Proceedings of Machine Learning Research 1:108-119, 2022 International Workshop on Self-Supervised Learning

Neurosymbolic Learning
on Activity Summarization of Video Data

Steve Kommrusch SKQLEELA-AI.COM
Leela AI, Cambridge, Massachusetts, USA

Sanket Bhave SANKET.BHAVEQCOLOSTATE.EDU
Mridul Banik MRIDUL.BANIKQCOLOSTATE.EDU
Colorado State University

Henry Minsky HQM@QLEELA-AI.COM
Leela AI, Cambridge, Massachusetts, USA

Editor: Kristinn R. Thérisson

Abstract

Neurosymbolic learning systems have been shown to quickly discover how to interact with
discrete representations of the world. Symbolic learners often allow for a higher level of
understandability than neural networks which learn feature vectors for actions being taken,
as seen in modern reinforcement learning systems. Symbolic learners excel at learning
higher-level concepts, but struggle with certain types of generalization. Symbolic learners
might benefit in such situations from a learned representation of the world. This paper
discusses a pipeline that uses state-of-the-art object and pose detection neural networks
as input to a symbolic learning system. We show how the knowledge from the symbolic
system can automatically correct object and pose data from the neural network and hence
provide corrected samples that can be used to incrementally train and improve the neural
network. We show how symbolic learning techniques can improve action detection when
given example ground truths by humans. We also demonstrate how novel actions that are
not recognized by humans might be recognized by a learning engine capable of recognizing
results and preconditions for an action to be valid.
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1. Introduction

Machine learning with neural networks has seen enormous success in the computer vision
community (Krizhevsky et al., 2012). Convolutional Neural Networks (ConvNets!) excel at
recognizing patterns in images and are used to identify object classes and segment image
pixels into separate objects. Yet for many applications, the accuracy of neural networks is
still inadequate. For example, video applications that require accurate per-frame information
often have unacceptably high frame-to-frame detection errors. In contrast, symbolic learning
has had success discovering and asserting concepts such as object permanence which infer
that objects observed at one moment persist consistently into the future.

1. https://en.wikipedia.org/wiki/MNIST_database#Classifiers — accessed Nov. 20th, 2022.
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NEUROSYMBOLIC LEARNING OF VIDEO DATA

LeelaCore Leela Video Intelligence Framework aims to solve this problem by adding
common-sense reasoning on video data streams. Leela Framework does so by interpreting
convolutional neural network classification results from images, repairing common failure
modes, and improving the quality of the neural network. LeelaCore uses simple physics
models of motion and can be customized to recognize common object use cases for a given
task. Leveraging its learned patterns expected for object and person activity, Leela can
smooth over classification errors in object recognition and human pose predictions from
ConvNets. The frames that are repaired can be used to key retraining of the network so
that it improves recognition on similar frames of data in the future. Additionally, LeelaCore
incorporates a schema-inspired symbolic learning engine (Kommrusch, 2020) which can form
and test hypotheses about the world in a self-supervised way. Confirmed hypotheses can
be used to enhance neural network performance.

Our key contributions in this paper are:

1. Neural network models have known error categories when doing object classification
(such as false negatives where no object is predicted or misses where the wrong cat-
egory is predicted) as well as for human pose prediction (such as keypoint position
error or left /right swapping). We present LeelaCore which is capable of detecting and
correcting such errors.

2. Given LeelaCore error detection we show how automatic generation of samples can
be done to incrementally train a neural network model with self-supervised samples.

3. We summarize the Leela symbolic learning system and show how the symbolic learning
engine can create self-supervised samples based on reliable activity recognition.

2. Background

Neurosymbolic learning systems aim to combine historical symbolic Al techniques with
modern neural network approaches. The approach fits well with the ‘fast and slow’ systems
of thinking initially defined by (Kahneman, 2011). In his work Kahneman described system-
1 thinking as fast, automatic, and unconscious whereas system-2 thinking is slow, effortful,
and conscious. Current neural network architectures, including convolutional neural nets
(ConvNets) for image classification and transformers for natural language processing, enable
system-1 thinking. We propose that system-2 thinking can be advanced with more careful
consideration of how brains reason about facts in the world. By combining system-1 and
system-2 techniques, we can create artificial intelligence systems that can solve a wider
range of real-world challenges.

2.1. Convolutional neural networks

Convolutional neural networks, also referred to as CNNs or ConvNets, provide an efficient
way of learning to recognize features in digital images. However, significant amounts of
training data involving hundreds of thousands of samples are needed to reach acceptable
performance levels (Wu et al., 2019). For a given application, pretrained models may yield
poor performance and incrementally training such models for a specific need often requires
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thousands of human-labeled images. Nonetheless, using such models can provide us with
an artificial approximation of ‘system-1’ thinking.
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Figure 1: Mask R-CNN framework for instance segmentation (He et al., 2017).

The Mask R-CNN framework (He et al., 2017) shown in Figure 1 will identify classes
of objects as well as the pixel mask associated with each object so that the final output
includes a list of the objects in a scene as well as their location details in the scene. This is
accomplished using learnable weights for multiple layers of convolution filters. Early layers
tend to find low-level image components such as edges, curves, and color gradients. Later
layers may combine these prior layer results to identify curves and shapes such as hands and
feet. As thousands of images are fed into the network, images for which the network output
does not match the provided label are corrected by back-propagating the errors through
the layers and adjusting the weights. Ultimately the weights converge to produce usable
accuracy for object identification and pixel segmentation.

Training such a network can be rather time-consuming and require lots of labeled data.
There are, however, techniques for incrementally training the network to recognize new
object types. For example, if the initial network was trained on 100 different classes, a new
network could reuse only the initial convolution filters but could be applied to recognize a
new set of only 10 different object categories. In this way we can customize the recognition
to the needs of a given task. This paper focuses on creating incremental training samples
for improving the network automatically without requiring human labeling.

A network similar to the one shown in Figure 1 can also be used to generate pose
predictions for humans in a scene as shown in Figure 2. In this figure, we see 17 key
points identified to predict the position for each person (eyes, ears, nose, shoulders, elbows,
wrists, hips, knees, and ankles). In general, the pose detection network does not need to be
retrained for new tasks, but the accuracy of the network may be diminished with certain
backgrounds or when people are wearing certain clothing (including masks).
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Figure 2: Keypoint locations identified for pose detection (Wu et al., 2019).

2.2. Symbolic understanding and learning

In order to add some system-2 thinking to our system, the first layers of symbolic under-
standing which we build upon are object permanence and simple physics. For example, we
know from experience that physical objects don’t disappear from a scene without a cause
and we are aware of the physical movement limits of the human body. Despite known
challenges in integrating laws of physics with machine learning (Karniadakis et al., 2021),
we can make use of this knowledge to correct common errors made by machine learning
models when analyzing images (Ronchi and Perona, 2017; Bolya et al., 2020). We cover our
approach to these physics issues in section 3.1.

Jean Piaget proposed a theory of childhood cognitive development in which a child
learns about objects in the world through sensorimotor experience related to moving its
hands and visually perceiving the world (Piaget, 1964). As the child grows it learns more
complex concepts such as object permanence. Piaget proposed the concept of schemas to
decide when an action (like picking up an object) is applicable and guess what the result
of the action will be on the world. He organized a child’s learning process into four main
stages that exemplify how knowledge gained in previous stages is used to build more complex
concepts in later stages.

Gary Drescher proposed a system to bring Piaget’s concepts into the field of computing
and artificial intelligence (Drescher, 1991). The basis for Drescher’s approach is a software
model for the schema concept introduced by Piaget, shown in Figure 3. Initially, the learning
system has no understanding of how actions affect its sensory input, but repeated actions
can produce data usable for the generation of hypotheses about the world. For example, a
schema might be learned that when the world context includes the hand on the left side of
the visual field, then the action of moving the hand to the right has the result that the hand
is seen in the middle of the visual field. As schemas are learned and used, their reliability is
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tracked and may increase if the schema represents a valid hypothesis about how the world
works.

Figure 3: Schema implemented as a data structure including results occurring when a given
action is applied to a given world context. Reliability of the schema is also tracked
(Drescher, 1986).

3. Methodology

Our aim in this paper is to demonstrate ways in which symbolic understandings of video
data information can be used to improve neural network models which are generating the
symbols on which reasoning is being done. Figure 4 introduces LeelaCore as the symbolic
engine which receives and processes symbolic information from a convolutional neural net-
work. LeelaCore is the core software used by Leela Al, Inc. For our current pipeline, the
ConvNet is creating object and pose information for each image in a video stream indepen-
dently. LeelaCore then processes that information with knowledge of the image sequence as
well as the video frame rate which can be used to track velocity and acceleration of items
in the video.

Figure 4: LeelaCore adds symbolic reasoning to results of convolutional networks

We use pre-trained ConvNets for object recognition but add custom objects for speci ¢
use cases. In this section we discuss how LeelaCore can analyze results from the ConvNet
to discover new training samples which can be used to further perform incremental training
on the ConvNet and help it perform at a higher accuracy for a given use case.
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