
Proceedings of Machine Learning Research 191:62–74, 2022 ECMLPKDD Workshop on Meta-Knowledge Transfer

Trust Region Meta Learning for Policy Optimization

Manuel Occorso manuel.occorso@mail.polimi.it

Luca Sabbioni luca.sabbioni@polimi.it

Alberto Maria Metelli albertomaria.metelli@polimi.it

Marcello Restelli marcello.restelli@polimi.it

Politecnico di Milano, Italy

Editors: P. Brazdil, J. N. van Rijn, H. Gouk and F. Mohr

Abstract

Reinforcement Learning aims to train autonomous agents in their interaction with the
environment by means of maximizing a given reward signal; in the last decade there has been
an explosion of new algorithms, which make extensive use of hyper-parameters to control
their behaviour, accuracy and speed. Often those hyper-parameters are fine-tuned by hand,
and the selected values may change drastically the learning performance of the algorithm;
furthermore, it happens to train multiple agents on very similar problems, starting from
scratch each time. Our goal is to design a Meta-Reinforcement Learning algorithm to
optimize the hyper-parameter of a well-known RL algorithm, named Trust Region Policy
Optimization. We use knowledge from previous learning sessions and another RL algorithm,
Fitted-Q Iteration, to build a policy-agnostic Meta-Model capable to predict the optimal
hyper-parameter for TRPO at each of its steps, on new unseen problems, generalizing across
different tasks and policy spaces.

Keywords: Meta-Reinforcement Learning; Hyperparameter Optimization;
Trust Region Policy Optimization; Fitted-Q Iteration.

1. Introduction

Machine Learning
(
ML

)
is a very prolific field that aims to autonomously and approximately

solve different kinds of tasks; in the last decade there has been an explosion of new algorithms,
techniques, and applications in a large variety of fields. ML algorithms make extensive use
of hyper-parameters to let the user control their behaviour, learning speed, accuracy and
many other aspects. Usually, those hyper-parameters are fine-tuned by hands, which means
that the same algorithm is run multiple times to then select the best model in a validation
instance. The choice of those values may change drastically the learning performance of the
algorithm, and the same values may not perform equally on very similar tasks; this may
require to perform very careful fine-tuning sessions.

Hyper-Parameter Optimization
(
HO

)
is an area of studies that has the goal of automatize,

speed-up and optimize the fine-tuning process. Meta-Learning instead is an approach whose
purpose is to automatically learn how to optimally solve a set of different tasks: in other
words, Meta-Learning objective is to automatically learn how to learn (Schmidhuber, 1987).
Even though treated as separate fields, HO and Meta-Learning are sometimes interconnected
(Franceschi et al., 2017).

In this work we focus on Reinforcement Learning
(
RL

)
problems, where the goal is to

train autonomous agents in their interaction with the environment by means of maximizing a

© 2022 M. Occorso, L. Sabbioni, A.M. Metelli & M. Restelli.

Trust Region Meta Learning for Policy Optimization

given reward signal. RL can be used to train physical robots, software bots, simulators, game-
playing AI systems, and any other kind of agent that needs to interact with an environment;
often the same agent must be adapted to interact with very similar environments, e.g., a
robot may need to solve the same task at different speeds, a recommender system may need
to adapt to changes in a store, etc. This aspect of RL is what makes it a perfect environment
for HO and Meta-Reinforcement Learning; furthermore, RL is usually high demanding from
a computational point of view, raising the advantage of learning a way to automatically
provide the optimal hyper-parameters for each task, without having to train multiple times
the same model with different hyper-parameters.

The main contribution of this work places itself in this exact situation: our proposed
Meta-Reinforcement Learning approach tries to optimize the hyper-parameter of a well-
known RL algorithm, named Trust Region Policy Optimization

(
TRPO

)
. At each iteration

of the TRPO optimization process, the algorithm defines a Trust Region around the previous
solution, then builds a local approximation of the performance measure and searches for the
next candidate agent inside the trust region. TRPO provides generally good performances
in learning many different kinds of tasks, but heavily relies on one hyper-parameter that
is used to constrain the trust region at each step: depending on the learning task it may
have a huge impact on the learning capabilities of the algorithm, and this is why it may be
important to optimize its usage. Another important aspect of the trust region constraint
is that it is commonly fixed across all the learning steps: since we will automatically solve
the fine-tuning process, we can give to it new degrees of freedom by letting it change at
each TRPO learning step. This may lead to increase the maximum performances of TRPO ,
instead of only reach its full potential.

This work is organised as follows: we will start in Section 2 by introducing the necessary
knowledge required to comprehend the contribution of our work; afterwards the context and
the related works are briefly discussed in Section 3; moving on to Section 4, where we present
our framework to model the learning process of TRPO, called Meta-MDP, and our proposed
solution, consisting in the application of an offline RL algorithm, namely Fitted Q-Iterations
(FQI), to approximate the expected performance gain obtained from the selection of each
hyperparameter on a set of different tasks and different policy architectures; finally, the
experimental evaluation is provided in Section 5.

2. Background Knowledge

In this section we briefly expose the required knowledge needed to understand the contribu-
tions of this work.

Markov Decision Processes. A Markov Decision Process
(
MDP

)
is defined as a tuple

M = ⟨S,A,P,R, γ, µ⟩; S and A are respectively the state space and the action space;
P (· | s, a) is the transition probability kernel, which defines for each tuple (s, a) ∈ S × A
a distribution over the next state s′ ∈ S; R (s, a) is the reward function, γ ∈ [0, 1] is
the discount factor and µ is the initial state probability distribution. The agent is mod-
elled by a Stochastic Policies π : S × A → [0, 1], whose Expected Return is defined as

ηπ := Eπ
[∑T

t=0 γ
tR(st, at)

]
and ρπ defines the related (discounted) visitation frequencies. It

is commonly defined the state-action value function Qπ : S ×A → R as the expected return

63

Occorso Sabbioni Metelli Restelli

got using action a in state s and then following π:

Qπ (s, a) := E
π

[
T∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
,

The goal of a learner in RL is to find the policy π∗ that maximizes the expected return ηπ

and, consequently, the maximum state-action value function: ∀ (s, a) ∈ S ×A : Q∗ (s, a) =
supπ Q

π (s, a). The optimal value function can be recursively computed thanks to the
Bellman Equation:

Qπ (s, a) = R (s, a) + γ E
s′∼P(·|s,a)

[
sup
a′∈A

Q∗(s′, a′)
]

. (1)

Trust Region Policy Optimization. TRPO (Schulman et al., 2015) algorithm belongs
to the important class of Policy Gradient

(
PG

)
algorithms (Sutton et al., 1999), which rely

on policies parametrized by a vector θ. The optimization of the policy π thus follows the
gradient of the return ηπ with respect to the parameters θ. In this work we only consider
Multi-Layer Perceptrons (MLP) policies with a Gaussian Noise; in order to simplify the
notation we will use θ instead of π(θ) in the following definitions.

At the core of the PG methods lies the so called Policy Gradient Theorem (Sutton et al.,
1999), which exposes a simple relation between the direction of the gradient of the expected
return ∇θη

π(θ) and the gradient of the policy ∇θπ(a | s;θ):

∇θη
π(θ) ∝

∑
s∈S

ρπ(s)
∑
a∈A

Qπ (s, a)∇θπ(a | s;θ) . (2)

consequently, the update rule to learn the optimal policy parameter θ∗ is:

θk+1 := θt + α∇θη
π(θ)

where α is the learning rate hyper-parameter.
TRPO , as the name suggests, is the respective Trust Region based optimization of PG

methods: instead of finding the optimal direction given by the gradient and then following
it for a given step-size, TRPO defines a trust region around the current parameters and
then solves the optimization subproblem of the kind:{

πt+1 = argmaxπ̃ Jπt(π̃)

DKL(πt || πt+1) ≤ λ
(3)

where DKL(πt || πt+1) is the KL-divergence of the two policies and λ is the main TRPO
hyper-parameter which constrains the trust region; Jπt(π̃) is a first order surrogate loss
function of the performances η(π̃) centered in πt. The core of the surrogate loss consists in
the possibility to estimate Jπt(π̃) using only trajectories from πt, hence the algorithm is able
to compute and differentiate the approximated loss for multiple policies in the trust region
without needing to collect new trajectories, but only having the ones got following πt.

The practical implementation of TRPO requires two-phases for each iteration: The
first phase uses an iterative conjugate gradient optimization to find the search direction,

64

Trust Region Meta Learning for Policy Optimization

to approximate the natural gradient, i.e. a variation of Equation 2 by means of the Fisher
information matrix (Kakade, 2001). During the second phase, TRPO levers a criteria-based
line-search in order to obtain a feasible step size; starting from a maximum threshold
following the direction found in the previous phase, the stepsize is halved if the trust region
constraint is not satisfied or if the surrogate function does not predict a return improvement.

The hyper-parameter λ is kept constant for all iterations, but this may be a limitation for
the performances: the trust region concept imposes a limit in which the approximate return
Jπt is trusted in order to improve the real performances η; however, different performance
surfaces in the parameters space have a different complexity of approximation: a very smooth
η(θ) surface can be easily approximated in a big trust-region, while the approximation of a
really stiff η(θ) cannot be trusted in the same area. At the same time, always imposing a
very small trust-region makes the algorithm slower, giving up on some advantages of using
TRPO instead of a classical PG gradient algorithm.

A fixed-size trust region has also some more subtle consequences on the algorithm itself:
the double checking procedure carried out during the second phase at each iteration is
needed since the first phase is approximate and its accuracy depends on the trust region
constraint; the shrinking steps during this second phase are mainly applied to mitigate the
bad effects of a too big trust-region. The shrinking process is thus very conservative, slowing
down the algorithm.

2.1. Fitted-Q Iteration

FQI (Ernst et al., 2005) takes a very different approach to solve MDPs, being it a value based
and offline algorithm. It uses a batch of experience samples collected by interactions with
the environment, of the kind Dfqi = {⟨st, at, rt, st+1⟩} . The algorithm relies on the iterative
application of regression techniques (in our case, Extra Trees

(
ET

)
(Geurts et al., 2006)) to

compute an approximation of the Q-value function: at each next step h a new regression
dataset is built as Dh := {⟨(st, at); rt + γmaxa′∈A Q̂h(st+1, a

′)⟩}, using the previous result
Q̂h and then used to train a new approximation Q̂h+1, with the effective horizon increased
by one step. Notice that the new target for the regression dataset is built using the Bellman
Optimal Operator from Definition 1. The number of iterations of an FQI model is referred
to as the horizon H. One important hyper-parameter of the ET algorithm is the minimum
split ψ, which defines the ratio between the minimum number of nodes in each leaf and
the total number of nodes; a smaller value implies more ramifications, which means smaller
sub-regions of the input space and less nodes in each leaf; thus, the minimum split controls
the fitting capabilities of the ET model.

3. Trust Region Optimization

In this section we state the main objectives of our work and their motivations; furthermore,
we will describe the related fields and works in the state of the art.

3.1. Goals

In the TRPO section we highlighted the fact that it uses an hand-crafted, fixed-size hyper-
parameter to constrain its trust region at each step: this implies that there will probably be

65

Occorso Sabbioni Metelli Restelli

some steps during the learning session that uses a trust region that is too small or too big;
the algorithm itself is designed to be very conservative on the step size.

The first goal of our proposed solution is to design a method that trains a model able to
automatically choose an optimal trust region hyper-parameter at each learning step, not
just once for all the learning session. Secondly, the learnt model should work across a set of
similar tasks, as common practice in a meta-learning setting. Thirdly, we want to accomplish
the first two independently of the inner-policy: TRPO optimizes any kind of parametrized
policies over any kind of task, and we want our solution to provide a meta-model that
predicts the optimal trust region at each step without knowing the inner-parametrization or
the architecture of the policy under training.

The last goal is to improve TRPO by reducing its conservativity on the step size: we
will work on a modified version of TRPO , denoted here as xTRPO , that does not shrink the
step size when the surrogate loss does not predict an improvement; in other words, we are
turning off the feature of TRPO that attempts to mitigate the effects of a bad trust region,
since we aim to provide the optimal trust region at each step.

3.2. Related Works

Our proposed approach is similar to works in hyper-parameter optimization
(
HO

)
, and

similar to works in meta-reinforcement learning in the methodology.

Hyper-Parameter Optimization For what concerns HO, the field deeply changed in
the last years (Lorraine et al., 2020): starting from simple methods that search for optimal
hyper-parameters by grid-searching or random searching (Bergstra and Bengio, 2012) all
the possible combinations, we now have more complex methods that are able to train more
efficiently many hyper-parameters (Im et al., 2021). The main difference we propose in our
approach w.r.t. usual HO is that optimizing the trust region hyper-parameter for TRPO
is just our first step; the fact that we are automatically learning the optimal trust region
instead of hand-crafting it naturally implies the possibility of giving the hyper-parameter a
new degree of freedom, letting it change at each learning step, which would not be practically
feasible if hand-crafted.

Meta-Learning Meta-Learning has the objective of improving a learning algorithm over a
set of tasks, which are different instantiations of similar ML problems (Vanschoren, 2018).
We heavily rely on the meta-learning setting: we have a meta-training phase in which we
interact with a set of tasks and train a meta-model, and then a meta-testing phase in which
new tasks are sampled and the meta-model is tested against some baselines. One of the most
famous meta-learning algorithms, Model Agnostic Meta-Learning

(
MAML

)
(Finn et al.,

2017), allows to learn the best parameters initialization in order to be adapted to a new
task, and it does so in a model-agnostic manner: it does not rely on a particular kind of
model or training algorithm, as long as it is a parametrized model and it is differentiable.
Differently from MAML and other Meta-Learning algorithms, our approach wants to be
parametrization agnostic in the sense that it works only with a class of models, parametrized-
policies, but the kind of parametrization does not really matter: we can use multiple different
parametrizations during meta-training, and then the meta-model can work also with new,
never seen parametrizations.

66

Trust Region Meta Learning for Policy Optimization

Meta-Reinforcement Learning Meta-Reinforcement Learning is meta-learning applied
to a reinforcement learning algorithm, implying that the set M of similar tasks contains
different MDPs Mi. A method that is specific for meta-reinforcement learning is Meta-MDP
REINFORCE (Garcia and Thomas, 2019), which proposes a notion of meta-MDP, very
similar to ours, with different goals and usage. Meta-MDP here, as in other works, refers to
the usage of a MDP inside another MDP: the inner one is a normal RL environment over
which we need to optimize a policy, while the outer one models and optimizes the learning
process itself.

4. Proposed Solution

In this section, we present our solution to the previously defined goals. We first start defining
the notion of Meta-MDP, which we use to model a RL training session; we then detail some
critical aspects of the meta-MDP concept and implementation; we then move on to the
techniques to solve a meta-MDP.

4.1. Meta-MDP

A meta-MDP is a tuple ⟨X ,Λ,L, (M , p), (Π, q), f⟩, where:1

• X and Λ are respectively the meta-state space and the meta-action space;

• L : X × Λ → R is the meta-reward function;

• (M , p) and (Π, q) contain respectively the set of inner-tasks2 and the policy space,
together composing the meta-task space, with their respective distributions over the
initial task and policy.

• f : Π×Λ → Π is the update rule of the inner reinforcement learning algorithm chosen,
where the meta action represents the selected hyperparameter.

Given a meta-task (a sampled inner-policy and a inner-task), the meta-state is the distribution
over the trajectories given by the interaction of the policy with the inner-task. The internal
dynamic depends on the meta-state and meta-action as in a MDP, but is intrinsically
complex as it represents a complete policy update with update rule f with hyperpamater
λ ∈ Λ; moreover, since the inclusion of all representation of the trajectories is unfeasible,
we will encode the current meta-state using a set of observed metafeatures: this makes
the meta-MDP a partially observable MDP. Further, we will learning as meta-reward:
L(xt, λt) = J (f(πt, λ))− J (πt), which is the difference between the next expected return
and the current one; notice that the dependence on the meta-state is given by the policy πt
and the J , which depends on the current inner-task.

Update Rule At each step, given the current meta-state and meta-action, the update rule
can be applied to the inner-policy as θt+1 := f(θt, λt): a batch of trajectories Bt is sampled
from the interaction between the current policy and task and given to the learner, producing
the update rule, with hyperpamarameter λt. We chose to optimize the xTRPO algorithm:

1. a meta-discount factor γ̃ can be included in the definition, here set as 1.
2. Each inner-task M ∈ M is a different MDP.

67

Occorso Sabbioni Metelli Restelli

Measure Distribution Timing

H p(s), p(a|s), p(s′|a,s) (t) and (t− 1)

C p(s), p(a|s), p(s′|a,s) ((t), (t− 1)) and ((t− 1), (t))

DKL p(s), p(a|s), p(s′|a,s) ((t) || (t− 1)) and ((t− 1) || (t))
E [J] p(r) (t)

Var [J] p(r) (t)

Table 1: Summary of all the metafeatures ϕ(x) used as observation for the Meta-MDP.
Distribution refers to the type of distribution considered instead of the trajectory
distribution. Timing refers to the learning step considered for the distribution.
For example, for H, p(s) and (t) we mean H(p(s)(t)), while for DKL, p(a|s) and
((t) || (t− 1)) we mean DKL(p(a|s)(t) || p(a|s)(t− 1)).

this means that our update rule f is one step of xTRPO ; the step takes as input the batch
Bt and a trust region constraint λt; it computes an approximate natural gradient and then
applies a line-search to stay inside the trust region, returning the new policy parameters.

Encoding the Meta-State There is no analytical representation of the meta-state xt (the
distribution over the trajectories defined by the current policy πe,t and inner-task Me):
consequently, starting from a batch of sampled trajectories Bt, we need to consider a different
set of metafeatures as meta-observations ϕ(Bt).

The distribution of the overall trajectories of a policy in the state space is unfeasible
to be computed, hence we can decompose it into simpler distributions that define the
trajectories: p(s), p(a|s), p(s′|a,s), which are respectively the state-visit distribution, the policy
distribution (the actions chosen by the policy given the state) and the transition distribution
(the distribution over the next state given the current state and action); for what concerns
the rewards, we can rely on the sample mean and variance of the empirical return.

We compress the meta-state even more computing some metrics over these smaller
distributions: the Shannon-entropy H, the cross-entropy C and the KL-Divergence DKL

(Shannon, 1948). The Shannon-Entropy is a very common measure of how complex and
chaotic is a distribution; the cross-entropy and KL-divergence instead measure the distance
between two distributions in two different ways and with two different meanings; since we
want to include information about the current learning state and the history of the learning,
entropy will be useful to encode each learning state, while cross-entropy and KL-divergence
will encode information about the difference between policies. All the metafeatures we
use can be estimated from samples (Singh et al., 2003), more specifically using a set of N
trajectories performed at current time step t and the previous set, sampled at step t− 1.
The summary of all the metafeatures can be found in Table 1.

4.2. Solving the Meta-MDP

In order to solve the meta-MDP, i.e., learn a meta-model that provides the meta-action that
maximises the meta-return, we apply the FQI algorithm. We can collect meta-trajectories
over a variety of different meta-tasks, including different policy-parametrizations and different
inner-tasks. From the meta-trajectories we compute a meta-training dataset containing

68

Trust Region Meta Learning for Policy Optimization

samples of the kind ⟨ϕ(xt), λt, lt, ϕ(xt+1)⟩, which is the meta-version of the tuples required
in input for FQI (meta-observation, meta-action, meta-reward, and next meta-observation).
At the beginning of each learning trajectory, a new inner-task Me is sampled from the
distribution p, and a new policy from q, which may include different types of neural
architectures. Furthermore, at each learning step the hyperparameter λ is sampled from a
uniform distribution within a fixed range. From the resulting dataset we can train a FQI
model that estimates the meta-Q-value function

Q̂(H,ψ)(ϕ(xt), λt) .

After a validation process in order to chose suitable values for H and ψ, we can test the
model by using it to select meta-actions during an xTRPO training session; given the current
metafeatures ϕt, meta-action is selected as:

λ̂t = argmax
λ∈Λ

Q̂(ϕt, λ) .

5. Experiments

The experimental environments we used for our tests are Elikoeidis, Minigolf (Tirinzoni
et al., 2019) and Cartpole (Penner, 2002).

Elikoeidis is an environment we specifically designed in order to put the original TRPO
algorithm in difficulty, and see whether our approach could perform better with only
linear policies. More technically, it is a single-state environment, which lets us control the
complexity of the reward given the action by means of its task; the reward functions are of

the kind R(a) ∼ N
(
c1a sin(a

1+ 1
c2) + c3a, c4

)
, where the vector c is the task. In this case,

we want to analyse the effects on a single-task MDP, with c = [0.5, 3, 0.5, 1]. FQI dataset
collection is made of 100 tuples, and for each one the metafetures are extracted from sets of
N = 8 linear policy trajectories.

Minigolf is an environment presented in (Tirinzoni et al., 2019) that emulates a minigolf
game, in which the agent selects the club angular speed at each hit, with the objective of
letting the ball enter the hole; the task is given by the club length and the friction coefficient
of the golf field.

Eventually, Cartpole is the standard and classical RL environment in which the objective
is to control a cart balancing a pole; the agent controls a force applied to the cart horizontally;
the task is given by a variable mass and length of the cart pole. For Minigolf and Cartpole
environments, the FQI datasets (containing respectively 7000 and 15000 tuples) is made
by adopting linear policies and Multi-Layer Perceptrons with a different number of hidden
layers (3 maximum) and hidden neurons. N is set to 64 for the evaluation of metafeatures.

The settings are typical of Meta-Learning, with a meta-training phase and a meta-testing
phase: in our case, the meta-training is composed by a meta-dataset collection phase,
followed by the training phase, since FQI is an off-line algorithm; further, we also had
a meta-validation phase in order to select the best across different meta-models, trained
on the same datasets but using different hyper-parameters H and ψ. As commonly done
in meta-learning, during the meta-tests we compare the performances of learning sessions

69

Occorso Sabbioni Metelli Restelli

0 5 10 15

0

20

40

60

80

E
xp

ec
te

d
re

tu
rn

J
(t
)

Elikoeidis

0 20 40

−30

−20

Minigolf

0 20 40

20

40

60

80

Cartpole

0 5 10 15

0

2

4

Learning Step t

M
et

a-
A

ct
io

n
λ
(t
)

0 10 20 30 40

2

4

6

Learning Step t

0 20 40

0

0.1

0.2

0.3

Learning Step t

Meta-KL Fixed-KL (best) Random KL (training set)

Figure 1: Fine-tuned hyper-parameter TRPO vs meta-model with linear policies. Top
Figure: Comparison of the average performances of the tested FQI models (Meta-
KL) w.r.t the baselines (Fixed-KL) and the results from the learning trajectories
in the meta-training dataset (random KL) Cartpole training dataset is composed
of learning trajectories with 15 only total updates, while the evaluation process
is performed on 45 learning steps. Bottom Figure: meta-action selected at each
learning step. 30 runs, avg ±90% c.i.

collected using our meta-models to those collected using a fixed-value hyper-parameter
fine-tuned by means of a grid search, which are referred to as baselines.

In Figure 1 we show the main experimental results of our work: for each iteration of
TRPO algorithm, we report the sample mean of the performances and the average selected
hyper-parameter using the resulting model, compared to the baselines. The Training Meta-
Dataset curves represent the average performances and λ values obtained in the dataset
for training FQI models, with a random hyper-parameter at each step. We show it in
order to provide a glimpse of how much information has been learned: for example, in
Cartpole the meta-training dataset contained only information about the first 15 steps of
learning, while the meta-model has been tested on trajectories 45 steps long, requiring good
generalization capabilities. The baselines are composed of a set of trajectories collected

70

Trust Region Meta Learning for Policy Optimization

0 20 40

−30

−20

E
xp

ec
te

d
re

tu
rn

J
(t
)

MLP(0,0)

0 20 40

−30

−25

−20

−15

MLP(1,32)

0 20 40

−25

−20

−15

−10

MLP(2,32)

0 20 40

2

4

6

Learning Step t

M
et

a-
A

ct
io

n
λ
(t
)

0 20 40

0

2

4

6

Learning Step t

0 20 40

2

4

6

8

Learning Step t

Meta-KL Fixed KL (best) Random KL (training set)

Figure 2: Minigolf: Performances by different Policy Parametrizations. Top figure: Compar-
ison, across different architectures, of the FQI model (H = 3, ψ = 10−3) against
the baselines, including training trajectories. Bottom figure: meta-action selected
at each learning step. 30 runs per architecture. MLP(h, n) denotes an MLP
with h hidden layers and n neurons per layer. MLP(0,0) denotes a linear policy.
MLP(2,32) (rightmost plot) is only tested, i.e. no policies with this architecture
were considered in the training dataset.

applying a constantly constrained trust region TRPO across the same set of test meta-tasks.
Figure 1 depicts the performances of the best validated FQI model, compared with the
best performing baselines. The comparison shows clearly how the meta-model can always
perform as good as the best baseline found, and in many times even better, by choosing an
adaptive trust region, decreasing with time.

Figures 2 and 3 show the results across different policy architectures respectively regarding
the Minigolf and Cartpole environments. In the first scenario, we can observe that the FQI
model is able to reach better results than the baselines in the case of linear policies and with
MLP with 1 hidden layer. This last case is emblematic, as also selecting a random trust
region seem to bring an improvement with respect to the fixed case. The rightmost plot,
instead, depicts the results on a set of instances where the selected parametrizations is a
MLP with 2 hidden layers and 32 hidden neurons, which was never seen by the FQI model

71

Occorso Sabbioni Metelli Restelli

0 20 40

20

40

60

80

Learning Step t

E
xp

ec
te

d
re

tu
rn

J
(t
)

MLP(0,0)

0 20 40

20

40

60

80

Learning Step t

MLP(1,16)

0 20 40

20

40

60

Learning Step t

MLP(3,64)

Meta-KL Fixed KL (best) Random KL (training set)

Figure 3: Cartpole: Performances across different Policy Parametrizations. Comparison,
split across different architectures, of the FQI model (H = 1, ψ = 5 · 10−5) against
the baselines, including training trajectories. 30 runs per architecture. MLP(h, n)
denotes an MLP with h hidden layers and n neurons per layer. MLP(0,0) denotes
a linear policy. MLP(1,16) and (3,64) are not in the training dataset, i.e. no
policies with these architectures were considered for FQI training.

during training: the model is able to reach the same results as the best baseline, computing
using a grid-search, hence proving its generalization capabilities. The same conclusions
can be taken for the Cartpole case (Figure 3), where the resulting FQI model is able to
outperform the baselines for the linear case (leftmost plot), and to generalize well for unseen
architectures (central and rightmost plots), by using only trajectories with 15 updates.

6. Conclusions

The general goal of this work is to improve TRPO by means of applying meta-learning
to the trust region hyper-parameter optimization, letting it change at each learning step.
Furthermore, we wanted our solution to build a parametrization-agnostic meta-model,
which can be trained on multiple different policy parametrizations and then used on other
parametrizations, even if never seen.

Performing better than the optimal (fixed) baseline found with a grid search means
that we developed a method to train a meta-model that can substitute and improve the
hand-crafted choice of the trust region hyper-parameter, work that must be done for each
new task or policy parametrization.

All the experiments carried out suggest that the meta-MDP direction is promising: the
results obtained in the Elikoeidis environment, which was designed with the intent to be
easily learned by TRPO using actions provided by a meta-model on linear policies, show
the feasibility of our approach, while the experiments on Minigolf and Cartpole show how,
at least on simple environments, it is possible to fully reach our goals, improving TRPO
over a set of tasks, and automatizing the hyper-parameter selection.

72

Trust Region Meta Learning for Policy Optimization

There are anyhow many situations in which a meta-learning approach does not bring
any advantage: when the optimal fixed-size trust region does not change across different
parametrizations or different tasks, it is not computationally efficient to take the effort of
building the meta-model to automatize the hyper-parameter choice; on the other hand, the
new degrees of freedom on the trust region may result in finding optimal models that cannot
be found by means of a fixed-size trust region. Moreover, in complex environments it may
require a lot of meta-training data, as in the classic applications of FQI. As future research
directions, we may wonder how to generate and select more informative metafeatures, and
to develop online approaches, that can bring the advantages of a dynamic choice of learning
hyperparameters.

References

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(2), 2012.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, pages 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Michele Donini, and Massimiliano Pontil. A bridge between
hyperparameter optimization and larning-to-learn. CoRR, abs/1712.06283, 2017.

Francisco M. Garcia and Philip S. Thomas. A meta-mdp approach to exploration for lifelong
reinforcement learning. In Advances in Neural Information Processing Systems 32, pages
5692–5701, 2019.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

Daniel Jiwoong Im, Cristina Savin, and Kyunghyun Cho. Online hyperparameter optimiza-
tion by real-time recurrent learning. CoRR, abs/2102.07813, 2021.

Sham M. Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems 14, pages 1531–1538. MIT Press, 2001.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In The 23rd International Conference on Artificial Intelligence
and Statistics, AISTATS 2020, pages 1540–1552. PMLR, 2020.

A Raymond Penner. The physics of golf. Reports on progress in physics, 66(2):131, 2002.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

73

Occorso Sabbioni Metelli Restelli

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015,, pages 1889–1897. PMLR, 2015.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk.
Nearest neighbor estimates of entropy. American journal of mathematical and management
sciences, 23(3-4):301–321, 2003.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems 12, pages 1057–1063. The MIT Press, 1999.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search
via multiple importance sampling. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, pages 6264–6274. PMLR, 2019.

Joaquin Vanschoren. Meta-learning: A survey. CoRR, abs/1810.03548, 2018.

74

	Introduction
	Background Knowledge
	Fitted-Q Iteration

	Trust Region Optimization
	Goals
	Related Works

	Proposed Solution
	Meta-MDP
	Solving the Meta-MDP

	Experiments
	Conclusions

