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Abstract
We study the task of differentially private online convex optimization (OCO). In the online setting,
the release of each distinct decision or iterate carries with it the potential for privacy loss. To limit
such privacy leakage, we design an optimization-based OCO algorithm that explicitly limits the
number of switches via objective perturbation and rejection sampling. This improves over known
results in multiple aspects: an optimal leading-order regret term, in being efficiently implementable
without requiring log-concave sampling subroutines, and in matching the non-private regret bound
for sub-constant regimes of privacy parameters. Leveraging the fact that the algorithm is designed
to explicitly minimize the number of switches of decisions, we show that the algorithm also obtains
optimal regret bounds in the lazy OCO setting, where the learner is constrained to perform a limited
number of switches. In addition, for one- and two-dimensional decision sets, we present a novel
approach for differentially private online Lipschitz learning, where the loss functions are Lipschitz
but not necessarily convex, that achieves the optimal regret bound matching known lower bounds.
Keywords: online convex optimization, differential privacy, low switching, regret minimization

1. Introduction

In online convex optimization (OCO), in each round t = 1, 2, . . . , T , a learner is required to choose
a point xt in a compact convex set K ∈ Rd, and is provided an adversarially chosen Lipschitz convex
loss function lt : K → R in response. The learner suffers loss lt(xt) in round t. The learner’s goal is
to minimize her regret defined as

∑T
t=1 lt(xt)−minx∈K

∑T
t=1 lt(x). We assume that the adversary

chooses the loss functions obliviously, i.e., independently of the points xt. When the points xt are
chosen randomly, the corresponding performance metric is the expected regret.

Differentially Private OCO (DP-OCO). The goal in DP-OCO is to design an online learning
algorithm for this problem that guarantees that if one of the loss functions lt in an arbitrary round t
were changed to another function l′t, then the entire output sequence of the algorithm doesn’t change
much in a certain precise manner depending on privacy parameters (ε, δ) that we formalize later.
DP-OCO has been studied for over a decade (Jain et al., 2012; Smith and Thakurta, 2013; Agarwal
and Singh, 2017; Kairouz et al., 2021; Asi et al., 2022). Until the very recent work of Asi et al.
(2022), the best known upper bound for the problem was Õ

(
d1/4

√
T√

ε

)
1 (Kairouz et al., 2021). The

1. Õ (·) hides polylog factors in 1/δ and T .
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work of Asi et al. (2022), for moderate ranges of ε, improves the bound to Õ
(√

dT + dT 1/3

ε

)
.

This is a significant improvement over prior work, and in fact doesn’t even need convexity of the
loss functions, simply Lipschitzness. However, there are a few drawbacks of this result. First, the
regret bound is always Ω(

√
dT ) even with low (or even no!) privacy requirements. While this

scaling in terms of d is unavoidable for non-convex Lipschitz losses, for convex losses, this is much
worse than the optimal O(

√
T ) regret achievable for OCO in the non-private setting. Second, the

algorithm provided by Asi et al. (2022), while implementable in polynomial time for convex losses,
is not very practical as it (occasionally) needs to sample from log-concave distributions. In this
paper, we improve the state-of-the-art for DP-OCO on both these fronts. Our contributions are:

1. We give a DP-OCO algorithm for smooth Lipschitz losses with Õ
(√

T + dT 1/3

ε

)
regret. The

key improvement in our regret bound over (Asi et al., 2022) is that we remove the additional√
d factor on the leading term, leading to the first algorithm with matches the optimal O(

√
T )

regret in the non-private setting for ε = Ω(dT−1/6). We provide a detailed comparison of our
regret vs the previously best known algorithms in Table 1 on page 3. Furthermore, crucially
our algorithm improves over (Asi et al., 2022) in terms of computational efficiency. While the
(Asi et al., 2022) algorithm is efficient in requiring function evaluations in most rounds, for
roughly Õ

(
T 2/3

)
rounds it needs to sample from logconcave probability densities, for which

the best known algorithms (Chewi, 2023) are not yet practical. On the other hand, our algorithm
needs the evaluation of one gradient and one Hessian in most rounds, and in roughly Õ

(
T 2/3

)
rounds, needs to solve a convex optimization problem, for which several practical algorithms
exist (Boyd and Vandenberghe, 2004). This reduction in the computational burden of a regret
minimizer from sampling to optimization has long been a source of motivation for many works
in online learning (e.g., (Hazan et al., 2007)).

2. In 1 or 2 dimensions for Lipschitz (but not necessarily convex) losses, we give a differentially
private algorithm with a regret of Õ

(√
T + 1

ε

)
. This matches the bound obtained by Agarwal

and Singh (2017) for the much weaker class of linear functions in 1 or 2 dimensions (their
precise bound is Õ

(√
T +

√
d
ε

)
in dimension d). As a direct corollary, we show via online-to-

batch conversion (Cesa-Bianchi et al., 2001), that for 1 or 2 dimensions our one pass algorithm
is sufficient to obtain (near) optimal excess population risk of Õ

(
1√
T
+ 1

εT

)
in differentially

private Stochastic Convex Optimization (DP-SCO) (Bassily et al., 2019; Feldman et al., 2020;
Bassily et al., 2020; Kulkarni et al., 2021; Gopi et al., 2022; Asi et al., 2021) with T samples.

3. We consider the case when the loss functions are chosen from the class of GLMs (Generalized
Linear Models), i.e., functions that exhibit the structure lt(x) = f(v⊤t x) for a fixed known
smooth Lipschitz function f , with vt chosen by the adversary. For such models we show an
improved regret bound2 of Õ

(√
T +

√
dT 1/3

ε

)
. The improvement in the regret bound for GLMs

originates from an observation communicated to us by Kifer et al. (2023).

2. Previous results by Kifer et al. (2012) on objective perturbation would seem to suggest that this latter bound is what
should be expected for our approach even in the general convex case, however we found an error in the analysis of
Kifer et al. (2012) that was subsequently acknowledged by the authors in personal communication. The error is at
top of page 25.21: the claim that “Γ is independent of the noise vector” is not justified since Γ = b(α;D)−b(α;D′),
leading to a worse dependence on d than claimed in their paper.
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ε = T−α Previous Best Our Algorithm
General Convex GLM

α = 0 d1/4
√
T (Kairouz et al., 2021)

√
T

√
T

α ∈ (0, 1/6)
√
dT (Asi et al., 2022)

√
T

√
T

α ∈ [1/6, 1/3) d · T 1/3+α (Asi et al., 2022) d · T 1/3+α
√
d · T 1/3+α

α ≥ 1/3 d1/4 · T 1/2+α/2 (Kairouz et al., 2021) d · T 1/3+α
√
d · T 1/3+α

Table 1: Comparison between our results and the known best results previously for DP-OCO in dif-
ferent regimes for ε. Entries in red are the known best result in a row. For the asymptotics
we assume T ≫ d.

Lazy OCO. Lazy OCO is the problem of developing OCO algorithms with a limit on the num-
ber of switches between the points chosen by the learner. This setting is motivated by real-world
applications where changes in the learner’s decision are costly. For example, this cost manifests
as the need for verifying the safety of the newly proposed controllers in robotics, transaction costs
associated with rebalancing portfolios in portfolio optimization, and as the burden of reimplemen-
tation in public or organizational policy decisions. Online learning with limited switching has been
extensively studied in the context of prediction with expert advice (Merhav et al., 2002; Kalai and
Vempala, 2005; Geulen et al., 2010; Altschuler and Talwar, 2021) and OCO (Anava et al., 2015;
Sherman and Koren, 2021). For the OCO problem the best results known so far were provided
in Anava et al. (2015) who showed that there exists a log-concave sampling based algorithm that
achieved regret Õ(

√
dT + dT

S ) while switching at most S times in expectation. Recently, Sherman

and Koren (2021) claimed an improved guarantee of Õ(
√
T +

√
dT
S ) via a much more practical algo-

rithm based on optimization similar to the algorithm presented in this paper. However, we found an
error (see Section A) in the paper that was acknowledged by the authors in personal communication.
Our contributions for Lazy OCO are the following (summarized in Table 2).

1. Observing that our DP-OCO algorithm is designed to perform a limited number of switches in
order to minimize privacy loss, we show that the very same algorithm also achieves Õ(

√
T+ dT

S )
regret while switching at most S in expectation for any given S. The algorithm is naturally
significantly more efficient than the one proposed in Anava et al. (2015) since the latter algorithm
uses log-concave sampling. To highlight the significance of our result, note that due to the
additional d factor in the leading term of the regret bound by Anava et al. (2015), prior to our
result it was not known whether optimal O(

√
T ) regret for OCO could be achieved for any S =

o(T ). Our result demonstrates that this is indeed possible for any S = Ω(d
√
T ). Furthermore,

for strongly-convex losses, we can improve the bound to Õ(1+ d2T
S2 ) by leveraging the increasing

noise technique introduced by Sherman and Koren (2021). However, we remark that it is unclear
if a scaling of d in the lower-order regret terms is necessary.

2. We show that our bounds can be improved when the losses are GLMs to Õ(
√
T +

√
dT
S ).

2. Preliminaries

Notation. We use ∥ · ∥ to denote the standard ℓ2 norm in Rd. For distributions p and q on the same
outcome space, we use ∥p − q∥TV to denote their total variation distance. For a distribution µ on
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S = Tα Previous Best Our Algorithm
General Convex GLM

α = 1
√
T (Zinkevich, 2003)

√
T

√
T

α ∈ (1/2, 1)
√
dT (Anava et al., 2015)

√
T

√
T

α ≤ 1/2 d · T 1−α (Anava et al., 2015) d · T 1−α
√
d · T 1−α

Table 2: Comparison between our results and the known best results previously for Lazy OCO in
different regimes for the switching budget S. Entries in red are the known best results in a
row. For the asymptotics we assume T ≫ d.

Rd, we use µ(A) to denote the measure of a measurable set A ⊆ Rd. With some abuse of notation,
we also µ(x) to denote the density of µ at x ∈ Rd, if it exists.

Problem Setting. We are given a convex compact set K ∈ Rd with diameter D (i.e. D =
maxx,y∈K ∥x − y∥). In OCO, at the start of each round t ∈ [T ], the learner A chooses a point
xt ∈ K from some compact convex decision set K ⊂ Rd, and upon making this choice it observes
the loss function lt : K → R, and suffers a loss of lt(xt). For any t-indexed sequence of objects, e.g.
the loss function lt, let l1:T = (l1, . . . lT ) be the concatenated sequence. We restrict our attention
to the case of oblivious adversaries in that we assume the loss function sequence l1:T is chosen
independently of the iterates xt picked by the learner.3 Recall that a function l : K → R is said to
be G-Lipschitz if |l(x)− l(y)| ≤ G∥x− y∥ for any pair x, y ∈ K and β-smooth if l is differentiable
on K with ∥∇l(x)−∇l(y)∥ ≤ β∥x− y∥ for any pair x, y ∈ K.

Assumption 1 The loss functions l1:T ∈ LT are chosen obliviously from the class L of G-Lipschitz
β-smooth twice-differentiable convex functions.

As for the domain K, we assume that (a) it is full-dimensional and (b) 0 ∈ K. We define the
Minkowski set K◦ = {(1 − 1

T )x : x ∈ K}. This is a convex set and in particular we have that
for any x ∈ K there is a point x′ ∈ K◦ such that ∥x − x′∥ ≤ D

T . We also assume we have a
twice-differentiable and convex barrier function for K, i.e. a function B : Rd → R+ ∪ {+∞}
such that for x ∈ int(K), B(x) ∈ R and for any point x /∈ int(K), B(x) = +∞. Such barriers
are easy to construct for several convex sets of interest: e.g., for the d-dimensional unit sphere,
x 7→ − log(1−∥x∥2) is a barrier function of the type described above. Additionally, via appropriate
scaling, we may assume that B(x) ≤ GD for any x ∈ K◦. For example, for the unit sphere, the
function x 7→ − GD

log(T/2) log(1− ∥x∥2) satisfies this assumption.
The possibly random learner’s performance through such mode of interaction as outlined above

may be assessed via the regret it incurs; this, as defined below, measures the expected excess ag-
gregate loss the learner is subject to in comparison to the best fixed point in K determined with the
benefit of hindsight.

RT (A, l1:T ) ≜ E
A

[
T∑
t=1

lt(xt)− min
x∗∈K

T∑
t=1

lt(x
∗)

]
3. As remarked in Asi et al. (2022), and as is true for most of the literature on private OCO, our privacy bounds hold in

the absence of this assumption – obliviousness – due to the use of adaptive strong composition. The utility or regret
bounds are strongly reliant on this assumption on loss functions, however.
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Algorithm 1: Couple-The-Regularized-Leader (CTRL)

Inputs: A distribution ν on Rd, a regularization parameter η > 0, a barrier B(x), switching
rate parameter p ∈ [0, 1], switching budget B ≥ 0, a scale parameter Φ > 0.

Set b1 = 0, sample Z0 ∼ ν, choose x1 = x⋆(0, Z0).
for t = 1 to T do

Play xt ∈ K.
Observe lt : K → R and suffer a loss of lt(xt).
Sample St ∼ Ber

(
min

{
1,max

{
1
Φ2 ,

µt+1(xt)
Φ·µt(xt)

}})
and S′

t ∼ Ber(1− p).
// µt(·), µt+1(·) can be computed via Lemma 2.
if bt < B and (S′

t = 0 or St = 0) then
Update bt+1 = bt + 1, sample Zt ∼ ν and choose xt+1 = x⋆(l1:t, Zt).

end
else

Set bt+1 = bt and xt+1 = xt.
end

end

Later on, since we do not make any distributional assumptions on the loss sequence, the primary
quantity of interest will be the worst-case regret, i.e. RT (A) ≜ maxl1:T∈LT RT (A, l1:T ).

Another characteristic of the learner that is relevant to the discussion below is the number of
discrete switches the learner makes. To this end, we define the number of switches the learner
makes as

ST (A, l1:T ) ≜ EA

[
T∑
t=2

Ixt ̸=xt−1

]
.

For brevity, henceforth we will simply use RT and ST to refer to RT (A, l1:T ) and ST (A, l1:T )
respectively.

An online learning algorithm A is said to (ε, δ)-differentially private if for any loss function
sequence pair l1:T , l′1:T ∈ LT such that lt = l′t for all but possibly one t ∈ [T ], we have for any
Lebesgue measurable O ⊂ KT that

Pr
A
(x1:T ∈ O|l1:T ) ≤ eε Pr

A
(x1:T ∈ O|l′1:T ) + δ.

3. Algorithm and main result

We now present our algorithm, dubbed Couple-The-Regularized-Leader (CTRL); see Algorithm 1.
At a high level, the algorithm is an instance of Follow-The-Regularized-Leader, i.e., in round t, it
plays the point

xt = argmin
x∈K

{
t−1∑
τ=1

lτ (x) + Reg(x)

}
,

where Reg : K → R is a strongly-convex regularizer. Such schemes are known to have low regret;
see Hazan (2016). A few factors go into the design of Reg. First, in order to preserve privacy, the
regularizer contains a random linear function, x 7→ Z⊤x for some random vector Z ∈ Rd drawn
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from some distribution ν (we will use Gaussians). Second, for technical reasons that we list shortly,
we require the algorithm to choose xt ∈ int(K). To ensure this, we add a barrier function B in Reg.
Finally, to ensure strong convexity, we add x 7→ ∥x∥2

2η to Reg for some learning rate parameter η > 0
which we specify later.

The above scheme already yields low regret, but leak a lot of private information since the
algorithm can potentially alter its decisions in each round. To guard against this, we use a rejection
sampling procedure, drawing inspiration from Geulen et al. (2010). Specifically, for any t, the point
xt+1 is chosen to be equal to xt with probability µt+1(xt)

Φµt(xt)
, where for any t, µt is the distribution of

argminx∈K

{∑t−1
τ=1 lτ (x) + Reg(x)

}
induced by the random vector Z, and Φ is a scaling factor.

With the remaining probability, we sample xt+1 from µt+1 (we call this a “switch”). This rejection
sampling technique ensures that the distribution of xt+1 is indeed µt+1.

One final issue remains: the (random, but adaptively determined) decision to switch itself may
leak private information (specifically, it is possible that a change in one loss function makes the
probability of switching 0 whereas it is non-zero prior to this change). To guard against this, we
employ a technique developed by Asi et al. (2022): we force switching in each round at a certain
base switching rate p. Finally, it is necessary to put a hard cap on the number of switches, so we
introduce a switching budget B, again inspired by (Asi et al., 2022), and no longer switch once the
budget is exhausted. We also need to scale the density ratio µt+1(xt)

Φµt(xt)
appropriately to make sure it is

at most unit sized.
To complete the technical description of the algorithm, we need explicit formulas for µt. We

now provide those formulas. First, given any loss function l : K → R, we define the following
quantities.

J (l, x) = l(x) +
∥x∥2

2η
+ B(x), x⋆(l, Z) = argmin

x∈K
J (l, x) + Z⊤x (3.1)

With some abuse of notation we use J (l1:t−1, ·) to denote J (
∑t−1

τ=1 lτ , ·), and similarly x⋆(l1:t−1, ·)
to denote x⋆(

∑t−1
τ=1 lτ , ·). Note that µt is defined to be the distribution of x⋆(l1:t−1, Z) when Z ∼ ν.

The following lemma provides the necessary explicit formula for the density of µt:

Lemma 2 For a loss function l : K → R, let µ be the distribution of x⋆(l, Z) when Z ∼ ν. Then
we have

µ(x) = ν(−∇J (l, x))|det(−∇2J (l, x))| = ν(−∇J (l, x)) det(∇2J (l, x)),

where the gradient and Hessian above are taken with respect to the x argument of J (l, x).

Proof Due to the presence of the barrier function B in Equation (3.1), we have that x⋆(l, Z) ∈
int(K) for any Z. Note that J (l, x) is strongly convex and is differentiable at any point x ∈ int(K).
Hence, the Fenchel conjugate, J ∗, of J (l, ·), is differentiable at any Z ∈ Rd, and it follows that
x⋆(l, Z) = ∇J ∗(−Z) and Z = −∇J (l, x⋆(l, Z)), which further implies that Z 7→ ∇J ∗(−Z) is
one-to-one, with the inverse map given by x 7→ −∇J (l, x). The claimed formula for the density of
µ then follows by the change-of-variable formula; see, e.g., (Bogachev and Ruas, 2007).

We now turn to the regret analysis for Algorithm 1. We state the regret bound below in a
somewhat general fashion in order to easily yield results in various specific cases. The analysis
hinges on the following definition:

6
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Definition 3 Probability distributions µ, µ′ on K are said to be (Φ, δ)-close if

Pr
X∼µ

[
1

Φ
≤ µ(X)

µ′(X)
≤ Φ

]
≥ 1− δ and Pr

X∼µ′

[
1

Φ
≤ µ(X)

µ′(X)
≤ Φ

]
≥ 1− δ.

We have the following regret bound for Algorithm 1.

Theorem 4 (Regret bound for CTRL) In Algorithm 1, fix any η, σ > 0, any δ ∈ [0, 1/2], any
p ∈ [0, 1], set ν = N (0, σ2I) and choose Φ such that for all t the distributions µt, µt+1 are (Φ, δ)-
close. For any sequence of obliviously chosen G-Lipschitz, β-smooth convex loss functions l1:T , the
following hold:

• If B = ∞,

RT ≤ D2

2η
+ 2G2ηT + σ

√
dD + 6GDδT 2 + 2GD.

• Let p̃ = p+ 1− Φ−2. If B = 3p̃T ,

RT ≤ D2

2η
+ 2G2ηT + σ

√
dD + 2GDT (e−p̃T + 3δT ) + 2GD.

Proof (Sketch; detailed proof in Appendix C.) The proof of Theorem 4 is based on the standard
FTRL analysis, and a sketch follows. While ideally xt would be sampled from µt, due to the
budget constrant B and the trimming of the density ratio µt+1(xt)

Φ·µt(xt)
to the interval [ 1

Φ2 , 1], the actual
distribution of xt deviates somewhat from µt. We can place bounds on this deviation in terms of
δ and p. Now if xt were indeed sampled exactly from µt, then the FTRL analysis can be applied.
The main idea there is that in expectation, the regret would be the same if the noise vectors Zt

were all set to be equal to one single noise vector Z ∼ ν. So we analyze the algorithm where
this is done, treating Z⊤x as part of the regularizer. Standard FTRL analysis then shows that the
regret is bounded by D2

2η + 2G2ηT plus some excess regret due to the regularization. This excess

regret primarily arises from the Z⊤x part of the regularizer, which can be bounded by σ
√
dD in

expectation. The scaling of the barrier B ensures that it contributes no more than 2GD. Finally,
the excess regret of Algorithm 1 over that of the idealized algorithm can be bounded in terms of the
deviation of the distribution of xt from µt and yields the other terms in the stated regret bound.

The following lemma, proved in Appendix C, gives a bound on the number of switches made
by the Algorithm 1 and immediately follows by observing that the probability of switching in any
round is at most p̃ via a simple Chernoff bound:

Lemma 5 (Switching bound) For any p ∈ [0, 1] and any Φ ≥ 0, setting p̃ = p+1−Φ−2, we have
that the number of switches is bounded in the following manner,

E [ST ] ≤ p̃T, Pr [ST ≥ 3p̃T ] ≤ e−p̃T .

Finally, we turn to the privacy guarantee for Algorithm 1.
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Theorem 6 (Privacy) Given σ > 0 and δ ∈ (0, 1/2], for any T ≥ 12 log(1/δ), let δ′ = δT−2

60 ,
G′ = 3G, and β′ = 2β. Suppose there exists Φ′ > 0 such that for all convex functions l, l′

where l− l′ is G′-Lipschitz and β′-smooth, we have that, the distributions of x⋆(l, Z) and x⋆(l′, Z)
respectively when Z ∼ N (0, σ2I), are (Φ′, δ′)-close. Define

ε′ = 7 log2(Φ)T 2/3 + 2 log3(Φ)T + (2G2/σ2 + 2η2β2d)2T 5/3.

Then for any sequence of G-Lipschitz, β-smooth convex functions, Algorithm 1 when run with Φ =
Φ′2, p = T−1/3 and B = 3p̃T is (ε, δ + 3Te−(1−Φ−2)T )-differentially private where

ε = 3/2ε′ +
√
6ε′
√
log(2/δ).

Proof (Sketch; detailed proof in Appendix D) At a high level, our proof of the above theorem re-
lies on two main ideas. Firstly at any round due to the perturbation we get privacy proportional to
1/ log(Φ). The argument to establish this follows a similar line of reasoning as known objective
perturbation results (Kifer et al., 2012). The probability of switching at any round is a ratio of prob-
abilities of successive distributions. Using a similar argument as in establishing per-round privacy
we obtain that the probability of switching scales as 1/ log(Φ). Using adaptive strong composi-
tion it can be seen that the total privacy loss scales as

√
(#Switches) · (PerStepPrivacyLoss)2 ∼√

T log(Φ)−3. As we show later log(Φ) scales as σ−1 and setting σ appropriately gives us the
required bound.

This rough sketch outlined above is unfortunately incomplete since we also need to consider the
privacy of switching decision itself which happens at every round. To overcome this issue we use
the forced switching technique developed by Asi et al. (2022) which allows for bounded privacy
loss at the point where the loss sequence changes. However unlike in the case of Asi et al. (2022),
since the distributions we sample from cannot be broken down as product distributions depending
on individual loss functions we need to provide additional analysis that the switching test does not
leak privacy at other rounds. To this end, we perform a second-order analysis of the privacy loss
incurred by the switching decision. The benefit of the second-order analysis is that it leads to the
total privacy loss incurred by switching decisions to be of smaller order than the overall privacy loss
thereby not affecting the overall privacy loss bound. This lower order penalty is the source of the
(2G2/σ2 + 2η2β2d)T 5/6 in the above theorem.

3.1. Bounds for Lipschitz and Smooth loss functions

In order to apply the above results for OCO with G-Lipschitz and β-smooth loss functions, all we
need to do is compute Φ. This bound is given by the following lemma, proved in Appendix C:

Lemma 7 (Density ratio) Let l, l′ : K → R be convex twice-differentiable functions such that l−l′

is G-Lipschitz and β-smooth. Let µ, µ′ be the probability distributions of x⋆(l, Z) and x⋆(l′, Z)
respectively when Z ∼ N (0, σ2I). Then for any δ ∈ (0, 1], we have that µ and µ′ are (Φ, δ) close
where

Φ = exp
(
ηβd+ (G2 + 2Gσ

√
2d log(2/δ))/2σ2

)
.

8
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This lemma follows directly as a corollary of a more general statement proved in Lemma 21 that
is needed for the strongly-convex OCO case. Via this bound, and combining Theorem 6 and Theo-
rem 4, we get the following result via straightforward calculations:

Theorem 8 (DP OCO) For any given ε ≤ 1, δ ∈ (0, 1/2] and any T ≥ 12 log(1/δ), set

η = min

(
D

2G
√
T
,

√
ε

103T 5/12β
√
d
√
log(T/δ)

,
ε

103T 1/3βd
√

log(T/δ)

)
,

σ = max

(
G
√
T√
d

,
103GT 1/3

√
d log(120T/δ)

ε

)
and other parameters as in Theorem 6. Then we get that Algorithm 1 is (ε, δ) differentially private
and additionally satisfies

RT ≤ Õ

(
GD

√
T +

(GD + βD2(max(βD/G, 1)))dT 1/3 log(T/δ)

ε

)
.

Similarly, for Lazy OCO, using Theorem 4 and Lemma 5, we get the following result:

Theorem 9 (Lazy OCO) For any T ≥ 3 and any given bound S ≤ T on the number of switches,

set δ = 2/T 2, σ =
12GT

√
d log(T )

S , ν = N (0, σ2I), Φ = exp

(
ηβd+

G2+4Gσ
√

d log(T )

2σ2

)
, p = 0,

η = min
(

D
2G

√
T
, S
6βdT

)
, and B = ∞ in Algorithm 1. Then for any sequence of obliviously chosen

G-Lipschitz β-smooth convex loss functions l1:T , Algorithm 1 satisfies the following:

RT ≤ 2GD
√
T +

dT

S

(
3βD2 + 12GD

√
log(T )

)
+ 14GD and E[ST ] ≤ S.

Proof We begin by first bounding the number of switches using Lemma 5. We get that

E[ST ] ≤ p̃T ≤ (1−Φ−2)T ≤ 2 log(Φ)T ≤ 2T

ηβd︸︷︷︸
≤ S

6T

+
G2

2σ2︸︷︷︸
= S2

72T2
√
d log2(T )

≤ S
72T

+
4Gσ

√
d log(T )

2σ2︸ ︷︷ ︸
≤ S

6T

 ≤ S

The regret calculation is straightforward.

3.2. Bounds for Generalized Linear Models

In this section, we provide improved bounds in terms of the dependence on dimension for Gener-
alized Linear Models (GLMs). The specific setting we consider is the following: the loss function
lt(x) = f(⟨vt, x⟩) where f : [−D,D] → R is a G-Lipschitz and β-smooth convex function
and vt a vector satisfying ∥vt∥ ≤ 1 that is chosen by an (oblivious) adversary. Since ∇lt(x) =
f ′(⟨vt, x⟩)vt, we conclude that lt is G-Lipschitz, as in the rest of this paper. Similarly, since
∇2lt(x) = f ′(⟨vt, x⟩)vtv⊤t , we conclude that lt is β-smooth. In order to apply the general re-
sults to GLMs, we need to do is compute Φ. This bound is given by the following lemma, which is
a direct corollary of Lemma 24 proved in Appendix C:

9



AGARWAL KALE SINGH THAKURTA

Lemma 10 Let l, l′ : K → R be convex twice-differentiable functions such that for all x ∈ K,
l(x) − l′(x) = sf(⟨v, x⟩) for some ∥v∥ ≤ 1, s ∈ {−1, 1} and f : [−D,D] → R is a G-Lipschitz
and β-smooth convex function. Given σ > 0, let µ, µ′ be the probability density functions of x⋆(l, Z)
and x⋆(l′, Z) respectively when Z ∼ N (0, σ2I). Then for any δ ∈ (0, 1], we have that µ and µ′ are
(Φ, δ) close where

Φ = exp
(
ηβ + (G2 + 2Gσ

√
2 log(2/δ))/2σ2

)
.

The main improvement we have in the above bound compared to Lemma 7 is an improvement of√
d (suggested to us by Kifer et al. (2023)) in the terms scaling with 1/σ above which lead to

the following improved results which we achieve via straightforward calculations using the above
bound, and combining Theorem 6 and Theorem 4.

Theorem 11 (DP OCO - GLM) For any given ε ≤ 1, δ ∈ (0, 1/2] and any T ≥ 12 log(1/δ), set

η = min

(
D

2G
√
T
,

√
ε

103T 5/12β
√
log(T/δ)

,
ε

103T 1/3β
√
log(T/δ)

)
,

σ = max

(
G
√
T ,

103GT 1/3
√

log(120T/δ)

ε

)
and other parameters as in Theorem 6. Then we get that Algorithm 1, when run on GLM losses, is
(ε, δ) differentially private and additionally satisfies

RT ≤ Õ

(
GD

√
T +

(GD
√
d+ βD2max(βD/G, 1))T 1/3 log(T/δ)

ε

)
.

For Lazy OCO, via similar calculations as in the proof of Theorem 9 using Theorem 4 and Lemma 5,
we immediately get the following result:

Theorem 12 (Lazy OCO - GLM) For any T ≥ 3 and any given bound S ≤ T on the number of

switches, set δ = 2/T 2, σ =
12GT

√
log(T )

S , ν = N (0, σ2I), Φ = exp

(
ηβ +

G2+4Gσ
√

log(T )

2σ2

)
,

p = 0, η = min
(

D
2G

√
T
, S
6βT

)
, and B = ∞ in Algorithm 1.Then for any sequence of obliviously

chosen G-Lipschitz β-smooth GLM functions l1:T , Algorithm 1 satisfies the following:

RT ≤ 2DG
√
T +

T

S

(
3βD2 + 12GD

√
log(T )

)
+ 14GD and E[ST ] ≤ S.

3.3. Lazy OCO Bounds for Lipschitz, Smooth and Strongly-Convex loss functions

In this section, we provide improved Lazy OCO bounds for strongly-convex loss functions. Specif-
ically, we assume that the loss functions lt are G-Lipschitz, β-smooth, and λ-strongly-convex for
all t ∈ [T ]. Recall that a function l : K → R is λ-strongly-convex if for all x, y ∈ K, we have
l(y) ≥ l(x) + [∇l(x)]⊤(y − x) + λ

2∥y − x∥2.
To obtain the bound, we employ a technique due to Sherman and Koren (2021) where the

sampling distributions for the noise are changed in each round t. The exact algorithm is given in
the appendix in Algorithm 2. The changing noise distributions, denoted νt in round t, necessitates
changing values of Φt in the different rounds as well. We have the following bound (proved in
Appendix E) for Lazy OCO with strongly-convex loss funtions:

10
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Theorem 13 (Lazy OCO - Strongly-Convex) For any T ≥ 3 and any given bound on the number

of switches S ≥
(
4βd
λ + 16d log(T )

)
log(T ), set δ = 2/T 2 and σ =

16G
√

dT log(T )

S . For all t ≥ 0,

set σt = σ
√
t, νt = N (0, σ2

t I),

Φt =
βd

λt
+

4d log(T )

t
+ d log

(√
t+ 1√
t

)
+

G2

2σ2t
+

2G
√

d log(T )

σ

√
t+ 1

t
,

and η = ∞ in Algorithm 2. Then for any sequence of obliviously chosen G-Lipschitz β-smooth
λ-strongly convex functions l1:T , Algorithm 2 satisfies the following:

RT ≤ 2G2(1 + log(T ))

λ
+

512d2 log(T )(1 + log(T ))

λ
· T

S2
+ 14GD and E[ST ] ≤ S.

4. Differentially Private Online Lipschitz Optimization in 1 or 2 dimensions

We consider Differentially Private Online Lipschitz Optimization in 1 or 2 dimensions in this sec-
tion. In this problem, the domain K is a closed convex subset of Rd with d ∈ {1, 2}, with diameter
at most D. The loss functions l : K → R are assumed to be G-Lipschitz (but not necessarily
convex). The main result in this section is the following:

Theorem 14 There is an (ε, δ)-differentially private algorithm for the problem of online Lipschitz
optimization in d = 1 or d = 2 dimensions whose expected regret is bounded by

O

(
GD

√
T log(T ) +

GD log2(T )
√
Cd log(1/δ)

ε

)
,

where C1 = 1 and C2 = O(log(T )).

The main idea behind this result is to discretize the loss function on a carefully chosen net, and
then maintain a running sum of function evaluations at each of these net points using the tree-
aggregation mechanism (Chan et al., 2011; Dwork et al., 2010). Essentially, we maintain a running
sum of the functional approximation of the original loss function. The net contains O(T d) points
and so is not very efficient (even for d = 1 or 2); however the technique works with non-convex
(but Lipschitz) losses. Unfortunately, the idea does not extend to higher dimensions greater than
2 — the constructure here bound suffers from the curse of dimensionality and the regret scales
exponentially in d. Technically, the result follows from a reduction of the problem to an online
learning with experts problem for which the algorithm of Agarwal and Singh (2017) can be applied.
The reduction can be abstracted to a more general setting which may be useful in other contexts,
and we describe it here.

Detour into Differentially Private Online Learning with Experts. Consider an online learning
with experts problem with a set of experts K. The loss functions l : K → R are drawn from a class
of loss functions L. With some abuse of notation, also use l ∈ R|K| to denote the vector of losses
indexed by K, given by the function l : K → R. For this problem, Agarwal and Singh (2017) give
an (ε, δ)-differentially private online learning with experts algorithm using the standard entropy

11
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regularizer. Theorem 3.1 in (Agarwal and Singh, 2017) gives the following result when specialized
to the online learning with experts problem:4

Theorem 15 (Theorem 3.1 in Agarwal and Singh (2017), restated) There is an (ε, δ)-differentially
private online learning algorithm with experts in K and losses in L with expected regret bounded
by

O
(√

T log(|K|) + σ
√
log(|K|)

)
, where σ = max

l∈L
{∥l∥} ·

log(T )
√

log(1/δ)

ε
.

In the above result, the σ
√
log(|K|) term is the only one that arises due to noise added in the algo-

rithm to preserve privacy; the first term appears in standard regret bounds without privacy require-
ments. In certain cases, such as the problem of differentially private online Lipschitz optimization
in 1 or 2 dimensions, the following trick to reduce σ becomes useful. Call a matrix M ∈ Rd×d

invertible on L if there is a matrix M † such that M †Ml = l for all l ∈ L; we will call M † a
pseudoinverse of M . The following lemma (proved in Appendix F) describes the trick:

Lemma 16 Let M ∈ Rd×d be any matrix that is invertible on L with pseudoinverse M †. In Theo-
rem 15, σ can be replaced by

σ′ = ∥M †∥2→∞ ·max
l∈L

{∥Ml∥} ·
log(T )

√
log(1/δ)

ε
.

Thus, for particular applications of interest, one may be able to get better bounds by searching for a
suitable matrix M that is invertible on L.
Proof (Of Theorem 14) We make a few normalizations that do not affect the problem. First,
by shifting K, we may assume that K ⊆ [0, D]d. Next, we extend l to all of [0, D]d by setting
l(x) = lt(Π(x)), where Π(x) is the projection of x on K. This extension remains G-Lipschitz: for
any x, x′ ∈ [0, D]d, we have

|l(x)− l(x′)| = |l(Π(x))− l(Π(x′))| ≤ G∥Π(x)−Π(x′)∥ ≤ G∥x− x′∥.

Thus, we may now assume that the learner can play points in [0, D]d instead of K: whenever the
learner wants to play x, we can instead play Π(x) for the exact same loss. Hence, we may simply
assume K = [0, D]d henceforth. Finally, by shifting l appropriately, we may assume that l(0) = 0
without affecting regret.

Let k := ⌈log2(T )⌉. Let G ⊂ K be the set of points in K whose coordinates can be written
as t

2k
D for some t ∈ {0, 1, . . . , 2k}. We now reduce the differentially-private online Lipschitz

optimization (DP-OLO) problem to a differentially-private online learning with experts problem
over |G| ≤ (2T )d experts identified with the points in G, where the loss of expert x ∈ G in round
t equals lt(x). It is easy to see that the total loss of the best expert in the experts problem, over all
T rounds, is at most O(GD) higher than the loss of the best point in K in the DP-OLO problem;
hence the regret of any algorithm for the experts problem is at most O(GD) less than the regret of
the same algorithm for the DP-OLO problem.

4. While the result in Agarwal and Singh (2017) is stated for pure ε-differential privacy, the same analysis yields the
statement given in Theorem 15 using Gaussian instead of Laplacian noise.

12
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We can now apply the Agarwal and Singh (2017) algorithm along with the trick from Lemma 16.
Let L denote the loss vectors arising from G-Lipschitz functions l : K → R with l(0) = 0. We
need to define an appropriate linear transformation of the loss vectors in L. For this, we first define a
mapping p : G → G as follows. For d = 1, we first define p(0) = 0. Then, for any x ∈ G that is non-
zero, let x = a

2b
D be the unique representation of x where a is an odd integer and b ≥ 0 is an integer.

Then p(x) := a−1
2b

D. This construction implies that
∑

x |x − p(x)|2 ≤
∑k

b=0 2
b−1 · D2

4b
≤ D2;

this fact will be useful later on. For d = 2, we again define p(0) = 0. Then, for any x ∈ G that
is non-zero, x can be uniquely written as x = (a1

2b
D, a2

2b
D) where at least one of a1 and a2 is an

odd integer, and b is a non-negative integer. Then define p(x) = (a1−I(a1 is odd)
2b

D, a2−I(a2 is odd)
2b

D).
This construction implies that

∑
x ∥x− p(x)∥2 ≤

∑k
b=0 2

b · 2b · 2D2

4b
≤ 2(k+1)D2. Thus, we have∑

x ∥x − p(x)∥2 ≤ CdD
2 where C1 = 1 and C2 = 2(k + 1). It is also easy to see that for either

d = 1 or d = 2, for any x ∈ G, we have pk(x) = 0, where pk(·) denotes the k-fold application of p.
Now we are ready to define the linear transformation M of the loss vectors. For convenience, we

index the loss vectors with G and interpret loss vectors as functions mapping G to R. Then M maps
the loss function l : G → R to the function M(l) : G → R defined as M(l)(x) := l(x) − l(p(x))
for all x ∈ G. With some abuse of notation, we also use M to denote the matrix corresponding to
the linear transformation M . We note a few desirable properties:

1. M is invertible on L: to reconstruct l(x) from l′ = M(l), the fact that pk(x) = 0 and l(0) = 0
implies that

l(x) = l′(x) + l′(p(x)) + l′(p2(x)) + . . .+ l′(pk−1(x)). (4.1)

2. We have

∥M(l)∥ =

√∑
x∈G

(l(x)− l(p(x)))2 ≤
√∑

x∈G
G2∥x− p(x)∥2 ≤

√
CdGD, (4.2)

where the penultimate inequality follows from the G-Lipschitzness of l.

We can now apply the algorithm from Theorem 15 for online learning with experts using the
entropy regularization. To apply Lemma 16, we need to compute a bound on σ′. Let M † be the
pseudoinverse for M defined by the (4.1). From (4.1), it is evident that

∥M †∥2→∞ =
√
k = O(

√
log(T )). (4.3)

Using (4.2) and (4.3), we conclude that

σ′ ≤ GD
√
Cd log(T ) ·

log(T )
√
log(1/δ)

ε
.

Using Lemma 16 and the fact that log(|G|) = O(log(T )) in Theorem 15, we obtained the claimed
bound.
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Appendix A. Error in Sherman and Koren (2021)

In this section we provide a quick description of the error we discovered in Sherman and Koren
(2021) which provides the previously best known bounds for the Lazy OCO problem. The core
algorithm (Algorithm 2) proposed by Sherman and Koren (2021) couples the distribution of the
noise employed at the next step via the LazySample procedure they describe. In particular in Line
6 of Algorithm 2 the next perturbation is chosen as

pt+1 = LazySample(pt −∇ft(wt),N (−∇f(wt), σ
2
t ),N (0, σ2

t+1))).

One of the core requirements of the guarantee(Lemma 1) provided for the LazySample procedure
(Algorithm 1, (Sherman and Koren, 2021)) is that the first argument (pt − ∇ft(wt)) above should
be drawn from the distribution supplied in the second argument (N (−∇f(wt), σ

2
t )). However as

set in the paper wt actually depends on pt (in a potentially complicated manner) as

wt = argmin(

t−1∑
i=1

fi(w) + p⊤t w +R(w)).

This correlation however breaks the requirement of LazySample as it is no longer clear that pt −
∇ft(wt) is distributed as N (−∇f(wt, σ

2
t )). We note that this error was acknowledged by the au-

thors in personal communication (and subsequently noted in a revision Sherman and Koren (2023)),
and they acknowledged that they do not know of simple fix to the algorithm to make it correct.
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Appendix B. Useful Results

In this section, we recall some standard results in differential privacy and online learning. The
first of these standard results is the adaptive strong composition lemma for differentially private
mechanisms.

Lemma 17 (e.g. Whitehouse et al. (2022)) Let At : Lt−1 × Kt−1 → K be a t-indexed family of
(εt, δt)-differentially private algorithms, i.e. for every t, for any pair of sequences of loss functions
l1:t−1, l

′
1:t−1 ∈ Lt−1 differing in at most one index in [t− 1], and any x1:t−1 ∈ Kt−1, it holds that

PAt(xt|l1:t−1, x1:t−1) ≤ eεPAt(xt|l′1:t−1, x1:t−1) + δ.

Define a new t-indexed family Bt : Lt−1 → Kt recursively starting with B1 = A1 as

Bt(l1:t−1) = Bt−1(l1:t−2) ◦ At(l1:t−1,Bt−1(l1:t−2)).

Then for any δ′′ > 0, BT is (ε′, δ′)-differentially private, where

ε′ =
3

2

T∑
t=1

ε2t +

√√√√6
T∑
t=1

ε2t log
1

δ′′
, δ′ = δ′′ +

T∑
t=1

δt.

Next, we state the follow-the-leader be-the-leader lemma that is helpful in bounding the regret
of an online learner as a sum of stability-related and regularization-related terms.

Lemma 18 (FTL-BTL Hazan (2016)) For any loss function sequence l0:T , define

yt = argmin
x∈K

{
t−1∑
i=0

li(x)

}
.

Then, for any x ∈ K, we have
T∑
t=0

lt(yt+1) ≤
T∑
t=0

lt(x).

Appendix C. Analysis of Algorithm 1

For notational convenience, define Π : R → [ 1
Φ2 , 1] as Π(x) = min{1,max{ 1

Φ2 , x)}}. Also define
ζt ≜ I(St = 0 or S′

t = 0).
We restate and prove Lemma 5 first:

Lemma 19 (Switching bound) For any p ∈ [0, 1] and any Φ ≥ 0, setting p̃ = p + 1 − Φ−2, we
have that the number of switches is bounded in the following manner,

E [ST ] ≤ p̃T, Pr [ST ≥ 3p̃T ] ≤ e−p̃T .
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Proof Since St ∼ Ber
(
Π
(
µt+1(xt)
Φµt(xt)

))
, we have Pr[St = 0] ≤ 1− Φ−2. From the definition of ζt,

we have

E[ζt] = Pr(S′
t = 0) + (1− Pr(S′

t = 0)) · Pr(St = 0) ≤ p+ (1− p) · (1− Φ−2) ≤ p̃. (C.1)

Thus, the random variable ST =
∑T

t=1 ζt is stochastically dominated by the sum of T Bernoulli
random variables with parameter p̃. Hence, E[ST ] ≤ p̃T and the Chernoff bound5 implies

Pr [ST ≥ 3p̃T ] ≤ e−p̃T .

The following key lemma obtains bounds on the actual distribution that xt is sampled from in
terms of µt:

Lemma 20 (Distribution drift) Given δ ∈ [0, 12 ] and Φ ≥ 1, suppose that for all t ∈ [T ], the
distributions µt, µt+1 are (Φ, δ)-close. If qt is the marginal distribution induced by Algorithm 1 on
its iterates xt, then we have that

• If B = ∞, then for all t, ∥qt − µt∥TV ≤ 3δ(t− 1).

• If B = 3p̃T , then we have

∥qt − µt∥TV ≤ e−p̃T + 3δ(t− 1).

Proof We first consider the B = ∞ case. We prove that ∥qt − µt∥TV ≤ 3δ(t − 1) by induction
on t. For t = 1, the claim is trivially true. So assume it is true for some t and now we prove it for
t + 1. Let M = {x ∈ K | Φ−1 ≤ µt+1(x)

µt(x)
≤ Φ}. Then by Definition 3, we have µt(M) ≥ 1 − δ

and µt+1(M) ≥ 1− δ. Next, let µ̃t be the distribution of X ∼ µt conditioned on the event X ∈ M .
Since µt(M) ≥ 1− δ, it is easy to see that ∥µt − µ̃t∥TV ≤ δ. Let q̃t+1 be the distribution of xt+1 if
xt were sampled from µ̃t instead of qt. Let E be any measurable subset of K. Using the facts that
for any x ∈ M , we have Π(µt+1(x)

Φµt(x)
) = µt+1(x)

Φµt(x)
, and that µ̃t(x) =

µt(x)
µt(M) , we have

q̃t+1(E) =

∫
x∈E

(
Pr(S′

t = 0|xt = x) Pr(xt+1 ∈ E|xt = x, S′
t = 0)

+ Pr((S′
t = 1 ∧ St = 0)|xt = x) Pr(xt+1 ∈ E|xt = x, (S′

t = 1 ∧ St = 0))

+ Pr((S′
t = 1 ∧ St = 1)|xt = x) Pr(xt+1 ∈ E|xt = x, (S′

t = 1 ∧ St = 1))

)
µ̃t(x)dx

= pµt+1(E) + (1− p)µt+1(E)

∫
M

(
1− µt+1(x)

Φµt(x)

)(
µt(x)

µt(M)

)
dx

+ (1− p)

∫
E∩M

(
µt+1(x)

Φµt(x)

)(
µt(x)

µt(M)

)
dx

= pµt+1(E) + (1− p)µt+1(E)

(
1− µt+1(M)

Φµt(M)

)
+ (1− p)

µt+1(E ∩M)

Φµt(M)
.

5. The specific bound used is that for independent Bernoulli random variables X1, X2, . . . , XT , if µ = E[
∑T

t=1 Xt],
then for any δ > 0, we have Pr[

∑T
t=1 Xt ≥ (1 + δ)µ] ≤ e−δ2µ/(2+δ).
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Thus,

|q̃t+1(E)− µt+1(E)| = 1− p

Φµt(M)
|µt+1(E)µt+1(M)− µt+1(E ∩M)|

=
1− p

Φµt(M)
|µt+1(E \M)− µt+1(E ∩M)µt+1(M

c)|

≤ δ

1− δ
,

since µt(M) ≥ 1− δ and µt+1(M) ≥ 1− δ. Since δ ≤ 1
2 , we conclude that

∥q̃t+1 − µt+1∥TV ≤ 2δ.

Furthermore, we have

∥qt+1 − q̃t+1∥TV ≤ ∥qt − µ̃t∥TV ≤ ∥qt − µt∥TV + ∥µt − µ̃t∥TV ≤ 3δ(t− 1) + δ,

where the first inequality follows by the data-processing inequality for f-divergences like TV-distance
(note that qt+1 and q̃t+1 are obtained from qt and µ̃t respectively via the same data-processing chan-
nel), and the second inequality is due to the induction hypothesis. Thus, we conclude that

∥qt+1 − µt+1∥TV ≤ ∥qt+1 − q̃t+1∥TV + ∥q̃t+1 − µt+1∥TV ≤ 3δ(t− 1) + δ + 2δ = 3δt,

completing the induction.
We now turn to the B = 3p̃T case. Let q′t be the distribution of xt if B = ∞. We now relate q′t

and qt. We start by defining qall as the probability distributions over all possible random variables,
i.e. S1:T , S

′
1:T , Z1:T , x1:T , sampled by Algorithm 1. Similarly, let q′all be the analogue for the infinite

switching budget variant. Let E be the event that
∑T

t=1 ζt ≥ 3p̃T . Note that Lemma 5 implies that
both qall(E), q′all(E) ≤ e−p̃T . Therefore we have that,

∥qall − q′all∥TV = sup
measurable A

(
qall(A)− q′all(A)

)
= sup

measurable A

qall(A ∩ E)− q′all(A ∩ E) + qall(A ∩ ¬E)− q′all(A ∩ ¬E)︸ ︷︷ ︸
=0


= sup

measurable A

(
qall(A ∩ E)− q′all(A ∩ E)

)
≤ e−p̃T

Now, for any t, since qt, q
′
t are marginals of qall, q

′
all respectively, we have

∥qt − q′t∥TV ≤ ∥qall − q′all∥TV ≤ e−p̃T .

Since we have ∥µt − q′t∥TV ≤ 3δ(t − 1) by the B = ∞ analysis, the proof is complete by the
triangle inequality.

Next, we prove a general result on (Φ, δ)-closeness of distributions when the sampled noise is
Gaussian:
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Lemma 21 (Density ratio) Let l, l′ : K → R be convex twice-differentiable functions such that l−
l′ is G-Lipschitz and β-smooth. Let l, l′ be Λ-strongly convex for some Λ > 0. Given any 2 positive
numbers σ and σ′, let µ, µ′ be the probability density functions of x(l, Z) ≜ argminx∈K l(x) +
B(x)+Z⊤x and x(l′, Z ′) ≜ argminx∈K l′(x)+B(x)+ (Z ′)⊤x respectively when Z ∼ N (0, σ2I)
and Z ′ ∼ N (0, (σ′)2I). Then for any δ ∈ (0, 1], we have that µ and µ′ are (Φ, δ) close where

Φ = exp

(
βd

Λ
+max

{
G2 + 2Gσ

√
2d log(2/δ)

2(σ′)2
+ 2d log(2/δ)

(
|σ2 − (σ′)2|

(σ′)2

)
+ d log(σ′/σ),

G2 + 2Gσ′√2d log(2/δ)

2(σ)2
+ 2d log(2/δ)

(
|σ2 − (σ′)2|

(σ)2

)
+ d log(σ/σ′)

})
Proof We begin first by proving the direction

Pr
X∼µ

[
1

Φ
≤ µ(X)

µ′(X)
≤ Φ

]
≥ 1− δ

and reverse direction follows easily by switching the roles of µ, µ′ through the analysis.
For the purpose of this proof, with some abuse of notation, we define J = l+B and J ′ = l′+B.

By Lemma 2, we have

µ(x) = ν(−∇J (x)) · | det(−∇2J (x))| and µ′(x) = ν ′(−∇J ′(x)) · | det(−∇2J ′(x))|.

Therefore we have
µ(x)

µ′(x)
=

ν(−∇J (x))

ν ′(−∇J ′(x))︸ ︷︷ ︸
A

· | det(−∇2J (x))|
|det(−∇2J ′(x))|︸ ︷︷ ︸

B

.

The lemma is proved by bounding the A and B terms above separately. First, we bound B: Note
that ∇2J ′(x) = ∇2l′(x) + ∇2B(x) ⪰ ΛI , and ∇2J (x) − ∇2J ′(x) = ∇2(l − l′)(x), and since
l − l′ is β-smooth, we conclude that ∥∇2J (x) − ∇2J ′(x)∥ ≤ β, where the norm is the spectral
norm. Thus, if λ1 ≥ λ2 ≥ · · · ≥ λd are the eigenvalues of ∇2J (x) arranged in non-increasing
order, λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

d are the eigenvalues of ∇2J ′(x),then we have that |
∑

i λi −
∑

i λ
′
i| =

|Tr(∇2J (x))− Tr(∇2J ′(x))| ≤ βd and λ′
i ≥ λ for all i ∈ [d]. Thus, we have

B =

d∏
i=1

λi

λ′
i

=

d∏
i=1

(1+(λi−λ′
i)/λ

′
i) ≤

d∏
i=1

(1+(λi−λ′
i)/Λ) ≤ exp((

∑
i λi−

∑
i λ

′
i)/Λ) ≤ exp(βd/Λ).

The same argument above, applied to 1
B , implies that B ≥ exp(−βd/Λ). We now turn to term A.

In this case, to sample X ∼ µ, we first sample Z ∼ N (0, σ2I) and set X = x(l, Z). Note that X =
x(l, Z) implies that Z = −∇J (X). This further implies that −∇J ′(X) = Z +∇l(X)−∇l′(X).
We define v to be ∇l(X) − ∇l′(X) for the rest of the proof. Via standard tail bounds on norm
of a Gaussian random vector, Pr[∥Z∥2 ≤ σ

√
2d log(2/δ)] ≥ 1 − δ (Boucheron et al., 2013). We

condition on this event for the rest of the proof.

A =

(
σ′

σ

)d

· exp(−∥Z∥2/2σ2)

exp(−∥Z + v∥2/2(σ′)2)
=

(
σ′

σ

)d

· exp
(
∥v∥2 + 2v⊤Z

2(σ′)2
+ ∥Z∥2

(
σ2 − (σ′)2

(σ′)2σ2

))
≤
(
σ′

σ

)d

· exp

(
G2 + 2Gσ

√
2d log(2/δ)

2(σ′)2
+ 2d log(2/δ)

(
|σ2 − (σ′)2|

(σ′)2

))
.
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One can similarly show that

A ≥
(
σ′

σ

)d

· exp

(
−
2Gσ

√
2d log(2/δ)

2(σ′)2
− 2d log(2/δ)

(
|σ2 − (σ′)2|

(σ′)2

))
.

Putting all these bounds together, the proof of the lemma is complete.

Finally, we restate and prove Theorem 4 here:

Theorem 4 (Regret bound for CTRL) In Algorithm 1, fix any η, σ > 0, any δ ∈ [0, 1/2], any
p ∈ [0, 1], set ν = N (0, σ2I) and choose Φ such that for all t the distributions µt, µt+1 are (Φ, δ)-
close. For any sequence of obliviously chosen G-Lipschitz, β-smooth convex loss functions l1:T , the
following hold:

• If B = ∞,

RT ≤ D2

2η
+ 2G2ηT + σ

√
dD + 6GDδT 2 + 2GD.

• Let p̃ = p+ 1− Φ−2. If B = 3p̃T ,

RT ≤ D2

2η
+ 2G2ηT + σ

√
dD + 2GDT (e−p̃T + 3δT ) + 2GD.

Proof Let Z ∼ ν be an independently chosen random variable. Given Z, define a sequence of
points y1:T as yt ≜ x⋆(l1:t−1, Z). Recall that we defined µt to be the distribution of x⋆(l1:t−1, Z).
Let qt be the distribution induced by Algorithm 1 on its iterates xt. Lemma 20 establishes that
the sequence of iterates xt played by Algorithm 1 follows µt approximately. In the following we
only prove the case when B = 3p̃T , the B = ∞ can easily be derived by using the bounds from
Lemma 20 appropriately. We leverage the following lemma,

Lemma 23 (Levin and Peres (2017)) For a pair of probability distributions µ, ν, each supported
on K, we have for any function f : K → R that

|Ex∼µf(x)− Ex∼νf(x)| ≤ 2∥µ− ν∥TV max
x∈K

|f(x)|.

We can now apply Lemma 23 to pair xt ∼ qt and yt ∼ µt, using Lemma 20, and functions
l̄t(x) = lt(x)− lt(x̄), where x̄ ∈ K is chosen arbitrarily, to arrive at∣∣∣∣∣E
[

T∑
t=1

(lt(xt)− lt(yt))

]∣∣∣∣∣ ≤
T∑
t=1

|E [lt(xt)− lt(yt)]| ≤
T∑
t=1

∣∣E [l̄t(xt)− l̄t(yt)
]∣∣ ≤ 2GDT

(
e−p̃T + 3δT

)
,

(C.2)
where we use that maxtmaxx∈K |lt(x) − lt(x̄)| ≤ Gmaxtmaxx∈K ∥x − x̄∥ ≤ GD. Therefore
hereafter we only focus on showing the expected regret bound for the sequence yt.

Before proceeding to prove the regret bound, note that for an arbitrary point x ∈ K, there exists
a point x◦ ∈ K◦ (by the definition of the Minkowski set K◦) such that ∥x◦ − x∥ ≤ D

T and therefore

l1:T (x
◦) ≤ l1:T (x) +GD. (C.3)
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As a consequence of the above display, hereafter we will only focus on proving a regret bound
against an arbitrary point x◦ ∈ K◦, with the bargain that we suffer an extra GD term in the true
regret. Define l0(x) =

∥x∥2
2η + B(x) + Z⊤x. Now, by Lemma 18, we deterministically have that

T∑
t=0

(lt(yt+1)− lt(x
◦)) ≤ 0.

Therefore, it holds that
T∑
t=1

(lt(yt)− lt(x
◦)) =

T∑
t=1

(lt(yt)− lt(yt+1)) +
T∑
t=0

(lt(yt+1)− lt(x
◦)) + l0(x

◦)− l0(y1)

≤
T∑
t=1

(lt(yt)− lt(yt+1)) + l0(x
◦)− l0(y1)

The second term may be bounded in expectation as

E[l0(x◦)− l0(y1)] = E
[
Z⊤(x◦ − y1)

]
+

1

2η
∥x◦∥2 + B(x◦)− 1

2η
∥y1∥2 − B(y1)

≤ DE[∥Z∥] + D2

2η
+GD

≤ σ
√
dD +

D2

2η
+GD,

where in the last equality we appeal to that fact that B(x◦) ≤ GD since x◦ ∈ K◦. For bounding
the first term, recall the definition Jt(l, x) = l(x) + ∥x∥2

2η + B(x). For all t ∈ [T ], define J̃t : K →
R ∪ {+∞} as

J̃t(x) = J (l1:t−1, x) + Z⊤x.

Note that since yt minimizes J̃t over K, for any x ∈ K we have
〈
∇J̃t(yt), x− yt

〉
≥ 0. Since

Jt(x) is 1
η -strongly-convex, we have

J̃t+1(yt+1) ≥ J̃t+1(yt) + ⟨∇J̃t+1(yt), yt+1 − yt⟩+
1

2η
∥yt − yt+1∥2

≥ J̃t+1(yt) + ⟨∇J̃t(yt), yt+1 − yt⟩︸ ︷︷ ︸
≥0

+⟨∇lt(yt), yt+1 − yt⟩+
1

2η
∥yt − yt+1∥2

≥ J̃t+1(yt)− ∥∇lt(yt)∥∥yt+1 − yt∥+
1

2η
∥yt − yt+1∥2,

where the last step follows from the Cauchy-Schwarz inequality. Since yt+1 minimizes J̃t+1 over
K, the inequality above implies that

∥yt − yt+1∥ ≤ 2η∥∇lt(yt)∥ ≤ 2ηG.

To conclude the claim, it is sufficient to observe that lt(yt) − lt(yt+1) ≤ G∥yt − yt+1∥ ≤ 2ηG2.
The statements established above along with (C.3) imply that for any x ∈ K

E

[
T∑
t=1

lt(yt)−
T∑
t=1

lt(x)

]
≤ D2

2η
+ 2G2ηT + σ

√
dD + 2GD. (C.4)
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Combining the above with (C.2) completes the proof of the theorem for B = 3p̃T . The proof
for B = ∞ follows by repeating the argument for that case.

C.1. Density Ratio for GLMs

The following lemma proves a stronger bound (in terms of d) than Lemma 21 specifically for the
GLM case. This lemma immediately implies Lemma 10:

Lemma 24 Let l, l′ : K → R be Λ-strongly convex twice-differentiable functions such that for all
x ∈ K, l(x) − l′(x) = sf(⟨v, x⟩) for some ∥v∥ ≤ 1, s ∈ {−1, 1} and f : [−D,D] → R is a G-
Lipschitz and β-smooth convex function. Given σ > 0, let µ, µ′ be the probability density functions
of x(l, Z) ≜ argminx∈K l(x) + B(x) + Z⊤x and x(l′, Z) ≜ argminx∈K l′(x) + B(x) + Z⊤x
respectively when Z ∼ N (0, σ2I). Then for any δ ∈ (0, 1], we have that µ and µ′ are (Φ, δ) close
where

Φ = exp
(
Λβ + (G2 + 2Gσ

√
2 log(2/δ))/2σ2

)
.

Proof Following the proof of Lemma 21, we note that for any x ∈ int(K), we have

µ(x)

µ′(x)
=

ν(−∇J (x))

ν(−∇J ′(x))︸ ︷︷ ︸
A

· |det(−∇2J (x))|
| det(−∇2J ′(x))|︸ ︷︷ ︸

B

.

First, we bound B, as in Lemma 21. Note that ∇2J ′(x) = ∇2l′(x) ⪰ ΛI , and ∇2J (x) −
∇2J ′(x) = ∇2(l − l′)(x) = sf ′′(⟨v, x⟩)vv⊤, and since f ′′(·) ≤ β and ∥v∥ ≤ 1, we conclude that
|Tr(∇2J (x)−J ′(x))| ≤ β. Thus, if λ1 ≥ λ2 ≥ · · · ≥ λd are the eigenvalues of ∇2J (x) arranged
in non-increasing order, λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

d are the eigenvalues of ∇2J ′(x), then we have that
|
∑

i λi −
∑

i λ
′
i| ≤ |Tr(∇2J (x))− Tr(∇2J ′(x))| ≤ β and λ′

i ≥ Λ for all i ∈ [d]. Thus, we have

B =
d∏

i=1

λi

λ′
i

=
d∏

i=1

(1+(λi−λ′
i)/λ

′
i) ≤

d∏
i=1

(1+(λi−λ′
i)/Λ) ≤ exp((

∑
i λi−

∑
i λ

′
i)/Λ) ≤ exp(β/Λ).

The same argument above, applied to 1
B , implies that B ≥ exp(−β/Λ).

We now turn to term A. In this case, to sample X ∼ µ, we first sample Z ∼ N (0, σ2I) and
set X = x(l, Z). Note that X = x(l, Z) implies that Z = −∇J (X). This further implies that
−∇J ′(X) = Z −∇X (sf(⟨v,X⟩)) = Z − sf ′(⟨v,X⟩)v. We have

A =
exp(−∥Z∥2/2σ2)

exp(−∥Z + sf ′(⟨v,X⟩)v∥2/2σ2)
= exp((∥sf ′(⟨v,X⟩)v∥2 + 2⟨sf ′(⟨v,X⟩)v, Z⟩)/2σ2).

Note that ∥sf ′(⟨v,X⟩)v∥ ≤ G. Further, we have

|⟨sf ′(⟨v,X⟩)v, Z⟩)| ≤ |⟨sf ′(⟨v,X⟩)||⟨v, Z⟩| ≤ G|⟨v, Z⟩|.

Note that ⟨v, Z⟩ is a Gaussian distributed as N (0, ∥v∥2σ2I). Hence, with probability at least 1− δ,
we have |⟨v, Z⟩| ≤ ∥v∥σ

√
2 log(2/δ) ≤ σ

√
2 log(2/δ). Putting all these bounds together, the

proof of the lemma is complete.
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Appendix D. Privacy Analysis

For brevity of notation, we say two random variables X,Y supported on some set Ω are (ε, δ)-
indistinguishable if for any outcome set O ⊆ Ω, we have that

Pr(X ∈ O) ≤ eε Pr(Y ∈ O) + δ.

We restate and prove Theorem 6:

Theorem 6 (Privacy) Given σ > 0 and δ ∈ (0, 1/2], for any T ≥ 12 log(1/δ), let δ′ = δT−2

60 ,
G′ = 3G, and β′ = 2β. Suppose there exists Φ′ > 0 such that for all convex functions l, l′

where l− l′ is G′-Lipschitz and β′-smooth, we have that, the distributions of x⋆(l, Z) and x⋆(l′, Z)
respectively when Z ∼ N (0, σ2I), are (Φ′, δ′)-close. Define

ε′ = 7 log2(Φ)T 2/3 + 2 log3(Φ)T + (2G2/σ2 + 2η2β2d)2T 5/3.

Then for any sequence of G-Lipschitz, β-smooth convex functions, Algorithm 1 when run with Φ =
Φ′2, p = T−1/3 and B = 3p̃T is (ε, δ + 3Te−(1−Φ−2)T )-differentially private where

ε = 3/2ε′ +
√
6ε′
√
log(2/δ).

Proof Consider any two t-indexed loss sequences l1:T , l′1:T ∈ LT that differ at not more than one
index t0 ∈ [T ], i.e. it is the case that lt(x) = l′t(x) holds for all x ∈ K and t ∈ T −{t0}. For ease of
argumentation we will show differential privacy for the outputs xt of the algorithm along with the
internal variables ζt which are defined for any t in the algorithm as

ζt ≜ I{S′
t = 0 or St = 0}.

To establish privacy, let {(xt, ζt)}Tt=1 and {(x′t, ζ ′t)}Tt=1 be the instantiations of the random vari-
ables determined by Algorithm 1 upon execution on l1:T and l′1:T , respectively. For brevity of
notation, we will denote by Σt the random variable {xτ , ζτ}tτ=1. We denote by Σt all possible
values Σt can take. We now show the following claim,

Claim 26 Let δ′ ≥ 0 and Φ be as defined in Theorem 6. Then for any t ∈ [T ] the random
variable pairs (xt, ζt) and (x′t, ζ

′
t) are (εt, δt)-indistinguishable when conditioned on Σt−1, i.e.

when conditioned on identical values of random choices made by the algorithm before (but not
including) round t, where δt = 4δ′ + 9δ′T + 3e−p̃T and

εt =


0, t < t0

I∑t−1
s=1 ζs<B · 2 log(Φ)/p, t = t0

I∑t−1
s=1 ζs<B

(
ζt−1 log(Φ) +

2G2/σ2+2η2β2d
p

)
t > t0

(D.1)

The proof of the above claim appears after the present proof.
We intend to use adaptive strong composition for differential privacy (Lemma 17) with Claim 26

and to that end consider the following calculations

T∑
t=1

ε2t ≤
4 log2(Φ)

p2
+B log2(Φ) +

(2G2/σ2 + 2η2β2d)2

p2
T

≤ 4 log2(Φ)T 2/3 + (3T 2/3 + 2 log(Φ)T ) log2(Φ) + (2G2/σ2 + 2η2β2d)2T 5/3

≤ 7 log2(Φ)T 2/3 + 2 log3(Φ)T + (2G2/σ2 + 2η2β2d)2T 5/3
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T∑
t=1

δt = 4δ′T + 9T 2δ′ + 3Te−p̃T ≤ δ

6
+ 3Te−pT + 3Te−(1−Φ−2)T

≤ δ

3
+ 3Te−(1−Φ−2)T

Using the above calculations and applying Lemma 17 with δ′ = δ/2 (in Lemma 17) concludes the
proof.

Proof [Of Claim 26] We begin by defining a subset Et ∈ K for all t as

Et =
{
x ∈ K

∣∣∣∣ (µt+1(x)

Φµt(x)
∈
[
1

Φ2
, 1

])
∧
(
µ′
t+1(x)

Φµ′
t(x)

∈
[
1

Φ2
, 1

])}
.

The following claim whose proof is presented after the present proof shows that Et occurs with high
probability conditioned on Σt−1 taking any value Σ in its domain.

Claim 27 Let Φ be as defined in Theorem 6, then we have that for all Σ ∈ Σt,

Pr(xt ∈ Et|Σt−1 = Σ) ≥ 1− 3δ′ − 9Tδ′ − 3e−p̃T .

The general recipe we will in the proof is to show that xt, x′t are (εx, δx)-indistinguishable
conditioned on Σt−1 and the event that xt ∈ Et, for some (εx, εy, δx, δy). We will then show that
ζt, ζ

′
t are (εζ , δζ)−indistinguishable after conditioning on Σt−1, xt = x (and x′t = x respectively)

for an arbitrary Et. Then, by standard composition of differential privacy (Dwork and Roth, 2014),
it is implied that (xt, ζt), (x′t, ζ

′
t) are (εx+ εζ , δx+ δζ) indistinguishable when conditioned on Σt−1

and the event that xt ∈ Et. It then follows that the same pair is (εx+εζ , δx+δζ+Pr(xt /∈ Et|Σt−1))
indistinguishable when conditioned on Σt−1.

To execute the above strategy, we will examine the three cases – ante t < t0, at t = t0, and post
t > t0 – separately. Recall that l1:T and l′1:T are loss function sequences that differ only at the index
t0.

Ante Case: t ≤ t0 : Observe that since l1:t0−1 = l′1:t0−1, having not yet encountered a change (at
t = t0) in loss, the algorithm produces identically distributed outputs for the first t0 rounds upon
being fed either loss sequence. Therefore we have that

∀t < t0, (xt, ζt) and (x′t, ζ
′
t) are (0, 0)− indistinguishable (D.2)

For the remaining two cases, we first assume that number of switches so far have not exceeded
B, i.e.

∑t−1
s=1 ζs =

∑t−1
s=1 ζs < B (conditioned on the same history). If not then both algorithms

become deterministic from this point onwards and are (0, 0)-indistinguishable.

At Case: t = t0: For the at case, the last display in the ante case also means that xt0 and x′t0
are identically distributed random variables. Therefore, to conclude the claim for t0, we need to
demonstrate that ζt0 and ζ ′t0 are indistinguishable when also additionally conditioned on xt0 = x′t0 .
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We now observe that for any x ∈ Et0 and any Σ ∈ Σt0−1,

Pr(ζ ′t0 = 1|Σt0−1 = Σ, x′t0 = x)

Pr(ζt0 = 1|Σt0−1 = Σ, xt0 = x)
=

p+ (1− p)

(
1−

µ′
t0+1(x)

Φµ′
t0
(x)

)
p+ (1− p)

(
1− µt0+1(x)

Φµt0(x)

)
︸ ︷︷ ︸

≥0

≤

p+ (1− p)

1−
µ′
t0+1(x)

Φµ′
t0
(x)︸ ︷︷ ︸

≥0


p

≤ 1 +
1

p

(
1−

µ′
t0+1(x)

Φµ′
t0
(x)

)
≤ 1 +

1

p

(
1− Φ−2

)
≤ 1 +

1

p
(1− e−2 log Φ) ≤ 1 +

2 log(Φ)

p
≤ e2 log Φ/p,

using the definition of the set Et0 and that for any real x 1 + x ≤ ex. Similarly, we have for any
x ∈ Et0 ,

Pr(ζ ′t0 = 0|Σt0−1 = Σ, x′t0 = x)

Pr(ζt0 = 0|Σt0−1 = Σ, xt0 = x)
=

(1− p)
µ′
t0+1(x)

Φµ′
t0
(x)

(1− p)
µt0+1(x)

Φµt0 (x)

=
µ′
t0+1(x)

µ′
t0
(x)

µt0(x)

µt0+1(x)
≤ e2 log Φ.

The above displays thereby imply that conditioned on Σt0−1 and the event xt ∈ Et0 , we have that
(xt0 , ζt0) and (x′t0 , ζ

′
t0) are (2 log(Φ)/p, 0)-indistinguishable. Thereby combining with Claim 27 we

get that conditioned on Σt−1

(xt0 , ζt0) and (x′t0 , ζ
′
t0) are (2 log(Φ)/p, 3δ′ + 9Tδ′ + 3e−p̃T )− indistinguishable (D.3)

Post Case: t > t0: Recall that while claiming indistinguishability of appropriate pair of random
variables, we condition on a shared past of Σt−1. In particular, this means that x′t−1 = xt−1 and
that ζt−1 = ζ ′t−1. Now, if ζt−1 = 0, then x′t = x′t−1 = xt−1 = xt. If ζt−1 = 1, the iterates are
sampled as xt ∼ µt and x′t ∼ µ′

t in round t. Once again by applying the condition on Φ as stated in
Theorem 6 we have that xt, x′t are (log Φ, δ′)-indistinguishable.

To conclude the claim and hence the proof, we need to establish the indistinguishability of ζt
and ζ ′t conditioned additionally on the event xt = x′t. Unlike for t = t0, the analysis here for ζ’s is
more involved. To proceed, we first obtain a second-order perturbation result. Using Lemma 2, we
have

µt+1(x)

µt(x)
=

e−∥−∇J (l1:t,x)∥2/2σ2

e−∥−∇J (l1:t−1,x)∥2/2σ2︸ ︷︷ ︸
≜At(x)

|det(−∇2J (l1:t, x)|
| det(−∇2J (l1:t−1, x)|︸ ︷︷ ︸

≜Bt(x)
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We bound At(x) and Bt(x) separately. We now have that

2σ2 logAt(x) = ∥∇J (l1:t−1, x)∥2 − ∥∇J (l1:t, x)∥2

= ∥∇J (l1:t−1, x)∥2 − ∥∇J (l1:t−1, x) +∇lt(x)∥2

= 2⟨∇J (l1:t−1, x),∇lt(x)⟩ − ∥∇lt(x)∥2

logBt(x) = log det(∇2J (l1:t, x))− log det(∇2J (l1:t−1, x))

= log det(∇2J (l1:t−1, x) +∇2lt(x))− log det(∇2J (l1:t−1, x))

≤ ⟨(∇2J (l1:t−1, x))
−1,∇2lt(x)⟩

logBt(x) ≥ ⟨(∇2J (l1:t, x))
−1,∇2lt(x)⟩.

The last two inequalities follow from the concavity of log det(·) and the fact that ∇ log det(X) =
X−1 (Boyd and Vandenberghe, 2004), which implies that for two positive definite symmetric ma-
trices A,B, we have

⟨A−1, A−B⟩ ≤ log det(A)− log det(B)⟩⟨B−1, A−B⟩,

where ⟨A,B⟩ := Tr(A⊤B) denotes the Frobenius inner product. It now follows that

log
µt+1(x)

µt(x)
≤ 2⟨∇J (l1:t−1, x),∇lt(x)⟩+ ∥∇lt(x)∥2

2σ2
+ ⟨(∇2J (l1:t−1, x))

−1,∇2lt(x)⟩,

log
µt+1(x)

µt(x)
≥ 2⟨∇J (l1:t−1, x),∇lt(x)⟩+ ∥∇lt(x)∥2

2σ2
+ ⟨(∇2J (l1:t, x))

−1,∇2lt(x)⟩.

Similarly for µ′, one may establish

log
µ′
t+1(x)

µ′
t(x)

≤
2⟨∇J (l′1:t−1, x),∇l′t(x)⟩+ ∥∇l′t(x)∥2

2σ2
+ ⟨(∇2J (l′1:t−1, x))

−1,∇2l′t(x)⟩,

log
µ′
t+1(x)

µ′
t(x)

≥
2⟨∇J (l′1:t−1, x),∇l′t(x)⟩+ ∥∇l′t(x)∥2

2σ2
+ ⟨(∇2J (l′1:t, x))

−1,∇2l′t(x)⟩.

At this point, note that since t > t0, l′t = lt, and that l1:t−1 − l′1:t−1 = lt0 − l′t0 , we can now bound
the term of interest for privacy for all x.

log

µ′
t+1(x)

Φµ′
t(x)

µt+1(x)
Φµt(x)

≤
2⟨∇J (l′1:t−1)(x)−∇J (l1:t−1)(x),∇lt(x)⟩

2σ2

+ ⟨(∇2J (l′1:t−1)(x))
−1 − (∇2J (l1:t)(x))

−1,∇2lt(x)⟩

=
2⟨∇l′t0(x)−∇lt0(x)),∇lt(x)⟩

2σ2

+ ⟨(∇2J (l′1:t−1)(x))
−1 − (∇2J (l′1:t−1)(x) +∇2lt0(x)−∇2l′t0(x) +∇2lt(x))

−1,∇2lt(x)⟩

≤
2⟨∇l′t0(x)−∇lt0(x)),∇lt(x)⟩

2σ2

+ η2⟨(∇2lt0(x)−∇2l′t0(x) +∇2lt(x)),∇2lt(x)⟩

≤2G2

σ2
+ 2η2β2d,
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where we use that l1:t − l′1:t−1 = lt + lt0 − l′t0 is 2β-smooth, and additionally that for arbitrary
matrices X ≻ 1

η I and Y,∆ ⪰ 0, it is true that

⟨Y,X−1 − (X +∆)−1⟩ ≤ ⟨Y,X−1∆X−1⟩ ≤ η2⟨Y,∆⟩.

The above display immediately gives that for all Σ ∈ Σt−1 and x ∈ Et,

Pr(ζ ′t = 0|Σ′
t−1 = Σ, x′t = x)

Pr(ζt = 0|Σt−1 = Σ, xt = x)
=

(1− p)
µ′
t+1(x)

Φµ′
t(x)

(1− p)µt+1(x)
Φµt(x)

≤ e2G
2/σ2+2η2β2d.

Now, for the remaining possibility, we have

Pr(ζ ′t = 1|Σ′
t−1 = Σ, x′t = x)

Pr(ζt = 1|Σt−1 = Σ, xt = x)
=

p+ (1− p)
(
1− µ′

t+1(x)

Φµ′
t(x)

)
p+ (1− p)

(
1− µt+1(x)

Φµt(x)

)
≤

p+ (1− p)
(
1− µt+1(x)

Φµt(x)
e−2G2/σ2−2η2β2d

)
p+ (1− p)

(
1− µt+1(x)

Φµt(x)

)

≤ 1 +

µt+1(x)

Φµt(x)︸ ︷︷ ︸
≤1

(
1− e−2G2/σ2−2η2β2d

)

p

≤ e
1
p
(2G2/σ2+2η2β2d)

.

The above displays thereby imply that conditioned on Σt−1 and the event xt ∈ Et, we have that
ζt and ζ ′t are ( (2G

2/σ2+2η2β2d)
p , 0)-indistinguishable. Thereby combining with Claim 27 we get that

conditioned on Σt−1

(xt, ζt) and (x′t, ζ
′
t) are

(
ζt−1 log Φ +

2G2/σ2 + 2η2β2d

p
, 4δ′ + 9Tδ′ + 3e−p̃T

)
−indistinguishable

(D.4)
Combining the statements in (D.2), (D.3) and (D.4) finishes the proof.

Proof [Of Claim 27] Let qt be the probability distribution induced on the iterates chosen by Algo-
rithm 1 when run on a loss sequence l1:T . Using the conditions in the theorem and by Lemma 20,
we have that ∥µt − qt∥ ≤ e−p̃T + 3Tδ′ for any t ∈ [T ]. From this, noting that l1:t − l1:t−1 is
G-Lipschitz and β-smooth, we have that for all t,

Pr
X∼qt

[
1√
Φ

≤ µt+1(X)

µt(X)
≤

√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T

Furthermore noting that l1:t−1 − l′1:t−1 is 2G-Lipschitz and 2β-smooth we have that for all t,

Pr
X∼qt

[
1√
Φ

≤ µt(X)

µ′
t(X)

≤
√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T
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Similarly noting that l′1:t − l1:t−1 is 3G-Lipschitz and 2β-smooth we can apply the same argu-
ment to obtain

Pr
X∼qt

[
1√
Φ

≤
µ′
t+1(X)

µt(X)
≤

√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T

The above statements imply the claim.

Appendix E. Improved Analysis for Strongly Convex functions

For strongly convex functions, we need to change Algorithm 1 to use changing noise distributions νt
in different rounds, which also necessitates using changing scaling parameter Φt. The pseudocode
is given in Algorithm 2.

Algorithm 2: Couple-The-Regularized-Leader (CTRL)

Inputs: A sequence of distributions ν0:T on Rd, a regularization parameter η > 0, a barrier
B(x), a sequence of scaling parameters Φt ≥ 0.

Set b1 = 0, sample Z0 ∼ ν0, choose x1 = x⋆(0, Z0).
for t = 1 to T do

Play xt ∈ K.
Observe lt : K → R and suffer a loss of lt(xt).
Sample St ∼ Ber

(
min

{
1,max

{
1
Φ2

t
, µt+1(xt)
Φt·µt(xt)

}})
.

// µt(·), µt+1(·) can be computed incrementally via Lemma 2.
if St = 0 then

Choose xt+1 = x⋆(l1:t, Zt).
end
else

Set xt+1 = xt.
end

end

Since we have changing values of Φt in the different rounds, in analogy with p̃, we define
p̃t := 1−Φ−2

t . In the following analysis, we will use analogs of Lemma 5 and Lemma 20 with p set
to 0 and with the p̃T terms replaced by

∑T
t=1 p̃t . The proofs are identical and are hence omitted.

We can now present the following tighter regret bound for strongly-convex loss functions.

Theorem 28 (Regret bound for CTRL with Strongly-Convex losses) In Algorithm 2, fix any η >
0 and δ ∈ (0, 1/2]. Choose any σ > 0, and for all t ≥ 0 set σt = σ

√
t and νt = N (0, σ2

t I); choose
Φt such that the distributions µt, µt+1 are (Φt, δ)-close. Set η = ∞. Then for any sequence
of obliviously chosen G-Lipschitz, β-smooth, λ-strongly convex loss functions l1:T , the following
hold:

RT ≤ 2(G2 + dσ2)(1 + log(T ))

λ
+ 6GDδT 2 + 2GD.

Proof For the regret bound we follow the argument laid out in Sherman and Koren (2021) in the
strongly convex case. For the purpose of analysis, define an auxiliary sequence of random variables
Z ′
0:T as follows. Set Z ′

0 = 0 deterministically. Then sample Z ′
1 ∼ ν1. Then for all t ≥ 2 set
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Z ′
t = Z ′

1

√
t. Note that marginally for all t ≥ 0, Z ′

t is distributed as νt. Define a sequence of random
variables y1:T as yt ≜ x⋆(l1:t−1, Z

′
t−1). Recall that since we defined µt to be the distribution of

x⋆(l1:t−1, Z) where Z is sampled from νt−1, we have that yt are also marginally distributed as µt.
Let qt be the marginal distribution induced by Algorithm 2 on its iterates xt. Lemma 20 establishes
that the sequence of iterates xt played by Algorithm 2 follows µt approximately. As in the proof of
Theorem 4 we apply Lemma 23 to the the distribution pair xt ∼ qt and yt ∼ µt, using Lemma 20,
and functions l̄t(x) = lt(x)− lt(x̄), where x̄ ∈ K is chosen arbitrarily, to arrive at∣∣∣∣∣E

[
T∑
t=1

(lt(xt)− lt(yt))

]∣∣∣∣∣ ≤
T∑
t=1

|E [lt(xt)− lt(yt)]| ≤ 6GDδT 2, (E.1)

where we use that maxtmaxx∈K |lt(x) − lt(x̄)| ≤ Gmaxtmaxx∈K ∥x − x̄∥ ≤ GD. Therefore
hereafter we only focus on showing the expected regret bound for the sequence yt.

Before proceeding to prove the regret bound, note that for an arbitrary point x ∈ K, there exists
a point x◦ ∈ K◦ (by the definition of the Minkowski set) such that ∥x◦ − x∥ ≤ D

T and therefore

l1:T (x
◦) ≤ l1:T (x) +GD. (E.2)

As a consequence of the above display, hereafter we will only focus on proving a regret bound
against an arbitrary point x◦ ∈ K◦, with the bargain that we suffer an extra GD term in the true
regret. Define auxiliary functions for all t ≥ 1

l′t(x) ≜ lt(x) + (Z ′
t − Z ′

t−1)
⊤x,

with l′0(x) ≜ B(x) and Z ′
0 ≜ 0. It is now immediate to see that

yt ≜ argmin
x∈K

t−1∑
τ=1

l(x) + (Z ′
t−1)

⊤x+ B(x) = argmin
x∈K

t−1∑
τ=0

l′τ (x).

Therefore, by Lemma 18, we deterministically have that

T∑
t=0

(
l′t(yt+1)− l′t(x

◦)
)
≤ 0.

Further we have that

T∑
t=0

(
l′t(yt+1)− l′t(x

◦)
)
=

T∑
t=1

(lt(yt+1)− lt(x
◦)) +

T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(yt+1 − x◦) + B(y1)− B(x◦)

which implies that the following holds deterministically

T∑
t=1

(lt(yt+1)− lt(x
◦)) ≤

T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(x◦ − yt+1) + B(x◦) ≤

T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(x◦ − yt+1) +GD,

since B(x◦) ≤ GD as x◦ ∈ K◦. Further define the deterministic sequence y∗t = argminx∈K
∑t−1

τ=1 lτ (x)+
B(x). Using a simple perturbation bound over the minima of strongly convex functions it is easy to
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observe that ∥yt − y∗t ∥ ≤ 2∥Z′
t−1∥

(t−1)λ . Using this fact we get that

E

[
T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(x◦ − yt+1)

]
= E

[
T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(x◦ − y∗t+1)

]
︸ ︷︷ ︸

=0

+ E

[
T∑
t=1

(Z ′
t − Z ′

t−1)
⊤(y∗t+1 − yt+1)

]

≤ E

[
T∑
t=1

∥(Z ′
t − Z ′

t−1)∥∥y∗t+1 − yt+1∥

]

≤ 2E[∥Z ′
1∥2]

λ

√
t−

√
t− 1√
t

Therefore combining the above equations we get that

E

[
T∑
t=1

(lt(yt+1)− lt(x
◦))

]
≤

T∑
t=1

(
2E[∥Z ′

1∥2]
λ

√
t−

√
t− 1√
t

)
+GD

≤ 2dσ2(1 + log(T ))

λ
+GD. (E.3)

Now furthermore we have that
T∑
t=1

(lt(yt)− lt(x
◦)) =

T∑
t=1

(lt(yt)− lt(yt+1)) +

T∑
t=1

(lt(yt+1)− lt(x
◦)). (E.4)

For bounding the first term, consider the definition

Jt(x) =
t−1∑
i=1

li(x) + (Z ′
t−1)

⊤x+ B(x),

and note that yt minimizes Jt over K. Further note that Jt(x) is (t − 1)λ-strongly convex. Now
using the same analysis as in the proof of Theorem 4, we get that lt(yt)−lt(yt+1) ≤ G∥yt−yt+1∥ ≤
2G2

tλ and therefore we get that

T∑
t=1

lt(yt)− lt(yt+1) ≤
2G2(1 + log(T ))

λ

Combining the above with (E.2), (E.3) and (E.4) we get that

E

[
T∑
t=1

lt(yt)−
T∑
t=1

lt(x)

]
≤ 2(G2 + dσ2)(1 + log(T ))

λ
+ 2GD. (E.5)

Combining the above with (E.1) completes the proof of the theorem.

We restate and prove Theorem 13 now:
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Theorem 13 (Lazy OCO - Strongly-Convex) For any T ≥ 3 and any given bound on the number

of switches S ≥
(
4βd
λ + 16d log(T )

)
log(T ), set δ = 2/T 2 and σ =

16G
√

dT log(T )

S . For all t ≥ 0,

set σt = σ
√
t, νt = N (0, σ2

t I),

Φt =
βd

λt
+

4d log(T )

t
+ d log

(√
t+ 1√
t

)
+

G2

2σ2t
+

2G
√

d log(T )

σ

√
t+ 1

t
,

and η = ∞ in Algorithm 2. Then for any sequence of obliviously chosen G-Lipschitz β-smooth
λ-strongly convex functions l1:T , Algorithm 2 satisfies the following:

RT ≤ 2G2(1 + log(T ))

λ
+

512d2 log(T )(1 + log(T ))

λ
· T

S2
+ 14GD and E[ST ] ≤ S.

Proof For any σ setting σt = σ
√
T and setting δ = 2T−2 using 21 we can see that the distributions

µt, µt+1 are (Φt, 2T
−2)-close as long as we have that

Φt ≥
βd

λt
+

G2

2σ2t
+

2G
√
d log(T )

σ

√
t+ 1

t
+

4d log(T )

t
+ d log

(√
t+ 1√
t

)
=

βd

λt
+

4d log(T )

t
+ d log

(√
t+ 1√
t

)
+

G2

2σ2t
+

2G
√

d log(T )

σ

√
t+ 1

t
.

As mentioned earlier, the appropriate analog of Lemma 5 bounds the expected number of switches
by
∑T

t=1 p̃t. Using the fact that 1− exp(−2x) ≤ 2x for all x ∈ R, we have

T∑
t=1

p̃t =
T∑
t=1

1− Φ−2
t

≤
T∑
t=1

(
βd

λt
+

4d log(T )

t
+ d log

(√
t+ 1√
t

)
+

G2

2σ2t
+

2G
√

d log(T )

σ

√
t+ 1

t

)

≤
(
βd

λ
+ d log(T )

)
(1 + log(T )) + 4d log(T ) +

G2

2σ2t
+

T∑
t=1

(
2G
√

d log(T )

σ

√
t+ 1

t

)

≤
(
βd

λ
+ 4d log(T )

)
(1.25 + log(T )) +

T∑
t=1

(
G2

2σ2t
+

2G
√
d log(T )

σ

√
t+ 1

t

)

≤
(
βd

λ
+ 4d log(T )

)
(1.25 + log(T )) +

T∑
t=1

(
G2

2σ2t
+

2G
√
d log(T )

σ

√
t+ 1

t

)

≤
(
2βd

λ
+ 8d log(T )

)
log(T ) +

T∑
t=1

(
G2

2σ2t
+

2G
√

d log(T )

σ

√
t+ 1

t

)

≤
(
2βd

λ
+ 8d log(T )

)
log(T ) +

G2(1 + log(T ))

2σ2
+

4G
√

d log(T )
√
T

σ
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Now using the value of σ and the bound on S provided in the theorem we see the following(
2βd

λ
+ 8d log(T )

)
log(T )︸ ︷︷ ︸

≤S/2

+
G2(1 + log(T ))

2σ2︸ ︷︷ ︸
≤S/4

+
4G
√

d log(T )
√
T

σ︸ ︷︷ ︸
≤S/4

≤ S.

The regret bound follows via a direct substitution in Theorem 28, which immediately yields the
stated bound.

Appendix F. Analysis for Online Lipschitz Optimization in One or Two Dimensions

We restate and prove Lemma 16:

Lemma 30 Let M ∈ Rd×d be any matrix that is invertible on L with pseudoinverse M †. In Theo-
rem 15, σ can be replaced by

σ′ = ∥M †∥2→∞ ·max
l∈L

{∥Ml∥} ·
log(T )

√
log(1/δ)

ε
.

Proof The idea is simple and is based on the algorithm in Agarwal and Singh (2017), which works
as follows. It uses tree-based aggregation algorithm with Gaussian noise to maintain the prefix sums
l1 + l2 + . . .+ lt for t ∈ [T ] with (ε, δ)-differential privacy. The standard Hedge algorithm, which
is FTRL using the entropy regularizer, only needs these prefix sums to operate. The private prefix
sums are fed into the Hedge algorithm to compute the predictions in each round, which are private
due to post-processing. This noise is drawn from N (0, σ2I|K|), and the excess regret due to this
noise is bounded by (see the DZ term in Theorem 3.1 of Agarwal and Singh (2017))

2EZ∼N (0,σ2I|K|)

[
max
x∈K

Z(x)

]
,

which in turn is bounded by O(σ
√

log(|K|)).
We use the algorithm as follows. The matrix M defines a linear transform mapping Rd to

Rd. So we can use the tree-based aggregation algorithm to maintain the transformed prefix sums
Ml1+Ml2+. . .+Mlt for t ∈ [T ] with (ε, δ)-differential privacy. To maintain these sums privately,
the tree-based aggregation algorithm adds Gaussian noise that scales as maxl∈L{∥Ml∥}.

Before feeding the private linear-transformed prefix sums to the FTRL algorithm, we “undo” the
linear transformation by multiplying by M †. Specifically, the output of the tree-based aggregation
algorithm in round t is Ml1 + Ml2 + . . . + Mlt−1 + Z where Z ∼ N (0, σ̃2I|K|), where σ̃2 =

maxl∈L{∥Ml∥} · log(T )
√

log(1/δ)

ε . We multiply this vector by M † before feeding it into the Hedge
algorithm. Thus, the vector fed into Hedge is l1+ l2+ . . .+ lt−1+M †Z. Note that M †Z is another
Gaussian vector whose covariance matrix is σ̃2M †M †⊤. Working through the same analysis as
done by Agarwal and Singh (2017), the excess regret due to the noise is bounded by

2EZ∼N (0,σ̃2I|K|)

[
max
x∈K

(M †Z)(x)

]
= 2E

Z′∼N (0,σ̃2M†M†⊤)

[
max
x∈K

Z ′(x)

]
.
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The diagonal entries of σ̃2M †M †⊤ are bounded by σ̃2∥M †∥22→∞ = σ′2. Thus, via standard bounds
(e.g., Theorem 2.5 in Boucheron et al. (2013)) on the expected maximum of Gaussians, the above
expression is bounded by O(σ′√log(|K|)).
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