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Abstract

We present the design and baseline results for a new challenge in the ChalLearn meta-learning
series, accepted at NeurIPS’22, focusing on “cross-domain” meta-learning. Meta-learning
aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with
better performance, little training data, and/or modest computational resources). While
previous challenges in the series focused on within-domain few-shot learning problems, with
the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k
training examples), this competition challenges the participants to solve “any-way” and “any-
shot” problems drawn from various domains (healthcare, ecology, biology, manufacturing,
and others), chosen for their humanitarian and societal impact. To that end, we created
Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which
we carve out tasks with any number of “ways” (within the range 2-20) and any number of
“shots” (within the range 1-20). The competition is with code submission, fully blind-tested
on the CodalLab challenge platform. The code of the winners will be open-sourced, enabling
the deployment of automated machine learning solutions for few-shot image classification
across several domains.

Keywords: Image Classification, AutoML, Few-Shot Learning, Meta-Learning, Cross-
Domain Meta-Learning.
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1. Introduction

Challenges in machine learning have been instrumental in pushing the state-of-the-art and
stimulating participants to tackle new difficult problems. Since 2015, Chal.earn has been
organizing challenges in Automated Machine Learning (AutoML) (Guyon et al., 2019) and
Automated Deep Learning (AutoDL) (Liu et al., 2021b), with the aim of reducing the need
of human intervention in the design and implementation of machine learning models, to the
greatest possible extent. Our challenge series gave rise to the popular auto-sklearn software
and outlined the importance of good representations (obtained from pre-trained backbone
networks), data augmentation, and meta-learning. These results prompted us to organize a
new Chal.earn challenge series in meta-learning, focusing first on image classification and
few-shot learning. This challenge, the NeurIPS’22 Cross-Domain MetaDL, is the third
edition in the series. Submissions are open between July 1 and August 31, 2022.
The results will be presented at the NeurIPS’22 conference.

Traditionally, image classification has been tackled using deep learning methods whose
performance relies on the availability of large amounts of data (Phoo and Hariharan, 2021).
Recent efforts in meta-learning (Jamal and Qi, 2019) have contributed to making a lot of
progress in few-shot learning for image classification problems. Tasks or “episodes” are
made of a certain number of classes or “ways” and number of labeled examples per class or
“shots”. Despite progress made, allowing the community to reach accuracies above 90% in
the last ChaLearn meta-learning challenge (El Baz et al., 2022), evaluation protocols have a
common drawback: they focus only on within-domain few-shot learning, i.e., even when
evaluated on multiple domains (e.g., insect classification, texture classification, satellite
images, etc.), models meta-trained on a given domain are meta-tested on the same domain.
As documented in the literature, within-domain few-shot learning approaches have poor
generalization ability to unrelated domains (Phoo and Hariharan, 2021). Nevertheless, this
kind of generalization is crucial since there are scenarios where only one or two examples
per class are available (e.g., rare birds or plants), and there is no close domain with enough
information to be used as source domain. Therefore, addressing domain variations has
become a research area of great interest. Additionally, in most works about few-shot learning,
the number of ways and shots is fixed, which is not always the case in real application
scenarios.

Currently, the most popular benchmark used for cross-domain meta-learning is Meta-
Dataset (Triantafillou et al., 2020). This benchmark tackles the problems mentioned above by
including 10 image classification datasets from several application domains in one collection
and analyzing the impact of using a variable number of ways and shots. Although it has
been widely used to evaluate state-of-the-art methods (Dvornik et al., 2020; Liu et al.,
2021a; Triantafillou et al., 2021; Li et al., 2021, 2022), it cannot be used in our competition
because it is already well-known by the meta-learning community. Additionally, the datasets
in Meta-Dataset have a large variance in the number of classes and examples per class,
introducing bias in our competition design.

The main contributions of this paper are the design of a new challenge in the ChalLearn
meta-learning series and the presentation of baseline results. Our new design will challenge
participants to generalize across domains in different regimes in numbers of ways
and shots, and compare “de novo” training with the use of pre-trained backbones.

25


https://automl.chalearn.org/
https://autodl.chalearn.org/
https://automl.github.io/auto-sklearn/master/
https://metalearning.chalearn.org/

CARRION-OJEDA CHEN EL BAz ESCALERA GUAN GUYON ULLAH WANG ZHU

Note that “de novo” training means that the algorithm needs to learn from scratch without
using any previous knowledge such as pre-trained backbones, i.e., the backbones must be
initialized randomly. In conjunction with the organization of this challenge, we developed
a large meta-dataset called Meta-Album described in a companion paper (Ullah et al.,
2022), including 40 datasets belonging to 10 different domains, relevant to “Al for good”,
such as ecology, medicine, and biology, with the intent of maximizing the economic and
societal impact of the challenge. In this competition, 30 of these datasets will be used for
meta-training and meta-testing, then released publicly as a long-lasting benchmark to
further push the state-of-the-art. A single (final) submission will be evaluated during the final
challenge phase, using ten datasets previously unused by the meta-learning community. The
code of the winners will be open-sourced and enable practical AutoML applications
since the meta-trained learner will be readily usable for few-shot image classification in the
10 domains of the challenge.

2. Problem setting

This challenge has two motivational scenarios: (1) Few-shot image classification and (2)
Meta-learning from limited amounts of meta-learning data. For the former problem, we target
users wishing to create an image classifier from a few pictures of each class (e.g., taken with
a smartphone) in a new domain (e.g., classify clouds). The challenge winning solution(s)
should make this possible for any-way any-shot in the range [2-20] “ways” (classes) and
[1-20] “shots” (training examples per class). For the latter problem, the solution of the
winner should deliver a meta-learning algorithm leveraging knowledge from previous tasks,
without relying on pre-trained backbones, applicable to a wider range of applications than
image classification (encouraged by the prize distribution, see Appendix D). This section
first explains the setting of the previous MetaDL challenge organized for NeurIPS’21 (within-
domain few-shot learning). Then, it explains the new variant we developed for NeurIPS’22
(cross-domain any-way any-shot learning). Both competitions are with code submission and
the participants must supply code following a designated API (Liu et al., 2019), featuring
Python objects (see Appendix C): MetaLearner, Learner, and Predictor. MetalLearner
uses meta-training data (a dataset of datasets) to create Learner; Learner in turn uses
training examples (images) to return Predictor; finally, Predictor uses unlabeled test
examples to return predicted class labels. The competitions are composed of 2 main phases,
a feedback phase with many submissions allowed and immediate feedback provided on a
leaderboard, and a final test phase with only 1 submission tested on new datasets. In
both phases, data are not visible to the participants; only the code submitted has access to
evaluation data. Ground truth labels of test data are kept secret and are only visible to the
scoring program.

2.1. Within-domain few-shot learning

The NeurIPS’21 MetaDL competition focused on “within-domain” few-shot learning image
classification in the N-way k-shot setting (El Baz et al., 2021). The Learner was meta-tested
on many b-way 5-shot tasks carved out from several multi-class image datasets, each task
including N = 5 classes drawn at random, with £ = 5 examples per class in the support
(training) set and 20 examples per class in the query (test) set. Half of the classes of
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each dataset were reserved for meta-training and the other half for meta-testing. During
meta-training, the MetaLearner could choose the configuration of data received: (1) batch
training with examples of all classes within the domain at hand, (2) episodic training with
examples grouped in tasks having a support and a query set. Importantly, meta-learning
and meta-testing were performed using classes from the same dataset, which we refer to
as within domain meta-learning. Submissions made by participants were then ranked
per dataset, and the final ranking was obtained by averaging such ranks. Five datasets from
5 domains (ecology, bio-medicine, manufacturing, optical character recognition, and remote
sensing) were used in the feedback phase, and 5 other fresh datasets from the same domains
were used in the final evaluation phase. All datasets had at least 20 classes and 40 images
per class (El Baz et al., 2022).

2.1.1. LESSONS LEARNED AND LIMITATIONS

The NeurIPS’21 MetaDL competition considered a refined competition protocol developed
for a previous MetaDL competition (El Baz et al., 2021), introducing multiple domains,
which added additional sophistication in terms of scoring as well as GPU-time budgeting.
However, the setting remained relatively simplified since the meta-training and meta-testing
were performed within-domain (i.e., non-overlapping classes of the same dataset were used
for meta-training and meta-testing) using meta-test tasks with a fixed number of ways and
shots. The winners (Chen et al., 2021) obtained over 92% accuracy on all 5 domains in
the final phase (with complete blind-testing of their code). Thus, this indicates that we
can move to more complicated problems. Following these observations, the Cross-Domain
MetaDL challenge intends to mix tasks from multiple domains and present variable numbers
of ways and shots.

Although the NeurIPS’21 MetaDL competition did not constrain participants to use
deep-learning, de facto, all participants based their solutions on deep-learning models with
convolutions (specifically, either convolutional neural networks or transformer models).
Additionally, fine-tuning on meta-training data turned out to be important. However, there
are indications that off-the-shelf backbones pre-trained with self-supervised learning on
massive datasets might be the most promising approach, essentially making meta-learning
unnecessary for image classification problems. Thus, meta-learning should be benchmarked
in de novo training conditions to prepare for scenarios (in other domains) in which such
backbones are not available.

As reported by several top-ranking teams, meta-learning was possible within domains (in
the form of fine-tuning pre-trained backbones), but MAML-style episodic meta-learning did
not turn out to be more effective than vanilla pre-training with gradient descent. Based on
the embedding generated by the backbones, prototypical classifiers seem more efficient than
linear classifiers. Hence, the Cross-Domain MetaDL challenge also allows further probing of
the effectiveness of various meta-learning solutions.

2.2. From within-domain to cross-domain any-way any-shot learning

Following the lessons learned from the NeurIPS’21 competition, the new Cross-Domain
MetaDL challenge aims to push the complete automation of few-shot learning by demanding
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participants to design learning agents capable of producing a trained classifier in the cross-
domain any-way any-shot setting.

As introduced in Section 2.1, the few-shot learning problems are often referred as N-way k-
shots problems. In these problems, each task 7; = {Dtmm DteSt} consists of a small training

set Dtmm and a small test set Dt“t, referred to as support and query sets, respectively.
The number of ways N denotes the number of classes in a task that represents an image
classification problem, the same N classes are present in Dtmm and Dte“. The number
of shots k denotes the number of examples per class in the support set. In this challenge,
the tasks at meta-test time have a number of classes varying from 2 to 20 (N € [2,20]),
the support set contains 1 to 20 labeled examples per class (k € [1,20]), and the query
set contains 20 unlabeled examples per class, i.e., |D%_“m| = N x k, and |[DE*| = N x 20.
Moreover, since in this competition, the tasks come from the cross-domain scenario, the
data contained in one task 7; belongs strictly to one dataset. Nonetheless, different tasks
may come from different datasets because the meta-dataset used to carved out the tasks is
composed of multiple datasets, i.e., Mp = {Dy,...,D,}. The number of datasets n in the
meta-dataset Mp depends on the phase (see Section 3.1).

The proposed setting consists of three stages: meta-training, meta-validation (optional),
and meta-testing, which are used for meta-learning, model selection, and evaluation, re-
spectively. During the meta-training stage, the participants can choose to use data in
the form of tasks T; or batches which are a collection of sampled examples from a sin-
gle large dataset resulting of concatenating all datasets of the meta-training dataset,

e., D"%n = concat(Dy,...,D,). Additionally, they can specify their preferred config-
urations for the selected data format at this stage. The meta-validation stage is optional;
therefore, it is up to the participants to use it, but the data for this stage is always in the
form of tasks. Nevertheless, the participants can still specify their preferred configurations
for the meta-validation tasks. Lastly, during the meta-testing stage, the participants have
no control over the data, which always arrives in the form of any-way any-shot tasks with
N €[2,20] and k € [1,20]. During meta-testing, the labels of the query set are hidden from
the participants’ codes.

3. Competition design
3.1. Data

The datasets of this competition belong to the Meta-Album meta-dataset, prepared in
conjunction with this competition (Ullah et al., 2022). It consists of 40 re-purposed or
novel image datasets from 10 domains: small and large animals, plants and plant diseases,
vehicles, human actions, microscopic data, satellite images, industrial textures, and printed
characters. We preprocessed data in a standard format suitable for few-shot learning. The
preprocessing pipeline includes image resizing with anti-aliasing filters into a uniform shape
of 128x128x3 pixels. For this competition, we selected 30 datasets from the meta-dataset
and partitioned them into 3 sets of 10 datasets, one from each domain, used in the various
competition phases (Set-0, Set-1, and Set-2). All final test phase datasets are novel to the
meta-learning community (not part of past meta-learning benchmarks). Sets 0-2 will be
released on OpenML (Vanschoren et al., 2014) after the competition ends.
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3.2. Competition protocol

NeurIPS’22 Cross-Domain MetaDL is an online competition with code submission, i.e., the
participants need to provide their solutions as raw Python code that will be executed on our
dedicated CodaLab site'. Detailed competition rules are found in Appendix A. To guarantee
fairness in the evaluation of the participants, the Codal.ab server used in this challenge is
equipped with 10 identical computer workers. Each has the following configuration: 4 CPU
cores, 1 Tesla T4 GPU, 16GB RAM, and 120GB storage.

The competition follows the problem setting described in Section 2.2. It is composed of 3
phases. During the Public phase (June 15-30, 2022), no submissions can be made; instead,
the participants can use the tutorial provided as part of the starting kit (see Appendix B)
and Set-0 to test their solutions on their computers or Google Colab. Then, during the
Feedback phase (July 1 - August 31, 2022), participants can make 2 submissions per day
and a maximum of 100 submissions during the whole phase. Each submission is evaluated on
1000 any-way any-shot tasks carved out from Set-1 (100 tasks per dataset) different from the
ones used for meta-training (Public data). Additionally, each submission cannot take more
than 5 hours of running time. Lastly, during the Final phase (September 1-30, 2022), the
last submission of each participant on the Feedback phase, whose performance is above
the baseline performance (see Section 3.3), will be evaluated on 6000 any-way any-shot tasks
carved out from Set-2 (600 tasks per dataset). Due to the increment of meta-test tasks, the
allowed running time will increase to 9 hours.

The submissions must follow our defined API (see Appendix C), which was designed to
be flexible enough to allow participants to explore any type of meta-learning algorithms. To
encourage a diversity of participants and types of submissions, the Cross-Domain MetaDL
competition has 5 different leagues. Appendix D details the leagues and prizes. Notably,
there is a league to encourage meta-training from scratch (“de novo” training) as
opposed to using pre-trained backbones.

3.3. Challenge metrics

Since the meta-test tasks have different configurations in the number of ways and shots,
this competition uses the balanced classification accuracy (bac) as the evaluation metric,
normalized with respect to the number of ways (which is the number of classes in the task).
This metric is defined as follows:

bac — bacra
R — (1)

Normalized Accuracy = ,
1 — bacgra

where bac, also known as the macro-averaging recall, is defined as:

b 1 nu%ays correctly classified examples of class i
a=—

, (2)

num_ways total examples of class 7

i=1

and bacgg is the accuracy of random guessing, i.e., m Note that by (1), a normalized

accuracy of 0 means that the performance of the submission is equivalent to random guessing.

1. CodaLab site for the Cross-Domain MetaDL competition: https://codalab.lisn.upsaclay.fr/compe
titions/3627
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Moreover, the normalized accuracy can be negative, indicating that the submission is worse
than random guessing, and the maximum achievable normalized accuracy is 1.

The error bars correspond to 95% confidence intervals of the mean normalized accuracy
at task level computed as follows:

%, (3)

where ¢ is the t-value depending on confidence level and degrees of freedom (df =n —1); o
corresponds to the standard deviation of the normalized accuracy obtained on all meta-test
tasks, and n is the number of such tasks.

In this competition, CI calculations are only indicative and not used to select winners or
declare ties. The baseline performance the participants in the Feedback phase must surpass
to enter into the Final phase depends on the league. The baseline performance for the
Free-style and Meta-learning leagues is 0.587 and 0.361, respectively (see Appendix D for
the definition of leagues). These baseline performances were calculated by averaging the
normalized accuracy achieved by the best methods (see Section 4.3) in each league over 10
runs varying the random seed of the baseline methods.

To select the winners in the Final phase, all eligible entries are run three times, with
various random seeds. The average normalized classification accuracy over all meta-test
tasks is computed in each run, and the lowest of the three runs is used for the final ranking.
Ties are broken according to the first submission made. Note that the baseline performances
quoted in Section 4.3 are obtained by averaging the performance over multiple runs to reduce
variance, while the final evaluation of participants is made based on the worst performance
over three runs.

Cl =+t x

4. Baseline results

In this section, we present experiments to evaluate the difficulty of the new challenge setting.
We run several baseline methods to evaluate whether: (1) “Cross-domain meta-learning
any-way any-shot” (new setting) is significantly more complicated than “Within domain
5-way 5-shot” (old setting); (2) Baseline methods perform significantly better when using a
backbone pre-trained on ImageNet rather than meta-training (or training) “from scratch”;
(3) the choice of datasets is appropriate to separate method performances.

4.1. Baseline methods

This competition provides six baseline methods as part of its “starting kit”. The first one,
Train-from-scratch, does not perform any meta-training; instead, it directly learns each
meta-testing task using only its support set. The second one, Fine-tuning, is a simple
transfer learning method consisting of pre-training a backbone network with batches of
data from the concatenated meta-training datasets and then only fine-tuning the last layer
at meta-test time. Three of the remaining baselines are popular meta-learning methods:
Matching Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al., 2017),
and FO-MAML (Finn et al., 2017). Furthermore, the last baseline is an adaptation of
MetaDelta++ (Chen et al., 2021), which corresponds to the solution of the winners of the
NeurIPS’21 challenge. All the baseline methods were carefully selected, aiming to have
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a variety of approaches in terms of training strategy (batch and episodic training) and
modeling choices (fine-tuning, metric-based, and ensemble). A detailed description of each
method is presented in Appendix E. All baseline methods but MetaDelta++ use a ResNet-18
backbone (He et al., 2016) with the best-reported hyperparameters by the original authors on
5-way 5-shot minilmageNet (see Appendix E). For all baselines, the backbone can be either
initialized with random weights or weights pre-trained on ImageNet (as in Meta-learning
league and Free-style leagues, respectively, see Appendix D for league definition).

4.2. Experimental setting

Our experiments aim to compare and contrast the protocol of the NeurIPS’21 challenge
(within-domain MetaDL) with that of the NeurIPS’22 challenge (cross-domain MetaDL).

Data: We report results for Feedback phase data of the Cross-Domain MetaDL challenge.
Accordingly (see Section 3.2), the meta-training and meta-testing datasets correspond to
Meta-Album Set-0 and Set-1, respectively. The 10 datasets of Set-0 were divided into 7 for
meta-training and 3 for meta-validation. This division was randomly made; hence, it was
different in each run because of the random seed variation. For the within-domain protocol,
only Set-1 was used. In this case, each dataset of Set-1 was divided into meta-training,
meta-validation, and meta-testing sets with non-overlapping classes using 70%, 15%, and
15% of the available classes, respectively.

Cross-Domain setting (NeurIPS’22). The meta-learning methods were meta-trained
on 30,000 5-way 10-shot tasks, the Fine-tuning baseline was meta-trained on 30,000 batches
of size 16, and the MetaDelta++ baseline was meta-trained during 3.5 hours with batches
of size 64. The performance of the Learners produced during the meta-training phase
was validated after every 5,000 meta-training tasks (or batches in the case of the Fine-
tuning method) on 300 5-way 5-shot tasks drawn from the meta-validation split except for
MetaDelta+-, in which case, the Learner was validated after every 50 meta-training batches
on 50 5-way 5-shot tasks drawn from the meta-validation split. The query set for every task
contained 20 examples per class except for the meta-validation tasks used by MetaDelta++,
which contained 5 examples per class. The Learner with the best validation performance
was evaluated following the protocol of the Feedback phase described in Section 3.2.

Within-Domain setting (NeurIPS’21). We evaluated the same baseline methods
in the same way as for the Cross-Domain setting but with the protocol of the NeurIPS’21
MetaDL competition. However, since in the cross-domain setting the meta-training and
meta-validation sets were composed of 7 and 3 datasets, respectively, and in the within-
domain setting, 1 dataset is divided into meta-training, meta-validation, and meta-testing;
we adapt the number of meta-training and meta-validation iterations to have comparable
results between these two protocols. Thus, the meta-learning methods were meta-trained on
4,290 5-way 10-shot tasks, the Fine-tuning baseline was pre-trained on 4,290 batches of size
16, and the MetaDelta++ baseline was pre-trained for 30 minutes with batches of size 64.
The performance of the Learners produced during the meta-training phase was validated
after every 750 meta-training tasks (or batches in the case of the Fine-tuning method) on 100
5-way b-shot tasks drawn from the meta-validation split except for MetaDelta++, in which
case the Learner was validated after every 50 meta-training batches on 50 5-way 5-shot tasks
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Figure 1: Comparison of “within-domain” and “cross-domain” few-shot learning
using a randomly initialized backbone and a pre-trained backbone. Both
barplots show the average normalized accuracy over 3,000 meta-test tasks (100
tasks per dataset in each run). In addition, the meta-test task configuration
on the left barplot is 5-way 5-shot while on the right is any-way any-shot. The
corresponding 95% Cls are computed at task level.

drawn from the meta-validation split. To resemble the NeurIPS’21, during meta-testing, the
configuration for the tasks was 5-way 5-shot.

Computational resources. All experiments are carried out with the same resources
as used in the Cross-Domain MetaDL competition (see Section 3.2).

4.3. Results

We aggregated results in various manners to compare the settings of the NeurIPS’21 and the
NeurIPS’22 challenges with respect to (1) within-domain vs. cross-domain and (2) pre-trained
vs. randomly initialized backbone.

Method comparison. In Figure 1, we compare baseline methods by averaging results
over all tasks from all datasets. Before meta-training, the backbone networks are initialized
with random or pre-trained weights on ImageNet. The figure shows that initializing the
backbones with pre-trained weights helps significantly, indicating that perhaps our meta-
training set is not large enough or that the meta-training time is insufficient. We hope
to see improvements in the Meta-learning league of the challenge regarding using random
initialization. Moreover, the winner of the previous challenge (MetaDelta++) performs
significantly better than other baselines when using a pre-trained backbone. However,
Prototypical Networks is the best option when no pre-training is allowed. Additionally,
we see that the new cross-domain setting is more complicated than the within-domain
setting. In Figure 2, we study the influence of the number of ways and shots on the method
performance in the new “cross-domain” setting. To that end, we averaged results over tasks
with the same configuration (number of ways and shots) from all datasets and plotted the
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Figure 2: Comparison of the influence of the number of ways and shots on the
performance in the “cross-domain” setting using a pre-trained backbone.
We plot the average normalized accuracy achieved by the baselines using pre-
trained weights. The corresponding 95% Cls are computed at task level.

normalized accuracy. Notably, the curves do not cross, indicating that the ranking of
methods is not influenced by the number of ways and shots. We show only results
using pre-trained backbone networks because the curves obtained with randomly initialized
weights are qualitatively similar (only worse, and ordered differently, as in Figure 1). As
expected, performances degrade with the number of ways and increase with the number
of shots. Interestingly, the most significant increment occurs up to 5 shots. Appendix F
contains the detailed results for all figures presented in this section.

Dataset comparison. In Figure 3, we averaged performances per dataset and reported
only the results of the worst baseline (Train-from-scratch without pre-training) and the best
baseline (MetaDelta++ with pre-training, previous challenge winners). These performances
allow us to evaluate the intrinsic difficulty of the datasets (difference between the maximum
achievable performance and the performance of the best baseline method — green bar) and
the modeling difficulty (difference between the best and worst baseline methods — orange
bar). As can be seen, the datasets show a range of difficulty, from dataset 4, which seems
relatively easy, even to the worst baseline, to dataset 5, which is challenging even for the
best baseline. Most datasets (except 5) have a reasonably large orange bar, indicating that
the performance of methods spread over an extensive range, which is desirable in a challenge
to separate methods. Dataset 10 is an interesting case: the best method performed well in
the within-domain setting, but its performance dropped significantly in the cross-domain
setting. We find that this domain does not resemble others; hence this is not so surprising
that meta-learning within the domain should be more favorable. Generally, performances
drop when we move to the new cross-domain setting; thus, the participants of the new
challenge have some margin for improvement.
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Figure 3: Difficulty comparison of feed-back data for “within-domain” and “cross-
domain” few-shot learning, with a randomly initialized or pre-trained backbone.
The top of the blue bar indicates the worst baseline performance (Train-from-
scratch without pre-training). The top of the orange bar indicates the best baseline
performance (MetaDelta++ with pre-training). The top of the green bar indicates
the maximum achievable performance. The larger the green bar, the larger the
intrinsic difficulty. The larger the orange bar, the larger the modeling difficulty.
The average normalized accuracy was computed over 300 meta-test tasks (100
tasks per dataset in each run). Left: 5-way 5-shot; Right: any-way any-shot.

5. Conclusion and further work

We evaluated several baselines covering a variety of approaches to tackle few-shot learning
problems to compare the protocols of NeurIPS’21 and NeurIPS’22 challenge settings. The
experimental results show that the new proposed any-way any-shot cross-domain setting
is more challenging than the previously studied 5-way 5-shot within-domain setting. This
increment in problem complexity will allow us to encourage the participants to aim at finding
methods capable of learning from multiple domains and generalize to all those domains
in a more realistic test environment. Additionally, our findings show that if pre-trained
backbones are allowed, MetaDelta++ is the best option among the baselines. In general, all
baselines (except for FO-MAML) benefit from using pre-trained initialization. However, if
using pre-trained weights is not allowed, which is the case for some real-world applications
where no pre-trained backbone is available, Prototypical Networks is the best option within
the evaluated methods. Moreover, our experiments allowed us to estimate the difficulty level
of each dataset used in the Feedback phase of the new Cross-Domain MetaDL competition.
The observed modeling difficulty is a good motivation for this competition since there is
room for improvement, which is the expected outcome of this challenge. Finally, these results
show that, due to the differences among domains, the difficulty of some datasets increases
significantly in the new setting compared to the previous one.
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While this competition studies cross-domain meta-generalization across 10 domains, it
does not challenge participants to meta-generalize out of these domains since meta-test
data includes new datasets from these exact 10 domains. We plan to organize a “domain
independent” sequel, in which datasets from new domains not seen during meta-training
will be used for meta-testing.
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