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Abstract
Matrix completion is the study of recovering an underlying matrix from a sparse subset of noisy
observations. Traditionally, it is assumed that the entries of the matrix are “missing completely
at random” (MCAR), i.e., each entry is revealed at random, independent of everything else, with
uniform probability. This is likely unrealistic due to the presence of “latent confounders”, i.e.,
unobserved factors that determine both the entries of the underlying matrix and the missingness
pattern in the observed matrix. For example, in the context of movie recommender systems—
a canonical application for matrix completion—a user who vehemently dislikes horror films is
unlikely to ever watch horror films. In general, these confounders yield “missing not at random”
(MNAR) data, which can severely impact inference procedures that do not correct for this bias.

We develop a formal causal model for matrix completion through the language of potential out-
comes and provide novel identification arguments for a variety of causal estimands of interest. We
design a procedure, which we call “synthetic nearest neighbors” (SNN), to estimate these causal es-
timands. The SNN estimator can be seen as a combination of the synthetic controls/interventions es-
timator that comes from the econometrics literature with the nearest neighbor estimator that comes
from the recommendation systems/matrix completion literature. The identification argument and
the SNN estimator allow for (i) the probability of observing an entry of the matrix to be 0, (ii) the
probability of observing an entry of the matrix to be correlated with whether other entries of the
matrix are observed or not, and (iii) the missingness pattern to be correlated with the underlying
outcomes of the matrix.

We prove finite-sample consistency and asymptotic normality of the SNN estimator. Our anal-
ysis also leads to new theoretical results for the matrix completion literature. In particular, we
establish entry-wise, i.e., max-norm, finite-sample consistency and asymptotic normality results
for matrix completion with MNAR data. As a special case, this also provides entry-wise bounds
for matrix completion with MCAR data. We provide an experimental design for how to sample
entries of a m ⇥ n matrix such that using the SNN procedure, we can estimate the entries of all
m⇥ n entries within approximation error � with at most O(poly(�)(m+ n)) entries.

Across simulated and real data, we demonstrate the efficacy of our proposed estimator.
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