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Abstract

This paper provides a non-technical description of the ideas behind a model of intelligence
that has been formalized and computerized. These ideas are organized into a train of
thought consisting of the major design decisions of the model and contrasted with the
major approaches in the field of artificial intelligence. The implications of these decisions
are also discussed.
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1. Introduction

NARS (Non-Axiomatic Reasoning System) is an attempt of modeling intelligence at a level
of abstraction that is suitable for both a descriptive theory of human intelligence and a nor-
mative theory of artificial intelligence. Over the decades, there have been many publications
on various aspects of the model (Wang, 1986, 1995, 2006, 2013). What distinguishes this
paper from the previous publications is that in the following all major ideas behind NARS
are systematically summarized, without touching the formal or computational details.

The paper aims at the purposes of

• introducing NARS in an easily understandable manner,
• comparing these ideas with the common approaches,
• connecting the ideas into a coherent theory of intelligence,
• exploring the possibility of realizing these ideas in various ways.

After introducing each major idea in NARS, the related previous publications are cited
where the details are described and discussed, with concrete examples and results. Given
the nature of this paper, those materials are not included here, as they inevitably require
more precise descriptions of NARS.

2. Objective and strategy

NARS is fully based on my working definition of intelligence as the ability of an information-
processing system to adapt to its environment while working with insufficient knowledge and
resources (Wang, 1994, 2008, 2019b).

Here the “Assumption of Insufficient Knowledge and Resources” (AIKR) is further spec-
ified as the following:
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• The system must manage its finite processing power and storage spaces.
• The system must work in real time, as tasks can show up at any moment and with
various time restriction (such as a deadline or decreasing utility over time).

• The system must be open to tasks with any content (including inconsistent information
and unanticipated problems), as far as their formats are recognizable by the system.

In this definition, “to adapt” means in a life-cycle of the system, it must:

• use its past experience to guide its handling of the current situation and predicting
of the future situations, even though the current and the future are usually different
from the past,

• use its bounded resource supplies to meet the unbounded demands, even though the
resources, especially processing time, is almost never enough.

Due to AIKR, NARS normally cannot promise absolutely correct and optimal solutions
to the problems it encounters. Instead, it can be much more general, flexible, original, and
adaptive than the conventional AI systems. This definition leads NARS to an objective
that is different from the other more popular working definitions of intelligence (Legg and
Hutter, 2007; Russell and Norvig, 2020):

• NARS attempts to abstract intelligence from human intelligence as an ability that
is independent of the biological nature of the brain, as well as the brain structure
formed through evolution. Even though the design of NARS is brain-inspired here or
there, it does not use brain structure or neural network as an aim of approximation
(Hawkins and Blakeslee, 2004).

• As an adaptive system, NARS behaves according to its own experience, which does not
necessarily resemble human experience. Therefore, NARS is not aimed at becoming
indistinguishable from humans in behaviors, such as passing the Turing Test (Turing,
1950). This is not because its intelligence is not comparable to that of a human, but its
experience won’t be sufficiently similar to a human to produce human-like behaviors.

• NARS is not designed to solve any specific application problems. It is “general pur-
pose” in the sense that it is open to problems anticipated by neither the system itself
nor its designer. It will try its best to solve such a problem, though its performance
will depend on the available knowledge and resources at the moment, rather than on
the system’s design alone. NARS does not necessarily have human knowledge (Lenat
and Feigenbaum, 1991) or skills (Nilsson, 2005), especially when implemented with a
body that is very different from human.

• NARS carries out a large number of cognitive functions, such as reasoning, learning,
planning, perceiving, acting, etc. However, they are basically different perspectives
shown, or phenomena produced, by the same underlying process, rather than accom-
plished by separate modules or algorithms. Consequently, the exact form of each
function is usually different from how it is specified in the current AI literature (Poole
and Mackworth, 2017; Russell and Norvig, 2020).
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• By my working definition, intelligence is taken to be a form of rationality, that is,
it indicates what the system should do at various situations. However, under AIKR,
what is considered to be “rational” is fundamentally different from the traditional
models of rationality, such as classical logic or probability theory (Russell, 1997; Hut-
ter, 2005). Instead, the system realizes a rationality that is relative to the available
knowledge and resources (Wang, 2011).

Accurately speaking, NARS is proposed not as a better solution for a problem that
has been studied in the AI field, but as a solution for a problem that has not been clearly
recognized by the mainstream AI. This is especially the case with respect to AIKR, which,
though looks natural or even trivial, has not been acknowledged by the traditional models of
intelligence, nor by the techniques developed on the basis of these models. This restriction
on the system’s working environment shares intuition with the “bounded rationality” of
Simon (1957), though is more concrete and restrictive.

Since intelligence is considered as a single principle, rather than a group of functions
or capabilities that can be accomplished independently, NARS is designed to be a unified
model, rather than a hybrid or integrated model using multiple techniques (Newell, 1990).
This model starts from a minimum core that realizes the above definition of intelligence,
then is gradually and incrementally extended to realize more functionalities on this foun-
dation. Other software and hardware can be used by NARS as optional tools, rather than
as necessary parts of the system (Wang, 2004c).

3. Concept-centered representation

To be adaptive under AIKR, NARS segments and abstracts its experience into recurring
units, concepts.

In NARS, a “concept” is a data structure with a unique ID called a “term”. At the
interface between the system and its environment, a concept may directly correspond to
a sensation obtained from a sensorimotor channel, a character received from a language
channel, and so on. From them, compound terms are constructed to represent the patterns
found in experience. Though it is fine to consider each term as a symbol representing a
concept, a concept itself is not a symbol representing an external object or event. This
is a fundamental difference between NARS and the traditional “symbolic AI” (Newell and
Simon, 1976; McCarthy, 1989).

The experienced relations between a concept and other concepts form its meaning to
the system. In the sensorimotor channels, the directly recognized relations are those about
time (starting from the relative order of subsequent sensations) and space (starting from
the relative location of concurrent sensations). Based on them, the perception-cognition
process builds implication and equivalence relations among events and statements, indicat-
ing that from the occurrence of an event (or the confirmation of a statement), the same
can be derived for the other. Furthermore, the same process also builds inheritance and
similarity relations among concepts to organize them into a generalization hierarchy, so as
to summarize experience at multiple levels of granularity and scope.

For example, given proper experience, we can expect the system to form strong and
stable inheritance relations from “dog” to “mammal”, and from “mammal” to “animal”.
There will also be similarity relations between “dog” and “cat”, and between “vinegar” and

37



Wang

“wine”. A major difference between NARS and other types of ontology or knowledge graph
is that all these relations have truth-values associated, so are not absolutely true. Actually,
the system may also contains an inheritance relation from “animal” to “dog”, as well as a
similarity relation between “life” and “journey”, which are not usually considered as “true”
at all, though may still capture partial experience of the system in certain ways, so can be
used as examples or metaphors, for instance.

The implication and equivalence relations on statements directly correspond to the in-
ference NARS can make. From its observation, experiment, and inference, the system can
summarize certain reliable succession relations among events, which can be considered as
“causal relations” that allow the system to make predictions and explanations, even though
the conclusions can be challenged by future experience or further consideration, under
AIKR.

Beside the declarative knowledge provided by the above basic conceptual relations,
NARS can also represent procedural knowledge by interpreting certain terms as executable
operators as per logic programming (Kowalski, 1979). These operators take other terms as
arguments to form operations that can be executed to change the (external or internal)
environment in various ways. Sensation is treated as a special type of operation that ac-
quires information from the environment according to the system’s commands. Operations,
including sensations, are events whose truth-values are evaluated in specific moments, and
the basic temporal relations among events can be represented and processed, together with
their implicational relations.

Under AIKR, each time a concept is used to process a task, only some of its existing
relations are involved, which forms its current meaning. This meaning is context-sensitive,
but not arbitrary or random, as it is selected from the concept’s experienced relations, which
forms the general meaning of this concept.

While the system constantly receives new terms from the environment and constructs
compound terms to summarize its experience, AIKR forces it to forget most of them by ei-
ther temporarily ignoring them or permanently removing them. The extent of remembering
of a term (and the concept it identifies) is indicated by a priority value that summarizes the
relevant factors, such as its efficiency in summarizing experience and usefulness in processing
tasks. This evaluation is adjusted from time to time as the situation changes.

This model of concept (Wang and Hofstadter, 2006) is very different from the other
AI systems, in which a concept either has a constant meaning (in the symbolic school)
(Harnad, 1990) or is only implicitly represented by a pattern of activation or association
(in the connectionist school) (Hinton et al., 1986).

Since a conceptual relation is usually an abstraction of experience, it may agree with
different segments of the system’s experience to different extents, that is, a statement may
have both positive and negative evidence. Consequently, whether the statement is “true”
becomes a matter of degree. Though multi-valued logic is not novel, what makes NARS dif-
ferent from various probabilistic logics (Nilsson, 1986) and fuzzy logics (Zadeh, 1983) is that
its truth-value is obtained by checking the statement against the system’s ever-expending
experience, rather than a static description of the domain, as in model-theoretic semantics
(Barwise and Etchemendy, 1989). Consequently, in NARS a second measurement is used to
indicate the confidence of the system about current (positive vs. negative) evidential ratio,
by considering the effect of future evidence (Wang, 2009b).
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This numerical truth-value not only let the system indicate uncertainty in its beliefs,
but also express continues measurements, such as to map a sensation of brightness into
the truth-value of a statement that classifies the signal as “bright”. For more accurate
representation and processing, NARS can have concepts corresponding to numbers, and
process them according to acquired mathematical models.

In summary, NARS segments and abstracts its experience into concepts related by a
few forms of substitutability. As the meaning of concepts and the truth-value of conceptual
relations are defined according to the system’s own experience, NARS is fundamentally
different from both the symbolic approaches and the connectionist ones in knowledge rep-
resentation, and does not suffer from the “symbol grounding problem” in its original sense
(Harnad, 1990), as its concepts do not become meaningful by being “grounded” in outside
objects or their sensations, even though the meaning of abstract concepts can get richer
with relations to sensorimotor activities that directly interacting with the environment.

4. Reasoning as concept substituting and constructing

Since adaptation under AIKR suggests a concept-centered representation of experience,
while concepts and conceptual relations are symbolized by terms and statements, respec-
tively, it is natural for NARS to be built in the framework of a reasoning system, which
derives new concepts and conceptual relations from the existing ones according to a logic.

Logic-based AI is not a new idea at all (McCarthy, 1989; Nilsson, 1991), though it
has been widely criticized as too rigid (Hofstadter, 1985; McDermott, 1987; Birnbaum,
1991). This approach has been out of favor among AI researchers, especially since the
recent successes of neural networks. However, I have been arguing that the failure of the
traditional “logicist AI” school is not caused by the use of logic, but by the type of logic
used, which is still in the tradition of mathematical logic that was developed mainly for
theorem proving in axiomatic systems (Wang, 2004a, 2019a).

This is why NARS is called “non-axiomatic”, as none of the system’s empirical knowl-
edge has the status of an axiom, that is, with a truth-value that will not be challenged by
future experience. NARS can acquire and use axiomatic subsystems (corresponding to var-
ious mathematical theories) with their own reasoning mechanisms, but they are separated
from the empirical knowledge of the system (Wang, 2022a).

Under AIKR, there cannot be absolute truth, but it does not mean that every statement
is equally justifiable or reasonable. According to experience-grounded semantics, in NARS
the truth-value of a statement indicates how much it agrees with the available evidence,
therefore, in NARS a valid inference rule is one that decides the truth-value of its conclusion
according to the evidence provided by the premises. While the traditional notion of validity
requires the inference conclusions to agree with the future experience, in an adaptive system
the validity of inference can only be based on the past experience of the system, simply
because that is the only thing such a system can and should depend on under AIKR.

This “validity under AIKR” provides a solution to the long-standing “Problem of In-
duction” that was raised by Hume (1748), who pointed out that induction (and other non-
deductive inference) cannot be justified as truth-preserving because its conclusions state
more than its premises. For example, even if all known ravens are black, “Ravens are black”
may disagree with future observations. This is not an issue in NARS, where the truth-value
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of a statement only indicates its extent of agreement with the past experience. Consequently,
induction is truth-preserving in the same sense as deduction in NARS, where all types of
inference may generate unsuccessful predictions when the environment changes.

In this way, experience-grounded semantics provides a consistent justification for all
the inference rules of NARS, including deduction, induction, abduction, exemplification, re-
vision, choice, comparison, analogy, and more (Wang, 2013). Since the basic conceptual
relations in NARS (inheritance, similarity, implication, and equivalence) indicate the sub-
stitutability of terms (in meaning) and statements (in truth-value), the inference types
correspond to ways for these substitutability to transfer from the conceptual relations in
the promises to that in the conclusion.

Experience-grounded semantics and the corresponding version of validity are realized
more naturally in syllogistic rules in the tradition of term logic (Aristotle, 1989) than in
the tradition of predicate logic (Frege, 1999). In a term logic, “copulas” play the same role
as the basic conceptual relations in NARS, in that they are logical constants recognized
in the inference rules, and their combination in the premises decides the content of the
conclusion. On the contrary, though these relations can be expressed in predicate logic,
they are treated there in the same way as the ordinary conceptual relations, and play no
special role in the inference rules. In predicate logic and propositional logic, the inference
rules only consider the truth-values of the premises and conclusion, not the conceptual
relations in them.

In addition to building new relations among the existing terms (concepts), NARS also
has inference rules that construct compound terms from the existing terms, using a few built-
in connectors. As soon as such a compound term is constructed, a new concept identified by
the term is also constructed by the system. Instead of blindly or exhaustively trying various
combinations, the new compound terms are introduced to capture the perceived patterns in
the system’s experience, as attempts to summarize the system’s experience more efficiently.
These constructed terms do not need to correspond to any objectively existing objects or
events, but only need to represent frequent and useful patterns in the system’s experience.

5. Problem-solving by reasoning

As many other reasoning systems, NARS accepts new knowledge and answers questions
according to available knowledge. Furthermore, some statements are interpreted as goals
to be achieved via the execution of operations, as in logic programming (Kowalski, 1979).
Overall, NARS accepts three types of tasks (or problems) from the environment:

1. new knowledge to be remembered,
2. new goals to be achieved,
3. new questions to be answered.

The first type of task is processed through forward reasoning, in which the new knowl-
edge is added into the memory and interacted with the existing beliefs. The other two types
of task may be directly achieved by a matching belief or operation, and are also processed
through backward reasoning with related beliefs to produce derived tasks. In summary, a
task is processed by the relevant beliefs, and this process produces derived tasks that are
similarly processed recursively.
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NARS needs both forward and backward reasoning. Even though in principle all of its
possible conclusions can be derived using forward reasoning alone, the resource expenses are
not affordable, which is why few reasoning system only depends on forward reasoning with-
out the guidance of goals or questions. On the other hand, though some techniques (such as
resolution-refutation and Prolog programs) fully depend backward reasoning, NARS needs
forward inference for truth-value calculations. Therefore, a major function of backward
reasoning is to activate the relevant beliefs for goals or questions.

Though the above description sounds like how ordinary reasoning systems work, AIKR
changes the situation fundamentally. In ordinary systems, the processing of a task, or the
solving of a problem, follows an algorithm for this type of task or problem, which is either
designed by a human developer or learned by a learning algorithm from training data.
In either way, the problem-specific algorithm guarantees the repeatability of the solving
process and the solution, as well as the resources expense of the process (often specified as
its computational complexity).

This form of “algorithmic problem-solving” is no longer feasible under AIKR. The open
requirement means the system often needs to deal with a novel problem for which there is
no known algorithm in the system; the finite and real-time requirements mean the system
usually cannot exhaustively evaluate all possible solutions to find the optimal one, and even
an existing algorithm may not be feasible if it takes longer time to finish than required. It
is not uncommon that a problem is completely beyond the system’s current ability.

Though the above situation looks harsh, it is not that different from the situations we
humans have to face, and arguably where intelligence is needed. Indeed, if for a problem
the system has sufficient knowledge, it means there is a known algorithm for it; if the
system also has sufficient resources to meet the requirements of the algorithm, the problem
is consider solved in the context of computer science, and what is left for the computer is
to actually execute the solution, which hardly needs any intelligence.

To say that “intelligence is needed only when the system does not know how to solve a
problem” may sound contradictory, especially when the problem is eventually solved. This
is not an issue because the solution is obtained by a tentative process without the guidance
of a predetermined algorithm, also the solution cannot be absolutely correct or optimal,
even when it satisfies the system’s need at the moment.

NARS certainly has no magic power to solve unsolvable problems. Instead, in the system
the notions of “problem” and “solution” are used differently from their conventional usage
in theoretical computer science. In NARS each problem instance is processed according to
what the system knows about it, rather than by an algorithm designed for the problem class
it belongs to. According to the currently available knowledge and resources, the system may
get zero, one, or more solutions, though none of them is considered as the final solution
— NARS simply reports the best it has found so far, and continue to look for better ones,
like an anytime algorithm (Zilberstein, 1995). When a problem is no longer processed, it is
usually not because it has been fully solved or proved unsolvable, but because it no longer
gets the attention of the system. This working mode is called “case-by-case problem-solving”
(Wang, 2009a).

To be adaptive under AIKR, NARS distributes its time–space resources among the
existing tasks according to their relative priority values, which summarize many relevant
factors and are adjusted from time to time. The objective of the allocation is not to solve
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any specific problem according to a fixed standard, but to achieve all existing tasks as
much as possible, informally speaking. The resource allocation is strongly influenced by the
system’s experience, and cannot guarantee to be optimal in all future situations.

Since both the external and internal environments of the system change unpredictably,
the solving process of a problem and the solution are not accurately repeatable. Conse-
quently, notions like “algorithm”, “function”, and “(Turing) computation” are no longer
applicable to NARS at the problem-solving (also known as task-processing) level, since
there is no fixed “problem-instance to solution” mapping anymore. Similarly, at this level
there is no fixed computational complexity to talk about. On the other hand, the system
shows flexibility and originality, since its solution to a problem depends on the history and
context of the system (Wang, 2004b).

6. Learning as self-organizing

The use of empirical concepts as the center of knowledge representation also suggests a
natural and efficient memory structure for NARS, which can be approximately depicted as
a network with concepts (identified by terms) as nodes and conceptual relations of prede-
termined types (inheritance, similarity, implication, and equivalence) as links. To be more
specific, a conceptual relation can be a task to be processed or knowledge to be remembered,
while knowledge can be further divided into beliefs and desires (Wang, 1995, 2006).

As an adaptive system, NARS spontaneously constructs and adjusts its memory to deal
with the challenges from AIKR, and the process can be generally considered as “learning
from its experience” and happens at different places in various forms:

Task. Every reasoning process in the system is driven by a task (new knowledge, goal, or
question). All initial tasks come from the outside of the system, either as implants
specified by the designer, or requests issued by the user. From the initial tasks and
the available beliefs, the system recursively generates derived tasks, and these tasks
work together as a “motivational complex” that decides the system’s actions. This
motivational complex is changed constantly be the new experience and the system’s
reasoning processes, though some components may gradually become stable and decide
the system’s long-term pursuits.

Desire. Under AIKR, the system’s goals often contain conflicts in what events are desired
to happen. A desire-value is maintained for each event to summarize positive and neg-
ative motives for its realizing, according to the system’s goals. This value is gradually
adjusted according to the changes outside and inside the system. Only sufficiently
high desire-values trigger the execution of corresponding operations.

Belief. The system’s beliefs summarize its experience by integrating information from dif-
ferent sources, resolving conflicting evidence, revealing hidden implications, and so
on. As a result, each belief captures an aspect of the system’s experience, and uses it
to achieve the related tasks.

Skill. As a special case of beliefs, skills include the system’s procedural knowledge, such as
the preconditions and consequences of an operation. The compound operations let the
system use a “program” as a single operation, even though it is formed recursively
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from many operations. The acquisition of skills is crucial for effective solving of
complicated problems, and this also includes the skill to control certain aspects of the
system’s own reasoning process.

Concept. Since tasks and knowledge (beliefs and desires) all take the form of conceptual
relations, they can be naturally organized around the concepts appearing in them.
Since a task only directly interacts with the knowledge that shares a concept with it,
all inference activities are “local” in the sense that they each happens within a concept,
with the exception that at the sensorimotor front end some types of inference happen
according to the temporal–spatial relations among events. This feature simplifies the
implementation and enables distributed processing and hardware acceleration.

Priority. Beside adding, modifying, and removing data items (tasks, knowledge, or con-
cepts), an important form of learning happens when the priority distribution among
data items are gradually established and adjusted, also according to the system’s ex-
perience. This type of “structural knowledge” is neither declarative nor procedural,
but shows in the processing speed, depth, or frequency of the items.

In summary, almost all contents in the memory of NARS can be learned from the
system’s experience. Even though for efficiency purpose some contents can be preloaded at
the beginning of a life-cycle, they are usually formed by another system (or another life-cycle
of the same system) from its experience, and can still be modified when new experience
comes to the current system. Consequently, whether task or knowledge is preloaded or
acquired makes no fundamental difference, as the two cases can equivalently replace each
other.

Though NARS can be referred to as a “learning system”, it is very different from the sys-
tems developed in the current machine learning research (Flach, 2012). In NARS, “learning”
is an open-ended self-organizing process that does not follow a predetermined algorithm,
nor does it converge to a stable input–output mapping. Furthermore, NARS does not only
learns in a bottom-up manner from concrete training samples, but can accept input at
various level of abstraction, from observed sensorimotor data to communicated linguistic
materials. Finally, in NARS learning is not a separate process integrated with reasoning
and other cognitive functions, but the long-term effects of reasoning (Wang and Li, 2016;
Wang, 2022b). The last conclusion applies to many other cognitive functions, too, includ-
ing planning, predicting, explaining, perceiving, etc. — they are different aspects displayed
by the same reasoning process. In this way, NARS provides a unified model of cognition
(Newell, 1990; Wang, 2004c).

NARS does not learn all knowledge it has. In the system, a relatively sharp distinction
is made between object-level and meta-level knowledge. The former, including the contents
of memory, is learned and special-purpose (experience-bounded); the latter, including the
inference rules and resource-allocation mechanisms, is built-in and general-purpose (domain-
independent). Though some experience-driven parameter tuning is possible, in general the
meta-level knowledge should remain constant to keep the coherence of the system within
a life-cycle. It is possible to evolve the meta-level knowledge in a species of NARS, but
that will be a separate process that is largely independent of the learning processes in the
life-cycle of an individual system (Wang, 2007).
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7. Summary

This paper provides a theory of intelligence in a condensed and informal form.

The basic ideas presented above are inspired by results of cognitive science that sum-
marize the current knowledge about human intelligence. These results are abstracted away
from their biological details and evolutionary origin, and are organized into a series of key
ideas, each of which is based in the previous ones, starting from a simple working definition
of intelligence.

For artificial (general) intelligence, this theory provides a unique identity that clearly
distinguishes this field from other fields, such as computation theory, applied statistics,
cognitive psychology, neural science, etc. This theory inherits ideas from many previous AI
works, both symbolic and connectionist, but is not an extension of any of them. It provides
a concrete road-map for system design that has been mostly realized in the NARS project,
though many of the ideas may be implemented in other ways.

Overall, this theory aims at covering various forms of intelligence, including those of
humans, animals, computers, and so on, by focusing on the principles and functions of
the systems, rather than their substance, structure, or origin. The theory is not merely
descriptive, but constructive and explanatory by taking intelligence as a mechanism that
achieves the objective of adaptation in realistic situations.
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