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Abstract

Sepsis is a deadly condition affecting
many patients in the hospital. There
have been many efforts to build mod-
els that predict the onset of sepsis, but
these models tend to perform terribly
when validated on external data from
different hospitals due to distributional
shifts in the data and insufficient sam-
ples from sepsis patients. To circumvent
the curse from noisy and unbalanced
samples, we develop a novel two-step
approach for sepsis prediction: given
feature-label points from the source do-
main and feature points from the tar-
get domain, to obtain a sepsis predic-
tor that has satisfactory performance at
the target domain. The proposed al-
gorithm first learns how to transform
sample points from the source domain
to the target domain, and then applies
the distributionally robust optimization
(DRO) technique with the Sinkhorn dis-
tance and asymmetric cost function to
reliably obtain a classifier with satisfac-
tory out-of-sample performance. Con-
nections between our proposed formula-
tion and widely used classification mod-
els, i.e., DRO formulation with the
Wasserstein distance and regularized lo-
gistic regression formulation, are also
uncovered. Numerical experiments with
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synthetic and real datasets demonstrate
the competitive performance of the pro-
posed method.

Keywords: Domain Adaptation, Eth-
ical AI, Optimal Transport, Sepsis Pre-
diction

1. Introduction

Sepsis is a deadly condition affecting many
patients in the hospital. The sepsis-3 defini-
tion defines sepsis as a dysfunctional host re-
sponse to infection causing major organ fail-
ure and increasing the risk of death or ma-
jor disability. A 2017 report published by
the World Health Organization (WHO) (Or-
ganization et al., 2020) revealed that sepsis-
related deaths accounted for roughly 20% of
deaths worldwide. There is extensive liter-
ature on developing sepsis prediction mod-
els. However, many of these models per-
formed poorly when validated on external
data from different hospitals, primarily due
to distributional shifts (Moor et al., 2021).
To address this problem, domain adapta-
tion techniques have been utilized to develop
more robust frameworks. However, some of
these domain adaptation methods still per-
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form poorly on external data distributions
(Guo et al., 2022).

In this work, we formulate the problem of
sepsis prediction as the domain adaptation
task, where features and labels are available
only at the source domain, i.e., they are col-
lected from a fixed hospital, but at the other
hospital (target domain) only features are
available. Even worse, samples for healthy
patients are highly frequent while samples for
sepsis patients are only rarely encountered
in real-world datasets. In summary, there is
a strong need for developing non-parametric
framework for domain adaptation with noisy,
high-dimensional, and unbalanced data.

A notable contribution to domain adap-
tation is the optimal transport-based frame-
work (Flamary et al., 2017), which learns
a transportation plan matching feature dis-
tributions between both domains and then
obtains a predictor based on the estimated
feature-label distribution on the target do-
main. Unfortunately, the estimation of data
distribution is not reliable because collected
samples are noisy and unbalanced so the es-
timated transportation plan is far from the
ground truth optimal transport planning, es-
pecially for distributions corresponding to
sepsis patients. Consequently, due to the dis-
tribution shift from the estimation step, the
obtained predictor may not have satisfactory
out-of-sample performance.

To address this issue, we propose a novel
optimal transport-based domain adaptation
two-step procedure leveraging the distribu-
tionally robust optimization (DRO) tech-
nique for robust and ethical sepsis prediction.
First, we estimate the feature-label distribu-
tion at the target domain using the previ-
ous optimal transport-based algorithm (Fla-
mary et al., 2017). Next, we propose a DRO
model using Sinkhorn distance that jointly
learns a feature-label distribution and a ro-
bust classifier so that the worst-case mis-
classification risk is optimized. The high-

light of the proposed DRO formulation is
that we use an asymmetric cost function that
robustifies the minority group, i.e., samples
corresponding to sepsis patients so that the
mis-classification rate for correctly detecting
sepsis disease (precision) is significantly re-
duced. Our contributions are summarized as
follows:

e A two-step optimal transport-based
strategy for domain adaptation is pro-
posed. We leverage the idea of sample
average approximation to solve the pro-
posed formulation.

e Connections between our proposed for-
mulation and classical Wasserstein DRO
formulation and regularized logistic re-
gression formulation are uncovered.

e Our proposed framework is examined
using both synthetic and real datasets
to demonstrate its competitive perfor-
mance.

Notations Denote by E the expectation op-
erator. For any positive integer N, define
[N] = {1,2,...,N}. Fix a positive integer
M, define 6, = (0z,1,...,02,01) as the M-
vector of Kronecker deltas. For a measur-
able set Z, denote by M(Z) the set of mea-
sures (not necessarily probability measures)
on Z, and P(Z) the set of probability mea-
sures on Z. Denote by |z|% = (xTAx)1/2

the weighted £ norm with respect to the ma-
trix A.

2. Related Work
2.1. Sepsis Prediction

Recently, there is a surge of interest in sep-
sis prediction with machine learning algo-
rithms. Notable methodologies include en-
semble learning (Barton et al., 2019; Goh
et al., 2021), Bayesian learning (Nachimuthu
and Haug, 2012; Brown et al., 2016), and
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deep learning (Futoma et al., 2017b,a; Lin
et al., 2018; Scherpf et al., 2019). Unfor-
tunately, those models may perform poorly
when validated on external data from dif-
ferent hospitals due to the shift in the data
distribution between the training population
and the testing population (Moor et al.,
2021). A bad prediction model may result
in risky or unethical medical treatment poli-
cies and severe consequences. As such, it is
important to learn a reliable sepsis predic-
tion model under the scenario of distribution
shift.

2.2. Domain Adaptation

Various approaches in literature are pro-
posed to tackle the domain adaptation prob-
lem, the key of which is to reduce the
mismatch between the source and target
domain distributions. Classical regular-
ized methods (Azizzadenesheli et al., 2019)
have been implemented in domain adapta-
tion frameworks. Deep learning-based algo-
rithms (Venkataramani et al., 2018; Zhang
et al., 2019a; Alves et al., 2018; Zhang et al.,
2019b; Khoshnevisan and Chi, 2020, 2021;
Zhu et al., 2022) can further improve the
model performance due to the flexibility in
data fitting and surprising predictions for
unseen data of neural network functions.
Domain adaption based on modern statis-
tical distance functions such as maximum
mean discrepancy (MMD) and Wasserstein
distance has recently achieved much atten-
tion (Deng et al., 2021; Balagopalan et al.,
2020), due to their flexibility and reliability
for quantifying the discrepancy between dis-
tributions from different domains with data.
As pointed out in Guo et al. (2022), the main
shortcoming of the foregoing methodologies
is that the prediction is insufficiently robust
so that it may not generalize well for unseen
data from the target domain, especially in
applications from healthcare.

2.3. Optimal Transport and DRO

Optimal transport (OT) is a flexible way to
quantify discrepancy between two probabil-
ity distributions. It thereby serves as a suit-
able performance measure for data-driven
domain adaptation tasks. Besides, there
have been many variants of optimal trans-
port to improve the computation and predic-
tion performance beyond the regular optimal
transport among which the most famous one
is the so-called (entropy)-regularized opti-
mal transport (Altschuler et al., 2017; Alaya
et al., 2019; Feydy et al., 2019; Mensch and
Peyré, 2020; Daniels et al., 2021). It is de-
fined by regularizing the original mass trans-
portation problem with a relative entropy
penalty on the transport mapping. Since
the convergence analysis of an efficient algo-
rithm for solving such a problem is attributed
to the mathematician Sinkhorn (Sinkhorn,
1964), the associated distance function is
also named the Sinkhorn distance (Cuturi,
2013). It has been used in several impor-
tant applications due to its computational
efficiency and satisfactory statistical perfor-
mance guarantees, including generative mod-
eling (Genevay et al., 2018; Petzka et al.,
2018; Luise et al., 2018; Patrini et al., 2020)
and dimensionality reduction (Lin et al.,
2020; Wang et al., 2021a, 2022; Huang et al.,
2021). In this work, we apply Sinkhorn dis-
tance in the healthcare setting, specifically
for reliable sepsis prediction.

Distributionally ~ robust  optimization
(DRO) provides a principled approach to
solve the decision-making problem under
uncertainty, by seeking a minimax robust op-
timal decision that minimizes the expected
loss under the most adverse distribution
within a given set of relevant distribu-
tions, called ambiguity set. The popular
OT-based DRO model constructs such an
ambiguity set as a probability ball using the
Wasserstein distance, which incorporates
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the geometry of sample space, and thereby
is suitable for comparing distributions
with non-overlapping supports and hedging
against data perturbations (Gao and Kley-
wegt, 2016). On the one hand, Wasserstein
DRO has a finite-dimensional convex for-
mulation under stringent conditions of the
loss function (Shafieezadeh Abadeh et al.,
2015; Mohajerin Esfahani and Kuhn, 2017).
On the other hand, it has nice statistical
performance guarantees both asymptoti-
cally (Blanchet et al., 2019, 2021b,a) and
non-asymptotically (Gao, 2020; Chen and
Paschalidis, 2018; Shafieezadeh-Abadeh
et al., 2019). In recent literature, it has
been applied in a variety of applications in
operations research (Blanchet et al., 2018;
Wang et al., 2021d,c; Kuhn et al., 2019;
Wang and Xie, 2022).

3. Problem Setup and Formulation

Let {:Uf,yf}fvzsl be the training sample set
generated from the source domain, where x;
stands for the i-th feature vector in R? and
y? stands for the i-th label in {0,1}. Also,
let {:cf}fvztl be the training sample set gener-
ated from the target domain, where ! stands
for the i-th feature vector. Our objective is
to develop a classifier for domain adaptation
such that, based on training sets {z7,y’ }fvzsl
and {z! f\;tl, it gives prediction on new com-
ing feature samples from the target domain.
Traditional classification approaches are not
applicable because i) the labels from the tar-
get domain are not available, and ii) the
source domain and target domain may have
non-overlapping supports. To address this
issue, we propose an intuitive two-step strat-
egy to probe the distributional region of the
feature-label pair in the target domain.

3.1. Step 1: Interpolation

First, we formulate an optimal-transport
based estimator of the data distribution in

the target domain, following the step in ex-
isting literature (Flamary et al., 2017). De-
note by the empirical distributions of feature
vectors from source and target domains as

1 & 1 <
Ns:]\fs;éxfa Mt:]\ft;ézf'

An optimal transport mapping for moving
from the source to the target domain can be
obtained by solving the following linear op-
timization problem:

_ ; . st
4 = arg min g Yije(xy, rs),
~yel i

(1)

where the constraint
r= {7 e RYN a1 = g "1 = Mt} 7

and the entry c; ; £ c(xf, x%) quantifies the
discrepancy between the i-th sample from
the source domain and the j-th sample from
the target domain. Specially, one may add
entropic regularization to problem (1) to ac-
celerate computation using Sinkhorn’s algo-
rithm (Cuturi, 2013), or label-based regular-
ization to improve the classification perfor-
mance. See (Flamary et al., 2017, Section 4)
for detailed discussion.

After obtaining this transport mapping,
the i-th sample z; is moved to samples from
the target domain {xf}j\[:t | according to prob-
ability {fym};\f:’fl. For i € [Ng], we compute a
hard transformation of the source sample x
using the following barycentric mapping;:

Ny
$ = arg min Z%,jc(x,xz). (2)
x€R4 j=1

As a consequence, we formulate an empirical
distribution from feature-label pairs {25}
(x/:f ,y7), denoted as P. Actually,
P serves as the distributional estimate of the
feature-label pair in the target domain.

with 27 =
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After this estimator is obtained, a natu-
ral approach used in literature is to train a
classifier fy(-) to minimize the following risk
function, in which we specify the nominal
distribution P as IP, called the sample average
approximation approach (SAA):

R(Pa 9) = E.p [f@(z)] )

where the loss function
fo(z) =log (1 +exp (~y-07x)),

with z £ (x,y) being a given feature-label
pair. Since the distributional estimate P can
be quite different from the underlying true
distribution from the target domain, directly
training a classifier based on P could lead
to serious out-of-sample disappointment. In
other words, the obtained classifier may not
perform well for new coming testing samples
from the target domain, which is similar to
the overfitting phenomenon studied in statis-
tics (Smith and Winkler, 2006).

3.2. Step 2: Robustification via DRO

The out-of-sample disappointment phe-
nomenon in Step 1 motivates us to consider
the robustification step. In contrast to the
SAA model, we consider the following dis-
tributionally robust formulation to learn a
classifier fy(-):

min {max R(P, 0)} :

0 PeP

(3)

where the goal is to pick an optimal classifier
so that the worst-case risk is minimized. The
ambiguity set P contains a class of candidate
distributions on the predictor-response pair,
which is constructed using the nominal dis-
tribution P. The construction step of this
ambiguity set is the following:

P={P: W,([,P) <p}.

Here we take the function W, (-,) to be the
Sinkhorn distance. See its formal definition
as the following.

Definition 1 (Sinkhorn Distance)  Let
Z be a measurable set. Consider distribu-
tions P,Q € P(Z2), and let p,v € M(Z)
be two reference measures such that P < pu,
Q <« v. For regularization parameter € > 0,
the Sinkhorn distance between two distribu-
tions P and Q is defined as
inf

W, (P,Q) =
(P, Q) )

{E(z,z’)N’y [d(Z, Z/)] + UH(’Y | I V)} )
where T'(P, Q) denotes the set of joint distri-
butions whose first and second marginal dis-
tributions are P and Q respectively, d(x,y)
denotes the cost function, and H(vy | p ® v)
denotes the relative entropy of v with respect
to the product measure p Q@ v:

dvy(z, 2
H<7 ’ M®V> = E(z,z’)w'y log < ( )

an(z) du(zf)) |

This robustification step brings the follow-
ing benefits for domain adaptation: i) The
estimator of feature-label distribution for the
target domain seems noisy and unreliable,
while the DRO formulation further provides
a data-driven estimation of this distribution,
which usually leads to the improvement of
the out-of-sample performance (Lin et al.,
2022). ii) The ambiguity set is constructed
in a data-driven manner using Sinkhorn dis-
tance, which naturally incorporates the ge-
ometry of the sample space and alleviates
the over-conservativeness of the traditional
Wasserstein uncertainty set thanks to en-
tropic regularization. Furthermore, when
specifying the transport cost in Sinkhorn dis-
tance as special asymmetric functions, the
predictor can make better prediction for
samples from minorities (Hui et al., 2021),
which alleviates the curse of unbalanced data
samples. iii) Finally, from the optimiza-
tion point of view, the proposed formula-
tion can be efficiently solved using the first-
order method (Wang et al., 2021b), which is
scalable especially for large-sample and high-
dimensional scenarios.
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4. Discussions for Robustification

It is worth mentioning that the current
formulation (3) in the robustification step
is not tractable, because the inner maxi-
mization problem requires taking into ac-
count uncountably many candidate distri-
butions within the ambiguity set P, and
candidate distributions are supported in
infinite-dimensional space.
we provide a strong dual reformulation to
equivalently convert this problem into a
finite-dimensional optimization problem and
present approximation algorithm to find the
robust classifer in (3). Also, we will provide
the connection between the DRO model (3)
with other formulations studied in machine
learning literature.

Convex Dual Reformulation of (3): For
a pair of data points z := (z,y) and 2’ :=
(2',y"), we specify the asymmetric cost func-
tion d(z,2') = ||z — x/||?4(y) +x1{y # '} and
the reference measure v to be the Lebesgue
measure, where the matrix A(y) = (L1{y =
1} 4+ 1{y = 0}) - I;. Leveraging the strong
duality result in (Wang et al., 2021b, The-
orem 1), the minimax problem (3) can be
equivalently formulated as a single minimiza-
tion problem:

In this section,

min
0. 0>0

AN o .
N ﬁ?? ;log (E@ien(zi)/(xn))}, (4)

{F(e, A) = N\p

where we define the constant

N
5=t L —d(=5,2)/
p—p+NS Ellog</e ”dz)

and for i € [Ng], define the kernel probability
distribution

o—d(=5,2)/n
dz - fe—d(zf,z’)/ndzl'

It is worth mentioning that such a reformu-
lation holds for a broader class of loss func-
tions, cost functions and reference measures.
In this task, we only consider the restrictive
choice for the simplicity of discussion.
Optimization Algorithm: Since the ob-
jective function in (4) involves a nonlinear
transformation of expectation with respect
to a continuous distribution, it is challenging
to evaluate or optimize the objective func-
tion in general. We apply the idea of sample
average approximation to solve this DRO for-
mulation. For each i € [N;], we generate in-
dependent and identically distributed (i.i.d.)
random samples {z;}7; from the kernel
probability distribution @Q;. Next, we con-
sider the following formulation:

{ﬁ(e, NPV

min
6,2>0
N, m
)\7] 2 ]. 25
N 3 efolel )/ } 5)
i=1 j=1

In comparison with the objective in (4), the
new objective is obtained by replacing the in-
ner expectation with the sample mean with
respect to generated random samples. It is
worth mentioning that as the sample size
m — oo, under mild assumptions, the op-
timal classifier in (5) will converge to that
in (4). Also, the new formulation can be
solved efficiently using first-order gradient
method. Alternatively, one can check the
formulation (5) is equivalent to a conic pro-
gramming problem based on (Wang et al.,
2021b, Corollary 1). Hence, the new formu-
lation is conveniently solvable using interior
point method based on off-the-shelf solvers
such as CVX (Grant and Boyd, 2014).
Connections with Other Models: As
the regularization parameter n — 0, by
(Wang et al., 2021b, Remark 1), one can
check that the formulation (3) reduces to

min {m]}?x R(P,0) : W(p,@)gp}, (6)
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where W(-, ) denotes the standard optimal
transport distance. Hence, our proposed
model can be viewed as a smoothed ver-
sion of the Wasserstein DRO formulation.
However, solving the Wasserstein DRO for-
mulation can be computationally challeng-
ing in general, while Algorithm 4 presents
an efficient optimization algorithm for the
Sinkhorn DRO formulation with a provable
convergence rate that is sample size indepen-
dent. Also, when specifying the cost func-
tion d(z,2') = ||z — 2| + col{y # v}, the
Wasserstein DRO formulation in (6) can be
exactly reformulated as the following norm-
regularized problem (Gao et al., 2017):

min R(P, ) + p||0]+, (7)

where || - ||« is the dual norm of the norm
function || - ||. Formulation (3) is therefore a
softened version of the standard regularized
logistic regression model.

5. Experiment on Synthetic
Dataset

In this section, we provide a toy exam-
ple to describe how our two-step procedure
works. We generate a 2-dimensional dataset,
in which each class has 30 sample points.
Here we take

—4
st =0~ n (7

o)
() o),
o)

4
dlit=o~n (2

oyl =1 NN(<_75) ,0.3I2> ,

The visualization is provided in Fig. 1-(a),
from which we can see the target domain is
a rotation of the source domain.

Next, we plot the optimal transport map-
ping obtained in the interpolate procedure in

Fig. 1-(b). The gray line corresponds to the
transportation mapping. Due to the entropy
regularization, one can see each sample from
the source domain is transported to multiple
points in the target domain.

We formulate the barycentric mapping ac-
cording to the formulation (2). The visual-
ization is provided in Fig. 1-(c). Since each
point from the source domain is determinis-
tically transported, we now obtain the esti-
mators of feature-label pair from the target
domain. Compared with the ground truth
plot in Fig. 1, one can see that the estima-
tors may have ten points with wrong labels.

Also, we plot the naive classifer and robust
classifier obtained from the formulation (3)
in Fig. 1-(c). As we can see, the in-sample
mis-classification risk for robust classifer is
40%. However, as demonstrated in Fig. 1-
(d), the out-of-sample mis-classification risk
for robust classifer is 10%. This suggests that
our robustification step greatly improves the
performance of domain adaptation.

6. Experiment with Sepsis Data

6.1. Experiment Settings

When evaluating our proposed algorithms,
we use real data collected from encounters at
Emory University Hospital and Grady Hos-
pital in the year 2016. We extract features
that contain vital signs and laboratory values
in this experiment, while variables related to
demographic information are excluded in an
effort to mitigate bias. See more details on
those variables in Table 1. There exist non-
negligible discrepancies in data distributions
between the two hospitals due to biases in
medical planning and devices. During the
data preprocessing step, missing values are
imputed by forward-filling vital signs up to
12 hours and lab values up to 36 hours. Any
remaining missing values are imputed using
the global median value for that variable.

480



SEPSIS PREDICTION WITH OT

Missing Overall Emory Grady P-Value

n 90374 66712 23662
Sepsis, n (%) No 0 81036 (89.7) 60265 (90.3) 20771 (87.8) <0.001

Yes 9338 (10.3) 6447 (9.7) 2891 (12.2)
Daily Weight (kg), median [Q1,Q3] 202 82.0 [68.0,89.0] 82.0 [68.6,88.5] 76.3 [67.6,89.4] <0.001
Height (cm), median [Q1,Q3] 12990 168.4 [162.6,175.3]  168.4 [165.1,175.3] 170.2 [161.5,175.3] 0.012
Pulse, median [Q1,Q3] 1596 810 [72.090.0]  80.0 [72.0,89.5]  82.0 [73.0,92.0] <0.001
Temperature (Celsius), median [Q1,Q3] 2026 36.6 [36.5,36.8] 366 [36.5,36.8]  36.7 [36.5,369]  <0.001
Non-Invasive Systolic Blood Pressure, median [Q1,Q3] 1715 126.0 [115.0,139.0]  125.0 [114.0,138.0]  129.0 [117.0,141.0] <0.001
Invasive Systolic Blood Pressure, median [Q1,Q3] 83528 128.8 [113.0,145.9]  128.0 [112.0,145.0] 133.0 [117.0,149.0] <0.001
Invasive Mean Arterial Pressure, median [Q1,Q3] 83424 83.5 [75.0,94.0] 82.2 [74.0,93.0] 89.0 [80.0,98.0] <0.001
Non-Invasive Mean Arterial Pressure, median [Q1,Q3] 8270 88.0 [80.0,97.0] 87.0 [79.0,96.0] 90.0 [83.0,99.0] <0.001
Best Mean Arterial Pressure, median [Q1,Q3] 8221 88.0 [80.3,97.0] 87.0 [80.0,96.0] 90.0 [82.5,99.0] <0.001
Non-Invasive Diastolic Blood Pressure, median [Q1,Q3] 1719 705 [64.0,78.0]  69.0 [63.0,76.0]  74.0 [67.0,82.0] <0.001
Invasive Diastolic Blood Pressure, median [Q1,Q3] 83540 63.0 [55.0,72.0] 62.0 [54.0,70.0] 70.0 [62.0,78.0] <0.001
Unassisted Respiratory Rate, median [Q1,Q3] 1666 18.0 [18.0,18.0] 18.0 [18.0,18.0] 18.0 [18.0,18.0] 0.460
End Tidal CO2, median [Q1,Q3] 90046 33.0 [27.0,38.0] nan [nan,nan| 33.0 [27.0,38.0] nan
Base Excess, median [Q1,Q3] 85186 -1.9 [-4.2,0.6] -2.7 [-4.8,-0.7] -1.0 [-3.7,1.6] <0.001
Bicarbonate (HCO3), median [Q1,Q3] 17207 250 [23.027.0]  25.0 [23.027.0]  25.0 [23.0.27.0]  0.003
FiO2, median [Q1,Q3] 77309 0.3 [0.2,0.4] 0.3 0.2,0.4] 0.3 0.3,0.4] <0.001
pH, median [Q1,Q3] 80082 7.4 [7.3,7.4] 7.4 (7.3,74] 7.4[7.3,7.4] 0.002
Partial Pressure of Carbon Dioxide (PaC0O2), median [Q1,Q3] 80054 39.0 [34.8,44.0] 38.4 [34.0,43.0] 40.0 [35.0,45.0] <0.001
Oxygen Saturation (Sa02), median [Q1,Q3)] 82171 97.1[95.1,98.5]  96.9 [95.0,98.1] 100.0 [97.0,100.0]  <0.001
Aspartate Aminotransferase (AST), median [Q1,Q3] 31680 23.0 [17.0,35.0] 23.0 [18.0,34.0] 23.0 [16.0,37.0] <0.001
Blood Urea Nitrogen (BUN), median [Q1,Q3] 17661 14.0 [10.0,21.0] 15.0 [10.0,22.0] 13.0 [9.0,19.0] <0.001
Alkaline Phosphatase, median [Q1,Q3] 31688 77.0 [60.0,104.0] 78.0 [60.0,105.0] 75.0 [58.0,102.0] <0.001
Calcium, median [Q1,Q3] 17375 8.7 [8.3,9.1] 8.7 [8.3,9.0] 8.8[8.4,9.2] <0.001
Chloride, median [Q1,Q3] 17609 104.0 [101.0,106.0] 104.0 [101.0,107.0] 103.0 [101.0,106.0] <0.001
Creatinine, median [Q1,Q3] 17556 0.9 [0.7,1.2] 0.9 [0.7,1.2] 0.9 [0.7,1.2] <0.001
Direct Bilirubin, median [Q1,Q3] 68264 0.1[0.1,0.2] 0.2 [0.1,0.4] 0.1[0.1,0.2] <0.001
Glucose, median [Q1,Q3] 16103 111.0 [97.0,136.0]  113.0 [98.0,139.0]  106.0 [93.0,129.0]  <0.001
Lactic Acid, median [Q1,Q3] 72063 1.5 [1.1,2.1] 1.4 [1.0,1.8] 2.0 [1.5.2.6] <0.001
Magnesium, median [Q1,Q3] 44429 1.9 [1.8,2.1] 2.0 [1.8,2.1] 1.9 [1.8,2.1] <0.001
Phosphorus, median [Q1,Q3] 59747 3.3 [2.8,3.9] 3.3 [2.8,3.9] 3.4 [2.9,3.9] 0.198
Potassium, median [Q1,Q3] 20086 3.9 [3.7,4.2] 3.9 [3.7,4.2] 40 [3.8,4.3] <0.001
Total Bilirubin, median [Q1,Q3] 34180 0.6 [0.4,0.9] 0.6 [0.4,0.9] 0.5 [0.4,0.8] <0.001
Troponin, median [Q1,Q3] 64861 0.0 [0.0,0.1] 0.0 [0.0,0.1] 0.0 [0.0,0.0] <0.001
Hematocrit, median [Q1,Q3] 20104 33.8 [29.3,38.3] 33.2 [28.9,37.5] 35.3 [30.3,39.9] <0.001
Hemoglobin, median [Q1,Q3] 20025 11.0 [9.4,12.6] 10.8 [9.3,12.3] 11.6 [9.8,13.1] <0.001
Partial Prothrombin Time (PTT), median [Q1,Q3] 69279 29.8 [27.1,33.4] 30.5 [27.6,34.4] 28.9 [26.3,32.0] <0.001
White Blood Cell Count, median [Q1,Q3] 20275 8.4 [6.2,11.2] 8.4 [6.2,11.2] 8.5 [6.3,11.3] 0.001
Fibrinogen, median [Q1,Q3] 85998 308.0 [221.0,426.0]  275.0 [203.0,391.2] 369.0 [280.8,463.0] <0.001
Platelets, median [Q1,Q3] 20348 217.5 [170.0,276.0] 219.0 [171.0,279.0] 214.0 [169.0,270.9] <0.001

Table 1: Vital Signs and Laboratory Value Statistics for Emory and Grady Patient En-

counters

For each experiment trial, we randomly
split the data into labeled training samples
from the source domain, unlabeled training
samples from the target domain, and labeled
testing samples from the target domain. The
performance of a given sepsis predictor is
quantified as the classification results on un-
labeled training samples and labeled test-
ing samples. Since sepsis prediction is a
high-stake mission-critical task, we use four
metrics as classification statistics: sensitiv-
ity, specificity, precision, and accuracy. The
higher those four metrics are, the better per-
formance the obtained predictor has. We
perform 200 independent experiment trials

and discuss the details of experiment results
in the next subsection.

We compare our proposed framework with
the following baseline approaches in litera-
ture:

e (Basic-OT): the basic optimal transport
algorithm in (Flamary et al., 2017, Sec-
tion 3);

e (Reg-OT): the label-regularized optimal
transport algorithm in (Flamary et al.,
2017, Section 4);

e (FDA): feature-level domain adaptation
in Kouw et al. (2016);
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Figure 1: (a) Scatter plot of sample points;
Plot for classification on estimated
ground truth of target samples.

e (SAS): subspace aligned classifier in Fer-
nando et al. (2014);

e (TCS): transfer component classi-

fier (TCS) in Pan et al. (2010).

All hyper-parameters are tuned by cross-
validation based on training samples from
the source domain.

6.2. Experiment Results

The detailed classification results together
with the basic information of the real dataset
are summarized in Table 2. In particular,
we report the performance of domain adap-
tation for transforming from Emory hos-
pital data to that of Grady hospital, and
transforming from Grady to Emory hospital.
From Table 2(a) and Table 2(b), we can see
our proposed SDRO algorithm outperforms
the other baseline approaches for almost all
metrics in all scenarios. Especially, the base-
line approaches have very small precision for
two scenarios, while our proposed algorithm
greatly improves this metric, indicating that
it performs well for samples coming from
minorities, i.e., patients with sepsis disease.
Also, for the task of domain adaptation for
Grady — Emory, all approaches have very
small classification accuracy. Omne possible
explanation is that the corresponding opti-

(b) Visualization of Optimal Transport; (c)
target samples; (d) Plot for classification on

mal transport mapping may lead to highly
noisy labels at the target domain. However,
our proposed algorithm still improves the
classification accuracy since the DRO tech-
nique can deal with noisy data with satisfac-
tory out-of-sample performance.

7. Conclusion

In this work, we proposed a two-step op-
timal transport-based strategy for the task
of domain adaptation with applications to
sepsis prediction. The proposed algorithm
first learns how to transform sample points
from the source domain to the target do-
main. To deal with the challenge of noisy and
unbalanced samples, the algorithm next ap-
plies the distributionally robust optimization
technique with the Sinkhorn distance and
asymmetric cost function to obtain a reliable
classifier with satisfactory out-of-sample per-
formance. The connection between our pro-
posed formulation and widely used classifica-
tion models, i.e., DRO formulation with the
Wasserstein distance and regularized logistic
regression formulation, was also uncovered.
Numerical experiments on synthetic and real
datasets demonstrated the competitive per-
formance of this algorithm.
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Table 2: Results of domain adaptation with several optimal transport-based approaches.
Each experiment is repeated for 20 independent trials, and 95% confidence intervals
of classification results are reported for different approaches.

(a)

Domain adaptation for Emory — Grady

Precision Recall Fy Score Accuracy
Basic.OT Train (Unlabeled) .155+.069 .009 4+.006 .018 +.010 .737 4.028
Test (Labeled) 135+.052  .008 +.003 .0154.006 .734+.028
Reg-OT Train (Unlabeled) .194 £.057 .008 £.005 .015+.015 .731+.024
Test (Labeled) 104 +.034 .010+.004 .018+.009 .735+.031
FDA Train (Unlabeled) .128 +.042 .010+.006 .018 +.012 .7154.019
Test (Labeled) .097 +£.041 .007 +.003 .013+.003 .727 +.025
SAS Train (Unlabeled) .127 £+.043 .009 +.004 .017 4+.011 .729 4+ .034
Test (Labeled) 128 +£.041  .014+.006 .025+.008 .733 +.051
TCS Train (Unlabeled) .150 4+.034 .0104+.003 .018 +.010 .734 +.027
Test (Labeled) 112 4£.029  .015+.003 .027 +£.009 .722 + .035
SDRO Train (Unlabeled) .211+.075 .011+.004 .021 +.032 .739 +.067
Test (Labeled) .269 +.087 .017 +.007 .032+.003 .733 +.029
Number of Predictors 39
Labeled Size 16712
Unlabeled Size 13662
Testing Size 10000
(b)
Domain adaptation for Grady — Emory
Precision Recall F Score Accuracy
Basic.OT Train (Unlabeled) .307 £.079 .0514.014 .0884+.023 .531 +.020
Test (Labeled) 311 4+.058 .050 +.008 .087 4+.014 .527 +.016
Reg-OT Train (Unlabeled) .324 +.059 .061 +.004 .106 +.013  .526 4 .017
Test (Labeled) 3434+ .071  .063+.006 .106 +.011 .523 +.008
FDA Train (Unlabeled) .365 +.064 .053 +.009 .093 +.019 .546 +.025
Test (Labeled) 258 +.049 .049+.005 .082 4 .007 .530+.018
SAS Train (Unlabeled) .300 +.049 .060 £+ .007 .100 +.014 .532 4 .031
Test (Labeled) 372 4+.054  .064 +.008 .109 +.007 .523 +.010
TCS Train (Unlabeled) .338 £.047 .057 +£.006 .098 +.015 .532 4 .034
Test (Labeled) .3824+.043 .063+.006 .093 4+.003 .527 +.008
SDRO Train (Unlabeled) .383 4+.009 .066 +.004 .112+.007 .562 + .007
Test (Labeled) 388 +£.041 .065+.006 .111+.011 .554 +.003
Number of Predictors 39
Labeled Size 13662
Unlabeled Size 16712
Testing Size 50000
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