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Abstract

Neurosymbolic learning systems have been shown to quickly discover how to interact with
discrete representations of the world. Symbolic learners often allow for a higher level of
understandability than neural networks which learn feature vectors for actions being taken,
as seen in modern reinforcement learning systems. Symbolic learners excel at learning
higher-level concepts, but struggle with certain types of generalization. Symbolic learners
might benefit in such situations from a learned representation of the world. This paper
discusses a pipeline that uses state-of-the-art object and pose detection neural networks
as input to a symbolic learning system. We show how the knowledge from the symbolic
system can automatically correct object and pose data from the neural network and hence
provide corrected samples that can be used to incrementally train and improve the neural
network. We show how symbolic learning techniques can improve action detection when
given example ground truths by humans. We also demonstrate how novel actions that are
not recognized by humans might be recognized by a learning engine capable of recognizing
results and preconditions for an action to be valid.
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1. Introduction

Machine learning with neural networks has seen enormous success in the computer vision
community (Krizhevsky et al., 2012). Convolutional Neural Networks (ConvNets1) excel at
recognizing patterns in images and are used to identify object classes and segment image
pixels into separate objects. Yet for many applications, the accuracy of neural networks is
still inadequate. For example, video applications that require accurate per-frame information
often have unacceptably high frame-to-frame detection errors. In contrast, symbolic learning
has had success discovering and asserting concepts such as object permanence which infer
that objects observed at one moment persist consistently into the future.

1. https://en.wikipedia.org/wiki/MNIST_database#Classifiers — accessed Nov. 20th, 2022.
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Neurosymbolic Learning of Video Data

LeelaCore Leela Video Intelligence Framework aims to solve this problem by adding
common-sense reasoning on video data streams. Leela Framework does so by interpreting
convolutional neural network classification results from images, repairing common failure
modes, and improving the quality of the neural network. LeelaCore uses simple physics
models of motion and can be customized to recognize common object use cases for a given
task. Leveraging its learned patterns expected for object and person activity, Leela can
smooth over classification errors in object recognition and human pose predictions from
ConvNets. The frames that are repaired can be used to key retraining of the network so
that it improves recognition on similar frames of data in the future. Additionally, LeelaCore
incorporates a schema-inspired symbolic learning engine (Kommrusch, 2020) which can form
and test hypotheses about the world in a self-supervised way. Confirmed hypotheses can
be used to enhance neural network performance.

Our key contributions in this paper are:

1. Neural network models have known error categories when doing object classification
(such as false negatives where no object is predicted or misses where the wrong cat-
egory is predicted) as well as for human pose prediction (such as keypoint position
error or left/right swapping). We present LeelaCore which is capable of detecting and
correcting such errors.

2. Given LeelaCore error detection we show how automatic generation of samples can
be done to incrementally train a neural network model with self-supervised samples.

3. We summarize the Leela symbolic learning system and show how the symbolic learning
engine can create self-supervised samples based on reliable activity recognition.

2. Background

Neurosymbolic learning systems aim to combine historical symbolic AI techniques with
modern neural network approaches. The approach fits well with the ‘fast and slow’ systems
of thinking initially defined by (Kahneman, 2011). In his work Kahneman described system-
1 thinking as fast, automatic, and unconscious whereas system-2 thinking is slow, effortful,
and conscious. Current neural network architectures, including convolutional neural nets
(ConvNets) for image classification and transformers for natural language processing, enable
system-1 thinking. We propose that system-2 thinking can be advanced with more careful
consideration of how brains reason about facts in the world. By combining system-1 and
system-2 techniques, we can create artificial intelligence systems that can solve a wider
range of real-world challenges.

2.1. Convolutional neural networks

Convolutional neural networks, also referred to as CNNs or ConvNets, provide an efficient
way of learning to recognize features in digital images. However, significant amounts of
training data involving hundreds of thousands of samples are needed to reach acceptable
performance levels (Wu et al., 2019). For a given application, pretrained models may yield
poor performance and incrementally training such models for a specific need often requires
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thousands of human-labeled images. Nonetheless, using such models can provide us with
an artificial approximation of ‘system-1’ thinking.

5

• RoIAlign: Identifies object region of interest (bounding box) at pixel scale granularity

• class box: Identifies class of object in parallel with mask

• mask: Identifies all pixels from original image which are part of object

Image from: https://ai.facebook.com/research/publications/mask-r-cnn/

Figure 1: Mask R-CNN framework for instance segmentation (He et al., 2017).

The Mask R-CNN framework (He et al., 2017) shown in Figure 1 will identify classes
of objects as well as the pixel mask associated with each object so that the final output
includes a list of the objects in a scene as well as their location details in the scene. This is
accomplished using learnable weights for multiple layers of convolution filters. Early layers
tend to find low-level image components such as edges, curves, and color gradients. Later
layers may combine these prior layer results to identify curves and shapes such as hands and
feet. As thousands of images are fed into the network, images for which the network output
does not match the provided label are corrected by back-propagating the errors through
the layers and adjusting the weights. Ultimately the weights converge to produce usable
accuracy for object identification and pixel segmentation.

Training such a network can be rather time-consuming and require lots of labeled data.
There are, however, techniques for incrementally training the network to recognize new
object types. For example, if the initial network was trained on 100 different classes, a new
network could reuse only the initial convolution filters but could be applied to recognize a
new set of only 10 different object categories. In this way we can customize the recognition
to the needs of a given task. This paper focuses on creating incremental training samples
for improving the network automatically without requiring human labeling.

A network similar to the one shown in Figure 1 can also be used to generate pose
predictions for humans in a scene as shown in Figure 2. In this figure, we see 17 key
points identified to predict the position for each person (eyes, ears, nose, shoulders, elbows,
wrists, hips, knees, and ankles). In general, the pose detection network does not need to be
retrained for new tasks, but the accuracy of the network may be diminished with certain
backgrounds or when people are wearing certain clothing (including masks).
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6

Image classification machine learning model 

Figure 2: Keypoint locations identified for pose detection (Wu et al., 2019).

2.2. Symbolic understanding and learning

In order to add some system-2 thinking to our system, the first layers of symbolic under-
standing which we build upon are object permanence and simple physics. For example, we
know from experience that physical objects don’t disappear from a scene without a cause
and we are aware of the physical movement limits of the human body. Despite known
challenges in integrating laws of physics with machine learning (Karniadakis et al., 2021),
we can make use of this knowledge to correct common errors made by machine learning
models when analyzing images (Ronchi and Perona, 2017; Bolya et al., 2020). We cover our
approach to these physics issues in section 3.1.

Jean Piaget proposed a theory of childhood cognitive development in which a child
learns about objects in the world through sensorimotor experience related to moving its
hands and visually perceiving the world (Piaget, 1964). As the child grows it learns more
complex concepts such as object permanence. Piaget proposed the concept of schemas to
decide when an action (like picking up an object) is applicable and guess what the result
of the action will be on the world. He organized a child’s learning process into four main
stages that exemplify how knowledge gained in previous stages is used to build more complex
concepts in later stages.

Gary Drescher proposed a system to bring Piaget’s concepts into the field of computing
and artificial intelligence (Drescher, 1991). The basis for Drescher’s approach is a software
model for the schema concept introduced by Piaget, shown in Figure 3. Initially, the learning
system has no understanding of how actions affect its sensory input, but repeated actions
can produce data usable for the generation of hypotheses about the world. For example, a
schema might be learned that when the world context includes the hand on the left side of
the visual field, then the action of moving the hand to the right has the result that the hand
is seen in the middle of the visual field. As schemas are learned and used, their reliability is
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tracked and may increase if the schema represents a valid hypothesis about how the world
works.

16

Action discovery through observation

• While Leela can be used with human-written Heuristics (potentially automatically adjusted to align with GroundTruth), 

Leela includes schema learning routines based on constructivist concepts allowing it to learn and test its own 

hypothesis

• The schema learner can track common results from observed actions, and tune the schema so that its reliability is 

increased by expecting the result only when the world include some specific context

• When a learned schema has high reliability, it can be presented to the user as an interesting observation about 

the world which may then be tracked or adjusted to provide more data to the user

Figure from Genetic AI: Translating Piaget into Lisp by Gary L. Drescher, 1986

Figure 3: Schema implemented as a data structure including results occurring when a given
action is applied to a given world context. Reliability of the schema is also tracked
(Drescher, 1986).

3. Methodology

Our aim in this paper is to demonstrate ways in which symbolic understandings of video
data information can be used to improve neural network models which are generating the
symbols on which reasoning is being done. Figure 4 introduces LeelaCore as the symbolic
engine which receives and processes symbolic information from a convolutional neural net-
work. LeelaCore is the core software used by Leela AI, Inc. For our current pipeline, the
ConvNet is creating object and pose information for each image in a video stream indepen-
dently. LeelaCore then processes that information with knowledge of the image sequence as
well as the video frame rate which can be used to track velocity and acceleration of items
in the video.

3

Machine learning and Leela

ConvNet

• Region of Interest

• Object classification

• Human keypoint positions

LeelaCore

• Temporal analysis

• Physics models

• Action inference heuristics

Input video

Figure 4: LeelaCore adds symbolic reasoning to results of convolutional networks

We use pre-trained ConvNets for object recognition but add custom objects for specific
use cases. In this section we discuss how LeelaCore can analyze results from the ConvNet
to discover new training samples which can be used to further perform incremental training
on the ConvNet and help it perform at a higher accuracy for a given use case.
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3.1. Common pose detection errors and repair

Let us consider a neural network that recognizes keypoint position data for humans within
a scene. When a given image is processed by the neural network there are a variety of
errors that may occur as itemized in Figure 5 (Ronchi and Perona, 2017). LeelaCore can
recognize and recover from many of these error types.

8

Problem: ML models make classification errors

Image from: http://presentations.cocodataset.org/COCO17-Keypoints-Overview.pdf

Figure 5: Taxonomy of pose errors (Ronchi and Perona, 2017).

In Listing 1 we show the code skeleton for how all of these error types can be addressed.
For example, in order to handle jitter in the position predicted for hips and shoulders, we
time-average the hipToShoulder pixel distance computation over multiple frames. We do
this by averaging in the newly computed distance as 20% of the value, thereby limiting how
much a ‘jitter’ type error will affect this value. This hipToShoulder value becomes useful
for distance measurements since the average hip-to-shoulder distance for an adult is about
60cm (Gordon et al., 2012). In a similar way (not shown) we keep a running average of
the velocity and acceleration of each keypoint to help predict where the keypoint is likely
to be in the next frame. An athletic human can create a jerk (change in acceleration per
second) of about 10,000m/s3 (i.e. a 50m/s baseball pitch completed in 100ms), but in
typical environments a limit of about 2,000m/s3 is more appropriate (i.e. when using a
hammer). For a video at 30fps (frames per second), if the prior velocity and acceleration
of a keypoint are known, 2,000m/s3 can result in a variation of 7cm from the predicted
location; at 15fps, the variation can be about 59cm. We allow for some additional variation
to account for jitter. Using this error limit we can recover and repair inversion, swap, and
miss type errors.

Listing 1: Limit movement with jerk computation.
# Update p o s i t i o n each frame
# Time−average a standard d i s t ance measure f o r t h i s person
hipToShoulder =

hipToShoulder ∗ 0 .8 + 0 .2 ∗ calcHipToShoulder ( hips , shou lde r s )
maxDist = (maxJerk / fp s / fp s / fp s + 0 . 1 ) ∗ hipToShoulder ∗ 100/60
for keypoint :
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i f new keypoint p o s i t i o n f u r t h e r than maxDist from expected :
use expected po s i t i o n

update keypoint v e l o c i t y and a c c e l e r a t i o n e s t imate s

Figure 6 shows an example of mispredicted arm keypoints and the repaired position from
LeelaCore. Using the repaired position data, new training samples for the neural network
can be created. While the neural network is still only inferring pose data given a single
frame at a time, by LeelaCore creating new pose data we can improve the accuracy of the
prediction for similar images in the future. In cases where the keypoint detection before
and after the repair was consistent and high confidence, the new sample could be used
directly without human verification of the image, providing for self-supervised samples to
be generated by the system; but some images may warrant human review before inclusion.
Given a specific use case, updating the model to be more accurate in the given case is quite
valuable.

9

Pose Detection Self‐Supervised Training

• Human body maximum jerk at wrist or ankle is typically about 3,000 m/s3

- Given an established velocity and acceleration, at 30fps this allows for a change in acceleration of 

100m/s in one frame, a change in velocity of under 3m/s in one frame, and thus a position error

relative to previous trajectory of under 0.1m in one frame.

• Using hip-to-shoulder distance as about 0.7m or so, we can check for illegal frames and use motion prediction 

to automatically create new training samples for incremental learning by pose detector

Pose detection output

LeelaCore pose prediction

New ML training samples

Figure 6: Legal motion clamping to create new pose samples.

3.2. Common object detection errors and repair

Bolya, et al. define six types of errors for object detection, as shown in Figure 7: classifica-
tion error, location error, class+location, duplicate object, background (false positive), and
missed (false negative).

Figure 8 shows an example of recovering from a missed ‘Table’ detection. In this case,
object persistence code in LeelaCore recognizes that the object is still in the same location
(object velocity is zero). Because the object reappears in a later frame, we presume that the
object was indeed in the frame that had dropped it. Note that, if there is no clear symbolic
reasoning to ensure the object is visible in the image it is more robust to create a training
sample from the ‘Object detection output’ data just before and after the missing image.
For example, if an object of some kind obscured the view of the table, then it may not be
visible in the frame for recognition. However, by adding the frames which did recognize the
object just before and after it was not seen to the training, the neural network will adjust
to recognize similar conditions in the future and improve performance.

Figure 9 shows an example of recovering from a missed ‘Cup’ detection. In this case,
we rely on symbolic common sense rules in which LeelaCore infers that when the wrist is
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10

Object Detection Error Types

Image from: https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123480562.pdf

Figure 7: Bolya et al. (2020) define 6 error types: Classification error, location error,
class+location, duplicate object, background (false positive), and missed (false
negative).

11

Object Detection Self‐Supervised Training

• Objects of different types can have varying persistence assigned (i.e. tables tend to be stable, carts might move)

• LeelaCore automatically persists objects if the object classifier loses track of them

• If the object classifier loses and then regains observation of an item, we can automatically

create new training samples for incremental learning by object detector

Object detection output

LeelaCore object prediction

New ML training sample

Cart

Table Table Table

Cart

Cart

Table Table Table

Cart

Table

Figure 8: LeelaCore persists objects from frame to frame and can identify new training
samples for incremental improvement.

115



Kommrusch Bhave Banik Minsky

near an object then the object may be picked up and carried. Since in this case the object
‘disappears’ from the table, LeelaCore can assume the object is now in the hand of the
person. Again, if there symbolic reasoning to infer the cup should be visible in the image
(based on the orientation of the person and their hand, for example) then we may add
training examples using the images mispredicted by the ‘Object Detection output’. But if
we are unsure that the cup is visible in the frame, we could at least automatically add the
frame in which the cup is being touched by the person since that frame has been inferred
as correct by LeelaCore.

Table
Cup

Table
Cup

13

Object Detection Inference

• Sometimes a trained object detector may have trouble detecting objects in certain contexts

• For example, a cup on a table may be recognized but not when it's held by a person

• Heuristics for LeelaCore can include ‘make_object’ calls which create objects in the predicted world and the 

updated frames could automatically create new training samples for incremental learning by object detector

Object detection output

LeelaCore object prediction

New ML training samples

Table
Cup

Table
Cup

Table Table

Table
Cup

Table
Cup

Figure 9: LeelaCore can infer objects based on actions (such as ’object picked up persists
in the hand’).

Figure 10 shows an example of recovering from a ‘Cup’ being incorrectly identified as a
‘Can’. In this case, we make use of the ‘confidence’ score from the neural network to observe
that the can is not predicted with high confidence. Then we rely on a LeelaCore rule that
infers that objects reached at with a hand may be picked up and a hypothetical LeelaCore
rule which infers that objects taken to a water cooler and then brought near the mouth are
probably cups. Given this inference path and the low confidence of the ‘Can’ prediction,
LeelaCore can correct the frame predictions to include the ‘Cup’ and the corrected samples
can be provided to train the neural network so that it may improve performance on similar
cases in the future.

The ability of object detection samples for retraining a neural network model to be
self-supervised depends on the confidence of the LeelaCore system in identifying samples.
At first, one might alternate between an automatically trained model and a model with
incremental human improvements. For example, given a small set of labeled images, a model
is produced which then gets used to find a set of self-supervised samples which improve the
model, then a round of clean-up labeled samples by humans improves the dataset further.
In this way, less effort is required by humans to fully label all samples, but some oversight
is maintained. In cases where the LeelaCore inference is highly confident in its prediction, a
label could be added to the sample such that it is truly self-supervised and human oversight
is not needed.
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14

Object Misprediction and confidence repair

• A trained model may mispredict objects or have low confidence in a prediction

• In the example, a cup on a table is misidentified as a can (perhaps with low confidence from the object classifier) 

and then it is not identified after being picked up

- Given the actions of going to a water cooler and raising a wrist to the mouth, reasoning Heuristics

can infer the object was likely a cup and create new training examples

Object detection output

LeelaCore object prediction

New ML training samples

Table
Can?

Table
Can?

Table Table

Water 
Cooler

Water 
Cooler

Water 
Cooler

Water 
Cooler

Table Table Table Table

Water 
Cooler

Water 
Cooler

Water 
Cooler

Water 
Cooler

Cup Cup

Cup

Cup

Figure 10: LeelaCore can correct object classification based on observed usage.

4. Experiments In Progress

Table 1 shows frames detected by LeelaCore which can be used to improve model training.
The first category identifies human keypoints being detected as incorrect. These keypoints
may be missing, duplicates, or mispredicted. The human pose direction is estimated over
multiple frames and if the left and right predictions swap suddenly, LeelaCore can correct
this by swapping the predicted locations. If the joints accelerate in a way that violates the
limitations of human jerk levels this also results in corrected joint positions. In order to
improve the quality of the training data, the LeelaCore prediction limit is set to 2 frames
for sample generation. That is, the keypoints may be incorrectly predicted by the ConvNet
model and repaired by LeelaCore for 1 or 2 video frames but then return to being correctly
predicted by the model. This limit helps produce self-supervised samples of problematic
images but which are confirmed as correct.

The second category shown in Table 1 is object use confirming an object permanence
assumption. When an object is interacted with, such as a ladder being used by a human,
the object may have poor quality recognition by the classifier. LeelaCore can detect when a
ladder is in use on a given frame but disappears from the neural network prediction in the
next frame. In this case, we currently add the last frame that the neural network saw the
ladder into the training data. This last frame is confirmed correct but is also on the edge
of what the neural network can recognize. In contrast, the first frame in which the ladder
is not recognized but that LeelaCore asserts is real may be a case in which the ladder is
obscured and, hence, that frame would be a poor training example.

We are currently working to complete the retraining and validation process. We have
early results showing that with automatic object retraining our object recognition is better
for some categories but don’t have sufficient sample sets to quantify the benefit. For early
experiments on the pose detection, it appears that the baseline model we are using is difficult
to improve - our automatically generated examples of pose error did not appear to improve
the results. However, for both the object detector ConvNet and the pose detector ConvNet
the methodology for incremental training may need to be tuned.
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Table 1: Identified training sample frames given LeelaCore processing of video data.

Total Identified
Video Sample

LeelaCore Correction Frames Frames

Human keypoints corrected to match motion limits 7,135 87
Ladder object persisted during use by human 1,550 67

5. Future Work

In the future we aim to integrate the ConvNet object and pose datapaths with the Leela
schema learning mechanism introduced in Section 2.2 which provides a way to make and
test hypotheses about the world. The schema code has already been tested in block world
settings, as detailed in our previous work (Kommrusch, 2020). Since schema predictions
include reliability estimates, when we have confidence that the conditions for a reliable
schema are met then we can infer that the results of the schema occur. This can provide for
yet another way to create new neural network training samples from the symbolic domain
- in this case completing the neurosymbolic learning system by including learning agents in
both the neural and symbolic domains. Indeed, the symbolic learner is capable of inferring
and creating representations for new objects altogether, which extends the self-supervised
domain to not only generate new samples with currently recognized objects, but to add
newly learned categories to the neural network classifier.

A broader theme which could be explored based on our current work is the proper form
of the interface layer between ‘system-1’ neural networks and ‘system-2’ symbolic reasoning.
One could imagine finding that it is best for the neural network to identify components of
items instead of entire objects (such as wheels and doors instead of cars and trucks) and
the symbolic reasoner to receive this component data for reasoning on (in which case the
symbolic reasoner would learn to create the concept of a car based on wheels and doors
being recognized by the neural network). As the symbolic reasoner interacts with the neural
network in early self-supervised ways, it may be possible to use accuracy results to learn
how to best structure this interface.

6. Conclusion

In the next decade AI will need to begin learning with fewer labeled examples and reasoning
about the world. We’ve presented techniques developed at Leela AI, which use symbolic
reasoning on the output of neural network models to create training examples that can
improve the neural network model. In this way, the true spirit of neuro-symbolic reasoning
is realized. By combining neural networks to address ‘system-1’ automatic thinking with
symbolic reasoning to address ‘system-2’ effortful reasoning, we seek to improve AI quality
for video reasoning in general.
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