a finite minimizer; in fact, one such case is provided by Schapire (2010). Shalev-Shwartz
and Singer (2008) have proven bounds for a variant of AdaBoost. Zhang and Yu (2005)
also have given rates of convergence, but their technique requires a bound on the change in
the size of A! at each iteration that does not necessarily hold for AdaBoost. Many classic
results are known on the convergence of iterative algorithms generally (see for instance
Luenberger and Ye, 2008; Boyd and Vandenberghe, 2004); however, these typically start by
assuming that the minimum is attained at some finite point in the (usually compact) space
of interest. When the weak learning assumption holds, there is a parameter v > 0 that
governs the improvement of the exponential loss at each iteration. Freund and Schapire
(1997) and Schapire and Singer (1999) showed that the exponential loss is at most e~2t7°
after ¢ rounds, so AdaBoost rapidly converges to the minimum possible loss under this
assumption.

In Section 2 we summarize the coordinate descent view of AdaBoost. Section 3 con-
tains the proof of the conjecture and associated lower bounds. Section 4 provides the C/e
convergence rate.
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Given: (z1,y1),- .-, (Tm, Ym) where x; € X, y; € {—1,+1}
set H = {h1,...,hn} of weak hypotheses h; : X — {—1,+1}.
Initialize: Dy(i) =1/m fori=1,...,m.
Fort=1,...,T:
e Train weak learner using distribution Dy; that is, find weak hypothesis h; € ‘H whose
correlation ry = Eip, [yshe(2;)] has maximum magnitude |ry.
e Choose oy = 3 In{(1+7;) /(1 -1}
e Update, for i = 1,...,m: Dyy1(i) = Di(i) exp(—auyihi(zi))/ Zy
where Z; is a normalization factor (chosen so that D;y; will be a distribution).
Output the final hypothesis: F(x) = sign (Z;le atht(:z:)>.

Figure 1: The boosting algorithm AdaBoost.

2. Coordinate Descent View of AdaBoost

From the examples (z1,y1), ..., (Zm,ym) and hypotheses H = {hy,...,hny}, AdaBoost iter-
atively computes the function F' : X — R, where sign(F'(z)) can be used as a classifier for a
new instance x. The function F' is a linear combination of the hypotheses. At each iteration
t, AdaBoost chooses one of the weak hypotheses, h; from the set H, and adjusts its coeflicient
by a specified value a;. Then F is constructed after T iterations as: F'(z) = Zle ahi(x).
Figure 1 shows the AdaBoost algorithm (Freund and Schapire, 1997).

Since each h; is equal to h;, for some j;, F' can also be written F(z) = Zjvzl Ajhj(x)
for a vector of values A = (\1,...An) (such vectors will sometimes also be referred to as
combinations, since they represent combinations of weak hypotheses). In different notation,
we can write AdaBoost as a coordinate descent algorithm on vector A. We define the
“feature matrix” M elementwise by M;; = y;h; (x;), so that this matrix contains all of the
inputs to AdaBoost (the training examples and hypotheses). Then the exponential loss can
be written more compactly as:

1 — _ (),
LA =—3 e (e

%

where (MM);, the i*t coordinate of the vector M, is the “margin” achieved by vector A
on training example 7.

Coordinate descent algorithms choose a coordinate at each iteration where the direc-
tional derivative is the steepest, and choose a step that maximally decreases the objective
along that coordinate. To perform coordinate descent on the exponential loss, we determine
the coordinate j; at iteration t as follows, where e; is a vector that is 1 in the 4 position
and 0 elsewhere:

a:O>

It can be shown (see, for instance Mason et al., 2000) that the distribution D, chosen by
AdaBoost at each round t puts weight D; (i) proportional to e(~M AT Expression (2) can

m

i=1

1
= argmax —
j m

(2)

Jt € argmax;

B ALY 4+ ae;j)
do
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now be rewritten as

Ei~p, [yihj(xi)] |,

EiNDt [Ml]] ‘ = argmax
J

Jt € argmax; = argmax
J

ZDt(i)Mij

which is exactly the way AdaBoost chooses a weak hypothesis in each round (see Figure 1).
The correlation ), D¢(i)M;;, will be denoted by 7; and its absolute value |r¢|, denoted by
d¢. The quantity d; is commonly called the edge for round ¢. The distance a; to travel
along direction j; is chosen to minimize the L(A'""! + a4ej,), and can be shown to be equal

to oy = %ln (H—”> (see, for instance Mason et al., 2000), just as in Figure 1. With this

1—7r¢
choice of step length, it can be shown (see, for instance Freund and Schapire, 1997) that
the exponential loss drops by an amount depending on the edge: L(A!) = L(A!71)/1 — §2.
Our rate bounds also hold when the weak-hypotheses are confidence rated, that is, giving
real-valued predictions in [—1,+1], so that A : X — [—1,+1]. In that case, the criterion
for picking a weak hypothesis in each round remains the same, that is, at round ¢, an hj,

M

e e . . _ t—1y. .
maximizing the absolute correlation j; € argmax; ‘Zgl e~ (MA )lMij‘, is chosen, where

M;; may now be non-integral. An exact analytical line search is no longer possible, but if
the step size is chosen in the same way

1 1
ozt:21n( +Tt>, (3)

1—7”t

then Freund and Schapire (1997) and Schapire and Singer (1999) show that a similar drop
in the loss is still guaranteed

LAY < LAY V1 — 62, (4)

With confidence rated hypotheses, other implementations may choose the step size in a
different way. However, in this paper, by AdaBoost we will always mean the version in
(Freund and Schapire, 1997; Schapire and Singer, 1999) which choses step sizes as in (3),
and enjoys the loss guarantee as in (4). That said, all our proofs work more generally,
and are robust to numerical inaccuracies in the implementation. In other words, even if
the previous conditions are violated by a small amount, similar bounds continue to hold,
although we leave out explicit proofs of this fact to simplify the presentation.

3. Convergence to any target loss

In this section, we bound the number of rounds of AdaBoost required to get within ¢ of the
loss attained by any parameter vector A* as a function of ¢ and the ¢;-norm ||A*||;. The
vector A* serves as a reference based on which we define the target loss L(A*), and its £1-
norm is a measure of difficulty of attaining the target loss. We prove a bound polynomial in
1/e, ||A*||1 and the number of examples m, showing (1) holds, thereby resolving affirmatively
the open problem posed in (Schapire, 2010). Later in the section we provide lower bounds
showing how a polynomial dependence on both parameters is necessary.

Theorem 1 For any A* € RN, AdaBoost achieves loss at most L(X*) + ¢ in at most
13[|A*)|$e=° rounds.
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The high level idea behind the proof of the theorem is as follows. To show a fast rate, we
require a large edge in each round, as indicated by (4). A large edge is guaranteed if the
size of the current solution of AdaBoost is small. Therefore AdaBoost makes good progress
if the size of its solution does not grow too fast. On the other hand, the increase in size of
its solution is given by the step length, which in turn is proportional to the edge achieved
in that round. Therefore, if the solution size grows fast, the loss also drops fast. Either
way the algorithm makes good progress. In the rest of the section we make these ideas
concrete through a sequence of lemmas. The proof of Theorem 1 is based on these lemmas
and appears later. We conclude by indicating possibilities for improvement in our analysis
that might help tighten the exponents in the rate bound of Theorem 1.

We provide some more notation. Throughout, A* is fixed, and its ¢;-norm is denoted
by B (matching the notation in (Schapire, 2010)). One key parameter is the suboptimality
R; of AdaBoost’s solution measured via the logarithm of the exponential loss

Ry £InL(AY) — In L(A*).

Another key parameter is the ¢;-distance S; of AdaBoost’s solution from the closest com-
bination that achieves the target loss

S, & inf {IX= X1 : LX) < LA}
We will also be interested in how they change as captured by
AR = Ri1—R; >0, AS; =58, 8.

Notice that AR; is always non-negative since AdaBoost decreases the loss, and hence the
suboptimality, in each round. Let T{ be the bound on the number of rounds in Theorem 1.
We assume without loss of generality that Ry, ..., Rr, and So, ..., S, are all strictly posi-
tive, since otherwise the theorem holds trivially. Also, in the rest of the section, we restrict
our attention entirely to the first Ty rounds of boosting. We first show that a poly(B,e~!)
rate of convergence follows if the edge is always polynomially large compared to the subop-
timality.

Lemma 2 If for some constants c1,ca, where ca > 1/2, the edge satisfies 6y > B~ R;* | in
each round t, then AdaBoost achieves at most L(A*) +¢ loss after 2B% (e In 2)1 =22 rounds.

Proof From the definition of R; and (4) we have
1
ARy =In LA™Y —InL(\Y) > —5 (1 - 62). (5)
Combining the above with the inequality e > 1 4+ x, and the assumption on the edge
1 1
ARy > =5 In(1 - 62) > 62/2 > 53—20133?1.

Let T = [2B%(e1n2)!~2¢7 be the bound on the number of rounds in the Lemma. If any of
Ry, ..., Ry is negative, then by monotonicity Ry < 0 and we are done. Otherwise, they are
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all non-negative. Then, applying Lemma 18 from the Appendix to the sequence Ry, ..., R,
and using ¢y > 1/2 we get

Ry 2 Ry *® + oaB7T > (1/2)B*"T > (eln2)'™** = Ry <eln2.

If either € or L(\*) is greater than 1, then the lemma follows since L(AT) < L(A%) =1 <
L(X*) + e. Otherwise,

LOAT) < LA)eEM2 < L) (1 +¢) < LX) +¢,

where the second inequality uses e* < 1+ (1/In2)z for z € [0,1n2]. [ |

We next show that large edges are achieved provided S is small compared to R;.
Lemma 3 In each round t, the edge satisfies & > Ry_1/Si—1.

Proof For any combination A, define py as the distribution on examples {1,...,m} that
puts weight proportional to the loss px (i) = e~ M2 /(mL(X)). Choose any X suffering less
than the target loss L(A) < L(A*). By non-negativity of relative entropy we get

m l6_(]\4}\1571)2./L(At—l)
0 <RE(pxe-1 || pa) = ;pk“ ln{ Le—(MN): /LX)

= —Ria+ Y paei(i) (MA— MY (6)

=1

Note that py:-1 is the distribution D; that AdaBoost creates in round ¢. The above sum-
mation can be rewritten as

m N N m
S o) (N = X My =3 (3 = X ST i) M
=1 j=1 j=1 i=1
N m
< (> ‘AJ — AL 1‘ ma| 37 Dy ()M = &A= 3. (7)
i=1 =

Since the previous holds for any A suffering less than the target loss, the last expression is
at most §;5;_1. Combining this with (7) completes the proof. [ ]

To complete the proof of Theorem 1, we show S; is small compared to R; in rounds
t < Ty (during which we have assumed Sy, R; are all non-negative). In fact we prove:

Lemma 4 For any t <Tp, Sy < B3Rt_2.

This, along with Lemmas 2 and 3, proves Theorem 1. The bound on S; in Lemma 4 can be
proven if we can first show S; grows slowly compared to the rate at which the suboptimality
R; falls. Intuitively this holds since growth in S; is caused by a large step, which in turn
will drive down the suboptimality. In fact we can prove the following.
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Lemma 5 In any round t < Ty, we have QRAt—i‘ > é—i.

Proof Firstly, it follows from the definition of S; that AS; < ||A! — A=Yy = |oy|. Next,
using (5) and (3) we may write AR; > Y(d;) ||, where the function Y has been defined in
(Rétsch and Warmuth, 2005) as

—In(1 — 2?)
In (ii‘—;)

It is known (Rétsch and Warmuth, 2005; Rudin et al., 2007) that Y(x) > z/2 for = € [0, 1].
Combining and using Lemma 3

T(x) =

ARy > 5,AS;/2 > Ry (AS:/2S;1) .

Rearranging completes the proof. |

Using this we may prove Lemma 4.
Proof We first show Sy < B®Ry2. Note, Sy < |[A* — A%|; = B, and by definition
Ry=—In{L 3, e MX\)i} The quantity (MA*); is the inner product of row i of matrix
M with the vector A*. Since the entries of M lie in [—1,+1], this is at most ||A*||; = B.
Therefore Ry < —1In {% > e_B} = B, which is what we needed.

To complete the proof, we show that R?S; is non-increasing. It suffices to show for any

t the inequality R?S; < R? |S;_1. This holds by the following chain

AR\ AS
R?S; = (Ri—1—ARy)?*(Si—1 +AS;) = R, S;; (1 - t) (1 + t)
Ry Si—1

2AR;,  AS,
_|_

< R? .S, -
= e 1exp< Ri—1  Sia

> < R?_lstfb

where the first inequality follows from e® > 1 4 x, and the second one from Lemma 5. W

3.1. Lower-bounds

Here we show that the dependence of the rate in Theorem 1 on the norm [[A*||; of the
solution achieving target accuracy is necessary for a wide class of datasets. The arguments
in this section are not tailored to AdaBoost, but hold more generally for any coordinate
descent algorithm and a wide variety of loss functions.

Lemma 6 Suppose the feature matrix M corresponding to a dataset has two rows with
{=1,+1} entries which are complements of each other, i.e. there are two examples on
which any hypothesis gets one wrong and one correct prediction. Then the number of rounds
required to achieve a target loss ¢* is at least inf {||A[|1 : L(A) < ¢*} /(2Inm).

Proof We first show that the two examples corresponding to the complementary rows
in M both satisfy a certain margin boundedness property. Since each hypothesis predicts
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oppositely on these, in any round ¢ their margins will be of equal magnitude and opposite
sign. Unless both margins lie in [—Inm,Inm|, one of them will be smaller than —Inm.
But then the exponential loss L(AY) = (1/m) > e=MX); in that round will exceed 1, a
contradiction since the losses are non-increasing through rounds, and the loss at the start
was 1. Thus, assigning one of these examples the index 7, we have the absolute margin
|(MA?);] is bounded by Inm in any round ¢. Letting M (i) denote the ith row of M, the
step length ay in round t therefore satisfies

o] = [Mijoau] = (M (), neyp)| = [(MAT); — (MATH)| < [(MXA)i] + [(MATh);] < 2Inm,

and the statement of the lemma directly follows. |

The next lemma constructs a feature matrix satisfying the properties of Lemma 6
and where additionally the smallest size of a solution achieving ¢* + € loss is at least
Q(2™)1In(1/e), for some fixed ¢* and every € > 0. This implies that when ¢ is a small con-
stant (say € = 0.01) AdaBoost takes at least (2™ /1Inm) steps to get within /2 of the loss
achieved by some A* with loss ¢* + £/2. Since m might be arbitrarily larger than =1, this
shows that a polynomial dependence of the convergence rate on the norm of the competing
solution is unavoidable. Further this norm might be exponential in the number of training
examples and weak hypotheses in the worst case, and hence the bound poly(||A*||1,1/¢) in
Theorem 1 cannot be replaced by poly(m, N, 1/e).

Lemma 7 ' Consider the following matriz M derived out of abstaining weak hypotheses.
M has m + 1 rows labeled 0, ...,m and m columns labeled 1,...,m (assume m > 2). The
square sub-matrix ignoring row zero is an upper triangular matriz, with 1’s on the diagonal,
—17s above the diagonal, and 0 below the diagonal. Therefore row one is (+,—,...,—), and
row zero is defined to be just the complement of row one. Then, for any e > 0, a loss of
2/(m + 1) 4 € is achievable on this dataset, but with large norms

inf {| Al : LOA) < 2/(m + 1) + e} > Q(2™) In(1/3¢).

Therefore, by Lemma 6, the minimum number of rounds required for reaching loss at most
2/(m+ 1) +¢ is at least Q () In(1/3e).

Inm

Proof We first show 2/(m + 1) 4 ¢ loss is achievable for any . Note that if x = (2 —
1,2m=1 2m=2 1) then Mx achieves a margin of 1 on examples 2 through m, and zero
margin on the first two examples. Therefore In(1/¢)x achieves loss (24 (m—1)e)/(m+1) <
2/(m+1) +e¢, for any € > 0.

Next we lower bound the norm of solutions achieving loss at most 2/(m+1)+¢. Observe
that since rows 0 and 1 are complementary, any solution’s loss on just examples 0 and 1
will add up to at least 2/(m + 1). Therefore, to get within 2/(m + 1) + ¢, the margins on
examples 2, ..., m should be at least In (ﬁ) < In(1/3¢) (for m > 2). Now, a solution A
gets margin at least In(1/3¢) on example m implies A,,, > In(1/3¢) (since the other columns
get zero margin on it). Since column m gets margin —1 on example m — 1, and column

m — 1 is the only column with a positive margin on that example, the previous fact forces

1. We thank Nikhil Srivastava for informing us of the matrix used in this lemma.
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Am—1 > In(1/3€) + A > 21n(1/3¢). Continuing this way, we get A; > (27171 — 1) In(1/3¢)
fori =m,...,2. Hence | A|| > In(1/3e)(2+...+2™ 1 —(m—2)) = (2" +2—m)In(1/3¢) >
Q(2™) In(1/3e). [ ]

In the next section we investigate the optimal dependence on the parameter € and show
that ©(1/¢) number of rounds are necessary.

4. Convergence to optimal loss

In the previous section, our rate bound depended on both the approximation parameter ¢,
as well as the size of the smallest solution achieving the target loss. For many datasets, the
optimal target loss infy L(A) cannot be realized by any finite solution. In such cases, if we
want to bound the number of rounds needed to achieve within e of the optimal loss, the
only way to use Theorem 1 is to first decompose the accuracy parameter € into two parts
€ = €1+¢9, find some finite solution A* achieving within 1 of the optimal loss, and then use
the bound poly(1/e2, ||A*||1) to achieve at most L(A*) + g9 = infy L(A) + € loss. However,
this introduces implicit dependence on ¢ through ||A*||; which may not be immediately
clear. In this section, we show bounds of the form C//e, where the constant C' depends only
on the feature matrix M, and not on &.

Theorem 8 AdaBoost reaches within € of the optimal loss in at most C/e rounds, where
C only depends on the feature matriz.

Additionally, we show that this dependence on ¢ is optimal in Lemma 17 of the Appendix,
where Q(1/¢) rounds are shown to be necessary for converging to within e of the optimal loss
on a certain dataset. Finally, we note that the lower bounds in the previous section indicate
that C' can be ©(2™) in the worst case for integer matrices (although it will typically be
much smaller), and hence this bound, though stronger than that of Theorem 1 with respect
to &, cannot be used to prove the conjecture in (Schapire, 2010), since the constant is not
polynomial in the number of examples m.

Our techniques build upon earlier work on the rate of convergence of AdaBoost, which
have mainly considered two particular cases. In the first case, the weak learning assumption
holds, that is, the edge in each round is at least some fixed constant. In this situation,
Freund and Schapire (1997) and Schapire and Singer (1999) show that the optimal loss is
zero, no solution with finite size can achieve this loss, but AdaBoost achieves at most ¢ loss
within O(In(1/¢)) rounds. In the second case some finite combination of the weak classifiers
achieves the optimal loss, and Rétsch et al. (2002), using results from (Luo and Tseng,
1992), show that AdaBoost achieves within ¢ of the optimal loss again within O(In(1/¢))
rounds.

Here we consider the most general situation, where the weak learning assumption may
fail to hold, and yet no finite solution may achieve the optimal loss. The dataset used in
Lemma 17 and shown in Figure 2 exemplifies this situation. Our main technical contribution
shows that the examples in any dataset can be partitioned into a zero-loss set and finite-
margin set, such that a certain form of the weak learning assumption holds within the
zero-loss set, while the optimal loss considering only the finite-margin set can be obtained
by some finite solution. The two partitions provide different ways of making progress in
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every round, and one of the two kinds of progress will always be sufficient for us to prove
Theorem 8.

We next state our decomposition result, illustrate it with an example, and then state
several lemmas quantifying the nature of the progress we can make in each round. Using
these lemmas, we prove Theorem 8.

Lemma 9 (Decomposition Lemma) For any dataset, there exists a partition of the set of
training examples X into a (possibly empty) zero-loss set A and a (possibly empty) finite-
margin set F' = A¢ £X \ A such that the following hold simultaneously :

1. For some positive constant v > 0, there exists some vector ' with unit 1-norm
InTlli = 1 that attains at least v margin on each example in A, and evactly zero
margin on each example in F

Vie A: (Mn');>~, VieF:(Mnh);=0.

2. The optimal loss considering only examples within F' is achieved by some finite com-
bination n*.

3. (Corollary to Item 2) There is a constant fimax < 00, such that for any combination
n with bounded loss on the finite-margin set, ), p e=(Mn)i < m the margin (Mn);
for any example i in F lies in the bounded interval [—Inm, fimax]-

A proof is deferred to the next section. The Decomposition Lemma immediately implies
that the vector n*+o00-n', defined as the limit of lim, ;s (77* + ch), is an optimal solution,
achieving zero loss on the zero-loss set, but only finite margins (and hence positive losses)
on the finite-margin set (thereby justifying the names).

Before proceeding, we give an example dataset and indicate the zero-loss set, finite-
margin set, n* and n' to illustrate our definitions. Consider a dataset with three examples
{a,b,c} and two hypotheses {hi, ha} and the following feature matrix M.

hy | ho
a| + | -
b| — | +
c| + |+

Figure 2:

Here + means correct (M;; = +1) and — means wrong (M;; = —1). The optimal solution
is 00 - (h1 + hg2) with a loss of 2/3. The finite-margin set is {a, b}, the zero-loss set is {c},
nt = (1/2,1/2) and n* = (0,0); for this dataset these are unique. This dataset also serves
as a lower-bound example in Lemma 17, where we show that 0.22/¢ rounds are necessary
for AdaBoost to achieve less than (2/3) + ¢ loss on it.

Before providing proofs, we introduce some notation. By ||| we will mean ¢3-norm;
every other norm will have an appropriate subscript, such as ||-||1, |||/, €tc. The set of all
training examples will be denoted by X. By ¢*(i) we mean the exp-loss e~ (MN)i on example
i. For any subset S C X of examples, (*(S) = Y, o (i) denotes the total exp-loss on
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the set S. Notice L(A) = (1/m)f*(X), and that Dy(i) = (¥ (i)/¢* (X), where A is the
combination found by AdaBoost in round ¢. By ds(n; A) we mean the edge obtained on the
set S by the vector 1, when the weights over the examples are given by £*(-)/¢*(S):

Als) 126; EA(Z')(M

In the rest of the section, by loss we mean the unnormalized loss £*(X) = mL(X) and study
convergence to within e of the optimal unnormalized loss infy £*(X), henceforth denoted by
K. Note that this is the same as converging to within £/m of the optimal normalized loss,
that is to within infy L(A) +¢&/m. Hence a C’/e bound for the unnormalized loss translates
to a C'm~!/e bound for the normalized lossand vice versa, and does not affect the result
in Theorem 8. The progress due to the zero-loss set is now immediate from Item 1 of the
Decomposition Lemma:

ds(m ) = 7

At—1

Tx) }, where v is as

Lemma 10 In any round t, the mazimum edge d; is at least ~y { CANN )

in Item 1 of the Decomposition Lemma.

Proof Recall the distribution D; created by AdaBoost in round ¢ puts weight Dy(i) =
7N (i) /0T (X) on each example i. From Item 1 we get

1 AT(A)
- {zm}

’LEA

1

5( )‘t 1) m

> (M| =

1€X

Next define p to be a distribution on the columns {1,..., N} of M which puts probability
p(j) proportional to ‘77 ‘ on column j. Since (Mn'); = > n;[(Mej)i, we may rewrite the
edge dx(nT; A1) as follows

Sx(nh A1) = Wl(X) ngil(i) Z W}(Mej)z‘
J

i€X

me : Zﬁ” [(i)(Mey); anéx e A1) <Z)nj‘5x e A7),

zGX

Since the ¢1-norm of n' is 1, the weights ‘17” form some distribution p over the columns
1,...,N. We may therefore conclude

™A
7{6"‘1()())} <Sx(MTATY) < Ejop [0x(ejs ATH)] < mjax&x(ej;}\t_l) < 0.

If the set F' were empty, then Lemma 10 implies an edge of ~ is available in each
round. This in fact means that the weak learning assumption holds, and using (4), we can
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show a O(In(1/¢)y~2) bound matching the rate bounds in (Freund and Schapire, 1997) and
(Schapire and Singer, 1999). So henceforth, we assume that F' is non-empty. Note that this
implies that the optimal loss K is at least 1 (since any solution will get non-positive margin
on some example in F'), a fact we will use later in the proofs.

Lemma 10 says that the edge is large if the loss on the zero-loss set is large. On the
other hand, when it is small, Lemmas 11 and 12 together show how AdaBoost can make
good progress using the finite margin set. Lemma 11 uses second order methods to show
how progress is made in the case where there is a finite solution; such arguments may have
appeared in earlier work.

Lemma 11 Suppose X is a combination such that m > EA(F) > K. Then in some co-
ordinate direction the edge is at least \/Co ((MF) — K) J{X(F), where Cy is a constant
depending only on the feature matrixz M.

Proof Let Mp € RIFI*N be the matrix M restricted to only the rows corresponding to the
examples in F. Choose 1 such that A4+ 1 = n* is an optimal solution over F'. Without loss
of generality assume that 7 lies in the orthogonal subspace of the null-space {u : Mpu = 0}
of M (since we can translate n* along the null space if necessary for this to hold). If n = 0,
then A (F) = K and we are done. Otherwise || Mgn|| > Apin |||, where A2, is the smallest

positive eigenvalue of the symmetric matrix ML Mp (exists since Mpn # 0). Now define
f:]0,1] — R as the loss along the (rescaled) segment [n*, A]

flz) 2 ¢ —=n)(p Zgn z(Mn);

ieF

This implies that f(0) = K and f(1) = £*(F). Notice that the first and second derivatives
of f(x) are given by

@)= (Mpn) ™ =M (@),  f(@) =Y (Mpn)Fe™ = (0).

el 1€EF

We next lower bound possible values of the second derivative. We define a distribution ¢ on
examples {1,...,m} which puts probability proportional to (Mrn)? on example i. Then
we may rewrite the second derivative as

*

1) = | Mpn|PEig 67D )] > | M| min €07 =0 i),
7
Since both A = n* —n, and n* suffer total loss at most m, therefore, by convexity, so does
n* —an for any x € [0, 1]. Hence we may apply Item 3 of the Decomposition Lemma to the
vector n* — xn), for any z € [0, 1], to conclude that £(7" =7 (3) = exp {—(Mp(n* — 21));} >
e Hmax on every example ¢. Therefore we have,
(@) = || Mpn|Pe™m= > A3,

min

e Hmax||p||? (by choice of n) .

A standard second-order result is (see e.g. Boyd and Vandenberghe, 2004, eqn. (9.9))

FOP>2 ( inf f(a >> (71) — F(0)}.

z€[0,1]
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Collecting our results so far, we get

SO G Mn)i = | F(1)] 2 [nlly/ 2080t {A(F) — K.

S

Next let 7 = n/||n||1 be 1 rescaled to have unit £; norm. Then we have

S O = o SO > e (O(F) < ),

2 [l

Applying the Cauchy-Schwartz inequality, we may lower bound % by 1/v/N (since n €

RYN). Along with the fact £A(F) < m, we may write

DMR); > /202, Nt~ lemtmn\ [{A(F) — K} [M(F)

If we define p to be a distribution on the columns {1,..., N} of Mg which puts probability
p(j) proportional to |7);| on column j, then we have

ZE)‘ )(Mej);

’LEF

B O 0 < By

el

ZE)‘ )(Mej);

1€F

max

Notice the quantity inside max is precisely the edge dr(e;; A) in direction j. Combining
everything, the maximum possible edge is

max dp(ej; ) = 1/Co {A(F) — K} /EA(F),

J

where we define Cy = 2m™'N _lAfmne—“ma". [ ]

Lemma 12 Suppose, at some stage of boosting, the combination found by AdaBoost is X,
and the loss is K + 0. Let AO denote the drop in the suboptimality 0 after one more round;
i.e. the loss after one more round is K+0—Af. Then, there are constants Cq,Co depending
only on the feature matriz (and not on 6), such that if (*(A) < C10, then A > Caf.

Proof Let X be the current solution found by boosting. Using Lemma 11 pick a direction j

in which the edge 0z (e;; A) restricted to the finite loss set is at least /2Co({}(F) — K) /(X (F).
We can bound the edge dx(e;; A) on the entire set of examples as follows

dx(ej;A) = Z"X ZEA (Mej); —1—26)‘ (Mej);
1eF €A
1
> €>‘ )or(ej; A)| — EA
A(X) (‘ F ‘ %A: )
1 A Y A
> i (V2GEE) - B0 - ).
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Now, /A(A) < C16, and A (F)— K = §—(*(A) > (1—C1)0. Further, we will choose C; < 1,
so that ¢A(F) > K > 1. Hence, the previous inequality implies

1
ix(e;: ) > g ( 2Co(1 — C1)f — 019) .

Set C = min{1/2, (1/4)\/Co/m}. Using # < K + 60 = (*(X) < m, we can bound the
square of the term in brackets on the previous line as

2
(\/200(1 — e - 019) > 2Cy(1 — C1) — 2C10+/2Co(1 — C1)@

> 205(1—1/2)0 — 2 {(1/4)\/Co/m} 01/2Co(1 — 1/2)m > Cof/2.

So, if ¢ is the maximum edge in any direction, then § > dx(e;; A) > /Cof/(2m(K + 0))
(again using 1/(K + 0) < /(K + 0)m). Therefore the loss after one more step is at most
(K+0)V1—02<(K+0)(1-06%/2) < K+0— 2%9. Setting Cy = Cp/(2m) completes the
proof. |

Proof of Theorem 8. At any stage of boosting, let A be the current combination, and
K + 6 be the current loss. We show that the new loss is at most K + 6 — A# for A > C36?
for some constant C3 depending only on the dataset (and not #). Lemma 18 and some
algebra will then complete the proof.

To show this, either £2(A) < C16, in which case Lemma 12 applies, and A8 > Co0 >
(Cy/m)H? (since § = (X)) — K < m). Or £*(A) > C10, in which case applying Lemma 10
yields § > vC10/02(X) > (yC1/m)f. By (4), A§ > A (X)(1 — V1 —82) > (2(X)§?/2 >
(K/2)(vC1/m)?62. Using K > 1 and choosing C appropriately gives the required condition.
|

4.1. Proof of the Decomposition Lemma

Throughout this section we only consider (unless otherwise stated) admissible combinations
X of weak classifiers, which have loss £*(X) bounded by m (since such are the ones found
by boosting). We prove Lemma 9 in three steps. We begin with a simple lemma that
rigorously defines the zero-loss and finite-margin sets.

Lemma 13 For any sequence m1,M2, ..., of admissible combinations of weak classifiers,
we can find a subsequence 11y = My, M(2) = Mty - - -, whose losses converge to zero on all
examples in some fized (possibly empty) subset S (the zero-loss set), and losses bounded
away from zero in its complement X \ S (the finite-margin set)

Ve e S: lim (M0 (x) =0, Ve e X\ S :inf 70 (z) > 0. (8)
t—o0 )

Proof We will build a zero-loss set and the final subsequence incrementally. Initially the

set is empty. Pick the first example. If the infimal loss ever attained on the example in the

sequence is bounded away from zero, then we do not add it to the set. Otherwise we add

it, and consider only the subsequence whose ¢! element attains loss less than 1 /t on the
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example. Beginning with this subsequence, we now repeat with other examples. The final
sequence is the required subsequence, and the examples we have added form the zero-loss
set. |

We apply Lemma 13 to some admissible sequence converging to the optimal loss (e.g.
the one found by AdaBoost). Let us call the resulting subsequence nz‘t), the obtained zero-
loss set A, and the finite-margin set F' = X \ A. The next lemma shows how to extract
a single combination out of the sequence "7&) that satisfies the properties in Item 1 of the
Decomposition Lemma.

Lemma 14 Suppose M is the feature matriz, A is a subset of the examples, and 1), n(2), - - -

is a sequence of combinations of weak classifiers such that A is its zero loss set, and X \ A
its finite loss set, that is, (8) holds. Then there is a combination 0t of weak classifiers that
achieves positive margin on every example in A, and zero margin on every example in its

complement X \ A
>0 ifieA,
(Mnh); L
=0 ifieX\A

Proof Since the n; achieve arbitrarily large positive margins on A, [|n)| will be un-
bounded, and it will be hard to extract a useful single solution out of them. On the other
hand, the rescaled combinations 7;/|[n¢|| lie on a compact set, and therefore have a limit
point, which might have useful properties. We formalize this next.

We use induction on the total number of training examples |X|. If X is zero, then
the lemma holds vacuously for any nf. Assume inductively for all X of size less than
m > 0, and consider X of size m. Since translating a vector along the null space of M,
ker M = {x : Mx = 0} has no effect on the margins produced by the vector, assume without
loss of generality that the n)’s are orthogonal to ker M. Also, since the margins produced
on the zero loss set are unbounded, so are the norms of 1. Therefore assume (by picking
a subsequence and relabeling if necessary) that |9 || > t. Let B’ be a limit point of the
sequence 7))/ [N ||, a unit vector that is also orthogonal to the null-space. Then firstly 1’
achieves non-negative margin on every example; otherwise by continuity for some extremely
large ¢, the margin of 1) /||n)|| on that example is also negative and bounded away from
zero, and therefore 7(;)’s loss is more than m, a contradiction to admissibility. Secondly,
the margin of i’ on each example in X \ A is zero; otherwise, by continuity, for arbitrarily
large ¢ the margin of 1) /|| || on an example in X \ A is positive and bounded away from
zero, and hence that example attains arbitrarily small loss in the sequence, a contradiction
to (8). Finally, if i’ achieves zero margin everywhere in A, then 0, being orthogonal to
the null-space, must be 0, a contradiction since 1’ is a unit vector. Therefore 1’ must
achieve positive margin on some non-empty subset Z of A, and zero margins on every other
example.

Next we use induction on the reduced set of examples X' = X'\ Z. Since Z is non-empty,
|X’| < m. Further, using the same sequence 7(1), the zero-loss and finite-loss sets, restricted
to X', are A/ = A\ Z and (X \ A)\ Z = X \ A (since Z C A) = X'\ A". By the inductive
hypothesis, there exists some 1" which achieves positive margins on A’, and zero margins
on X"\ A’ = X\ A. Therefore, by setting n' = ' +cn” for a large enough ¢, we can achieve
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the desired properties. [ |

Applying Lemma 14 to the sequence nZ‘t) yields some convex combination 1! having
margin at least v > 0 (for some ) on A and zero margin on its complement, proving Item 1
of the Decomposition Lemma. The next lemma proves Item 2.

Lemma 15 There is a (finite) combination n* which achieves the same margins on F as
the optimal solution.

Proof The existence of n with properties as in Lemma 14 implies that the optimal loss is
the same whether considering all the examples, or just examples in F'. Therefore it suffices
to show the existence of finite n* that achieves loss K on F, that is, 7 (F) = K.

Recall Mg denotes the matrix M restricted to the rows corresponding to examples in F'.
Let ker Mp = {x : Mpx = 0} be the null-space of Mp. Let n®) be the projection of 77)(((1&) onto

the orthogonal subspace of ker M. Then the losses m® (F) = Mo (F') converge to the opti-
mal loss K. If Mp is identically zero, then each n® = 0, and then 17* = 0 has loss K on F.
Otherwise, let A2 be the smallest positive eigenvalue of M} Mg. Then |[Mn® || > A|n®|.
By the definition of finite margin set, infy_,o0 7" (F) = infi_ye E"EKU(F) > 0. Therefore,
the margins || Mn®)|| are bounded, and hence the n® are also bounded in norm. Therefore
they have a (finite) limit point n* which must have loss K over F'. [ |

As a corollary, we prove Item 3.

Lemma 16 There is a constant pimax < 00, such that for any combination 1 that achieves
bounded loss on the finite-margin set, {"(F) < m, the margin (Mmn); for any example i in
F lies in the bounded interval [—Inm, pimax] -

Proof The loss ¢(F') at most m implies no margin may be less than —Inm. If Item 3 of
the Decomposition Lemma were false, then for some example z € F' there exists a sequence
of combinations of weak classifiers, whose t'" element achieves more than margin ¢ on z but
has loss at most m on F. Applying Lemma 13 we can find a subsequence A) whose tail
achieves zero-loss on some non-empty subset S of F' containing z, and bounded margins in
F\ S. Applying Lemma 14 to A®) we get some convex combination At which has positive
margins on S and zero margin on F'\ S. Let n* be as in Lemma 15, a finite combination
achieving the optimal loss on . Then n* + 0o - Al achieves the same loss on every example
in F'\ S as the optimal solution n*, but zero loss for examples in S. This solution is strictly
better than n* on F', a contradiction to the optimality of n*. |
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Lemma 17 To get within € < 0.1 of the optimum loss on the dataset in Table 2, AdaBoost
takes at least 0.22/¢ steps.

Proof Note that optimum loss is 2/3, and we are bounding the number of rounds necessary
to get within (2/3) 4« loss for € < 0.1. We begin by showing that for rounds ¢ > 3, the edge
achieved is 1/t. First observe that the edges in rounds 1 and 2 are 1/3 and 1/2. Our claim
will follow from the following stronger claim. Let w}, wf, w! denote the normalized-losses
(adding up to 1) or weights on examples a, b, ¢ at the beginning of round ¢, and ¢; the edge
in round t. Then for t > 2,

1. Either 1/2 = w}, or 1/2 = w}.
2. 041 = 0/ (1 + 6e).

Proof by induction. Base case may be checked. Suppose the inductive assumption holds
for t. Assume without loss of generality that 1/2 = w!, > w} > w!. Then in round ¢, h,
gets picked, the edge &; = 2w, and wi™! = 1/2, wt! = (w!/2)/(1/2 + wt) = wi/(1 + 2w}).
Hence, in round ¢ + 1 hy gets picked and we get edge ;41 = 2wl /(1 + 2wl) = &;/(1 + ).
Proof follows by induction. Note the recurrence on ¢, yields §; = 1/t for ¢t > 3.

Next we find the loss after each iteration. The loss after T rounds is

T
VI-B2][Vi-1/8
=2

and can be computed as follows. Notice that in the following list

1-(1/2) = (1-3)/(2-2),
1-(1/3)> = (2-4)/(3-3),
1—(1/4) = (3:-5)/(4-4),

the middle denominator (3-3) gets canceled by the right term of the first numerator and the
left term of the third denominator. Continuing this way, the product till term 1 — (1/7)?
is (1/2){(T 4+ 1)/T'}. Therefore the loss after round T is (2/3)/1+ 1/T > (2/3) + (2/9)T,
for T' > 3. Since the error after 3 rounds is still at least (2/3) + 0.1 the Lemma holds for
e <0.1. |

Lemma 18 Suppose ug,uq, ..., are non-negative numbers satisfying
1+c
Ut — Upp1 > CoUy

for some non-negative constants cg,c1. Then, for any t,

1

— — — > cq0pt.
c1 [

Uy U
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Proof By induction on ¢. The base case is an identity. Assume Lemma holds for ¢. Then,

1 1 S 1 1 n 1 1 S 1 1 + ot (by induction)
- - —_—— — —— — — + cot, Induction).
R A R AN AT

Thus it suffices to show

1
m > 1+ C]_Cougl.

Since 1+ c1cpust < (14 cout), and (1 + cous?) (1 — cougt) < 1, the inequality holds. W

c1
1 1 Ut 1
G — g =t = | — > 1+ cicouy’ <=
Uy Uy Ugt1
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