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Abstract
The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-
expectation risk bound in the standard PAC classification setup. In one of the first COLT open
problems, Warmuth conjectured that this prediction strategy always implies an optimal high prob-
ability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture
in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an
in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot
go beyond that implied by Markov’s inequality. Our construction of these poorly performing one-
inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes.

Our negative result has several implications. First, it shows that the same poor high-probability
performance is inherited by several recent prediction strategies based on generalizations of the one-
inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an
estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-
probability regime. This discrepancy occurs despite the boundedness of the binary loss for which
arguments based on concentration inequalities often provide sharp high probability risk bounds.
Keywords: PAC Learning, Risk Bounds, Sample Complexity, one-inclusion graphs, Error Correct-
ing Codes

1. Introduction and main result

Learning binary classifiers is arguably the oldest problem in the theory of machine learning. The
model, which is captured by the PAC (Probably Approximately Correct) model of learning, traces
back to the early works of Vapnik and Chervonenkis (1964, 1974) and of Valiant (1984). A PAC
learning algorithm is one that satisfies the following. Given a hypothesis class F (set of binary-
valued functions) on a domain X , we observe a sample of points (X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn)),

called the training sample, where X1, . . . Xn are independent copies of a random variable X ∈ X
distributed according to an unknown distribution P , and f⋆ ∈ F is an unknown target hypothesis.
The aim is to provide an algorithm that, based on the sample, outputs a hypothesis f̂ whose predic-
tion error is as small as possible with high probability with respect to the realization of the training
sample. Formally, we define the error errP (f̂) = PrX∼P

[
f̂(X) ̸= f⋆(X)

]
as the probability of

missclassification on a freshly sampled point. Since the target hypothesis f⋆ is in the hypothe-
sis class F , the most natural strategy is to pick any hypothesis f̂ ∈ F that is sample-consistent:
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f̂(Xi) = f⋆(Xi) for all i = 1, . . . , n. The hypothesis selected using this strategy is usually referred
to as an empirical risk minimizer (ERM). Denoting any of these hypotheses by f̂ERM, the standard
bound (Vapnik and Chervonenkis, 1968; Blumer et al., 1989) shows that

errP (f̂ERM) = O

(
d

n
log

(n
d

)
+

1

n
log

(
1

δ

))
, (1)

with probability at least 1− δ, where d is the Vapnik-Chervonenkis (VC) dimension of F (formally
defined in Section 3). Although this bound has been recently sharpened for ERM for some specific
concept classes (Hanneke, 2016b; Zhivotovskiy and Hanneke, 2018), it is known that the optimal
risk bound

Θ

(
d

n
+

1

n
log

(
1

δ

))
(2)

can only be achieved in general by improper algorithms (Bousquet et al., 2020). These are algo-
rithms that output a hypothesis outside the hypothesis class F and thus exclude the standard ERM
strategy. The question of achieving the optimal sample complexity (2) of PAC learning has been
resolved by Hanneke (2016a), whose solution sharpens the majority vote analysis of Simon (2015).
The solution uses a recursive majority vote scheme to achieve the optimal sample complexity (2).

However, for many years, the most natural candidate for being an optimal PAC learner was the
one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth (1994), whose in-expectation
risk is known to be optimal in this model. We now briefly describe the one-inclusion graph al-
gorithm. Recall that the projection of a hypothesis class F onto a subset of the domain S =
{x1, . . . , xn} ⊆ X is defined as F|S = {(f(x1), . . . , f(xn)) : f ∈ F}. Informally, the one-
inclusion graph algorithm pre-determines a strategy that, for all possible realizations S of the set
of unique elements in the training sample and candidate test points x, orients/directs the edges of
the one-inclusion graph G(F|S∪{x}) = (V,E) whose vertices are F|S∪{x} and whose edges con-
nect two hypotheses that only differ on a single point in S ∪ {x}. At test time, given a concrete
realization of S and test point x, the algorithm finds the edge (a pair of hypotheses) consistent with
the training sample in the one-inclusion graph G(F|S∪{x}), and predicts on x using the label that
the head of this edge (a hypothesis) assigns to x. When the maximum out-degree of the vertices
is small, one can show that the expected error of this prediction strategy is small (Haussler et al.,
1994). Throughout this section we denote the output of a one-inclusion graph algorithm by f̂OIG.
We postpone a formal description of this algorithm to Section 3.

The result by Haussler, Littlestone, and Warmuth (1994) shows that the following error bounds
hold for any distribution P and any target concept f∗ ∈ F ,

E errP (f̂OIG) ⩽
d

n+ 1
, and by Markov’s inequality: errP (f̂OIG) ⩽

d

(n+ 1)δ
, (3)

with probability at least 1− δ. In the bound above, the expectation is taken with respect to the ran-
dom sample X1, . . . , Xn. In one of the first COLT open problems Warmuth conjectured (Warmuth,
2004) that the one-inclusion graph algorithm can always achieve the optimal sample complexity (2).
One of the motivations of Warmuth was that the one-inclusion graph algorithm is almost optimal in
expectation (Li et al., 2001), including even the constant factor which is asymptotically tight. In this
context, it is worth mentioning that the existing solution of Hanneke (2016a) has a relatively large
constant in the risk bound. Therefore, as noticed by Hanneke (2016a), a positive solution to the con-
jecture of Warmuth could also lead to improved constant factors in the optimal bound (2). Recently,
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Larsen (2022) used arguments inspired by Hanneke (2016a) to show that the classical bagging algo-
rithm also achieves the optimal PAC complexity bound, while also bringing up the question about
optimal constants. Some additional interest in this question arises from numerous recent general-
izations of the one-inclusion graph algorithm, some of which will be mentioned in Section 2. By
understanding the basic PAC learning setting, we can possibly improve the bounds for these newer
generalizations.

In this paper, we refute the conjecture of Warmuth in a strong sense by showing that the above
application of Markov’s inequality is essentially the best one can hope for in general. Our negative
result works for almost any practically interesting hypothesis class including the class induced by
half-spaces in Rp for p ⩾ 2. Before stating our result and Warmuth’s question formally, we first
introduce a few notions.

A hypothesis class F is said to contain a star set of arbitrary size if for each n, there is a
subset S = {x1, . . . , xn} of the domain and classifiers f0, f1, . . . , fn ∈ F such that for all i, f0
and fi disagree on a unique point in S. A more formal definition can be found in Definition 2.
In particular, such classes are exactly the classes whose star number (see the formal definition in
(Hanneke and Yang, 2015, Definition 2)) is infinite. Many practically interesting VC classes have
arbitrarily large star sets. These examples include the class of intervals on the real line as well as
the class of half-spaces in Rp for p ⩾ 2. We refer to (Hanneke and Yang, 2015, Section 4.1) for a
detailed discussion.

Let F be a hypothesis class defined on a countable set X with finite VC dimension d. Informally,
we say that a one-inclusion graph algorithm is valid for F if for any n-element subset S ⊆ X , the
one-inclusion graph of the projection of F on S is oriented in a way such that the maximum out-
degree of the one-inclusion graph is at most O(d). A formal definition can be found in Section 3.
The result of Haussler, Littlestone, and Warmuth (1994) implies that every VC class has a valid
one-inclusion graph algorithm. Moreover, for any such algorithm both of the bounds in (3) hold up
to multiplicative constant factors. Observe that orientations of one-inclusion graphs with out-degree
at most O(d) are not necessarily unique, so in general we have a family of valid strategies. Using
this definition, we can phrase Warmuth’s conjecture (Warmuth, 2004) as follows.

Conjecture (Warmuth (2004)) The optimal sample complexity bound (2) holds for any valid one-
inclusion graph algorithm.

Our main result negatively resolves Warmuth’s conjecture.

Theorem 1 Let F be a hypothesis class defined on a countable set X with finite VC dimension d.
Assume that F has a star set of arbitrary size. There are positive absolute constants c1, c2 and c3
such that for any sample size n and confidence parameter δ satisfying δ ∈ (c1d/n, c2), there is a
valid one-inclusion graph algorithm that outputs the hypothesis f̂OIG such that for some distribution
P = P (n, δ) over X and target concept f⋆ ∈ F we have, with probability at least δ,

errP (f̂OIG) ⩾ c3
d

nδ
.

1.1. Proof overview

We now provide a high-level overview of our proof. For simplicity, we will sketch the argument
for the hypothesis class F ind consisting of functions that take on the value 1 on at most one point in
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the domain X = Z. In other words, F ind consists of the zero function and the indicator functions
of single points on X . It is easy to verify that the VC dimension of F ind is 1. Furthermore, notice
that every n-element subset S = {x1, . . . , xn} ⊆ X is a star set for F , witnessed by F|S =
{f0, . . . , fn}, where f0 is the zero function and fi is the indicator on xi for i ⩾ 1.

Recall that the one-inclusion graph algorithm uses the entire training sample S together with
the test point Xn+1 to determine the label of Xn+1 by building and orienting a one-inclusion graph.
For our specific class F ind, whenever the test point Xn+1 is not in the training sample, this strategy
always boils down to picking between the label yn+1 = 1 determined by fn+1 and the label yn+1 =
0 determined by f0. Our goal will be to show that there is a choice of orientation that is valid for this
class, but leads to a one-inclusion graph algorithm that has constant error with decent probability.

We now explain the desired properties that we want the orientations we choose to satisfy. Fix a
sample size n. Our hard distribution will be the uniform distribution on the set [2n] and we will pick
the target function f⋆ to be the zero function. Let S be a training sample of size n and assume for
simplicity we always sample n unique points. Our goal will be to show that a Θ(1/n) fraction of the
possible training samples can be made into “bad” training samples. Specifically, we will show that
for any such “bad” training sample S, when we project F ind onto S and an unseen test point Xn+1,
the orientation determined by the one-inclusion graph algorithm directs the edge e = {f0, fn+1}
from the zero function f0 to fn+1 for a constant fraction of the realizations of Xn+1. (See Fig. 1.)
This would immediately imply that with probability at least Θ(1/n) (we sample the training sample
uniformly) we get a one-inclusion graph algorithm that has constant error.

How should we select these “bad” training samples? A naive approach would be to try and pick
random orientations, i.e., for each of the possible one-inclusion graphs formed by n + 1 sized sets
S′ ⊆ [2n], pick a random edge {f0, fi} and direct it towards fi. Unfortunately, such an approach
cannot work since it does not “coordinate” the errors well. Concretely, let S be an n-sized training
set, Z = [2n] \ S (the test points not observed in the training set) and for any Xn+1 ∈ Z, AXn+1 is
the event that the oriented one-inclusion graph for S∪{Xn+1} directs e = {f0, fn+1} towards fn+1.
Then the probability that more than t = C log(n), for some large constant C, possible extensions
of S are oriented towards fn+1 is bounded as

Pr
[
At least t of the AXn+1 occur

]
⩽

(
n

t

)(
1

n+ 1

)t

⩽
nt

t!
· 1

(n+ 1)t
<

1

t!
<

1

n
.

Hence, this strategy of randomized orientations would result in a set of orientations where at most
1/n fraction of the training samples incur error more than t/n = O(log(n)/n), a bound signifi-
cantly worse than the desired bound from Theorem 1 which corresponds to constant error in this
scenario. The key point of failure in this approach is that for any fixed training sample, S, the
orientation of each of its extensions is independently chosen. To overcome this, we use a different
approach.

We instead shift our perspective towards the possible training sets, S, that one may observe and
correlate the orientations of the (n + 1)-sized extensions such that large error is incurred when S
is drawn as a training set. Recall that these orientations were previously chosen randomly. For-
mally, let S denote the set of (2n)-length binary vectors with exactly n-ones where each element
corresponds to a possible training set that we may sample. Our goal now is to identify a subset T
such that |T | ⩾ Ω(|S|/n) and for each S ∈ T , orient most of its extensions such that the edge
e = {f0, fn+1} is oriented towards fn+1. The core challenge here is that any given n+ 1 sized set,
S′, has n + 1 possible training sets which could have been extended to generate it and we need to
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ensure that while defining extensions for two distinct S1, S2 ∈ T , we do not generate two contra-
dictory orientations for the same n + 1 sized extension, S′. Our problem now reduces to the task
finding a suitable set, T , which simultaneously constitutes a significant fraction of S and whose
elements do not result in clashes when extended to their n + 1 sized counterparts. To do this, we
exploit a connection to coding theory.

Consider the following family of vectors:

Ca(2n) =

{
C ∈ {0, 1}2n :

2n∑
i

i · C(i) ≡ a (mod 2n+ 1)

}
,

where a ∈ {0, 1, . . . , 2n}. These are the celebrated Varshamov-Tenengolts (VT) error correcting
codes (with parameter a) introduced by Varshamov and Tenengolts (1965). In the context of coding
theory, VT codes are able to recover a transmitted message C ∈ Ca(2n) from a corrupted message
C̃ where a single element in the vector was flipped from a 1 to a 0.1 A consequence of this property
of Ca(2n) is that, for any two vectors C1, C2 ∈ Ca(2n) that have the same number of 1s, C1 and
C2 must differ on more than 2 entries. We can use this “uniqueness” property in the following way:
consider the subsets of Ca(2n) that have an equal number of 0s and 1s and call this set Ta. We will
view Ta as a collection of possible training samples we can receive. Notice that any extension of
any two distinct training samples S1, S2 ∈ Ta to n + 1 sized sets S′

1 and S′
2 must satisfy S′

1 ̸= S′
2

by the “uniqueness” property and hence, this rules out the possibility of obtaining contradictory
orientations for the same n + 1 sized extensions from two different training sets. Thus, for any
training sample S ∈ Ta, we can coordinate the error of the algorithm by orienting the one-inclusion
graphs formed from every extension S′ = S ∪ {xn+1} (where xn+1 ∈ [2n] \ S) to direct the edge
{f0, fn+1} towards fn+1. By picking an a that maximizes the size of Ta, we can conclude that Ta

contains at least a 1/(2n+1) fraction of the possible training samples, each of which is “bad” since
they induce a prediction error of 1/2. Our argument easily applies to VC classes that have arbitrarily
large star sets. In the actual proof we extend the argument above to use multiple Ta’s together with a
careful application of the probabilistic method. Doing this introduces a tradeoff between prediction
error and failure probability that incorporates all three parameters δ, n, and d. The full details of
our construction can be found in Section 4.

The remainder of this paper is organized as follows. In Section 2 we survey the relevant literature
and discuss related results. In Section 3 we state some preliminary definitions and introduce notation
used throughout the paper. Section 4 is devoted to our construction and the full proof of Theorem 1.

2. Related work and discussion

In this section, we present some remarks to help the reader place our result in a broader context. We
also discuss some relevant literature.

The leave-one-out/exchangeability argument and high probability risk bounds. The upper
bound for any valid one-inclusion graph algorithm is proven in Haussler et al. (1994) using a leave-
one-out argument. The earliest theoretical analysis of a leave-one-out argument in our context
is sometimes attributed to Lunts and Brailovsky (1967), who noticed that although this method
gives sharp in-expectation risk bounds, it does not necessarily lead to high probability/low variance

1. In fact, as shown by Levenshtein (1966), VT codes can even handle single bit deletions. See (Sloane, 2002).
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f1 f2 fn fn+1

f0

(a) An orientation that incorrectly predicts using fn+1.

f1 f2 fn fn+1

f0

(b) Orientation that always correctly predicts using f0.

Figure 1: Projection of the class of indicators F ind onto a size n + 1 star set S. For i ⩾ 1 the
function fi is the function that disagrees with f0 on xi. The red edge represents which
hypothesis the one-inclusion graph algorithm picks between to determine the label of the
point xn+1.

bounds. In fact, Lunts and Brailovsky connected the variance of the leave-one-out bound with sta-
bility2 properties of the underlying learning algorithm and provided an example where the variance
of the prediction error can be large despite a small leave-one-out error. Based on this, Vapnik and
Chervonenkis later asked (Vapnik and Chervonenkis, 1974, Chapter VI, Section 7) if, for most prac-
tically interesting classification algorithms, a small leave-one-out error also leads to small prediction
error with high probability. It is worth mentioning that the recent analysis of stable compression
schemes in (Zhivotovskiy, 2017; Bousquet et al., 2020; Hanneke and Kontorovich, 2021) shows that
a leave-one-out argument can lead to sharp high probability bounds when additional stability-type
assumptions are made. The result of Theorem 1 is on the other end of the spectrum: we construct a
valid one-inclusion graph algorithm that does not satisfy any of these stability-type properties.

Confidence boosting approach. One of the standard ways to boost low confidence classifiers
(corresponding to e.g., δ = 1/2 in (3)) is based on the following approach. One first splits the sample
into approximately log(1/δ) non-intersecting equal parts to learn roughly log(1/δ) independent
classifiers, and then aggregates them to pick the best classifier. This idea is exploited in Haussler
et al. (1994), where the authors run the one-inclusion graph algorithm multiple times to provide an
algorithm whose probability of error is bounded by

O

(
d

n
log

(
1

δ

))
.

2. By stability we mean sensitivity to small perturbations in the training sample.
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While confidence boosting appears to be a general technique to get high probability bounds, we
argue that at least in some cases we have to understand the high probability performance of the
original algorithm. First, we observe that the term log

(
1
δ

)
appears multiplicatively in the risk bound

for the boosted algorithm, while the optimal risk bound (2) has an additive log
(
1
δ

)
term. Second,

it is not even clear that this approach is generally applicable to leave-one-out based estimators as
the confidence boosting approach exploits the realizable/boundedness of the loss assumptions in a
strong sense. In particular, it has been recently shown in (Mourtada et al., 2021) that in a related
setup of agnostic linear regression the algorithm of Forster and Warmuth (2002), whose analysis
follows the same leave-one-out argument used in the analysis of the one-inclusion graph algorithm
(Haussler et al., 1994), provides a constant risk with at least constant probability. When learning
in the presence of noise, Markov’s inequality in the confidence boosting trick cannot be applied as
the excess risk is potentially negative for improper learners (see (Mourtada et al., 2021) for more
details).

Orientations of one-inclusion graph leading to optimal PAC learners. For some specific classes
the one-inclusion graph algorithm may correspond to an optimal PAC learner. In particular, for in-
tersection closed VC classes the so-called closure algorithm achieves the bound (2). We refer to
(Darnstädt, 2015) for a detailed description as well as to a sequence of papers (Helmbold et al.,
1990; Auer and Ortner, 2007; Hanneke, 2016b; Bousquet et al., 2020), where various results show-
ing the optimality of the closure algorithm are provided. However, as noted by Warmuth (2004), the
closure algorithm corresponds to a specific family of orientations of the one-inclusion graph (the
same observation is explicit in (Auer and Ortner, 2007, Remark 2)). It is not clear if the known
arguments (the original proof was based on a network flow argument (Haussler et al., 1994), and
another existence argument of Haussler (1995) is based on the result of Alon and Tarsi (1992))
that focus on the existence of valid one-inclusion graph algorithms will lead to orientations exactly
corresponding to the closure algorithm for intersection-closed classes. In fact, it follows from our
analysis that for some intersection-closed classes we have two valid one-inclusion graph prediction
strategies such that one achieves the optimal PAC bound (2), while the second cannot bypass the
tail of Markov’s inequality (3).

Applications and extensions of the OIG algorithm. Despite some limitations observed in this
paper, the importance of the original one-inclusion algorithm of Haussler, Littlestone, and Warmuth
(1994) follows from various applications and extensions of this algorithm in the literature. Here
we list some of them. The analysis of the one-inclusion graph algorithm is used in the proof of
Haussler’s packing lemma (Haussler, 1995) that provides a sharp bound for covering numbers of
VC classes. We refer to (Bartlett and Long, 1998; Kupavskii and Zhivotovskiy, 2020) for extensions
and simplifications of Haussler’s analysis. Haussler’s packing lemma is widely used in empirical
process theory and computational geometry.

A careful inspection of the analysis of Haussler, Littlestone, and Warmuth (1994) shows that the
error bound of the one-inclusion graph does not depend on the VC dimension itself, but rather on the
average density of subgraphs of the one-inclusion graph. This observation has allowed for a multi-
class extension3 of this algorithm leading to new complexity measures and non-trivial risk bounds
in this setting (Rubinstein et al., 2009; Simon and Szörényi, 2010; Daniely and Shalev-Shwartz,
2014; Brukhim et al., 2022). Similarly, the one-inclusion graph algorithm can be extended to the

3. We remark that the analysis of Hanneke’s optimal PAC algorithm (Hanneke, 2016a) uses a VC dimension based
uniform convergence argument so it does not easily apply to these extensions.
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(bounded) real valued regression setup (Bartlett and Long, 1998). The analysis of Long (1998) al-
lows, in particular, to extend the one-inclusion graph algorithm to the agnostic classification setting.
Explicit bounds of this sort can be found in (Hanneke et al., 2022). Furthermore, the one-inclusion
graphs algorithm and some extensions have proven to be useful in other generalizations of the bi-
nary classification setup such as universal learning (Bousquet et al., 2021), robust learning (Attias
et al., 2022; Montasser et al., 2022), and several other setups (Haghifam et al., 2022; Alon et al.,
2022; Charikar and Pabbaraju, 2022). As we mentioned earlier, our lower bound has implications
for some of the settings studied in these papers.

3. Preliminaries and notation

In our problem setting, there is an unknown probability distribution P over some countable instance
space X that generates examples, and a known hypothesis class F which is a collection of binary
functions (hypotheses) that map from the instance space X to the label space Y = {0, 1}. Fur-
thermore, there is an unknown target hypothesis f⋆ ∈ F that labels the examples generated by P .
A learning algorithm receives an i.i.d. training sample S̄ = (X1, . . . , Xn) sampled from P along
with their accompanying labels (f⋆(X1), . . . , f

⋆(Xn)) as input, and produces a hypothesis f̂ (not
necessarily in F) as its output. The goal of the learning algorithm is to produce a hypothesis f̂

that has low error under P which we define to be errP (f̂) = PrX∼P

[
f̂(X) ̸= f⋆(X)

]
. We will

find it convenient to differentiate between the training sample S̄ that is potentially a multiset and its
corresponding set version S which we will refer to as the training set. It will also be convenient to
define the labelled training sample (S̄, f⋆(S̄)) = ((X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn))). The labelled

training set (S, f⋆(S)) is defined similarly.
We define the uniform distribution over a finite set A to be U(A). When the choice of the set A

is clear from context we will sometimes abbreviate this to U . For a finite set A and any k ⩽ |A|,
define Sk(A) to be the set of subsets of A of size k, i.e., Sk(A) = {A′ ⊆ A : |A′| = k}. We will
often abbreviate this to Sk when the finite set A we use is clear from the context. For any positive
integer n define [n] = {1, 2, . . . , n}. Given a hypothesis class F and subset of the instance space
S = {x1, . . . , xn} ⊆ X , we define the projection of F onto S to be F|S = {(f(x1), . . . , f(xn)) :
f ∈ F}. In words, the projection is the set of all functions the hypothesis class F realizes on the
set S. We say an n-element set S = {x1, . . . , xn} ⊆ X is shattered by the hypothesis class F if the
projection F|S = {0, 1}n, i.e., F realizes every possible function on S. The Vapnik-Chervonenkis
(VC) dimension of a hypothesis class F is the largest integer d such that there exists a d-element
subset of X that is shattered by F . Throughout this paper we will use the variable d to denote the
VC dimension of hypothesis class F and it will always be clear from context which hypothesis class
d will correspond to. For a projection F|S with |S| = n, we define the Hamming distance between
two hypotheses f and g in F|S , denoted by ρn(f, g), to be the number of elements in S that f and
g differ on: ρn(f, g) = |{x ∈ S : f(x) ̸= g(x)}|.

We next define the notion of star sets discussed earlier. The notion was first explicitly defined
in the context of active learning, see (Hanneke and Yang, 2015). This will be the main notion of
complexity that will be used in our lower bound.

Definition 2 (Star sets) A concept class F defined on an infinite domain X has a star set of arbi-
trary size if for any integer n, there exist S = {x1, . . . , xn} ⊆ X and classifiers f0, f1 . . . , fn ∈ F
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such that for all i = 1, . . . , n,

{x ∈ S : fi(x) ̸= f0(x)} = {xi}.

For any n such a set S is a star set. The corresponding classifiers {fi}ni=0 witness the star set S.

We now formally define one-inclusion graphs, orientations of one-inclusion graphs, and the
one-inclusion graph algorithm.

Definition 3 (One-inclusion graph) Fix a hypothesis class F and an n-element subset of the do-
main S ⊆ X . The one inclusion graph G(F|S) = (V,E) has its vertex set as V := F|S and the
edge set as

E := {{f, g} : f, g ∈ F|S , ρn(f, g) = 1}.

In words, we connect an edge between two vertices (projected hypotheses) if and only if they differ
on a single element in the set S.

In order to use the one-inclusion graph in a prediction algorithm, we will “orient” the undirected
one-inclusion graph into a directed graph.

Definition 4 (Orientations for one-inclusion graphs) Fix hypothesis class F and any finite subset
S ⊆ X . An orientation of G(F|S) is a function σS : E → V such that for any e ∈ E, σS(e) ∈ e.
Let V be a collection of finite subsets of X . An orientation rule for V , usually denoted by σ, is a
collection of orientations for each element of V , that is,

σ = {σS : S ∈ V }.

An orientation rule now denotes orientations for all possible finite subsets of X .

Put differently, an orientation takes an undirected one-inclusion graph and defines a corresponding
directed one-inclusion graph by determining the head of each edge. An orientation rule for hy-
pothesis class F just tells us how we should orient any of the possible one-inclusion graphs we can
obtain from F and any finite subset of the domain S. For a one-inclusion graph G(F|S) = (V,E)
and orientation σS , define the out-degree of a vertex v ∈ V to be

out(v;σS) = |{e ∈ E : v ∈ e, σS(e) ̸= v}|.

The max out-degree of G(F|S) is naturally defined as out(σS) = maxv∈V out(v;σS).
We are now ready to describe the one-inclusion graph algorithm. We present its pseudocode

in Algorithm 1. A one-inclusion graph algorithm is defined by the orientation rule σ it uses and the
labeled training set (S, f⋆(S)) it receives. This is reflected in the notation f̂σ,S that we use for the
hypothesis produced by the one-inclusion graph algorithm (see Algorithm 1). We now define what
it means for a one-inclusion graph algorithm to be valid.

Definition 5 Fix a hypothesis class F with VC dimension d. We say a one-inclusion graph algo-
rithm for F that uses orientation rule σ is valid if

max
σS∈σ

out(σS) = O(d).

9
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A beautiful result of Haussler et al. (1994) shows that there is always a valid one-inclusion graph
algorithm for any hypothesis class with finite VC dimension.

Theorem 6 (Haussler et al. (1994, Theorem 2.2)) For any hypothesis class F over instance space
X with VC dimension at most d and any finite S ⊆ X , there exists an orientation σS of G(F|S) with

out(σS) ⩽ d.

Algorithm 1 One-inclusion graph algorithm.
Inputs: Labelled training set (S, f⋆(S)), orientation rule σ.
Output: Hypothesis f̂σ,S : X → Y .

For any point x ∈ X the hypothesis f̂σ,S predicts as follows:

1: If there is a unique label y for x consistent with (S, f⋆(S)) and F , predict y.

2: Let e be the edge in G(F|S∪{x}) with hypotheses consistent with (S, f⋆(S)) but not on x.

3: Predict according to σS∪{x}(e), i.e., the hypothesis pointed to in the orientation of e.

4. The construction

In this section, we prove our main result. Let A = {x1, . . . , xm} be a set of size m with a fixed
ordering of its elements. For any k-element subset B ⊆ A with k ⩽ m, we will slightly overload
notation by simultaneously referring to B as a subset of elements of A, and the length n binary
vector that is 1 in the i-th entry if and only if xi is in B. We will clarify the definition of the set A
such that its correspondence to length n binary vectors is clear.

We begin by recalling VT codes and stating a useful property they enjoy. VT codes of length m
and parameter a ∈ {0, 1 . . . ,m} are given by the following family of vectors:

Ca(m) =

{
C ∈ {0, 1}m :

m∑
i=1

i · C(i) ≡ a (mod m+ 1)

}
.

We will find the following notion of coverage to be useful.

Definition 7 (Coverage) Fix an integer m. We say a vector S ∈ {0, 1}m is covered by the vector
S′ ∈ {0, 1}m if there is an index i ∈ [m] such that S(i) = 0 but S′(i) = 1, and for every j ̸= i we
have S(j) = S′(j). We will denote this by S ≺ S′.

With this notation, VT codes satisfy a “uniqueness” property crucial for our analysis.

Lemma 8 (Unique neighborhoods) Let A be a set of m elements. For any k ⩽ m, binary vector
S′ ∈ Sk(A) and a ∈ {0, 1, . . . ,m}, there exists at most one binary vector S ∈ Ca(m) with S ≺ S′.

Proof Towards a contradiction assume that for some S′ ∈ Sk(A) there were two vectors S1, S2 ∈
Ca(m) that satisfied the property above with corresponding indices i1 and i2. Then, we have that S1

and S2 disagree only on i1 and i2. So

0 ≡
m∑
i=1

i · S1(i)−
m∑
i=1

i · S2(i) ≡ i2 − i1 (mod m+ 1). (4)

10
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This is a contradiction since 1 ⩽ i1, i2 ⩽ m.

Let F be the hypothesis class with star sets of arbitrary size and VC dimension d for which
we would like to construct the bad one-inclusion graph algorithm. Let n denote the sample size
and let W2n ⊆ X be a star set of size 2n. Let f0, f1, . . . , f2n denote the corresponding functions
that witness the star set. Through a simple re-labeling procedure, we may assume that the center
of the star set f0 is the all zeros function; i.e., f0(x) = 0 for all x ∈ W2n. Our distribution will
simply be the uniform distribution over W2n with the labels generated by f⋆ = f0. Hence, our
labelled training sample consists of points S̄ = ((X1, f

⋆(X1)), . . . , (Xn, f
⋆(Xn))) where each Xi

is sampled from the uniform distribution U := U(W2n) and f⋆(Xi) = 0.
We will first prove a lower bound on the error conditioned on the number of unique elements

observed in our training sample S̄ ∼ Un, i.e., the size of the training set S. Let |S| = k. Note that
S may be associated with an element of Sk(W2n). Slightly abusing notation we denote Sk(W2n)
by Sk, and Sk+1(W2n) by Sk+1 respectively. We will now define a bipartite graph with one set of
vertices a subset of Sk (and hence, a possible realization of S) and the other Sk+1. This graph will
then be used to construct a orientation rule with poor performance. Formally, the vertex sets of the
graph are defined below

V1 =
⋃

0⩽i<4⌈δn⌉

T(i),

V2 = Sk+1, (VERT-SETS)

where Ti := Ci(2n) ∩ Sk is the intersection of the code Ci(2n) with the set of vectors containing
exactly k ones and T(0), . . . , T(2n) is a re-ordering such that |T(0)| ⩾ |T(1)| ⩾ . . . ⩾ |T(2n)|. In
particular, since Ci(2n) ∩ Cj(2n) = ∅ for i ̸= j, we have for any ℓ ∈ [2n] ∪ {0},∑ℓ

i=0
|T(i)| ⩾

ℓ+ 1

2n+ 1
· |Sk| ⩾

ℓ+ 1

3n
· |Sk|. (5)

We will construct our family of one-inclusion graphs such that for a substantial fraction of the
training sets in V1, the corresponding one-inclusion strategy incurs large error. We now construct
the edge set of our (undirected) bipartite graph, G = (V1, V2, E). Define for all v ∈ V1 ∪ V2,

N(v) = {u ∈ V1 ∪ V2 : (u, v) ∈ E},

that is, the set of neighbors of v in G. We will use the probabilistic method to construct an edge
set, E, satisfying certain cardinality constraints. The first constraint ensures that the family of
one-inclusion graphs we construct from G satisfies the appropriate out-degree constraints while the
second will be used to show that they incur large error.

Lemma 9 There exists an edge set E such that the bipartite graph G = (V1, V2, E) satisfies,

for all v′ ∈ V2, |N(v′)| ⩽ d, and
∣∣∣∣{v ∈ V1 : |N(v)| ⩾ d

8δ

}∣∣∣∣ ⩾ 3

4
|V1|.

Proof Our proof will utilize the probabilistic method. Defining M(v′) = {v ∈ V1 : v ≺ v′} for all
v′ ∈ V2, E is constructed according to the following random process. For any v′ ∈ V2:

11
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1. With ℓ = min {d, |M(v′)|}, pick {vi}i∈[ℓ] uniformly at random without replacement from
M(v′).

2. Add all edges {(v′, vi)}i∈[ℓ] to E.

Note that the first claim of the lemma follows immediately from the definition of the probabilistic
process. For the second, fix v ∈ V1 and define

Q(v) = {v′ ∈ Sk+1 : v ≺ v′},

and for v′ ∈ V2 define

pv′ =
min {d, |M(v′)|}

|M(v′)|
.

We have by the above definition and linearity of expectation

E [|N(v)|] =
∑

v′∈Q(v)

min {d, |M(v′)|}
|M(v′)|

=
∑

v′∈Q(v)

pv′ .

From the independence of the indicators 1 {v′ ∈ N(v)},

Var(|N(v)|) = Var

 ∑
v′∈Q(v)

1
{
v′ ∈ N(v)

} =
∑

v′∈Q(v)

Var
(
1
{
v′ ∈ N(v)

})
⩽

∑
v′∈Q(v)

pv′ .

By Lemma 8 and the definition of V1, we have |M(v′)| ⩽ 4⌈δn⌉ for all v′ ∈ V2. When c1 (Theo-
rem 1) is large enough, we have 4⌈δn⌉ ⩽ 6δn and nδ ⩾ c1d, which yields

pv′ ⩾
1

6
· d

δn
.

Additionally, we have when c2 (Theorem 1) is small enough and using the fact that |Q(v)| ⩾ n,

√
Var(|N(v)|)
E [|N(v)|]

⩽

√∑
v′∈Q(v) pv′∑

v′∈Q(v) pv′
=

√
1∑

v′∈Q(v) pv′
⩽

√
6δn

d|Q(v)|
⩽

√
6δ

d
⩽

1

10
.

This yields via Chebyshev’s inequality,

Pr

[
|N(v)| ⩾ d

8δ

]
⩾ Pr

[
|N(v)| ⩾ |Q(v)|

8
· d

δn

]
⩾ Pr

|N(v)| ⩾ 3

4

∑
v′∈Q(v)

pv′

 ⩾
3

4
.

Linearity of expectation (on v ∈ V1) establishes the second claim by the probabilistic method.

With the bipartite graph, G = (V1, V2, E), defined in VERT-SETS and Lemma 9, we will
now construct our family of one-inclusion graphs for the sets in Sk+1. We think of an element
of S′ ∈ Sk+1 as the union of a training set S and a new test point xn+1. Informally, for any
set S′ ∈ Sk+1, we pick any low out-degree orientation and then reorient the edges of the zero
function. We prove that for most of the k-sized training sets S ∈ V1 and a significant fraction

12
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of their “extensions” to (k + 1)-sized sets S′ ∈ V2, the one-inclusion graph algorithm predicts
incorrectly on xn+1 ∈ S′ \ S. Our construction is formally described in Algorithm 2. Note that
Algorithm 2 only constructs an orientation rule for V2 (which corresponds to Sk+1 in this context).

Algorithm 2 Constructing sub-optimal one-inclusion graphs
Input: Bipartite Graph G = (V1, V2, E).
Output: Orientation rule σ for V2.

1: Set σ = {}.

2: for S′ ∈ V2 do

3: Pick any orientation σS′ that has max out-degree at most d.

4: For every S ∈ N(S′), reorient σS′({f0, fi}) = fi where fi = 1 {x ∈ S′ \ S}.

5: For any other other edge {fi, f0} not modified in the previous step set σS′({f0, fi}) = f0.

6: Add σS′ to σ.

7: end for

8: return σ.

Before we proceed, we first show that the orientation rule constructed in Algorithm 2 is valid.

Lemma 10 When G satisfies the conclusion of Lemma 9 the orientation rule for V2, σ, constructed
in Algorithm 2 satisfies

max
σS′∈σ

out(σS′) ⩽ d+ 1.

Remark 11 For the sake of generality, we prove Lemma 10 with an upper bound of d + 1. If we
consider more structured classes, e.g., the class of functions that take on the value 1 at most d times,
we can improve this bound to d. This would match the out-degree bound of Theorem 6.

Remark 12 The bound d + 1 on the max out-degree only slightly changes the risk bound for the
one-inclusion graph algorithm. In particular, our orientation rule gives

E errP (f̂OIG) ⩽
d+ 1

n+ 1
, and by Markov’s inequality: errP (f̂OIG) ⩽

d+ 1

(n+ 1)δ
.

Proof of Lemma 10: Let S′ ∈ Sk+1. The out-degree of the all-zeros hypothesis f0 is at most d
by the first claim of Lemma 9. For any hypothesis g ∈ F|S′ with g ̸= f0, its out-degree is at most
d in the original orientation σS′ selected in Line 3 of Algorithm 2 (such an orientation exists by
Theorem 6). We add at most one outgoing edge from g to f0 in Line 5 concluding the proof.

Our last lemma will show that the one-inclusion strategy defined by the orientation rule σ con-
structed in Algorithm 2 incurs large error for most training sets in V1. In fact, this will be shown for
the subset whose existence was established in Lemma 9. Formally, define W k

1 as

W k
1 =

{
v ∈ V1 : |N(v)| ⩾ d

8δ

}
.

The following lemma shows that any training set from W k
1 incurs large error.

13



ADEN-ALI CHERAPANAMJERI SHETTY ZHIVOTOVSKIY

Lemma 13 For any S ∈ W k
1 , the one-inclusion graph algorithm that predicts using the orientation

rule σ defined by Algorithm 2 on input G satisfying the conclusion of Lemma 9 has

errP (f̂σ,S) ⩾
1

16
· d

δn
.

Proof By the construction of the orientation rule σ in Algorithm 2, we only make an error on x if
S ∪ {x} ∈ N(S), as we only predict 1 in this scenario. We now have

errP (f̂σ,S) ⩾
|N(S)|
2n

⩾
1

16
· d

δn

establishing the lemma.

We will now prove Theorem 1. Recall that our distribution is the uniform distribution over the
participating elements of a star set of size 2n with the center canonically identified with the zero
function and the elements with the set [2n]. For each k ∈ [n] denoting the possible number of
unique observed elements, consider the family of one-inclusion prediction strategies constructed in
Algorithm 2 with the bipartite graph defined in VERT-SETS and Lemma 9. By Lemma 13, any
unique training set S in W k

1 incurs large error. Hence, we only need to lower bound the probability
of observing a training set from W1 := ∪k∈[n]W

k
1 . Note that conditioned on |S| = k, the training

set S is uniformly distributed on Sk. Hence, we have by Lemma 9 and (5) that

PrS̄∼Un

[
S ∈ W k

1

∣∣∣ |S| = k
]
=

|W k
1 |

|Sk|
⩾

3

4
· |V1|
|Sk|

=
3

4
·
4⌈δn⌉−1∑

i=0

|T(i)|
|Sk|

⩾
3

4|Sk|
· 4⌈δn⌉|Sk|

3n
⩾ δ.

To conclude the proof of the theorem, we now have

PrS̄∼Un [S ∈ W1] =
n∑

k=1

PrS̄∼Un

[
S ∈ W k

1

∣∣∣ |S| = k
]
·PrS̄∼Un [|S| = k] ⩾ δ

as required.
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