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Abstract

Immune checkpoint blockade (ICB)
therapy has improved treatment op-
tions in various cancer malignancies and
holds promise for increasing the overall
survival of treated patients. However,
only a small proportion of patients ben-
efit from ICB treatment. Furthermore,
ICB therapy has been known to induce
adverse autoimmunity reactions in cer-
tain patients. These two reasons mo-
tivate the clinical need to identify fac-
tors that predict a patient’s response to
ICB treatment. In our study, we devel-
oped several machine and deep learning-
based models to predict response to ICB
treatment, using a real-world tabular
dataset across sixteen cancer types. We
showed that our best model CB16, which
is based on gradient boosting, outper-
forms all-known published results for
this task, with sensitivity and specificity
scores of 80.6% and 78.8% respectively.
Our model also offers insights to clinical
interpretability through the use of the
SHAP explanation framework, which
are consistent with known important
predictors. Next, in order to see if deep
learning can improve performance, we
propose a methodology for the design of
deep neural networks that addresses the
lack of spatial and temporal structure in
tabular data. Our approach is based on
a combination of learning ordered rep-

resentations and ensembling techniques.
We show that, for the ICB prediction
problem, current SOTA deep-learning
architectures such as TabNet and Tab-
Transformer do not perform well while
our method achieves good performance.
Our method achieves an F1 score 12.4
percentage points beyond that of Tab-
Transformer, and sensitivity and speci-
ficity scores of 77.3% and 62.2% respec-
tively. Through our work, we hope
to improve the task of predicting ICB
response, and contribute towards the
creation of high-performance and inter-
pretable AI models for real-world tabu-
lar data.

Keywords: immunotherapy, deep
learning, tabular data

1. Introduction

Immunotherapy is a promising treatment op-
tion for cancer due to its ability to selec-
tively target tumour cells by activating com-
ponents within the patient’s own immune
system. Within the list of immunotherapy
agents, immune checkpoint blockade (ICB)
drugs remove constraints on the reactivity
of the immune system to allow more effec-
tive targeting of tumour cells and have been
shown in various studies to exhibit substan-
tial clinical benefit across multiple cancer
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types (Ye et al., 2022). In particular, ICB
treatment has been shown in various clini-
cal trials to improve overall survival across
tumor types as compared to other forms of
treatment such as chemotherapy or molec-
ular therapy (Pons-Tostivint et al., 2019).
Furthermore, it has the potential to achieve
durable response in patients with recurrent
and metastatic cancers, which are typically
considered incurable, where other treatments
fail (Murciano-Goroff et al., 2020).

Unfortunately, studies have shown that
the objective response rate is only around
20% (Kim et al., 2020; Shen et al., 2020).
Given its low cost-effectiveness as well as the
potential of experiencing side effects from
auto-immunity (Bajwa et al., 2019; Darvin
et al., 2018), there exists a strong clinical
need to identify patients who will respond
to this treatment option. With the popu-
larity of machine learning (ML) and deep
learning (DL) in recent years, it is unsur-
prising that these techniques have been ap-
plied to address the problem of prognosticat-
ing response to ICB (Lu et al., 2020; Chow-
ell et al., 2021; Abuhelwa et al., 2021). As
far as we know, the best performing model,
known as RF16 and based on the random for-
est algorithm, achieved sensitivity and speci-
ficity scores of 76.7% and 74.2% respectively
(Chowell et al., 2021).

In our work, we developed several ML and
DL models to predict response to ICB. Our
main contributions are three-fold:

1. We propose a model based on gradient
boosting, which we refer to as CB16, that out-
performs RF16, in a head-to-head compari-
son based on the same dataset and the same
train-test split. Our model uses 10-fold fewer
trees yet maintains a performance improve-
ment over RF16 in all calculated metrics (ac-
curacy, sensitivity, precision, specificity, F1-
score) by around 3 to 5 percentage-points.
2. Our approach offers enhanced insights to
clinical interpretability for the ICB response

prediction problem. We not only show over-
all feature importance scores, like the au-
thors of RF16, we also highlight the direc-
tion of association, and demonstrate how fea-
tures contribute to the prediction for individ-
ual patients, using Shapley additive explana-
tions (SHAP) for post-hoc explanations.
3. Lastly, we describe our strategies to tackle
the challenge of modelling heterogeneous
tabular data using DL methods (see Sec-
tion 2.2). Our methodology is based on
learning ordered representations from tab-
ular data; we also explore current ideas
from representation learning and ensembling.
Practical insights from our work could be a
valuable resource for researchers interested in
applying DL models to tabular data without
spatial and temporal structure.

2. Related Work

2.1. Predictive models for ICB

The task of predicting response efficacy from
ICB is not new and several biomarkers have
been developed for ICB patient stratifica-
tion. One example is tumour mutation bur-
den (TMB) - various studies have established
a relationship between high TMB as well as
improved responsiveness to ICB treatment
(Zheng, 2022; Goodman et al., 2017). How-
ever the predictive power of individual mark-
ers remains limited; this is usually attributed
to the complexity of factors involved in ICB
response that cannot be modelled by any sin-
gle predictor (Jiang et al., 2021).

Machine learning is a viable solution due
to its ability to combine heterogeneous fea-
tures non-linearly. For example, Benzekry
et al. (2021) and Chen et al. (2021) devel-
oped predictive models for ICB response in
metastatic non-small cell lung cancer and
triple negative breast cancer respectively,
with reasonable performance (0.58 sensitiv-
ity and 0.78 specificity for the former, 0.76
AUROC for the latter). Recent years have
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seen a shift towards response prediction for
multiple cancer-types concurrently. For ex-
ample, Lapuente-Santana et al. (2021) down-
loaded tumour RNA-seq data across 18 solid
cancers from The Cancer Genome Atlas
database, to derive tumour molecular en-
vironment signatures and create predictive
models. The downside of this approach is
its requirement for RNA and proteomics se-
quencing data, which might not be readily
available in a clinical context.

To our knowledge, one of the most promis-
ing studies is that published by Chowell
et al. (2021), where the authors trained a
random forest model named RF16 on the
MSK-IMPACT dataset consisting of 1479
patients across 16 different cancers. Their
model utilised 16 predictive features ex-
tracted from clinical and genomic data in-
cluding clinically-validated biomarkers such
as TMB. However, the model is likely not
optimal for the problem - the complexity of
RF16 (1000 trees and a maximum depth of 8
for a relatively small dataset) suggests that
there could be inefficiency in terms of compu-
tational overhead from the excess trees. As
part of our work, we seek to create more op-
timised models with lower run-time complex-
ity, while maintaining or even exceeding the
performance of RF16.

2.2. Deep learning for tabular data

Deep learning methods have demonstrated
remarkable success with data types such
as images (He et al., 2016; Nandhini Abi-
rami et al., 2021; Shorten and Khoshgof-
taar, 2019), text (Brown et al., 2020; De-
vlin et al., 2019; Khan et al., 2021) and au-
dio (Oord et al., 2016; Purwins et al., 2019;
Zhao et al., 2019); however their application
to tabular data remains challenging. Var-
ious comparisons based on real-world com-
petitions (Kaggle, 2019) and research stud-
ies (Borisov et al., 2022) have shown that

ensemble decision trees (DTs) such as XG-
Boost and Random Forest still outperform
deep neural networks (DNNs) on real-world
tabular datasets. Reasons include: 1) Unlike
image or text data where spatial/semantic
relationships can be represented and mod-
elled inherently, tabular data lack structure
that can be exploited by DNNs. Tabular
DNNs have to deal with a lack of inductive
bias as the order of tabular features do not
encode position information. 2) The hetero-
geneity of tabular data, which includes dense
numerical features and sparse categorical fea-
tures, creates difficulties in modelling implic-
itly. This is unlike DTs where both sparse
and dense features are modelled in a similar
fashion by virtue of splitting attributes based
on a threshold (Borisov et al., 2022).

Despite its difficulty, deep learning on tab-
ular datasets is nevertheless a problem wor-
thy of exploration. Besides a potential per-
formance boost beyond that achievable by
classical techniques, deep learning on tabular
data also allows us to exploit current DNN
techniques such as representation learning
and generative modelling. It also opens the
door for end-to-end learning and integration
with multiple data modalities including im-
age and text (Arik and Pfister, 2020; Bahri
et al., 2022). To this end, various studies
have published DNN architectures built for
tabular data. TabNet, perhaps one of the
most well-known methods, utilises sequen-
tial attention to perform instance-wise fea-
ture selection during each decision step (Arik
and Pfister, 2020). NODE is another DNN ar-
chitecture based on the idea behind ensem-
bled DTs, but is made fully differentiable by
virtue of the entmax transformation and soft
splits (Popov et al., 2019). TabTransformer
is based on self-attention to map categorical
features into continuous embeddings, which
are subsequently fed into an MLP layer for
processing and classification (Huang et al.,
2020). Nonetheless, systemic comparisons
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have demonstrated that non of these models
consistently outperform classical ML meth-
ods on real-world tabular datasets of differ-
ent sizes (Borisov et al., 2022). Our work rep-
resents a significant departure from this ex-
isting line of research, in that we directly ad-
dress the problem of a lack of inductive bias,
by learning structure from the unordered
tabular inputs. We also explore current ideas
from contrastive learning as well as ensem-
bling approaches.

3. Dataset description

Our dataset was acquired from information
released by Chowell et al. (2021) and con-
sists of 1,479 patients across 16 different
cancer types, from Memorial Sloan Ketter-
ing Cancer Center. All patient data were
de-identified by the study authors. Out of
this cohort, 409 responded to immunother-
apy and 1070 did not, based on criteria
outlined in Response Evaluation Criteria in
Solid Tumours (RECIST) (Eisenhauer et al.,
2009). The dataset contains 16 different fea-
ture types that are a mixture of genomic
variables (e.g., tumour molecular burden and
fraction of copy number alteration), clinical
variables (e.g., cancer type and immunother-
apy drug agent) and demographic variables
(e.g., sex, age and BMI). We include a de-
scription of patient characteristics in Ap-
pendix A. To process the data into a suitable
format for model input, we one-hot encoded
all categorical variables and scaled numerical
features via min-max scaling. We performed
an additional step of normalisation via log-
arithmic transformation prior to scaling, for
numerical features that were highly skewed.

4. Predicting ICB response via ML

4.1. Model development & evaluation

We utilised the same train-test split as
that specified by Chowell et al. (2021) for

model training and evaluation. We inves-
tigate 5 models, namely: Logistic regres-
sion (LR), Random Forest (RF), Support Vec-
tor Machine (SVM), XGBoost (XGB), Cat-
Boost (CB16). Models were trained using the
Python packages sklearn (Pedregosa et al.,
2011), xgboost (Chen and Guestrin, 2016)
and catboost (Dorogush et al., 2018). We
report parameters and training details under
Appendix B.

Our choice of performance metrics follows
that of Chowell et al.: Accuracy, Sensitivity
(or recall), Positive Predictive Value (PPV,
or precision), F1 score and Specificity. We
further include AUPRC for comparisons with
other models in the ML space. We note that
F1 and AUPRC are suitable metrics for im-
balanced dataset such as ours. We bench-
mark our model performance on two classi-
fiers developed by Chowell et al. (2021) on
pan-cancer patients: RF16 and a logistic re-
gression (LR) baseline. We optimise firstly for
high F1-score to account for the imbalanced
data, and secondly for sensitivity, as in the
immunotherapy setting, there is greater clin-
ical utility in a model that identifies more
patients that will benefit from the treatment
(reduce false negatives), compared to exclud-
ing patients who would otherwise not have
benefited (reduce false positives).

4.2. Model performance

Table 1 shows the performance of our mod-
els, against benchmarks from Chowell et al.
(2021). In general all our models outper-
form the benchmark classifiers in most cal-
culated metrics. CB16 significantly outper-
forms Chowell et al ’s best model RF16, top-
ping the scoreboard in terms of F1 score and
sensitivity, and is among the top 3 positions
for the other metrics. Our RF also demon-
strates strong performance, not only signifi-
cantly surpassing RRF16, but also achieving
first or second best performance for all met-
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Table 1: Comparing performance of our models versus Chowell et al. (2021)’s. Scores are reported
as average (95% CI) of 100 runs. NR: Not Reported. Best and second-best scores are bolded and
underlined respectively.

Model Accuracy Sensitivity PPV F1 Specificity AUPRC

Benchmarks from Chowell et al. (2021)
RF16 74.9 (NR) 76.7 (NR) 56.6 (NR) 65.1 (NR) 74.2 (NR) NR (NR)
LR 71.9 (NR) 56.7 (NR) 53.7 (NR) 55.2 (NR) 78.5 (NR) NR (NR)

Our models

LR
73.4

(71.5, 75.3)
68.0

(65.3, 70.7)
55.4

(52.9, 58.0)
60.9

(58.3, 63.4)
75.7

(73.9, 77.5)
65.8

(63.1, 68.4)

SVM
77.6

(76.1, 79.1)
71.3

(69.2, 73.5)
61.5

(59.2, 63.7)
65.9

(63.8, 68.0)
80.3

(78.9, 81.7)
66.4

(64.3, 68.6)

RF
79.5

(78.3, 80.8)
78.1

(76.7, 79.6)
63.5

(61.7, 65.3)
69.9

(68.3, 71.4)
80.1

(78.7, 81.5)
70.9

(68.9, 72.9)

XGB
78.5

(77.0, 80.0)
78.9

(76.9, 80.9)
61.7

(59.7, 63.8)
69.1

(67.1, 71.0)
78.4

(76.8, 79.9)
70.7

(68.7, 72.8)

CB16
79.3

(78.0, 80.6)
80.6

(78.8, 82.4)
62.5

(60.8, 64.3)
70.3

(68.6, 71.9)
78.8

(77.5, 80.1)
69.8

(67.8, 71.9)

rics except sensitivity. We prefer CB16 to
RF as the precision-recall curves show that
there is a slight advantage towards precision
at high recall thresholds, and this is clini-
cally relevant for our setting (see Appendix
C). The rest of our models also demonstrate
strong performance compared to the bench-
marks, with XGB closely following the perfor-
mance of CB16 and RF.

4.3. Model characteristics

We highlight the following characteristics of
our best model CB16:
• Our model, CB16 is less complex than both
RF16 and our own RF model. RF16 has a
run-time complexity more than 100X greater
than CB16, and 11X greater than RF1. This
means that our model is simpler and poten-
tially generalises better to unseen patient co-
horts.
• Unlike RF16 which uses inherent feature
importance scores, we employed Shapley Ad-

1Calculated as O(TD) where T is number of trees,
D is tree depth. RF16;RF;CB16: T=1000;281;73; and
D=8;3;1, respectively)

ditive Explanations (SHAP) to provide addi-
tional insights into model predictions from
CB16. We posit that SHAP offers greater
clinical utility compared to RF16’s method,
because: 1) SHAP explanations award di-
rection of effect, and 2) SHAP generates lo-
calised explanations tailored for specific pa-
tients. We provide further details in 4.4.

4.4. Model explanations using SHAP

Beyond importance scores: Similar to
RF16, our model makes the decision pro-
cess transparent and provides reassurance
that the model is making reasonable pre-
dictions (see Appendix D). However, our
model explanations go beyond feature im-
portance scores by providing a direction of
effect. In Figure 1a, we observe positive and
negative relationships between each predic-
tor with the outcome variable, as well as
the magnitude of its contribution towards
the overall prediction. For example, both
high TMB and blood marker levels (albu-
min, HGB and platelet counts) were shown
to be significantly predictive of response to
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(a) Direction of effect

(b) Predict response (c) Predict non-response

Figure 1: SHAP visualisations for CB16. SHAP values are organised by features and ordered
by decreasing importance. Feature values are represented along a red-blue colour spectrum (red
- high; blue - low), which signify push towards prediction of response (right) /non-response (left)
respectively.

ICB, while the converse was true for non-
response. These identified relationships may
be easier to interpret under the context of bi-
ological and clinical knowledge as compared
to simply overall feature importance scores
traditionally output by DT-based models.

Instance-wise explanations: Figure 1b
and Figure 1c shows instance-wise explana-
tion plots that offer fine-grained details into
the decision process of CB16, by delineat-
ing the path of decisions taken to arrive at
a prediction for each patient. Rather than
outputting an average score per feature like

RF16, our explanations provide a precise de-
scription of how individual variables con-
tribute in unique ways to create the patient’s
condition. This allows us to analyse spe-
cific combinations of features at the patient
level or any user-specified level such as dis-
ease type. This type of analysis could offer
further insights into the biology, and prove
useful to clinicians and researchers interested
in selecting potentially novel prognostic fea-
tures or generate hypotheses about how fea-
tures could be causally related.
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4.5. Encouraging clinical adoption

Despite usage of explanation frameworks like
SHAP to improve model interpretability, we
have yet to see widespread adoption of ML
in the clinic. Through talks with clinicians,
we understand that it partly lies in differ-
ences in our approach to understanding ma-
chine learning topics, leading to varying de-
grees of trust in ML models. For example,
a computer scientist may understand SHAP
from a viewpoint of mathematical robustness
and therefore trusts that it explains feature
importance adequately. However, the inner
workings of SHAP may matter less to a clin-
ician, who sees SHAP as not so different
from other models that output feature im-
portance. Thus, we believe that to gain trust
with clinicians, it is integral for us to go be-
yond SHAP, and explain our model through
the lenses of clinicians’ understanding.

Here, we attempt a first-principles ap-
proach to explaining CB16, using a concept
that clinicians are familiar with. Tumour
mutation burden (TMB) is known to be a
strong predictor (Wang et al., 2021), and
clinicians may prefer to use it as a simple
yet effective way to predict response to ICB.
First, we create a model TMB-only that uses
only TMB, and show that the performance is
significantly worse than CB16, with F1 score
decreasing 24 percentage points to 46% (see
Appendix E). Thus, overly simplistic models
do not do well.

Secondly, we demonstrate that we could
see boosting models such as CB16 as error-
correcting, as the modelling process adds
new predictors to learn from the errors of
previous predictors. We fit a CatBoost
model TMB-EC to improve upon TMB-only

significantly (F1 score 60%, see Appendix
E), to a score much closer to our original
model. We note that TMB-EC works similarly
to CB16, except it starts from a simpler base-
line that uses only TMB. We also note that

error-corrective models such as CB16 are use-
ful in that they are able to learn from pre-
vious mistakes (in themselves, or other mod-
els), and thus often perform better than non-
error correcting ones.

5. Deep learning for tabular data

Having studied the performance of classical
ML models, we now turn our attention to de-
veloping DL models to improve model perfor-
mance. The primary challenge is that tabu-
lar data, which is predominant in healthcare
applications, lacks inductive biases that can
be easily exploited by deep neural networks.
In this section, we propose DL models that
address this issue and we test them on the
task of predicting ICB response.

5.1. Proposed model architectures

In this section we develop DL models based
on the following approaches:

1. We create and learn structure from tabu-
lar data, by leveraging on learnt spatial pro-
jections from tabular inputs, which can be
processed by networks such as CNNs using
appropriate inductive bias.
2. We learn good representations of tabular
data using autoencoders that employ denois-
ing and contrastive objectives.
3. We ensemble our models to reduce vari-
ance and mitigate overfitting.

Model training and evaluation details are
described in Appendix G.

5.1.1. Learning structure from
tabular data using CNNs

We attempt to introduce structure into tabu-
lar data by proposing the following approach
inspired by (Kaggle, 2020). We first increase
feature dimension using a fully-connected
network (FCN), followed by reshaping to
groups of features, where each group will
be considered an ”image”. We consider
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these high-dimensional features as different
aspects of the original features, which can
then be combined non-linearly using a CNN
model. The model learns the correct spatial
order of these feature aspects as the FCN
learns weights that determine how to project
features in a manner that will allow the CNN
to extract local patterns from each ”image”.
Specifically, we propose a model architec-

ture as follows:
• A wide FCN with hidden size 4096
• A reshaping layer to reshape data into di-
mensions (256x16)
• A CNN architecture with N blocks, each
block consisting of a 1DCNN with 512 filters,
kernel size 3, batch normalisation, dropout
at a rate of 0.1, residual connections between
blocks, and max pooling between layers
• A classifier layer using a linear FCN
A schematic illustration is shown in Figure 4
under Appendix F. We thereafter refer to
this architecture as tabular-cnn.

5.1.2. Learning good representations
using autoencoders

Real-world datasets are noisy and we con-
sider the use of autoencoders to learn noise-
robust representations. We re-interpret
tabular-cnn as an autoencoder and pre-
train the model to learn representations via
either (a) a denoising objective or (b) a con-
trastive objective. Schematic illustrations of
both models are shown in Figure 5 under Ap-
pendix F. We refer to the denoising and con-
trastive autoencoder as denoising-ae and
contrastive-ae respectively.

To train both autoencoders, we first create
a noisy view of the input data as follows. For
each patient i and feature j, we generate a
new training sample x̃i,j , by swapping data
with some probability p from xk,j , where k is
a randomly sampled patient from the same
class and k ̸= i.
To construct denoising-ae, we use

tabular-cnn as an encoder and consider

the flattened layer as the bottleneck. The
decoder is a series of transposed convolu-
tion layers meant to upsample the data and
project back to the original input dimen-
sions. The model receives as input a noisy
view x̃ and attempts to reconstruct the orig-
inal input data x by minimising the recon-
struction loss, given as:

Ldenoising = −
m∑
i=1

[LMAE(model(x̃i, xi)] (1)

To construct contrastive-ae, we create
separate prongs of projection and convolu-
tion layers for clean and noisy data. We
encourage the model to learn a contrastive
objective that pushes the latent representa-
tion of two data views from the same pa-
tient close, while pushing data points from
different patients apart. This is achieved via
minimizing the InfoNCE loss function (Oord
et al., 2019), which is defined as:

Lcontrastive = −
m∑
i=1

exp(zi · z′i/τ)∑m
k=1 exp(zi · z′k/τ)

(2)

where zi and z′i are the latent representa-
tions of views from the same patient where
we maximise similarity, z′k is a representation
from any other patient j within the same
batch where i ̸= j, m is the total number
of patients and τ is a temperature parame-
ter that rescales logit scores before applying
the Softmax function and encourages better
learning (Guo et al., 2017).
For the prediction task, we finetune the

model using all training samples. For the
denoising-ae, we strip off the decoder and
consider the bottleneck layer as the la-
tent representation. We connect a fully-
connected layer with linear activation to the
latent representation. We freeze the encoder
weights, and only train the weights of the
fully-connected layer on the noisy training
data. We subsequently pass a noisy version
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of the test dataset through the model to get
final outputs. For the constrastive-ae, we
do the same except that we take only the
encoder outputs corresponding to the noisy
view as the latent representation.

5.1.3. Ensemble modelling

Ensembling models is a known technique
to reduce variance and overfitting (Ganaie
et al., 2022), and we considered this method
to improve the performance of our deep neu-
ral networks. We stacked 5 tabular-cnn

models together using a bagging approach,
where each model was trained on a random
subset of training data. Model predictions
were aggregated using majority voting. We
refer to this model as ensemble-4096, which
represents the fact that the FCN following
the input layer is of size 4096 (see Figure 4).
To test the effect of reducing model parame-
ters, we performed experiments that reduced
the feature dimension projection size by half
(ensemble-2048), quarter (ensemble-1024)
and one-eighth (ensemble-512).

5.1.4. Baselines

We create competitive baselines for our DL
models that utilise state-of-the-art (SOTA)
architecture to process tabular data, namely:
TabNet (Arik and Pfister, 2020), TabTrans-
former (Huang et al., 2020), and NODE
(Popov et al., 2019). Details of hyperparam-
eters are available in Appendix H.
In addition, we also run a baseline for our

ensemble models, by ensembling 100 simple
MLPs, each with a single hidden layer and
10 nodes. This achieves a similar effect as
an ablation study where we examine only the
effect of 1 variable (base model tabular-cnn
or MLP) while keeping the rest constant.

5.2. Performance comparisons

Table 2 shows the results of our pro-
posed DL models, based on tabular-cnn,

denoising-ae and contrastive-ae. Note
that the ensemble models use tabular-cnn.
We exclude results of node from our analy-
sis due to large performance variation across
runs.

We note that all our models achieve a
good balance between sensitivity and speci-
ficity, and they all surpassed the perfor-
mance of baseline models significantly in
terms of the F1 score. In particular, the
effect of learning structure from tabular in-
puts using tabular-cnn already contributes
12.4 percentage-point improvement to the
F1 score compared to the best baseline
tabtransformer. While we note that the
AUPRC favours tabtransformer slightly,
again inspection of the precision-recall curves
demonstrate that tabular-cnn achieves con-
sistently good precision levels across most
sensitivity thresholds while tabtransformer
favours high precision only at low sensi-
tivity (see Appendix I). After ensembling,
PPV improves significantly while slightly
compromising sensitivity, resulting in scores
that top the charts for both F1 score and
AUPRC. Furthermore, when ensembled, our
model can accomodate up to 8X reduction
of parameters with no significant loss in
performance. Nonetheless, our best model
ensemble-512 still exhibits a performance
gap of around 10 percentage-point difference
in F1 score when comparing against our best
classical ML model CB16.

Interestingly, representation learning re-
sulted in a drop in AUPRC which is indica-
tive of lowered discriminatory performance,
and did not give significant gains in the
other metrics. Between the two autoen-
coders, denoising-ae performed slightly
better than contrastive-ae by around 1 to
2 percentage-points in all scores. We discuss
possible reasons in Section 6.

520



Machine and Deep Learning Methods for Predicting ICB Response

Table 2: Comparing performance of various DL architecture. Metrics are reported as average (95%
CI) of at least 10 model initialisations. Best scores are bolded; second-best scores are underlined.

Model Accuracy Sensitivity PPV F1 Specificity AUPRC

Single models

tabular-cnn
66.8

(64.7, 68.9)
77.3

(75.8, 78.9)
47.6

(45.8, 49.5)
58.9

(57.3, 60.4)
62.2

(59.1, 65.2)
52.6

(49.6, 55.6)

denoising-ae
67.7

(64.5, 70.9)
76.3

(74.2, 78.4)
48.5

(45.2, 51.8)
59.2

(56.7, 61.7)
63.9

(59.1, 68.6)
39.8

(35.1, 44.6)

contrastive-ae
66.3

(64.6, 68.0)
74.3

(70.7, 77.9)
46.9

(45.1, 48.7)
57.4

(56.2, 58.5)
62.8

(59.1, 66.4)
37.1

(33.0, 41.2)

Ensemble models

ensemble-4096
72.1

(71.0, 73.3)
67.8

(66.1, 69.5)
53.5

(51.8, 55.2)
59.8

(58.8, 60.7)
74.0

(72.0, 76.1)
53.7

(52.3, 55.0)

ensemble-2048
71.0

(69.0, 73.0)
63.9

(59.1, 68.7)
52.5

(49.9, 55.1)
57.3

(55.8, 58.8)
74.1

(69.6, 78.7)
50.5

(49.1, 51.8)

ensemble-1024
72.3

(70.2, 74.5)
67.6

(63.2, 71.9)
54.2

(51.3, 57.0)
59.8

(58.0, 61.7)
74.4

(70.3, 78.6)
52.2

(50.3, 54.0)

ensemble-512
72.9

(71.7, 74.2)
67.0

(63.9, 70.1)
54.8

(52.8, 56.8)
60.2

(58.9, 61.5)
75.6

(72.9, 78.2)
53.4

(51.7, 55.2)

Baseline models

tabnet
69.9

(69.4, 70.4)
5.8

(3.2, 8.4)
50.1

(30.9, 69.4)
10.2

(5.9, 14.6)
98.1

(97.3, 98.9)
44.1

(39.6, 48.7)

tabtransformer
72.3

(71.1, 73.5)
39.4

(37.5, 41.4)
57.1

(53.1, 61.0)
46.5

(44.9, 48.1)
86.7

(84.8, 88.6)
52.9

(51.9, 54.0)

node
71.3

(69.5, 73.0)
56.2

(34.7, 77.8)
47.0

(35.0, 59.1)
48.3

(30.2, 66.3)
77.9

(69.6, 86.1)
50.8

(43.1, 58.4)

100-mlps
50.3

(49.0, 51.6)
48.4

(46.5, 50.4)
30.3

(29.2, 31.5)
37.3

(35.9, 38.7)
51.1

(49.6, 52.7)
31.0

(29.7, 32.2)

6. Discussion

Model performance This paper demon-
strates that our approach accurately pre-
dicts response to immunotherapeutic drugs,
with our best model CB16 achieving a strong
performance of 80.6% sensitivity and 78.8%
specificity. Our model surpasses the per-
formance of a previous model RF16 (Chow-
ell et al., 2021), achieving statistically sig-
nificant increments on all calculated met-
rics. While it is difficult to objectively assess
whether the improvement is clinically signifi-
cant, we note that in our patient cohort, this
translates to correctly diagnosing an addi-

tional 57 responders who might be otherwise
overlooked for ICB therapy, and excluding
102 non-responders from a potentially risky
treatment. We also note that certain clin-
ical assays in the market also demonstrate
80% sensitivity (Yohe, 2020), demonstrating
that our model is potentially clinically viable.
Future work should consist of validating our
model on other cohorts.

Model intepretability We propose the
use of SHAP explanations to enhance
transparancy and improve upon end-user
trust. Our explanations provide reassurance
to the end-user that our model is using rea-
sonable features through analysis of global

521



Ho Motani

SHAP values. It also allows us to interpret
the likely direction of effect in the context of
biological and clinical knowledge. Further-
more, instance-wise explanations of SHAP
provide additional context beyond an aver-
age feature importance score by breaking
down individual factors for any given patient.
This could prove invaluable to clinicians who
desire a more personalised approach to pa-
tient monitoring based on the unique char-
acteristics of the patient.

Deep learning for tabular data Our
work is a prime example of how current
deep learning techniques may not be suit-
able for all kinds of data. Our results are
aligned with a large body of literature that
demonstrates how current SOTA methods
for tabular data may not work well for all
datasets, and highlights difficulties in creat-
ing DL models that rival the performance
of ensembled trees (Shwartz-Ziv and Armon,
2021; Borisov et al., 2022; Gorishniy et al.,
2021). Nonetheless, our work proposed sev-
eral underexplored ideas in the literature
that could potentially boost the performance
of DL on tabular data, and we described and
documented our most promising approaches
on a real world noisy dataset. We found that
creating structure within data that allowed
neural networks to leverage on led to a ma-
jor performance boost. Furthermore ensem-
bling techniques build upon the performance
of such networks by reducing variance of the
data, with the caveat that the base model
should be sufficiently complex.

The lowered AUPRC scores in the two
explored representation learning techniques
possibly indicate that the learnt represen-
tations were not optimal and impacted the
models’ discriminatory performance. We
believe that it is due to the introduced
noise leading to failure in learning well-
formed representations that distinguished
between the two classes. denoising-ae

would be more equipped to handle the noise
due to its denoising capabilities, explain-
ing its comparatively better performance to
contrastive-ae. We are interested in im-
proving upon this technique and will look
into methods that generate more optimal
noise distributions for both autoencoders. In
conclusion, our work documents useful start-
ing points for researchers and practitioners
interesting in applying ML to noisy real-
world tabular data.
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Óscar Lapuente-Santana, Maisa van
Genderen, et al. Interpretable sys-
tems biomarkers predict response to
immune-checkpoint inhibitors. Pat-
terns, 2, August 2021. URL https:

//www.sciencedirect.com/science/
article/pii/S2666389921001264.

Tsung-Yi Lin, Priya Goyal, et al. Focal Loss
for Dense Object Detection. In 2017 Inter-
national Conference on Computer Vision,
2017.

Zhihao Lu, Huan Chen, et al. Predic-
tion of immune checkpoint inhibition with
immune oncology-related gene expression
in gastrointestinal cancer using a ma-
chine learning classifier. Journal for Im-
munoTherapy of Cancer, 8, August 2020.
URL https://jitc.bmj.com/content/8/
2/e000631.

Y. Murciano-Goroff, A.B. Warner, et al.
The future of cancer immunotherapy:
microenvironment-targeting combina-
tions. Cell Research, 30:507–519, 2020.

R. Nandhini Abirami, P. M. Durai Raj Vin-
cent, et al. Deep CNN and Deep GAN in
Computational Visual Perception-Driven
Image Analysis. Complexity, 2021, April
2021. URL https://www.hindawi.com/
journals/complexity/2021/5541134/.

Aaron van den Oord, Sander Dieleman, et al.
WaveNet: A Generative Model for Raw

524

http://arxiv.org/abs/2106.11959
http://arxiv.org/abs/2106.11959
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/2012.06678
http://arxiv.org/abs/2012.06678
https://www.frontiersin.org/article/10.3389/fimmu.2021.813331
https://www.frontiersin.org/article/10.3389/fimmu.2021.813331
https://kaggle.com/shivamb/data-science-trends-on-kaggle
https://kaggle.com/shivamb/data-science-trends-on-kaggle
https://www.kaggle.com/c/lish-moa/discussion/202256
https://www.kaggle.com/c/lish-moa/discussion/202256
https://doi.org/10.1007/s10462-020-09930-6
https://doi.org/10.1007/s10462-020-09930-6
https://doi.org/10.1186/s12885-020-07214-4
https://doi.org/10.1186/s12885-020-07214-4
http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S2666389921001264
https://www.sciencedirect.com/science/article/pii/S2666389921001264
https://www.sciencedirect.com/science/article/pii/S2666389921001264
https://jitc.bmj.com/content/8/2/e000631
https://jitc.bmj.com/content/8/2/e000631
https://www.hindawi.com/journals/complexity/2021/5541134/
https://www.hindawi.com/journals/complexity/2021/5541134/


Machine and Deep Learning Methods for Predicting ICB Response

Audio. arXiv:1609.03499 [cs], Septem-
ber 2016. URL http://arxiv.org/abs/
1609.03499.

Aaron van den Oord, Yazhe Li, et al. Repre-
sentation Learning with Contrastive Pre-
dictive Coding. arXiv:1807.03748 [cs,
stat], January 2019. URL http://

arxiv.org/abs/1807.03748.

Adam Paszke, Sam Gross, et al. Automatic
differentiation in PyTorch. In 2017 Con-
ference on Neural Information Processing
Systems, 2017.

F. Pedregosa, G. Varoquaux, et al. Scikit-
learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:
2825–2830, 2011.

E. Pons-Tostivint, A. Latouche, et al. Com-
parative analysis of durable responses on
immune checkpoint inhibitors versus other
systemic therapies: a pooled analysis of
phase iii trials. JCO Precision Oncology,
3:1–10, 2019.

Sergei Popov, Stanislav Morozov, et al.
Neural Oblivious Decision Ensembles
for Deep Learning on Tabular Data.
arXiv:1909.06312 [cs, stat], September
2019. URL http://arxiv.org/abs/
1909.06312.

Hendrik Purwins, Bo Li, et al. Deep Learning
for Audio Signal Processing. IEEE Journal
of Selected Topics in Signal Processing, 13,
May 2019. URL http://arxiv.org/abs/
1905.00078.

Yanyun Shen, Yunfeng Chen, et al.
Treatment-related adverse events as sur-
rogate to response rate to immune check-
point blockade. Medicine, 99, September
2020. URL https://journals.lww.com/
md-journal/fulltext/2020/09110/

treatment_related_adverse_events_

as_surrogate_to.65.aspx.

Connor Shorten and Taghi M. Khoshgoftaar.
A survey on Image Data Augmentation
for Deep Learning. Journal of Big Data,
6, July 2019. URL https://doi.org/
10.1186/s40537-019-0197-0.

Ravid Shwartz-Ziv and Amitai Armon. Tab-
ular Data: Deep Learning is Not All
You Need. arXiv:2106.03253 [cs], Novem-
ber 2021. URL http://arxiv.org/abs/
2106.03253.

Peipei Wang, Yueyun Chen, et al. Be-
yond Tumor Mutation Burden: Tumor
Neoantigen Burden as a Biomarker for
Immunotherapy and Other Types of Ther-
apy. Frontiers in Oncology, 11, April 2021.
URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC8117238/.

Youqiong Ye, Yongchang Zhang, et al.
Profiling of immune features to predict
immunotherapy efficacy. The Innova-
tion, 3, January 2022. URL https:

//www.sciencedirect.com/science/
article/pii/S2666675821001193.

S. Yohe. How good are COVID-19 (SARS-
CoV-2) diagnostic PCR tests, 2020.
URL https://www.cap.org/member-
resources/articles/how-good-are-

covid-19-sars-cov-2-diagnostic-

pcr-tests.

Yuanjun Zhao, Xianjun Xia, et al. Applica-
tions of Deep Learning to Audio Genera-
tion. IEEE Circuits and Systems Maga-
zine, 19, 2019.

Ming Zheng. Tumor mutation burden for
predicting immune checkpoint blockade re-
sponse: the more, the better. Journal
for ImmunoTherapy of Cancer, 10, Jan-
uary 2022. URL https://jitc.bmj.com/
content/10/1/e003087.

525

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1909.06312
http://arxiv.org/abs/1909.06312
http://arxiv.org/abs/1905.00078
http://arxiv.org/abs/1905.00078
https://journals.lww.com/md-journal/fulltext/2020/09110/treatment_related_adverse_events_as_surrogate_to.65.aspx
https://journals.lww.com/md-journal/fulltext/2020/09110/treatment_related_adverse_events_as_surrogate_to.65.aspx
https://journals.lww.com/md-journal/fulltext/2020/09110/treatment_related_adverse_events_as_surrogate_to.65.aspx
https://journals.lww.com/md-journal/fulltext/2020/09110/treatment_related_adverse_events_as_surrogate_to.65.aspx
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/2106.03253
http://arxiv.org/abs/2106.03253
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117238/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117238/
https://www.sciencedirect.com/science/article/pii/S2666675821001193
https://www.sciencedirect.com/science/article/pii/S2666675821001193
https://www.sciencedirect.com/science/article/pii/S2666675821001193
https://www.cap.org/member-resources/articles/how-good-are-covid-19-sars-cov-2-diagnostic-pcr-tests
https://www.cap.org/member-resources/articles/how-good-are-covid-19-sars-cov-2-diagnostic-pcr-tests
https://www.cap.org/member-resources/articles/how-good-are-covid-19-sars-cov-2-diagnostic-pcr-tests
https://www.cap.org/member-resources/articles/how-good-are-covid-19-sars-cov-2-diagnostic-pcr-tests
https://jitc.bmj.com/content/10/1/e003087
https://jitc.bmj.com/content/10/1/e003087


Ho Motani

Appendix A. Description of patient
characteristics

Table 3: Characteristics of patients in cohort

Feature
Num patients
(n = 1479)

Training set
(n = 1184)

Test set
(n = 295)

Sex (%)
Female 668 (45.17) 529 (44.68) 139 (47.12)
Male 811 (54.83) 655 (55.32) 156 (52.88)
Median age (IQR) 64 (55-71) 64 (55-71) 64 (55-72)
Cancer type (%)

NSCLC 538 (36.38) 430 (36.32) 108 (36.61)
Melanoma 186 (12.58) 149 (12.58) 37 (12.54)
Renal 91 (6.15) 73 (6.17) 18 (6.10)
Bladder 82 (5.54) 66 (5.57) 16 (5.42)
Head and neck 69 (4.67) 55 (4.65) 14 (4.75)
Sarcoma 67 (4.53) 54 (4.56) 13 (4.41)
Endometrial 65 (4.39) 52 (4.39) 13 (4.41)
Gastric 64 (4.33) 51 (4.31) 13 (4.41)
Hepatobiliary 52 (3.52) 42 (3.55) 10 (3.39)
Small cell lung cancer 50 (3.38) 40 (3.38) 10 (3.39)
Colorectal 46 (3.11) 37 (3.13) 9 (3.05)
Esophageal 44 (2.97) 35 (2.96) 9 (3.05)
Pancreatic 35 (2.37) 28 (2.36) 7 (2.37)
Mesothelioma 34 (2.30) 27 (2.28) 7 (2.37)
Ovarian 31 (2.10) 25 (2.11) 6 (2.03)
Breast 25 (1.69) 20 (1.69) 5 (1.69)
Drug class (%)

PD1/PDL1 1221 (82.56) 969 (81.84) 252 (85.42)
CTLA-4 5 (0.33) 5 (0.42) 0 (0.00)
Combination 253 (17.11) 210 (17.74) 43 (14.58)
ICB response (%)

Responder 409 (27.65) 319 (26.94) 90 (30.51)
Non-responder 1070 (72.35) 865 (73.06) 205 (69.49)
Chemotherapy prior ICB (%)

No 463 (31.30) 370 (31.25) 93 (31.53)
Yes 1016 (68.70) 814 (68.75) 202 (68.47)
Stage (%)

I-III 97 (6.56) 78 (6.59) 19 (6.56)
IV 1382 (93.44) 1106 (93.41) 276 (93.44)

Appendix B. ML model
parameters

Hyperparameters were obtained via 5-fold
cross-validation on the training dataset, and
are as follows:

• Logistic regression (LR), C=0.61

• Random forest (RF) crite-
rion=‘entropy’, max depth=3, max
features=15, min samples in leaf=6,
estimator number=281

• Support Vector Machine (SVM)
gamma=‘auto’, kernel=‘poly’

• XGBoost (XGB) estimator number=68,
learning rate=0.1, max depth=1, class
weight=2.9, subsample=0.7

• CatBoost (CB16) iterations=73, learn-
ing rate=0.122, max depth=1, class
weight=2.9, one-hot encoding for all fea-
tures

We run each model with 10 different ini-
tialisations, each initialisation bootstrapped
10 times, to create 100 runs, and calculated
test statistics (mean and CI) for each perfor-
mance metric. We use the default threshold
of 0.5 to obtain our model predictions.

Appendix C. Precision-recall
curves

Figure 2: Precision-recall curves of CB16 versus
RF

Appendix D. Making reasonable
predictions

To determine whether our model was us-
ing reasonable features, we performed an ex-
act comparison of overall feature importance
from RF16 and CB16 in Figure 3a and Fig-
ure 3b respectively, and we conclude that
both models are offering similar explana-
tions. We note that the order of features
is similar in both models: tumour muta-
tion burden (TMB) and chemotherapy his-
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tory were both considered most important
for prediction, while drug class, cancer stage,
microsatellite instability (MSI) status, and
genomic predictors such as divergence in hu-
man leukocyte antigen (HLA) alleles, were
less significant. Furthermore, they corre-
spond to biological and clinical insight that
TMB is highly important, as are blood-
based markers such as levels of albumin and
hemoglobin.

(a) RF16 (theirs)

(b) CB16 (ours)

Figure 3: (a) and (b): Direct comparisons of
feature importance between RF16 (theirs) and
CB16 (ours), both ordered by decreasing impor-
tance.

Appendix E. Correcting residual
errors

Table 4 shows the results of TMB-only, a
model that uses tumour mutation burden

(TMB) as the sole feature, and TMB-EC, an
error correction model that fits new predic-
tors on the errors made by TMB-only using
gradient boosting. Both models used the
CatBoost algorithm (Dorogush et al., 2018).
TMB-only was built by training a Catboost
model on the TMB variable. TMB-EC was
built by leveraging on TMB-only predictions
as a baseline, and building a new Catboost
model based on the errors of the prediction
using all features. Hyperparameter details
are as follows:

• TMB-only: iterations=8, learning
rate=0.122, max depth=1, class
weight=2.9

• TMB-EC: In Stage 1, we train a TMB-only
model and obtain predictions on the
training data. In Stage 2, we build a
new CatBoost model on the residual er-
rors of these predictions, and train us-
ing the full feature set. Stage 2 hyper-
parameters are: iterations=65, learn-
ing rate=0.122, max depth=1, class
weight=2.9, one-hot encoding for all fea-
tures

Table 4: Results of TMB-only versus EC

Model Acc Sens PPV F1 Spec

TMB-only 0.685 0.444 0.482 0.462 0.790
TMB-EC 0.702 0.744 0.507 0.604 0.683
CB16 0.793 0.806 0.625 0.703 0.788
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Appendix F. DNN architectures
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256x16
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1x2048
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with residual connection
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Figure 4: Schematic representation of tabular-cnn
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512x4
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(b) contrastive-ae

Figure 5: Schematic representation of the pretraining architecture for (a) denoising-ae and (b)
contrastive-ae. The encoder structure of contrastive-ae is the same as that of denoising-ae
and thus not fully illustrated.
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Appendix G. DNN training and
evaluation

G.1. Model training

All DL models were created using Pytorch
(Paszke et al., 2017); each were trained (for
autoencoders, finetuned) on the task of pre-
dicting immunotherapy response. The train-
ing objective was to minimize focal loss (Lin
et al., 2017) for all models, with weights
set to the inverse of the corresponding class
support. We use focal loss as it has been
shown to improve performance on classifi-
cation tasks when the dataset is highly im-
balanced. All models were trained for 1000
epochs with early stopping based on best val-
idation loss, and used the Adam optimiser
(Kingma and Ba, 2017) with learning rate
decay at a rate of 0.1 every 200 epochs.

G.2. Model evaluation

We split the original training data into
two parts to create an additional validation
dataset, at a ratio of 4:1. All developed mod-
els were tuned for best hyperparameters on
the validation dataset and evaluated on the
test dataset. We trained at least 10 sep-
arate models for each model architecture,
which differ in terms of initial weights. We
report the average for the following perfor-
mance metrics: Accuracy, Recall (or sensitiv-
ity), Precision (or Positive Predictive Value),
F1 score, Specificity and AUPRC.

Appendix H. Hyperparameters of
baseline models

TabNet We ran tabnet using pytorch-
widedeep under the following settings:
• Size of embedding dimensions = 32
• Width of attention embedding = 8
• Number of steps = 3
• Number of shared Gated Linear Units
(GLU) per step = 2
• Number of independent GLU per step = 2

TabTransformer We ran tabTranformer

using pytorch-widedeep under the follow-
ing settings:
• Input dimension = 32
• Number of attention heads = 8
• MLP activation = ReLu
• MLP dropout rate = 0.1
• MLP batchnorm = False

NODE We ran node using node python
package under the following settings:
• Layer dimension = 258
• Number of layers = 1
• Tree depth = 1
All models except node were trained

to minimise a binary focal loss objective
weighted by the support of each class, for
at least 50 epochs, while node was trained to
minimise cross entropy loss for 200 epochs.
We used the Adam optimiser, with a learn-
ing rate scheduler set at 1e-3, which decayed
at a factor of 0.1 every 20 epochs.

Appendix I. Precision-recall curves
for DL models

Figure 6: Precision-recall curves of
tabular-cnn vs. tabtransformer & tabnet
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