
Proceedings of Machine Learning Research 191:11–23, 2022 ECMLPKDD Workshop on Meta-Knowledge Transfer

Instance selection for configuration performance comparison

Marie Anastacio
Leiden Institute of Advances Computer Science, Leiden University, The Netherlands

Théo Matricon
Univ. Bordeaux, CNRS, LaBRI, UMR 5800, F-33400, Talence, France

Holger H. Hoos
RWTH Aachen University, Aachen, Germany
Leiden Institute of Advances Computer Science, Leiden University, The Netherlands
University of British Columbia, Vancouver, Canada

Editors: P. Brazdil, J. N. van Rijn, H. Gouk and F. Mohr

Abstract
Comparing the performance of two configurations of a given algorithm plays a critical

role in algorithm configuration and performance optimisation, be it automated or manual,
and requires substantial computational resources. Time is often wasted on less promising
configurations but also on instances that require a long running time regardless of the
configuration. Prior work has shown that by running an algorithm on carefully selected
instances, the time required to accurately decide the better of two given algorithms can be
significantly reduced. In this work, we explore ways to apply a similar selection process to
compare two configurations of the same algorithm. We adapted four selection methods from
the literature to work with the performance model used in model-based configurators and
evaluated them on six benchmarks. Our experimental evaluation shows that, depending on
the problem instances and their running time distribution, a decision can be reached 5 to
3000 times faster than with random sampling, the method used in current state-of-the-art
configurators.
Keywords: instance selection, running time optimisation, algorithm configuration

1. Introduction

The automatic configuration of algorithms is an active research topic that produced impres-
sive results and showed great success in terms of performance improvements in solvers for
prominent and challenging AI problems, such as Boolean Satisfiability (SAT) (Xu et al.,
2008; Falkner et al., 2015) or Mixed-integer programming (MIP) (Xu et al., 2011; Hutter
et al., 2010). Applications to machine learning have enabled major progress in the area of
automated machine learning (AutoML) (Hutter et al., 2019). However, as there is an in-
creasing focus on sustainability, the computational resources and the environmental impact
associated with the use of AI methods should be put under scrutiny, providing additional
incentives to configure algorithms but also to reduce the computational cost of automated
configuration.

In particular, the most expensive part of configuration is to run the target algorithm
with various parameter values on different problem instances to evaluate performance and to
determine which parameter settings achieve the best performance. For anytime algorithms,
such as machine learning methods, there has been work on early stopping less promising runs

© 2022 M. Anastacio, T. Matricon & H.H. Hoos.

Anastacio Matricon Hoos

based on the learning curve – e.g., Domhan et al. (2015); Luo et al. (2019), while adaptive
capping such as the one included in irace (López-Ibáñez et al., 2016) allows to early stop the
evaluation when a configuration is already deemed to not be competitive with the current
incumbent. Those lines of research are focused on the idea of discarding configurations that
are not sufficiently promising.

In this work, we focus on the instance space and on techniques for identifying instances
that help discriminate between the compared configurations. Building on previous work by
Matricon et al. (2021) that compared the performance of algorithms, we argue that carefully
selecting instances and avoiding long evaluations that provide only a limited amount of
information makes it possible to reach a decision faster. Despite similarities with active
learning, this problem has a different objective, and it is thus not possible to apply existing
methods directly. With four methods adapted from the literature, we evaluate the potential
of an instance selection mechanism to compare configurations of a single algorithm. Our
experiments shows a speed-up of 5 up to 3000 times to take decisions depending on the
instances and their running time distribution.

We first introduce the algorithm configuration problem (Section 2), followed by the
methods and how we adapted them in Section 3. Section 4 presents the experiments we
conducted, Section 5 describes their results and we conclude in Section 6.

2. Background

This work aims at smartly selecting instances when comparing the performance of differ-
ent configurations of a given algorithm. Let us first introduce the algorithm configuration
problem and existing methods related to the selection of instances.

2.1. Algorithm configuration

The algorithm configuration problem is defined as follows (see, e.g., Hoos (2012)): Given a
target algorithm A; a configuration space C containing all valid combinations of parameter
values for A; a set of problem instances I; and a performance metric m that measures the
performance of the target algorithm A on an instance of I following a configuration in C;
find c∗ ∈ C that optimises the performance of A on I according to m. Each parameter has
a domain of possible values that can be of different types: categorical, ordinal or numerical.
Categorical parameters have an unordered finite set of possible values and are often used
to select between several heuristic components or mechanisms. Ordinal parameters have
an ordered finite set of possible values. Numerical parameters are real- or integer-valued
and are often used to calibrate heuristic mechanisms or components. Parameters can also
conditionally depend on each other, so that one is active only when another takes a specific
value; as a simple example, consider a Boolean parameter that activates a mechanism, whose
behaviour is then adjusted using a numerical parameter.

Methods to tackle this problem are called configurators and typically include two key
components: one generates configurations from C to be evaluated and the other compares
those configurations based on the metric m. Because the most time-consuming part of
this process is typically the performance evaluation of the target algorithm, much work has
been focusing on ways to generate a good configuration, e.g., using a surrogate performance

12

Instance selection for configuration performance comparison

model (Hutter et al., 2011; Ansótegui et al., 2015), a model of known good configura-
tions (López-Ibáñez et al., 2016; Anastacio and Hoos, 2020) or pruning methods (Pushak
and Hoos, 2020). Rather than looking at the generation of new configurations, here, we
consider the choice of instances on which the algorithm is run, with the goal of lowering the
amount of time spent on solving these. In this work, we limit our scope to a model-based
approach to support our selection methods.

2.2. Instance selection

Choosing the most relevant instance among a set is not a new problem and has been tackled
by active learning (Sun and Wang, 2010) and in the context of comparing the performance
of algorithms on a given dataset.

Performance comparison. We build on the work of Matricon et al. (2021), which com-
pares the running time of two algorithms on a given set of instances. Similarly, we aim to
decide which is the fastest among two challengers – in their case, two algorithms and in ours
two configuration of a single algorithm. This is done by selecting the instances providing
the most information per expected unit of time spent running the algorithm. However, they
based their selection heuristics on a dataset of algorithms runs and distribution assumptions
that can not be used in a configurator. A configurator also needs to select among instances
for which it has no performance information yet. Thus, we adapt their methods to rely on a
performance model, such as those already used in several configurators (Hutter et al., 2011;
Ansótegui et al., 2015).

Active learning. The active learning problem seeks to choose an instance among a set
on which the model should be trained on next. The idea is that a relevant instance should
have a high impact on the model (e.g., increasing its accuracy or reducing its variance).
It is closely related to our problem, but differs as the chosen instance should also lead to
low running times, which is not a common objective in active learning. Considering work
applicable to a random forest (RF) regression model, we chose to adapt the work of Gu
et al. (2015) which considers active learning for terrain classification using random forests.
Other works (e.g., Bhosle and Kokare (2020); Ayerdi and Graña (2016)) used similar ideas,
focusing on the uncertainty of the model.

3. Instance selection for algorithm configuration

The per-set efficient algorithm selection problem (PSEAS) as defined in the work of Matricon
et al. (2021) appears during algorithm configuration in a slightly different form. Rather
than selecting an algorithm, the configurator needs to select a specific configuration of an
algorithm among other configurations. To allow the selection of an instance, we need prior
information. In a configurator, this information comes in the form of prior runs of other
configurations on the instances and instance features. The latter is used in particular by
model-based configurators.

13

Anastacio Matricon Hoos

3.1. Instance selection

Following the definition of automated algorithm configuration in Section 2.1, I is the finite
set of instances and C is the set of valid configurations of the algorithm at hand. At a given
step, we have partial running time information on Iknown ⊆ I for configurations in Cknown ⊆
C, which means that for C ∈ Cknown, there exists information about the performance of C
on at least one instance of Iknown.

When comparing a challenger configuration Cch to the current best configuration Cinc,
instance selection appears in two forms. In Algorithm 1, a high level description of how
SMAC works, these are found in lines 6 and 10 (coloured purple), but the same mechanism
arises in any configurator. The first of these, which we name phase 1, corresponds to the
problem studied in Matricon et al. (2021), where we already know the performance of Cinc

on a set of instances Iknown and want to determine whether Cch performs better on this set.
The second, which we name phase 2, corresponds to a case where we know the performance
of both Cinc and Cch on Iknown, but do not have sufficient information to decide which
one is the best and thus want to evaluate both configurations on additional instances from
I \ Iknown.

Algorithm 1 Intensification for one challenger (based on SMAC Hutter et al. (2011))
Cinc: the incumbent configuration.
Cch: the challenger configuration.
nmax: maximum number of new instances to run Cinc on
if Not enough runs for configuration Cinc then

Execute a run of Cinc on an instance not run sampled uniformly at random
end
N ← 1
while there are instances on which Cinc was run but not Cch do

Run Cch on a subset of N instances on which Cinc was run but not Cch

if challenger is worse then
return Cinc

else
multiply N by 2

end
end
Nrun ← 0
while Cinc and Cch cannot be distinguished do

if Nrun < nmax then
Run Cinc and Cch on an instance on which none were run before
Nrun = Nrun + 1

else
return Cinc

end
end
return Best between Cinc and Cch

In both cases, we seek to choose an instance I ∈ Ichoose ⊆ I and gather performance
information on it iteratively until we satisfy a stopping condition.

In phase 1, Iknown is the subset of instances on which we have run Cinc so far, and
Cinc is the best performing configuration known to us on Iknown. At each step, we will
select an instance on which to run Cch and add it to the set of instances on which Cch

14

Instance selection for configuration performance comparison

has been run, noted Iselected ⊆ Iknown. At any step, the set we can select instances from
is Ichoose = Iknown \ Iselected. During this phase, we want to discard Cch, given sufficient
evidence that it performs worse than Cinc, but not the other way around. Thus, our stopping
criteria are to be confident that Cch is worse than Cinc or to have Ichoose = ∅. We consider
that to select instances we have access to a prediction model trained on the valid pairs of
Iknown, Cknown, which enables the prediction of running times on unknown pairs of I, C.

In phase 2, we also have a subset Iknown ⊂ I. The goal is to be able to decide which is
better between Cinc and Cch, whose performance on Iknown cannot be distinguished reliably;
to achieve this we can select instances from Ichoose = I \ Iknown and iteratively add them
to Iknown. Unlike in phase 1, there is no asymmetry between Cinc and Cch. Both can
be discarded given enough evidence. Since no configurations has been run on any of the
instances in Ichoose, we predict the performance of Cinc and Cch with a predictive model
trained on the performance of the configurations from Cknown on the instances from Iknown.
To do so, we require instance features, as defined in previous work for a broad range of
problems – e.g. SAT (Xu et al., 2008), MIP (Xu et al., 2011)). We stop when we can clearly
separate the performance of Cinc and Cch on Iknown, or when we have added nmax ∈ N
instances in total during the process.

3.2. Methods

Following Matricon et al. (2021), we assign scores to instances and choose iteratively an
instance I∗ ∈ argmaxI∈Ichoose score(I) with the highest score. The intuition is that the score
should reflect the relevance of choosing that instance both in terms of information obtained
and cost incurred. We adapted two of their methods to support the partial-information
context. Note that these methods do not take advantage of the model in phase 1, while
in phase 2 they are using the predictions given by the model as if they were ground truth.
We did not adapt their information-based method, as it relies on assumptions regarding the
performance distribution that could not be made in our context.

3.2.1. Baseline: Uniform random sampling

This is equivalent to assigning every instance the same score, and thus sampling an instance
uniformly at random.

3.2.2. Discrimination.

This method, originally inspired by the work of Gent et al. (2014), tries to choose the instance
that most discriminate between the best and other configurations. Let ρ > 1; we say that
a configuration C is ρ-dominated on an instance I if there exists another configuration C ′

such that m(C ′, I) ≤ ρ ·m(C, I). Thus we define the discrimination quality of an instance I,
denoted Q(I), as the fraction of known configurations that are ρ-dominated on this instance
divided by the mean running time of the instance. The score is directly score(I) = Q(I).

3.2.3. Variance

The intuition is that an instance with high variance is likely to discriminate between two
configurations. But we must also take into account the cost of running this instance, this

15

Anastacio Matricon Hoos

is why we divide the variance by the mean running time of the instance. Our score is thus
score(I) = V ar(I)

Mean(I) .

3.2.4. Uncertainty-Diversity-Density (UDD)

This method is inspired by the work of Gu et al. (2015) from the active learning literature
mentioned earlier. We decided to take the core ideas for their classification model and
adapt it to our regression model. We named it UDD because it is a combination of three
scores: uncertainty, diversity and density. Thus we can write the final score as score(I) =
Uncertainty(I) + αDiversity(I) + βDensity(I), all three scores are scaled and translated
to be in in [0; 1] before computing score(I).

• Uncertainty(I) is the random forest’s variance on running time prediction for instance
I.

• Diversity(I) = −minI′∈Iknown
D(I, I ′), where D is a distance function over instances.

Intuitively, the closer we are to instances in Iknown the more likely that this instance
provides little to no additional information.

• Density(I) = 1
k

∑
I′∈Nk(I,D)D(I, I ′)2 where k ∈ N is a parameter, D is a distance

function over instances and Nk(I,D, Ichoose) returns the k closest neighbours of I in
Ichoose \ {I} according to D. Intuitively, if an instance I has a lot of close instances
then this is a relevant instance since running I should provide information about these
other instances.

3.2.5. Uncertainty.

It is UDD with α = β = 0, which is reminiscent of the variance method but for a model
prediction.

4. Empirical evaluation

We designed and conducted experiments to answer the following questions:
Q1 - How does the selection method perform to compare a new configuration to the incum-
bent on the subset of instances for which we already collected information throughout the
configuration run as seen in phase 1?
Q2 - How does the selection method perform to compare a new configuration to the incum-
bent on all instances, selecting instances for which we did not collect information throughout
the configuration run as seen in phase 2?

4.1. Datasets

We used 6 configuration scenarios either from the Algorithm configuration library AClib
(Hutter et al., 2014) or built based on it. Half of those are Boolean satisfiability (SAT)
datasets and the other half are mixed integer programming (MIP) dataset.

16

Instance selection for configuration performance comparison

For SAT, we used two datasets from AClib (Circuitfuzz, IBM) and generated a new set
of instances based on the work of Nejati and Ganesh (2019). The later represents problems
from cryptography as SAT instances (using the sha256 encoding, from 16 to 60 rounds,
and an input size varying from 21 to 210). Based on the results of the SAT competition
2020, we decided to configure the current best SAT solver Kissat (Balyo et al., 2020) as
it is highly configurable and similar to CadiCal (Biere et al., 2020) which is known to be
configurable (Pushak and Hoos, 2020).

For MIP, we use 2 datasets from AClib (RCW2, Regions200) and added a more difficult
dataset based on the work of König et al. (2021) which represents neural network verification
problems. We use cplex as it is well known in the litterature.

4.2. Implementations details

Our implementation is available on GitHub (see supplementary materials).
The UDD method requires a distance function in the instance space, we use the same

procedure as in Matricon et al. (2021), which finds weights for instance features and computes
a weighted feature distance between instances.

Since the discrimination and UDD methods have parameters, we tuned them with a
simple grid search on a separate scenario (Kissat solver with the SWGCP dataset from
AClib). For discrimination, we evaluated values in [1.01; 2] with a step of 0.11 and found
that ρ = 1.12 performed well on both levels. For UDD, we evaluated values in [0; 2] with a
step of 0.21 for both values independently and found that α = 0.2 and β = 1.4 performed
well on both levels.

We generated 100 random configurations for each solver and ran them on all instances of
their respective datasets. This allowed us to collect the performance of each pair of instance
and configuration. We used the same Random Forest Model as in SMAC (Hutter et al., 2011)
as a performance prediction model. We train it on a prior data consisting of the performances
of every pair or known configuration and instances. Our experiments are run with various
amounts of prior data: the number of known configurations is in [10, 20, 30, 40, 50] and the
amount of known instances is a portion containing [0.1, 0.2, 0.3, 0.4, 0.5] of the full dataset.
This allows us to evaluate how efficient the methods will be along a configuration run.

5. Results

To evaluate the performance of the selection methods in the two phases and to answer our
research questions, we designed two sets of experiments. We show aggregated results here
but the raw results and scripts to generate more visualisations are available on our git.

5.1. Compare configurations on known instances

To answer the first question, we place ourselves in phase 1 (see Section 3.1). We randomly
select a fraction pI of instances as Iknown and a fraction pC of configurations as Cknown. We
choose Cinc ∈ argmaxC∈Cknown

m(C, Iknown) and train the random forest model on all the
available data. Then we pick configurations from C \ Cknown as Cch and run our iterative
process, this is a run. We stop when we have run all instances of Iselected. After each
new instance is added, we report the percentage of time that has been spent until now to

17

Anastacio Matricon Hoos

0 20 40 60 80 100
% of time

50

60

70

80

90

100
%

 o
f a

cc
ur

ac
y

selection
UDD-1.4-0.2
Uncertainty
discrimination-based
random
variance-based

(a) Kissat on IBM
50% instances, 50 configurations

0 20 40 60 80 100
% of time

50

60

70

80

90

100

%
 o

f a
cc

ur
ac

y

selection
UDD-1.4-0.2
Uncertainty
discrimination-based
random
variance-based

(b) Cplex on RCW2
10% instances, 20 configurations

Figure 1: Mean accuracy of the Wilcoxon test (p=0.05) on which among Cch and Cinc

performs best along the percentage of time spent on evaluations (100% means
that all instances of Iknown have been run)

evaluate m(Cch, Iselected) compared to running it on all instances of Iknown and perform a
Wilcoxon matched-pairs signed-ranks test (Conover, 1998) with a p-value of 0.05 to decide
if the challenger can be discarded. We compare the outcome of the test to the ground truth
to collect an accuracy. For a given pair (pI , pC) we run 10 seeds and report the average.

Figure 1 shows the collected accuracy over the time spent to make the comparison for
two examples. Figure 1(a) is a case in which the discrimination and variance methods
are significantly more accurate than the three others at any given time, while UDD and
uncertainty have a lower accuracy than random sampling. Figure 1(b) is a case in which
discrimination and variance methods start with an advantage over random but are quickly
on par with it. UDD and uncertainty are again largely sub-optimal.

Figure 2 synthesises the above described curves by computing the area under the curve
(AUC) of each of them. The higher it is, the faster and more accurately the decision can
be taken. This visualisation allows us to see how the methods compare but also the impact
of the prior data given to the performance model. In all our scenarios we can see a clear
correlation between the amount of known configuration and the AUC. This would allow
the selection method to become more and more efficient along the configuration run and
avoid wasting time in the last steps of a configuration run. On the other hand, adding more
instances does not seem to significantly improve the performance. This is in line with the
expectation that our instance sets aim at being homogeneous, thus adding more instances
is not helping the model much.

Regarding the selection methods, randomly sampling instances performs well but in most
cases the discrimination and variance approaches do better.

18

Instance selection for configuration performance comparison

0.1

0.2

0.3

0.4

0.5

in
st

a
n
ce

s
cryptoCircuitfuzz IBM

Percentage of total AUC
80 85 90 95 100

0.1

0.2

0.3

0.4

0.5

in
st

a
n
ce

s

0.1

0.2

0.3

0.4

0.5

in
st

a
n
ce

s

0.1

0.2

0.3

0.4

0.5

in
st

a
n
ce

s

0.1

0.2

0.3

0.4

0.5

in
st

a
n
ce

s

10 20 30 40 50
configurations

10 20 30 40 50
configurations

10 20 30 40 50
configurations

(a) Kissat scenarios

0.1

0.2

0.3

0.4

0.5

ra
n
d
o
m

MIPverifyRegions200 RCW2

Percentage of total AUC
80 85 90 95 100

0.1

0.2

0.3

0.4

0.5

d
iscrim

in
a
tio

n

0.1

0.2

0.3

0.4

0.5

v
a
ria

n
ce

0.1

0.2

0.3

0.4

0.5

U
D

D

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50
configurations

10 20 30 40 50
configurations

10 20 30 40 50
configurations

U
n
ce

rta
in

ty

(b) Cplex scenarios

Figure 2: Area under the curve of the mean accuracy of the Wilcoxon test (p=0.05) on
which among Cch and Cinc performs best along the time spent on evaluations

The IBM dataset is unusual in this context, in that the UDD and uncertainty methods
perform notably worse than random sampling. This could be explained by the large variation
in the running time required to solve those instances. There are many instances which
require long running times, but also many that are solved within a second. This means that
selecting the wrong instance can have a dramatic effect on overall running time. This would
explain why random sampling does not perform as well on this scenario as on the others, but
also why adding more instances in the prior data improves the performance of our selection
methods for this scenario.

19

Anastacio Matricon Hoos

ran
dom

dis
cri

mina
tio

n

var
ian

ce udd

unc
ert

ain
ty

101

103

105
tim

e u
se

d
(s)

(a) Kissat – crypto
30% instances, 20 configurations

ran
dom

dis
cri

mina
tio

n

var
ian

ce udd

unc
ert

ain
ty

102

103

104

tim
e u

se
d

(s)

(b) cplex – RCW2
40% instances, 40 configurations

Figure 3: Time used (in seconds) before taking a decision based on a Wilcoxon test (p=0.05)
or reaching a maximum of 10 instance selected

Table 1: Median time in seconds for each method over every tested prior data
kissat cplex

ibm cf crypto reg200 rcw2 MIPverify

random 1557 979.7 21243 576.8 4138 29470
discrimination 0.086 143.6 419.3 96.66 364.7 44390

variance 0.776 95.16 372.2 109.5 342.0 41365
udd 880.9 393.2 13483 379.7 1299 28845

uncertainty 0.033 330.8 2361.9 152.7 5974 39801

5.2. Compare configurations on unknown instances

To answer the second question, we place ourselves in phase 2 (see Section 3.1). We ran-
domly select a fraction pI of instances as Iknown and a fraction pC of configurations as
Cknown. The random forest model is trained on all the available data. We choose Cinc ∈
argmaxc∈Cknown

m(c, Iselected) and we run this process for all Cch ∈ C \Cknown such that they
cannot be told apart by a Wilcoxon test with a p value less than 0.05. We then select up
to nmax = 10 instances on which we run both configurations until they can be told apart
using the previous test.

For each selection method and each considered prior data, we gather the time used to
decide between the two configurations at hand, i.e. the sum of the running times of Cinc

and Cch on Iselected. Figure 3 shows the running times obtained for two examples. Most
cases show that random is outperformed by all methods, with some exceptions in which the
uncertainty or UDD methods are outperformed.

To evaluate the performance of the selection methods, we computed the median time
used to run the instances selected by each of the methods for each prior data and reported

20

Instance selection for configuration performance comparison

it in Table 1. The data shows discrimination and variance outperform the other methods
in almost all cases, with variance providing a speedup ranging from a 5.8 up to 3000 times
speedup for variance compared to random. We note that such a high speedup for the IBM
dataset is linked to a high variance in the running time distribution of the instances, which
range from milliseconds to the timeout of 300 seconds.

6. Conclusion and future work

Based on the idea that selecting instances smartly could allow quicker comparison between
configurations of an algorithm, we adapted four methods from several fields (Matricon et al.,
2021; Gu et al., 2015) that could be applied to select instances. We identified two steps of
the configuration problem in which such methods could be applied and designed two sets
of experiments to asses their potential. In the first, we consider a situation in which the
performance of an incumbent configuration on a set of instances is known and we want
to determine whether the unknown challenger configuration performs better on this set.
In the second, two similarly performing configurations have to be evaluated on unknown
instances. Our results show that in both cases, there is considerable potential in the use
of those methods, in particular the ones based on the variability in running time or on
discrimination power. This encourages us to pursue future work to include those methods
in a model-based algorithm configuration procedure.

References

Marie Anastacio and Holger H. Hoos. Model-based algorithm configuration with default-
guided probabilistic sampling. In Thomas Bäck, Mike Preuss, André H. Deutz, Hao
Wang, Carola Doerr, Michael T. M. Emmerich, and Heike Trautmann, editors, Parallel
Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020,
volume 12269 of Lecture Notes in Computer Science, pages 95–110. Springer, 2020. doi:
10.1007/978-3-030-58112-1_7.

C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney. Model-based
genetic algorithms for algorithm configuration. In Proc. IJCAI 2015, pages 733–739,
2015.

Borja Ayerdi and Manuel Graña. Random forest active learning for retinal image segmen-
tation. In Robert Burduk, Konrad Jackowski, Marek Kurzyński, Michał Woźniak, and
Andrzej Żołnierek, editors, Proceedings of the 9th International Conference on Computer
Recognition Systems CORES 2015, pages 213–221, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-26227-7.

Tomáš Balyo, Nils Froleyks, Marijn J.H. Heule, Markus Iser, Matti Järvisalo, and Martin
Suda, editors. Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions.
Department of Computer Science Report Series B. Department of Computer Science,
University of Helsinki, Finland, 2020.

21

Anastacio Matricon Hoos

Nilesh Bhosle and Manesh Kokare. Random forest-based active learning for content-based
image retrieval. International Journal of Intelligent Information and Database Systems,
13(1):72–88, 2020. doi: 10.1504/IJIIDS.2020.108223.

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Ba-
lyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1
of Department of Computer Science Report Series B, pages 51–53. University of Helsinki,
2020.

William Jay Conover. Practical nonparametric statistics, volume 350. John Wiley & Sons,
1998. URL https://www.math.ttu.edu/~wconover/book.html.

T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Qiang Yang
and Michael J. Wooldridge, editors, IJCAI 2015, pages 3460–3468. AAAI Press, 2015.

Stefan Falkner, Marius Lindauer, and Frank Hutter. Spysmac: Automated configuration and
performance analysis of sat solvers. In Marijn Heule and Sean Weaver, editors, Theory and
Applications of Satisfiability Testing – SAT 2015, pages 215–222, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-24318-4.

Ian P. Gent, Bilal Syed Hussain, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Glenna F.
Nightingale, and Peter Nightingale. Discriminating instance generation for automated
constraint model selection. In Barry O’Sullivan, editor, Principles and Practice of
Constraint Programming, pages 356–365. Springer International Publishing, 2014. doi:
10.1007/978-3-319-10428-7_27.

Yingjie Gu, Dawid Zydek, and Zhong Jin. Active learning based on random forest and
its application to terrain classification. In Henry Selvaraj, Dawid Zydek, and Grzegorz
Chmaj, editors, Progress in Systems Engineering, pages 273–278, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-08422-0.

Holger H. Hoos. Automated algorithm configuration and parameter tuning. In Youssef
Hamadi, Eric Monfroy, and Frédéric Saubion, editors, Autonomous Search, pages 37–71.
Springer, 2012. doi: 10.1007/978-3-642-21434-9_3.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proc. LION 5, pages 507–523, 2011.

F. Hutter, M. López-Ibáñez, C. Fawcett, M. T. Lindauer, H. H. Hoos, K. Leyton-Brown,
and T. Stützle. Aclib: A benchmark library for algorithm configuration. In Proc. LION
8, volume 8426 of LNCS, pages 36–40, 2014.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Automated configuration of mixed
integer programming solvers. In International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming,
pages 186–202. Springer, 2010.

22

https://www.math.ttu.edu/~wconover/book.html

Instance selection for configuration performance comparison

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning
- Methods, Systems, Challenges. Springer, 2019.

Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding up neural network verification
via automated algorithm configuration. In ICLR Workshop on Security and Safety in
Machine Learning Systems, 2021.

C. Luo, H. H. Hoos, S. Cai, Q. Lin, H. Zhang, and D. Zhang. Local search with effi-
cient automatic configuration for minimum vertex cover. In IJCAI-19, pages 1297–1304.
International Joint Conferences on Artificial Intelligence Organization, 2019.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016. ISSN 2214-7160. doi: 10.1016/j.orp.2016.
09.002.

Théo Matricon, Marie Anastacio, Nathanaël Fijalkow, Laurent Simon, and Holger H. Hoos.
Statistical comparison of algorithm performance through instance selection. In Laurent D.
Michel, editor, 27th International Conference on Principles and Practice of Constraint
Programming (CP 2021), volume 210 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 43:1–43:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-211-2. doi: 10.4230/LIPIcs.CP.2021.43.

Saeed Nejati and Vijay Ganesh. Cdcl(crypto) SAT solvers for cryptanalysis. In Tima Pak-
fetrat, Guy-Vincent Jourdan, Kostas Kontogiannis, and Robert F. Enenkel, editors, Pro-
ceedings of the 29th Annual International Conference on Computer Science and Software
Engineering, CASCON 2019, Markham, Ontario, Canada, November 4-6, 2019, pages
311–316. ACM, 2019. doi: 10.5555/3370272.3370307.

Yasha Pushak and Holger H. Hoos. Golden parameter search: Exploiting structure to quickly
configure parameters in parallel. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, GECCO ’20, page 245–253, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450371285. doi: 10.1145/3377930.3390211.

Li-Li Sun and Xi-Zhao Wang. A survey on active learning strategy. In 2010 International
Conference on Machine Learning and Cybernetics, volume 1, pages 161–166, 2010. doi:
10.1109/ICMLC.2010.5581075.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated
algorithm configuration and selection for mixed integer programming. In RCRA workshop
on experimental evaluation of algorithms for solving problems with combinatorial explosion
at the international joint conference on artificial intelligence (IJCAI), pages 16–30, 2011.

23

	Introduction
	Background
	Algorithm configuration
	Instance selection

	Instance selection for algorithm configuration
	Instance selection
	Methods
	Baseline: Uniform random sampling
	Discrimination.
	Variance
	Uncertainty-Diversity-Density (UDD)
	Uncertainty.

	Empirical evaluation
	Datasets
	Implementations details

	Results
	Compare configurations on known instances
	Compare configurations on unknown instances

	Conclusion and future work

