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Abstract

Making analogies is a kind of reasoning where two or more things are compared, to high-
light or uncover attributes of interest. Besides being useful for comparing what is known,
analogy making can help a learning agent deal with tasks and environments not experi-
enced before, where similarities and differences to known phenomena and their cause-effects
relations can be a source for generating hypotheses about novel phenomena, which in turn
can serve as a basis for exploration and experimentation. Artificial intelligence (AI) sys-
tems that can make use of explicit analogies are relatively rare, and those making general
analogies are even rarer. This may be because most AI systems are targeted to well-known
tasks, relying heavily on human programmers for knowledge creation, an approach that –
besides being intractably slow, error-prone, and highly ineffective – precludes the use of
analogies for enabling autonomous knowledge transfer between tasks, domains, and envi-
ronments with common characteristics. The automation of explicit analogy making in the
service of such knowledge transfer has, in our view, at least three prerequisites: (a) Com-
positional knowledge representation, (b) reasoning machinery, and (c) the ability of the
agent to make experiments on its surroundings. For an agent’s intelligence to be general,
the methods chosen for these must be domain-independent and available on-demand at the
agent’s discretion. The agent would identify a target novelty, generate hypotheses about
what the novelty is ‘like’ through analogies, generate a set of hypotheses with potential
to disqualify these and select between competing hypotheses, and intervene on the envi-
ronment through direct action to test them. Here we describe the design of an analogy
mechanism that allows a learning agent with the above features to autonomously, using
previously-learned causal knowledge, make analogies between a source and target task, hy-
pothesize sets of new causal models for performing the new tasks, and to verify the validity
of these through a set of autonomously generated actions. We describe how this general
approach can be implemented in an existing cognitive system, the Autocatlytic Endogenous
Reflective Architecture (AERA).

Keywords: General Machine Intelligence, Cumulative Learning, Machine Learning, Knowl-
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1. Introduction

In the broadest sense of the concept, analogy making is a cognitive process where selected
pieces of information are mapped from a source phenomenon to a target phenomenon,
through an analysis of similarities and differences. Humans often use analogy in famil-
iar situations as a guide to take proper actions in order to achieve active goals. Analogy
enables a human learner to bring acquired and verified knowledge to bear on new tasks
and environments that have not been encountered before, in ways that help generalize
the knowledge to make it more useful in light of uncertainty, in present and future situa-
tions. Similarly, an artificial intelligence (AI) system targeting general intelligence calls for a
general analogy-making mechanism to steer its action-taking in novel situations and tasks,
potentially providing increased flexibility and faster learning in partially unknown environ-
ments (cf. Eberding et al., 2022). Such analogy making capability should be available for
any and all represented information, i.e. applicable transversally throughout the system’s
operation and knowledge.

We see analogies being of at least two kinds, (i) those relating to structure and form
(e.g. the composition and shape of two objects), and (ii) those relating to transformations
or actions (e.g. tasks that are similar in terms of the particular chain of actions required
to achieve goals). For the purpose of planning, understanding (Thórisson et al., 2016), and
generating explanations (Thórisson, 2021b), the latter kind requires causal knowledge and
reasoning, which is a necessary foundation for all reliable actionable knowledge. The physical
world – which we consider a prime target for future general machine intelligence – contains
a lot of self-similarity at multiple levels of detail (cf. Henriksen, 2015) that can be exploited
for goal achievement; for instance, hand-size objects can be grasped by pressing fingers
around them—larger objects can be grasped by pressing opposite arms around them.

For robots doing physical tasks, action-oriented analogies could allow them to efficiently
discover and learn causal relations, to transfer these to similar situations. However, how
to make a machine perform such action-oriented analogies automatically, using the learned
knowledge, is a challenge that seems far from being fully solved, as it requires a knowledge
representation that (a) allows automatic acquisition, (b) captures part-whole relationships,
(c) represents transformations, (d) allows for disruption-free updating in light of new ev-
idence, and of course (e) allows comparison of arbitrary information sets, in support of
explicit analogy making.1

Contemporary machine learning approaches, e.g. reinforcement learning and deep learn-
ing (cf. Dong et al., 2021), rely heavily on prior training, and require up-front knowledge
of all relevant variables. This training is mostly performed by human designers, because
the methods are not capable of self-supervised learning. Their behavior can also be some-
what unpredictable when facing novel tasks and situations. Reinforcement Learning (RL)
addresses environments in relation to goals, and is thus more relevant to action-oriented
learning. In RL, goals are usually weakly defined as fixed reward functions, however, which
limits their flexibility severely. RL correlates actions, states and rewards. The entanglement
of actions and goals commonly leads to negative knowledge transfer where prior knowledge

1. We define “explicit” here to mean that the learner has the ability to produce explicit arguments for and
against a particular plan, prediction, or action being performed. In other words, the ability to perform
explicit analogies implies an ability to produce explicit explanations that reference causal relations, based
on verified experience (cf. Thórisson, 2021b).
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hinders, rather than helps. By disentangling goal and action representation, knowledge is
more easily stored in a task-independent way, making it more general. This can be done
by explicitly representing causal relations of environments (Pearl, 2018), putting another
requirement on the knowledge representation used.

Thus, the aims of this paper are to (a) present a new learning mechanism that uses
action-oriented analogies to autonomously hypothesize reasonable causal relations for per-
forming a new task, which it subsequently verifies through direct action, after which it (b)
reviews the outcome and revises its knowledge accordingly, unifying the new knowledge with
what is already known, resulting in increased actionable knowledge. The analogy mechanism
is general in that it is not limited to a particular task or domain, it is transversal in that
it can involve any explicitly-represented knowledge an agent may posses, and it is explicit
in that it is not a side-effect of opaque processes but compositional and, like software, can
be inspected, dissected, manipulated, and directly compared in whole or in part to other
information.

2. Related Work

A primary focus of AI research for the past 20 years has been on Artificial Neural Networks
(ANNs) (cf. Mitchell, 2021). Analogy can be approximated in ANNs through manipulation
of high-dimensional information vectors. For instance, Mikolov et al. (2013) present an
ANN that learns regularities from written text, allowing it to make (surface-level) linguistic
analogy. A domain for studying visual analogies in AI systems is called Raven’s Progressive
Matrices (RPMs) (Hu et al., 2021; Mitchell, 2021). In an RPM problem, the system observes
a set of geometrical objects, their attributes, and the relation between the objects in a
sequence. It then tries to guess the attributes of the last object. Over the past few years,
various RPM datasets have been generated by which ANNs can be trained (Wang and Su,
2015; Zheng et al., 2019). Visual analogy via ANNs has also been applied to other domains,
such as detecting similarities between images (Lu et al., 2008). However, it has been shown
that the trained ANNs are incapable of making correct analogical inferences when facing
new RPMs and images that have not been in the training datasets (Hu et al., 2021). Besides
a lack of generalizability, one limitation of ANNs in this respect is that they require their
human designers to train them (via their own intuition), which implies that ANNs cannot
autonomously make analogies.

A handful of symbolic approaches regarding analogical reasoning have been proposed. One
example is structure mapping engine (SME) takes propositional descriptions and some task
constraints as inputs and then produces mappings between the descriptions (Falkenhainer
et al., 1989). However, structure mapping theory (Gentner, 1983), which is the theoretical
foundation of SME, does not take object properties into account for analogies. Moreover,
SME is not designed for an interactive agent that changes the state of environments through
direct interventions. Also, this approach is fully focused on performing comparisons in sym-
bolic spaces where no variables and related values are involved. Case-based reasoning (CBR)
is another symbolic approach to analogical reasoning, which has four steps: retrieval (finding
a case similar to current situation), reuse (computing the action), revision (guessing what
the outcome of the action will be and revising it), and retention (storing the result of the
experience) (Aamodt and Plaza, 1994). Although this approach is particularly designed for
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interactive agents, like SME it suffers from not taking into account values when calculating
similarity.

In the context of reinforcement learning (RL) several papers have been published on
automatic knowledge transfer methods that can find inter-task mappings based on homo-
morphism (Sorg and Singh, 2009), sparse coding (Ammar et al., 2012), reconstruction error
of Boltzmann machine (Ammar et al., 2014), and bisimulation (Wang et al., 2019). Never-
theless, such systems have significant limitations including that (1) RL agents learn reward-
entangled policies and models that are not generalizable to new tasks where the goals (and
thus the reward functions) are different, and (2) the automatic transfer methods have fixed
mapping structures, provided at design time by the RL agent’s designer, that cannot be
learned.

Causal knowledge representation and inference go beyond these limitations, proposing
a way to achieve task-independence, empirical testability, and potential of dealing with
missing data (Pearl, 2018). The philosophy of causality goes a long history going back, to
460 BC to Democritus, and was only formalized in the 20th century. A notable attempt at
formalizing causality is provided by Pearl (2009), whose causal diagrams reflects invariant,
physical attributes of environments that do not change across variations of tasks. However,
since the topic of causality has attracted the AI community’s attention only very recently,
causal discovery and generalization methods are still limited to offline learning algorithms,
which rely on large amounts of data that are already in hand and are not designed for
autonomous learning agents that have interaction with environments (Zeng et al., 2021;
Rojas-Carulla et al., 2018; Bengio et al., 2019). Another way of finding causal relations
(a.k.a. causal discovery/learning) is through interventions (systematic actions) done by an
agent that can intervene on dynamic environments (Sheikhlar et al., 2021). Such agents
can transfer relevant causal knowledge autonomously to novel situations via estimating
similarities between different situations (Sheikhlar et al., 2020).

3. Methodological Framework

Our analogy-based generalization scheme is proposed within the methodological framework
of constructivism (Thórisson, 2012), causal knowledge representation (Thórisson and Tal-
bot, 2018; Pearl, 2009), and cumulative learning (Thórisson et al., 2019). Originally inspired
by Piaget’s theory (1950) of how the human mind develops, constructivist principles and
methodology addresses how an artificial agent, e.g. a robot, can grow its knowledge through
direct experience (Steunebrink et al., 2016; Nivel et al., 2014; Drescher, 1989). Construc-
tivism assumes that a learner is endowed with sufficient autonomy to allow it to change
their own cognitive configuration whenever required, producing appropriate control struc-
tures on-demand at run-time. The constructivist principles we propose include methods for
how to achieve compositionality, knowledge transparency, temporal grounding, looped-back
self-control, autocatalytic runtime operation, autonomous pattern matching, semantic and
operational closure, and meta-control (Thórisson, 2012; see further explanation below).

Another pillar for our analogy-making mechanism is causal inference. Using Pearl’s
(2009) causal graphs directly as a basis for autonomous AI systems is not possible as the
necessary mechanisms responsible for Pearl’s causal graphs from scratch remains to be pro-
posed by the author. One approach to that challenge, however, is Nivel and Thórisson’s
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Causal-Relational Models (CRMs) (Thórisson, 2021a; Thórisson and Talbot, 2018; Nivel
et al., 2013b). CRMs are machine-created and -manipulated information structures that
describe bidirectional relationships between cause and effect variables, designed specifically
to support autonomous generation, manipulation, and reasoning over causal knowledge
needed for cumulative learning (Thórisson and Talbot, 2018; Eberding et al., 2021). CRMs
are typically used in sets, in accordance with the rules of their compositionality; each CRM
contains preconditions which specify under what circumstances it is relevant, target vari-
ables that its knowledge makes claims about, and the kind of changes to these variables
that it captures. Clusters of such CRMs makes an agent’s knowledge independent from its
goals and initial conditions (Sheikhlar et al., 2021) and provides thus a task-independent
reasoning capability for an AI system.

Via this approach, we can build systems that autonomously acquire knowledge and
use it in multiple different but similar situations/tasks, without the help of a designer or
teacher. Our method meets the following requirements:

• Compositional, transparent, explainable knowledge: The agent
autonomously divides its experience into discrete but connected causal relations
(a.k.a. CRMs) which allow it not only to deal with a variety of tasks more flexibly
but also to use task-invariant similarities between knowledge structures when facing
new tasks. To do so, the CRMs are formed as peewee-size models that can represent
both micro- and macro-relations in a task-environment (TE). A TE is an
environment where one or more tasks are assigned and conducted.2 The CRMs are
compositional in the sense that they can be used together with other fractional
models, which allows them to to be (re-)used for different tasks with different overall
causal structures, defined within the same or different environment where some
sub-structures are shared. This knowledge representation is explainable due to the
traceability of causal model chains at multiple levels of detail (beyond the acquired
knowledge, through generalizations generated from, and verified by, experience).

• Transversal temporal grounding: The knowledge representation and reasoning
of an autonomous learner must have a built-in transversal conceptualization of time
so that particular situations experienced can be temporally related to each
other. This allows the agent to predict, given that it takes one action at a time, how
the state of other variables changes in the future. This implies that if the agent has
learned relevant models it will become aware of the time horizon that is required for
performing a task.

• Feedback loops: Action-based learning occurs via feedback through interaction
with the environment; the agent can perform causal experiments (interventions with
the purpose of causal knowledge discovery) and observe how the experiments change
the state of the world, allowing the generation of CRMs patterned after the
observations. Another feedback loop allows for evaluating the effectiveness of

2. We use the term ‘task-environment,’ rather than simply ‘task’ or ‘environment,’ because the separation
between the two is usually not obvious (several relevant elements can typically be classified as being part
of either). This term is intended to capture the set of all relevant components an environment in which
various tasks can be assigned to an agent, and neutralize any confusion that otherwise might arise.
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predictions and plans based on existing CRMs. A third feedback loop allows for
generating such CRMs hypothesized through a meta-control loop equipped with a
concrete analogy-making mechanism.

• Meta-control: Meta-control in our approach has two key functions: (1) Estimating
similarities between current observations and previously learned knowledge, and (2)
detecting the relevance of variables to active goals. Both of these occur
on-the-fly. Similarity estimation is done through pattern matching (explained in the
following requirement), while relevance processes guide the learning process by
selecting variables and values for processing.

• Pattern matching: Pattern matching allows detecting the similarity between the
agent’s current observations and prior experience. When preconditions are met,
pattern matching occurs between the observed data and the previously learned
CRMs, and then 1) new CRMs and/or preconditions can be hypothesized, 2)
predictions can be made (deduction), and 3) backward reasoning from goals
(planning) can occur.

A detailed description of our proposed analogy-based meta-controller, based on the
following theory of autonomous cumulative transfer learning described below, is provided
in section 5.

3.1. Theory of Autonomous Cumulative Transfer Learning

From our theory of autonomous cumulative transfer learning (ACTL; Sheikhlar et al., 2020)
we can infer that if a task-environment (TE) Φ consists of elements {φ1, . . . φn} ∈ Φ of
various kinds, including entities EΦ, their attributes PΦ, and relations ℜΦ that couple
entities and attributes of Φ with each other, then

when a cognitive agent can reliably predict particular selected aspects
φi ∈ Φ, i ∈ 1, ..., n, using its prior knowledge, φi is familiar to the agent,
and non-novel.

More precisely, familiarity is the level of similarity between of the agent’s current observa-
tions and its prior knowledge with respect to φi. Sheikhlar et al. (2020) argued for different
dimensions of similarity with respect to variables, values, relations, and transitions, as build-
ing blocks of a TE. Here, we put variables into two different classes, entities and attributes,
where only attributes can have numeric or symbolic values. For instance, an object might
have a color value ‘green’ and a position value ‘10.’ Moreover, relations are assumed to be of
three types: causal, ontological and property. Property relations are symbolic relationships
between two or more different entities. For example, in hand holding a pen, holding is a
property relationship between the hand and the pen entities. Ontological relations include
non-temporal symbolic relationships, e.g. [h essence hand ] represents an ontological relation-
ship between the variable h and hand. Lastly, in transitions, which are temporal functions,
the values of attribute changes can be represented by equations relating (antecedent) causes
to (future) effects.
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4. Knowledge Representation & Reasoning in AERA

The Autocatalytic Endogenous Reflective Architecture (AERA) is a control system with
domain-independent self-supervised cumulative learning capabilities. The current imple-
mented version of AERA, called OpenAERA,3 has the following knowledge representation
components (Nivel et al., 2013a):

• Entities and ontologies specify to what some knowledge is applied. E.g. [h essence
hand] states that an entity h has the essence of hand. Both essence and hand are
ontologies, determining the attributes of h.

• Drives are goal states that an AERA-based agent desires to reach; e.g. [c position
15] as a drive states that c must be at position 15.

• Causal-relational models (CRMs) represent transformations that relate a prior state
and context to a future state and context. E.g. M :[cmd grab(h, t0) h holding
X(t1)] means that after applying a grab command at time t0, the hand h will be
holding X at time t1. The necessary context, e.g. that a graspable object would need
to correctly positioned relative to the hand, would be represented with requirement
models and composite states.

• Composite states (CSTs) specify under what circumstances a CRM
holds. E.g. CST1:[h position P , c position P ], meaning that the entities h and c are
the same position P .

• Requirement models (Mreqs) relate CSTs and CRMs by instantiating them.
E.g. Mreq:[icst CST1(c,h,p0) imdlM(c)], where icst and imdl stand for instantiated
composite state and instantiated model, respectively. Mreq means that if an instance
of a cube c and a hand h are observed to be at the same position p0 which is a
requirement for grabbing the cube, the hand h will be holding the cube c after
applying the ‘grab’ command.

OpenAERA builds its knowledge using CRMs, CSTs, and Mreqs to perform deduc-
tive (forward chaining), abductive (backward chaining) and inductive (learning) reason-
ing. Through deduction an AERA agent predicts the outcome of an action—predicting
states from causes. Abduction allows the agent to guess a set of potential causes that
might have led to a state. Those causes are the commands that can manipulate the at-
tributes of entities. At the end of an abductive reasoning process, the agent commits to
the most plausible set of commands that lead to reaching the goal state. Induction (learn-
ing) currently occurs through three different learning mechanisms, change-targeted pattern
extractor (CTPX), prediction-targeted pattern extractor (PTPX), and goal-targeted pattern
extractor (GTPX). CTPX captures the changes in the attributes of entities when a com-
mand is applied and generates a CRM, a CST, and an Mreq. PTPX comes into play when a
prediction by a CRM fails, which then generates a new CST and a new Mreq that is called

3. See http://www.openaera.org — accessed Oct. 9, 2022.
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anti-requirement model (anti-Mreq).
4 GTPX comes into play when a goal property is unex-

pectedly achieved, which then generates one or more new CRMs, CSTs and Mreqs.
5 Since

learning in AERA is defeasible, every learned model has a computed success rate (which,
when combined with firing rate can be used to produce a “confidence” in a meta-model),
which may change as the experience accumulates.

5. Explicit Analogy in AERA

In our approach, analogy guides learning and reasoning by providing a way to create de-
feasible hypotheses through informed guessing, in light of a new phenomenon and unex-
pected experiences. It is part of AERA’s methodological foundation (Thórisson, 2012; Nivel
et al., 2014) that the system shall continuously predict its immediate future and hypothe-
size new models when these predictions fail. Because the hypothesis pertain the unknown,
they can only be produced to the best of the system’s ability, as informed by its exist-
ing knowledge. This means that some of them, or even most of them, will be incorrect
(Thórisson, 2021a), as the system verifies them empirically through direct intervention on
the environment. Because AERA represents its experience of these activities explicitly in a
high-resolution (‘peewee-granularity’; (cf. Nivel and Thórisson, 2008) manner, the resulting
knowledge comprises dissectable information structures composed of fractional information
structures whose origins and properties can be analyzed – in whole and in part – through
logical argumentation.

In this approach, analogy can work via comparisons at two different levels in relation
to a goal. For this we have designed two analogy mechanisms that extend OpenAERA’s
existing inductive reasoning, providing it with the ability to autonomously perform explicit
analogies.

• The first mechanism works by identifying sameness between attributes of entities,
hypothesizing new CSTs and Mreqs, and then testing the hypothesized Mreqs.

• The second mechanism is based on identifying the sameness between the relations
of two tasks, hypothesizing new CSTs and Mreqs, and then testing the hypothesized
Mreqs.

5.1. Learning based on identical attributes

Knowledge transfer can occur between tasks having identical attributes. The attributes be-
long to entities, which are building components of a task-environment. Here, we use an
example to show how the first analogy mechanism (learning via identical attributes) allows

4. In Replicode logic (Nivel et al., 2012), the programming language for AERA’s knowledge representation,
‘anti-’ essentially means ‘absence of,’ and represents lack of knowledge.

5. The triad of CTPX, PTPX and GTPX fit the following three logical possibilities: An issued command
unexpectedly explains the change of a value (CTPX), a model unexpectedly predicts the wrong value
(PTPX), and a command unexpectedly results in a goal value being achieved (GTPX). These are detailed
elsewhere (Nivel and Thórisson (2013); Nivel et al. (2012)) and can be found in the OpenAERA code
(http://www.openaera.org).
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the creation of new Mreqs (and CSTs) and enables the AERA agent to detect relevant at-
tributes after which it removes the irrelevant ones from its knowledge base.

Figure 1: In the source task, AERA agent learns that by applying the grab command, hand h will
be holding cube c. The shared attribute (green color) between sphere s and cube c allows AERA
agent to hypothesize that the hand can also grab and then hold the sphere in the target task. In
other words, it generates Mreq2, which states that grab model Mgrab also holds for the sphere.

Example 1:We assume there exist entities c, s, and h in the environment, each of which
have attributes including essence, position and color. An illustration of this example is
shown in Figure (1).

Initial conditions of the source task: Let us say we have

CSTc:[c essence cube, c position P , c color green],

CSTs:[s essence sphere, s position P2, s color green],

CSTh:[h essence hand, h position P ],

[ h Holding [ ] ]

as the initial state of the environment. For example, [ h Holding [ ] ] indicates that the
hand is empty (the hand h is Holding nothing), and CSTc represents the current state of
the entity c which has the essence of cube, position P, and color green. Note that the value
of the color attribute is the same (green) for both the cube c and the sphere s.

Source Task: After applying a grab command (which might occur over learning through
motor babbling) by the hand, the AERA agent will observe that the hand is holding the
cube c, [h Holding c], in the next time frame. Since the agent sees a change in the state
of the hand from Holding nothing to Holding c, CTPX generates the following CST, CRM,
and Mreq

CST1:[ CSTc, CSTh, h Holding [ ] ],

Mgrab:[cmd grab(h, t0) h Holding X(t1)],

Mreq1:[icst CST1 imdl Mgrab],

which means that when the hand h and the cube c are at the same position P and the hand
h is empty, the hand h will be holding the cube c after grabbing.

Target Task: After learning the above knowledge, assume that the target task is as-
signed to the agent, where the goal is to achieve the [h Holding s], that is, the hand h will
have to be holding the sphere s. The initial conditions are that the hand’s position is P2
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(the sphere s is at P2 as well) and the hand h is empty, [h Holding [] ]. Here is where the
analogy-making mechanism comes into play. Since the cube c and the sphere s have an
identical attribute value (green color), the following CST and Mreq are hypothesized.

CST2:[ CSTs, CST ′
h, h Holding [ ] ],

Mreq2:[icst CST2 imdl Mgrab],

where

CST ′
h:[h essence hand, h position P2].

The hypothesized Mreq2 states that Mgrab also holds for the sphere s. In other words,
the AERA agent hypothesizes that the hand h can use Mgrab for both entities, the cube
c and the sphere s, since both have an identical color. Since Mreq2 has not been tested
in practice, it has a low confidence value (success rate) such that if it failed, it would be
removed from the knowledge base immediately.

This mechanism also allows detecting the relevance of attributes via experience as
follows:

• If Mreq2 succeeds in practice, the following Mreq and CST are created
Mreq3:[icst CST3 imdl Mgrab],
CST3:[s position P , s color green, h essence hand, h position P ],
where CST3 is the modified version of CST2, in which the essence attribute has been
removed, since the essence of the sphere s was proven to be irrelevant. Thus, the
essence of objects should not be among the preconditions of the grab CRM.

• If Mreq2 fails in practice, it will be removed from the knowledge base. Then, the PTPX
creates an anti-requirement model, anti−Mreq: [icst CST2 ¬ imdl Mgrab]. The anti-
Mreq states that the hand h cannot use Mgrab to grab the sphere s. Therefore, it finds
the color property irrelevant and hypothesizes CST4 and Mreq4: [icst CST4 imdl
Mgrab]. CST4 is the modified version of CST2, where the color property has been
removed.

5.2. Learning based on identical relations

Knowledge transfer can also occur between tasks having identical relations. Here, we use
another example to show how the second analogy mechanism (learning based on identical
relations) allows the creation of new Mreqs (and CSTs).

Example 2: Assume there exist three entities (c, s and h) in the environment, each
of which has attributes including essence, position and color. Unlike Example 1, here, the
entities c and s have different colors. An illustration of this example is shown in Figure (2).

Source Task: Assume that the source task was to achieve the goal [c position P2] by
grabbing and moving the cube c with the hand h, where the blue items shown in Figure (3)
were learned. So, we have

CST1:[CSTc, CSTh],

CST2:[CSTs, CSTh],

CST3:[CSTc, h Holding c],

Mmove:[cmd move(h,DeltaP, P0, t0) h position P1(t1)],

MhMovesX :[imdl Mmove c position Pc],
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Figure 2: In the source task, AERA agent learns that the hand can grab the cube and then move
it to another location when it is holding the cube. It also learns that it can grab a sphere. In the
target task, it hypothesizes that the hand can also move the sphere when it is holding it. In other
words, it generates MCST4

req , which states that move model MhMovesX also holds for the sphere.

Figure 3: The sameness of relations between the task of moving objects c and s to position P2. See
text for details.

MCST3
req :[icst CST3 imdl MhMovesX ],

where
CSTc = [c essence cube, c position P , c color green],
CSTs = [s essence sphere, s position P , s color red],
CSTh = [h essence hand, h position P ].

MhMovesX states that after applying a move command to the hand h, the position of the
object X that is held by the hand will be something different. Its preconditions, i.e. CST3
and MCST3

req state that MhMovesX only holds for the cube c.
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Target Task: After learning the above knowledge, assume that the target task is to
achieve the goal [s position P2], with [h Holding s] being the task’s initial condition. Since
all the causal and property relations are the same between the tasks of (grabbing and)
moving c and s, the following CST and Mreq are hypothesized once the goal property [s
position P2] is given to the AERA agent

CST4: [CSTh, h Holding s],

MCST4
req :[icst CST4 imdl MhMovesX ].

The hypothesizedMCST4
req states that the AERA agent can useMhMovesX to move the sphere

s with the hand h as well. Note that MCST4
req has a low confidence value (success rate) such

that if it failed, it would be removed immediately.

6. Conclusions

We have presented two proposals for concrete analogy-making that meet the requirements
of general self-supervised learning. The mechanisms, in short, rest on the premise that
entities having various attributes build task-environments and can have causal or property
relationships. If an AERA agent captures identical attributes and/or relationships between
two different task entities in a particular task-environment, it can transfer its knowledge
autonomously in relation to a given goal, even one that it has not done before.

The approach has been outlined in the OpenAERA framework; the two analogy algo-
rithms are currently being implemented within the current inductive reasoning and learning
mechanisms in OpenAERA.6 In future work we plan to further formalize the mechanisms
put forth here.
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