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Abstract
We study time-inhomogeneous episodic reinforcement learning (RL) under general function ap-
proximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic Q-
Learning (VOQL), based on Q-learning and bound its regret assuming closure under Bellman
backups, and bounded Eluder dimension for the regression function class. As a special case,
VOQL achieves Õ(d

√
TH + d6H5) regret over T episodes for a horizon H MDP under (d-

dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incor-
porates weighted regression-based upper and lower bounds on the optimal value function to obtain
this improved regret. The algorithm is computationally efficient given a regression oracle over the
function class, making this the first computationally tractable and statistically optimal approach for
linear MDPs.
Keywords: Reinforcement learning, nonlinear function approximation, model-free algorithms,
eluder dimension.

1. Introduction

Optimally trading off exploration and exploitation to achieve a low regret is a fundamental question
in Reinforcement Learning (RL) research. The last few years have seen some significant advances
on this front, with the development of algorithms that achieve optimal regret guarantees when the
underlying state space is finite (Azar et al., 2017; Zanette and Brunskill, 2019; Zhang and Ji, 2019;
Simchowitz and Jamieson, 2019; Zhang et al., 2020b; He et al., 2020). Remarkably, a line of work
has shown that when the overall reward of each trajectory is bounded independent of the horizon,
then the regret has no explicit polynomial horizon dependence (Zanette and Brunskill, 2019; Zhang
et al., 2021a, 2020a; Ren et al., 2021; Tarbouriech et al., 2021). However, these fall some way
short of being applicable to real-world RL settings with large state spaces, and where we rely on
the use of function approximation to generalize across related states. Some recent works (Zhang
et al., 2021b; Kim et al., 2021; Zhou and Gu, 2022) do generalize ideas from the tabular setting
for a special class of RL problems with linear function approximation, called linear mixture MDPs,
using a model-based approach that is more amenable to ideas from the tabular setting. Motivated
by this landscape our paper asks if we can develop model-free techniques that attain optimal regret
guarantees with general function approximation.

In particular, we consider function approximation in the so-called Q-type setting (Jin et al.,
2021), where we explore using pointwise notions of optimism, and which generally avoids some
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Setting Method Regret

linear MDPs

LSVI-UCB (Jin et al., 2020) d
3
2H
√
T

ELEANOR (Zanette et al., 2020) dH
√
T

VOQL (our work, Theorem 8) d
√
HT

Lower bound (Zhou et al., 2021) d
√
HT

general function class

F-LSVI (Wang et al., 2020) dim(F)
√

logN logN ′ ·H
√
T

GOLF (Jin et al., 2021)
√

dim(F) logN ·H
√
T

VOQL (our work, Theorem 9)
√

dim(F) logN ·HT

Table 1: Comparison of regret: In-homogeneous episodic RL with horizon H , with T trajectories, and
sparse rewards

∑
h∈[H] r

h ≤ 1. We only state the leading O(
√
T ) term and hide poly-logarithmic

factors in T , H , ε and δ. For linear MDPs, concurrent to our work, He et al. (2022) also obtained
a regret bound of Õ(d

√
HT ). For general function class, dim(F) and logN refer to properties of

the function class F , i.e. the generalized Eluder dimension (see Definition 2) and N = |F|.2 In
Wang et al. (2020), N ′ = N (X ×A) refers to the covering number of the state-action space.

additional horizon factors which arise in more general V -type settings. We adapt Eluder dimension
based techniques (Russo and Van Roy, 2013; Wang et al., 2020) to design an exploration bonus,
motivated by the empirical success of such bonus-based approaches (Feng et al., 2021; Burda et al.,
2018; Henaff et al., 2022), and establish horizon-free guarantees in terms of a generalized Eluder
dimension.

Model and Our Results. We study time-inhomogenous finite horizon MDPs with a horizon h,
meaning that the transition dynamics and rewards at each step h = 1, 2, . . . ,H can be different.
We focus on model-free and value-based approaches, where the goal is to learn the optimal value
function Q? by searching over some function class F . When F satisfies standard realizability
and completeness assumptions, and the cumulative reward over each trajectory is at most 1, we
show that the regret of our algorithm Variance-weighted Optimistic Q-Learning (VOQL)3 scales
as Õ

(√
THdim(F) logN

)
. Here dim(F) is a weighted generalization of the standard Eluder

dimension, which still captures (generalized) linear models. For the special case of F being linear,
such as in linear MDPs, VOQL attains a sample complexity of Õ(d

√
HT ). As shown in Table 1,

our guarantee is minimax optimal. Unlike the ELEANOR algorithm of Zanette et al. (2020), our
approach is both model-free and computationally efficient, and indeed the first optimal model-free
result for linear MDPs.

2. Formally, we allow Fh to vary as a function of h, in which case the precise result can be found in Theorem 6. Here
we discuss the setting of F being shared across h for simplicity.

3. pronounced vocal
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Overview of Techniques Our algorithm VOQL is based on optimistic Q-learning in a finite hori-
zon setting, where we add an exploration bonus to the rewards for learning an optimistic estimate
of the optimal value function Q?. There are two main challenges which result in sub-optimal hori-
zon or dimension dependence in prior works. The bonus added across rounds typically grows as
O(H), even when the rewards add up to 1. The bonus is also data dependent, and a direct uniform
concentration argument (Jin et al., 2020) yields a sub-optimal scaling with dimension. Taking a
cue from the insights in tabular results, we use weighted regression to estimate Q?, such that the
variance of our estimator is bounded independent of the horizon. We additionally establish a key
monotonicity property of our optimistic estimates, which has been a significant challenge in prior
works (Hu et al., 2021). Taken together, these techniques result in our optimal horizon scaling.
For dimension dependence, we generalize the idea in Wagenmaker et al. (2022) which avoids the
additional leading-order factors due to uniform convergence in the PAC setting. In particular, we
decouple the uniform convergence argument into a higher orderO(d) term, and a lower orderO(d2)
term, which yields optimal scaling in the dominant term of the regret. Each of these techniques is
potentially of independent interest in future works.

We note that the weighted regression technique is inpired by the linear mixture MDP work
of Zhou et al. (2021), but the adaptation to linear MDPs has significant challenges. The use of over
optimisticQ? estimates that we use was introduced in the original version of Hu et al. (2022) posted
prior to this work, but their original result had an error in the monotonicity analysis as explained in
Appendix B. Concurrently with our work, an independent work He et al. (2022) also obtain a similar
result for linear MDPs, using a different rare policy-switching argument, combined with weighted
regression.

2. Preliminaries

We consider the following time-inhomogeneous episodic Markov Decision Process (MDP)M =
(X ,A,P := {P h}h∈[H],R := {rh}h∈[H]) with horizon length H ∈ Z>0, where [H] is a shorthand
for the set {1, 2, . . . ,H}. Here we let P h : X × A → ∆X and rh : X × A × X → [0, 1]
characterize the transition kernel and instantaneous reward at a given level h ∈ [H] respectively.
We consider a sparse reward setting where

∑
h∈[H] r

h ∈ [0, 1] under the realization of any policy.
We use (xh, ah) ∈ X ×A to denote an arbitrary state-action pair at level h (omitting h when clear
from context), and write z = (x, a) as shorthand. A policy π : X → A is a mapping from state
space to action space.4 Since the optimal policy is non-stationary in an episodic MDP, we use π to
refer to the H-tuple {πh}h∈[H]

Given an episodic MDPM and some policy π := {πh}h∈[H], the V -value and Q-value func-
tions are defined as the expected cumulative rewards, starting at level h from state-action pair
zh = (xh, ah) or state xh, when following the policy π, i.e.

Qhπ(xh, ah) =
∑
h′≥h

E
[
rh
′
(xh

′
, ah

′
) | xh, ah, ah′ = πh

′
(xh

′
)
]
, V h

π (xh) = Qhπ(xh, πh(xh)). (1)

Given some initial distribution q ∈ ∆X , the optimal policy π? ∈ arg maxπh,h∈[H] Ex1∼qV 1
π (x1).

For simplicity we write Qh? = Qhπ? = supπ Q
h
π and V h

? = V h
π? = supπ V

h
π when clear from context.

4. Many works also consider randomized policies π : X → ∆A in reinforcement learning. In this paper it suffices to
constrain to the class of deterministic policies.
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We define the Bellman operator T on functions f : X → R so that (T f)(xh, ah) = Erh,xh+1 [rh+

f(xh+1)|xh, ah]. We often use the shorthand f(x) = maxa∈A f(x, a). The definition of value func-
tions ensures the validity of the Bellman equation, i.e. Qh?(xh, ah) = (T V h+1

? )(xh, ah). We also de-
fine the Bellman operator for second moment as T2f(xh, ah) = Erh,xh+1

[(
rh + f(xh+1)

)2 |xh, ah].
We consider a class of episodic MDPs such that the value functions satisfy the (approximate)

realizability assumption under a general function class F := {Fh}h∈[H]. More concretely, we
introduce the following assumption:

Assumption 1 (ε-realizability under Bellman backups) Given {Fh}h∈[H] where each set Fh is
composed of functions fh : X ×A → [0, L]. We assume for each h ∈ [H], and any V : X → [0, 1]
there exists fh ∈ Fh such that maxx,a∈X×A

∣∣fh(x, a)−T V (x, a)
∣∣ ≤ ε, and maxx,a∈X×A

∣∣fh(x, a)−
T2V (x, a)

∣∣ ≤ ε. Also we assume there exists some fh? ∈ Fh such that
∥∥fh? −Qh?∥∥∞ ≤ ε, for

all h ∈ [H]. We assume L = O(1) and use N to denote the maximal size of function class
maxh∈[H] |Fh| throughout the paper.

When ε = 0, the assumption states that the function class is complete and well-specified under
Bellman backups for any function V . Such an assumption is stronger than the classical completeness
assumption T Fh+1 ⊆ Fh (see e.g. Chen and Jiang, 2019). This realizability assumption is standard
for analyzing value-based methods relying on regression (see e.g. Wang et al., 2020; Jin et al.,
2021) under general function approximation, due to the non-linearity in the bonus terms. While this
assumption can be avoided in an information-theoretic sense using ideas developed in Jiang et al.
(2017) and follow-ups, avoiding it will introduce computational overhead as in Zanette et al. (2020)
and thus we make this assumption in the interest of obtaining sharper guarantees. The assumption
naturally holds for tabular and linear MDPs. More generally, ε allows us to capture a bounded
misspecification. When we instantiate the function class as a cover of a larger infinite class, the
covering might also induce a non-zero ε in Assumption 1.

Since we use linear MDPs as a running example to illustrate our key definitions and assump-
tions, we define them formally next.

Definition 1 (Linear MDPs (Yang and Wang, 2020; Jin et al., 2020)) An MDPM = (X ,A,P,R)
is a linear MDP if there exists a known feature mapping φh : X × A → Rd for every h ∈ [H],
such that for any h ∈ [H], and any (xh, ah) ∈ X ×A, we have P h(·|xh, ah) = 〈φh(xh, ah), µh(·)〉
and E

[
rh|xh, ah

]
= 〈φh(xh, ah), θh〉, for some unknown measures µh = {µh(x)}x∈X where each

µh(x) ∈ Rd and θh ∈ Rd. We assume that supx,a∈X×A ‖φ(x, a)‖2 ≤ 1,
∥∥∑

x∈X µ
h(x)

∥∥
2

+∥∥θh∥∥
2
≤ Bh (possibly scaling with d), and

∑
h∈[H] r

h ∈ [0, 1].

Jin et al. (2020) show that linear MDPs satisfy the realizability assumption under the linear
function class Fhlin defined as

Fhlin := {〈wh, φh(·, ·)〉 : wh ∈ Rd, ‖wh‖2 ≤ Bh}, for any h ∈ [H]. (2)

We also defineFhlin(εc) be an εc-cover ofFhlin under the `∞ norm, so that log |Fhlin(εc)| = O(d log Bh

εc
).

While the realizability completeness assumption allows us to control the error of our regression
solution to Q? under the data distribution used in regression, it does not control the complexity of
exploration in the MDP, when the learner uses the classes {Fh}h∈[H]. To capture this complexity,
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we now define an additional quantity which we call a generalized Eluder dimension, which extends
the original definition of Russo and Van Roy (2013) to weighted regression settings, based on recent
work of Gentile et al. (2022) (also see Zhang (2023)).

Definition 2 (Generalized Eluder dimension) Let λ > 0, a sequence of state-action pairs Z =
{zi}i∈[T ] and σ = {σi}i∈[T ] be given. The generalized Eluder dimension of a function class
F : X ×A → [0, L] is given by dimα,T (F) := supZ,σ:|Z|=T,σ≥α dim(F , Z,σ), where

dim(F , Z,σ) :=

T∑
i=1

σ−2
i D2

F (zi; z[i−1], σ[i−1]) ∨ 1,

and D2
F (z; z[t−1], σ[t−1]) := sup

f1,f2∈F

(f1(z)− f2(z))2∑
s∈[t−1]

1
σ2
s

(f1(zs)− f2(zs))
2 + λ

.

We also use dα := 1
H

∑
h∈[H] dimα,T (Fh) when function class {Fh}h∈[H] is clear from context.

For linear MDPs, the definition of generalized Eluder dimension for the relevant function class
Fhlin can be simplified as follows:

Lemma 3 For the class Fhlin defined in (2), letting Fhlin(εc) be the εc-cover of Fhlin for some εc > 0,

we have dimα,T (Fhlin(εc)) ≤ dimα,T (Fhlin) = O
(
d log

(
1 + (Bh)2T

α2dλ

))
= Õ(d).

Remark 4 (Relation to standard Eluder dimension) When σ ≡ 1, maxZ:|Z|=T dim(F , Z,1) ≤
dimE(F ,

√
λ/T )+1, where dimE(F , ε) is the standard Eluder dimension ofF as defined in Russo

and Van Roy (2013). The unweighted version of our definition has also appeared in Gentile et al.
(2022). The generalized definition we give takes supremum over any σ ≥ α, and thus is incompa-
rable with the standard Eluder dimension even when α = 1.

We use the learning protocol in episodic reinforcement learning where at every episode t ∈ [T ]
and horizon level h ∈ [H], the learner explores the trajectory based on some exploration rule that
only depends on the historical data. The learner then generates new data {xht , aht , rht }h∈[H] based
on her data exploration rule, chooses action aht , transitions to the next state xh+1

t ∼ P h(xht , a
h
t )

and receives reward rht = rh(xht , a
h
t , x

h+1
t ). The goal of learner is to optimize her regret while

interacting with the environment in T episodes, where the initial distribution x1 ∼ µ generates
from some given fixed initial distribution. Formally, we define the regret as:

Regret(T ) =
∑
t∈[T ]

Ex1∼µ
[
V 1
?

(
x1
)
− V 1

t

]
, where V 1

t := E

 ∑
h∈[H]

rht |x1, f
[h]
t,1 , f

[h]
t,2

 . (3)

Here V 1
t denotes the expected cumulative reward in the tth trajectory, where the exploration policy

may depend on some functions f [H]
t,1 , f [H]

t,2 based on the history (see exploration rule (9)).
In general for episodic reinforcement learning, the optimal policy as some Markovian non-

stationary policy (that only depends on the horizon level h and current state x) always exists.
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3. Algorithm

We now discuss our algorithm, Variance-weighted Optimistic Q-Learning (VOQL) in detail. The
pseudocode for the algorithm is presented in Algorithm 1. At a high-level, the algorithm performs
optimistic Q-learning style updates (Line 9 to Line 12), where we repeatedly apply the empirical
Bellman optimality operator at each level h to an optimistic value function for h + 1, and add an
additional bonus to the resulting function to account for the regression uncertainty in the empirical
Bellman operator. We additionally maintain over-optimistic and over-pessimistic estimates (Line 13
to Line 17), which are combined to form both a variance estimate in reweighting our regression
objective, as well as in defining the data collection policy in Equation (9) (used in Line 21). We first
describe some of the key elements of the algorithm, before discussing how they fit together.

For brevity, we only specify the parameters of the algorithm somewhat informally in the follow-
ing discussion, focusing on the dependency on the key parmeters. Precise parameter settings can be
found in Table 3 in the Appendix.

Regression and weighted regression. In episodic reinforcement learning, many online algo-
rithms iteratively solve the following (weighted) regression problem to fit the past dataset: At
episode t, given a target function fh+1

t ≈ V h+1
? learnt from the past data, in order to fit T fh+1

t =
E[rh + fh+1

t (xh+1)] we define

least square estimator f̂ht = arg min
fh∈Fh

∑
s∈[t−1]

(σ̄hs )−2
(
fh
(
xhs , a

h
s

)
− rhs − fh+1

t (xh+1
s )

)2
,

version space Fht :=

fh ∈ Fh :
∑

s∈[t−1]

(σ̄hs )−2
(
fh(xhs , a

h
s )− f̂ht (xhs , a

h
s )
)2
≤
(
βht

)2

 .

(5)

Standard approaches in Q-learning solve least squares problems like Equation (5) by solving an
unweighted regression with σ̄h ≡ 1 for all h ∈ [H], where fh+1

t ≈ Qh+1
? . Note that we take a

backup of the iterate fh+1
t instead of fh+1

t−1 as it is natural to do bottom-up approximate dynamic
programming in a finite horizon setting. Optimistic variants of Q-learning (Jin et al., 2020; Wang
et al., 2020) use some optimistic estimate fh+1

t of Qh+1
? instead. More recently, a line of work has

studied the benefits of using weights informed by the variance to satisfy V
[
rh + fh+1

t (xh+1)|zhs
]
≤(

σ̄hs
)2 ≤ Õ (1), for obtaining stronger guarantees in terms of their horizon dependence in linear

bandits and linear mixture MDP settings (Zhou et al., 2021; Zhou and Gu, 2022), as well as in
linear MDPs (Hu et al., 2022). Our formulation of weighted regression here is motivated by these
works, extending such techniques to a non-linear and model-free setting.

The radius of confidence interval βht is properly chosen to ensure that T fh+1
t ∈ Fht with high

probability (up to small additive error element-wise due to Assumption 1). The solution of this
regression problem also admits pointwise confidence bounds on the error to Qh? under the bounded
Eluder dimension condition (see Definition 2).

Optimistic value estimation and bonus oracle. We now concretely describe how we use weighted
regression to construct an optimistic estimate ofQh? . SinceQh?(x, a) = E[rh+V h+1

? (x′)|x, a], there
are two source of uncertainty which need to be upper bounded. First is from the error in our esti-
mates of V h+1

? , that is addressed by using a regression target fh+1
t which is optimistic for V h+1

? .
The second source is the estimation error in the conditional expectation using samples at step h. In
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Algorithm 1: Variance-weighted Optimistic Q-Learning (VOQL)

1 Input: function class {Fh}h∈[H], a consistent bonus oracle B, ε > 0

2 Parameters: {ut}t∈[T ], λ, bonus error εb, α, δ, {βht,1, βht,2, β̄ht }
h∈[H]
t∈[T ]

3 Initialize Dh[0] = ∅ for all h ∈ [H]

4 for episode t = 1, 2, · · · , T do
5 Initialize last step fH+1

t,j (·)← 0, for all j = 1, 2,−2

6 if t > 1 then
7 for h = H,H − 1, · · · , 1 do
8 When t > 1, define σ̄ht−1 as in Equation (8)

9 Solve f̂ht,1 = arg minfh∈Fh

∑
s∈[t−1]

1
(σ̄h

s )2

(
fh(xhs , a

h
s )− rhs − fh+1

t,1 (xh+1
s )

)2

10 Set bht,1 ← B
(
{σ̄hs }s∈[t−1],Dh[t−1],F

h, f̂ht,1, β
h
t,1, λ, εb

)
(see Definition 5)

11 Update fht,1(·) = min
(
f̂ht,1(·) + bht,1(·) + ε, 1

)
12 Update optimistic V -value fht,1(x) = maxa f

h
t,1(x, a) for all x ∈ X

13 Solve f̂ht,j = arg minfh∈Fh

∑
s∈[t−1]

(
fh(xhs , a

h
s )− rhs − fh+1

t,j (xh+1
s )

)2
, j = ±2

14 Set bht,2 ← B
(
1[t−1],Dh[t−1],F

h, f̂ht,2, β
h
t,2, λ, εb

)
(see Definition 5)

15 Update fht,2(·) = min
(
f̂ht,2(·) + 2bht,1(·) + bht,2(·) + 3ε, 2

)
16 Update fht,−2(·) = max

(
f̂ht,−2(·)− bht,2(·)− ε, 0

)
17 Update fht,±2(x) = maxa f

h
t,±2(x, a) for all x ∈ X

18 Solve ĝht = arg mingh∈Fh

∑
s∈[t−1]

(
gh(xhs , a

h
s )−

(
rhs + fh+1

t,2 (xh+1
s )

)2
)2

19 Receive initial state x1
t ∼ µ

20 for h = 1, 2, · · · , H do
21 Generate D[H]

t from x1
t according to ut and data collection policy (Equation (9))

22 if t = 1 then
(
σht
)2

= 4
23 else(

σht

)2
= min

(
4, ĝht (zht )−

(
f̂ht,−2(zht )

)2
(4)

+DFh(zht ; zh[t−1],1
h
[t−1]) ·

(√(
β̄ht
)2

+ λ+ 2L

√(
βht,2

)2
+ λ

)
+ 2(1 + L)ε

)
24

simple settings where the space X is discrete or when the class F is linear, this error is quantified as
an optimistic bonus using either the number of samples for x, a or the standard elliptical bonus (see
e.g. Abbasi-Yadkori et al., 2011; Jin et al., 2020). An optimistic function at time h is then defined as
fht,1 = f̂ht + bht , where bht is the optimistic bonus and f̂ht is as defined in (5) with an optimistic target
fh+1
t,1 . The reason for denoting the optimistic function as fht,1 instead of fht will be shortly clarified

when we define an additional overly optimistic sequence.
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For a general function class, we use bht (zh) = maxfh∈Fh
t
fh(zh)−minfh∈Fh

t
fh(zh) to capture

the regression uncertainty for all zh ∈ X ×A (Feng et al., 2021). However, this uncertainty bonus
has a high complexity in that the maximizing and minimizing functions can differ arbitrarily for
each zh. Consequently, the target function fh+1

t,1 defined using f̂h+1
t + bh+1

t is very complex. Since
fh+1
t is random in the regression objective (5), this high complexity induces a potentially poor

confidence bound for the solution of regression. To circumvent this issue, we assume the existence
of a low complexity bonus oracle which roughly dominates the value obtained by the pointwise
maximization over Fht for now. We subsequently provide concrete instantiations of this bonus
oracle for linear MDPs and general settings with a low Eluder dimension in Section 4.

Definition 5 (Oracle B for bonus function bht ) Given h ∈ [H], t ∈ [T ], sequence of {σ̄hs }s∈[t−1]

and dataset Dh[t−1] = {(xhs , ahs , rhs , xh+1
s )}s∈[t−1], function class Fh with f̂h ∈ Fh, βh, λ ≥ 0, er-

ror parameter εb ≥ 0 5, the bonus oracle B({σ̄hs }s∈[t−1],Dh[t−1],F
h, f̂h, βh, λ, εb) outputs a bonus

function bh(·) such that:
(i) bh : X × A → R≥0 belongs to a function class W and we use Nb to denote the size of bonus
function class |W|;

(ii) bh(zh) ≥ max

{
|fh(zh)− f̂h(zh)|, fh ∈ Fh :

∑
s∈[t−1]

(fh(zhs )−f̂ht (zhs ))
2

(σ̄h
s )

2 ≤
(
βh
)2}, for any zh ∈

X ×A;

(iii) bh(zh) ≤ C ·
(
DFh(zh; zh[t−1], σ̄

h
[t−1]) ·

√
(βh)

2
+ λ + εb · βh

)
for all zh ∈ X × A for some

C > 0.
Further we say the oracle B is consistent if for any t < t′ with {σ̄hs }s∈[t−1] ⊆ {σ̄hs }s∈[t′−1],

Dh[t−1] ⊆ D
h
[t′−1], β

h
t non-decreasing in t for each h ∈ [H] and Fht , f̂ht as defined in (5), we have

B({σ̄hs }s∈[t−1],Dh[t−1],F
h
t , f̂

h
t , β

h
t , λ, εb) ≥ B({σ̄hs }s∈[t′−1],Dh[t′−1],F

h
t′ , f̂

h
t′ , β

h
t′ , λ, εb) element-wise.

With such an oracle B, we define the optimistic sequence fht,1 ≈ f̂ht,1 + bht,1 (approximation
due to additive ε term and truncation), where bht,1 = B({σ̄hs }s∈[t−1],Dh[t−1],F

h
t , f̂

h
t , β

h
t,1, λ, εb),

βht,1 ≈
√

logN and f̂ht,1 is a solution to (5) with fh+1
t,1 as the target function.

Overly optimistic and overly pessimistic value estimates. A sharp analysis of the convergence
of the optimistic estimates fht,1 requires appropriately estimated variances for weighting the regres-

sion examples, which satisfy V
[
rh + fh+1

t,1 (xh+1)|zhs
]
≤
(
σ̄hs
)2 as mentioned before. In order to

produce such variance estimates, we first define an auxiliary set of value function estimates, which
are then used in variance estimation. Specifically, we define an overly optimistic estimate fht,2, as
well as an overly pessimistic estimate fht,−2. Roughly, these functions are designed to ensure that

fhs,−2(zh)︸ ︷︷ ︸
overly-pessimistic

≤ fh? (zh)︸ ︷︷ ︸
:= Qh

? , true optimal

≤ fht,1(zh)︸ ︷︷ ︸
optimistic

≤ fhs,2(zh)︸ ︷︷ ︸
overly optimistic

for any zh ∈ X ×A and s ≤ t. (6)

Concretely, the functions fht,±2 are defined by finding an unweighted regression solution f̂ht,±2

to (5) with target function fh+1
t,±2 , and defining fht,±2 ≈ f̂ht,±2 ± 2bht,2 ± bht,1 (approximation due to ε

5. Here εb here characterizes the error we are able to tolerate in the bonus oracle, and may differ from ε and εc.
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term and truncation), for some bonus bht,2 defined using our bonus oracle. A key difference, however,
is that the weight sequence σ̄ ≡ 1 in defining f̂ht,±2, so that we use standard unweighted regression
in (5). We note that the idea of having an overly optimistic sequence for variance estimation is first
introduced in Hu et al. (2022). However, they do not perform unweighted regression like us, which
leads to some technical problems in their analysis as described in Appendix B. The bonuses bht,2
are given by B(1[t−1],Dh[t−1],F

h
t , f̂

h
t , β

h
t,2, λ, εb) and βht,2 ≈

√
logNNb. We note that the bonus

multiplier βt,2 also incorporates the complexity of the bonus oracle classW . For intuition, βt,1 =

Õ(
√
d) in a linear MDP, while βt,2 = Õ(d), and making this distinction is crucial to obtaining the

asymptotically optimal d dependence in our bounds.

Estimating variance. Next we discuss how to construct an appropriate variance upper bound
(σ̄hs )2. Unlike the convenient condition of (σ̄hs )2 ≥ Vrh,xh+1 [rh + fh+1

t,1 (xh+1)|xhs , ahs ], which
necessitates reasoning about a changing target, we perform a more careful analysis and leverage
properties of the overly optimistic function fhs,2 to show that it suffices to ensure that (σ̄hs )2 ≥
V[rh + fh+1

? (xh+1)|xhs , ahs ] at all rounds s ≤ t. This change, which crucially relies on (6), fixes the
target function to be fh? , and enables the creation of a valid variance estimate.

Since variance involves second moment and squared expectation, we estimate the two sepa-
rately. We estimate the second moment directly using an unweighted regression described below.

∀ t ∈ [T ], h ∈ [H], ĝht = arg min
gh∈Fh

∑
s∈[t−1]

(
gh
(
xhs , a

h
s

)
−
(
rhs + fh+1

t,2

(
xh+1
s

))2
)2

, (7)

and choose β̄ht ≈
√

logNNb.
A natural variance upper bound at step t can then be obtained as ĝht − (fht,−2)2, but we need

additional terms to account for the estimation errors and obtain a valid upper bound. This is achieved
through the sequence σ̄ht defined as (informally here, see Equation (12) for the precise setting)

σht is as defined in Equation (4),

σ̄ht = max

{
σht , α,

√
Θ̃ ·
(
fht,2(zht )− fht,−2(zht )

)
,

√
Θ̃ ·DFh

(
zht ; zh[t−1], σ̄

h
[t−1]

)}
. (8)

Here α is a lower bound for the variance estimate which we set inverse-polynomially in T,H for
stability of the algorithm. We also let Θ̃ = Θ̃(logNNb), which also contains other logarithmic
factors in T,H,L, 1/α, 1/δ that are precisely defined in Equation (12).

Design of exploration policy. A natural exploration policy, given the optimistic sequence fht,1 is
to be greedy with respect to it. However, it is beneficial to sometimes act greedily with respect to
the overly optimistic function fht,2 if the two sequences begin to differ by a lot. At iteration t we
choose actions as per the following rule:

aht =

{
argmaxa∈A f

h
t,1(xht , a) if fht,1(xh

′
t ) ≥ fht,2(xh

′
t )− ut for all h′ ≤ h,

argmaxa∈A f
h
t,2(xht , a) otherwise,

(9)

where ut is an appropriately chosen threshold. Note that the action sequence defined this way is not
a Markovian policy since it depends on the entire prefix trajectory at each step. However, it does
constitute a valid exploration scheme, which suffices for regret minimization. In comparison, Hu
et al. (2022) also use overly optimistic function in exploration, but there the agent only acts greedily
with respect to the overly optimistic function.

9
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4. Main Result and Applications

We now give the main guarantee for Algorithm 1, which is the main result of the paper.

Theorem 6 (Regret bound for VOQL, complete version in Theorem 15 and Theorem 45) Sup-
pose we are given function classes {Fh}h∈[H] satisfy Assumption 1 with ε ∈ [0, 1], have general-
ized Elude dimension dimα,T (Fh), h ∈ [H] as defined as in Definition 2 with λ = 1, and ac-
cess to a consistent bonus oracle B satisfying Definition 5 with THεb = O(1). Let dα = 1

H ·∑
h∈[H] dimα,T (Fh) with α =

√
1/TH , and set ut = O(H2ε+Hδ +

√
log(NTH/δ) + T 2Hε ·

(log(NNbTH/δ)
√
H5dα)/

√
t). For any δ < 1/(T+H2+11) the regret of VOQL satisfies ERT =

O

(√
log(NTH/δ) + T 2Hε ·

√
THdα+

(
log(NTH/δ)+T 2Hε

)
· log2(NNbTH/δ)H5dα

)
. The

regret bound also holds with probability at least 1− δ.

We remark that we don’t pay attention to optimize the low-order poly(H) terms, which may
be easily improved through more careful analysis. When ε = 0 in Assumption 1 and T =
Ω̃
(
dαH

9 log4(NNb) logN
)
, we see that the regret scales as Õ(

√
THdα logN ). The dependence

on T , logN and the generalized Eluder dimension dα is standard and unimprovable, as we will
see in the special case of a linear MDP shortly. Also, we note that the regret scales as

√
H . This

might appear sub-optimal since we assume that the trajectory level rewards, and hence values, are
normalized in [0, 1]. This scaling, however, captures the model complexity of an inhomogeneous
process and is unavoidable due to a matching lower bound in linear MDPs as we discuss shortly.

We give a high-level proof sketch of the theorem in Section 5, with details deferred to Appen-
dices F and G. First we present some specific consequences of the general result using concrete
instantiations of the bonus oracle B for both linear and nonlinear function approximation. Due to
the efficient implementation of such bonus oracles, our algorithm is computationally tractable for
both linear and general function classes, modulo the tractability of regression in the general case.

4.1. Linear Function Approximation

We apply the theorem to the specific setting of linear MDPs (see Definition 1). Recall that in this
case, the finite function class Fh is defined as an εc-cover Fhlin(εc) at each level h for the linear
function class {〈wh, φh(·, ·)〉 : wh ∈ Rd, ‖wh‖2 ≤ Bh}. We define B = maxh∈[H]B

h as a
constant (same effect as L), so that log |Fhlin(εc)| = O

(
d log(1 + B/εc)

)
. Furthermore, we know

from Lemma 3 that in this case dα = O
(
d log

(
1 + B2T

α2dλ

))
.

The bonus oracle for linear MDPs is easily instantiated using the standard elliptical bonus, and
satisfies all our properties as we show below. We refer readers to Appendix D for a complete proof.

Lemma 7 (Bonus oracle B for linear MDPs) Given T,H ∈ Z+, suppose all βht ≤ β and βht is
non-decreasing in t ∈ [T ] for each h ∈ [H]. For any t ≥ 1, h ∈ [H], variances {σ̄hs }s∈[t−1]

satisfying σ̄hs ≥ α for some α > 0, dataset Dh[t−1] = {(φh(zhs ), ahs , r
h
s , φ(zh+1

s ))}s∈[t−1], func-

tion class Fht and f̂ht ∈ Fht defined via weighted regression (5), and parameters λ, εc > 0, let

B({σ̄hs }s∈[t−1],Dh[t−1],F
h
t , f̂

h
t , β

h
t , λ, εc) = ‖φh(x, a)‖(Σh

t )−1

√
(βht )2 + λ, where Σh

t = λ
4(Bh)2

I +∑
s∈[t−1]

1
(σ̄h

s )2
φh(zhs )φh(zhs )>. For any choice of covering radius εc ≤ α

√
λ/8T , the oracle satis-

fies all the properties of Definition 5 with logNb = log |W| = O
(
d2 log

(
1 +B2

√
dβ/(λε2c)

))
.

10
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Combined with Theorem 6, we obtain the following result when applying VOQL to linear MDPs
with aforementioned function class Fhlin(εc), h ∈ [H] and bonus oracle B.

Theorem 8 (Regret of VOQL for linear MDPs) Under conditions of Theorem 6, suppose that
the underlying MDP is linear, so that the original function class Fhlin satisfies Assumption 1 with
ε = 0 and the εc-cover Fhlin(εc) satisfies Assumption 1 with ε = εc. Choosing λ = 1, ut =

Θ̃(d3H5/2/
√
t), α =

√
1/HT , εb = εc ≤ 1/8HT and δ < 1/(T + H2 + 11), VOQL with the

bonus oracle defined in Lemma 7, achieves a total regret of ERT = Õ
(
d
√
HT + d6H5

)
. The

regret bound also holds with probability at least 1− δ.

The regret bound is asymptotically optimal in the leading order term by adapting the construc-
tion of Zhou et al. (2021) to our setting. Specifically, we take the construction for linear MDP
mentioned in Remark 5.8 of their paper, and rescale the rewards to be 1/H in the absorbing state.
Their proof is based on embedding H independent linear bandit instances in a horizon H MDP,
where the learner needs to solve Ω(H) of the bandit instances. It can be checked that Lemma C.8
of their analysis, which specifies the regret incurred in each bandit instance, now simply scales to
be Ω(1/H), and the rest of the argument remains unchanged, leading to an overall lower bound of
Ω(d
√
HT ) after T episodes for a horizon H time-inhomogenous linear MDP.

We note that all prior bonus-based methods suffer from a sub-optimal horizon and dimension
scaling for linear MDPs. Given that this comes out of a consequence of a more general result here
shows that our algorithm and analysis handle the uncertainty in our predictions in a sharp manner.

We also note that the Theorem 8 does not strictly require a linear MDP assumption, since we
only require Assumption 1 to hold for Fhlin, where we allow the error term ε to handle a small model
misspecification in this definition. As a minor point, the instantiation of our general result from
Theorem 6 requires us to instantiate Fhlin to be a finite εc-cover of the linear function class, and
perform regression over this cover. It is also possible to directly analyze both the general and this
special case in terms of a covering argument, which allows us to run our regressions directly on the
original function class, which is preferable in practice.

4.2. Nonlinear Function Approximation

In the general setting of non-linear F with a bound on the generalized Eluder dimension, the ideas
from the linear case can be extended by leveraging the techniques of Wang et al. (2020). They
define a bonus function roughly as bht (z) = maxf∈Fh

t
f(z) − f̂ht (z). To avoid the high complex-

ity arising with this definition, as remarked in Section 3 they instead consider an approximation
to the class Fht in the maximization, defined using a subsampled set of the data. By using stan-
dard online subsampling arguments Kong et al. (2021), we can argue that the predictive differ-
ences between functions are preserved up to constant factors, while the amount of data required
is significantly smaller. This procedure allows us to implement B as required in Definition 5 with
log |W| = O

(
maxh∈[H] dimα,T (Fh) · log TN

δ log T |X×A|
δ

)
. For linear MDPs, this gives an alter-

native method to buildW so that logNb = log |W| = Õ(d2 · log |X × A|). We refer the readers
to Corollary 14 and Algorithm 2 in Appendix E for additional details on implementing the oracle
and only state the main regret guarantee here.

Theorem 9 (Regret of VOQL using subsampling based bonus oracle B) Under conditions in The-
orem 6, suppose the original function classFh satisfies Assumption 1 with T 2Hε = O(1), choosing

11
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λ = 1, α =
√

1/TH , δ < 1/(T + H2 + 11), εb = 0, VOQL with the subsampling based bonus
oracle B in Algorithm 2, and ut = Θ̃

(
log1.5N ·log |X ×A|

√
dα ·maxh∈[H] dimα,T (Fh)H5/2/

√
t
)
,

achieves a total regret of ERT = Õ
(√

logNdαHT+log3N·log2 |X×A|dα·
(

maxh∈[H] dimα,T (Fh)
)2
H5
)
.

The regret bound also holds with probability at least 1− δ.

Apart from improving upon the dependence in H and dα relative to the earlier result of Wang
et al. (2020), as highlighted in Table 1, a key improvement in Theorem 9 is that the log-covering
number of the state-action space only appears in the lower order term. This is due to the bonus
parameter βht,1 for the optimistic value function being independent of the size of the bonus class,
and a key insight in our analysis.

5. Proof Sketch

In this section, we provide a proof sketch of Theorem 6. For simplicity we focus on proving an
informal version of expected regret: we assume ε = 0 in Assumption 1, εb = 0 in Definition 5,
sufficiently small δ, and use ·̃ to hide logarithmic factors in T,H, 1/α, 1/δ. We refer readers
to Appendices F and G for the complete analysis. The proof works in the following three steps.

Step 1. Confidence interval and the good event.

Proposition 10 (Full in Proposition 33) For our chosen βht,1 ≈
√

logN , in Algorithm 1 using a
consistent bonus oracle as defined in Definition 5, with probability 1−Θ(δ) we have T fh+1

t,1 satisfies∑
s∈[t−1]

1

(σ̄h
s )

2

((
T fh+1

t,1

)
(xhs , a

h
s )− f̂ht,1(xhs , a

h
s )
)2
≤
(
βht,1
)2.

Showing T fh+1
t,1 satisfies this property, and thus lying in the defined confidence interval, requires

a careful argument. We first ensure our chosen variance estimator remains a valid upper bound for
the changing target, i.e.

(
σ̄hs
)2 ≥ Vrh,xh+1 [rh + fh+1

t,1 (xh+1)] for any t ≥ s, which underpins
the reason why we need to introduce the safe upper bounds and lower bounds f·,±2 to define σ̄hs .
Further, we also separate the variance in two additive terms: one depending on r + fh+1

? , and the
other on fh+1

t,1 − fh+1
? . The former has a lower complexity as dealing with a fixed target fh? , while

the second is lower-order by carefully choosing
(
σ̄hs
)2 ≥ Ω̃(log(NNb)) · (fhs,2(zhs )− fhs,−2(zhs )) ≥

Ω̃(log(NNb)) · (fht,2(zhs ) − fht,−2(zhs )) ≥ Ω̃(log(NNb)) · V,xh+1 [fh+1
t,1 (xh+1) − fh+1

? (xh+1)] due
to monotonicity (see (6), or formally Lemma 31). This allows us to set βht,1 ≈

√
logN instead of√

logNNb, which lies central to the optimal dependence on dα in the leading
√
T -order term.

Using a more standard martingale concentration analysis, we can also show with probability
1−Θ(δ), T fht,±2 and T2f

h
t,1 all lie in the desired confidence intervals given βht,2, β̄

h
t ≈
√

logNNb.
Under these conditions, the regret can be bounded by a usual sum of bonus terms bht,1 when we are
greedy wrt fht,1 (see step 3). But on the remaining rounds, the bonus can be large and we separately
bound the number of such rounds in the next step.

Step 2. Exploration rounds using fht,2. In our exploration strategy Equation (9), we also some-
times need to use fht,2 to ensure the variance upper bound σ̄ht estimated through fht,2 is not too
pessimistic while upper bounding Vrh,xh+1 [rh + fh+1

t,1 (xh+1)]. In the second step, we show the
agent only uses fht,2 in the exploration occasionally: we denote the subset of all such iterations as
Too ⊆ [T ].

12
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Proposition 11 (Full in Lemma 41) Givenα ≤ 1, ut ≥ Ω̃
(√

logN · logNNb ·H5/2 ·
√
dα/
√
t
)
,

it holds that E [|Too||E≤T ] ≤ Õ
(
T/(log(NNb) ·H3)

)
.

Intuitively, when ut is large enough, fht,2(xht ) ≥ fht,1(xht ) + ut ≥ V h
t + ut cannot happen too

often, given the upper bound between fht,2−V h
t shown in Lemma 36 in Appendix F.4. The particular

threshold of ut in Proposition 11 also serves the purpose that
∑

t∈[T ],h∈[H] ut = Õ
(

poly(H, dα) ·
√
T
)

,
which we need to control when bounding the summation of bonus in the next step.

Step 3. Bounding the summation of bonus terms.

Proposition 12 (Full in Lemma 44) Given λ = 1, α = 1/
√
TH and a bonus oracle B as in Defi-

nition 5, conditioning on good event in step 1, choosing ut in step 2, bonus terms bht,1 in Line 10 sat-

isfy E
∑

t∈[T ],h∈[H] min(1+L, bht,1(zht )) = Õ

(√
logN · dα ·

√
HT+logN · log1.5NNb ·dα ·H5

)
.

On the high level, we use the definition of βht,1, Cauchy-Schwartz inequality, law of total vari-
ance (see Corollary 40) and the converging property of

(
fht,2(zht )− fht,−2(zht )

)
(see Lemma 43).

Combining the steps together we bound total regret via bounding
∑

t∈[T ](f
1
t,1(x1

t )−V 1
t ), which

boils down to
∑

h min(1+L, bht,1(zht )) for most iterations, and larger bonus
∑

h min
(
1 + L, bht,2(zht )

)
occasionally for t ∈ Too (see Appendix F.5). Putting them together proves the main theorem.

6. Future Directions

In this work, we design VOQL, a new algorithm for time-inhomogeneous episodic reinforcement
learning which achieves asymptotically-optimal regret for linear MDPs, and improved regret for
general function class. Here we list a few directions as important open problems for future research
following this work.

First-order regret bounds and tight low-order terms. In our analysis we didn’t focus on analyz-
ing the low-order factors in the tightest possible way: getting better low-order dependence could be
possible using the proposed algorithm in the paper. Beyond, in order to get tight low-order terms, or
to achieve a first-order (instance-dependent) regret bound as in Zanette and Brunskill (2019); Wa-
genmaker et al. (2022), one might need to introduce new component such as recursive high-order
moment estimation (Zhang et al., 2021b) in the current algorithmic framework. Exploring alterna-
tive and potentially simpler algorithm which leads to better regret bounds are important directions
for future research.

Horizon-free regret bounds for homogenous reinforcement learning. It is natural to ask if the
horizon dependence can be removed if the episodic reinforcement learning process is homogenous,
for both linear MDPs and the more general setting. We suspect that this is not feasible with the
current approach as the regression functions across the levels do not share any parameters, and
hence fail to leverage the homogenous structure of the problem.

Improved regret bounds for V -type function approximation. Another important and interesting
open question is to design algorithms which enjoy better horizon dependence in the regret bounds for
V -type function approximation Jin et al. (2021); Agarwal and Zhang (2022), a notion more general
than Q-type approximation. This requires alternative algorithmic frameworks different from the
optimistic Q-learning, since pointwise bonuses do not easily combine with V -type assumptions.
Obtaining horizon-free guarantees in this setting largely remains open.
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bandits. Advances in neural information processing systems, 24, 2011.

Alekh Agarwal and Tong Zhang. Non-linear reinforcement learning in large action spaces: Struc-
tural conditions and sample-efficiency of posterior sampling. arXiv preprint arXiv:2203.08248,
2022.
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Appendix A. Related Work

Improving regret bounds in RL problems. Azar et al. (2013, 2017) first studied the Bellman
property of variance in tabular RL problems and used it for improving the horizon dependence in
the sample complexity and regret bounds. In the tabular setting, Zanette and Brunskill (2019) later
improved the result to further achieve problem-dependent regret bounds which match the classical
regret (Azar et al., 2017) in the worst-case, but obtain horizon-free guarantees in the sparse reward
case when the cumulative reward is at most 1 in any trajectory. Foster and Krishnamurthy (2021)
also studied problem-dependent regret bounds for tabular MDPs. Additionally, there are works on
obtaining fine-grained regret bounds in other RL settings, e.g. the data-dependent regret bounds for
adversarial bandits and MDPs (Lee et al., 2020) and problem-dependent regret bounds for RL under
linear function approximation (Wagenmaker et al., 2022).

Horizon-free bounds for the sparse reward setting (when total reward of each trajectory is in-
dependent of horizon length H) has received increased attention recently, starting from the COLT
open problem posed in Jiang and Agarwal (2018). In the tabular setting, a line of work (Zanette
and Brunskill, 2019; Zhang et al., 2021a, 2020a; Ren et al., 2021; Tarbouriech et al., 2021) designs
algorithms that incur a poly-logarithmic in H regret, using tighter concentration bounds in their
analysis. Another line of work further studies how to obtain completely horizon-free methods, at
the cost of paying extra exponential (Li et al., 2022) or polynomial factors Zhang et al. (2022) in
other problem parameters like state or action size. These ideas have been further generalized to
linear mixture MDPs (Zhang et al., 2021b; Kim et al., 2021; Zhou and Gu, 2022). However, the
model-based approach they rely on is challenging to extend to model-free settings with function
approximation. In particular, the challenge of designing a montonic variance upper bound in the
face of a changing regression target does not arise in the model-based setting.

Linear function approximation. Linear MDPs have become a popular simple model for under-
standing function approximation beyond the tabular setting. Many works, such as Jin et al. (2020);
Yang and Wang (2020); Zanette et al. (2020) obtainO(

√
T ) regret bounds, and Zanette et al. (2020)

obtain a O(dH
√
T ) bound, which is optimal in the scaling with d, but sub-optimal in the scaling

with H by a
√
H factor. Table 1 provides more detailed comparisons. In terms of techniques, our

approach is closest to that of Jin et al. (2020) in using a bonus based approach in a model-free
setting, but incorporates weighted regression and other analysis improvements to obtain optimal
guarantees. More closely related is the very recent result of Hu et al. (2022), who provide near-
optimal regret bound for linear MDPs. Unfortunately, their analysis suffers from a technical issue
that we explain in Appendix B, but their algorithm nevertheless contains many important design ele-
ments that we also incorporate. A key tool is the use of an over-optimistic and over-pessimistic value
function estimates, in addition to a standard optimistic estimate, to help with bounding the variance
of our regression targets. Like them, we also use the greedy policy of the over-optimistic func-
tion on certain rounds, as opposed to that of the optimistic function. Overall, these over-optimistic
and over-pessimistic values, which we learn using unweighted regression, provide a safety net for
our estimates and allow us to trade-off the amount of exploration with some extra regret by acting
greedily with respect to the over-optimistic function.

Nonlinear function approximation. RL under nonlinear function approximation has gained in-
creasing emphasis to model complex function spaces like neural networks, which are routinely used
in empirical works. Several works have developed rank-based measures to capture the hardness
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of RL in such settings, in frameworks such as Bellman rank (Jiang et al., 2017), Bellman-Eluder
dimension (Jin et al., 2021), Bilinear classes (Du et al., 2021) and DEC (Foster et al., 2021). Many
of the upper bounds in these frameworks, however, yield sub-optimal guarantees when specialized
to linear or tabular MDPs owing to their generality. An alternative approach builds on the Eluder
dimension framework of Russo and Van Roy (2013), which has been extended to model-free RL
in Wang et al. (2020). A related class of problems is that of smallQ-type Bellman-Eluder dimension
studied in Jin et al. (2021). Among these, the work of Wang et al. (2020) is closest to ours. Like
their work, we also use model-free regression to estimate value functions, use an Eluder dimension
style argument to control the exploration complexity, and use their sensitivity sampling argument
to create a bonus oracle. However, we use weighted regression for function fitting, and correspond-
ingly use a generalized Eluder dimension to handle such weighted objectives. Our generalization of
the Eluder dimension is based on recent ideas from active learning in Gentile et al. (2022), although
their work does not consider weighted settings. A related analysis of RL with non-linear function
approximation with a similar definition of the Eluder dimension is also carried out in Zhang (2023),
but they do not consider weighted regression and the guarantees are sub-optimal in d and H factors.
Compared with Wang et al. (2020), we also avoid paying a state-action covering number in the
leading order term in the regret in Table 1.

Appendix B. A Technical Issue in Hu et al. (2022)

The original version of Hu et al. (2022) designed an algorithm for linear MDPs and the main result
in their paper states the method achieves a minimax-optimal regret of Õ

(
d
√
HT

)
. Unfortunately,

their analysis suffered from a technical mistake which we explain in detail here.

Their algorithm crucially relied on the assumption the over-optimistic values ˙̂
Vi,h(·) upper

bound the optimistic values V̂i,h(·) point-wise with high probability. Specifically, Lemma D.2 and

Equation (38) stated that ˙̂
Vi,h(s) ≥ V̂j,h(s) ,∀i ≤ j and s ∈ X , where we use their notations with s

denoting state instead of x as in this paper. This was a critical condition needed in the proof.
However, the proof of Lemma D.2 in the original version of Hu et al. (2022) was incorrect. In

particular, the authors used induction to prove Lemma D.2: Assuming the condition holds for h+1,
they argued

˙̂
Qi,h(s, a)− Q̂j,h(s, a) = T V̂i,h+1(s, a)− T V̂j,h+1(s, a) ≥ 0,

where we recall T V̂i,h+1(s, a) = Erh,sh+1 [rh+V̂i,h+1(sh+1)|s, a]. Yet the authors did not explicitly
prove the last inequality: the proof stated that the last inequality is directly from the induction

hypothesis: ˙̂
Vi,h+1(·) ≥ V̂j,h+1(·), which was incorrect. In fact the inductive argument fails with

their algorithm, which cannot be resolved by modifying the analysis. In this paper, we modify the
overly optimistic value estimation procedure using unweighted regression (together with a different
exploration policy) to ensure that the estimation made at any time i remains valid for all time j ≥ i.

We note that after the submission of our work, Hu et al. (2022) updated their paper with the rare
switching technique from the recent work of He et al. (2022) to resolve this technical issue for linear
MDPs. With rare switching, the use of over optimism to ensure monotonicity can be replaced with
an explicit maximization over all value functions from the history, as these functions only change
rarely. This is identical to the arguments of He et al. (2020), which are developed independent of
and concurrent with our work.
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Appendix C. Proof for Generalized Eluder Dimension

Here we prove the remark comparing the generalized Eluder dimension defined in this paper (see Def-
inition 2) with the standard Eluder dimension defined in literature (see, e.g. Russo and Van Roy
(2013)). We first restate the remark for completeness.

Remark 4 (Relation to standard Eluder dimension) When σ ≡ 1, maxZ:|Z|=T dim(F , Z,1) ≤
dimE(F ,

√
λ/T )+1, where dimE(F , ε) is the standard Eluder dimension ofF as defined in Russo

and Van Roy (2013). The unweighted version of our definition has also appeared in Gentile et al.
(2022). The generalized definition we give takes supremum over any σ ≥ α, and thus is incompa-
rable with the standard Eluder dimension even when α = 1.

Proof [Proof of Remark 4] Suppose dimE(F , ε) = n. By definition of Eluder dimension, for any
length T sequence Z, there are at most n distinct (sorted) indices ti ∈ [T ], i ∈ [n] such that for zti ,
D2
F (zti , 1; z[ti−1],1[ti−1]) ≥ ε2

λ . We then bound

max
Z:|Z|=T

dim(F , Z,1) ≤ max
Z:|Z|=T

(
n+

ε2

λ
T

)
= n+

ε2

λ
T ≤ dimE(F , ε) + ε2 · T

λ
.

Here for the first inequality we use the definition of dim(F , Z,1) and the fact that only n terms in
the summation of min(1, D2

F ) are upper bounded by 1 instead of ε2

ε2+λ
as argued above. Plugging

in the choice of ε =
√
λ/T concludes the proof.

Appendix D. Proofs for Linear Function Approximation

Here we provide the full proofs of several properties of linear function class as stated in the main
paper.

The first property is about the Eluder dimension for linear MDPs Russo and Van Roy (2013).

Lemma 3 For the class Fhlin defined in (2), letting Fhlin(εc) be the εc-cover of Fhlin for some εc > 0,

we have dimα,T (Fhlin(εc)) ≤ dimα,T (Fhlin) = O
(
d log

(
1 + (Bh)2T

α2dλ

))
= Õ(d).

Proof [Proof of Lemma 3] Fix h ∈ [H]. Recalling the definitions of linear function classes Fhlin, we
can simplify the definition of generalized Eluder dimension to be the follows:

(
σ̄h
)−2

D2
Fh

lin
(zh; zh[t−1], σ̄

h
[t−1]) ≤

(
σ̄h
)−2

D2
Fh

lin
(zh; zh[t−1], σ̄

h
[t−1]) =

∥∥∥∥ 1

σ̄h
φh(zh)

∥∥∥∥2

(Σh
t )
−1
,

where Σh
t :=

λ

(Bh)
2 I +

∑
s∈[t−1]

1

(σ̄hs )
2φ

h(zhs )
(
φh(zhs )

)>
.
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Consequently, in this case we can bound for any σ ≥ α that

dim(Fhlin,Z, σ)
(i)

≤
∑
t∈[T ]

2
∥∥ 1
σ̄hφ

h(zht )
∥∥2

(Σh
t )
−1

1 +
∥∥ 1
σ̄hφh(zht )

∥∥2

(Σh
t )
−1

(ii)
=
∑
t∈[T ]

2

∥∥∥∥ 1

σ̄h
φh(zht )

∥∥∥∥2

(Σh
t+1)

−1

(iii)
= 2

∑
t∈[T ]

(
log det(Σh

t+1)− log det(Σh
t )
)

= O

(
log

∣∣∣∣∣
(
Bh
)2

λ
Σh
T

∣∣∣∣∣
)

= O

(
d log

(
1 +

(
Bh
)2
T

α2dλ

))
.

Here we use (i) the inequality that min(1, x) ≤ 2x
1+x for any x ≥ 0, (ii) the Sherman-Morrison for-

mula, and (iii) writing
∥∥ 1
σ̄hφ

h(zht )
∥∥2

(Σh
t+1)

−1 = trace
((

Σh
t+1

)−1
(Σh

t+1 − Σh
t )
)

= log det(Σh
t+1)−

log det(Σh
t ). This is the classical bound of summation of Elliptical bonuses, see e.g. Lemma 11

of Abbasi-Yadkori et al. (2011). The above inequality shows that

dimα,T (Fhlin) = O

(
d log

(
1 +

(
Bh
)2
T

α2dλ

))
= Õ(d).

Since by definition any εc-cover of Fhlin(εc) is just a subset of Fhlin, we have dimα,T (Fhlin(εc)) =

Õ(d) by definition of generalized Eluder dimension (Definition 2).

The next lemma shows that standard elliptical bonus functions satisfy the definition of bonus
oracle B.

Lemma 7 (Bonus oracle B for linear MDPs) Given T,H ∈ Z+, suppose all βht ≤ β and βht is
non-decreasing in t ∈ [T ] for each h ∈ [H]. For any t ≥ 1, h ∈ [H], variances {σ̄hs }s∈[t−1]

satisfying σ̄hs ≥ α for some α > 0, dataset Dh[t−1] = {(φh(zhs ), ahs , r
h
s , φ(zh+1

s ))}s∈[t−1], func-

tion class Fht and f̂ht ∈ Fht defined via weighted regression (5), and parameters λ, εc > 0, let

B({σ̄hs }s∈[t−1],Dh[t−1],F
h
t , f̂

h
t , β

h
t , λ, εc) = ‖φh(x, a)‖(Σh

t )−1

√
(βht )2 + λ, where Σh

t = λ
4(Bh)2

I +∑
s∈[t−1]

1
(σ̄h

s )2
φh(zhs )φh(zhs )>. For any choice of covering radius εc ≤ α

√
λ/8T , the oracle satis-

fies all the properties of Definition 5 with logNb = log |W| = O
(
d2 log

(
1 +B2

√
dβ/(λε2c)

))
.

Proof [Proof of Lemma 7] By definition of the class Fhlin(εc), we note that for any zh:

|fh(zh)− f̂ht (zh)| ≤‖w − ŵt‖Σh
t
‖φh(zh)‖(Σh

t )−1 ,

where w and ŵt are the weight parameters underlying fh and f̂ht respectively. By the definition (5)

of the class Fht , we have that for any f ∈ Fht , defining the bonus as ‖φh(x, a)‖(Σh
t )−1

√
(βht )2 + λ

verifies the second property of Definition 5.
For the third property, we note there must exist ∆w? satisfying ‖∆w?‖ = 2Bh and that

‖φh(zh)‖2
(Σh

t )
−1 =

∆w>? φ
h(zh)φh(zh)>∆w?∑

s∈[t−1]
1

(σ̄h
s )

2 ∆w>? φ
h(zhs )φh(zhs )>∆w? + λ

.
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Thus, by assumption of Fhlin(εc) being an εc-cover we can find ∆̃w? = w − w′ for w,w′ ∈ Fhlin(εc)
such that 〈φh(zh), ∆̃w? −∆w?〉 ≤ 2εc for all zh and thus

∆w>? φ
h(zh)φh(zh)>∆w?∑

s∈[t−1]
1

(σ̄h
s )

2 ∆w>? φ
h(zhs )φh(zhs )>∆w? + λ

≤ 2∆̃w>? φ
h(zh)φh(zh)>∆̃w? + 2 · (2εc)2

1
2

∑
s∈[t−1]

1

(σ̄h
s )

2 ∆̃w>? φ
h(zhs )φh(zhs )>∆̃w? − (2εc

α )2(t− 1) + λ

(?)

≤ 4
∆̃w>? φ

h(zh)φh(zh)>∆̃w?∑
s∈[t−1]

1

(σ̄h
s )

2 ∆̃w>? φ
h(zhs )φh(zhs )>∆̃w? + λ

+ 16ε2c/λ

≤ 4 sup
w,w′∈Fh

lin(εc)

(w − w′)>φh(zh)φh(zh)>(w − w′)∑
s∈[t−1]

1

(σ̄h
s )

2 (w − w′)>φh(zhs )φh(zhs )>(w − w′) + λ
+ 16ε2c/λ,

where for inequality (?) we use the choice of εc so that ε2c ≤ α2λ
8T . Thus by taking square root on

both sides, we have

‖φh(zh)‖
(Σh

t )
−1 ≤ 2σ̄ht ·DFh

lin(εc)(z
h, σ̄ht ; z[t−1], σ̄

h
[t−1]) + 4εc/

√
λ,

which by multiplying over
√(

βht
)2

+ λ on both sides proves the third property.
Since the matrix Σh

t is data dependent, the standard way to specify the bonus class is to param-
eterize it by all possible choices of the matrix in the Mahalanobis norm (Jin et al., 2020) , which
means that the classW consists of all bonus functions of the form

bh(zh) ∈
{∥∥∥φh(zh)

∥∥∥
A
|where A ∈ CA

}
, for any h ∈ [H],

where CA is an ε2c-cover of

{
A ∈ Rd×d, ‖A‖F ≤

4(Bh)2
√
d

λ
·
√
β2 + λ

}
.

By standard argument we have the size of log |CA| is bounded by O
(
d2 log

(
1 + (Bh)2

√
d·β

λε2c

))
.

Thus, by definition ofW we also have log |W| = O
(
d2 log

(
1 + B2

√
d·β

λε2c

))
.

The consistency of the oracle follows from the fact that βht is non-decreasing in t element-wise
for each h ∈ [H], thus completing the proof.

Appendix E. Implementing Bonus Oracle B using Online-subsampling

The guarantees of Algorithm 1 hold assuming a consistent bonus oracle B satisfying Definition 5.
To implement such an oracle, we follow the online sensitivity sub-sampling approach described
in Kong et al. (2021), which is a follow-up of the original sensitivity sub-sampling idea proposed
in Wang et al. (2020).

For completeness here we restate this sub-sampling procedure in Algorithm 2 and its guarantees
in Proposition 13. 6

6. Different from the original result, we don’t consider a cover class since we are already working with a finite function
class.
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We first define the weighted dataset Z so that each element in it is (z, σ̄(z)) and define the
weighted sensitivity score as

sensitivityZ,F ,β,α(z) = min

 sup
f,f ′∈F

1
σ̄2(z)

(f(z)− f ′(z))2

min
{∑

z′∈Z
1

σ̄2(z′) (f(z′)− f ′(z′))2 , T (H+1)2

α2

}
+ β2

, 1


For the weighted dataset Zh[t−1] = {(xhs , ahs ), σ̄hs }s∈[t−1], we define ‖f‖2Z =

∑
z∈Z

1
σ̄2(z)

f2(z),
i.e. weighted sum of `2-norm square. Now we introduce the sub-sampling procedure.

Algorithm 2: Online Sensitivity Sub-sampling with Weights

1 Input function class F , current sub-sampled dataset Ẑ ⊆ X ×A, new state-action pair z,
parameter β, threshold α > 0, failure probability δ

2 Parameter 1 ≤ C <∞
3 Let pz be the smallest real number such that

1/pz is an integer and pz ≥ min
(
1, C · sensitivityZ,F ,β,α(z) · log(TN/δ)

)
4 Independently add 1/pz copies of (z, σ̄(z)) into Ẑ+ with probability pz
5 Return Ẑ+.

This algorithm can be called at every step t, h with Ẑh[t−1] and the new data zht to obtain the next

Ẑh[t]. Below we will refer to the original dataset as Zh[t−1] = {(xhs , ahs ), σ̄hs }s∈[t−1], and Ẑh[t−1] as the
dataset subsampled from Zh[t−1].

Proposition 13 (Guarantees in weighted case, generalizing Proposition 1 and 2 in Kong et al. (2021))
When σ̄(z) ≥ α always holds for any z, with probability 1− δ, it holds that

sup
f1,f2:‖f1−f2‖2Zh

t

≤β2

|f1(z)− f2(z)| ≤ sup
f1,f2:‖f1−f2‖2Ẑh

t

≤102β2

|f1(z)− f2(z)|

≤ sup
f1,f2:‖f1−f2‖2Zh

t

≤104β2

|f1(z)− f2(z)|.

Further, for each h ∈ [H], the number of different elements in sub-sampled dataset Ẑht (t =
1, 2, · · · , T ) is always bounded by Smax = O

(
log TN

δ ·maxh∈[H] dimα,T (Fh)
)

and the total size
(counting repetitions) is bounded by O(T 3/δ).

This leads to the formal guarantee of implementing B in Definition 5 for general function class.

Corollary 14 (Implementing B using online-subsampling) There exists an algorithm (see Algo-
rithm 2) that with probability 1 − δ implements a consistent bonus oracle B with εb = 0 for all
iterations t ∈ [T ], h ∈ [H] where log |W| ≤ O

(
maxh∈[H] dimα,T (Fh) · log TN

δ log T |X×A|
δ

)
.

We remark that here we state a slightly generalized version adapted to weighted regression,
which includes unweighted regression stated in Kong et al. (2021) as a special case when we set
σ̄(z) ≡ 1. The result follows a straightforward generalization from Kong et al. (2021) taking
weights into consideration.
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Appendix F. Full Analysis of Theorem 6

This section provides a full proof for the bound on the expected regret in Algorithm 1. This is stated
in Theorem 6 in the main paper and here we first state a more formal version of that theorem.

Theorem 15 (Bound on expected regret) Suppose function class {Fh}h∈[H] satisfies Assump-
tion 1 with ε ∈ [0, 1] and Definition 2 with λ = 1, and given consistent bonus oracle B (output
function in classW) satisfying Definition 5, VOQL with α =

√
1/TH , δ < 1/(T + 10), ε ≤ 1 and

ut = C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tHεb

)
√
t

+H2ε+Hδ



for sufficiently large constant C < ∞, achieves a total regret ERT = O

(√
log NTHδ + T 2Hε ·

√
THdα +

(
log NTHδ + T 2Hε

)
·
(

log2 NNbTH
δ ·H5dα + T 2ε2b

))
.

The section is organized as follows: We first introduce some general notations, definitions,
and helper lemmas that will be used throughout the proof in this section in Appendix F.1. In Ap-
pendix F.2, we prove the properties of constructed confidence intervals Fht,j , j = 1,±2 and Ght .
In Appendix F.3 we prove the key point-wise monotonicity property and also some properties of
our chosen variance estimator

(
σht
)2 defined in Equation (4). In Appendix F.4, we show the ap-

proximation error between our constructed values fht,j , j = 1,±2 with respect to the true expected
reward V h

t . In Appendix F.5 we provide the formal proofs for bounding the regret. We refer readers
to Appendix G for the complete theorem statement and full proof for the high-probability regret
bound.

In Table 2 we summarize the main notations used in the paper. We also provide the concrete
choices of parameters of Algorithm 1 for obtaining the claimed regret bounds in Table 3.

F.1. Notations and Preliminaries

Here we briefly give self-contained notations and definitions used throughout the proof. We sum-
marize the main notations used in Table 2 and the specific choice of parameters in Table 3 for easy
reference.

Iterates and functions. In general, we use z = (x, a), zh = (xh, ah) and zht = (zht , a
h
t ) inter-

changeably. We also use fh? ∈ Fh to denote either the optimal Q-value function Qh? or the optimal
V -value function V h

? when clear from context.
As in the main paper, we will use the notation T f(zh) = Erh,xh+1 [rh + f(xh+1)|zh] and also

T2f(zh) = Erh,xh+1

[(
rh + f(xh+1)

)2 |zh] to be the conditional expectation of future values and

their second moment under any function f at level h and state-action pair zh.
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Notation Meaning Remark

X , A state space, action space
t, h t ∈ [T ] trajectory/step, h ∈ [H + 1] level

rht , x
h
t , a

h
t reward, state and action at step t and level h

rh, xh, ah random reward, state and action at step t and level h
z shorthand for state-action pair (x, a)

Dh[t−1] data set {(xhs , ahs , rhs , xh+1
s )}s∈[t−1]

Fh function class for h ∈ [H] Ass. 1
Fhlin general linear function class Eqn. (2)
Fhlin(εc) εc-cover of general linear function class Fhlin Eqn. (2)
W bonus function class defined for B Def. 5
εb error paremeter for bonus oracle Eqn. (2)
N maximal size of function class maxh∈[H] |Fh|
Nb size of bonus function class |W| Def. 5

DF (z; z[t−1], σ[t−1]) :=

√
supf1,f2∈F

(f1(z)−f2(z))2∑
s∈[t−1]

1
σ2s

(f1(zs)−f2(zs))2+λ
λ param.

dimα,T (F) generalized Eluder dimension defined in Definition 2 α param.
dα shorthand for 1

H

∑
h∈[H] dimα,T (Fh) (Definition 2) α param.

fht,1 optimistic value function at step t, h
f̂ht,1 solution of fitting weighted regression at step t, h Eqn. (11)
f̄ht,1 in Fh and maxzh

∣∣f̄ht,1(zh)− E
[
rh + fh+1

t,1 (xh+1)|zh
]∣∣ ≤ ε Ass. 1

Fht,1 version space of optimistic value functions at step t, h Eqn. (11)
fht,2 overly optimistic value function at step t, h
fht,−2 overly pessimistic value function at step t, h
f̂ht,±2 solution of fitting unweighted regression at step t, h Eqn. (16)
f̄ht,±2 in Fh and maxzh

∣∣f̄ht,j(zh)− E
[
rh + fh+1

t,j (xh+1)|zh
]∣∣ ≤ ε Ass. 1

Fht,±2 version space of overly optimistic(pessimistic) value functions at t, h Eqn. (16)
ĝht solution of fitting second-moment regression at step t, h Eqn. (19)

ψht in Fh and maxzh
∣∣∣ψht (zh)− E

[(
rh + fh+1

t,2 (xh+1)
)2 |zh]∣∣∣ ≤ ε Ass. 1

Ght version space of second-moment estimates at t, h Eqn. (19)
Eht event that {f̄ht,j ∈ Fht,j for j = 1,±2 and ψht ∈ Ght }
Et, E≤t joint event that ∩h∈[H]Eht or ∩s∈[t] ∩h∈[H] Ehs

ht ∈ [H + 1] random h when starting to take greedy w.r.t fht,2 at step t
To, Too disjoint subsets of [T ] when ht = H + 1 or ht ∈ [H]
V ht expected reward during exploration at time t from step h onwards

V h? , Qh? optimal V -value or Q-value function at level h
fh? equivalent to Qh? or V h? depending on the context
ξht,j := rht + fh+1

t,j (xh+1
t )− Erh,xh+1

[
rh + fh+1

t,j (xh+1)|zht
]

for j = 1,±2

ξht := rht + V h+1
t − E

[
rh + V h+1

t |z[h]t , f
[H]
t,1 , f

[H]
t,2

]
bht,j bonus term obtained in Lines 10 and 14 using B, for j = 1, 2 Def. 5
T Bellman operator T f(zh) = E[rh + f(xh+1)|zh]

T2 second-moment operator T2f(zh) = E
[(
rh + f(xh+1)

)2 |zh]
Table 2: Summary of notations. Here we use E[·|zh] = Erh,xh+1 [·|zh] for brevity.
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Parameter Choice Remark

δ δ < 1/(T + 10) in Theorem 15, δ < 1/(H2 + 11) in Theorem 45

δt,h δ/(T + 1)(H + 1) Eqn. (14)

ε ε ∈ [0, 1], model class misspecification error Ass. 1

εc error due to taking covering of function class

α
√

1/TH Def. 2

λ 1 Def. 2

υ(δ)
√

log N
2(2 log(4LT/α)+2)(log(8L/α2)+2)

δ Eqn. (14)

ι(δ) 3
√

log NNb(2 log(4LT/α)+2)(log(8L/α2)+2)
δ Eqn. (15)

βht,1

√(
6
√
λ+ 156

)
·
√

log
N 2(T+1)(H+1)(2 log 4LT

α +2)(log 8L
α2 +2)

δ +
√

8tL
α2 · ε Eqn. (13)

ι̇(δ)
√

2 log NNb(2 log(18LT )+2)(log(18L)+2)
δ Eqn. (18)

βht,2
√

2 (24L+ 21) ι̇2(δt,h) + 20tLε Eqn. (17)

ι′(δ)
√

2 log NNb(2 log(32LT )+2)(log(32L)+2)
δ Eqn. (21)

β̄ht

√
8(11 + 9L) (ι′(δt,h))

2
+ 32tLε Eqn. (20)

(
σht
)2 min

(
4, DFh(zht ; zh[t−1],1

h
[t−1]) ·

(√(
β̄ht
)2

+ λ+ 2L
√(

βht,2
)2

+ λ

)
Eqn. (4)

+ĝht (zht )−
(
f̂ht,−2(zht )

)2
+ 2(1 + L)ε

)
for t ≥ 2

σ̄ht
max

{
σht , α,

√
2ι(δt,h)

√
fht,2(zht )− fht,−2(zht ),

Eqn. (12)
2
(√

υ(δt,h) + ι(δt,h)
)
·
√
DFh(zht ; zh[t−1], σ̄

h
[t−1])

}
Table 3: Summary of parameter choices.

We recall the definition of ft,j for j = 1,±2 in Algorithm 1 that

fht,1(·) := min
(
f̂ht,1(·) + bht,1(·) + ε, 1

)
,

fht,2(·) := min
(
f̂ht,2(·) + 2bht,1(·) + bht,2(·) + 3ε, 2

)
,

fht,−2(·) := max
(
f̂ht,−2(·)− bht,2(·)− ε, 0

)
,

(10)

where f̂ht,j is the center of the constructed confidence interval (see next paragraph for concrete
definitions) respectively. For each fht,j with j = 1,±2, we will let f̄ht,j(·) ∈ Fh to approximate the

conditional expectation with target fh+1
t,j , i.e. maxzh

∣∣∣f̄ht,j(zh)− T fh+1
t,j (zh)

∣∣∣ ≤ ε (such f̄ exists due

to Assumption 1). Similarly, we will let ψht (·) ∈ Fh to approximate the conditional expectation of
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second moment with target fh+1
t,2 , i.e. maxzh

∣∣∣ψht (zh)− T2f
h+1
t,1 (zh)

∣∣∣ ≤ ε (existence is guaranteed
similarly).

Regression and confidence intervals. We define the following (weighted) regression problems
and their induced confidence intervals at each step t ∈ [T ], h ∈ [H] when the dataset Dh[t−1] :=

{(xhs , ahs , rhs , xh+1
s )}s∈[t−1] is given. Throughout we use N := maxh∈[H] |Fh| and Nb := |W| to

denote the sizes of the function class Fh, h ∈ [H] and the bonus function classW .
The weighted regression problem for fitting optimistic value functions fht,1 is:

f̂ht,1 = arg min
fh∈Fh

∑
s∈[t−1]

(
fh
(
xhs , a

h
s

)
− rhs − fh+1

t,1

(
xh+1
s

))2

(σ̄hs )
2 ,

and let Fht,1 :=

fh ∈ Fh :
∑

s∈[t−1]

1

(σ̄hs )
2

(
fh(xhs , a

h
s )− f̂ht (xhs , a

h
s )
)2
≤
(
βht,1

)2

 .

(11)

The parameters are as follows (for t ≥ 2):

σ̄ht := max
{
σht , α,

√
2ι(δt,h)

√
fht,2(zht )− fht,−2(zht ), (12)

2

(√
υ(δt,h) + ι(δt,h)

)
·
√
DFh(zht ; zh[t−1], σ̄

h
[t−1])

}
,

βht,1 :=

√(
6
√
λ+ 156

)
·

√
log
N 2(T + 1)(H + 1)

(
2 log 4LT

α + 2
) (

log 8L
α2 + 2

)
δ

+

√
8tL

α2
· ε,

(13)

δt,h :=
δ

(T + 1)(H + 1)
, υ(δt,h) :=

√
log
N 2 (2 log(4LT/α) + 2) (log(8L/α2) + 2)

δt,h
, (14)

and ι(δt,h) := 3

√
log
NNb (2 log(4LT/α) + 2) (log(8L/α2) + 2)

δt,h
.

(15)

The unweighted regression for fitting overly optimistic and overly pessimistic value functions
is as follows:

∀ t ∈ [T ], h ∈ [H], f̂ht,±2 = arg min
fh∈Fh

∑
s∈[t−1]

(
fh
(
xhs , a

h
s

)
− rhs − fh+1

t,±2

(
xh+1
s

))2
,

and we let Fht,±2 :=

fh ∈ Fh :
∑

s∈[t−1]

(
fh(xhs , a

h
s )− f̂ht,±2(xhs , a

h
s )
)2
≤
(
βht,2

)2

 .

(16)
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We choose the parameters as follows:

Note max
h∈[H]

∣∣∣Fh + 2W +W
∣∣∣ ≤ NN 2

b ,

βht,2 :=
√

2 (24L+ 21) ι̇2(δt,h) + 20tLε, (17)

δt,h :=
δ

(T + 1)(H + 1)
and ι̇(δ) =

√
2 log

NNb (2 log(18LT ) + 2) (log(18L) + 2)

δ
.

(18)

The unweighted regression for fitting second-moment function values is as follows:

∀ t ∈ [T ], h ∈ [H], ĝht = arg min
gh∈Fh

∑
s∈[t−1]

(
gh
(
xhs , a

h
s

)
−
(
rhs + fh+1

t,1

(
xh+1
s

))2
)2

,

and similarly let Ght :=

gh ∈ Fh :
∑

s∈[t−1]

(
gh(xhs , a

h
s )− ĝht (xhs , a

h
s )
)2
≤
(
β̄ht

)2

 .

(19)

Here we choose parameters:

β̄ht :=

√
8(11L+ 9) (ι′(δt,h))2 + 32tLε, (20)

δt,h :=
δ

(T + 1)(H + 1)
and ι′(δ) :=

√
2 log

NNb (2 log(32LT ) + 2) (log(32L) + 2)

δ
. (21)

In all the definitions above, we note that δt,h is independent of t and h. We also observe∑
t∈[T ],h∈[H] δt,h ≤ δ. We will define the following good (probabilistic) event: Eht,j := {f̄ht,j ∈ Fht,j}

with j = 1,±2. Further, we let Ēt := {ψht ∈ Ght }. Further, we let Eht = Eht,1 ∩ Eht,2 ∩ Eht,−2 ∩ Ēht ,
and use Et = ∩h∈[H]Eht and E≤t = ∩t′≤tEt′ as shorthand for joint events.

Design of exploration policy. We restate the exploration policy for generating new data trajectory
as stated in the main paper, i.e. Equation (9). At each iteration t, the algorithm collects data using
both optimistic sequence fht,1 and overly optimistic fht,2. Given a sequence of pre-specified {ut}t∈[T ],
at each iteration t, with function fht,1(·) and fht,2(·) at hand, we choose actions based on the following
rule:

aht =

{
argmaxa∈A f

h
t,1(xht , a) if fht,1(xh

′
t ) ≥ fht,2(xh

′
t )− ut for all h′ ≤ h,

argmaxa∈A f
h
t,2(xht , a) otherwise,

(22)

We also use ht ∈ [H + 1] to denote the (random) threshold at which we first start taking greedy
action based on overly optimistic sequence ft,2. We divide the iteration set into the disjoint subsets
[T ] = To ∪ Too so that

To := {t ∈ [T ] : ht = H + 1} and Too := {t ∈ [T ] : ht ∈ [H]}. (23)

Al step t, we note the policy induced by our defined exploration rule (22) at step t, h given
state xht depends onDh[t−1] and also the new generated trajectory {xh1 , xh2 , · · · , xh[t−1], x

h
t }. For each
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h ∈ [H], we use Vt to denote the expected V -value only at the trajectory under the exploration rule
at step t, formally as follows:

V h
t := E

∑
h′≥h

rh
′ |x[h]

t , f
[H]
t,1 , f

[H]
t,2

 . (24)

The expectation is taken with respect to both model transition and exploration policy.

Other notations. We define the martingale difference sequence so that

ξht,j := rht + fh+1
t,j (xh+1

t )− Erh,xh+1

[
rh + fh+1

t,j (xh+1)|zht
]
, for j = 1,−2, 2,

ξht := rht + V h+1
t − E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
.

We use the following shorthand of summation of bonus terms.

I :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)
,

II :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)
.

In the high-probability regret proof in Appendix G, we also define probabilistic event Eξdif ,
EV, Eξ, Eξ1 , Eξ2 , Eξ−2 , we refer readers to Lemmas 46 and 47 and corollary 40 for their concrete
meanings.

Helper lemmas. We now include a few helper lemmas that will be used in multiple parts of the
analysis of Algorithm 1. The first few lemmas characterize the concentration behavior of martingale
difference sequence, and are used heavily in Appendix F.2, and for proving Lemmas 46 and 47.

Lemma 16 (Freedman’s inequality, cf. Theorem of Beygelzimer et al. (2011)) Let M, v > 0
be constants, and {xi}i∈[t] be stochastic process adapted to a filtration {Hi}i∈[t]. Suppose E[xi|Hi−1] =
0, |xi| ≤ M and

∑
i∈[t] E[x2

i |Hi−1] ≤ V 2. Then for any δ > 0, with probability at least 1 − δ we
have ∑

i∈[t]

xi ≤ 2V
√

log(1/δ) +M log(1/δ).

Lemma 17 (Freedman’s inequality variant, cf. Dzhaparidze and Van Zanten (2001); Fan et al. (2017))
Let {xi}i∈[t] be adapted to filtration {Hi}i∈[t]. Suppose E[xi|Hi−1] = 0 and E[x2

i |Hi−1] <∞ al-
mosy surely. Then for any a, v, y > 0 we have

P

∑
i∈[t]

xi > a,
∑
i∈[t]

(
E[x2

i |Hi−1] + x2
i · 1{|xi|>y}

)
< v2

 ≤ exp

(
−a2

2(v2 + ay/3)

)
.

Corollary 18 Let M > m > 0, V > v > 0 be constants, and {xi}i∈[t] be stochastic process
adapted to a filtration {Hi}i∈[t]. Suppose E[xi|Hi−1] = 0, |xi| ≤M and

∑
i∈[t] E[x2

i |Hi−1] ≤ V 2

almost surely. Then for any δ, ε > 0, let ι =

√
log (2 log(V/v)+2)·(log(M/m)+2)

δ we have

P

∑
i∈[t]

xi > ι

√√√√√2

2
∑
i∈[t]

E[x2
i |Hi−1] + v2

+
2

3
ι2
(

2 max
i∈[t]
|xi|+m

) ≤ δ.
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Next, we state some helper lemmas on law of total variance, which are used in proving Corol-
lary 40.

Proposition 19 (Law of total variance, LTV) Suppose at step t, we use policy πt and have value
function following such policy as {V h

πt}h∈[H], then by law of total variance we have

V

 ∑
h∈[H]

rht

 = E

 ∑
h∈[H]

V
[
rht + V h+1

πt |z
[h]
t , f

[H]
t,1 , f

[H]
t,2

] ≤ 1.

Proof We use E[·|zht ] = Erh,xh+1 [·|zht ] and V[·|zht ] = Vrh,xh+1 [·|zht ] for simplicity. By conditional
expectation and law of total variance we can show that

V

 ∑
h∈[H]

rht

 = E

[
H∑
h=1

V[rh + V h+1
πt (xh+1)|zht ] | f [H]

t,1 , f
[H]
t,2

]

= E

( H∑
h=1

(
rht + V h+1

πt (xh+1
t )− E[rh + V h+1

πt (xh+1)|zht ]
))2

| f [H]
t,1 , f

[H]
t,2


(?)
= E

[( H∑
h=1

rht − V 1
π1(x1

t )

)2

| f [H]
t,1 , f

[H]
t,2

]
,

here we use (?) the definition of πt and Vπt .

We now provide an adapted version of LTV applying to ft,1, which generates our greedy policy
only when t ∈ To based on the exploration rule as in Equation (22).

Proposition 20 (Adapted version using LTV) Suppose at step t, the agent explores based on
rule (22). Then conditioning on the past

HHt−1 = σ(x1
1, r

1
1, x

2
1, · · · , rH1 , xH+1

1 ;x1
2, r

1
2, x

2
2, · · · ; · · · ;x1

t−1, r
1
t−1, · · · , rHt−1, x

H+1
t−1 ),

we have

E

[
H∑
h=1

Vrh,xh+1 [rh + fh+1
t,1 (xh+1)|zht ] | HHt−1

]
≤ 2E

( H∑
h=1

rh − f1
t,1(x1

t )

)2

| HHt−1


+ 2E

(1(t ∈ To)

H∑
h=1

(
fht,1(xht , a

h
t )− E

rh,xh+1
[rh + fh+1

t,1 (xh+1)|zht ]

))2

| HHt−1


+ 2E

(1(t ∈ Too)

H∑
h=1

(
fht,1(xht )− E

rh,xh+1
[rh + fh+1

t,1 (xh+1)|zht ]

))2

| HHt−1

 .
30



TOWARDS OPTIMAL REGRET IN MODEL-FREE RL

Proof We use E[·|zht ] = Erh,xh+1 [·|zht ] and V[·|zht ] = Vrh,xh+1 [·|zht ] for simplicity. By conditional
expectation and law of total variance we can show that

E

[
H∑
h=1

V[rh + fh+1
t,1 (xh+1)|zht ] | HHt−1

]

= E

( H∑
h=1

(
rht + fh+1

t,1 (xh+1
t )− E[rh + fh+1

t,1 (xh+1)|zht ]
))2

| HHt−1


(i)
= E

[( H∑
h=1

rht − f1
t,1(x1

t ) +
H∑
h=1

1{t∈To}

(
fht,1(xht , a

h
t )− E[rh + fh+1

t,1 (xh+1)|zht ]
)

+

H∑
h=1

1{t∈Too}

(
fht,1(xht )− E[rh + fh+1

t,1 (xh+1)|z[h]
t , f

[H]
t,1 , f

[H]
t,2 ]
))2

| HHt−1

]
(ii)

≤ 2E
[( H∑

h=1

rht − f1
t,1(x1

t )

)2

| HHt−1

]

+ 2E

(1{t∈To}

H∑
h=1

(
fht,1(xht , a

h
t )− E[rh + fh+1

t,1 (xh+1)|zht ]
))2

| HHt−1


+ 2E

(1{t∈Too}

H∑
h=1

(
fht,1(xht )− E[rh + fh+1

t,1 (xh+1)|zht ]
))2

| HHt−1

 ,
here we use (i) the fact that whenever t ∈ To, we have fht,1(xht , a

h
t ) = fht,1(xht ), and (ii) the factor 2

comes from the AM-GM inequality and by noting that summation terms of t ∈ To and t ∈ Too are
mutually exclusive.

F.2. Confidence Intervals’ Properties

In this subsection, we justify the choices of parameters βht,j and β̄ht in constructing our confidence
intervals Fht,j for j = 1,±2 and Ght . We show with high probability under moderate assumptions,
it holds that f̄t,j ∈ Fht,j for j = 1,±2 and ψht ∈ Ght using martingale concentration. We write
V[·|zht ] = Vrh,xh+1 [·|zht ] and E[·|zht ] = Erh,xh+1 [·|zht ] where the randomness is taken with respect
to only rh and xh+1 due to model transition by abusing notation, when the meaning is clear from
context.

Confidence interval of optimistic sequence. This paragraph proves the property of the optimistic
confidence interval we construct for Qh? .
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Lemma 21 At step t ∈ [T ] and horizon h ∈ [H], suppose

(σhs )2 ≥ V
[
rh + fh+1

? (xh+1)|zhs
]
, ∀ s ∈ [t− 1],

(25)

and E
[
|fh+1
t,1 (xh+1)− fh+1

? (xh+1)| | zhs
]
≤ fhs,2(zhs )− fhs,−2(zhs ), ∀ s ∈ [t− 1], zhs ∈ X ×A.

(26)

Recalling that f̄ht,1(xh, ah) ∈ Fh as some function such that |f̄ht,1(zh) − T fh+1
t,1 (zh)| ≤ ε for all

zh = (xh, ah), we have with probability 1− 2δt,h, it holds that f̄ht,1 ∈ Fht,1 for the constructed Fht,1
based on the definition of confidence interval in (11) and βht,1 in (13).

We will prove that the assumptions of Lemma 21 hold true in the next section following a
recursive argument (see Proposition 33). Now we first work under these assumptions and provide
a complete proof of Lemma 21. In order to prove this lemma, we first show the concentration
properties of two martingale difference sequences (MDSs), building on Corollary 18.

Lemma 22 Under the same setting and condition (25) as in Lemma 21, consider filtration de-
fined as Hhs = σ(x1

1, r
1
1, x

2
1, · · · , rH1 , x

H+1
1 ;x1

2, r
1
2, x

2
2, · · · , rH2 , x

H+1
2 ; · · · , x1

s, r
1
s , · · · , rhs , xh+1

s ),
we consider for any fixed f, f̃ ∈ [0, L], define

ηhs := rhs + fh+1
?

(
xh+1
s

)
− E

[
rh + fh+1

?

(
xh+1

)
|zhs
]
,

and MDS Dhs [f, f̃ ] := 2
ηhs

(σ̄hs )
2 ·
(
f
(
zhs

)
− f̃

(
zhs

))
,

then we have with probability 1− δt,h/N 2,∑
s∈[t−1]

Dhs [f, f̃ ]

≤ 4

3
υ(δt,h)

√
λ+

2

3
υ2(δt,h) +

√
2υ(δt,h) +

162υ2(δt,h)

32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f(zhs )− f̃(zhs )

)2

4
,

(27)

where we recall δt,h = δ
(T+1)(H+1) and υ(δt,h) =

√
log N

2(2 log(4LT/α)+2)(log(8L/α2)+2)
δt,h

as in (14).

Proof By definition of Dhs [f, f̃ ] = 2 ηhs

(σ̄h
s )

2 ·
(
f
(
zhs
)
− f̃

(
zhs
))

, it is a well-defined martingale

difference sequence adapted to Hhs . In order to apply Corollary 18, we first give the almost-surely
bounds on its maximum scale M and sum of second moment V . It holds that∣∣∣Dhs [f, f̃]∣∣∣ ≤ 2|ηhs | ·maxzhs |f(zhs )− f̃(zhs )|

α2
≤ 8L

α2
=: M w.p. 1, , (28)

∑
s∈[t−1]

E
[(

Dhs

[
f, f̃
])2
|zhs
]

=
∑

s∈[t−1]

4
E
[(
ηhs
)2 |zhs ]

(σ̄hs )
4

(
f(zhs )− f̃(zhs )

)2

≤ 16L2

α2
(t− 1) ≤

(
4LT

α

)2

=: V 2. (29)
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Here we only use the size bound on f, f̃ ∈ [0, L] by Assumption 1, σ̄hs ≥ α by definition (12), and
|ηhs | ≤ 2 since rhs , f

h+1
? ∈ [0, 1] always hold true.

Additionally, we also have the following realization-dependent bounds on the maximum scale
and sum of second moment for the MDS sequence.

∑
s∈[t−1]

E
[(

Dhs

[
f, f̃
])2
|zhs
]

=
∑

s∈[t−1]

4
E
[(
ηhs
)2 |zhs ]

(σ̄hs )
4

(
f(zhs )− f̃(zhs )

)2

(i)

≤ 4
∑

s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
(30)

Here we use (i) the assumption in (25) such that E
[(
ηhs
)2 |zhs ] = V

[
rh + fh+1

? (xh+1)|zhs
]
≤(

σhs
)2 ≤ (σ̄hs )2.

max
s∈[t−1]

∣∣∣Dh
s

[
f, f̃
]∣∣∣ = max

s∈[t−1]
2

∣∣∣∣∣ ηhs

(σ̄hs )
2

∣∣∣∣∣ · ∣∣∣f(zhs )− f̃(zhs )
∣∣∣

(ii)

≤ max
s∈[t−1]

4

(σ̄hs )
2

√√√√√D2
Fh(zhs ; zh[s−1], σ̄

h
[s−1])

 ∑
i∈[s−1]

1(
σ̄hi
)2 (f(zhi )− f̃(zhi )

)2
+ λ


(iii)

≤ 1

υ(δt,h)

√√√√ ∑
s∈[t−2]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
+ λ, (31)

Here we use (ii) the size bound that |ηhs | ≤ 2 since rh, fh+1
? ∈ [0, 1] together with the definition of

DFh , and (iii) the choice of σ̄hs ≥ 2
√
DFh(zhs ; zh[s−1], σ̄

h
[s−1]) · υ(δt,h) for all s ∈ [t − 1] and then

taking the maxs∈[t−1] inside the summation of i ∈ [s− 1].

Applying Corollary 18 with M = 8L/α2 (28), V = 4LT/α (29), v = m = 1, using (30)
and (31) we conclude that with probability at least 1− δt,h/N 2, for

υ(δt,h) =

√
log
N 2 (2 log(4LT/α) + 2) (log(8L/α2) + 2)

δt,h
,
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we have

∑
s∈[t−1]

2
ηhs

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)
≤ υ(δt,h)

√√√√√16

 ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2

+ 2

+
2

3
υ2(δt,h) ·

 2

υ(δt,h)

√√√√ ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
+ λ+ 1


≤ 4

3
υ(δt,h)

√
λ+

2

3
υ2(δt,h) +

√
2υ(δt,h) +

16

3
υ(δt,h)

√√√√ ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2

≤ 4

3
υ(δt,h)

√
λ+

2

3
υ2(δt,h) +

√
2υ(δt,h) +

2 · 162υ2(δt,h)

2 · 32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f(zhs )− f̃(zhs )

)2

2 · 2
.

The last inequality above uses AM-GM inequality and this concludes the proof.

Lemma 23 Under the same setting and condition (26) as in Lemma 21, consider filtration de-
fined as Hhs = σ(x1

1, r
1
1, x

2
1, · · · , rH1 , x

H+1
1 ;x1

2, r
1
2, x

2
2, · · · , rH2 , x

H+1
2 ; · · · , x1

s, r
1
s , · · · , rhs , xh+1

s ),
we consider for any fixed f, f̃ ∈ [0, L], and f ′ = fh+1

t,1 , define

ξhs [f ′] = f ′
(
xh+1
s

)
− fh+1

?

(
xh+1
s

)
− E

[
f ′
(
xh+1

)
− fh+1

?

(
xh+1

)
|zhs
]
,

and MDS ∆h
s

[
f, f̃, f ′

]
= 2

ξhs [f ′]

(σ̄hs )
2 ·
(
f
(
zhs

)
− f̃

(
zhs

))
,

then we have with probability 1− δt,h/N 3Nb,∑
s∈[t−1]

∆h
s

[
f, f̃, f ′

]

≤ 4

3

√
λ+

2

3
·
ι2(δt,h)

logNb
+
√

2 ·
ι(δt,h)√
logNb

+
162

32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f(zhs )− f̃(zhs )

)2

4
, (32)

where we recall ι(δt,h) = 3

√
log
NNb (2 log(4LT/α) + 2) (log(8L/α2) + 2)

δt,h
as in (15).

Proof Note that the martingale difference ∆h
s

[
f, f̃, f ′

]
is adapted to Hhs . In order to apply Corol-

lary 18, we again first give the almost-surely bounds on its maximum scale M and sum of second
moment V . It holds that∣∣∣∆h

s

[
f, f̃, f ′

]∣∣∣ ≤ 2|ξhs [f ′]| ·maxzhs |f(zhs )− f̃(zhs )|
α2

≤ 8L

α2
=: M, (33)

∑
s∈[t−1]

E
[(

∆h
s

[
f, f̃, f ′

])2
|zhs
]

=
∑

s∈[t−1]

4
E
[(
ξhs [f ′]

)2 |zhs ]
(σ̄hs )

4

(
f(zhs )− f̃(zhs )

)2
≤
(

4L

α
T

)2

=: V 2.

(34)
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Here we again use f, f̃ ∈ [0, L] and σ̄hs ≥ α and |ξhs | ≤ 2 since f ′ = fh+1
t,1 ∈ [0, 1].

Additionally, we also have the following realization-dependent bound on the maximum magni-
tude.

∑
s∈[t−1]

E
[(

∆h
s

[
f, f̃, f ′

])2
|zhs
]

=
∑

s∈[t−1]

4
E
[(
ξhs [f ′]

)2 |zhs ]
(σ̄hs )

4

(
f(zhs )− f̃(zhs )

)2

(i)

≤ 4

ι2(δt,h)

∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
, (35)

Here we use (i) given assumption (26) and that δt,h doesn’t depend on t by definition so that

E
[(
ξhs [f ′]

)2 |zhs ] ≤ E
[(
fh+1
t,1 (xh+1)− fh+1

? (xh+1)
)2
|zhs
]
≤ 2E

[
|fh+1
t,1 (xh+1)− fh+1

? (xh+1)||zhs
]

≤ 2(fhs,2(zhs )− fhs,−2(zhs )) ≤ ι−2(δt,h)
(
σ̄hs
)2.

We also have the following bound on the sum of second moment.

max
s∈[t−1]

∣∣∣∆h
s

[
f, f̃, f ′

]∣∣∣ = max
s∈[t−1]

2

∣∣∣∣∣ξhs [f ′]

(σ̄hs )
2

∣∣∣∣∣ · ∣∣∣f(zhs )− f̃(zhs )
∣∣∣

(ii)

≤ max
s∈[t−1]

4

(σ̄hs )
2

√√√√√D2
Fh(zhs ; zh[s−1], σ̄

h
[s−1])

 ∑
i∈[s−1]

1(
σ̄hi
)2 (f(zhi )− f̃(zhi )

)2
+ λ


(iii)

≤ 1

ι2(δt,h)

√√√√ ∑
s∈[t−2]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
+ λ. (36)

For (ii) we use the size bound that |ξhs [f ′]| ≤ 2 since rh ∈ [0, 1], and f ′ ∈ [0, 1] together with
the definition of DFh and (iii) the choice of σ̄hs ≥ 2

√
DFh(zhs ; zh[s−1], σ̄

h
[s−1]) · ι2(δt,h) for all

s ∈ [t− 1] and taking the maxs∈[t−1] inside the summation of i ∈ [s− 1].
Applying Corollary 18 with M = 8L/α2 (33), V = 4LT/α (34), v = 1/

√
logNb , m =

1/ logNb, using (35) and (36) we conclude that with probability at least 1− δt,h/(N 3Nb), it holds
that

∑
s∈[t−1]

2
ξhs [f ′]

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)
≤ ι(δt,h)

√√√√√ 16

ι2(δt,h)

 ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2

+ 2 · 1

logNb

+
2

3
ι2(δt,h) ·

 2

ι2(δt,h)

√√√√ ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2
+ λ+

1

logNb


≤ 4

3

√
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2

3
·
ι2(δt,h)

logNb
+
√

2 ·
ι(δt,h)√
logNb

+
16

3

√√√√ ∑
s∈[t−1]

1

(σ̄hs )
2

(
f(zhs )− f̃(zhs )

)2

≤ 4

3

√
λ+

2

3
·
ι2(δt,h)

logNb
+
√

2 ·
ι(δt,h)√
logNb

+
2 · 162

2 · 32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f(zhs )− f̃(zhs )

)2

2 · 2
,
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for the choice of

ι(δt,h) = 3

√
log
NNb (2 log(4LT/α) + 2) (log(8L/α2) + 2)

δt,h

≥

√√√√
log
N 3Nb

(
2 log

(
4LT
√

logNb
α

)
+ 2
)(

log 8L logNb

α2 + 2
)

δt,h
.

Here for the last inequality we use log logNb ≤ Nb.

Making use of these two helper lemmas, we provide the complete proof for Lemma 21.
Proof [Proof of Lemma 21] At step t ∈ [T ], h ∈ [H], we locally denote the probability event Et,h
as follows so that {f̄ht,1 /∈ Fht,1} ⊆ Et,h:

Et,h :=

{ ∑
s∈[t−1]

1

(σ̄h
s )

2

(
f̄ht,1

(
xhs , a

h
s

)
− f̂ht,1

(
xhs , a

h
s

))2
>
(
βht,1
)2 }

.

Note by definition of f̂ht,1, we know that with probability 1 it holds that

∑
s∈[t−1]

1

(σ̄hs )
2

(
f̂ht,1

(
zhs

)
− f̄ht,1

(
zhs

))2

≤ 2
∑

s∈[t−1]

(
rhs + fh+1

t,1

(
xh+1
s

)
− f̄ht,1(zhs )

)
(σ̄hs )

2

(
f̂ht,1

(
zhs

)
− f̄ht,1

(
zhs

))
.

Thus this event can be equivalently expressed as
∑

s∈[t−1]

1

(σ̄h
s )

2

(
f̂ht,1

(
zhs
)
− f̄ht,1

(
zhs
))2
≤ 2

∑
s∈[t−1]

(rhs +fh+1
t,1 (xh+1

s )−f̄ht,1(zhs ))

(σ̄h
s )

2

(
f̂ht,1

(
zhs
)
− f̄ht,1

(
zhs
))

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f̂ht,1

(
zhs
)
− f̄ht,1

(
zhs
))2

>
(
βht,1
)2

 .

Now let f̂ht,1 = f , f̄ht,1 = f̃ and fh+1
t,1 = f ′ so that fh+1

t,1 = min (f ′′ + ε, 1) for some f ′′ ∈
Fh+1 +W . Now we apply Lemmas 22 and 23 with these choices, along with union bounds. Then,
it holds that with probability at least 1− δt,h that

2
∑

s∈[t−1]

ηhs

(σ̄hs )
2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)

≤ 4

3
υ(δt,h)

√
λ+

2

3
υ2(δt,h) +

√
2υ(δt,h) +

162υ2(δt,h)

32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)2

4
,

(37)
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and also

2
∑

s∈[t−1]

ξhs [fh+1
t,1 ]

(σ̄hs )
2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)

≤ 4

3

√
λ+

2

3
·
ι2(δt,h)

logNb
+
√

2 ·
ι(δt,h)√
logNb

+
162

32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f(zhs )− f̃(zhs )

)2

4

≤ 4

3

√
λ+ 6

(
1 + υ2(δt,h)

)
+ 3
√

2
√

1 + υ2(δt,h) +
162

32
+

∑
s∈[t−1]

1

(σ̄h
s )

2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)2

4
.

(38)
Above for the last inequality we also use by definition of υ(δt,h) and ι(δt,h) that ι2(δt,h)/ logNb ≤
9(1 + υ2(δt,h)).

Combining Equations (37) and (38) and using υ2(δt,h) ≥ 1 for upper bounding the coefficients,
we have with probability 1− 2δt,h,

2
∑

s∈[t−1]

(
rhs + fh+1

t,1

(
xh+1
s

)
− f̄ht,1(zhs )

)
(σ̄hs )

2

(
f̂ht,1

(
zhs

)
− f̄ht,1

(
zhs

))

≤ 4t
ε

α2
L+ 2

∑
s∈[t−1]

ηhs + ξhs [fh+1
t,1 ]

(σ̄hs )
2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)
(Assumption 1)

≤ 1

2
·
∑

s∈[t−1]

1

(σ̄hs )
2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)2
+ (3
√
λ+ 78)υ2(δt,h) +

4tL

α2
ε.

This implies that

P(Et,h)
(i)

≤ P

 ∑
s∈[t−1]

2

(
rhs + fh+1

t,1

(
xh+1
s

)
− f̄ht,1(zhs )

)
(σ̄hs )

2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)
>

1

2

(
βht,1

)2

+

∑
s∈[t−1]

1
(σ̄h

t )2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)2

2


(ii)

≤ P

 ∑
s∈[t−1]

2

(
rhs + fh+1

t,1

(
xh+1
s

)
− f̄ht,1(zhs )

)
(σ̄hs )

2

(
f̂ht,1(zhs )− f̄ht,1(zhs )

)
>
(

3
√
λ+ 8

)
υ(δt,h)

+ 70υ2(δt,h) +
4tL

α2
ε+

∑
s∈[t−1]

1

(σ̄h
t )

2

(
fn(zhs )− f̄ht,1(zhs )

)2
2


≤ 2δt,h,

where we use (i) the definition of Et,h and (ii) the choice of βht,1 as in Equation (13). Consequently,

P
(
f̄ht,1 /∈ Fht,1

)
≤ P (Et,h) ≤ 2δt,h,
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which implies with probability 1 − 2δt,h, f̄ht,1 ∈ Fht,1 for any fixed given t ∈ [T − 1], h ∈ [H] (the
case t = 0 holds with probability 1 by definition).

Confidence interval of overly optimistic and overly pessimistic sequence. Here we prove prop-
erties of the overly optimistic and overly pessimistic confidence interval we construct for Qh? .

Lemma 24 At step t ∈ [T ] and horizon h ∈ [H], recall f̄ht,2(xh, ah) ∈ Fh is some function such
that |f̄ht,2(zh) − T fh+1

t,2 (zh)| ≤ ε for all zh = (xh, ah), then we have with probability 1 − δt,h, it
holds that f̄ht,2 ∈ Fht,2 for the constructed Fht,2 based on the definition of confidence interval and βt,2
in (13).

Similar to proving the confidence interval of optimistic sequence, we first provide the following
lemma.

Lemma 25 Under the same setting as in Lemma 24, consider filtration Hhs and any fixed pair
functions f ∈ [0, L] and f ′ ∈ [0, 2] we define random variables

ηhs [f ′] := rhs + f ′
(
xh+1
s

)
− E

[
rh + f ′

(
xh+1

)
|zhs
]
,

and MDS Dhs [f, f ′] := 2ηhs [f ′] ·
(
f
(
zhs

)
− T f ′

(
zhs

))
,

then we have with probability 1− δt,h/(N 2N 2
b ),

∑
s∈[t−1]

Dhs [f, f ′] ≤ (24L+ 21)ι̇2(δt,h) +

∑
s∈[t−1]

(
f(zhs )− T f ′(zhs )

)2
2

, (39)

where we recall ι̇(δt,h) =

√
2 log

NNb (2 log(18LT ) + 2) (log(18L) + 2)

δt,h
as in (18).

Proof Similar to the proof of Lemma 22, we apply Corollary 18 on the defined MDS sequence Dhs .
We first bound the quantities of interest:

|Dhs [f, f ′]| ≤ 2|ηhs [f ′]|max
zhs

|f(zhs )− T f ′(zhs )|
(i)

≤ 18L =: M,

∑
s∈[t−1]

E
[(

Dhs [f, f ′]
)2
|zhs
]

=
∑

s∈[t−1]

4E
(
ηhs [f ′]

)2 (
f(zhs )− T f ′(zhs )

)2 (i)

≤ (18LT )2 =: V 2;

∑
s∈[t−1]

E
[(

Dhs [f, f ′]
)2
|zhs
]

=
∑

s∈[t−1]

4E
[(
ηhs [f ′]

)2
|zhs
](
f(zhs )− T f ′(zhs )

)2

(i)

≤ 36
∑

s∈[t−1]

(
f(zhs )− T f ′(zhs )

)2
,

where we use (i) the size bound that |ηhs | ≤ 3 and maxzhs |f(zhs )− T f ′(zhs )| ≤ 3L (using L ≥ 1).
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Thus, applying Corollary 18 with M = 18L, V = 18LT , v = m = 1 to bound its summation
we can conclude that with probability at least 1− δt,h/(N 2N 2

b ),

∑
s∈[t−1]

2ηhs [f ′]
(
f(zhs )− T f ′(zhs )

)2
≤ ι̇(δt,h)

√√√√√36

 ∑
s∈[t−1]

(f(zhs )− T f ′(zhs ))
2

+ 2v2

+
4

3
ι̇2(δt,h) · 18L+

2

3
ι̇2(δt,h)

≤
√

2ι̇(δt,h) +

(
24L+

2

3

)
ι̇2(δt,h) + 6ι̇(δt,h)

√ ∑
s∈[t−1]

(f(zhs )− T f ′(zhs ))
2

≤ (24L+ 21)ι̇2(δt,h) +

∑
s∈[t−1]

(
f(zhs )− T f ′(zhs )

)2
2

.

The last inequality again uses AM-GM inequality and the fact that ι̇(δt,h) ≥ 1 by definition.

This lemma helps us prove Lemma 24 as follows.
Proof [Proof of Lemma 24] At step t ∈ [T ], h ∈ [H], we locally define the probability event

Et,h :=

{ ∑
s∈[t−1]

(
f̂ht,2

(
xhs , a

h
s

)
− f̄ht,2

(
xhs , a

h
s

))2
>
(
βht,2
)2 }

so that {f̄ht,2 /∈ Fht,2} ⊆ Et,h.
Now by definition of f̂ht,2, we know that with probability 1 it holds that∑

s∈[t−1]

(
f̂ht,2

(
zhs

)
− f̄ht,2

(
zhs

))2
≤ 2

∑
s∈[t−1]

(
rhs + fh+1

t,2

(
xh+1
s

)
− f̄ht,2(zhs )

)(
f̂ht,2

(
zhs

)
− f̄ht,2

(
zhs

))
.

This event can be equivalently expressed as
∑

s∈[t−1]

(
f̂ht,2

(
zhs
)
− f̄ht,2

(
zhs
))2
≤ 2

∑
s∈[t−1]

(
rhs + fh+1

t,2

(
xh+1
s

)
− f̄ht,2(zhs )

)(
f̂ht,2

(
zhs
)
− f̄ht,2

(
zhs
))

∑
s∈[t−1]

(
f̂ht,2

(
zhs
)
− f̄ht,2

(
zhs
))2

>
(
βht,2
)2

 .

Now for each particular pair of f ∈ Fh where f̂ht,2 = f and f ′ = min (1, f ′′ + 3ε) = fh+1
t,2

where f ′′ ∈ Fh+1 + 2W +W , we define the random variables

ηhs [f ′] := rhs + f ′
(
xh+1
s

)
− E

[
rh + f ′

(
xh+1

)
|zhs
]
,

and MDS Dhs [f, f ′] = 2ηhs [f ′] ·
(
f
(
zhs

)
− T f ′

(
zhs

))
.

Following (39) we have with probability at least 1− δt,h/
(
N 2N 2

b

)
,

∑
s∈[t−1]

2ηhs [f ′]
(
f(zhs )− T f ′(zhs )

)
≤ (16L+ 21)ι̇2(δt,h) +

∑
s∈[t−1]

(
f(zhs )− T f ′(zhs )

)2
2

.
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This implies that for any function f̄ [f ′] satisfying ‖f̄ [f ′]−T f ′‖∞ ≤ ε, it holds that with probability
at least 1− δt,h/

(
N 2N 2

b

)
,

2
∑

s∈[t−1]

(
ηhs [f ′] + T f ′

(
zhs

)
− f̄ [f ′](zhs )

)(
f(zhs )− f̄ [f ′](zhs )

)
≤

∑
s∈[t−1]

2ηhs [f ′]
(
f(zhs )− T f ′(zhs )

)
+ 4tLε+ 4tε

≤ (24L+ 21)ι̇2(δt,h) + 8tLε+

∑
s∈[t−1]

(
f(zhs )− T f ′(zhs )

)2
2

≤ (24L+ 21)ι̇2(δt,h) + 10tLε+

∑
s∈[t−1]

(
f(zhs )− f̄ [f ′](zhs )

)2
2

.

Note the size of Fh and Fh+1 + 2W +W are bounded by N and NN 2
b , we thus take a union

bound over all choices of f ∈ Fh and f ′′ ∈ Fh+1 + 2W +W so that

P(Et,h)
(i)

≤ P

 ∑
s∈[t−1]

2
(
ηhs + E[rh + fh+1

t,2 (xh+1)|zhs ]− f̄ht,2(zhs )
)(

f̂ht,2(zhs )− f̄ht,2(zhs )
)
>

1

2

(
βht,2

)2
+

∑
s∈[t−1]

(
f̂ht,2(zhs )− f̄ht,2(zhs )

)2

2


(ii)

≤ P

 ∑
s∈[t−1]

2
(
ηhs + E[rh + fh+1

t,2 (xh+1)|zhs ]− f̄ht,2(zhs )
)(

f̂ht,2(zhs )− f̄ht,2(zhs )
)
>

(24L+ 21)ι̇2(δt,h) + 10tLε+

∑
s∈[t−1]

(
f̂ht,2(zhs )− f̄ht,2(zhs )

)2

2


≤ δt,h,

where we use (i) the definition of Et,h and (ii) the choice of βht,2. Consequently,

P
(
f̄ht,2 /∈ Fht,2

)
≤ δt,h,

which implies with probability 1 − δt,h, f̄ht,2 ∈ Fht,2 for any fixed given t ∈ [T − 1], h ∈ [H] (the
case t = 0 holds with probability 1 by definition).

Similarly, we have for overly pessimistic values fht,−2 and f̄ht,−2, the following lemma:

Lemma 26 At step t ∈ [T ] and horizon h ∈ [H], recall f̄ht,−2(xh, ah) ∈ Fh is some function such

that |f̄ht,−2(zh)−E
[
rh + fh+1

t,−2(xh+1)|zh
]
≤ ε for all zh = (xh, ah), then we have with probability

1− δt,h, it holds that f̄ht,−2 ∈ Fht,−2 for the constructed Fht,−2 based on the definition of confidence
interval in Algorithm 1 and βt,2 in (17).
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Proof The proof is symmetric as that of Lemma 24.

We also give the following consequence of Lemma 26 together with the definition of generalized
Eluder dimension, which will be useful to justify our definition of σht in Equation (4).

Lemma 27 Conditioning on the good event Eht,−2, we have∣∣∣∣[f̄ht,−2(zht )
]2
−
[
f̂ht,−2(zht )

]2
∣∣∣∣ ≤ 2L

√(
βht,2

)2
+ λ ·DFh(zht ; zh[t−1],1

h
[t−1]).

Proof To see this, we note that conditioning on the good event f̄ht,−2(·) ∈ Fht,−2, we have for any z,[
f̄ht,−2(z)

]2
−
[
f̂ht,−2(z)

]2
≤ 2L

∣∣∣f̄ht,−2(z)− f̂ht,−2(z)
∣∣∣

≤ 2L ·DFh(z; zh[t−1],1
h
[t−1]) ·

√√√√ ∑
s∈[t−1]

(
f̄ht,−2(zhs )− f̂ht,−2(zhs )

)2
+ λ

≤ 2L ·DFh(z; zh[t−1],1
h
[t−1])

√
(βht,2)2 + λ.

Plugging the particular choice of z = zht concludes the proof.

Confidence interval of second-moment sequence. Here we prove the property of the optimistic
confidence interval we construct for the second-moment sequence.

Lemma 28 At step t ∈ [T ] and horizon h ∈ [H], recall ψht (xh, ah) ∈ Fh satisfies |ψht (zh) −
T2f

h+1
t,1 (zh)| ≤ ε for any zh = (xh, ah), then we have with probability 1 − δt,h, it holds that

ψht ∈ Ght for the constructed Ght based on the definition of confidence interval in (19) and β̄ in (20).

Similar to proving the confidence intervals above we first provide the following lemma.

Lemma 29 Under the same setting as in Lemma 28, consider filtration Hhs and any fixed pair
functions f ∈ [0, L], f ′ ∈ [0, 1] we define random variables

ηhs [f ′] :=
(
rhs + f ′

(
xh+1
s

))2
− E

[(
rh + f ′

(
xh+1

))2
|zhs
]
,

and MDS Dhs [f, f ′] := 2ηhs [f ′] ·
(
f
(
zhs

)
− T2f

′
(
zhs

))
,

then we have with probability 1− δt,h/(N 2Nb),

∑
s∈[t−1]

Dhs [f, f ′] ≤ 4(11L+ 9)
(
ι′(δt,h)

)2
+

∑
s∈[t−1]

(
f(zhs )− T2f

′(zhs )
)2

2
, (40)

where we recall ι′(δt,h) =

√
2 log

NNb (2 log(32LT ) + 2) (log(32L) + 2)

δt,h
as in (21).
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Proof Recall the definition of T2f(zh) = E
[(
rh + f(zh+1)

)2 |zh]. We note the difference se-

quence Dhs as defined is adapted toHhs and satisfies

|Dhs [f, f ′]| ≤ 2|ηhs |max
zhs

|f(zhs )− T2f
′(zhs )|

(i)

≤ 32L =: M,

∑
s∈[t−1]

E
[(

Dhs [f, f ′]
)2
|zhs
]

=
∑

s∈[t−1]

4E
(
ηhs [f ′]

)2 (
f(zhs )− T2f

′(zhs )
)2 (i)

≤ (32LT )2 =: V 2

∑
s∈[t−1]

E
[(

Dhs [f, f ′]
)2
|zhs
]

=
∑

s∈[t−1]

4E
[(
ηhs [f ′]

)2
|zhs
](
f(zhs )− T2f

′(zhs )
)2

(i)

≤ 64
∑

s∈[t−1]

(
f(zhs )− T2f

′(zhs )
)2
,

where we use (i) the size bound that |ηhs [f ′]| ≤ 4 and maxzhs |f(zhs )− T2f
′(zhs )| ≤ 4L.

Applying Corollary 18 with M = 32L, V = 32LT , v = m = 1 to bound its summation we
can conclude that with probability at least 1− δt,h/N 2N 2

b ,

∑
s∈[t−1]

2ηhs [f ′]
(
f(zhs )− T2f

′(zhs )
)
≤ ι′(δt,h)

√√√√√64

 ∑
s∈[t−1]

(f(zhs )− T2f ′(zhs ))
2

+ 2v2

+
4

3

(
ι′(δt,h)

)2 · 32L+
2

3

(
ι′(δt,h)

)2
≤
(

2 + 128L

3

)(
ι′(δt,h)

)2
+
√

2ι′(δt,h) + 8ι′(δt,h)

√ ∑
s∈[t−1]

(f(zhs )− T2f ′(zhs ))
2

≤ 4(11L+ 9)
(
ι′(δt,h)

)2
+

∑
s∈[t−1]

(
f(zhs )− T2f

′(zhs )
)2

2
.

For the last inequality we use AM-GM inequality and by definition the fact that ι′(δt,h) ≥ 1.

This lemma again helps us prove Lemma 28 as follows.
Proof [Proof of Lemma 28] At step t ∈ [T ], h ∈ [H], we locally define the probability event

Et,h :=

{ ∑
s∈[t−1]

(
ĝht
(
xhs , a

h
s

)
− ψht

(
xhs , a

h
s

))2
>
(
β̄ht
)2 }

.

so that {ψht /∈ Ght } ⊆ Et,h
Now by definition of ĝht , we know that with probability 1 it holds that

∑
s∈[t−1]

(
ĝht
(
zhs
)
− ψht

(
zhs
))2 ≤

2
∑

s∈[t−1]

((
rhs + fh+1

t,1

(
xh+1
s

))2
− ψht (zhs )

)(
ĝht
(
zhs
)
− ψht

(
zhs
))

. This event can be equivalently

expressed as This event can be equivalently expressed as
∑

s∈[t−1]

(
ĝht
(
zhs
)
− ψht

(
zhs
))2≤ 2

∑
s∈[t−1]

((
rhs + fh+1

t,1

(
xh+1
s

))2
− ψht (zhs )

)(
ĝht
(
zhs
)
− ψht

(
zhs
))

∑
s∈[t−1]

(
ĝht
(
zhs
)
− ψht

(
zhs
))2

>
(
β̄ht
)2

 .
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Now for any given pair of f ∈ Fh and f ′ such that f ′ = min (f ′′ + ε, 1) for some f ′′ ∈
Fh+1 +W , when ĝht = f and fh+1

t,1 = f ′ we define random variable ηhs [f ′] =
(
rhs + f ′

(
xh+1
s

))2−
E
[(
rh + f ′

(
xh+1

))2 |zhs ] and the martingale difference sequence Dhs [f, f ′] = 2ηhs [f ′]·
(
f
(
zhs
)
− T2f

′ (zhs )).
Equation (40) of Lemma 29 implies that for each particular pair of (f, f ′) where ĝht = f and

fh+1
t,1 = f ′, for any function f̄ [f ′] ∈ Fh satisfying ‖f̄ [f ′] − T2f

′‖∞ ≤ ε, it holds that with
probability at least 1− δt,h/N 2Nb, we have

2
∑

s∈[t−1]

(
ηhs [f ′] + T2f

′
(
zhs

)
− f̄ [f ′](zhs )

)(
f(zhs )− f̄ [f ′](zhs )

)
≤

∑
s∈[t−1]

2ηhs [f ′]
(
f(zhs )− T2f

′(zhs )
)

+ 4tLε+ 8Lε

≤ 4(11L+ 9)
(
ι′(δt,h)

)2
+ 12tLε+

∑
s∈[t−1]

(
f(zhs )− T2f

′(zhs )
)2

2

≤ 4(11L+ 9)
(
ι′(δt,h)

)2
+ 16tLε+

∑
s∈[t−1]

(
f(zhs )− f̄ [f ′](zhs )

)2
2

.

Consequently, by union bound over all choices of f ∈ Fh and f ′ = min (1, f ′′ + 3ε) = fh+1
t,2

where f ′′ ∈ Fh+1 +W , similar to Lemma 24 we have

P(Et,h) ≤ P

 ∑
s∈[t−1]

2
(
ηhs + E[(rh + fh+1

t,2 (xh+1))2|zhs ]− ψht (zhs )
)(

ĝht (zhs )− ψht (zhs )
)
>

4(11L+ 9)
(
ι′(δt,h)

)2
+ 16tLε+

∑
s∈[t−1]

(
ĝht (zhs )− ψht (zhs )

)2
2

 ≤ δt,h,
and consequently,

P
(
ψht /∈ Ght

)
≤ δt,h,

which implies with probability 1− δt,h, ψht ∈ Ght for any fixed given t ∈ [T − 1], h ∈ [H] (the case
t = 0 holds with probability 1 by definition).

We also give the following consequence of Lemma 28 together with the definition of generalized
Eluder dimension, which will be useful to justify our definition of σht in Equation (4).

Lemma 30 Conditioning on the good event Ēht , we have

|ψht (zht )− ĝht (zht )| ≤ DFh(zht ; zh[t−1],1
h
[t−1])

√(
β̄ht
)2

+ λ.

Proof The proof is similar to that of Lemma 27 so we omit here for brevity.
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F.3. Validity of Variance Estimator

In this section, we show that our variance over-estimate σhs at iteration s is valid for all iter-
ations afterwards t ≥ s, and bound its difference with the true variance. We recall the def-
inition of fht,j in Algorithm 1 such that fht,1(·) := min

(
f̂ht,1(·) + bht,1(·) + ε, 1

)
and fht,2(·) :=

min
(
f̂ht,2(·) + 2bht,1(·) + bht,2(·) + 3ε, 2

)
, fht,−2(·) := max

(
f̂ht,−2(·)− bht,2(·)− ε, 0

)
, and f̄ht,j as

the conditional expectations. Abusing notation again, we use V[·|zht ] = Vrh,xh+1 [·|zht ] and E[·|zht ] =

Erh,xh+1 [·|zht ] where the randomness is taken with respect to rh and xh+1 conditioning on zht
when the meaning is clear from context. We also recall the definition of event Eht = {f̄ht,j ∈
Fht,j for all j = 1,±2 and ψht ∈ Ght } and E≤t = ∩s≤t,h∈[H]Ehs .

First, we show that fht,j satisfies a pointwise monotonic relation conditioning on previous events.
This is an important property that we need to satisfy for fulfilling the assumptions (25) and (26)
required in Lemma 21, and a reason that we design overly optimistic sequence using unweighted
regression.

We first state Lemma 31 and then provide its full proof right after.

Lemma 31 (Pointwise monotonicity) Suppose Algorithm 1 uses a consistent bonus oracle satis-
fying Definition 5. For any fixed t ∈ [T ], and h ∈ [H], conditioning on events E≤t−1∩

(
∩Hh′=hEh

′
t

)
,

we have for all zh, zh−1 ∈ X ×A,

1. fh? (zh) ≤ fht,1(zh);

2. fht,−2(zh) ≤ fh? (zh);

3. fhs,2(zh) ≥ max
(
T fh+1

t,1 (zh), fht,1(zh)
)

for all s ∈ [t].

Proof We use induction to prove each inequality. Note that under the conditioning E≤t−1∩
(
∩Hh′=hEh

′
t

)
,

we have that f̄h
′

t,j ∈ Fh
′

t,j for j = 1,±2 and all h′ ≥ h, by definition of the events.
For the first inequality, note that at step t this holds trivially for h′ = H + 1. Now suppose this

holds for some h+ 1 ≤ h′ + 1 ≤ H + 1, i.e. we have fh
′+1

? (zh
′+1) ≤ fh′+1

t,1 (zh
′+1) for any zh

′+1

and thus fh
′+1

? (xh
′+1) ≤ fh

′+1
t,1 (xh

′+1) for any xh
′+1. Then for level h′, we have conditioning on

Eh′t , for any zh
′
, it holds that

f̂h
′

t,1(zh
′
) + bh

′
t,1(zh

′
) + ε ≥ f̄h′t,1(zh

′
) + ε

≥ E
[
rh
′
+ fh

′+1
t,1 (xh

′+1)|zh′
]
≥ E

[
rh
′
+ fh

′+1
? (xh

′+1)|zh′
]

= fh
′

? (zh
′
),

where the first inequality is due to the definition of bonus term bh
′
t,1 as in Definition 5 and condition-

ing event Eh′t so that f̄h
′

t,1(zh
′
) ∈ Fh′t , the second inequality is due to definition of f̄h

′
t,1 and the third

inequality is due to induction.
Recall the definition of fh

′
t,1(·) := min

(
f̂h
′

t,1(·) + bh
′
t,1(·) + ε, 1

)
in Line 11 of Algorithm 1,

together with the upper bound of 1 for f? by the sparse reward assumption, we have consequently
fh
′

t,1(zh
′
) ≥ fh

′
? (zh

′
) for any zh

′ ∈ X × A and any h′ ≥ h, which proves the inequality when
h′ = h.
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For the second inequality, note it also holds trivially for h′ = H + 1. Now suppose this holds
for some h+1 ≤ h′+1 ≤ H+1, i.e. we have fh

′+1
t,−2 (·) ≤ fh′+1

? (·). Then for level h′, conditioning
on Eh′t we have for any zh

′
,

f̂h
′

t,−2(zh
′
)− bh′t,2(zh

′
)− 2ε

(i)

≤ f̄h
′

t,−2(zh
′
)− 2ε

(ii)

≤ E[rh
′
+ fh

′+1
t,−2 (xh

′+1)|zh′ ]− ε
(iii)

≤ E[rh
′
+ fh

′+1
? (xh

′+1)|zh′ ]− ε ≤ fh′? (zh
′
).

Here we use (i) the definition of bh
′
t,2 and conditioning event of Eh′t , (ii) the definition of f̄h

′
t,−2, and

(iii) the induction assumption. Recall the definition of fh
′

t,−2(·) := max
(
f̂h
′

t,−2(·)− bh′t,2(·)− ε, 0
)

in Line 16 of Algorithm 1, together with the fact that in above display RHS ≥ 0 always holds true
by definition, we thus conclude by taking max with 0 in above inequality that fh

′
t,−2(zh

′
) ≤ fh′? (zh

′
)

for all h′ ≥ h and specifically for h′ = h.
For the third inequality given any fixed s ≤ t, note it also holds trivially for h = H + 1. Now

suppose this holds for some h + 1 ≤ h′ + 1 ≤ H + 1, i.e. we have fh
′+1

s,2 (zh
′+1) ≥ fh

′+1
t,1 (zh

′+1)

for all zh
′+1, and consequently fh

′+1
s,2 (xh

′+1) ≥ fh
′+1

t,1 (xh
′+1) for all xh

′+1. Then for level h′,
conditioning on Eh′s and Eh′t we have for any zh

′
, it holds that

f̂h
′

s,2(zh) + 2bh
′
s,1(zh

′
) + bh

′
s,2(zh

′
) + 3ε

(i)

≥ E[rh
′
+ fh

′+1
s,2 (xh

′+1)|zh′ ] + 2bh
′
s,1(zh

′
) + 2ε

(ii)

≥ E[rh
′
+ fh

′+1
t,1 (xh

′+1)|zh′ ] + 2bh
′
t,1(zh

′
) + 2ε.

(41)

Here we use (i) the definition of bs,2 so that f̂h
′

s,2(zh
′
) + bh

′
s,2(zh

′
) ≥ f̄h

′
s,2(zh

′
) conditioning on

Eh′s and definition of f̄h
′

s,2(zh
′
) + ε ≥ E[rh

′
+ fh

′+1
s,2 (zh

′+1)|zh′ ], (ii) the induction assumption
together with the consistency condition on bonus thus that bh

′
s,1(zh

′
) ≥ bh

′
t,1(zh

′
). Recall definition

fh
′

s,2(·) := min
(
f̂h
′

s,2(·) + 2bh
′
s,1(·) + bh

′
s,2(·) + 3ε, 2

)
in Line 15 of Algorithm 1, by taking min with

2 on both sides of (41) and use non-negativity of bt,1, we have fh
′

s,2(zh
′
) ≥ T fh′+1

t,1 (zh
′
).

Additionally, we also have

E[rh
′
+ fh

′+1
t,1 (xh

′+1)|zh′ ] + 2bh
′
t,1(zh

′
) + 2ε ≥ f̂h′t,1(zh

′
) + bh

′
t,1(zh

′
) + ε

using f̂h
′

t,1(zh
′
) ≤ E[rh

′
+ fh

′+1
t,1 (xh

′+1)|zh′ ] + bh
′
t,1(zh

′
) + ε due to definition of bt,1 conditioning

on Eh′t . Now taking min with 2 on both sides we also obtain fh
′

s,2(zh
′
) ≥ fh

′
t,1(zh

′
) for all h′ ≥ h to

make the inductive argument. And thus the third inequality also holds when h′ = h.
The inequalities for all xh is an immediate consequence of taking maximum over ah ∈ A for

each inequality.

Such point-wise monotonicity also allows us to prove the upper bound on constructed variance
estimator σht for each iteration t ∈ [T ] and level h ∈ [H], formally stated in the next lemma.

Lemma 32 (Lower bound of variance estimator) Suppose Algorithm 1 uses a consistent bonus
oracle satisfying Definition 5. At step t ≥ 2, conditioning on the good event E≤t, the variance
estimate σht satisfies

(
σht
)2 ≥ Vrh,xh+1

[
rh + fh+1

? (xh+1)|zht
]

for all h ∈ [H].
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Proof Fix any h ∈ [H], we first consider proving the stated inequality for(
σ̃ht

)2
:= ĝht (zht )−

(
f̂ht,−2(zht )

)2

+DFh(zht ; zh[t−1],1
h
[t−1]) ·

(√(
β̄ht
)2

+ λ+ 2L

√(
βht,2

)2
+ λ

)
+ 2(1 + L)ε.

Conditioning on the good event Et, by Lemma 27 and Lemma 30, we know that

(σ̃ht )2 ≥ ψht (zht )−
(
f̄ht,−2(zht )

)2
+ (1 + 2L)ε. (42)

Plugging
∣∣∣ψht (zht )− E

[
(rh + fh+1

t,1 (xh+1))2|zht
]∣∣∣ ≤ ε,

∣∣∣f̄ht,−2(zht )− E
[
rh + fh+1

t,−2(xh+1)|zht
]∣∣∣ ≤

ε and
(
f̄ht,−2(zht ) + E

[
rh + fh+1

t,−2(xh+1)|zht
])
≤ (1 + 2L) into Equation (42), we further have

(σ̃ht )2 ≥ E
[
(rh + fh+1

t,1 (xh+1))2|zht
]
−
(
E
[
rh + fh+1

t,−2(xh+1)
])2

.

Now using the monotonic property fh+1
t,1 (·) ≥ fh+1

? (·) ≥ fh+1
t,−2(·) ≥ 0 conditioning on E≤t, we

have
(
σ̃ht
)2 ≥ V

[
rh + fh+1

? (xh+1)|xht , aht
]
.

So far we have proven the stated inequality holds for
(
σ̃ht
)2. To show the inequality also holds

true for
(
σht
)2

= min
(

4,
(
σ̃ht
)2), we take minimum with 4 and note V

[
rh + fh+1

? (xh+1)|xht , aht
]
≤

4 always holds true.

The previous two lemmas on point-wise monotonicity and variance lower bound of
(
σht
)2 im-

mediately imply that the good event E≤T happens with high probability, following from an inductive
argument.

Proposition 33 Suppose Algorithm 1 uses a consistent bonus oracle satisfying Definition 5. With
probability 1 − 5δ, the good event E≤T happens, that is, f̄ht,1 ∈ Fht,1, f̄t,±2 ∈ Fht,±2 and ψht ∈ Fht
for all t ∈ [T ] and h ∈ [H].

Proof For any t ≥ 1, conditioning on E≤t ∩
(
∩Hh′=h+1Eh

′
t+1

)
, we first show the assumptions needed

for step t+ 1, h in Lemma 21 holds with probability 1.
The first assumption

(
σhs
)2 ≥ V

[
rh + fh+1

? (xh+1)|zhs
]

for all s ∈ [t] in (25) holds due
to Lemma 32.

For second assumption in (26), it holds naively when h = H since fHs,−2 ≤ fHs,2 point-wise
for all s ∈ [t] using Lemma 31. When h < H we have fh+1

? (xh+1) ≤ fh+1
t+1,1(xh+1) for all

xh+1 conditioning on the event E≤t ∩
(
∩Hh′=h+1Eh

′
t+1

)
due to the first inequality of Lemma 31.

Consequently,

E
[
|fh+1
t+1,1(xh+1)− fh+1

? (xh+1)| | zhs
]

= E
[
fh+1
t+1,1(xh+1)− fh+1

? (xh+1) | zhs
]

= T fh+1
t+1,1(zhs )− fh? (zhs ).
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Now since we condition on E≤t ∩
(
∩Hh′=h+1Eh

′
t+1

)
, the second inequality of Lemma 31 implies

that fhs,−2(zhs ) ≤ fh? (zhs ) and the third inequality of Lemma 31 implies that T fh+1
t+1,1(zhs ) ≤ fhs,2

for all s ∈ [t]. Plugging these inequalities back we have E
[
|fh+1
t+1,1(xh+1)− fh+1

? (xh+1)| | zhs
]
≤

fhs,2(zhs ) − fhs,−2(zhs ) for all s ∈ [t] and zhs ∈ X × A. This also shows that the second assumption
required in (26) holds.

Thus we have shown conditioning on E≤t ∩
(
∩Hh′=h+1Eh

′
t+1

)
, the event Eht+1 happens with prob-

ability 1 − 5δt+1,h due to Lemmas 21, 24, 26 and 28. Taking a union bound and note δt,h =
δ/(T + 1)(H + 1) we thus conclude that with probability 1− 5δ the good event E≤T happens.

Next, we also provide an upper bound on the variance estimator
(
σht
)2. It shows the estimator

is not much bigger than the variance when taking greedy policy induced by optimistic function ft,1.

Lemma 34 (Upper bound of variance estimator) Suppose Algorithm 1 uses a consistent bonus
oracle satisfying Definition 5. For any step t ≥ 2 conditioning on the good event E≤t, the variance
we estimate σht satisfies(
σht

)2
≤ V

[
rh + fh+1

t,1 (xh+1)|xht , aht
]

+ 4
(
fht,2(zht )− fht,−2(zht )

)
+ 4 min

(
1, DFh(zht ; zh[t−1], σ̄

h
[t−1]) ·

(
2

√(
β̄ht
)2

+ λ+ 4L

√(
βht,2

)2
+ λ

))
+ 4(2 + L)ε.

Proof
Condioning on E≤t, we have f̄ht,−2 ∈ Fht,2 and ψht ∈ Ght due to Lemma 27 and Lemma 30. Thus,

by definition of bonus oracle and definition of σht we have

(σht )2 ≤ ψht (zht )−
(
f̄ht,−2(zht )

)2

+DFh(zht ; zh[t−1],1
h
[t−1]) ·

(
2

√(
β̄ht
)2

+ λ+ 4L

√(
βht,2

)2
+ λ

)
+ 2(1 + L)ε. (43)

Recall
∣∣∣ψht (zht )− E

[
(rh + fh+1

t,1 (xh+1))2|zht
]∣∣∣ ≤ ε and

∣∣∣f̄ht,−2(zht )− E
[
rh + fh+1

t,−2(xh+1)|zht
]∣∣∣ ≤

ε, Equation (43) implies(
σht

)2
≤E

[
(rh + fh+1

t,1 (xh+1))2|zht
]
−
(
E
[
rh + fh+1

t,−2(xh+1)|zht
])2

+DFh(zht ; zh[t−1],1
h
[t−1]) ·

(
2

√(
β̄ht
)2

+ λ+ 4L

√(
βht,2

)2
+ λ

)
+ 4(1 + L)ε.

(44)

Note we have(
E
[
rh + fh+1

t,1 (xh+1)|zht
])2
−
(
E
[
rh + fh+1

t,−2(xh+1)|zht
])2

(i)

≤ 4E
[
rh + fh+1

t,1 (xh+1)−
(
rh + fh+1

t,−2(xh+1)
)
|zht
]

(ii)

≤ 4
(
E
[
rh + fh+1

t,1 (xh+1)|zht
]
− fht,−2(zht ) + ε

)
(iii)

≤ 4
(
fht,2(zht )− fht,−2(zht ) + ε

)
.

(45)
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Here we use (i) the size bounds that rh, fh+1
t,1 , fh+1

t,−2 ∈ [0, 1], (ii) fht,−2(zht ) ≤ f̄ht,−2(zht ) ≤ T fh+1
t,−2+

ε due to the definition of bt,2 and f̄ht,−2 ∈ Fht,−2 conditioning on E≤t, and (iii) the inequality that
fht,2(zht ) ≥ T fh+1

t,1 (zht ) conditioning on E≤t due to the third inequality in Lemma 31.
Plugging (45) back to (44), we have(
σht

)2
≤V

[
rh + fh+1

t,1 (xh+1)|zht
]

+ 4
(
fht,2(zht )− fht,−2(zht ) + ε

)
+DFh(zht ; zh[t−1],1

h
[t−1]) ·

(
2

√(
β̄ht
)2

+ λ+ 4L

√(
βht,2

)2
+ λ

)
+ 4(1 + L)ε

≤V
[
rh + fh+1

t,1 (xh+1)|zht
]

+ 4
(
fht,2(zht )− fht,−2(zht )

)
+DFh(zht ; zh[t−1],1

h
[t−1]) ·

(
2

√(
β̄ht
)2

+ λ+ 4L

√(
βht,2

)2
+ λ

)
+ 4(2 + L)ε.

F.4. Approximation Error of Optimistic, Overly Optimistic(Pessimistic) Values

In this section, we will provide a few inequalities for bounding the optimistic values, overly opti-
mistic values, and overly pessimistic values sequence. We hope to show they will not deviate much
from the expected value Vt under exploration rule as defined in Equation (24), and thus not deviate
much from V? as well.

We again recall the definition of fht,j for j = 1,±2 from (10) and also the use of To and Too for
disjoint set of iterations such that [T ] = To ∪ Too depending on whether ht ∈ [H] or not, as in (23).

We also define the martingale difference sequence so that for j = 1,−2, 2, ξht,j := rht +

fh+1
t,j (xh+1

t )−Erh,xh+1

[
rh + fh+1

t,j (xh+1)|zht
]

, ξht := rht +V h+1
t −E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
.

Abusing notation again, we use V[·|zht ] = Vrh,xh+1 [·|zht ] and E[·|zht ] = Erh,xh+1 [·|zht ] where the
randomness is taken with respect to rh and xh+1 conditioning on zht when the meaning is clear from
context.

For the overly pessimistic sequence fht,−2, we first have the following guarantee on its lower
bound.

Lemma 35 Suppose Algorithm 1 uses a consistent bonus oracle satisfying Definition 5. Condi-
tioning on good event E≤t, recall ξht,−2 = rht +fh+1

t,−2(xh+1
t )−Erh,xh+1

[
rh + fh+1

t,−2(xh+1)|zht
]
, and

ξht = rht + V h+1
t − E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
. Then we have for any t ∈ T and any h ∈ [H],

it holds that,

fht,−2(zht )− V h
t ≥ −2

∑
h≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
ξh
′
t − ξh

′
t,−2

)
− 2(H − h+ 1)ε.

Proof We recall the definition of ξht and ξht,−2. Similar to the previous lemma, for the base case we
have fHt,−2(zHt ) ≥ f̄Ht,−2(zHt )− 2bHt,2(zHt )− ε ≥ V H

t − 2bHt,2(zHt )− 2ε using definition of fHt,−2 as
in (10). Now suppose the condition holds true for step h + 1 where 2 ≤ h + 1 ≤ H . That is, it
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holds fh+1
t,−2(zh+1

t ) ≥ V h+1
t − 2

∑
h+1≤h′≤H b

h′
t,2(zh

′
t ) +

∑
h+1≤h′≤H

(
ξh
′
t − ξh

′
t,−2

)
− 2(H − h)ε.

By definition, this implies that fh+1
t,−2(xh+1

t ) ≥ fh+1
t,−2(zh+1

t ) ≥ V h+1
t − 2

∑
h+1≤h′≤H b

h′
t,2(zh

′
t ) +∑

h+1≤h′≤H

(
ξh
′
t − ξh

′
t,−2

)
− 2(H − h)ε. Then for z = zht at level h, we have

fHt,−2(zht )− V h
t = fht,−2(zht )− f̄ht,−2(zht ) + f̄ht,−2(zht )− V h

t

(i)

≥ −2bht,2(zht )− 2ε+ E
[
rh + fh+1

t,−2(xh+1)−
(
rh + V h+1

t

)
|z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
(ii)
= −2bht,2(zht )− 2ε+ ξht − ξht,−2 + fh+1

t,−2(xh+1
t )− V h+1

t

(iii)

≥ −2bht,2(zht ) + ξht − ξht,−2

+

−2
∑

h+1≤h′≤H
bh
′
t,2(zh

′
t ) +

∑
h+1≤h′≤H

ξh
′
t −

∑
h+1≤h′≤H

ξh
′
t,−2 − 2(H − h)ε

− 2ε

= −2
∑

h≤h′≤H
bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
ξh
′
t − ξh

′
t,−2

)
− 2(H − h+ 1)ε.

Here we use (i) the fact that f̄ht,−2 ∈ Fht,−2 by assumption and definition of bht,2, (ii) definition of
ξht , ξht,−2, and (iii) the recursion together with the definition that fh+1

t,−2(xh+1
t ) ≥ fh+1

t,−2(zh+1
t ).

Next, we bound the optimistic sequence fht,1 and the overly optimistic sequence fht,2, depending
on whether t ∈ To, ht = H + 1 or t ∈ Too, ht ∈ [H].

Lemma 36 Suppose Algorithm 1 uses a consistent bonus oracle satisfying Definition 5. Con-
ditioning on good event E≤t, recall ξht,2 = rht + fh+1

t,2 (xh+1
t ) − Erh,xh+1

[
rh + fh+1

t,2 (xh+1)|zht
]
,

ξht = rht + V h+1
t − E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
. Then we have for any h ≥ ht,

fht,2(xht )− V h
t ≤ 2

∑
h≤h′≤H

bh
′
t,1(zh

′
t ) + 2

∑
h≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+ 4(H − h+ 1)ε.

Further, recall ξht,1 = rht + fh+1
t,1 (xh+1

t )−Erh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
]
, for any h ≤ ht we have

ft,1(xht )− V h
t ≤2

∑
h≤h′≤H

bh
′
t,1(zh

′
t ) + 2

∑
ht≤h′≤H

bh
′
t,2(zh

′
t )

+
∑

ht≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+

∑
h≤h′<ht

(
ξh
′
t − ξh

′
t,1

)
+ 4(H − h+ 1)ε.

Proof Conditioning on good event Et, we prove this by math induction on s = 1, 2, .., t and h =
H, · · · , 1.

We first recall the definition of ξht and ξht,2. It is obvious that for h = H , we have f̂Ht,2(z) +

2bHt,1(z) + bHt,2(z) ≤ f̄Ht,2(z) + 2bHt,1(z) + 2bHt,2(z) ≤ E[rH |z] + 2bHt,1(z) + 2bHt,2(z) + ε for any
z ∈ X × A. Using definition of fHt,2 as in (10), this means in particular we have fHt,2(xHt ) =

fHt,2(zHt ) ≤ V H
t + 2bHt,1(zHt ) + 2bHt,2(zHt ) + 4ε. Now suppose the condition holds true for step
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h + 1 where ht + 1 ≤ h + 1 ≤ H . That is, it holds that fh+1
t,2 (xh+1

t ) = fh+1
t,2 (zh+1

t ) ≤ V h+1
t +

2
∑

h+1≤h′≤H b
h′
t,1(zh

′
t ) + 2

∑
h+1≤h′≤H b

h′
t,2(zh

′
t ) +

∑
h+1≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
. Then for z = zht at

level h ≥ ht, we have

fht,2(zht )− V h
t = fht,2(zht )− f̄ht,2(zht ) + f̄ht,2(zht )− V h

t

(i)

≤ 2bht,1(zht ) + 2bht,2(zht ) + 4ε+ E
[
rh + fh+1

t,2 (xh+1)−
(
rh + V h+1

t

)
|z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
(ii)
= 2bht,1(zht ) + 2bht,2(zht ) + 4ε+ ξht − ξht,2 + fh+1

t,2 (xh+1
t )− V h+1

t

(iii)

≤ 2bht,1(zht ) + 2bht,2(zht ) + ξht − ξht,2 +

2
∑

h+1≤h′≤H
bh
′
t,1(zh

′
t ) + 2

∑
h+1≤h′≤H

bh
′
t,2(zh

′
t )

+
∑

h+1≤h′≤H
ξh
′
t −

∑
h+1≤h′≤H

ξh
′
t,2

+ 4(H − h+ 1)ε

= 2
∑

h≤h′≤H
bh
′
t,1(zh

′
t ) + 2

∑
h≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+ 4(H − h+ 1)ε.

Here we use (i) the fact that f̄h+1
t,2 ∈ Fht,2 by assumption and definition of bht , (ii) definition of ξht ,

ξht,2, and (iii) the recursion. By noting due to choice of greedy policy fht,2(zht ) = maxah f
h
t,2(xht , a

h) =

fht,2(xht ) for all h ≥ ht concludes the final inequality.
For the second inequality, we note that by Lemma 31 it holds that fht,1(·) ≤ fht,2(·) point-wise

and consequently fht,1(xht ) ≤ fht,2(xht ) for h = ht ∈ [H], which implies when h = ht ∈ [H],

fht,1(xht )− V h
t ≤ 2

∑
h≤h′≤H

bh
′
t,1(zh

′
t ) + 2

∑
h≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+ 4(H − h+ 1)ε.

The above case also holds true when ht = H + 1. Thus, this shows the base case holds true when
h = ht ∈ [H + 1]. Now suppose the inequality we want to show for fht,1 holds for h + 1 where
1 ≤ h+ 1 ≤ ht, then for z = zht at level h, we have

fht,1(zht )− V h
t = fht,1(zht )− f̄ht,1(zht ) + f̄ht,1(zht )− V h

t

(i)

≤ 2bht,1(zht ) + 2ε+ E
[
rh + fh+1

t,1 (xh+1)−
(
rh + V h+1

t

)
|z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
(ii)
= 2bht,1(zht ) + 2ε+ ξht − ξht,1 + fh+1

t,1 (xh+1
t )− V h+1

t

(iii)

≤ 2bht,1(zht ) + ξht − ξht,1 + 2
∑

h+1≤h′≤H
bh
′
t,1(zh

′
t ) + 2

∑
ht≤h′≤H

bh
′
t,2(zh

′
t )

+
∑

ht≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+

∑
h+1≤h′<ht

(
ξh
′
t − ξh

′
t,1

)
+ 4(H − h+ 1)ε

≤ 2
∑

h≤h′≤H
bh
′
t,1(zh

′
t ) + 2

∑
ht≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
ht≤h′≤H

(
ξh
′
t − ξh

′
t,2

)
+

∑
h≤h′<ht

(
ξh
′
t − ξh

′
t,1

)
+ 4(H − h+ 1)ε.
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Here we use (i) the fact that f̄ht,1 ∈ Fht,1 by assumption and definition of bht , (ii) definition of ξht , ξht,1,
and (iii) the recursion. By noting due to choice of greedy policy fht,1(zht ) = maxah f

h
t,1(xht , a

h) =

fht,1(xht ) concludes the final inequality.

F.5. Bounding the Regret in Expectation

From now on we will denote the good event E≤T , which by Proposition 33 happens with probability
1− 5δ.

When E≤T happens, following Lemma 36 the regret can be expressed as

RT =
∑
t∈[T ]

(
f1
? (x1

t )− V 1
t

)
≤ O(1) +

∑
2≤t≤T

(
f1
t,1(x1

t )− V 1
t

)

≤ O(1 + THε) + 2
∑
t∈To

min

1 + L,
∑
h∈[H]

bht,1(zht )

+
∑
t∈To

∑
h∈[H]

(
ξht − ξht,1

)

+ 2
∑
t∈Too

min

1 + L,
∑
h∈[H]

bht,1(zht )

+ 2
∑
t∈Too

min

1 + L,
∑

ht≤h≤H
bht,2(zht )


+
∑
t∈Too

 ∑
1≤h<ht

(
ξht − ξht,1

)
+

∑
ht≤h≤H

(
ξht − ξht,2

)
≤ O(1 + THε) + 2

∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

︸ ︷︷ ︸
I

+2
∑
t∈Too

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)

︸ ︷︷ ︸
III

+

 ∑
t∈[T ],h∈[H]

ξht −
∑
t∈[T ]

∑
h∈[H]

ξt,1 +
∑
t∈Too

 ∑
ht≤h≤H

ξht,1 −
∑

ht≤h≤H
ξht,2

 .
(46)

We again recall a few notations that we heavily use throughout this section.

I :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)
,

II :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)
,

III :=
∑
t∈Too

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)
.
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We also recall the following notations

Too := {t ∈ [T ] : there exists some h ∈ [H] that exploration is guided by fht,2},∑
t∈[T ],h∈[H]

ξht :=

 ∑
t∈[T ],h∈[H]

rht + V h+1
t − E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

] ,

∑
t∈[T ],h∈[H]

ξht,1 :=
∑

t∈[T ],h∈[H]

(
rht + fh+1

t,1 (xh+1
t )− E

rh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
])

,

∑
t∈[T ],h∈[H]

ξht,±2 :=
∑

t∈[T ],h∈[H]

(
rht + fh+1

t,±2(xh+1
t )− E

rh,xh+1

[
rh + fh+1

t,±2(xh+1)|zht
])

,

dα := H−1

∑
h∈[H]

dimα,T (Fh)

 .

The last equation defining dα will be used mainly for notational simplicity.
The next is a simple fact about the defined ξht and ξht,j , which will be useful multiple times in

the later analysis. The fact builds on the observation that aht is determined solely by the filtration of
Hh−1
t = σ(x1

1, r
1
1, x

2
1, · · · , rH1 , x

H+1
1 ;x1

2, r
1
2, x

2
2, · · · , rH2 , x

H+1
2 ; · · · , x1

t , r
1
t , · · · , rh−1

t , xht ), due to
policy exploration rule (22).

Lemma 37 By definition ξht and ξht,j for j = 1,±2 are all adapted to filtration Hh−1
t . They are

martingale difference sequence (MDS) satisfying E[ξht |Hh−1
t ] = 0 and E[ξht,j |H

h−1
t ] = 0. As an

immediate consequence, we have for all j = 1,±2,

E[
∑
t∈[T ]

∑
h∈[H]

ξht ] = E[
∑
t∈[T ]

∑
h∈[H]

ξht,j ] = 0,

and E[
∑
t∈Too

∑
ht≤h≤H

ξht ] = E[
∑
t∈Too

∑
ht≤h≤H

ξht,j ] = 0.

Proof We only prove the last equation for ξht . Note we can write

E

∑
t∈Too

∑
ht≤h≤H

ξht

 = E

∑
t∈[T ]

∑
1≤h≤H

E[1{ht≥h}ξ
h
t |Hh−1

t ]


(?)
= E

∑
t∈[T ]

∑
1≤h≤H

1{ht≥h}E[ξht |Hh−1
t ]

 = 0.

Here for equation (?) we use the fact that random variable 1{ht≥h} is adapted toHh−1
t . Similar for

the proof of ξht,j .

Now first of all, in the analysis we bound term II . To do so we rely on the definition of bonus
oracle and the assumption of bounded generalized Eluder dimension.
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Lemma 38 (Crude bound on II) Given bt,2(·) ≤ C ·
(
DFh(·; zh[t−1],1

h
[t−1])

√(
βht,2

)2
+ λ+ εb ·

βht,2

)
, when λ = Θ(1), α ≤ 1, we have for a subset T ⊆ [T ] the following inequality holds true:

∑
t∈T

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)

= O

(√
log
NNbTH

δ
+ Tε ·

(
H · dα +H

√
|T | · dα + |T |Hεb

))
,

This immediately implies that

II :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)

= O

(√
log
NNbTH

δ
+ Tε ·

(
H · dα +H

√
T · dα + THεb

))
.

Proof We first note that by assumption of bt,2,∑
t∈T

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)

(i)
= O

∑
t∈T

∑
h∈[H]

min

(
1, DFh(zht ; zh[t−1],1[t−1]) ·

√(
βht,2

)2
+ λ

)
+ |T |Hεb · max

t∈[T ],h∈[H]
βht,2


(ii)
= O

√log
NNbTH

δ
+ Tε ·

∑
t∈T

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1],1[t−1])
)

+ |T |Hεb

 .

Here we use (i) the assumption on bht,2 and (ii) the definition of βht,2 as in Equation (17).
Now we divide the indices of (t, h) ∈ T × [H] in two cases:

I1 = {(t, h) ∈ T × [H] | DFh(zht ; zh[t−1],1[t−1]) ≥ 1},

I2 = {(t, h) ∈ T × [H] | DFh(zht ; zh[t−1],1[t−1]) < 1}.

We then consider the summation of terms respectively, note∑
(t,h)∈I1

min
(

1, DFh(zht ; zh[t−1],1[t−1])
)
≤

∑
(t,h)∈I1

D2
Fh(zht ; zh[t−1],1[t−1]) ≤ H · dα,

where the last inequality holds for any α ≤ 1.
Also using Cauchy-Schwarz inequality,∑
(t,h)∈I2

min
(

1, DFh(zht ; zh[t−1],1[t−1])
)
≤
√ ∑

(t,h)∈I2

12 ·
√ ∑

(t,h)∈I2

D2
Fh(zht ; zh[t−1],1[t−1])

≤ H
√
|T | · dα,

where the last inequality holds again for any α ≤ 1.
Combining two terms together,∑

t∈T

∑
h∈[H]

min(1, DFh(zht ; zh[t−1],1[t−1])) ≤ O
(
H · dα +H

√
|T | · dα

)
. (47)
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Using the same idea we could get a similar crude bound for term I , formally as follows:

Lemma 39 (Crude bound on I) Given bt,1(·) ≤ C
(
·DFh(·; zh[t−1], σ̄

h
[t−1])

√(
βht,1

)2
+ λ + εb ·

βht,1
)
, when λ = Θ(1), α ≤ 1, we have for a subset T ⊆ [T ] the following inequality holds true:∑

t∈T

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

=

O

(√
log
NTH
αδ

+
T

α2
ε ·

(√
log
NNbTH

αδ
·H
√
|T | · dα + log

NNbTH
αδ

·Hdα + |T |Hεb

))
.

Proof We first note that by assumption of bt,1,∑
t∈T

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

(i)
= O

∑
t∈T

∑
h∈[H]

min

(
1, DFh(zht ; zh[t−1], σ̄

h
[t−1]) ·

√(
βht,1

)2
+ λ

)
+ |T |Hεb · max

t∈T ,h∈[H]
βht,1


(ii)
= O

√log
NTH
αδ

+
T

α2
ε ·

∑
t∈T

∑
h∈[H]

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
+ |T |Hεb

 .

Here we use (i) the assumption on bht,1 and (ii) the definition of βht,1 as in Equation (13).
Now we divide the indices of (t, h) ∈ T × [H] in the following cases similarly to the previous

proof:

I1 = {(t, h) ∈ T × [H] |
(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1]) ≥ 1},

I2 = {(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = α},

I3 =

{
(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄

h
t = 2

(√
υ(δt,h) + ι(δt,h)

)
·
√
DFh(zht ; zh[t−1], σ̄

h
[t−1])

}
,

I4 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = σht

}
,

I5 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t =
√

2ι(δt,h)
√
fht,2(zht )− fht,−2(zht )

}
.

We then consider the summation of terms respectively, for I1 we have∑
(t,h)∈I1

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤

∑
(t,h)∈I1

(
σ̄ht

)−2
D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])

≤
∑
h∈[H]

dimα,T (Fh).

(48)
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For I2 we use Cauchy-Schwarz inequality to get

∑
(t,h)∈I2

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)

≤
√
α2TH ·

√ ∑
(t,h)∈I2

(
σ̄ht
)−2

D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])

≤
√∑
h∈[H]

dimα,T (Fh).

(49)

For I3 we have

∑
(t,h)∈I3

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
(i)

≤
∑

(t,h)∈I3

(
8υ(δt,h) + ι2(δt,h)

)
·min

(
1,
(
σ̄ht

)−2
D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])

)

≤ O

(√log
NTH
αδ

+ log
NNbTH

αδ

)
·
∑
h∈[H]

dimα,T (Fh)

 .

(50)

Here for inequality (i) we use the choice that σ̄ht = 2
(√

υ(δt,h) + ι(δt,h)
)√

DFh(zht ; zh[t−1], σ̄
h
[t−1]),

dividing both by
√
σ̄ht and rearranging gives σ̄ht ≤ 8

(
υ(δt,h) + ι2(δt,h)

) (
σ̄ht
)−1

DFh(zht ; zh[t−1], σ̄
h
[t−1]),

and also the property that
(
σ̄ht
)−1

DFh(zht ; zh[t−1], σ̄
h
[t−1]) ≤ 1 when (t, h) ∈ I3 due to definition of

I3.

For I4 we use Cauchy-Schwarz inequality and upper bound σ̄ht = σht = O(1) to get

∑
(t,h)∈I4

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)

≤
√ ∑

(t,h)∈I4

(
σ̄ht
)2 ·√ ∑

(t,h)∈I4

(
σ̄ht
)−2

D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])

≤

√√√√√|T |H ·
∑
h∈[H]

dimα,T (Fh)

.
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For I5 we use Cauchy-Schwarz inequality to get∑
(t,h)∈I5

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)

≤ O

√ ∑
(t,h)∈I5

ι2(δt,h) ·
√ ∑

(t,h)∈I5

(
σ̄ht
)−2

D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])



≤ O

√log
NNbTH

αδ
·

√√√√√|T |H ·
∑
h∈[H]

dimα,T (Fh)


 ,

where we use fht,2 − fht,−2 = O(1) for the first inequality and the definition of ι(δt,h) for the second
inequality.

Summing all terms above together we have∑
t∈T

∑
h∈[H]

min(1, σ̄ht

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1]))

≤ O

(
log
NNbTH

αδ
·H · dα +

√
log
NNbTH

αδ
·H
√
|T |dα

)
.

Corollary 40 (Corollary from adapted version using LTV) Recall the filtration definition

HHt−1 = σ(x1
1, r

1
1, x

2
1, · · · , rH1 , xH+1

1 ;x1
2, r

1
2, x

2
2, · · · , rH2 , xH+1

2 ; · · · , x1
t−1, r

1
t−1, · · · , rHt−1, x

H+1
t−1 ).

Also we use E[·|zht ] = Erh,xh+1 [·|zht ] and V[·|zht ] = Vrh,xh+1 [·|zht ] where the expectation is only
taken over rh and xh+1 due to model transition for shorthand. When L = O(1) we have

E

[
H∑
h=1

V
[
rh + fh+1

t,1 (xh+1)|zht
]
| HHt−1

]

≤ O

1 +H2δ +H2 · E
[
1{t∈Too} | H

H
t−1

]
+H · E

 ∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

)
| HHt−1

 .

Consequently, we have

E

∑
t∈[T ]

∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]

≤ O

T + TH2δ +H2 E [|Too|] +H · E
∑
t∈[T ]

∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

) .
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Proof For the first inequality, applying Proposition 20 we get

E

[
H∑
h=1

V
[
rh + fh+1

t,1 (xh+1)|zht
]
| HHt−1

]

≤ 2E

( H∑
h=1

rht − f1
t,1(x1

t )

)2

| HHt−1


+ 2E

(1{t∈To} H∑
h=1

(
fht,1(zht )− E[rh + fh+1

t,1 (xh+1)|zht ]
))2

| HHt−1


+ 2E

(1{t∈Too} H∑
h=1

(
fht,1(xht )− E[rh + fh+1

t,1 (xh+1)|zht ]
))2

| HHt−1


≤ O(1) +O (H) · E

∣∣∣∣1{t∈To} ∑
h∈[H]

(
fht,1(zht )− E[rh + fh+1

t,1 (xh+1)|zht ]
)∣∣∣∣ | HHt−1


+O(H2) · E

[
1{t∈Too} | H

H
t−1

]
.

Here for the last inequality we note |fht,1| ≤ 1, so that
∑H

h=1

(
fht,1(xht )− E[rh + fh+1

t,1 (xh+1)|zht ]
)
≤

O(H).
Note we can bound fht,1(zht )− E[rh + fh+1

t,1 (xh+1)|zht ] ≤ fht,2(zht )− fht,−2(zht ) conditioning on
E≤T due to Lemma 31, plugging this back into the above inequality we have

E

[
H∑
h=1

V[rh + fh+1
t,1 (xh+1)|zht ] | HHt−1

]

≤ O

1 +H2δ +H2 · E
[
1{t∈Too} | H

H
t−1

]
+H · E

 ∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

)
| HHt−1

 .

The second inequality is an immediate consequence of this corollary together with definition of
Too.

Following the previous expression of regret in (46) and using bound in Lemma 37, we have
when δ ≤ 1/6,

ERT = E [1(E≤T )E[RT |E≤T ] + 1(not E≤T )E[RT | not E≤T ]]

≤ O(THδ) + (1− 5δ)E [O (1 + THε) + 2 · I + 2 · III | E≤T ]

≤ O (THδ + THε+ 1) + 2E[I|E≤T ] + 2E[III|E≤T ].

(51)

Lemma 41 (Bounding size of Too) Suppose α ≤ 1, we set

ut ≥ C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tHεb

)
√
t

+H2ε+Hδ

 ,
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for some large enough constant C < ∞ and ε ≤ 1, then we have the following facts about Too

holds true:

E [|Too||E≤T ] ≤ O

(
T

log NNbTH
αδ ·H3

)
.

Proof We will condition on E≤T throughout the arguments. Now we prove by contradiction, recall
the definition of ht, since for each t ∈ Too we have fhtt,2(xhtt ) ≥ fhtt,1(xhtt ) + ut, we have∑
t∈Too

(
fhtt,2(xhtt )− fhtt,1(xhtt )

)
≥ C

4

(√
log
NTH
αδ

+
T

α2
ε ·

(√
log
NNbTH

αδ
·
√

log
NNbTH

αδ
·H5/2

√
dα
|Too|√
T

+ |Too|Hεb

))

+
C

4

(
|Too|H2ε+ |Too|Hδ

)
.

Note we also have conditioning on E≤T , since fht,1 ≥ fh? ≥ V h
t , it holds that∑

t∈Too

(
fhtt,2(xhtt )− fhtt,1(xhtt )

)
≤
∑
t∈Too

(
fhtt,2(xhtt )− V ht

t

)
(i)

≤ 2
∑

t∈Too,h∈[H]

min
(

4, bht,1(zht )
)

+ 2
∑

t∈Too,h∈[H]

min
(

4, bht,2(zht )
)

+
∑
t∈Too

∑
ht≤h≤H

(
ξht − ξht,2

)
+O(|Too|H2ε)

(ii)

≤ O

(√
log
NTH
αδ

+
T

α2
ε ·

(√
log
NNbTH

αδ
H
√
|Too| · dα + log

NNbTH
αδ

H · dα + |Too|Hεb

))
+
∑
t∈Too

∑
ht≤h≤H

(
ξht − ξht,2

)
+O(|Too|H2ε),

where for (i) we use Lemma 36, and for (ii) we use Lemma 38 and Lemma 39 with T = Too.
Thus, conditioning on E≤T , taking expectation and note

E

∑
t∈Too

∑
ht≤h≤H

(ξht − ξht,2)|E≤T

 ≤ O(E[|Too||E≤T ]Hδ + E
[∑
t∈Too

∑
ht≤h≤H

(ξht − ξht,2)

])

= O

(
E[|Too||E≤T ]Hδ

)
due to Lemma 37. Thus, in order for the two inequalities hold true simultaneously it must hold that
E[|Too||E≤T ] ≤ O

(
T/(H3 · log(NNbTH/αδ))

)
.

Building on this bound of |Too|, we show the next corollary on a tighter bound for the summation
terms in III .
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Corollary 42 (Fine-grained bound on III) Given bt,2(·) ≤ C·
(
DFh(·, zh[t−1],1

h
[t−1])

√(
βht,2

)2
+ λ+

εb · βht,2
)

and using the particular choice of ut as in Lemma 41, when λ = Θ(1), α ≤ 1, we have

the following inequality holds true:

E[III | E≤T ] := E

∑
t∈Too

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)
| E≤T


= O

(√
log
NTH
δ

+ Tε ·
√
T · dα +

√
log
NNbTH

δ
+ Tε · (H · dα + Tεb)

)
.

Proof This is an immediate corollary by combining Lemma 38 and Lemma 41.

Next, we proceed to bound E[I|E≤T ] properly. To do so, we will provide an additional helper
lemma before bounding I .

Lemma 43 When λ = Θ(1), α ≤ 1, ε ≤ 1, δ ≤ 1/10, we have

E

∑
t∈[T ]

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
| E≤T


≤ O

(
H · E[I|E≤T ] +H · E[II|E≤T ] +H2 · E [|Too||E≤T ] + TH2ε+ TH2δ

)
+H ·

∑
t∈To

ut.

Proof For t ∈ Too, it holds that∑
t∈Too

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
= O(|Too|H),

and consequently E
[∑

t∈Too
∑

h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
| E≤T

]
= O(E[|Too| | E≤T ] ·H)

Otherwise, for iterations t ∈ To, we know that it always holds true that fht,2(xht ) ≤ fht,1(xht )+ut,
which implies

fht,2(zht )− fht,−2(zht )
(i)

≤ fht,1(zht )− fht,−2(zht ) + ut

(ii)

≤ ut +O

 ∑
h≤h′≤H

bh
′
t,1(zh

′
t ) +

∑
h≤h′≤H

bh
′
t,2(zh

′
t ) +

∑
h≤h′≤H

(
−ξh′t,1 + ξh

′
t,−2

)
+Hε

 ,

where we use (i) the fact that fht,2(zht ) ≤ fht,1(zht ) by Lemma 31 and (ii) the upper bound on fht,1
as in Lemma 36 when ht = H + 1 and the lower bound on fht,−1 as in Lemma 35 conditioning on
E≤T . Also, we note fht,2(zht )− fht,−2(zht ) ≤ O(1).
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Now conditioning on E≤T , we have

∑
t∈To

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]

≤ O

∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,1(zh

′
t )

+
∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,2(zh

′
t )


+
∑
t∈To

H · ut +O

∑
t∈To

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2 −

∑
t∈To

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1 + TH2ε


≤ O

∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,1(zh

′
t )

+
∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,2(zh

′
t )


+
∑
t∈To

H · ut +O

∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2 −

∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1 + |Too|H2 + TH2ε

 .

This implies that

E

∑
t∈To

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
| E≤T


(i)

≤ O

E

∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,1(zh

′
t )

+
∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,2(zh

′
t )

 ∣∣ E≤T


+
∑
t∈To

H · ut +O(H2E[|Too||E≤T ] + TH2ε+ TH2δ)

(ii)

≤ O

(
H · E[I | E≤T ] +H · E[II | E≤T ] +H

∑
t∈To

ut +H2E[|Too||E≤T ] + TH2ε+ TH2δ

)
.

Here we use (i) since E≤T happens with probability 1 − 5δ ≥ 1/2, and |ξht,j | ≤ O(1) for any t, h
and any j = −2, 1, so that we have E

[∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H ξ

h′
t,−2 | E≤T

]
= O(TH2δ) and

E
[∑

t∈[T ]

∑
h∈[H]

∑
h≤h′≤H ξ

h′
t,1 | E≤T

]
= O(TH2δ) using Lemma 37. For (ii) we simply use the

definition of I and II and the fact that all bonus terms are non-negative.

Thus summing the two cases gives the claimed bound.

Lemma 44 (Fine-grained bound on I) Recall the definition of bt,1, bt,2 as in Lemma 39, Lemma 38.
When λ = 1, α = 1/

√
TH , ε ≤ 1 and δ ≤ 1/10, conditioning on the event E≤T , we have the fol-
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lowing inequality holds true:

E[I|E≤T ] := E

∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)
|E≤T


= O

(√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα

)

+O

√log
NTH
δ

+ T 2Hε

√
log
NNbTH

δ

√
TH3(ε+ δ) +H3E[|Too||E≤T ] +H2

∑
t∈To

ut ·
√
Hdα


+O

((
log
NTH
δ

+ T 2Hε

)
log1.5 NNbTH

δ
·H7/2dα +

√
log
NTH
δ

+ T 2Hε · THεb

)
.

Proof We first note that by assumption and definition,∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

= O

∑
t∈[T ]

∑
h∈[H]

min

(
1, DFh(zht ; zh[t−1], σ̄

h
[t−1]) ·

√(
βht,1

)2
+ λ

)
+ THεb ·max

t,h
βht,1


= O

√log
NTH
δ

+ T 2Hε ·

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
+ THεb

 .

(52)
Treating L = O(1) as defined (see Assumption 1), we now bound the summation terms∑

t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
=
∑
t∈[T ]

∑
h∈[H]

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)

by dividing into cases.
We consider separating the index set {(t, h) : t ∈ [T ], h ∈ [H]} as follows, same as the cases

we consider in Lemma 39.

I1 = {(t, h) ∈ T × [H] |
(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1]) ≥ 1},

I2 = {(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = α},

I3 =

{
(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄

h
t = 2

(√
υ(δt,h) + ι(δt,h)

)
·
√
DFh(zht ; zh[t−1], σ̄

h
[t−1])

}
,

I4 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = σht

}
,

I5 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t =
√

2ι(δt,h)
√
fht,2(zht )− fht,−2(zht )

}
.

For the terms restricting on I1, I2, I3 we recall the bounds in Equations (48) to (50) in Lemma 39
such that

∑
(t,h)∈I1∪I2∪I3 min

(
1, σ̄ht ·

(
σ̄ht
)−1

DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
≤ O

(
log NNbTH

δ ·Hdα
)
.
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For terms restricting on I4 and I5 we do a tighter analysis different from Lemma 39. For
summations terms in I5, we have

∑
(t,h)∈I5

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤

∑
(t,h)∈I5

σ̄ht ·
(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

=
∑

(t,h)∈I5

√
2ι(δt,h) ·

√
fht,2(zht )− fht,2(zht ) ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

≤ O

√log
NNbTH

δ

√∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
·
√
H · dα

 .

(53)
Here for the last inequality we use Cauchy-Schwarz inequality together with the definition of ι(δ)
as in (15).

Restricting on I4, by Cauchy-Schwarz inequality and Jensen’s inequality, we have

E

 ∑
(t,h)∈I4

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
|E≤T


≤ E

 ∑
(t,h)∈I4

σ̄ht ·
(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])|E≤T


(o)

≤

√√√√√E

 ∑
t,h∈I4

(
σht
)2 |E≤T

 ·
√√√√√E

 ∑
t,h∈I4

(
σ̄ht
)−2

D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])|E≤T


(i)

≤

√√√√√E

 ∑
t,h∈I4

(
σht
)2 |E≤T

 ·
√√√√√E

 ∑
t,h∈I4

min
(

1,
(
σ̄ht
)−2

D2
Fh(zht ; zh[t−1], σ̄

h
[t−1])

)
|E≤T


(ii)

≤ O


√√√√√E

∑
t,h

Vrh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
]

+
∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
|E≤T

 ·√H · dα


+O


√√√√√E

∑
t,h

min
(

1, DFh(zht ; zh[t−1],1
h
[t−1])

)√
log
NNbTH

δ
+ Tε+ THε|E≤T

 ·√H · dα


(iii)

≤ O


√√√√√2E

∑
t,h

Vrh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
]

+ E

∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
|E≤T

 ·√H · dα


+O


√√√√√E

∑
t,h

min
(

1, DFh(zht ; zh[t−1],1
h
[t−1])

)√
log
NNbTH

δ
+ Tε+ THε|E≤T

 ·√H · dα
 .
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Here we use (o) the condition that
(
σ̄ht
)−1

DFh(zht ; zh[t−1], σ̄
h
[t−1]) ≤ 1 by definition of I4, (i)

definition of Eluder dimension, (ii) Lemma 34 and (iii) the fact that event E≤T happens with at
least 1− 5δ probability so that

E

∑
t,h

Vrh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
]
|E≤T

 ≤ 1

1− 5δ
E
∑
t,h

Vrh,xh+1

[
rh + fh+1

t,1 (xh+1)|zht
]
.

Further, we have

E

 ∑
(t,h)∈I4

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
|E≤T


(i)

≤ O


√√√√√T +H2 · E|Too|+ TH2(ε+ δ) +H · E

∑
t,h

(
fht,2(zht )− fht,−2(zht )

) ·√H · dα


+O


√√√√√E

∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
|E≤T

 ·√H · dα


+O

√(H · dα +H
√
T · dα

)√
log
NNbTH

δ
+ Tε ·

√
H · dα


(ii)

≤ O

(√
T +H2E[|Too| | E≤T ] + TH2(ε+ δ) ·

√
H · dα

)

+O


√√√√√H · E

∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
|E≤T

 ·√H · dα


+O

(
H

√
dα ·

(
log
NNbTH

δ
+ Tε

)
·
√
H · dα

)
.

Here for (i) we have plugged in bounds in Corollary 40 and Equation (47). For (ii) in the first
line we note E≤T happens with probability 1 − 5δ so that E[

∑
t,h(fht,2 − fht,−2)] ≤ O(δTH +

E[
∑

t,h(fht,2 − fht,−2)|E≤T ]) and E|Too| ≤ O(δT + E[|Too||E≤T ]) since with probability 1 we have∑
t,h(fht,2−fht,−2) ≤ O(TH) and |Too| ≤ T . In the third line of (ii) we also use AM-GM inequality

such that

H

√
T · dα

(
log
NNbTH

δ
+ Tε

)
≤ T +H2dα ·

(
log
NNbTH

δ
+ Tε

)
. (54)
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Summing all terms together and taking conditional expectation we have

E

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
|E≤T


= O

(√
T +H2E[|Too| | E≤T ] + TH2(ε+ δ) ·

√
Hdα

)

+O

√log
NNbTH

δ
·
√
Hdα ·

√√√√√H · E

∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
|E≤T




+O

((
log
NNbTH

δ
+ Tε

)
·H1.5 · dα

)
.

Now plugging in the bounds proven in Lemma 43 we have

E

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
|E≤T


= O

(√
T ·
√
Hdα

)
+O

√log
NNbTH

δ

√
H3 · E[|Too| | E≤T ] + TH3(ε+ δ) +H2

∑
t∈[T ]

ut ·
√
H · dα


+O

((
log
NNbTH

δ
+ Tε

)
·H1.5 · dα

)
+O

(√
log
NNbTH

δ
·
√
Hdα ·

√
H2 · E [I|E≤T ] +H2 · E [II|E≤T ]

)
.

(55)

We can further bound the last term in the RHS of above inequality as

H2 · E [I|E≤T ] +H2 · E [II|E≤T ]

≤ O

(√
log
NTH
δ

+ T 2Hε ·
√

log
NNbTH

δ
·H3

√
Tdα

)

+O

(√
log
NTH
δ

+ T 2Hε · log
NNbTH

αδ
·H2dα +

√
log
NNbTH

δ
+ T 2Hε · TH2εb

)

≤ O

(
T

log NNbTH
δ

+

(
log
NTH
δ

+ T 2Hε

)(
log
NNbTH

δ

)2

H6dα

)

+O

(√
log
NNbTH

δ
+ T 2Hε · TH2εb

)
.

(56)
Here for the first inequality we plug in crude bounds in Lemma 38 and Lemma 39 given the defi-
nition of bonus terms, and absorb low-order terms. For the second inequality we use the AM-GM
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inequality such that√
log
NTH
δ

+ T 2Hε ·
√

log
NNbTH

δ
·H3

√
Tdα

≤ T

log NNbTH
δ

+

(
log
NTH
δ

+ T 2Hε

)(
log
NNbTH

δ

)2

H6dα,

and absorb other low-order terms.
Plugging (56) back to the original bound in (55), rearranging terms and absorbing low-order

terms we get

E

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
|E≤T


≤ O

(√
T ·
√
Hdα

)
+O

√log
NNbTH

δ

√
H3 · E[|Too| | E≤T ] + TH3(ε+ δ) +H2

∑
t∈[T ]

ut ·
√
H · dα


+O

(√(
log
NTH
δ

+ T 2Hε

)
log3 NNbTH

δ
·H7/2dα + THεb

)
.

Here the low-order THεb term comes from applying AM-GM inequality on the poly(εb) term and

absorbing other low-order terms by O
(√(

log NTHδ + T 2Hε
)

log3 NNbTH
δ ·H7/2dα

)
.

Plugging the bound back to (52) and rearranging terms, we have the claimed bounds.

Theorem 15 (Bound on expected regret) Suppose function class {Fh}h∈[H] satisfies Assumption 1
with ε ∈ [0, 1] and Definition 2 with λ = 1, and given consistent bonus oracle B (output function in
classW) satisfying Definition 5, VOQL with α =

√
1/TH , δ < 1/(T + 10), ε ≤ 1 and

ut = C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tHεb

)
√
t

+H2ε+Hδ


for sufficiently large constant C < ∞, achieves a total regret ERT = O

(√
log NTHδ + T 2Hε ·

√
THdα +

(
log NTHδ + T 2Hε

)
·
(

log2 NNbTH
δ ·H5dα + T 2ε2b

))
.

Proof Following Equation (51), we have

ERT = O (1 + δHT + εHT ) + 2E [I|E≤T ] + 2E [III|E≤T ] .
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Now plugging in the guarantees in Lemma 44 for bounding E[I|E≤T ], and Corollary 42 for
bounding E [III|E≤T ], we have

ERT = O

(
1 + TH(ε+ δ) +

√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα

)

+O

√log
NTH
δ

+ T 2Hε

√
log
NNbTH

δ

√
TH3(ε+ δ) +H3E[|Too||E≤T ] +H2

∑
t∈To

ut ·
√
Hdα


+O

((
log
NTH
δ

+ T 2Hε

)
log1.5 NNbTH

δ
·H7/2dα +

√
log
NNbTH

δ
+ T 2Hε · THεb

)
.

Now further plugging in the choice of ut and E[|Too||E≤T ] due to Lemma 41, we have√
log
NNbTH

δ

√
H2E[|Too||E≤T ] +H2

∑
t∈To

ut

= O

√log
NNbTH

δ

√√√√ T

log NNbTH
δ

+

√
log
NTH
δ

+ T 2Hε · TH3εb + TH4ε+ TH3δ


+O

√log
NNbTH

δ
·

√√
log
NTH
δ

+ T 2Hε · log
NNbTH

δ
H4.5

√
dα
√
T


≤ O

√log
NNbTH

δ

√√√√ T

log NNbTH
δ

+

√
log
NTH
δ

+ T 2Hε · TH3εb + TH4ε+ TH3δ


+O

(√
log
NNbTH

δ
·
√

T

log NNbTH
δ

+

(
log
NTH
δ

+ T 2Hε

)
· log3 NNbTH

δ
H9dα

)
= O(

√
T )

+O

(√
log
NNbTH

δ
·

√(
log
NTH
δ

+ T 2Hε

)
·
(

log3 NNbTH
δ

H9dα + TH3(εb + δ)

))

which by multiplying both sides with
√

log NTHδ + T 2Hε ·
√
Hdα, plugging back, using AM-GM

inequality to simplify the poly(εb, δ) terms gives

ERT = O

(
1 + TH(ε+ δ) +

√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα

)

+O

((
log
NTH
δ

+ T 2Hε

)
·
(

log2 NNbTH
δ

H5dα + T 2ε2b + Tδ

))
.

Adjusting the constant δ ← δ
5 , using the range of δ and omitting low-order terms of poly(ε) con-

clude the final bound for regret.
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Appendix G. Regret with High Probability.

In this section, we provide the full analysis of the high-probability guarantee stated in Theorem 6
of Algorithm 1. We first provide a complete statement of the guarantee as follows.

Theorem 45 (Regret bound with high probability) Suppose function class {Fh}h∈[H] satisfy As-
sumption 1 with ε ∈ [0, 1] and Definition 2 with λ = 1, given consistent bonus oracle B satisfy-
ing Definition 5, Algorithm 1 with α =

√
1/TH , δ ≤ 1/(H2 + 11), ε ≤ 1 and

ut = C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tH2εb

)
√
t

+H2ε


for sufficiently large constant C < ∞, with high probability 1 − δ event E = E≤T ∩ Eξ1 ∩ Eξ−2 ∩
Eξ2 ∩Eξdif ∩EV happens. Further, when conditioning on E the algorithm achieves a total regret RT
of

O

(√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα +

(
log
NTH
δ

+ T 2Hε

)
·
(

log2 NNbTH
δ

H5dα + T 2ε2b

))
.

The notation of this section is the same as in Appendix F; see Table 2 and Table 3 for the formal
definitions. It also builds on Appendices F.1 to F.4. The section can be viewed as an alternative of the
analysis in Appendix F.5 for the high-probability setting. It is organized as follows: In Appendix G.1
we prove some concentration properties of the martingale sequences used in bounding the final
regret. In Appendix G.2 we bound the size of |Too|, showing that with high probability the agent
doesn’t use ft,2 too often in the exploration. In Appendix G.3, we bound the summation of variances
incurred in the total exploration in high probability, using the concentration property together with
expectation bound shown in Corollary 40. In Appendix G.4, we give the high-probability bound on
the summation of differences

∑
t,h(fht,2 − fht,−2) which are used in the definition of σ̄ht . Finally, we

combine all parts together and bound the summation of bonus terms in Appendix G.5 to prove the
final high-probability regret bound.

G.1. Concentration of Random Variables

To turn the in-expectation bound into a high probability argument, we first provide a few concentra-
tion results on the random variables ξs, building on their MDS property as stated in Lemma 37.

Lemma 46 Recall the simplified notation of V[·|zht ] = Vrh,xh+1 [·|zht ]. For given δ ∈ (0, 1), we
have:

• For {ξht }t,h, we let Eξ be the event such that∣∣∣∣∣∣
∑

t∈[T ],h∈[H]

ξht

∣∣∣∣∣∣ ≤
√√√√ ∑

t∈[T ],h∈[H]

V
[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
log

2

δ
+ 2 log

2

δ

≤
√

4TH log
2

δ
+ 2 log

2

δ
, (57)

we thus have event Eξ happens with probability at least 1− δ.
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• For {ξht,1}t,h, we let Eξ1 be the event such that∣∣∣∣∣∣
∑

t∈[T ],h′≥h

ξh
′
t,1

∣∣∣∣∣∣ ≤
√√√√ ∑

t∈[T ],h′≥h

V[rh′ + fh
′+1

t,1 (xh′+1)|zh′t ] log
2H

δ
+ 2 log

2H

δ

≤
√

4TH log
2H

δ
+ 2 log

2H

δ
for all h ∈ [H], (58)

we thus have event Eξ1 happens with probability at least 1− δ.

• For {ξht,2}t,h, we let Eξ2 be the event such that∣∣∣∣∣∣
∑

t∈[T ],h∈[H]

ξht,2

∣∣∣∣∣∣ ≤
√√√√ ∑

t∈[T ],h′≥h

V[rh′ + fh
′+1

t,2 (xh′+1)|zh′t ] log
2

δ
+ 2 log

2

δ

≤
√

4TH log
2

δ
+ 2 log

2

δ
, (59)

we thus have event Eξ2 happens with probability at least 1− δ.

• For {ξt,−2}t,h, we let Eξ−2 be the event such that∣∣∣∣∣∣
∑

t∈[T ],h′≥h

ξh
′
t,−2

∣∣∣∣∣∣ ≤
√√√√ ∑

t∈[T ],h′≥h

V[rh′ + fh
′+1

t,−2 (xh′+1)|zh′t ] log
2H

δ
+ 2 log

2H

δ

≤
√

4TH log
2H

δ
+ 2 log

2H

δ
for all h ∈ [H], (60)

we thus have event Eξ−2 happens with probability at least 1− δ.

The proof of this lemma is an immdiate application of Lemma 16.

G.2. Size of |Too|

We consider the following lemma due to martingale concentration, which will be useful to give a
with high probability argument for bounding the size of Too.

Lemma 47 (Concentration with indicators) Let Dht =
(
ξht − ξht,2

)
1{h≥ht} for any t ∈ [T ], h ∈

[H]. We have Dht is a martingale difference sequence and with probability 1− δ,

∑
t∈[T ],h∈[H]

(
ξht − ξht,2

)
1{h≥ht} ≤ O

(√
|Too|H log

TH

δ
+ log

TH

δ

)
,

and also
∑

t∈[T ],h∈[H]

(
ξht,1 − ξht,2

)
1{h≥ht} ≤ O

(√
|Too|H log

TH

δ
+ log

TH

δ

)
.

We call this event Eξdif .
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Proof We first prove the first inequality. Recall ξht = rht + V h+1
t − E

[
rh + V h+1

t |z[h]
t , f

[H]
t,1 , f

[H]
t,2

]
and ξht,2 = rht +fh+1

t,2 (xh+1
t )−Erh,xh+1

[
rh + fh+1

t,2 (xh+1)|zht
]
. We also recall the filtration defined

earlier as Hht = σ(x1
1, r

1
1, x

2
1, · · · , rH1 , x

H+1
1 ;x1

2, r
1
2, x

2
2, · · · , rH2 , x

H+1
2 ; · · · , x1

t , r
1
t , · · · , rht , xh+1

t )
for any t ∈ [T ], h = 0, 1, . . . ,H .

Thus following Lemma 37 we have

E[Dht |Hh−1
t ] = 1{h≥ht} · E[ξht − ξht,2|Hh−1

t ] = 0,

which by definition shows that Dht as defined is a martingale difference sequence.

Further, applying Lemma 17 to {Dht }
h∈[H]
t∈[T ] , we have with probability at least 1 − δ/2, it holds

that ∑
t∈[T ],h∈[H]

(
ξht − ξht,2

)
1{h≥ht} ≤ O

(√
|Too|H log

TH

δ
+ log

TH

δ

)
,

where we use the variance of ξht and ξht,2 are constants for each t, h.
Similarly we can show with probability at least 1− δ/2 the second inequality holds true too.

Lemma 48 (Bounding size of Too) Suppose α ≤ 1, we set

ut ≥ C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tHεb

)
√
t

+H2ε

 ,

for some large enough constant C < ∞ and ε ≤ 1, then we have the following facts about Too

holds true:

|Too| ≤ O

(
T

log NNbTH
αδ ·H3

)
when E≤T ∩ Eξdif happens.

Proof Similar to the proof of Lemma 41, when the events E≤T and also Eξdif by Lemma 47 happen,
we have

∑
t∈Too

(
fhtt,2(xhtt )− fhtt,1(xhtt )

)
≥ C

4

(√
log
NTH
αδ

+
T

α2
ε ·
(

log
NNbTH

αδ
·H5/2

√
dα
|Too|√
T

+ |Too|Hεb
)

+ |Too|H2ε+ |Too|Hδ

)
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and also∑
t∈Too

(
fhtt,2(xhtt )− fhtt,1(xhtt )

)
≤
∑
t∈Too

(
fhtt,2(xhtt )− V ht

t

)
≤ O

(√
log
NTH
αδ

+
T

α2
ε ·

(√
log
NNbTH

αδ
H
√
|Too| · dα + log

NNbTH
αδ

H · dα + |Too|Hεb

))
+
∑
t∈Too

∑
ht≤h≤H

(
ξht − ξht,2

)
+O(|Too|H2ε)

≤ O

(√
log
NTH
αδ

+
T

α2
ε ·

(√
log
NNbTH

αδ
H
√
|Too| · dα + log

NNbTH
αδ

H · dα + |Too|Hεb

))

+O

(√
|Too|H log

TH

δ
+ log

TH

δ
+ |Too|H2ε

)
.

Here in last inequality we use the bound in Lemma 47 conditioning on Eξdif . For sufficiently large

constantC <∞, the above two inequalities hold true only when |Too| ≤ O
(
T/(H3 · log NNbTH

αδ )
)

.

Building on this bound of |Too|, we show the next corollary on a tighter bound for the summation
terms in III .

Corollary 49 (Fine-grained bound on III) Given bt,2(·) ≤ C·
(
DFh(·, zh[t−1],1

h
[t−1])

√
(βht,2)2 + λ+

εb · βht,2
)

and using the particular choice of ut as in Lemma 48, when λ = Θ(1), α ≤ 1, we have
when E≤T and Eξdif happen,

III :=
∑
t∈Too

∑
h∈[H]

min
(

1 + L, bht,2(zht )
)

= O

(√
log
NTH
δ

+ Tε ·
√
T · dα +

√
log
NNbTH

δ
+ Tε · (H · dα + Tεb)

)
.

Proof This is an immediate corollary by combining Lemma 38 and Lemma 48.

G.3. Sum of Variances

Further, we will provide a lemma showing that the concentration of the summation variance terms
in the exploration happens with high probability, which we denote as event EV. The result builds
on law of total variance due to Proposition 20 and the in-expectation bounds due to Corollary 40.
Recall the definition ofHHt−1 = σ(x1

1, r
1
1, x

2
1, · · · , rH1 , x

H+1
1 ; · · · , x1

t−1, r
1
t−1, · · · , rHt−1, x

H+1
t−1 ) and

exploration rule (22).

Corollary 50 (Corollary from adapted version using LTV, high probability) Recall the simpli-
fied expression of V[·|zht ] = Vrh,xh+1 [·|zht ]. When L = O(1) we have with probability at least
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1− δ,

∑
t∈[T ]

∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]

≤ O

H4 log2 TH

δ
+ T + TH2δ +H2|Too|+H ·

∑
t∈[T ]

∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

) .

We denote such event as EV hereinafter.

Proof For the high probability bounds, we consider applying Freedman’s inequality in Corollary 18
to

Dt =

∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|xht , aht
]
− E

 ∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]
| HHt−1

 ,

with M = O(H), V 2 = O(TH2),

and
∑
t∈[T ]

E
[
D2
t | HHt−1

]
= H ·

∑
t∈[T ]

E

 ∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]
| HHt−1

 .
Thus Corollary 18 gives that with probability at least 1− δ, it holds that

∑
t∈[T ],h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]

(i)

≤ O

H · log(TH/δ) +
∑
t∈[T ]

E

 ∑
h∈[H]

V
[
rh + fh+1

t,1 (xh+1)|zht
]
| HHt−1


(ii)

≤ O

H log
TH

δ
+ T + TH2δ +H2 ·

∑
t∈[T ]

E[1{t∈Too} | H
H
t−1]


+O

H ·∑
t∈[T ]

E
[ ∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

)
| HHt−1

]
(iii)

≤ O

(H +H2
√
T ) log

TH

δ
+ T + TH2δ +H2 · |Too|+H

∑
t∈[T ]

∑
h∈[H]

(
fht,2(zht )− fht,−2(zht )

) ,

where for (i) we also use the AM-GM inequality, for (ii) we use Corollary 40, and for (iii) we
use the Azuma-Hoeffding concentration of martingale. The claim follows by again applying the
AM-GM inequality.
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G.4. Difference of Overly Optimistic Sequence

Lemma 51 When good events E≤T , Eξ1 , Eξ−2 and Eξ2 happen, and when λ = Θ(1), α ≤ 1, ε ≤ 1
we have∑
t∈[T ]

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
≤ O

(
H · [I] +H · [II] +H

√
HT log(H/δ) +H log(H/δ) + |Too|H2 + TH2ε

)
+H ·

∑
t∈To

ut.

Proof Similar to the proof of Lemma 43, for t ∈ Too it holds that∑
t∈Too

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
= O(|Too|H).

Otherwise, for iterations t ∈ To, we also have∑
t∈To

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]

≤ O

∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,1(zh

′
t )

+
∑
t∈To

∑
h∈[H]

min

1,
∑

h≤h′≤H
bh
′
t,2(zh

′
t )


+
∑
t∈To

H · ut +O

∑
t∈To

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2 −

∑
t∈To

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1 + TH2ε

 ,

given event E≤T happens.
Summing over all iterations t ∈ To, this implies∑

t∈To

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
(i)

≤ O
(
H · I +H · II + TH2ε

)
+
∑
t∈To

H · ut

+O

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

ξht,2

∣∣∣∣∣∣


+O

∣∣∣∣∣∣
∑
t∈Too

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈Too

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈Too

∑
h∈[H]

ξht,2

∣∣∣∣∣∣


≤ O
(
H · I +H · II + TH2ε+ |Too|H2

)
+
∑
t∈To

H · ut

+O

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,−2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

∑
h≤h′≤H

ξh
′
t,1

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
t∈[T ]

∑
h∈[H]

ξht,2

∣∣∣∣∣∣
 .
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Now since also events Eξ1 , Eξ2 and Eξ−2 happen, plugging in bounds in (58), (59) and (60) we
have∑
t∈To

∑
h∈[H]

[
fht,2(zht )− fht,−2(zht )

]
≤ O

(
H · [I] +H · [II] +H

√
HT log(H/δ) +H log(H/δ) + |Too|H2 + TH2ε

)
+H ·

∑
t∈To

ut.

Summing the two cases gives the claimed bound.

G.5. Bounding the Regret in High Probability

Now we will continue working on bounding I =
∑

t∈[T ]

∑
h∈[H] min

(
1 + L, bht,1(zht )

)
.

Lemma 52 (Fine-grained bound on I) Recall the definition of bt,1 and bt,2 as in Lemma 39 and Corol-
lary 49. When λ = 1, α = 1/

√
TH , ε ≤ 1, when event E = E≤T ∩ Eξ1 ∩ Eξ−2 ∩ Eξ2 ∩ Eξdif ∩ EV

happens, we have the following inequality holds true:

I :=
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

= O

(√
log
NTH
δ

+ T 2Hε
√
T + TH2δ ·

√
H · dα

)

+O

√log
NTH
δ

+ T 2Hε

√
log
NNbTH

δ

√
H3|Too|+ TH3ε+H2

∑
t∈[T ]

ut ·
√
H · dα


+O

((
log
NTH
δ

+ T 2Hε

)
log1.5 NNbTH

δ
·H7/2dα +

√
log
NTH
δ

+ T 2Hε · THεb

)
.

Proof Again we note that by assumption and definition,∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

= O

∑
t∈[T ]

∑
h∈[H]

min

(
1, DFh(zht ; zh[t−1], σ̄

h
[t−1]) ·

√(
βht,1

)2
+ λ

)
+ THεb ·max

t,h
βht,1


= O

√log
NTH
δ

+ T 2Hε ·

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
+ THεb

 .

Treating L = O(1) as defined (see Assumption 1), we now bound the summation terms

∑
t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
=
∑
t∈[T ]

∑
h∈[H]

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
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by dividing into cases, same as we do in Lemma 39 and Lemma 44.

I1 = {(t, h) ∈ T × [H] |
(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1]) ≥ 1},

I2 = {(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = α},

I3 =

{
(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄

h
t = 2

(√
υ(δt,h) + ι(δt,h)

)
·
√
DFh(zht ; zh[t−1], σ̄

h
[t−1])

}
,

I4 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t = σht

}
,

I5 =
{

(t, h) ∈ T × [H] | (t, h) /∈ I1, σ̄
h
t =
√

2ι(δt,h)
√
fht,2(zht )− fht,−2(zht )

}
.

Now same as in Lemma 39 and Lemma 44 we could bound the first three terms as∑
(t,h)∈I1∪I2∪I3

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤ O

(
log
NNbTH

δ
·Hdα

)
.

For terms restricting on I4 and I5 we do a similar tighter analysis in correspondence to Lemma 44.
For summation terms in I5, recall Equation (53) already shows that∑

(t,h)∈I5

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)

≤ O

√log
NNbTH

δ

√∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
·
√
H · dα

 .

Restricting on I4, when event E = E≤T ∩Eξ1∩Eξ−2∩Eξ2∩Eξdif ∩EV happens, by using Cauchy-
Schwarz inequality, Lemma 34, Corollary 50, and AM-GM inequality, similar to the in-expectation
proof we have∑
(t,h)∈I4

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤ O

(√
T +H2|Too|+ TH2(ε+ δ) ·

√
H · dα

)
+O

√√√√H ·
∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
+H2dα ·

(
log2 NNbTH

δ
+ Tε

)
·
√
H · dα

 .

Summing all cases together we have∑
t∈[T ]

∑
h∈[H]

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤ O

(√
T +H2|Too|+ TH2(ε+ δ) ·

√
H · dα

)
+O

√log
NNbTH

δ

√
H
∑
t,h

(
fht,2(zht )− fht,−2(zht )

)
·
√
H · dα


+O

((
log
NNbTH

δ
+ Tε

)
·H1.5 · dα

)
.
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Now plugging in the bound on
∑

t,h

(
fht,2(zht )− fht,−2(zht )

)
in Lemma 51, we have

∑
t∈[T ]

∑
h∈[H]

min

(
1, σ̄ht ·

(
σ̄ht

)−1
DFh(zht ; zh[t−1], σ̄

h
[t−1])

)
≤ O

(√
T + TH2δ ·

√
H · dα

)
+O

√log
NNbTH

δ

√
H3|Too|+ TH3ε+H2

∑
t∈[T ]

ut ·
√
H · dα


+O

((
log
NNbTH

δ
+ Tε

)
·H1.5 · dα

)

+O

√log
NNbTH

δ

√
H2 · [I] +H2 · [II] +H2

√
HT log

H

δ
·
√
H · dα

 .

To bound the last term in the RHS of inequality above, we plug in crude bounds in Lemma 38
and Lemma 39, note the crude bound of I dominates that of II and absorbing the low-order terms
we have

H2 · [I] +H2 · [II] +H2

√
HT log

H

δ

≤ O

(√
log
NTH
δ

+ T 2Hε ·
√

log
NNbTH

δ
·H3

√
Tdα

)

+O

(√
log
NTH
δ

+ T 2Hε ·
(

log
NNbTH

αδ
·H2dα + TH2εb

))

≤ O

(
T

log NNbTH
δ

+

(
log
NTH
δ

+ T 2Hε

)(
log
NNbTH

δ

)2

H6dα

)

+O

(√
log
NTH
δ

+ T 2Hε · TH2εb

)
.

Plugging this back, rearranging terms, absorbing lower terms and again use AM-GM inequality
we have ∑

t∈[T ]

∑
h∈[H]

min
(

1, DFh(zht ; zh[t−1], σ̄
h
[t−1])

)
≤ O

(√
T + TH2δ ·

√
H · dα

)
+O

√log
NNbTH

δ

√
H3|Too|+ TH3ε+H2

∑
t∈[T ]

ut ·
√
H · dα


+O

(√(
log
NTH
δ

+ T 2Hε

)
log1.5 NNbTH

δ
·H7/2dα + THεb

)
.
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With these bounds we are ready to prove formally the regret bounds for Algorithm 1.

Theorem 45 (Regret bound with high probability) Suppose function class {Fh}h∈[H] satisfy As-
sumption 1 with ε ∈ [0, 1] and Definition 2 with λ = 1, given consistent bonus oracle B satisfy-
ing Definition 5, Algorithm 1 with α =

√
1/TH , δ ≤ 1/(H2 + 11), ε ≤ 1 and

ut = C ·


√

log NTHαδ + T
α2 ε ·

(
log NNbTH

αδ ·H5/2
√
dα +

√
tH2εb

)
√
t

+H2ε


for sufficiently large constant C < ∞, with high probability 1 − δ event E = E≤T ∩ Eξ1 ∩ Eξ−2 ∩
Eξ2 ∩Eξdif ∩EV happens. Further, when conditioning on E the algorithm achieves a total regret RT
of

O

(√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα +

(
log
NTH
δ

+ T 2Hε

)
·
(

log2 NNbTH
δ

H5dα + T 2ε2b

))
.

Proof When event E = E≤T ∩Eξ ∩Eξ1 ∩Eξ−2 ∩Eξ2 ∩Eξdif ∩EV happen (with probability 1− 11δ),
we recall the upper bound on regret as:

RT ≤ O(1 +HTε) + 2
∑
t∈[T ]

∑
h∈[H]

min
(

1 + L, bht,1(zht )
)

︸ ︷︷ ︸
I

+2
∑
t∈Too

min

1 + L,
∑

ht≤h≤H
bht,2(zht )



+

 ∑
t∈[T ],h∈[H]

ξht −
∑
t∈[T ]

∑
h∈[H]

ξt,1 +
∑
t∈Too

 ∑
ht≤h≤H

ξht,1 −
∑

ht≤h≤H
ξht,2


≤ O (1 +HTε+ I + III) +

 ∑
t∈[T ],h∈[H]

ξht −
∑
t∈[T ]

∑
h∈[H]

ξt,1

+
∑
t∈Too

∑
ht≤h≤H

(
ξht,1 − ξht,2

)
.

Now plugging in guarantees of Lemma 52 for bounding I , Corollary 49 for bounding III, Equa-
tion (57) for bounding

∑
t,h ξ

h
t , Equation (58) for bounding

∑
t,h ξ

h
t,1, Lemma 47 for bounding∑

t∈Too
∑

ht≤h≤H
(
ξht,1 − ξht,2

)
, we have

RT = O

(
THε+

√
log
NTH
δ

+ T 2Hε ·
(√

T + TH2δ ·
√
Hdα

)
+

√
log
NTH
δ

+ T 2Hε

√
log
NNbTH

δ

√
H3|Too|+ TH3ε+H2

∑
t∈[T ]

ut ·
√
H · dα

+

(
log
NTH
δ

+ T 2Hε

)
· log1.5 NNbTH

δ
·H7/2 · dα +

√
log
NNbTH

δ
+ T 2Hε · THεb

)
.
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Now further plugging in the assumption of δ, choice of ut and the bound of Too under such
choice as in Lemma 48, we have

RT = O

(
1 +

√
log
NTH
δ

+ T 2Hε ·
√
T ·
√
Hdα

)

+O

((
log
NTH
δ

+ T 2Hε

)
·
(

log2 NNbTH
δ

H5dα + T 2ε2b

))
.

Adjusting the constant δ ← δ
11 and absorbing the low-order terms of poly(ε) conclude the final

bound for regret.

77


	Introduction
	Preliminaries
	Algorithm
	Main Result and Applications
	Linear Function Approximation
	Nonlinear Function Approximation

	Proof Sketch
	Future Directions
	Related Work
	A Technical Issue in hu2022nearly
	Proof for Generalized Eluder Dimension
	Proofs for Linear Function Approximation
	Implementing Bonus Oracle B using Online-subsampling
	Full Analysis of thm:regret-genera.
	Notations and Preliminaries
	Confidence Intervals' Properties
	Validity of Variance Estimator
	Approximation Error of Optimistic, Overly Optimistic(Pessimistic) Values
	Bounding the Regret in Expectation

	Regret with High Probability.
	Concentration of Random Variables
	Size of |Too|
	Sum of Variances
	Difference of Overly Optimistic Sequence
	Bounding the Regret in High Probability


