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Abstract

In this paper a strong motivation for real-time reasoning-learning systems based on Non-
Axiomatic Reasoning System (NARS) Theory as an approach to build intelligent systems
with agency is given. This contains the requirement to work under the Assumption of Insuf-
ficient Knowledge and Resources which demands open-ended adaptation while obeying to
strict computational resource restrictions to allow for real-time response. We show how this
aligns with the phenomenon of intelligence as found in nature, allowing for systems which
can both react instantly, and plan ahead deliberately dependent on implicitly outcome-
dependent time pressures. In this context a specific implementation design is considered,
OpenNARS for Applications (ONA), and how its learning and reasoning abilities lead to
data-efficient adaptation in novel circumstances in various domains, whereby we compare
with a reinforcement learning method, Q-Learning, in Space Invaders, Pong and a grid
robot environment. We will see that both techniques perform comparably well for reactive
tasks in Markovian environments, while the uncertainty reasoner performs better when the
Markov property is violated, with the additional property that it can plan ahead to exploit
task compositionality, also taking explicit background knowledge into account.

Keywords: Reasoning Under Uncertainty, Reinforcement Learning, Non-Axiomatic Rea-
soning, Procedure Learning, Practical Reasoning

1. Introduction

In this paper, after re-visiting considerations derived from research on the phenomenon of
natural intelligence, we will see a reasoner able to learn from data (Non-Axiomatic Reason-
ing System (Wang, 2013)) being compared with a common reinforcement learning technique
(Q-Learning (Watkins, 1989)) in a set of reinforcement learning problems. Reinforcement
learning is usually seen as orthogonal to practical reasoning, as two sub-areas of AI which
serve different purposes. The former is expected to learn behaviors which maximize ex-
pected future reward, while the latter is expected to find ways to reach goals based on
already available knowledge which can be used for planning purposes. The outcome of the
planning process is a sequence of steps which is expected to lead to the desired goal state
when starting from current circumstances. In reinforcement learning usually the goal is
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fixed and represented as a utility function which provides the agent with different reward
values in different circumstances. Also, the planning is implicit: when a certain action is
taken it is chosen exactly because it is expected to lead to the highest future reward, but
this can still mean that additional steps are required to get the reward, which demands deal-
ing with temporal credit assignment, that is, to evaluate to what degree the taken actions
were responsible for the reward outcome (Sutton, 1988). When this situation is common
(that only specific states provide reward feedback) we usually refer to this as rewards being
“sparse.” In practical reasoning terms this is usually the default, as it just means that the
only outcome of interest is the achievement of the goal state. Intermediate outcomes don’t
have value by themselves other than making achieving the goal state easier or more difficult,
which to be learned needs involve a form of temporal credit assignment.

To perform an initial comparison with a machine learning technique capable of tempo-
ral credit assignment, in this paper we will see ‘OpenNARS for Applications’ (ONA, see
(Hammer and Lofthouse, 2020)) which can reason under uncertainty, competing with a
table-based Q-Learner (see (Watkins, 1989)) with eligibility traces in domains with sparse
rewards. This will show the key point this paper is about to convey: that uncertainty rea-
soning can be used to learn behaviors typically learned by reinforcement learners, and reach
comparable results in certain domains in which reinforcement learning techniques are typ-
ically applied. Additionally, we will see how the reasoning approach performs better when
the Markov property of next state only being dependent on previous state and previous
action is violated. This result is obtained without relying on state merging heuristics to
make the Markov property for reward hold again (Gaon and Brafman, 2020). And compared
to Georgeon et al. (2015), which eliminates hidden Markov state dependence in the reward
function, non-axiomatic logic with explicit goal statement representations is utilized. Most
importantly, this work establishes uncertainty reasoning (based on non-axiomatic logic in
particular) as an additional machine learning technique to deal with reinforcement learning
problems, and points to a solution which can both deal with reactive tasks and planning,
the latter of which requires the kind of causal representations that this reasoner is able to
learn.

2. Inspirations from nature

If natural intelligence is to be replicated in computer systems, instead of turning AI into
a different field with different objectives, psychological literature has to be taken into ac-
count. In psychological experiments intelligence is usually tested by putting evolved systems
into situations they did not evolve for (Fig. 1), or an artificial system into situations it was
not designed for. These experiments demand the animal to adapt beyond its current knowl-
edge or skill level, and analyzing how they are able to deal with these situations, and how
quickly, drives a large part of the related research. Situations which have been thoroughly
analyzed include, among others, corvids which drop nuts on asphalt roads from great heights
(as analyzed in Cristol et al. (1997)) and are able to perform well in various planning ex-
periments (as in Kabadayi and Osvath (2017)), and bumblebees which were trained to pull
a string or roll a ball into a hole to obtain honey by watching a mockup bumblebee or an
individual of their own kind carry out the task (Loukola et al., 2017). This goes beyond
model-free reinforcement learning, as it is a case of learning and explicitly representing
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cause-effect hypotheses obtained from observations. This is clearly desirable to be repli-
cated in AI systems, such as argued for by Pearl (2010), which attempts to model and
utilize causal relationships.

Figure 1: Bumblebee fetch learned from observation, planning in ravens.

Additionally, we can observe a list of considerations obtained from the study of natural
intelligence which largely informed the design of our reasoning system and demand the
causal structure itself to be learned from observation and interaction with the environment:

1. To be able to transfer knowledge to new goals, knowledge needs to be independent
of current utility function / goals; causal (precondition, operation) ⇒ consequent
representations are a good way to achieve this, and can be chained in ways the agent
hasn’t experienced previously.

2. Data-efficient learning is key in nature and clearly survival relevant, as slow learning
can lead to death rather than just to the jumping from one episode to the next as in
a reinforcement learning setting.

3. There is no clear-cut training, test and operating phase in nature, instead learning
continues forever, incrementally building on prior knowledge, sometimes referred to
as cumulative learning (Thórisson et al., 2019).

4. Learning rate decays do not work for systems which are supposed to be able to continue
to adapt with same speed. Ideally an AI system would be able to deal with non-
stationary environments, to deal with concept drift (Hu et al., 2020) and to learn
causal structure rather than just adjusting existing probability weights.

5. In complex environments, situations never exactly repeat, conditions capture relevant
invariances and not complete state. Latent encodings and structural encodings are
two ways to achieve this in AI (Hitzler et al., 2022), roughly corresponding to the
symbolic and connectionist AI traditions.

6. With sufficient sample counts the system doesn’t need to keep track of the size of the
sample spaces in which case a probabilistic estimate suffices, however this isn’t the
case when learning decision-relevant hypotheses from a few examples (Wang, 2009b).

Many of these points show up in the following reasoner design in one way or the other
and will help the reader to understand the involved design decisions better.
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3. A reasoner which learns and makes decisions

Whilst practical reasoning systems have multiple existing instantiations (such as Ferrein
et al. (2012) and Bordini and Hübner (2006)), most are not designed to allow knowledge to
be uncertain but rely on it to be sufficient for the task at hand. Multiple logics have been pro-
posed to support reasoning under uncertainty, such as Markov logic networks (Richardson
and Domingos, 2006), ProbLog (De Raedt et al., 2007), fuzzy logic (Zadeh, 1988), proba-
bilistic logic networks (Goertzel et al., 2008), non-axiomatic logic (Wang, 2013). What all
these have in common is extending truth value of propositions from boolean to a degree of
belief. This allows them to capture knowledge which is not either true or false, but some-
where in-between. Of these logics, De Raedt et al. (2007), Richardson and Domingos (2006)
and Goertzel et al. (2008) operate with probability values associated to the prepositions. To
take into account the size of the sample spaces, Goertzel et al. (2008) and Wang (2013)
use a second value which intuitively speaking corresponds to the stability of the probability
in light of new evidence. This allows them to allocate a higher certainty to say a 50/50
over a 5/5 coin flip scenario, while still converging to the same truth value in the limit of
infinite samples. This makes these two logics extremely well-suited for cases where “degree
of belief” has to be estimated from samples and justifiable conclusions should be drawn
(or decisions being made) even when samples supporting a relevant hypothesis are low in
count. In this case the ratio of confirming cases over total cases is not yet representative
and the amount of samples needs to be considered in addition.

For this paper, NAL (Wang, 2013) was chosen over PLN (Goertzel et al., 2008) since
it incorporates goal reasoning and decision making, hence can be considered a Practical
Reasoner able to learn from experience. For this paper we will show only the NAL definitions
necessary to replicate the included experiments.

Before we go into the details of truth calculation, Fig. 2 helps to understand the structure
of the overall architecture.1 It consists of:

• Event providers, which consist of dedicated sensor processing for different modalities,
each encoding information as statements to reason on.

• FIFO sequencer, a sliding window over the recent events responsible for building
sequences of recent events. This component is also responsible for the building and
strengthening of temporal implication links.

• A Cycling Events Queue, which is a Priority Queue datastructure. It acts as the
system’s central attention buffer. All input and derived statements enter there, but
only a minority can be selected in a given time-frame. Most are removed due to
the fixed capacity of this structure and the pressure of new arriving events of higher
priority.

• Concept Memory: the long-term memory of the system. For the sake of this publi-
cation, this block stores temporal hypotheses and supports their strengthening and
weakening based on their prediction success.

1. While the FIFO has been removed and an explicit temporal inference block added in recent versions of
ONA (to condition on derived events), the comparisons in this paper are based on the design with FIFO
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• Sensorimotor Inference block: it invokes the Decision and Subgoaling algorithm for
goal events selected from the Cycling Events Queue, to be introduced later.

• Declarative Inference block responsible for feature association, prototype formation,
relational reasoning and usage of human-provided knowledge. For this publication,
this block was not utilized as it would make comparisons more difficult.

Figure 2: ONA Architecture.

Truth Value Truth Value in NAL is based on positive evidence w+ and negative
evidence w− which speaks for or against a statement / belief / hypothesis, and the total
evidence w := w+ + w−, each of which is zero or greater. Based on these evidence values,
the NAL truth value is defined as the tuple (f, c) with frequency

f :=
w+

w
∈ [0, 1]

and confidence
c :=

w

w + 1
∈ [0, 1).

Please note the similarity between frequency and probability, with the difference being that
the limit limw→∞ f is not taken, as it cannot be obtained from any finite amount of samples.
Also, clearly for w > 0, the mapping (w+, w−) 7→ (f, c) is for practical purposes bijective,
as statements with w = 0 don’t need to be handled as they don’t contribute any evidence.

Additionally, truth expectation is defined as

expectation(f, c) = (c ∗ (f − 1

2
) +

1

2
).
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This measure summarizes the two-valued truth value into a single value with the extremes
being 0 for c = 1, f = 0, and 1 for c = 1, f = 1, which both are approachable but
unreachable, since ∀w ∈ R : c < 1 while limw 7→∞ c = 1.

Implications For the sake of this paper we will restrict ourselves to temporal implica-
tions (A⇒ B) and procedural implications of the form ((A, op)⇒ B). The former denotes
that B will happen after A, and the latter that B will happen when op is executed right after
A happened. To calculate the truth values of these implications, the evidences of w+ and
w− are needed. If events would have binary truth, for (A⇒ B), w+ would be the amount of
cases in which A happened and B happened after it, and w− would be the amount of cases
where A happened but B did not happen thereafter. Slightly more complex but following
the same idea, for ((A, op)⇒ B), w+ would be the amount of cases in which A happened,
op was executed and B happened after it. And w− would be the amount of cases where A
happened and op was executed but B did not happen thereafter. Now, using w+ and w−,
the truth value (f, c) of the implication statements would be fully determined. While this
captures the main idea, to make the temporal reasoning more robust in regards to timing
variations, the following treatment is used instead:

Event uncertainty Events are not “true” at only a specific moment in time, instead
they have an occurrence time and truth value attached to them. Hereby, the confidence
decreases with increasing time distance to the second premise (also called ‘projection’ in
Wang (2013)). The way this is realized is that when two premises are used in inference, the
confidence of the second premise is discounted by the factor β|∆t| with ∆t = time(B) −
time(A), where β is the truth projection decay, a hyperparameter.

Now, the way implications are formed is via the Induction rule

{A,B} ⊢ (A⇒ B)

with ∆t stored as metadata and the truth of the conclusion being (as described in more
detail in Wang (2013)):

truth((A⇒ B)) = find((f1, c1), (f2, c2)) = (f1,
f2 ∗ c2 ∗ c1

f2 ∗ c2 ∗ c1 + 1
).

Now, when the same implication is derived multiple times, their truth values are revised,
by simply adding up the evidences of the premises: w+ = w+1+w+2 , w− = w−1+w−2 . This
makes sure that the implication receives increasing amounts of evidence when the events
which support it (the antecedent and consequent) do occur, exactly as we intended. But
with the addition that evidence is discounted based on temporal distance, which is what
makes the temporal credit assignment succeed. On this matter, projection plays the same
role as eligibility traces do for reinforcement learners (Sutton, 1988).

As last detail, the ∆t is also updated in revision, by taking a weighted average between
the time deltas of the premises, weighted by the confidence of the premises. We will need
this soon to decide the occurrence time of derived events.

Learning To form the temporal and procedural implications from input events (to
calculate their evidence), a sliding-window approach is taken, where the sliding window (a
first-in-first-out buffer) only holds the latest k events. This way evidence for implication
(A⇒ B) is only attributed (based on the Induction rule we just described) when both the
antecedent A and consequent B of the implication exist within the sliding window. Please
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note that A can as well be a sequence here, like (X,Op), encoding thatX happened and then
operation event Op happened. In principle sequences don’t need to contain operation events
and can contain more than just two elements, this allows ONA to learn temporal patterns
which span a larger time distance (up to the sliding window size). This helps especially
in environments where the Markov property does not hold. But since we compare with
Q-Learning which assumes the Markov property to hold (next state only being dependent
on current state and current action), we will leave this out for now to make the comparison
fair.

Collecting negative evidence for an implication is slightly more tricky (‘anticipation’ in
NAL; see Wang (2013)), as it is supposed to be added when the consequent will not happen,
but how long to wait for the consequent? Ideally this would not depend on the buffer size,
and would be dependent on the averages of the experienced timings and related variances.
However, timing assumptions can go wrong when certain distributional assumptions aren’t
met, which is why we went for a simpler solution for now which is at least not dependent on
the size of the sliding window: to add a small amount of negative evidence immediately when
the antecedent arrives, small enough that should be consequent arrive as predicted by the
implication, the truth expectation of the implication will still increase (the positive evidence
over-votes the negative), while else it would decrease due to the negative evidence which was
added. Overall, the accumulation of positive and negative evidence leads to frequency values
which encode the hypotheses (the implications) proficiency to predict successfully, whereby
truth expectation can be seen as the expected frequency, which as we will now see is used in
decision making (as it takes into account how many samples have been seen about a certain
implication, eliminating initially lucky ones to be preferred over consistently competently
predicting ones, and without having to assume a prior probability distribution).

Decision Making: Goal events G! are represented as temporal implication (G ⇒ D)
where D is implicitly present and stands for “desired state”, and their desire value is the
truth value of this implication. When processed, goals either trigger decisions or lead to the
derivations of subgoals. For this purpose, the existing procedural implications are checked.
If the implication ((A, op) ⇒ B) has a sufficiently high truth value, and event A recently
happened, it will generate a high desire value for the reasoner to execute op. The truth
expectations of the implications with G as consequent are compared, and the operation from
the candidate with the highest expectation desire value will be executed if above decision
threshold (a hyperparameter). If not, all the preconditions (such as A) of the implications
with G as consequent will be derived as subgoals, competing for attention and processing
in a bounded priority queue ranked by the expectation of the desire value multiplied with
the parent goal priority (this way only the most desired goals are pursued, whereby input
goals have priority 1). Hereby, the desire value of the subgoal is evaluated using deduction
between the implication and the goal Wang (2013). And to determine the operation’s
desire value one additional deduction step to take the precondition truth value into account
is necessary. This corresponds to the inference rule

{(X ⇒ G), (G⇒ D)} ⊢ (X ⇒ D) = {(X ⇒ G), G!} ⊢ X!

where the conclusion goal’s occurrence time (the time at which X would have to have
occurred if G had to happen right now) is G’s occurrence time minus the ∆t stored as
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metadata of the implication. And the following inference rule in case X is of the form
(Y, op):

{((Y,Op)⇒ D), Y } ⊢ (op⇒ D) = {(Y,Op)!, Y } ⊢ op!

which encodes that op is wanted to be executed if op is wanted to be executed after Y
happened and Y happened.

The conclusion goal desire values are:

desire(X) = fded(desire(G), truth(((X, op)⇒ G))

for the subgoal which corresponds to the antecedent of the implication, and

desire(op) = fded(desire((X, op)), truth(X))

for the operation subgoal to potentially execute if X happened, with fded being (as in Wang
(2013)):

fded((f1, c1), (f2, c2)) = (f1 ∗ f2, f1 ∗ f2 ∗ c1 ∗ c2)

Using this model, decision making is concerned with realizing a goal by executing an
operation which most likely, and sufficiently likely leads to its fulfillment under current
circumstances. And when no such candidate exists to get this done in a single step, subgoals
are derived from which a candidate will fulfill this requirement or again lead to further
subgoaling, which is like backward planning from a goal to current circumstances, but
while taking event uncertainties and uncertainties of the implications into account. This
process can be summarized as follows:

Input: Goal G Result: Execution of Op, or subgoaling
subgoals = {}, bestDesire = 0.0
forall ((X,Op)⇒ G) ∈ memory do

subgoals = subgoals ∪ {X}
if desire(Op) > bestDesire then

bestDesire = desire(Op), bestOp = Op
end

end
if bestDesire > DECISION THRESHOLD then

execute(bestOp)
else

forall s ∈ subgoals do
derive s (for potential selection in next inference step, leading to recursion)

end

end
Algorithm 1: Decision and subgoaling

Also to make use of implications effectively in implementations, the procedural implica-
tions should be indexed by their consequent, where only a constant amount of implications
is allowed for each consequent. This can be achieved by ranking them according to their
truth expectation, so that the weakest implications are removed while these which predict
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successfully are kept (similarly as in Hammer and Lofthouse (2018)), keeping the resource
requirements bounded (Wang, 2009a). Also, through the indexing, the competing hypoth-
esis to lead to the goal don’t need to be searched for, they only need to be iterated and
compared in the way the pseudo-code describes.

Exploration Additionally, sometimes the operation to execute is ignored and a random
one is executed instead, which can be considered a form of exploration through motor
babbling. This is also common for reinforcement learners, and for the reasoner is necessary
especially in the beginnings where no procedural implication does exist thus far, hence no
decision can be derived to lead to the desired outcome. Yet sometimes an action should
be tried so that the first implications will form and “informed decision” can increasingly
replace random trial (exploitation taking over exploration). A key difference is that, in
accordance with the considerations regarding natural intelligence, there cannot be a time-
dependent exploration rate decay, instead the reasoner reduces motor babbling when the
truth expectation about how to reach a goal, desire(Op), increases.

4. Reinforcement learning comparison with Q-Learning

In this section we will compare ONA and Q-Learning, from a theoretical perspective and
on concrete examples both techniques can be applied on.

Differences between the decision-making models Before we move on to compar-
ison on concrete experiments, there are some relevant differences in both decision making
models which we will need to address to allow for a fair comparison. Since ONA is a NARS
implementation design, many properties of the ones described in Wang and Hammer (2015)
are inherited by it. Compared to reinforcement learning formalizations some of the most
significant differences are:

• Statements instead of states ONA, as a NARS, does not assume states which
fully describe the current situation, instead events are usually partial descriptions of
the current situation as perceived by the agent, consistently with this idea also the
Markov property is not assumed to hold. To make the practical comparison possible,
the events however will hold the same information as the corresponding states the
Q-Learner will receive in the simulated experiments. However, in the last example,
a robotics use case, we will see events from different sources, coming from different
modalities without blowing up the state space as would be the case when simply
combining their values into a single state vector.

• Unobservable information Related to the previous point, there is a major differ-
ence between unobservable states which are not known (not just their values being
unknown), and known unobservable states which values can be estimated from observ-
able state due to known observation probabilities as commonly handled by a POMDP
(Spaan, 2012) in a model-based RL setting. While ONA inherits some limited capa-
bility to address both via its uncertainty reasoning machinery, partial observability is
outside of the scope of this manuscript.

• Hierarchical abstraction Complex environments often demand a higher level of
abstraction of behaviors to allow for data-efficient learning of policies or hypotheses
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in general. This is by far not fully solved yet by any AI model, though attempts like
Nachum et al. (2018) and Zhou et al. (2019), which arrange multiple reinforcement
learners in a hierarchical way, do exist. However also abstraction of state matters,
here, deep learning, especially convolutional neural networks (Khan et al., 2020),
allow to deal with high-dimensional image input and models which work in real-time
(Shanahan and Dai, 2019) have become an essential technology in robotics and many
real-world applications, including self-driving cars (Do et al., 2018; Nugraha et al.,
2017; Farag, 2018; Zhang et al., 2019). In the last use case we will see YOLOv4
(Bochkovskiy et al., 2020) being utilized for object detection, additionally we will
see further abstraction of behavior (abstracting away from particular object types)
happening via inductive reasoning.

• One action in each step ONA does not assume that in every step an action has
to be chosen. To make the techniques comparable, we will hence add an additional
n̂othing action for the Q-Learner in each example.

• Multiple objectives ONA can work on multiple goals simultaneously (which will be
demonstrated in a separate publication in the future). A common approach to deal
with multi-objectives in reinforcement learning is to combine together the individual
objectives into a single reward function (Sutton and Barto, 2018; Yang et al., 2019).
This is most commonly done by formulating a scalarisation function (Van Moffaert
et al., 2013), measuring the utility of a linear combination of expected return values
of the objectives. In Zintgraf et al. (2015) however it is argued that the approach does
not work if the parameters of the scalarisation function are not known in advance, and
that in such cases a model that expresses the multiple objectives explicitly is required.
The latter is common also in other Constructivist AI systems other than ONA, such
as Leela (Kommrusch, 2020).

• Changing objectives Most reinforcement learning solutions are not designed to
allow dealing with changing objectives / changing utility function. For game-playing
this is fine, RL had a lot of success as the objective of a game usually does not
change while playing it (Schrittwieser et al., 2020). However, in robotics scenarios
the situation is different, behavior of robots (such as household robots and robotic
explorers) is usually expected to satisfy dynamic user goals. In this case planning
methods (route planning, motion planning, etc.) remain to be crucial in autonomous
robotics and self-driving cars (Karpas and Magazzeni, 2020; Badue et al., 2021; Aradi,
2020), but can for example also be combined with RL-based path tracking approaches
(You et al., 2019).

Reasoner and background The particular implementation we will use for comparison
purposes and follows these principles is ‘OpenNARS for Applications‘ (ONA, see Hammer
and Lofthouse (2020)), an implementation of a Non-Axiomatic Reasoning System (Wang,
2013) developed by the author. While ONA has been compared with actor-critic (AC) and
double-deep Q-learning (DDQ) on variants of the cart-pole task (Eberding et al., 2020), the
input representations were not the same between the compared methods (mostly because
ONA does not accept numeric inputs without preprocessing), lowering the strength of the
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results. Additionally, more tasks are required to make the case to establish ONA as an
additional technique to address reinforcement learning problems stronger. In this section we
will compare ONA with a standard table-based Q-Learner (Watkins, 1989) implementation
with eligibility taces (Sutton, 1988), while ensuring that both the Q-Learner and ONA
receive the exact same input. For completeness, and to allow to relate the hyperparameter
choices with the Q-Learning model used for the experiments:

Q(st+1, at+1) = maxaQ(st+1, a)

δQt = r + γ ∗Q(st+1, at+1)−Q(st, at)

et(st, at) = et(st, at) + 1

∀s and a :

Q(s, a)← Q(s, a) + α ∗ δQt ∗ et(s, a)

et(s, a)← γλet(s, a)

where α is the learning rate, γ controls how much to favour future rewards over short-term
reward, and λ controls the decay speed of egilibility traces. Additionally ϵ which is not
mentioned here, is the exploration rate. It encodes the chance to select a random action as
at+1 instead of the one with the highest expected reward.

Goal achievement as reward While ONA can deal with the goals in the described
way, the Q-Learner needs a reward signal. Hence if both should receive the exact same input
to make comparison more meaningful, there needs to be a mapping from goal achievement
to reward. The way this is achieved is the following way: when an event X is input it is
interpreted by ONA as event, and by the Q-Learner simply as current state. If X however
corresponds to the outcome to achieve, and the reward for the Q-Learner will be 1 (while
ONA receives event goodNar), and else 0. This of course assumes that the goal does not
change, as else the Q-table entries would have to be re-learned, meaning the learned behavior
would often not apply anymore. But for reinforcement learning problems it is most common
that the objective is fixed, so for the purposes of this paper, and for a fair comparison, the
examples will include a fixed objective.

Setup The experiments chosen for comparison are two typical reinforcement learning
examples, Space invaders and Pong, plus a grid robot experiment where the agent has to
find food while maneuvering around obstacles underway. Both techniques (Fig. 3) are run
multiple times in each experiment, and the example-specific success measure is kept track
of for each time point across 10000 iterations, together with the average summarized over
all runs of the particular technique. Furthermore, the ONA parameters are chosen to be
the ones in the default config of the ONA v0.8.8 master branch (Hammer and Lofthouse,
2020) across all experiments (with a FIFO window size of 20, increasing it did not increase
the scores further). The motor babbling rate is chosen to be the same as ϵ of the Q-Learner
in the experiments.
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Figure 3: From left to right: Space Invaders, Pong and Robot.

Space Invaders In this game (Fig. 3) the player controls a spaceship and is supposed
to shoot down aliens, whereby the success ratio we will use is the amount of hits over the
total shots. Both models receive the enemy location as either enemyLeft, enemyRight, or
enemyAligned when aligned with the player. Additionally the actions the agent can take
are l̂eft, r̂ight which move the agent to the left/right side by some step size (set to be 5
percent of the game screen width, so 20 actions to get from one side to the other), and
shoot. Additionally the n̂othing action exists for fair comparison between both techniques,
as the reasoner can decide to do nothing according to NAL decision theory (Wang, 2013).
To hit the enemy, the shoot action needs to be taken when aligned with the enemy. The
hyperparameters for the Q-Learner are α = 0.1, γ = 0.1, λ = 0.8, ϵ = 0.3. Each technique is
run 10 times with different random seeds each, meaning also variations in starting positions
in addition to outcomes of when to choose exploratory actions.

Figure 4: Success ratio in Space invaders and Pong.

The results as seen on the left side in Fig. 4 indicate that both techniques (Q-Learning
and ONA) converge to the same capability on average, and on average with approximately
the same learning speed. However, the learning behavior of ONA is more consistent, while
Q-Learning revealed both cases where it learns quicker and slower than most ONA runs,
corresponding to a higher variance in learning performance.
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Pong In Pong (Fig. 3), the location of the ball, which is able to reflect at the walls, is
encoded as relative ballLeft, ballRight, ballEqual in the same fashion as in Space invaders.
This time l̂eft and r̂ight initiate left/right movement of the bat, and an additional
operator ŝtop stops the movement. Like before n̂othing exists as alternative action to make
the comparison fair. The goal is for the ball to hit the bat repeatedly, and the success rate
represents the hits over the sum of hits and misses. This time the hyperparameters of the
Q-Learner are α = 0.1, γ = 0.1, λ = 0.8, ϵ = 0.2, meaning a slightly lower epsilon than
before.

Surprisingly, while the Q-Learner learned the use of moveUp and moveDown, it con-
sistently failed to learn to use the stop operator and hence reached lower success ratios
than ONA (Fig. 4) which only failed to do so in 3 runs, while learning the more optimal
non-Markovian behavior in the other cases.

When visualizing the reasoner’s knowledge in a behavior graph as in Fig. 5, we can see
why it can be tricky to learn the better policy. In this graph, nodes are the event, and links
encode transitions via some operation (representing implication statements as introduced
earlier). The operations are drawn at the outgoing side of the edge. Additionally, the edge
colors are of interest here, where red encodes positive evidence and blue encodes negative
evidence, hence violet is a mixture thereof:

Figure 5: ONA behavior graph after learning Pong.

There is a violet rather than red connection from ballLeft to goodNar via l̂eft, which
indicates that this link has received an significant amount of negative evidence. This makes
sense, as moving left when the ball is left is often not by alone sufficient to hit the ball, also
the stop operator has to be invoked when reaching the ball location (same for the other
direction). The edge from ballLeft to ballEqual via the l̂eft operation on the other hand
is very successful (indicated by red color), and so is the edge from ballEqual to goodNar
via ŝtop.
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This makes the issue at heart clear: an operator that initiates movement instead of
performing a step of a certain size once breaks the Markov property of the reward, that is,
that the last state and action determines fully what state the agent will observe next and
the reward it will obtain. With action l̂eft being used lastly, the bat continues to move left
when n̂othing is invoked, hence the state transition and also reward in this case can depend
on a state-action combination which happened prior to the last one. In this case also, state
merging heuristics like in Gaon and Brafman (2020) cannot resolve the issue, as the side
effect is caused by the action and not directly part of an observable state.

To confirm that this is indeed the explanation for the worse performance, the same
experiment was tried without the ŝtop action. Hereby, everything else (the overall setup)
remained to be the same. In this case the Q-Learner turned out to perform comparably well
like ONA on average in end performance (Fig. 6), while on average ONA learned faster:

Figure 6: Success ratio in simplified Pong and Grid Robot.

though in this case the problem regresses to learning to invoke onlymoveUp andmoveDown,
which is a simpler problem to solve. Nevertheless, what this suggests is that ONA can deliver
the same learning performance as Q-Learning, while additionally delivering better results
when the Markov property does not hold. The sliding window approach to mine for pat-
terns in input event stream, although local in time, is less restricted than only considering
the current and last state in Q-table updates.

Robot This experiment (Fig. 3) features a robot in a grid with walls and food objects
to collect, whereby the amount of food objects collected we will directly use as success
measure. Perceived events are from the perspective of the robot, which can turn around
by using r̂otateLeft and r̂otateRight. Additionally it can move forward by one grid cell
by invoking m̂oveForward. The robot can see what is in front, left and right to it within
a 10 cells distance. It can either be, in this preference order, foodCentered, foodLeft,
foodRight, wallCentered, wallLeft, or wallRight. The only outcome positive of interest
is the agent colliding with food, but of course to achieve this the agent also has to learn to
avoid obstacles in order not to get stuck.

In this experiment, and with the same parameters as in Space Invaders, both techniques
performed comparably well, with a slight leap of ONA in initial performance, and slight
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leap of Q-Learning in the end performance. This example can easily be extended to multi-
objective scenarios and scenarios with changing objectives, showing merits in these areas
will be part of our future work.

Overall, as Table 1 suggests, except of the issue with the Markov property of states
and rewards being violated for Q-Learning which demanded a simplification of the Pong
example to get similar results, both techniques were comparable in performance on average.
Hence the reasoning-based approach provides a viable alternative for such problems, while
performing better whenever the Markov property is violated, since it does not explicitly
depend on this property.

Table 1: End performance results of all experiments.

Success measure ONA Q-Learner Number of trials

Space invaders 0.86 0.85 20 (10 each)

Pong (non-Markovian) 0.80 0.61 20 (10 each)

Pong (simplified) 0.98 0.97 20 (10 each)

Grid robot 91 87 20 (10 each)

5. Conclusion

We have presented an alternative to reinforcement learning, using Non-Axiomatic Logic
for reasoning under uncertainty, and detailed how it relates to the phenomenon of natural
intelligence. By allowing a reasoner to learn (and not just by an external mechanism like
in inductive logic programming (Muggleton and De Raedt, 1994), which does not work in
real-time), principles like goal derivation and planning based on goal-independent represen-
tations can also be used to tackle reinforcement learning problems. It has been shown that
on the particular set of tasks (Pong, Space Invaders, and Grid Robot), ‘OpenNARS for
Applications’ performs comparably well like Q-Learning with eligibility traces on average,
and while providing better results when the Markov property is violated. This suggests
the utilization of uncertainty reasoning (non-axiomatic reasoning in particular) to be an
alternative, and sometimes better, approach to deal with various reinforcement learning
problems. Additionally it has the potential to get around some of the inherent limitations
in common reinforcement learning techniques, such as to exploit the Markov property of
states and rewards, which as we saw can be easily violated even in relatively simple envi-
ronments.

In the future we will show that the reasoning-based approach naturally allows for the
flexibility means-end reasoning (practical reasoning) approaches are typically known and
valued for (as we have started to show in our more recent robotics work (Hammer et al.,
2023) and curriculum learning setups). This includes the ability to change behaviors im-
mediately when goals change, to be able to plan to reach outcomes which have not been
observed before in the same manner, to pursue multiple goals, and to take background
knowledge into account effectively. Combining this with an ability to learn behaviors com-
parably well like reinforcement learners can allow to more easily build intelligent agents
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which are expected to achieve various mission goals in an autonomous or semi-autonomous
way.
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Kristinn R Thórisson, Jordi Bieger, Xiang Li, and Pei Wang. Cumulative learning. In Ar-
tificial General Intelligence: 12th International Conference, AGI 2019, Shenzhen, China,
August 6–9, 2019, Proceedings 12, pages 198–208. Springer, 2019.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective
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