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Abstract
Collecting and leveraging data with good coverage properties plays a crucial role in different as-
pects of reinforcement learning (RL), including reward-free exploration and offline learning. How-
ever, the notion of “good coverage” really depends on the application at hand, as data suitable for
one context may not be so for another. In this paper, we formalize the problem of active coverage
in episodic Markov decision processes (MDPs), where the goal is to interact with the environment
so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any
desired coverage property, making it applicable to any problem that involves online exploration.
Our main contribution is an instance-dependent lower bound on the sample complexity of active
coverage and a simple game-theoretic algorithm, COVGAME, that nearly matches it. We then show
that COVGAME can be used as a building block to solve different PAC RL tasks. In particular,
we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample
complexity that, in certain MDPs which are “easy to explore”, is lower than the minimax one.
By further coupling this exploration algorithm with a new technique to do implicit eliminations in
policy space, we obtain a computationally-efficient algorithm for best-policy identification whose
instance-dependent sample complexity scales with gaps between policy values.
Keywords: Reinforcement learning, Coverage, Reward-free exploration, Best-policy identification

1. Introduction

The quality of the available data, whether it is actively gathered through online interactions with
the environment or provided as a fixed offline dataset, plays a fundamental role in characterizing
the performance of any reinforcement learning (RL, Sutton and Barto, 2018) agent. An important
concept to quantify such quality is coverage, a property measuring the extent to which data spreads
across the state-action space. The notion of coverage, through the so-called concentrability coeffi-
cients, is ubiquitous in the vast literature on offline RL (e.g., Munos, 2003; Munos and Szepesvári,
2008; Farahmand et al., 2009, 2010; Chen and Jiang, 2019; Xie and Jiang, 2020, 2021; Jin et al.,
2021; Foster et al., 2022). Intuitively, the better data covers the state space, the better performance
one can expect from an offline RL method. Recently, Xie et al. (2022) showed that a similar phe-
nomenon also occurs in online RL: the sole existence of a good covering data distribution implies
sample-efficient online RL with non-linear function approximation, even if such a distribution is
unknown and inaccessible by the agent.

While these works treat coverage as a property of some given data or environment, a large body
of literature focuses on actively collecting good covering data. This falls under the umbrella of
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reward-free exploration (RFE, Jin et al., 2020), a setting where the agent interacts with an unknown
environment without any reward feedback. The objective is typically to collect sufficient data to
enable the computation of a near-optimal policy for any reward function provided at downstream,
e.g., by planning on top of an estimated model of the environment or by running any off-the-shelf
offline RL method. Many provably-efficient algorithms exist for this problem that mostly differ in
their exploration strategy. Some try to gather a minimum number of samples from each reachable
state (Jin et al., 2020; Zhang et al., 2021b), while others adaptively optimize a reward function
proportional to their uncertainty over the environment (Kaufmann et al., 2021; Ménard et al., 2021)
or more simply a zero reward (Chen et al., 2022). All these approaches provably guarantee that
the collected data is sufficient to learn any reward function provided at test time. Another popular
technique is to seek data distributions that maximize the entropy over the state-space (Hazan et al.,
2019; Cheung, 2019; Zahavy et al., 2021; Mutti et al., 2022). Finally, there is a long recent line of
empirical works focusing on RFE, where the problem is often called unsupervised RL (e.g., Laskin
et al., 2021; Eysenbach et al., 2019; Burda et al., 2019; Yarats et al., 2021).

The RFE literature mostly focuses on collecting data with the specific properties needed for the
task under consideration (e.g., achieving zero-shot RL at test time). Motivated by the crucial role
of coverage in RL, in this paper we treat the problem at a higher level of generality. We formulate
and study the problem of active coverage in episodic MDPs, where the goal is to interact online
with the environment so as to collect data that satisfies some given coverage constraints. Following
Tarbouriech et al. (2021) who considered a similar problem in reset-free MDPs, we formalize such
constraints as a set of sampling requirements that the learner must fulfill during learning. This
gives our framework a high flexibility, as one can require different notions of coverage simply
by changing the sampling requirements. Moreover, the applications are numerous, as any active
coverage algorithm yields an exploration strategy that can be readily plugged in to tackle different
problems. In our specific case, we shall see how to apply it to design PAC algorithms for both RFE
and best-policy identification (BPI, Fiechter, 1994; Dann and Brunskill, 2015; Dann et al., 2019;
Wagenmaker et al., 2022; Wagenmaker and Jamieson, 2022; Tirinzoni et al., 2022, 2023).

Contributions First, we derive an instance-dependent complexity measure for the active coverage
problem as a lower bound on the number of episodes that any algorithm must play in order to fulfill
the sampling requirements on an MDP. We show interesting connections with existing coverage
measures, especially the concentrability coefficients used in offline RL (e.g., Munos, 2003).

Then, we propose COVGAME, a novel approach for active coverage. COVGAME is based on
a simple game-theoretic view of the problem, where an RL agent tries to optimize a sequence of
rewards produced by an adversary that constantly challenges it to reach uncovered states. We show
that the sample complexity of COVGAME scales with our complexity measure plus some lower
order learning cost, hence making our approach near-optimal.

Finally, we show how active coverage can be readily applied to get PAC algorithms with instance-
dependent sample complexity for both RFE and BPI. In particular, we show that an almost plug-
and-play version of COVGAME solves RFE using a number of samples scaling with our instance-
dependent coverage complexity, i.e., adapting to the complexity for navigating the underlying MDP.
We show that this sample complexity can be smaller than the minimax one (Ménard et al., 2021;
Zhang et al., 2021b), a perhaps surprising result given the worst-case nature of the problem (i.e.,
the agent aims at optimizing for all possible rewards). For BPI, we show how COVGAME can be
sequentially applied to estimate the value function of all policies, while gradually focusing on poli-
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cies with better performance. Notably, we obtain an instance-dependent sample complexity scaling
with policy gaps (Tirinzoni et al., 2021; Dann et al., 2021) which is in line with the recent results
of Wagenmaker and Jamieson (2022) and Tirinzoni et al. (2022) (the latter for the special case of
deterministic MDPs). A key advantage is that our algorithm, as opposed to the one of Wagenmaker
and Jamieson (2022), is computationally-efficient and does not need to enumerate all policies to
perform explicit eliminations. This is obtained thanks to a novel scheme which instead sequentially
constrains the set of state-action distributions corresponding to high-return and well-covered poli-
cies, a technique that we believe to be of broader interest. An important technical tool for both RFE
and BPI is a novel concentration inequality for value functions (see Appendix D).

2. Active Coverage and its Complexity

We suppose that the learner interacts with an environment modeled as a tabular finite-horizon
Markov decision process (MDP) M := (S,A, {ph}h∈[H], s1, H), where S is a finite set of S
states, A is a finite set of A actions, ph : S × A → P(S)1 denotes the transition function at stage
h ∈ [H], s1 ∈ S is the initial state, and H is the horizon. The interaction withM proceeds through
episodes of length H . In each episode, starting from the initial state s1 ∈ S , at each stage h ∈ [H],
the learner takes an action ah ∈ A based on the current state sh ∈ S and it observes a stochastic
transition to a new state sh+1 ∼ ph(sh, ah). We denote by ph(s′|s, a) the probability that the new
state is s′ when selecting action a in state s at step h of the episode.

The actions are chosen by a (possibly stochastic) policy π = {πh}h∈[H], i.e., a sequence of
mappings πh : S → P(A), where πh(a|s) denotes the probability that the learner takes action a in
state s at stage h. With some abuse of notation, we shall use πh : S → A to denote a deterministic
policy, where πh(s) directly returns the action taken in state s at stage h. We denote by ΠS (resp.
ΠD) the set of all stochastic (resp. deterministic policies).

Denoting by Pπ (resp. Eπ) the probability (resp. expectation) operator induced by the execution
of a policy π ∈ ΠS for an episode onM, we define, for each (h, s, a), pπh(s, a) := Pπ(sh = s, ah =
a) and pπh(s) := Pπ(sh = s). We let Ω := {pπ : π ∈ ΠS} denote the set of all valid state-
action distributions. It is well known (e.g., Puterman, 1994) that any distribution ρ ∈ Ω satisfies
ρh ∈ P(S×A) for all h and

∑
a ρh(s, a) =

∑
s′,a′ ρh−1(s′, a′)ph−1(s|s′, a′) for all s, a and h > 1.

We make the following assumption to ensure that the whole state-space can be navigated.

Assumption 1 (Reachability) Each state s ∈ S is reachable at any stage h ∈ {2, . . . ,H} by
some policy, i.e., maxπ∈ΠS pπh(s) > 0.

Reachability conditions like Assumption 1 are standard in prior work. In non-episodic reset-free
MDPs (e.g., Jaksch et al., 2010), the MDP is often required to be communicating to ensure learn-
ability, i.e., any two states are reachable from each other by some policy. Assumption 1 is the
analogous for episodic MDPs, where we only need reachability from the initial state. In episodic
MDPs, reachability conditions have been used in different settings, including model-free learning
(Modi et al., 2021) and reward-free exploration (Zanette et al., 2020).

Notation Throughout the paper, we shall use 1X to denote an indicator function over some set X ,
i.e., 1X (h, s, a) := 1{(h, s, a) ∈ X} for all h, s, a. We shall hide X whenever X = [H]× S ×A.

1. We use P(X ) to denote the set of probability measures over a set X .
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2.1. Learning problem

The learner interacts with an MDPM with unknown transition probabilities in order to fulfill some
given sampling requirements. In particular, it is given a target function c : [H] × S × A → R,
where ch(s, a) denotes the minimum number of samples that must be gathered from (s, a) at stage
h. In each episode of interaction t ∈ N∗, the learner plays a policy πt and observes a corresponding
trajectory {(sth, ath)}h∈[H]. Let nth(s, a) :=

∑t
j=1 1(sjh = s, ajh = a) denote the number of times

(s, a) has been visited at stage h up to episode t. The goal is to minimize the number of episodes
required to collect at least ch(s, a) samples from each h, s, a with high probability.

Definition 1 (δ-correct c-coverage algorithm) Fix δ ∈ (0, 1) and a target function c. An algo-
rithm is called δ-correct c-coverage if, with probability at least 1− δ, it stops after interacting with
M for τ episodes and returns a dataset of transitions with visitation counts guaranteeing

∀(h, s, a), nτh(s, a) ≥ ch(s, a).

Examples While the definition of the active coverage problem gives complete freedom in choos-
ing the target function c, for our applications we shall mostly be interested in two specific in-
stances. In uniform coverage, we have ch(s, a) = N1 ((h, s, a) ∈ X ) for some given set X and
N ∈ N. Intuitively, this requires collecting at least N samples from each state-action-stage triplet
in X , and the name suggests that the learner should explore X as uniformly as possible. Possible
applications include estimating the transition model uniformly well across the state-action space
(Tarbouriech et al., 2020) and discovering sparse rewards. In our applications to PAC RL, we
will further explore the benefits of performing proportional coverage, which corresponds to setting
ch(s, a) = N maxπ p

π
h(s, a)1 ((h, s, a) ∈ X ) 2. This requires collecting a number of samples from

each (h, s, a) ∈ X that scales proportionally to its reachability.

2.2. The complexity of active coverage

Minimizing the sample complexity required to solve the active coverage problem requires the
learner to properly plan how to distribute its exploration throughout the state-action space, hence
accounting for the complex interplay between the MDP dynamics p and the target function c. The
following theorem gives a precise characterization of the complexity of this problem.

Theorem 2 For any target function c and δ ∈ (0, 1), the stopping time τ of any δ-correct c-
coverage algorithm satisfies E[τ ] ≥ (1− δ)ϕ?(c), where

ϕ?(c) = inf
ρ∈Ω

max
(s,a,h)∈X

ch(s, a)

ρh(s, a)
,

with X := {(h, s, a) : ch(s, a) > 0}.

The quantity ϕ?(c) of Theorem 2 provides an instance-dependent complexity measure for the active
coverage problem. In particular, it depends on both the MDPM through the set of valid state-action
distributions Ω and on the target function c. It can be interpreted as follows. Imagine that a learner
repeatedly plays a policy which induces a state-action distribution ρ ∈ Ω. Then, for any (h, s, a), the
quantity 1/ρh(s, a) is roughly the expected number of episodes the learner takes to collect a single

2. To cope with unknown transitions, we will use an upper bound of pπh(s, a) in the definition of proportional coverage.
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sample from (h, s, a). This implies that max(s,a,h)∈X
ch(s,a)
ρh(s,a) is roughly the expected number of

episodes needed to satisfy the sampling requirements across all (h, s, a) when playing distribution
ω. Then, the complexity measure is intuitively the minimum of this quantity across all possible state-
action distributions. In other words, any distribution ρ? attaining the minimum in ϕ?(c) denotes an
optimal c-coverage distribution, i.e., generating data from ρ? provably minimizes the time to satisfy
all sampling requirements, in expectation.

We remark that the lower bound of Theorem 2 holds for any δ-correct algorithm, even for
an oracle that knows the transition probabilities. In general, we do not believe it to be exactly
matchable since (i) any algorithm must work with sample counts rather the expectations, (ii) the
transition probabilities are unknown. However, ϕ?(c) will appear as the leading order terms in our
sample complexity, while these learning costs will be absorbed into lower order terms.

2.3. Links to existing measures of coverage

In Appendix B, we show that ϕ?(c) can be reformulated as a stochastic minimum flow, a general-
ization of the minimum flow for directed acyclic graphs (DAGs), as used by Tirinzoni et al. (2022)
in deterministic MDPs, to stochastic environments. In this reformulation, ϕ?(c) is written as a lin-
ear program seeking the minimal allocation of visits to each (h, s, a) (i.e., a flow) that satisfies the
sampling requirements while complying with the MDP dynamics.

In Appendix A, we prove that the complexity ϕ?(c) satisfies the following inequalities

max
h

∑
s,a

ch(s, a)︸ ︷︷ ︸
¶

≤ ϕ?(c) ≤
∑
h

inf
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)︸ ︷︷ ︸
·

≤
∑
h,s,a

ch(s, a)

maxπ pπh(s, a)︸ ︷︷ ︸
¸

. (1)

Interestingly, each of these terms relates to a complexity measure that appeared in previous works.
Term ¶ is the complexity for covering a tree-based deterministic MDP (Tirinzoni et al., 2022),
perhaps the easiest MDP topology to navigate. As ϕ?(c) reduces to the complexity of Tirinzoni
et al. (2022) in deterministic MDPs, we attain the equality ϕ?(c) = ¶ in this specific tree structure.
For a specific choice of c, · can be shown to be exactly the “gap visitation” complexity measure
introduced by Wagenmaker et al. (2022) for BPI. As a component of their BPI algorithm MOCA,
Wagenmaker et al. (2022) introduced Learn2Explore, a strategy that learns policies to reach all states
in the MDP. While it may be possible to adapt Learn2Explore for our active coverage problem, one
limitation is that it learns how to reach each layer independently, and this is reflected on the fact that
· is only a loose upper bound (up to a factor H larger) to the optimal complexity ϕ?(c). Finally,
¸ can be related to the sample complexity for active coverage obtained by the GOSPRL algorithm
of Tarbouriech et al. (2021)3. It can be interpreted as the complexity for learning how to reach each
h, s, a independently, which makes it an even looser upper bound to ϕ?(c).

Concentrability and coverability A definition of concentrability coefficient for data distribution
ρ is Cconc(ρ) := maxs,a,h

maxπ pπh(s,a)

ρh(s,a) . This plays a fundamental role in characterizing the effi-
ciency of offline RL methods (see, e.g., (Chen and Jiang, 2019; Xie et al., 2022) and references
therein). It is easy to see that ϕ?(c) = infρ∈ΩCconc(ρ) for the target function c of proportional

3. Since Tarbouriech et al. (2021) consider reset-free MDPs, their complexity actually scales as
∑
s,aDs,ac(s, a),

where Ds,a is the minimum expected time to reach s, a from any state. In episodic MDPs, the minimum expected
number of episodes to reach some (h, s, a) is exactly 1/maxπ p

π
h(s, a), hence yielding ¸.
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Algorithm 1 COVGAME

1: Input: Target function ch(s, a), RL algorithm AΠ, online learning algorithm Aλ, confidence
parameter δ ∈ (0, 1).

2: Let X0 := X and Xk := {(h, s, a) : ch(s, a) > c+
min2k} for all k ∈ N∗

3: Initialize counts n0
h(s, a) = 0 for all h, s, a

4: Reset Aλ on P(X ), set λ1
h(s, a)← 1((h, s, a) ∈ X )/|X | for all h, s, a

5: Initialize k1 ← 0
6: for t = 1, 2, . . . do
7: Get πt from AΠ given reward function λt and confidence 1− δ/2
8: Generate a trajectory {(sth, ath)}h∈[H] using policy πt and update counts nt

9: if nth(s, a) ≥ ch(s, a) for all h, s, a then stop and return all sampled trajectories
10: Update kt+1 ← max{j ∈ N : nth(s, a) ≥ ch(s, a) ∀(h, s, a) ∈ X \ Xj}
11: if kt+1 6= kt then
12: Reset Aλ on P(Xkt+1), set λt+1

h (s, a)← 1((h, s, a) ∈ Xkt+1)/|Xkt+1 | for all h, s, a
13: else
14: Feed Aλ with loss `t(λ) =

∑
(h,s,a)∈Xkt

λh(s, a)1(sth = s, ath = a), get weight λt+1

coverage. That is, our coverage complexity is equivalent to the minimum concentrability coefficient
achievable by any distribution generated by some stochastic policy. Under a similar perspective, Xie
et al. (2022) introduced the coverability coefficientCcov := infρ1,...,ρH∈P(X×A) maxs,a,h

maxπ pπh(s,a)

ρh(s,a)
to characterize to what extent the best data distribution covers all policies. Noting that the infimum
is taken across all probability distributions rather than valid state-action distributions, the optimal
data distribution in Ccov may not be attained by the execution of any stochastic policy. This means
that Ccov is not a valid complexity measure for active coverage in general, and it reduces exactly to
¶ for proportional coverage (see their Lemma 3), i.e., to a loose lower bound on ϕ?(c).

3. Active Coverage by Solving Games

We propose COVGAME (Algorithm 1), which adopts a game-based perspective inspired by the
bandit literature (Degenne et al., 2019). We first observe that the complexityϕ?(c) can be interpreted
as a zero-sum game between a learner trying to produce the best sampling distribution ρ ∈ Ω and an
adversary trying to challenge it with the tuple (h, s, a) whose sampling requirement is the hardest
to meet under ρ. COVGAME does not directly solve the game in the definition of ϕ?(c) but rather
an equivalent formulation which simplifies learning. Thanks to the minmax theorem, we can write

1

ϕ?(c)
= sup

ρ∈Ω
min

(s,a,h)∈X

ρh(s, a)

ch(s, a)
= sup

ρ∈Ω
inf

λ∈P(X )

∑
(h,s,a)∈X

λh(s, a)
ρh(s, a)

ch(s, a)

= inf
λ∈P(X )

max
π∈ΠD

∑
(h,s,a)∈X

pπh(s, a)
λh(s, a)

ch(s, a)
,

where in the last equation we used that the inner maximization is a standard RL problem with
reward function given by λh(s,a)

ch(s,a)1 ((h, s, a) ∈ X ) and its optimum is known to be attained by a
deterministic policy (e.g., Puterman, 1994).
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COVGAME solves a variant of this minmax game that does not involve the target function c di-
rectly. The idea is to cluster the state-action pairs in X based on their sampling requirement. To this
end, we define the sequence of sets {Xk}k∈N as X0 := X and Xk := {(h, s, a) : ch(s, a) > c+

min2k}
for all k ∈ N∗, where c+

min = min(h,s,a)∈X ch(s, a) ∨ 1. At each round t ∈ N∗, COVGAME tries
to solve the game infλ∈P(Xkt ) maxπ∈ΠD

∑
h,s,a p

π
h(s, a)λh(s, a), where kt is the largest index such

that all state-action pairs in X \ Xkt = {(h, s, a) ∈ X : ch(s, a) ≤ c+
min2kt} have been already

covered. Intuitively, COVGAME progressively focuses on covering state-action pairs with larger
sampling requirement, while ignoring those that have already been covered. The main advantage
over solving the initial formulation of ϕ?(c) is two-fold. First, the learner is allowed to play only
deterministic policies, each being the solution to an RL problem. Second, in the sequence of games
that we consider, the objective function is independent of the scale of c, which avoids undesired de-
pendencies (e.g., on the inverse of the minimum value of c) when the target function is unbalanced.

COVGAME approximately solves the sequence of games above by leveraging two online learn-
ing algorithms, Aλ and AΠ. The one for the adversary (Aλ) can be any method for online convex
optimization on the simplex with linear losses. The one for the learner (AΠ) can be any regret min-
imizer for RL that handles reward functions changing at each round (but observed at the beginning
of the round). A simple approach like UCBVI (Azar et al., 2017) can be adapted to this purpose.

The final intuition behind COVGAME is quite simple: at each round t, the adversary produces
a reward function λt supported over Xkt (the current set to be covered) and the learner tries to find
a good policy for maximizing it. This encourages the learner to visit uncovered state-action pairs,
eventually meeting the sampling requirements.

In order to analyze the sample complexity of COVGAME, we make the following assumption
on the adopted online learning algorithms, which will be satisfied by our specific instance.

Assumption 2 (First-order regret) There exists a non-decreasing function Rλ(T ) such that, if
Aλ is instantiated on P(Xk) for some k on a sequence of linear losses {`t}t≥1 bounded in [0, 1],

∀T ∈ N∗,
T∑
t=1

`t(λt)− min
λ∈∆Xk

T∑
t=1

`t(λ) ≤

√√√√Rλ(T )
T∑
t=1

`t(λt) +Rλ(T ). (2)

There exists a non-decreasing function RΠ
δ (T ) such that, if AΠ is run with confidence 1 − δ on a

sequence of rewards {λt}t≥1 with λt ∈ P(X ) for all t, with probability 1− δ, for all T ∈ N∗,

T∑
t=1

V ?
1

(
s1;λt

)
−

T∑
t=1

V πt
1

(
s1;λt

)
≤

√√√√RΠ
δ (T )

T∑
t=1

V πt
1 (s1;λt) +RΠ

δ (T ), (3)

where V π
1 (s1;λ) :=

∑
h,s,a p

π
h(s, a)λh(s, a) and V ?

1 (s1;λ) := maxπ V
π

1 (s1;λ).

Theorem 3 (Sample complexity of COVGAME) Under Assumption 1 and 2, with probability at
least 1 − δ, COVGAME satisfies nτh(s, a) ≥ ch(s, a) for all h, s, a and its stopping time τ satisfies
τ ≤ 64mϕ?(c) + T1, with m := dlog2(cmax/c

+
min)e ∨ 1, cmax := maxh,s,a ch(s, a) and

T1 = inf

{
T ∈ N∗ :

T

2
≥ mϕ?(1X )

(
3RΠ

δ/2(T ) + 12Rλ(T ) + 24 log(4T/δ)
)

+ 1

}
.
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While we require both learners to have first-order regret bounds (i.e., depending on the sum of
observed losses), standard Õ(

√
T ) bounds can also be used at the cost of a larger second-order term

T1 in Theorem 3, from T1 = Õ(ϕ?(1X )) as in our instantiation to T1 = Õ(ϕ?(1X )2). The key step
in our proof is to show that first-order regret implies convergence to the value ϕ?(c) of the game at
a rate Õ(1/T ) instead of the slower Õ(1/

√
T ) achieved with Õ(

√
T ) regret. As ϕ?(1X ) depends

on the inverse visitation probabilities (see Theorem 2), this ϕ?(1X ) versus ϕ?(1X )2 improvement
will be crucial to avoid undesired scaling with these quantities in our applications to PAC RL.

3.1. Our instantiation

For Aλ we propose to use the weighted majority forecaster (WMF, Littlestone and Warmuth, 1994)
with variance-dependent learning rate for which, for any sequence of losses bounded in [0, 1], we
have by Theorem 5 of Cesa-Bianchi et al. (2005) that Assumption 2 is satisfied with

Rλ(T ) = 16 log(SAH). (4)

For AΠ we propose to use a variant of UCBVI (Azar et al., 2017) that can cope with varying
reward functions. The idea is that, since the reward function λt is revealed to AΠ at the beginning
of round t, we can build an upper confidence bound Q

t−1
h (s, a;λt) to the optimal action-value

function Q?h(s, a;λt) by estimating the transition probabilities with the data collected up to round
t− 1. Then, we play πth(s) = arg maxaQ

t−1
h (s, a;λt), the greedy policy w.r.t. Qt−1

h . We build the
UCBs by leveraging the same “monotonic value propagation” trick from Zhang et al. (2021c) and
prove that Assumption 2 is satisfied with

RΠ
δ (T ) = 65536SAH2(log(2SAH/δ) + 6S) log(T + 1)2. (5)

See Appendix C for details. Notably, we manage to prove a similar first-order regret bound as
the one derived by Jin et al. (2020) for EULER (Zanette and Brunskill, 2019b) with a remarkably
simple analysis, without using any correction factor in the bonuses, and with improved dependences
on H (from H4 to H2) and δ (from log(1/δ)3 to log(1/δ)). As compared to the minimax regret
rate (Azar et al., 2017), our resulting bound in (3) features a dependence on S instead of

√
S in its

leading-order term. This is the cost of handling changing rewards, which prevents us from building
tight UCBs as commonly done for a fixed reward function. Instead, we build UCBs that hold for
all rewards simultaneously using techniques from reward-free exploration (Ménard et al., 2021), a
setting where an extra dependence on S is unavoidable in the worst case (Jin et al., 2020). Time-
varying rewards, albeit under a weaker notion of regret, have also been studied in an adversarial
setting in which the reward λt is not revealed prior to round t (Rosenberg and Mansour, 2019).

Corollary 4 (Sample complexity of COVGAME with WMF and UCBVI) With probability at least
1− δ, the stopping time of COVGAME with WMF and UCBVI is bounded by

τ ≤ 64mϕ?(c) + Õ(mϕ?(1X )SAH2(log(1/δ) + S)),

wherem = dlog2(cmax/c
+
min)e∨1 and Õ hides poly-logarithmic factors in S,A,H, ϕ?(1X ), log(1/δ).

The second term in the bound above can be interpreted as the cost incurred for learning the
optimal coverage complexity ϕ?(c) under unknown transition probabilities p. Still, this learning

8
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cost depends at most logarithmically on the total sampling requirement ‖c‖1 =
∑

h,s,a ch(s, a).
This implies that, for large ‖c‖1, this cost becomes negligible as compared to the first term and
τ ≤ Õ(ϕ?(c)), which matches the lower bound of Theorem 2 up to constant and logarithmic terms.
We observe that if p is known, by replacing UCBVI with the computation of the optimal policy w.r.t.
to λt, for which RΠ

δ/2(T ) = 0, we get a smaller additive cost Õ(mϕ?(1X ) log(SAH) log(1/δ))
which is only due to the randomness in the collection of trajectories.

3.2. Comparison with prior work

While inspired by an original game perspective which is crucial in our analysis, the actual algo-
rithmic approach of COVGAME has a similar flavor as existing algorithms for different exploration
tasks: it runs a regret minimizer on different reward functions enforcing the visitation of uncovered
states. Using WMF as the λ-learner, the reward function in round t is

λt+1
h (s, a) =

exp
(
−ξt−it

(
nth(s, a)− nith (s, a)

))
1 ((h, s, a) ∈ Xkt)∑

(h′,s′,a′)∈Xkt
exp

(
−ξt−it

(
nth′(s

′, a′)− nith′(s′, a′)
)) ,

where it is the last restart of WMF that happened before t and ξt is the variance-dependent learning
rate defined by Cesa-Bianchi et al. (2005). Our reward function is related to the number of prior
visits and smoothly evolves over time, which is in contrasts with most prior approaches that rely on
rewards of the form rYh (s, a) = 1((h, s, a) ∈ Y) for some set Y , For example, GOSPRL translated
to our episodic setting would use rt+1

h (s, a) = 1
(
nth(s, a) < cth(s, a)

)
. The Learn2Explore strategy

(Wagenmaker et al., 2022) uses a subroutine to visit N times some of the state-action pairs in Y: it
runs EULER (Zanette and Brunskill, 2019a) on rY and restarts the algorithm with a reward function
with reduced support whenever some new state-action pair has reachedN visits. Several algorithms
for RFE (Jin et al., 2020; Zhang et al., 2021a) also collect data using regret minimizers on top of
indicator-based rewards. In Appendix B.3, we further discuss the connections between COVGAME

and Frank-Wolfe approaches used in the convex RL literature.

4. Applications to PAC RL

A strategy for RFE should collect a dataset of trajectories from which it is possible to compute a
near-optimal policy for any reward function. To be robust to any possible reward in the test phase,
we intuitively need to gather sufficient samples everywhere in the MDP, which we propose to do
explicitly by relying on COVGAME with proportional coverage (Section 4.1). By adding some
ingredients to this exploration strategy, we further obtain a new algorithm for BPI (Section 4.2).

4.1. Proportional Coverage Exploration (PCE)

Algorithm 2 takes as input two parameters ε, δ and returns an estimate of the transition probabilities
p̂ that, with probability 1− δ, yields an ε-optimal policy for any reward function bounded in [0, 1].
The choice of proportional coverage is motivated by a novel ellipsoid-shaped confidence region for
the value functions of all policies under any reward. Let p̂t denote the maximum likelihood estimator
of p after observing t episodes. For any reward function r, let V π

1 (s1; r) :=
∑

h,s,a p
π
h(s, a)rh(s, a)

be the expected return of π, and V̂ π,t
1 (s1; r) be the same on the empirical MDP with transitions p̂t.

9
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Algorithm 2 PCE (Proportional Coverage Exploration)
1: Input: Precision ε, Confidence δ.
2: For each (h, s), run ESTIMATEREACHABILITY((h, s); ε

4SH2 ,
δ

3SH ) to get confidence intervals[
W h(s),W h(s)

]
on maxπ p

π
h(s) (see Appendix G)

3: Define X̂ := {(h, s, a) : W h(s) ≥ ε
32SH2 }

4: Define target function c0
h(s, a) = 1

(
(h, s, a) ∈ X̂

)
for all (h, s, a)

5: Execute COVGAME
(
c0, δ/6

)
to get a dataset D0 of d0 episodes // BURN-IN PHASE

6: Initialize episode count t0 ← d0 and statistics n0
h(s, a), p̂0

h(.|s, a) using D0

7: for k = 1, . . . do
8: // PROPORTIONAL COVERAGE

9: Compute targets ckh(s, a) := 2kW h(s)1
(
(h, s, a) ∈ X̂

)
for all (h, s, a)

10: Execute COVGAME
(
ck, δ/6(k + 1)2

)
to get dataset Dk and number of episodes dk

11: Update episode count tk ← tk−1 + dk and statistics nkh(s, a), p̂kh(.|s, a) using Dk
12: if

√
HβRF (tk, δ/3)24−k ≤ ε then stop and return p̂k

13: end for

Theorem 27 in Appendix D gives that, with probability 1− δ, jointly over all episodes t,

∀r ∈ [0, 1]SAH , ∀π ∈ ΠD,
∣∣V π

1 (s1; r)− V̂ π,t
1 (s1; r)

∣∣ ≤√√√√βRF(t, δ)
∑

(h,s,a)∈Xε

pπh(s, a)2

nth(s, a)
+
ε

4
, (6)

where βRF(t, δ) ∝ H2 log(1/δ) + SH3 log(A(1 + t)) and Xε is a subset of triplets that are
not too hard to reach: Xε ⊆ {(h, s, a) : maxπ p

π
h(s, a) ≥ ε

4SH2 }. If we gather ch(s, a) =
O(HβRF(t, δ) supπ p

π
h(s, a)/ε2) visits from every (h, s, a) ∈ Xε, then the estimation error of

V π
1 (s1; r) for any π and r is below ε/2, which is sufficient to solve RFE (Jin et al., 2020).

Yet as the visitation probabilities are unknown, neither Xε nor ch(s, a) can actually be com-
puted. To solve this issue, we rely on an initialization phase based on the ESTIMATEREACHABIL-
ITY subroutine (line 2 of Algorithm 2), described in Appendix G. This procedure, that is similar
to the initialization phase in MOCA (Wagenmaker et al., 2022), outputs for each (h, s) an interval
[W h(s),W h(s)] to which maxπ p

π
h(s) belongs with high probability using a low-order number of

episodes of Õ(S3AH4/ε). The lower confidence bound is then used to build a set X̂ that satisfies
the requirements for Xε and the upper bound is used to define the target function that is given as
input to COVGAME in phase k of the algorithm: ckh(s, a) := 2kW h(s)1

(
(h, s, a) ∈ X̂

)
.

We remark that PCE is computationally-efficient as it inherits the complexity of COVGAME

and ESTIMATEREACHABILITY, which both require to solve one dynamic program in every round
to compute the optimistic policy used by UCBVI. We now present its theoretical properties.

Theorem 5 Let p̂ be the estimate of the transition probabilities that PCE outputs. For any reward
function r, let π̂r be an optimal policy in the MDP (p̂, r). Then,

P
(
∀r ∈ [0, 1]SAH , |V π̂r

1 (s1; r)− V ?
1 (s1; r)| ≤ ε

)
≥ 1− δ.

Furthermore, with probability at least 1− δ, the total sample complexity of PCE satisfies

τ ≤ Õ
((
H3 log(1/δ) + SH4

)
ϕ?
([

supπ p
π
h(s)1(supπ p

π
h(s) ≥ ε

32SH2 )

ε2

]
h,s,a

)
+
S3A2H5(log(1/δ) + S)

ε

)
,

10
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where Õ hides poly-logarithmic factors in S,A,H, ε and log(1/δ).

Perhaps the most interesting feature of this bound is that in the regime of small ε and small δ, the
leading term is H3 log(1/δ)ϕ?

(
[supπ p

π
h(s)1(supπ p

π
h(s) ≥ ε/(32SH2))]h,s,a

)
/ε2, which can be

much smaller than the (SAH3/ε2) log(1/δ) minimax rate (Ménard et al., 2021). First, using the
inequality (1), this term is always smaller than |{(h, s) : supπ p

π
h(s) ≥ ε/(32SH2)}|AH3 log(1/δ),

which can be better than minimax in MDPs with many states that are hard to reach. Other examples
of MDPs for which PCE is better than minimax in the small ε, δ regime are given in Appendix E.7.
For any α ∈ [0, 1), we notably propose a family of MDPs satisfying ϕ?

(
[supπ p

π
h(s)]h,s,a

)
=

O(SαAH), leading to an asymptotic sample complexity of order
(
SαAH4/ε2

)
log(1/δ). These

examples suggest that, while RFE is by essence a worst-case problem, there is still hope to adapt to
the “explorability” of the MDP. Beyond this asymptotic regime, a worst-case bound can be directly
extracted from Theorem 5 for any ε, δ by using that the ϕ? term is at most SAH/ε2,

τ = Õ

(
SAH4

ε2
log(1/δ) +

S2AH5

ε2
+
S3A2H5

ε
(log(1/δ) + S)

)
,

which is minimax optimal up to an H2 factor and low-order terms scaling in 1/ε.

Remark 6 (Reachability) Thanks to its initialization phase, PCE can be used even when Assump-
tion 1 is violated. All triplets that have zero probability to be reached are filtered out from the set
X̂ , and COVGAME always targets reachable states.

4.2. PRINCIPLE: PRoportIoNal Coverage with Implicit PoLicy Elimination

Our second use-case of COVGAME yields PRINCIPLE, an algorithm for BPI. Given an unknown
reward distribution {νh(s, a)}h,s,a with support in [0, 1] and mean {rh(s, a)}h,s,a, an (ε, δ)-PAC
algorithm for BPI outputs a policy π̂ such that P

(
V π̂

1 (s1; r) ≥ V ?
1 (s1; r)− ε

)
≥ 1− δ.

In the PCE algorithm, we sought to achieve good proportional coverage w.r.t. the set of all
policies, i.e., by requiring that nkh(s, a) ≥ 2k supπ∈ΠD p

π
h(s, a) for all h, s, a, k. This is due to the

“worst-case” nature of RFE, where any policy can be potentially optimal for some reward function
at test time. On the contrary, the mean-reward r is fixed in BPI, a property that we can leverage to
perform more adaptive exploration. A natural idea, which led to tight theoretical guarantees in recent
works (Tirinzoni et al., 2022; Wagenmaker and Jamieson, 2022), is to eliminate policies as soon as
we are confident enough that they are sub-optimal, so that the algorithm can adapt its exploration to
focus on policies of higher value. Unfortunately, while Tirinzoni et al. (2022) managed to achieve
so in a computationally-efficient manner for deterministic MDPs, the approach of Wagenmaker and
Jamieson (2022) needs to enumerate all policies to do the same in stochastic environments, hence
yielding an exponential time-memory algorithm. Our method, PRINCIPLE, achieves the same
while remaining computationally efficient. Due to space constraints, we report its full pseudo-code
in Appendix F.2, while here we highlight its core technique.

Implicit policy elimination The key idea is to replace explicit policy eliminations by sequentially
constraining the set of state-action distributions corresponding to high-reward policies. In particular,
PRINCIPLE maintains, at each phase k, a high-probability lower bound V k

1 on the optimal expected
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return V ?
1 (s1; r) computed as

V k
1 := sup

ρ∈Ω(p̂k),

max
h,s,a

ρh(s,a)/nkh(s,a)≤2−k

∑
h,s,a

ρh(s, a)r̂kh(s, a)−
√

22−kHβbpi(tk, δ/3),

where βbpi(t, δ) ∝ H2 log(1/δ) + SAH3 log log(t) and Ω(p̂k) is the set of valid visitation proba-
bilities in the empirical MDP with transition kernel p̂k. As common, V k

1 is computed by subtracting
a confidence interval to the maximum expected return estimated on the empirical MDP defined by
(p̂k, r̂k). A notable exception is that we focus only on state-action distributions that are well-covered
by the current data. Then, PRINCIPLE defines a set of “active” state-action distributions as

Ωk :=

{
ρ ∈ Ω(p̂k) :

∑
h,s,a

ρh(s, a)r̂kh(s, a) ≥ V k
1, max

h,s,a
ρh(s, a)/nkh(s, a) ≤ 2−k

}
.

Intuitively, ρ is active at phase k if (1) it is a valid state-action distribution in the empirical MDP with
transition probabilities p̂k, (2) it induces an estimated expected return

∑
h,s,a ρh(s, a)r̂kh(s, a) larger

than V k
1 , and (3) it is well-covered by the current data. Then, as compared to PCE, PRINCIPLE

simply replaces the quantity supπ∈ΠD p
π
h(s, a) in the target function used for COVGAME at phase

k with supρ∈Ωk−1 ρh(s, a), i.e., it restricts the exploration to active state-action distributions. In our
analysis, we show that, with high probability, state-action distributions corresponding to optimal
policies are never eliminated from Ωk and V k

1 gradually approaches V ?
1 (s1; r) from below. That

is, Ωk is dynamically pruned to contain only distributions corresponding to higher returns, hence
achieving implicit eliminations of sub-optimal policies.

Computational complexity The computations of V k
1 and supρ∈Ωk−1 ρh(s, a) amount to solving

standard constrained MDPs, which can be done by linear programming (e.g., Efroni et al., 2020).
Moreover, PRINCIPLE does not store the set Ωk but only its associated constraints, whose number
is linear in SAH . This implies that PRINCIPLE requires polynomial (in SAH) time and memory.

Theoretical guarantees We prove that PRINCIPLE enjoys an instance-dependent complexity
that scales with policy gaps and visitation probabilities.

Theorem 7 PRINCIPLE is (ε, δ)-PAC for BPI and, with probability 1−δ, it has sample complexity

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where ∆(π) := V ?
1 (s1; r)− V π

1 (s1; r) denotes the policy gap of π, 1 denotes a function equal to 1

for all h, s, a, and Õ hides poly-logarithmic factors in S,A,H, ε, log(1/δ) and ϕ?(1).

Comparison with prior work Besides PRINCIPLE, there exist mostly two BPI algorithms with
instance-dependent guarantees for MDPs with stochastic transitions: MOCA (Wagenmaker et al.,
2022) and PEDEL (Wagenmaker and Jamieson, 2022). In the small (ε, δ) regime, the leading term
in the sample complexity of these three algorithms is of the form Alg(M, ε) log(1/δ). We carefully
compare these terms in Appendix F.3. Notably, while PRINCIPLE(M, ε) and PEDEL(M, ε) are
both expressed with policy gaps, MOCA(M, ε) depends on the value gaps V ?

h (s) − Q?h(s, a). In

12
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general, value gaps are known to be worse than policy gaps (Dann et al., 2021; Tirinzoni et al.,
2021) and, while there is no clear ordering between PRINCIPLE and MOCA (just like PEDEL and
MOCA, see Wagenmaker and Jamieson (2022)), we can exhibit instances in which the complexity
of the former has a better scaling than that of the latter.

Lemma 8 For any ∆ ∈ (0, 1], there exists an MDPM where

MOCA(M, ε) = Ω

(
H5SA

ε2

)
while PRINCIPLE(M, ε) = O

(
H4SA

ε∆
+
H4 log(S) log(A)

ε2

)
.

On the other hand, PEDEL directly minimizes the confidence interval (6) over all (active) policies,
an objective that is always upper bounded by the complexity of proportional coverage:

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρh(s, a)
≤ min

ρ∈Ω
max
h,s,a

supπ p
π
h(s, a)

ρh(s, a)
.

We prove in Appendix F.3 that the complexity of PEDEL is indeed smaller (up to H factors) than
that of PRINCIPLE. However, this objective may be intractable in general due to the maximiza-
tion over all deterministic policies. On the other hand, proportional coverage is sufficient (though
less statistically-efficient) to estimate the value of all policies and can be done in polynomial time.
Besides optimistic algorithms whose sample complexity features policy gaps but with an extra sub-
optimal scaling in the minimal visitation probability (Tirinzoni et al., 2023), this makes PRINCIPLE
the first computationally efficient BPI algorithm whose sample complexity scales with policy gaps.

5. Conclusion

We proposed COVGAME, a simple algorithm that adaptively collects episodes in an MDP to explic-
itly gather a required number of samples ch(s, a) from each triplet (h, s, a). We proved that its sam-
ple complexity scales with a new notion of optimal coverage ϕ?(c), which is an instance-dependent
lower bound on the sample complexity of any adaptive coverage algorithm. We then illustrated the
use of COVGAME as a building block for PAC reinforcement learning algorithms. By relying on (an
optimistic variant of) proportional coverage, we proposed an algorithm for reward-free exploration
with an instance-dependent sample complexity bound. Further combining proportional coverage
with an implicit policy elimination scheme, we obtained the first computationally efficient algo-
rithm for best policy identification whose sample complexity scales with policy gaps. To assess the
quality of these approaches, in future work we will investigate instance-dependent lower bounds on
the sample complexity of PAC RL algorithms, that are currently missing in the literature.

Acknowledgments

Aymen Al-Marjani ackowledges the support of the Chaire SeqALO (ANR-20-CHIA-0020). Emilie
Kaufmann acknoweldges the support of the French National Research Agency under the BOLD
project (ANR-19-CE23-0026-04).

References
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Appendix A. Optimal Coverage and Stochastic Minimum Flows

In this appendix, we present an equivalent linear programming formulation of the optimal coverage
problem of Section 2.2 that we call stochastic minimum flow. It is a direct extension to stochastic
MDPs of the minimum flows for directed acyclic graphs employed by Tirinzoni et al. (2022) in
deterministic MDPs.

A.1. Stochastic minimum flows

We define a flow as a non-negative function η : S ×A× [H]→ [0,∞) such that∑
a∈A

ηh(s, a) =
∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ηh−1(s′, a′) ∀s ∈ S, h > 1,

η1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A.

That is, a flow η is an allocation of visits to each state-action-stage triplet which satisfies the navi-
gation constraints of the MDP. Note that the second constraint ensures that flow can only be created
in the initial state s1. The value of η is the total amount of flow leaving the initial state, i.e.,

ϕ(η) :=
∑
a∈A

η1(s1, a).

Let c : S × A × [H] → [0,∞) be a non-negative target function. We say that a flow η is feasible
for c if

ηh(s, a) ≥ ch(s, a) ∀h ∈ [H], s ∈ S, a ∈ A.

The stochastic minimum flow problem consists in finding a feasible flow of minimum value. It can
be clearly solved as a linear program,

minimize
η∈RSAH

∑
a∈A

η1(s1, a),

subject to∑
a∈A

ηh(s, a) =
∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ηh−1(s′, a′) ∀s ∈ S, h > 1,

η1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A,
ηh(s, a) ≥ ch(s, a) ∀h ∈ [H], s ∈ S, a ∈ A.

(7)

We now prove that the optimal value of (7) is equal to ϕ?(c), the optimal coverage complexity
introduced in Section 2.2.

Lemma 9 If there exists a feasible flow for the target function c, the optimal value of (7) is

ϕ?(c) = min
ρ∈Ω

max
h,s,a

ch(s, a)

ρh(s, a)
.
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Proof Let us start from the linear programming formulation (7) and perform the change of variables
ρh(s, a)← ηh(s,a)

Z and Z ←
∑

s′∈S
∑

a′∈A ηh(s′, a′) for all h, s, a. Note that Z is the value of the
original flow η (and thus it does not depend on the stage), while ρh(s, a) is a probability distribution
over the state-action space for each h ∈ [H]. We obtain the following optimization problem (no
longer a linear program due to the presence of a bilinear constraint):

minimize
Z≥0,ρ∈RSAH

Z,

subject to∑
a∈A

ρh(s, a) =
∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ρh−1(s′, a′) ∀s ∈ S, h > 1,

ρ1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A,∑
s∈S

∑
a∈A

ρh(s, a) = 1 ∀h ∈ [H],

ρh(s, a) ≥ 0 ∀h ∈ [H], s ∈ S, a ∈ A,

Z ≥ ch(s, a)

ρh(s, a)
∀h ∈ [H], s ∈ S, a ∈ A.

The optimal solution for Z is clearly Z = maxh,s,a
ch(s,a)
ρh(s,a) , while the first four constraints define

exactly the set of valid state-action distributions Ω. This proves the statement.

Lemma 10 For any α, β ≥ 0 and target functions c1, c2, ϕ?(αc1 + βc2) ≤ αϕ?(c1) + βϕ?(c2).

Proof Clearly, ϕ?(αc1) = αϕ?(c1) by definition for any α ≥ 0, c1. From the LP formulation, we
note that if η?1 (resp. η?2) is an optimal flow for c1 (resp. c2), then η?1 + η?2 is a feasible flow for
c1 +c2. This implies that ϕ?(c1 +c2) ≤ ϕ?(c1)+ϕ?(c2) for any c1, c2, which proves the statement.

A.2. Executing a minimum flow

Suppose we computed a solution η?h(s, a) to the stochastic minimum flow problem (7), or equiva-
lently a solution ρ?h(s, a) to the coverage complexity ϕ?(c). What policy should we execute in the
MDP to realize the flow? The answer comes easily from standard MDP theory (Puterman, 1994): it
is enough to execute a stochastic policy

πh(a|s) =
η?h(s, a)∑
b∈A η

?
h(s, b)

=
ρ?h(s, a)∑
b∈A ρ

?
h(s, b)

∀h, s, a. (8)

It is then easy to prove that π realizes the the optimal distribution ρ?h(s, a).

Proposition 11 Let π be the policy defined in (8), then, for each h, s, a,

pπh(s, a) =
η?h(s, a)∑

s′∈S
∑

a′∈A η
?
h(s′, a′)

= ρ?h(s, a).
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Proof This is a well-known result (e.g., Puterman, 1994). For completeness, let us prove it by
induction. Note that ρ? is the normalization of η? by definition. Clearly, the statement holds at
h = 1 since, for all actions a ∈ A,

pπ1 (s1, a) = π1(a|s1) =
ρ?1(s1, a)∑
b ρ

?
1(s1, b)

= ρ?1(s1, a),

and pπ1 (s, a) = ρ?1(s, a) = 0 for all other states. Suppose the statement holds at h− 1 ≥ 1. Then,

pπh(s, a) =
∑
s′∈S

∑
a′∈A

pπh−1(s′, a′)︸ ︷︷ ︸
=ρ?h−1(s′,a′)

ph−1(s|s′, a′)πh(a|s)

=
∑
s′∈S

∑
a′∈A

ρ?h−1(s′, a′)ph−1(s|s′, a′)︸ ︷︷ ︸
=
∑
b∈A ρ

?
h(s,b)

ρ?h(s, a)∑
b∈A ρ

?
h(s, b)

= ρ?h(s, a).

Note that the denominator in the expression of pπh(s, a) is equal to ϕ?(c) for any h ∈ [H]. Thus, we
have pπh(s, a) = η?h(s, a)/ϕ?(c). If we execute π for t = dϕ?(c)e episodes, we have that

E[nth(s, a)] =
dϕ?(c)e
ϕ?(c)

η?h(s, a) ≥ η?h(s, a) ≥ ch(s, a) ∀h, s, a.

Hence, we realize the flow in expectation.

A.3. Bounding the minimum flow

We are interested in upper and lower bounding the value of the stochastic minimum flow ϕ?(c) as a
function of c. We start by deriving some simple (probably loose) bounds.

Lemma 12 Suppose there exists a feasible flow for the target function c. Then,

max
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a) ≤ ϕ?(c) ≤
∑
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a)

maxπ pπh(s, a)
.

Proof The proof of the lower bound is trivial by noting that the value of any flow η can be written as
ϕ(η) =

∑
s∈S

∑
a∈A ηh(s, a) for all h ∈ [H] and that any optimal flow satisfies η?h(s, a) ≥ ch(s, a)

for all h, s, a. Let us prove the upper bound.
Let us define wh(s, a) := ch(s,a)

maxπ∈Π p
π
h(s,a) , with the convention that wh(s, a) = 0 if ch(s, a) = 0

regardless of the value of the denominator. Note that, if maxπ∈Π p
π
h(s, a) = 0, then (s, a, h) is

unreachable and it must be that ch(s, a) = 0 since we assumed the minimum flow problem to
be feasible. For any reachable (s, a, h), let πs,a,h ∈ arg maxπ∈Π p

π
h(s, a). For any unreachable

(s, a, h), let πs,a,h be an arbitrary deterministic policy. Let us define the following mixed state-
action distribution:

∀h, s, a : p̃h(s, a) :=
∑
l∈[H]

∑
s′∈S

∑
a′∈A

wl(s
′, a′)

Z
p
πs′,a′,l
h (s, a),
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where Z :=
∑

l∈[H]

∑
s′∈S

∑
a′∈Awl(s

′, a′). Since this is a convex combination of state-action
distributions of deterministic policies (i.e., of {πs,a,h}s,a), p̃ ∈ Ω (Puterman, 1994). Then,

ϕ?(c) = min
ρ∈Ω

max
h,s,a

ch(s, a)

ρh(s, a)
≤ max

h,s,a

ch(s, a)

p̃h(s, a)
≤ Z max

h,s,a

ch(s, a)

wh(s, a)p
πs,a,h
h (s, a)

=
∑
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a)

maxπ pπh(s, a)
.

Lemma 13 Suppose there exists a feasible flow for the lower bound function c. Then,

ϕ?(c) ≤
∑
h∈[H]

inf
π∈ΠS

max
s∈S

1

pπh(s)

∑
a∈A

ch(s, a).

Proof Fix any h ∈ [H]. Note that

min
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)
= min

ρ∈Ω
max
s

1

ρh(s)
min

π∈P(A)

ch(s, a)

π(a)
= min

ρ∈Ω
max
s

∑
a∈A ch(s, a)

ρh(s)
.

Now let ρh denote any solution to this optimization problem and define the mixed distribution
ρ̃ :=

∑H
l=1

Zl
Z ρ

l, where Zl := minρ∈Ω maxs

∑
a∈A cl(s,a)

ρl(s)
and Z :=

∑H
l=1 Zl. Then, ρ̃ ∈ Ω and thus

ϕ?(c) ≤ max
h,s,a

ch(s, a)

ρ̃h(s, a)
≤ max

h

Z

Zh
max
s,a

ch(s, a)

ρhh(s, a)
= max

h

Z

Zh
min
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)

=
∑
h∈[H]

min
ρ∈Ω

max
s

∑
a∈A cl(s, a)

ρl(s)
.

A.4. Proof of Theorem 2

Define the coverage event Ecov =

(
∀(h, s, a) ∈ X , nτh(s, a) ≥ ch(s, a)

)
. We have that for any

δ-correct algorithm P
(
Ecov

)
≥ 1− δ. Therefore, for any triplet (h, s, a) ∈ X , we have that

E[nτh(s, a)] ≥ E[nτh(s, a)1 (Ecov)] ≥ ch(s, a)P
(
Ecov

)
≥ (1− δ)ch(s, a). (9)

Now consider the function ηh(s, a) := E[nτh(s, a)] for all h, s, a. We know that η satisfies the
navigation constraints, hence it is a valid flow (see Appendix A). Moreover it satisfies the constraint
(9). By definition of stochastic minimum flow, this means that

E[τ ] =
∑
a∈A

E[nτh(s1, a)] = ϕ(η) ≥ ϕ?
(

[(1− δ)ch(s, a)]h,s,a

)
= (1− δ)ϕ?(c),

where in the last line we used that for any constant α,ϕ?(αc) = αϕ?(c).
�
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Appendix B. CovGame

B.1. Proof of Theorem 3

Note that, at the beginning of any round t ≥ 1, the learner Aλ works over the simplex P(Xkt),
hence λt ∈ P(Xkt). Let m denote the number of times kt changes value through the execution of
the algorithm, that is m = |{t ≤ τ : kt 6= kt+1}|. Moreover, let τ0 := 1 and, for i ∈ [m], let τi be
the round at the beginning of which kt has changed for the i-th time (i.e., kτi 6= kτi−1). Note that,
for any i ≥ 0 and t ∈ {τi, . . . , τi+1 − 1}, kt = kτi . We start by bounding m.

Lemma 14 It holds that m ≤ dlog2(cmax/c
+
min)e ∨ 1. Moreover, for any i ∈ {0, . . . ,m − 1}, we

have min(h,s,a)∈Xkτi
n
τi+1−1
h (s, a) ≤ c+

min2kτi+2.

Proof By definition of the update rule, we have that kt+1 ≥ kt for all t ≥ 1. Now take any time
t in which kt has changed value m times. Since k1 ≥ 0, this means that kt ≥ m. By definition of
kt, we know that nt−1

h (s, a) ≥ ch(s, a) for all (h, s, a) ∈ X \ Xj for some j ≥ m. However, if
m ≥ dlog2(cmax/c

+
min)e ∨ 1, Xj = ∅ and thus the algorithm must have stopped. This prove that

m ≤ dlog2(cmax/c
+
min)e ∨ 1.

To prove the second statement, we note that for any i < m, we have kτi+1−1 = kτi and
n
τi+1−2
h (s, a) ≥ ch(s, a) for all (h, s, a) ∈ X \ Xkτi . Moreover, there must be some (h, s, a) ∈
X \ Xkτi+1 such that nτi+1−2

h (s, a) < ch(s, a). Indeed, if this was not the case, we would have an
update of k at the end of round τi+1 − 2 instead of τi+1 − 1. Since all the triplets in Xkτi have been
covered, the uncovered triplet must be in Xkτi ∩ X \ Xkτi+1 = Xkτi \ Xkτi+1. By definition, all
(h, s, a) ∈ Xkτi \ Xkτi+1 satisfy ch(s, a) ≤ c+

min2kτi+1. Hence,

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≤ min

(h,s,a)∈Xkτi
n
τi+1−2
h (s, a) + 1 < c+

min2kτi+1 + 1 ≤ c+
min2kτi+2

where we use that c+
min ≥ 1.

Lemma 15 Under Assumption 1 and 2, with probability at least 1− δ, for any i ∈ {0, . . . ,m−1},

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≥ 1

8

i∑
j=0

τj+1 − τj
ϕ?(1Xkτj

)
− 3

8
RΠ
δ (τi+1)− 3

2

i∑
j=0

Rλ(τj+1 − τj)− 3 log(4τi+1/δ).

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≥ 1

8

τi+1 − τi
ϕ?(1Xkτi

)
− 3

8
RΠ
δ (τi+1)− 3

2
Rλ(τi+1)− 3 log(4τi+1/δ).
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Proof Take any i ∈ {0, . . . ,m− 1}. Note that

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) = min

(h,s,a)∈Xkτi

τi+1−1∑
t=1

1
(
sth = s, ath = a

)
(definition of counts)

= min
(h,s,a)∈Xkτi

i∑
j=0

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)
(definition of {τj}j≥0)

≥
i∑

j=0

min
(h,s,a)∈Xkτj

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)
(Xkτi ⊆ Xkτj for all j ≤ i)

=
i∑

j=0

min
λ∈P(Xkτj )

∑
(h,s,a)∈Xkτj

λh(s, a)

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)

=
i∑

j=0

min
λ∈P(Xkτj )

τj+1−1∑
t=τj

`t(λ). (definition of `t(λ))

For each j, by the regret bound of the λ player (Assumption 2),

min
λ∈P(Xkτj )

τj+1−1∑
t=τj

`t(λ) ≥
τj+1−1∑
t=τj

`t(λt)−

√√√√√Rλ(τj+1 − τj)
τj+1−1∑
t=τj

`t(λt)−Rλ(τj+1 − τj)

≥ 1

2

τj+1−1∑
t=τj

`t(λt)− 3

2
Rλ(τj+1 − τj),

where in the last step we used the AM-GM inequality
√
xy ≤ x+y

2 for x, y ≥ 0. Summing over j,

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≥ 1

2

τi+1−1∑
t=1

`t(λt)− 3

2

i∑
j=0

Rλ(τj+1 − τj). (10)

Let us now bound
∑τi+1−1

t=1 `t(λt). Note that `t(λt) =
∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
for all

for all t ∈ {τj , . . . , τj+1 − 1} since λt is equal to zero outside Xkτj . Then,

τi+1−1∑
t=1

`t(λt) =

τi+1−1∑
t=1

∑
h,s,a

λth(s, a)
(
1
(
sth = s, ath = a

)
± pπth (s, a)

)

=

τi+1−1∑
t=1

V πt
1

(
s1;λt

)
+

τi+1−1∑
t=1

∑
h,s,a

λth(s, a)
(
1
(
sth = s, ath = a

)
− pπth (s, a)

)
︸ ︷︷ ︸

:=Mτi+1−1

.

Since both λt and πt are Ft−1-measurable, Mτi+1−1 is a martingale with differences bounded by
1 in absolute value. Therefore, by Freedman’s inequality (e.g., Lemma 26 of Papini et al. (2021)),
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with probability at least 1− δ/2,

∀T ≥ 1, |MT | ≤

√√√√ T∑
t=1

Vt × 4 log(4T/δ) + 4 log(4T/δ)

≤

√√√√ T∑
t=1

V πt
1 (s1;λt)× 4 log(4T/δ) + 4 log(4T/δ),

where we defined Vt := Var[
∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
| Ft−1] and used the simple

bound Vt ≤ E[
∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
| Ft−1] = V πt

1

(
s1;λt

)
, which holds since∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
≤ 1 almost surely by definition of λt. Plugging this into the

initial decomposition of
∑τi+1−1

t=1 `t(λt) and using the AM-GM inequality
√
xy ≤ x+y

2 for x, y ≥ 0,

τi+1−1∑
t=1

`t(λt) ≥
τi+1−1∑
t=1

V πt
1

(
s1;λt

)
−

√√√√τi+1−1∑
t=1

V πt
1 (s1;λt)× 4 log(4τi+1/δ)− 4 log(4τi+1/δ)

≥ 1

2

τi+1−1∑
t=1

V πt
1

(
s1;λt

)
− 6 log(4τi+1/δ).

We finally bound
∑T

t=1 V
πt

1

(
s1;λt

)
for any T . For all T ≥ 1, with probability at least 1 − δ/2

from Assumption 2,

T∑
t=1

V πt
1

(
s1;λt

)
≥

T∑
t=1

V ?
1

(
s1;λt

)
−

√√√√RΠ
δ (T )

T∑
t=1

V ?
1 (s1;λt)−RΠ

δ (T ).

Applying once again the AM-GM inequality yields

T∑
t=1

V πt
1

(
s1;λt

)
≥ 1

2

T∑
t=1

V ?
1

(
s1;λt

)
− 3

2
RΠ
δ (T )

=
1

2

T∑
t=1

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a)− 3

2
RΠ
δ (T ).

Now note that, since λt is supported on Xkτj for any t ∈ {τj , . . . , τj+1 − 1},

τi+1−1∑
t=1

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a) =
i∑

j=0

τj+1−1∑
t=τj

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a)

≥
i∑

j=0

τj+1−1∑
t=τj

sup
ρ∈Ω

min
(h,s,a)∈Xkτj

ρh(s, a) =
i∑

j=0

τj+1 − τj
ϕ?(1Xkτj

)
.

Plugging everything together proves the first statement. The second result can be proved analo-
gously by simply using

∑i
j=0 minλ∈P(Xkτj )

∑τj+1−1
t=τj

`t(λ) ≥ minλ∈P(Xkτi )
∑τi+1−1

t=τi
`t(λ) in the
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first series of inequalities and continuing with the same steps. This yields a single dependence on
Rλ(τi+1 − τi), which can be upper bounded by the statedRλ(τi+1) by monotonicity ofRλ.

We are now ready to prove Theorem 3
Proof [Proof of Theorem 3] Let m be the number of times kt has changed throughout the execution
of the algorithm. Note that, in the round τ in which the algorithm stops the last change must occur,
thus τm = τ + 1, and kτ+1 is set to any value such that Xkτ+1 = ∅. Then,

τ = τm − 1 =
m−1∑
i=0

(τi+1 − τi) .

By combining Lemma 14 with Lemma 15 and rearranging, with probability at least 1 − δ, for any
i ∈ {0, . . . ,m− 1},

τi+1 − τi ≤ 8ϕ?(1Xkτi
)c+

min2kτi+2 + 8ϕ?(1Xkτi
)

(
3

8
RΠ
δ (τi+1) +

3

2
Rλ(τi+1) + 3 log(4τi+1/δ)

)
≤ 8ϕ?(1Xkτi

)c+
min2kτi+2 + ϕ?(1X )

(
3RΠ

δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)
)
,

where the second inequality is due to Xk ⊆ X for all k ∈ N and τi+1 ≤ τm for i ≤ m− 1. Then,

τm ≤ 8

m−1∑
i=0

c+
minϕ

?(1Xkτi
)2kτi+2 +mϕ?(1X )

(
3RΠ

δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)
)

+ 1.

The first term can be bounded by

8
m−1∑
i=0

c+
minϕ

?(1Xkτi
)2kτi+2 = 8

m−1∑
i=0

c+
min2kτi+2 min

ρ∈Ω
max
s,a,h

1((h, s, a) ∈ Xkτi )
ρh(s, a)

≤ 32

m−1∑
i=0

c+
min2kτi min

ρ∈Ω
max
s,a,h

1(c+
min2kτi < ch(s, a))

ρh(s, a)

≤ 32

m−1∑
i=0

min
ρ∈Ω

max
s,a,h

ch(s, a)

ρh(s, a)
= 32mϕ?(c).

Plugging this into the bound on τm, we obtain the inequality,

τm ≤ 32mϕ?(c) +mϕ?(1X )
(

3RΠ
δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)

)
+ 1.

Thus, for τm ≥ T1, we get that the sample complexity is bounded by τ ≤ 64mϕ?(c). Thus, we
conclude that τ ≤ τm ≤ max{T1, 64mϕ?(c)} ≤ 64mϕ?(c) + T1. The proof is concluded by using
Lemma 14 to bound m.
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B.2. Proof of Corollary 4

We need to bound T1 from Theorem 3 when using WMF and UCBVI. By definition of T1 in Theo-
rem 3,

T1 − 1

2
≤ mϕ?(1X )

(
3RΠ

δ (T1) + 12Rλ(T1) + 24 log(4T1/δ)
)

+ 1.

Recall that, by (4) and (5),

Rλ(T ) = 16 log(SAH) + 1 RΠ
δ (T ) = 65536SAH2(log(2SAH/δ) + 6S) log(T + 1)2.

For T ≥ 3 and assuming SAH ≥ 2 (otherwise the result is trivial), it is easy to see that Rλ(T ) ≤
RΠ
δ (T ) and 24 log(4T/δ) ≤ RΠ

δ (T ). Theorefore, for some numerical constant c1,

T1 ≤ c1mϕ
?(1X )SAH2(log(2SAH/δ) + 6S) log(T1 + 1)2.

Solving the inequality in T1 yields the stated bound.
�

B.3. Links with concave-utility reinforcement learning

The (inverse) complexity term ϕ?(c) that we seek to approximate with COVGAME can be expressed
as the maximization of a concave function of the visitation probabilities:

1

ϕ?(c)
= max

ρ∈Ω
fc(ρ) where fc(ρ) = min

(h,s,a)∈X

ρh(s, a)

ch(s, a)
.

Computing the maximizer without the knowledge of the MDP falls in the framework of concave
utility reinforcement learning (or convex reinforcement learning when we instead minimize a con-
vex function (Zahavy et al., 2021)) which has attracted a lot of interest recently (Hazan et al., 2019;
Zhang et al., 2020; Geist et al., 2022). Several authors proposed the use of a Frank-Wolfe approach,
when the function f to maximize is smooth (which is not the case for fc). Indeed, it was observed
that in the Frank-Wolfe update the computation of

arg max
ρ∈Ω

ρ>∇f(ρ) = arg max
ρ∈Ω

∑
h,s,a

ρh(s, a)(∇f(ρ))h,s,a

can be interpreted as solving the MDP when the reward function is rh(s, a) = (∇f(ρ))h,s,a. Differ-
ent authors proposed to combine Frank-Wolfe with regret minimizers to cope for the unknown MDP
(Cheung, 2019; Zahavy et al., 2021). For example Wagenmaker and Jamieson (2022) propose a
generic algorithm for smooth experimental design in linear MDPs (which generalizes maxρ∈Ω f(ρ)
to optimizing over possible covariance matrices) which runs a regret minimizer for a long time on a
reward function given by the gradient of the objective. To tackle non-smooth objective, they further
propose to use a log-sum-exp smoothening trick.

Interestingly, each phase of COVGAME may be interpreted as doing a Frank-Wolfe update on
a sequence of smoothening of an objective of the form g(ρ) = min(h,s,a)∈Xk ρh(s, a), where the
regret minimizer is further never restarted. Indeed, introducing

gη(ρ) =
1

η
log

 ∑
(h,s,a)∈X

eηρh(s,a)

 ,

28



ACTIVE COVERAGE FOR PAC REINFORCEMENT LEARNING

we have

(∇gη(ρ))h,s,a =
eηρh(s,a)∑

(h′,s′,a′)∈X e
ηρh′ (s

′,a′)

and the reward λth(s, a) used by COVGAME when Xk is the set to be covered and the last restart
occured at time tk can be written

λth(s, a) = ∇gηt−tk
(

(nth(s, a)− ntkh (s, a))h,s,a

)
= ∇gη̃t

((nth(s, a)− ntkh (s, a)

t− tk

)
h,s,a


where η̃t = ξt−tk is the (time-varying) smoothening parameter, with ξt the variance-dependent
learning rate defined by Cesa-Bianchi et al. (2005).

Appendix C. UCBVI with Changing Rewards

In this appendix, we study the following regret minimization setting with changing rewards. At the
beginning of each episode t ≥ 1, the learner receives a known reward function rth(s, a). The learner
does not know the transition probabilities p and its goal is to minimize the regret

T∑
t=1

(
V ?

1 (s1; rt)− V πt

1 (s1; rt)
)
,

where V π
1 (s1; r) :=

∑
h,s,a p

π
h(s, a)rh(s, a) and V ?

1 (s1; r) := maxπ V
π

1 (s1; r). We make the fol-
lowing assumption on the sequence of rewards.

Assumption 3 For all t ≥ 1, rth(s, a) ∈ [0, 1] for all h, s, a, and
∑

h,s,a r
t
h(s, a) ≤ 1.

Note that this implies that
∑H

h=1 rh(sh, ah) ∈ [0, 1] for any trajectory {(sh, ah)}h∈[H] almost surely.

C.1. Algorithm

We study a variant of the UCBVI algorithm (Azar et al., 2017) adapted to this setting. For any
h < H , we define recursively upper confidence bounds over optimal value functions for any reward
r as

Q
t
h(s, a; r) =

(
rh(s, a) + P̂ th,s,aV

t
h+1(r) +Bt

h(s, a; r)
)
∧ 1,

where QtH(s, a; r) = rH(s, a), V t
h+1(s; r) := maxaQ

t
h(s, a; r), and

Bt
h(s, a; r) := max


√√√√8V(P̂ th,s,a, V

t
h+1(r))β(nth(s, a), δ)

nth(s, a)
,
8β(nth(s, a), δ)

nth(s, a)

 .

Note that this bonus is infinite for nth(s, a) = 0. As we will only evaluate these quantities in
the rewards observed at the corresponding round, we shall abbreviate Qth(s, a) := Q

t
h(s, a; rt+1),

V
t
h(s) := V

t
h(s; rt+1), and Bt

h(s, a) := Bt
h(s, a; rt+1) for all t ∈ N. UCBVI plays at each episode

πth(s) ∈ arg max
a

Q
t−1
h (s, a),

which is thus greedy w.r.t. the optimistic value function for reward rt.
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C.2. Analysis

The analysis follows the one of EULER (Zanette and Brunskill, 2019b) and uses several technical
results from Ménard et al. (2021) and Zhang et al. (2021c). Let us define the event

E :=

{
∀t ∈ N, h, s, a : KL(p̂th(s, a), ph(s, a)) ≤

β(nth(s, a), δ)

nth(s, a)

}
,

where β(n, δ) := log(2SAH/δ) + S log(8e(n+ 1)). Moreover, let

G :=

{
∀t ∈ N, h, s, a : nth(s, a) ≥ 1

2
nth(s, a)− βcnt(δ)

}
,

where βcnt(δ) := log(2SAH/δ) and nth(s, a) =
∑t

j=1 p
πj

h (s, a).

Lemma 16 (Bernstein-like bound) Under event E, for all h, s, a, t and value function V s.t.
Vh(s) ∈ [0, 1] for all h, s,

|(Ph,s,a − P̂ th,s,a)Vh+1| ≤

√√√√2V(P̂ th,s,a, Vh+1)β(nth(s, a), δ)

nth(s, a)
+

2β(nth(s, a), δ)

3nth(s, a)

≤ max


√√√√8V(P̂ th,s,a, Vh+1)β(nth(s, a), δ)

nth(s, a)
,
4β(nth(s, a), δ)

3nth(s, a)

 .

Proof This is immediate by combining the definition of E with Lemma 10 of Ménard et al. (2021)
and x+ y ≤ 2 max{x, y}.

Lemma 17 (Optimism) Under event E, Qth(s, a; r) ≥ Q?h(s, a; r) for all t, h, s, a and any reward
r satisfying Assumption 3.

Proof By definition, QtH(s, a; r) = Q?H(s, a; r) = rH(s, a). Thus, the statement holds at stage H .
Now suppose it holds at stage h+ 1 for h ∈ [H − 1]. This implies that V t

h+1(s; r) ≥ V ?
h+1(s; r) for

all s. Then,

rh(s, a) + P̂ th,s,aV
t
h+1(r) +Bt

h(s, a; r)

= rh(s, a) + P̂ th,s,aV
t
h+1(r) + max


√√√√8V(P̂ th,s,a, V

t
h+1(r))β(nth(s, a), δ)

nth(s, a)
,
8β(nth(s, a), δ)

nth(s, a)


≥ rh(s, a) + P̂ th,s,aV

?
h+1(s; r) + max


√√√√8V(P̂ th,s,a, V

?
h+1(r))β(nth(s, a), δ)

nth(s, a)
,
8β(nth(s, a), δ)

nth(s, a)


≥ rh(s, a) + Ph,s,aV

?
h+1(s; r) = Q?h(s, a; r),

where the first inequality uses the inductive hypothesis together with the monotonicity property in
Lemma 14 of Zhang et al. (2021c), while the second inequality uses Lemma 16. The fact that
Q?h(s, a; r) ∈ [0, 1] for any h, s, a and r satisfying Assumption 3 concludes the proof.
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Lemma 18 (Variance concentration) Under event E, for any t, h, s, a, any reward r satisfying
Assumption 3, and any value function V s.t. Vh(s) ∈ [0, 1] for all h, s,

V(P̂ th,s,a, V
t
h+1(r)) ≤ 4V(Ph,s,a, Vh+1) + 4Ph,s,a|V

t
h+1(r)− Vh+1|+ 4

β(nth(s, a), δ)

nth(s, a)
.

Proof By combining Lemma 11 and 12 of Ménard et al. (2021) together with the definition of E,

V(P̂ th,s,a, V
t
h+1(r)) ≤ 2V(Ph,s,a, V

t
h+1(r)) + 4

β(nth(s, a), δ)

nth(s, a)

≤ 4V(Ph,s,a, Vh+1) + 4Ph,s,a|V
t
h+1(r)− Vh+1|+ 4

β(nth(s, a), δ)

nth(s, a)
.

Theorem 19 Under the assumptions above, with probability 1 − δ, for any T ∈ N, the regret of
UCBVI for changing rewards is bounded by

T∑
t=1

(
V ?

1 (s1; rt)− V πt

1 (s1; rt)
)
≤ 5140SAH2LT,δ + 256

√√√√SAHLT,δ

T∑
t=1

V πt
1 (s1; rt),

whee LT,δ := (log(2SAH/δ) + 6S) log(T + 1)2.

Proof Note that P(E,G) ≥ 1 − δ by Lemma 3 of Ménard et al. (2021) and a union bound. We
shall thus carry out the proof conditioned on E and G holding. Fix any T ∈ N. We start from the
same regret decomposition as in the proof of Theorem 2 of Zanette and Brunskill (2019b). First, by
Lemma 17,

T∑
t=1

(
V ?

1 (s1; rt)− V πt

1 (s1; rt)
)
≤

T∑
t=1

(
V
t−1
1 (s1)− V πt

1 (s1; rt)
)
. (11)

For any t, h, s, a,

Q
t−1
h (s, a)−Qπth (s, a; rt) ≤ P̂ th,s,aV

t−1
h+1 +Bt−1

h (s, a) ∧ 1− Ph,s,aV πt

h+1(rt)

≤ Ph,s,aV
t−1
h+1 + |(P̂ th,s,a − Ph,s,a)V

t−1
h+1|+Bt−1

h (s, a) ∧ 1− Ph,s,aV πt

h+1(rt)

≤ Ph,s,aV
t−1
h+1 + 2Bt−1

h (s, a) ∧ 1− Ph,s,aV πt

h+1(rt),

where the last step uses Lemma 16 and the fact that values are all in [0, 1]. Theorefore,

V
t−1
h (s)− V πt

h (s; rt) = Q
t−1
h (s, πth(s))−Qπth (s, πth(s); rt)

≤ Ph,s,πth(s)

(
V
t−1
h+1 − V πt

h+1(rt)
)

+ 2Bt−1
h (s, πth(s)) ∧ 1. (12)

31



AL-MARJANI TIRINZONI KAUFMANN

Enrolling this reasoning, we thus obtain

V
t−1
1 (s1)− V πt

1 (s1; rt) ≤ 2
∑
h,s,a

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
(13)

= 2
∑

(h,s,a)∈Zt

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
+ 2

∑
(h,s,a)/∈Zt

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
,

where Zt := {(h, s, a) : nt−1
h (s, a) ≥ 4βcnt(δ)}. Recall that nt−1

h (s, a) :=
∑t−1

i=1 p
πi

h (s, a). Let
WT := 2

∑T
t=1

∑
h,s,a p

πt

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
. Summing the previous inequality over all time

steps and using Lemma 20,

WT ≤ 2
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
︸ ︷︷ ︸

¬

+10SAHβcnt(δ). (14)

Now recall that Bt−1
h (s, a) depends on V(P̂ t−1

h,s,a, V
t−1
h+1). By Lemma 18, for any t, s, a, h,

V(P̂ t−1
h,s,a, V

t−1
h+1) ≤ 4V(Ph,s,a, V

πt

h+1(rt)) + 4Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)|+ 4
β(nt−1

h (s, a), δ)

nt−1
h (s, a)

.

Plugging this into the definition of Bt−1
h (s, a) and using

√
x+ y ≤

√
x+
√
y,

Bt−1
h (s, a) ≤

√
32V(Ph,s,a, V

πt
h+1(rt))β(nt−1

h (s, a), δ)

nt−1
h (s, a)

+

√√√√32Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)|β(nt−1
h (s, a), δ)

nt−1
h (s, a)

+
16β(nt−1

h (s, a), δ)

nt−1
h (s, a)

.

Back into ¬ and using that β(x, δ) ≥ 1 for all x ≥ 0, we get

¬ ≤
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)

√
32V(Ph,s,a, V

πt
h+1(rt))β(nt−1

h (s, a), δ)

nt−1
h (s, a) ∨ 1︸ ︷︷ ︸

­

+
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)

√√√√32Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)|β(nt−1
h (s, a), δ)

nt−1
h (s, a) ∨ 1︸ ︷︷ ︸

®

+ 16
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
β(nt−1

h (s, a), δ)

nt−1
h (s, a) ∨ 1︸ ︷︷ ︸

¯

We bound these terms separately. By Lemma 21 and monotonicity of β(·, δ),

¯ ≤ 16SAH log(T + 1)β(T, δ).
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By Cauchy-Schwartz inequality and the bound on ¯,

­ ≤

√√√√32
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)V(Ph,s,a, V
πt
h+1(rt))

T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
β(nt−1

h (s, a), δ)

nt−1
h (s, a) ∨ 1

=

√√√√32

T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)V(Ph,s,a, V
πt
h+1(rt))×¯

≤ 32

√√√√SAH log(T + 1)β(T, δ)
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)V(Ph,s,a, V
πt
h+1(rt))

≤ 64

√√√√SAH log(T + 1)β(T, δ)
T∑
t=1

V πt
1 (s1; rt),

where the last inequality uses Lemma 22. It only remains to bound ®. By Cauchy-Schwartz in-
equality and the bound on ¯,

® ≤

√√√√32

T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)|
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
β(nt−1

h (s, a), δ)

nt−1
h (s, a) ∨ 1

=

√√√√32
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)| ×¯

≤ 32

√√√√SAH log(T + 1)β(T, δ)

T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)Ph,s,a|V
t−1
h+1 − V πt

h+1(rt)|

≤ 32

√√√√√√√SAH2 log(T + 1)β(T, δ) 2

T∑
t=1

∑
h,s,a

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
︸ ︷︷ ︸

=WT

,

where the last inequality uses Lemma 23 together with |V t−1
h+1(s) − V πt

h+1(s; rt)| = V
t−1
h+1(s) −

V πt

h+1(s; rt) for any s (due to optimism). Plugging the bounds on ­,®,¯ into ¬ in (14),

WT ≤ 64
√
SAH2 log(T + 1)β(T, δ)WT + 128

√√√√SAH log(T + 1)β(T, δ)

T∑
t=1

V πt
1 (s1; rt)

+ 512SAH log(T + 1)β(T, δ) + 10SAHβcnt(δ).

The sum of the last two terms can be bounded by 522SAH log(T + 1)β(T, δ) since βcnt(δ) ≤
β(T, δ). Solving the quadratic inequality in

√
WT , we get

WT ≤ 4096SAH2 log(T + 1)β(T, δ) + 256

√√√√SAH log(T + 1)β(T, δ)

T∑
t=1

V πt
1 (s1; rt)

+ 1044SAH log(T + 1)β(T, δ).
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Finally, note that WT bounds the regret by (11) and (13). The proof is concluded by using that
β(T, δ) ≤ (log(2SAH/δ) + 6S) log(T + 1) to simplify the expression.

Lemma 20 For any T ≥ 1,
∑T

t=1

∑
(h,s,a)/∈Zt p

πt

h (s, a) ≤ 5SAHβcnt(δ).

Proof By definition of Zt and since pπ
t

h (s, a) ≤ 1,

T∑
t=1

∑
(h,s,a)/∈Zt

pπ
t

h (s, a) =
∑
h,s,a

T∑
t=1

pπ
t

h (s, a)1
(
nt−1
h (s, a) < 4βcnt(δ)

)
≤ SAH(4βcnt(δ) + 1).

The result is proved by noting that 1 ≤ βcnt(δ).

Lemma 21 Under event G, for any T ≥ 1,
T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
1

nt−1
h (s, a) ∨ 1

≤ 16SAH log(T + 1).

Proof By definition of G and Zt, if (h, s, a) ∈ Zt then nt−1
h (s, a) ≥ nt−1

h (s, a)/4. Then,

T∑
t=1

∑
(h,s,a)∈Zt

pπ
t

h (s, a)
1

nt−1
h (s, a) ∨ 1

≤ 4

T∑
t=1

∑
h,s,a

pπ
t

h (s, a)
1

nt−1
h (s, a) ∨ 1

= 4
∑
h,s,a

T∑
t=1

nth(s, a)− nt−1
h (s, a)

nt−1
h (s, a) ∨ 1

≤ 16SAH log(T + 1),

where the last inequality uses Lemma 9 of Ménard et al. (2021).

Lemma 22 For any T ≥ 1,
T∑
t=1

∑
h,s,a

pπ
t

h (s, a)V(Ph,s,a, V
πt

h+1(rt)) ≤ 4
T∑
t=1

V πt

1 (s1; rt).

Proof Starting from the well-known variance decomposition lemma (see, e.g., Lemma 7 of Ménard
et al. (2021)) and following with the same bounds as in the proof of Lemma 3.4 of Jin et al. (2020),

∑
h,s,a

pπ
t

h (s, a)V(Ph,s,a, V
πt

h+1(rt)) = Eπ
t

( H∑
h=1

rth(sh, ah)− V πt

1 (s1; rt)

)2


≤ 2Eπ
t

( H∑
h=1

rth(sh, ah)

)2
+ 2V πt

1 (s1; rt)2

≤ 2Eπ
t

[
H∑
h=1

rth(sh, ah)

]
+ 2V πt

1 (s1; rt)

= 4V πt

1 (s1; rt)

where the first inequality uses (x+ y)2 ≤ 2x2 + 2y2 and the second one uses Assumption 3.
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Lemma 23 Under event E, for any t,∑
h,s,a

pπ
t

h (s, a)Ph,s,a(V
t−1
h+1 − V πt

h+1(rt)) ≤ 2H
∑
h,s,a

pπ
t

h (s, a)
(
Bt−1
h (s, a) ∧ 1

)
.

Proof Since
∑

s,a p
πt

h (s, a)ph(s′|s, a) = pπ
t

h+1(s′) for any s′,

∑
h,s,a

pπ
t

h (s, a)Ph,s,a(V
t−1
h+1 − V πt

h+1(rt)) =
H∑
h=2

∑
s

pπ
t

h (s)(V
t−1
h (s)− V πt

h (s; rt))

≤
H∑
h=2

∑
s

pπ
t

h (s)Ph,s,πth(s)

(
V
t−1
h+1 − V πt

h+1(rt)
)

+

H∑
h=2

∑
s

pπ
t

h (s)2Bt−1
h (s, πth(s)) ∧ 1

≤ H
∑
h,s

pπ
t

h (s)2Bt−1
h (s, πth(s)) ∧ 1,

where the first inequality uses the decomposition in (12) while the second one applies this reasoning
recursively.

Appendix D. Concentration of Value Functions

In this appendix, we derive the concentration bounds on value functions needed for our PAC RL
algorithms. We shall assume that rewards lie in [0, 1] almost surely.

D.1. General results

Lemma 24 [Concentration of p̂TV ] LetZ ⊆ [H]×S×A,Z := |Z|, and {Vh : S → [0, H]}h∈[H+1]

be a collection of bounded functions. With probability at least 1 − δ, for any t ≥ t0 := inf{t :
nth(s, a) ≥ 1, ∀(h, s, a) ∈ Z},∑

(h,s,a)∈Z

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TVh+1

∣∣2 ≤ 4H2 log(1/δ) + 2ZH2 log(1 + t).

Proof We start by building a suitable stochastic process to apply Theorem 1 of Abbasi-Yadkori et al.
(2011). Let Ft,h denote the filtration up to stage h of round t. For any h ∈ [H], t ≥ 1, the random
variable ηth := Vh+1(sth+1) − ph(sth, a

t
h)TVh+1 is zero-mean and H2-subgaussian conditionally

on Ft,h due to the boundedness of the functions {Vh}h∈[H]. Let Xt
h be a Z-dimensional vector

containing a value 1 at position (h, sth, a
t
h) if (h, sth, a

t
h) ∈ Z , and zero at all other positions. Note

that Xt
h is Ft,h-measurable, while ηth is Ft,h+1-measurable. Let Yt :=

∑t
j=1

∑H
h=1X

t
hη

t
h. For all

(h, s, a) ∈ Z , we have

[Yt]h,s,a =
t∑

j=1

1
(
sjh = s, ajh = a

)(
Vh+1(sjh+1)− ph(sjh, a

j
h)TVh+1

)
= nth(s, a)(p̂th(s, a)− ph(s, a))TVh+1.
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Let Dt :=
∑t

j=1

∑H
h=1X

t
h(Xt

h)T = diag([nth(s, a)](h,s,a)∈Z). Theorem 1 of Abbasi-Yadkori et al.
(2011) combined with Equation 20.9 from Lattimore and Szepesvari (2019) yield that

P
(
∀t ≥ 1,

∥∥Y t
∥∥2

(I+Dt)−1 ≤ 2H2 log(1/δ) + ZH2 log(1 + t/Z)

)
≥ 1− δ.

Since nth(s, a) ≥ 1 for any t ≥ t0 and (h, s, a) ∈ Z , following Corollary 3 in Réda et al. (2021),

Dt = diag
(
[nth(s, a)](h,s,a)∈Z

)
� (I +Dt)/2,

which implies
∥∥Y t

∥∥2

D−1
t
≤ 2

∥∥Y t
∥∥2

(I+Dt)−1 for any t ≥ t0. Plugging this into the probability above

and using that
∥∥Y t

∥∥2

D−1
t

is exactly the left-hand side of the statement concludes the proof.

Lemma 25 [Concentration of p̂TV for all V ] Let Z ⊆ [H] × S × A, Z := |Z|, and V := {V :
S → [0, H]} be the set of all bounded functions mapping S into [0, H]. With probability at least
1− δ, for any functions {Vh ∈ V}H+1

h=2 and t ≥ t0 := inf{t : nth(s, a) ≥ 1, ∀(h, s, a) ∈ Z},

∑
(h,s,a)∈Z

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TVh+1

∣∣2 ≤ 4H2 log(1/δ) + 12(SH + Z)H2 log(1 + t).

Proof Let Yt(V2, . . . , VH+1) :=
∑

(h,s,a)∈Z n
t
h(s, a)

∣∣(p̂th(s, a) − ph(s, a))TVh+1

∣∣2 denote the
quantity to be bounded for fixed functions Vh ∈ V for all 2 ≤ h ≤ H + 1. Let {ξt}t≥1 be a
sequence of positive values to be specified later. For all t, let Ξt := {ξt, 2ξt, . . . bH/ξtcξt}. Note
that |Ξt| = bH/ξtc and, for all x ∈ [0, H], there exists y ∈ Ξt s.t. |x− y| ≤ ξt. For all t, we build a
discrete cover Vt of V as Vt := {V : S → [0, H] | ∀s : V (s) ∈ Ξt}. For any t, {Vh ∈ V}H+1

h=2 , and
{V h ∈ Vt}H+1

h=2 , using x2−y2 = (x+y)(x−y) and abbreviating ph(s, a) and p̂th(s, a) respectively
as ph,s,a and p̂th,s,a,

∣∣Yt(V2, . . . , VH+1)− Yt(V 2, . . . , V H+1)
∣∣

=
∣∣∣ ∑

(h,s,a)∈Z

nth(s, a)(p̂th,s,a − ph,s,a)T (Vh+1 + V h+1)(p̂th,s,a − ph,s,a)T (Vh+1 − V h+1)
∣∣∣

≤ 2H
∑

(h,s,a)∈Z

nth(s, a)
∣∣∣(p̂th,s,a − ph,s,a)T (Vh+1 − V h+1)

∣∣∣
≤ 4Ht‖Vh+1 − V h+1‖∞.

Therefore,

min
{V h∈Vt}H+1

h=2

∣∣Yt(V2, . . . , VH+1)− Yt(V 2, . . . , V H+1)
∣∣ ≤ 4Hξtt. (15)
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Now let αt := 4H2 log(1/δt) + 2ZH2 log(1 + t) + 4Hξtt for a sequence {δt}t of values in (0, 1)
to be defined. We have

P
(
∃t ≥ t0, {Vh ∈ V}H+1

h=2 : Yt(V2, . . . , VH+1) ≥ αt
)

≤ P
(
∃t ≥ t0, {V h ∈ Vt}H+1

h=2 : Yt(V 2, . . . , V H+1) ≥ αt − 4Hξtt

)
≤
∞∑
t=t0

∑
{V h∈Vt}H+1

h=2

P
(
Yt(V 2, . . . , V H+1) ≥ 4H2 log(1/δt) + 2ZH2 log(1 + t)

)

≤
∞∑
t=t0

∑
{V h∈Vt}H+1

h=2

δt =

∞∑
t=t0

δtbH/ξtcSH ,

where the first inequality uses (15), the second one uses a union bound and the definition of αt,
the third one uses Lemma 24, and the equality uses the sizes of the two sets in the sums. Setting
ξt = H/t and δt = δ

2tSH+2 ,

∞∑
t=t0

δtbH/ξtcSH ≤
δ

2

∞∑
t=t0

1

t2
≤ δ.

Finally, with these choices we have

αt = 4H2 log(1/δ) + 4H2 log(2) + 4H2 log(tSH+2) + 2ZH2 log(1 + t) + 4H2

≤ 4H2 log(1/δ) + 4H2 log(2) + 12SH3 log(t) + 2ZH2 log(1 + t) + 4H2

≤ 4H2 log(1/δ) + 12SH3 log(t) + 12ZH2 log(1 + t).

This implies the statement.

Lemma 26 [Concentration of r̂] Let Z ⊆ [H] × S × A and Z := |Z|. With probability at least
1− δ, for any t ≥ t0 := inf{t : nth(s, a) ≥ 1,∀(h, s, a) ∈ Z},∑

(h,s,a)∈Z

nth(s, a)
(
r̂th(s, a)− rh(s, a)

)2 ≤ 4 log(1/δ) + 2Z log(1 + t).

Proof Following the proof of Lemma 24, we build a suitable stochastic process to apply Theorem
1 of Abbasi-Yadkori et al. (2011). We define Ft,h, Xt

h, Yt, Dt exactly as in the proof of Lemma 24,
while we redefine ηth := rth − rh(sth, a

t
h), with rth the random reward sample observed at stage h of

episode t. Since rewards lie in [0, 1] almost surely, ηth is zero-mean and 1-subgaussian conditionally
on Ft,h. Moreover, it is easy to see that, for all (h, s, a) ∈ Z ,

[Yt]h,s,a = nth(s, a)(r̂th(s, a)− rh(s, a)).

Theorem 1 of Abbasi-Yadkori et al. (2011) combined with Equation 20.9 from Lattimore and
Szepesvari (2019) yield that

P
(
∀t ≥ 1,

∥∥Y t
∥∥2

(I+Dt)−1 ≤ 2 log(1/δ) + Z log(1 + t/Z)

)
≥ 1− δ.
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We can then conclude exactly as in Lemma 24 by showing that
∥∥Y t

∥∥2

D−1
t
≤ 2

∥∥Y t
∥∥2

(I+Dt)−1 for
any t ≥ t0, which implies the statement.

D.2. Concentration results for RFE

For reward-free exploration, it is sufficient to concentrate the values of all deterministic policies.
Our concentration result stated below features the threshold function

βRF (t, δ) := 4H2 log(1/δ) + 24SH3 log(A(1 + t)).

Theorem 27 LetZ ⊆ [H]×S×A and Z := |Z|. Suppose that, for some ε0 > 0, maxπ p
π
h(s, a) ≤

ε0 for all (h, s, a) /∈ Z . With probability at least 1 − δ, for any t ≥ t0 := inf{t : nth(s, a) ≥
1,∀(h, s, a) ∈ Z}, π ∈ ΠD, and reward function r ∈ [0, 1]SAH ,

∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤
√√√√βRF (t, δ)

∑
(h,s,a)∈Z

pπh(s, a)2

nth(s, a)
+ (SH − Zπ)Hε0,

where Zπ := |Z ∩ {(h, s, πh(s)) : h ∈ [H], s ∈ S}|.

Proof Fix any reward r and deterministic policy π. Let V π
h and V̂ π,t

h denote the value functions of
π under (p, r) and (p̂t, r), respectively. By Lemma 29 and the assumption on the set Z ,∣∣∣ ∑

h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣
≤

∑
(h,s,a)∈Z

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣+ (SH − Zπ)Hε0.

By applying Lemma 25 on the set Zπ = Z ∩ {(h, s, πh(s)) : h ∈ [H], s ∈ S}, whose cardinality
is at most SH , and union bounding over all ASH deterministic policies, with probability at least
1− δ, the following holds for all t ≥ t0, π ∈ ΠD, and value functions bounded in [0, H]:∑

(h,s,πh(s))∈Z

nth(s, πh(s))
∣∣(p̂th(s, πh(s))− ph(s, πh(s)))TVh+1

∣∣2 ≤ βRF (t, δ).

Thus, by Lemma 30,∑
(h,s,a)∈Z

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣ =
∑

(s,πh(s),h)∈Z

pπh(s)
∣∣(p̂th(s, πh(s))− ph(s, πh(s)))T V̂ π,t

h+1

∣∣
≤ sup

u∈RSH ,∑
(s,πh(s),h)∈Z n

t
h(s,πh(s))u2

s,h≤β
RF (t,δ)

∑
(s,πh(s),h)∈Z

pπh(s)us,h

=

√√√√βRF (t, δ)
∑

(h,s,a)∈Z

pπh(s, a)2

nth(s, a)
.

38



ACTIVE COVERAGE FOR PAC REINFORCEMENT LEARNING

D.3. Concentration results for BPI

For BPI, we need concentration bounds on
∣∣V̂ π,t

1 − V π
1

∣∣ that hold uniformly across all time steps
and stochastic policies. Here V̂ π,t

1 :=
∑

h,s,a p̂
π,t
h (s, a)r̂th(s, a), where r̂th(s, a) is the MLE of

rh(s, a) and p̂π,th (s, a) is an estimator of pπh(s, a) computed from the MLEs {p̂h(s′|s, a)}h,s,a,s′ of
the transition probabilities. To this end, we shall define the thresholds

βr(t, δ) := 4 log(2/δ) + 2SAH log(1 + t),

βp(t, δ) := 4H2 log(2/δ) + 24SAH3 log(1 + t),

βbpi(t, δ) := 16H2 log(2/δ) + 96SAH3 log(1 + t).

Compared to βRF (t, δ), we note that βbpi(t, δ) features larger multiplicative constants but also a
dependency in A instead of log(A) in its second term which comes from the need to concentrate the
values of all stochastic policies.

Theorem 28 With probability at least 1 − δ, for any t ≥ t0 := inf{t : nth(s, a) ≥ 1, ∀(h, s, a)}
and π ∈ ΠS, the following holds:

∣∣V̂ π,t
1 − V π

1

∣∣ ≤
√√√√βbpi(t, δ) min

(∑
h,s,a

pπh(s, a)2

nth(s, a)
,
∑
h,s,a

p̂π,th (s, a)2

nth(s, a)

)
.

Moreover, for any r̃ ∈ [0, 1]SAH ,

∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤
√√√√βp(t, δ)

∑
h,s,a

pπh(s, a)2

nth(s, a)
.

Proof Fix any stochastic policy π. By Lemma 29,∣∣V̂ π,t
1 − V π

1

∣∣ ≤∑
h,s,a

pπh(s, a)
∣∣r̂th(s, a)− rh(s, a)

∣∣+
∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣.
By applying Lemma 26 and Lemma 25 for the set Z = {(h, s, a) : h ∈ [H], s ∈ S, a ∈ A}, which
is of cardinality SAH , with probability at least 1 − δ, the following hold for all t ≥ t0 and for all
value functions (Vh)h∈[H] supported in [0, H]:∑

h,s,a

nth(s, a)
∣∣r̂th(s, a)− rh(s, a)

∣∣2 ≤ βr(t, δ),
∑
h,s,a

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TV π,t

h+1

∣∣2 ≤ βp(t, δ). (16)

Thus, by Lemma 30, optimizing over the deviations as in the proof of Lemma 27,

∣∣V̂ π,t
1 − V π

1

∣∣ ≤√√√√βr(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
+

√√√√βp(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
.
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Using that βr(t, δ) ≤ βp(t, δ) and noting that βbpi(t, δ) = 4βp(t, δ) proves the first statement with
the first term in the minimum only. To prove it with the second term as well, it is enough to use
Lemma 29 with the roles of the two value functions swapped and repeat the same steps as above.

To prove the second statement, we proceed as in the proof of Theorem 27 and write∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤ ∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣
≤ sup

u∈RSH ,∑
h,s,a n

t
h(s,a)u2

h,s,a≤β
p(t,δ)

∑
h,s,a

pπh(s, a)uh,s,a

=

√√√√βp(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
,

where we used Lemma 30 and together with inequality (16).

D.4. Auxiliary results

Lemma 29 (Lemma E.15 of Dann et al. (2017)) Consider two MDPs with transitions p, p̂ and
rewards r, r̂, respectively. Let V π

h , V̂
π
h denote the value function of a (possibly stochastic) policy π

in these two MDPs. Then, for any s, h,

V π
h (s)− V̂ π

h (s) = Êπ
[

H∑
`=h

(
r`(s`, a`)− r̂`(s`, a`) +

(
p`(s`, a`)− p̂`(s`, a`)

)T
V π
`+1

)∣∣∣∣∣ sh = s

]
.

Lemma 30 Let n ∈ N, p, b ∈ Rn with b having strictly positive entries, and c ∈ R≥0. Then,

sup
x∈Rn:∑n
i=1 bix

2
i≤c

n∑
i=1

pixi =

√√√√c

n∑
i=1

p2
i

bi
.

Proof Let v be the value of the optimization program. Then we know that

−v = inf
x∈Rn:∑n
i=1 bix

2
i≤c

−
n∑
i=1

pixi. (17)

The Lagrangian of the quadratic program above writes as

L(x, λ) = −
n∑
i=1

pixi + λ

( n∑
i=1

bix
2
i − c

)
,

where λ ≥ 0. The KKT conditions then yield that the optimal solution satisfies that

∀i ∈ [|1, n|], xi = − pi
2λbi

n∑
i=1

bix
2
i = c
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Solving this system yields that the optimal Lagrange multiplier λ =
√

c∑n
i=1

p2
i
bi

which implies that

the value of (17) is −
√
c
∑n

i=1
p2
i
bi

.

Appendix E. Analysis of PCE

To simplify the presentation of the algorithm and the analysis, we index the counts as well as the em-
pirical estimates of transitions and rewards by their phase number. Hence, for each triplet (h, s, a),
nkh(s, a) and p̂kh(.|s, a) will refer to the number of visits and the empirical transition kernel respec-
tively after tk episodes, i.e. at the end of the k-th phase. Finally, for a dataset of episodes D,
nh(s, a;D) denotes the number of visits of (h, s, a) in the episodes stored in D.

E.1. Good event

We introduce the following events

Evis :=

(
The set built using ESTIMATEREACHABILITY

(
(h, s);

ε

4SH2
,

δ

3SH

)
for all (h, s)

satisfies
{

(h, s) : sup
π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ ⊆

{
(h, s) : sup

π
pπh(s) ≥ ε

32SH2

}
and ∀(h, s) ∈ X̂ , sup

π
pπh(s) ≤W h(s) ≤ 36 sup

π
pπh(s)

)
,

ERFp :=

(
∀k ∈ N?,∀π ∈ ΠD,∀r ∈ [0, 1]SAH ,

∣∣∣ ∑
s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπh(s, a)2

nkh(s, a)
+
ε

4

)
,

Ecov :=

(
∀k ∈ N, CovGame run with inputs (ck, δ/6(k + 1)2) terminates after at most

64mkϕ
?(ck) + Õ

(
mkϕ

?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)
)

episodes and returns a dataset Dk

such that for all (h, s, a) ∈ X̂ , nh(s, a;Dk) ≥ ckh(s, a)

)
,

where mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1 and βRF is defined in appendix D.2. Then our good event

is defined as the intersection

ERFgood := Evis ∩ ERFp ∩ Ecov.

Lemma 31 We have that PM(ERFgood) ≥ 1− δ.

Proof Let E denote the complementary event of E . We start by the following decomposition

PM(ERFgood) ≤ PM(Evis) + PM(Ecov) + PM(ERFp ∩ Evis ∩ Ecov).
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Now we bound each term separately. First observe that applying Theorem 51 with parameter ε0 =
ε/4SH2 yields PM(Evis) ≤ δ/3. Second, using Corollary 4 we have

PM(Ecov) ≤
∞∑
k=0

PM(CovGame with inputs (ck, δ/6(k + 1)2) fails)

≤
∞∑
k=0

δ

6(k + 1)2
=
δπ2

36
≤ δ/3.

Next, note that by design of PCE n0
h(s, a) = nh(s, a; D̃0) and c0 = 1X̂ so that Ecov ⊂

(
∀(h, s, a) ∈

X̂ , n0
h(s, a) ≥ 1

)
. Therefore we have

PM(ERFp ∩ Evis ∩ Ecov) ≤ PM
(
ERFp ,

{
(h, s) : sup

π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∀(h, s, a) ∈ X̂ n0

h(s, a) ≥ 1
)

= PM
({

(h, s) : sup
π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∃k ≥ 0 ∃π ∈ ΠD ∃r ∈ [0, 1]SAH :

∣∣∣ ∑
s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ >√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπh(s, a)2

nkh(s, a)
+
ε

4

)
(a)

≤ PM
({

(h, s) : sup
π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∃t ≥ t0 ∃π ∈ ΠD ∃r ∈ [0, 1]SAH :

∣∣∣ ∑
s,a,h

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ >√√√√βRF (t, δ/3)
∑

(s,a,h)∈X̂

pπh(s, a)2

nth(s, a)
+
ε

4

)
(b)

≤ δ/3,

where in (a) we introduced t0 = inf{t ≥ 1 : nth(s, a) ≥ 1,∀(h, s, a) ∈ X̂} and switched back
to indexing counts and estimates by the episode number (instead of the phase) in order to apply
Theorem 27 in (b) with Z = {(h, s, a) : (h, s) ∈ X̂} and ε0 = ε/4SH2. Combining the four
inequalities above yields the desired result.

E.2. Low concentrability / Good coverage of all policies

The next lemma shows that PCE achieves proportional coverage.

Lemma 32 Under the good event, for all phases k ≥ 0, we have that

nkh(s, a) ≥ 2k sup
π
pπh(s, a) ∀(h, s, a) ∈ X̂ .

Proof First of all, note that for any triplet (h, s, a) ∈ X̂ , supπ p
π
h(s, a) is always attained by some

deterministic policy. Therefore, it is sufficient to prove that, given a fixed deterministic policy
π ∈ ΠD,

∀k ≥ 0, ∀(h, s, a) ∈ X̂ , nkh(s, a) ≥ 2kpπh(s, a) .
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We do this by induction over k. For k = 0 the result is trivial since, under the good event, we have
that for all (h, s, a) ∈ X̂ , n0

h(s, a) ≥ c0
h(s, a) = 1 ≥ 20pπh(s, a). Now suppose that the property

holds for phase k. Then under the good event we know that for all (h, s, a), nk+1
h (s, a)−nkh(s, a) =

nh(s, a,Dk+1) ≥ ck+1
h (s, a). Plugging the definition of ck+1 (Line 9 of Algorithm 2) we get that

for any (h, s, a) ∈ X̂ ,

nk+1
h (s, a) ≥ ck+1

h (s, a)

= 2k+1W h(s)

≥ 2k+1 sup
π
pπh(s)

= 2k+1 sup
π
pπh(s, a), (18)

where the second inequality uses the event Evis.

E.3. Correctness

Lemma 33 Let p̂ be the estimate of the transition probabilities that PCE outputs. For any reward
function r, let π̂r be an optimal policy in the MDP (p̂, r). Then

P
(
∀r ∈ [0, 1]SAH , V π̂r

1 (s1; r) ≥ V ?
1 (s1; r)− ε

)
≥ 1− δ.

In other words, PCE is (ε, δ)-PAC for reward-free exploration.

Proof Assume that PCE stops as phase k and let p̂k denote the empirical transition estimates that it
returns. Fix any reward function r = [rh(s, a)]h,s,a ∈ [0, 1]SAH and let π̂ ∈ arg maxπ∈ΠD(p̂π,k)>r
be the policy obtained when planning for reward function r under the transition model p̂k. Further
define π? ∈ arg maxπ∈ΠD(pπ)>r, V ?

1 := (pπ
?
)>r, and V π̂

1 := (pπ̂)>r. Note that both π̂ and π? are
deterministic. Therefore under the good event ERFgood we have

V π̂
1 = (pπ̂)>r

(a)

≥ (p̂π̂,k)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

4

(b)

≥ (p̂π
?,k)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

4

(c)

≥ (pπ
?
)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ
?

h (s, a)2

nkh(s, a)
−

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

2

(d)

≥ V ?
1 − 2

√
HβRF (tk, δ/3)2−k − ε

2
(e)

≥ V ?
1 − ε,
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where (a) and (c) use the good event ERFp for policies π̂ and π? respectively, (b) uses the definition
of π̂, (d) uses Lemma 32 and (e) uses the stopping condition of PCE (Line 10 in Algorithm ??).
Note that the inequality above holds, under the good event Egood, jointly for all reward functions r.
Since PM(Egood) ≥ 1− δ, we have just proved that PCE is (ε, δ)-PAC for reward-free exploration.

E.4. Upper bound on the number of phases

Lemma 34 Define the index of the final phase of PCE, κf := inf
{
k ∈ N+ :

√
HβRF (tk, δ/3)24−k ≤

ε
}

. Further let τ denote the number of episodes played by the algorithm. Then under the good event,
it holds that κf <∞ and

2κf ≤ 32HβRF (τ, δ/3)

ε2
.

Proof First we prove that κf is finite. Under the good event we have

tk =
k∑
j=0

dj

≤
k∑
j=0

[
64mjϕ

?(cj) + Õ
(
mjϕ

?(1X̂ )SAH2(log(6(j + 1)2/δ) + S)
)]
,

where we recall that mj = log2

( maxs,a,h c
j
h(s,a)

mins,a,h c
j
h(s,a)∨1

)
∨ 1. Now using the fact that cjh(s, a) ≤

2j1((h, s, a) ∈ X̂ ) for j ≥ 0 we deduce that m0 = 1 and mj ≤ j ∀j ≥ 1 so that

tk ≤
k∑
j=0

[
8(j + 1)2jϕ?(1X̂ ) + Õ

(
(j + 1)ϕ?(1X̂ )SAH2(log(4(j + 1)2/δ) + S)

)]
= Ok→∞

(
k22k

)
. (19)

Now recall that the threshold βRF was defined in Appendix D as

βRF (t, δ) = 4H2 log(1/δ) + 24SH3 log(A(1 + t)) (20)

Combining (19) and (20) gives that

βRF (tk, δ/3) = ok→∞
(
2k
)
.

Therefore κf = inf
{
k ∈ N+ :

√
HβRF (tk, δ/3)24−k ≤ ε

}
is indeed finite. The proof of the

second statement is straightforward by noting that κf − 1 does not satisfy the stopping condition
(Line 12 in Algorithm 2) and using the (crude) upper bound tκf−1 ≤ τ .
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E.5. Upper bound on the phase length

Lemma 35 Let k ≥ 1 be such that PCE did not stop before phase k. Under the good event, the
number of episodes played by PCE during phase k satisfies

dk ≤ c1kHβ
RF (τ, δ/3)ϕ?

([
supπ p

π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
k
S3A2H5(log(6(k + 1)2/δ) + S)

ε

)
,

where c1 = 73728. Furthermore, the duration of the initial phase is upper bounded as

d0 ≤ Õ
(
S3A2H5(log(6/δ) + S)

ε

)
.

Proof Using the good event and the definition of ck we write

dk ≤ 64mkϕ
?

([
2kW h(s)1

(
(h, s, a) ∈ X̂

)]
h,s,a

)
+ Õ

(
mkϕ

?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)
)

(a)

≤ 64kϕ?
([

2kW h(s)1
(
(h, s, a) ∈ X̂

)]
h,s,a

)
+ Õ

(
kϕ?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)

)
,

(21)

where (a) uses that mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1 ≤ k. Now by definition of the good event we

have that for any triplet (h, s, a) ∈ X̂ , W h(s) ≤ 36 supπ p
π
h(s). Therefore

ϕ?
([

2kW h(s)1
(

(h, s, a) ∈ X̂
)]

h,s,a

)
(a)

≤ ϕ?
([

36× 2k sup
π
pπh(s)1

(
(h, s, a) ∈ X̂

)]
h,s,a

)
(b)

≤ ϕ?
([1152HβRF (τ, δ/3) supπ p

π
h(s)1

(
(h, s, a) ∈ X̂

)
ε2

]
h,s,a

)
(c)

≤ 1152HβRF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
, (22)

where (a) uses that ϕ?(c) ≤ ϕ?(c′) if ∀(h, s, a) ch(s, a) ≤ c′h(s, a), (b) uses Lemma 34 and the
fact that k ≤ κf since PCE did not stop before phase k and (c) uses Lemma 10 and the fact that
X̂ ⊆

{
(h, s, a) : supπ p

π
h(s) ≥ ε

32SH2

}
on the good event. Using again this last property yields

ϕ?(1X̂ )≤
∑
h,s,a

1
(

(h, s, a) ∈ X̂
)

supπ p
π
h(s, a)

=
∑

(h,s,a)∈X̂

1

supπ p
π
h(s)

≤ 32H3S2A

ε
, (23)
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where the first inequality uses Lemma 12. Combining (21), (22) and (23) proves the statement for
k ≥ 1. Now it remains to upper bound the duration of the burn-in phase. To that end, we write that
by definition of the good event

d0 ≤ 64m0ϕ
?(1X̂ ) + Õ

(
ϕ?(1X̂ )SAH2(log(6/δ) + S)

)
,

where m0 = log2

( maxs,a,h c
0
h(s,a)

mins,a,h c
0
h(s,a)∨1

)
∨ 1 = 1. Therefore

d0 ≤ Õ
(
ϕ?(1X̂ )SAH2(log(6/δ) + S)

)
≤ Õ

(
S3A2H5(log(6/δ) + S)

ε

)
,

where the last inequality uses (23).

E.6. Total sample complexity
Theorem 36 With probability at least 1− δ, the total sample complexity of PCE satisfies

τ ≤ Õ
((
H3 log(1/δ) + SH4

)
ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+
S3A2H5(log(1/δ) + S)

ε

)
,

where Õ hides poly-logarithmic factors in S,A,H, ε and log(1/δ).

Proof Denoting by Tvis the number of episodes used by the ESTIMATEREACHABILITY sub-routine
in line 2 of the algorithm, we write

τ = Tvis +

κf∑
k=0

dk

≤ Tvis + Õ
(
S3A2H5(log(6/δ) + S)

ε

)
+

κf∑
k=1

[
c1kHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s, a)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
k
S3A2H5(log(6(k + 1)2/δ) + S)

ε

)]
≤ Tvis + c1κ

2
fHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
, (24)

where we used Lemma 35 to upper bound (dk)k≥0. From Theorem 51, we know that Tvis is deter-
ministic and satisfies

Tvis = Õ
(
S3AH4

(
log
(
SAH
δ

)
+ S

)
ε

)
= Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
. (25)
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Combining inequalities (24) and (25) with the definition of the threshold βRF (t, δ) = 4H2 log(1/δ)+
24SH3 log(A(1 + t)) we get

τ ≤ c1κ
2
fHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
≤ c2κ

2
f

(
H3 log(1/δ) + SH4 log(A(1 + τ))

)
ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
, (26)

where c2 = 24c1 On the other hand, thanks to Lemma 34 and the definition of the threshold βRF

we have that

κf ≤ log2

(
128H3 log(1/δ) + 768SH4 log(A(1 + τ))

ε2

)
(27)

Combining (26) with (27) and solving for τ we get that

τ ≤ Õ
((
H3 log(1/δ) + SH4

)
ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+
S3A2H5(log(1/δ) + S)

ε

)
,

where Õ hides poly-logarithmic factors in S,A,H, ε and log(1/δ).

E.7. Benign instances for PCE

In this section we propose some MDP instances in which the quantity

C(PCE, ε) := ϕ?([sup
π
pπh(s, a)]h,s,a)H

3/ε2, (28)

which is (an upper bound on) the leading term in the small (δ, ε) regime in our sample complexity
bound for PCE, can be smaller than the minimax rate SAH3/ε2.

E.7.1. DISGUISED CONTEXTUAL BANDITS

Lemma 37 Suppose thatM is a ”disguised” contextual bandit, i.e.,

∀(h, s, a, s′), ph(s′|s, a) = ph(s′|s).

Then C(PCE, ε) = AH3/ε2.
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Proof In this case for any (h, s) and any policy π, pπh(s) = ph(s) is independent of the policy.
Thanks to Lemma 9 we have

ϕ?([sup
π
pπh(s, a)]h,s,a) = inf

πexp∈ΠS
max
s,a,h

supπ p
π
h(s, a)

pπ
exp

h (s, a)

= inf
πexp∈ΠS

max
s,a,h

ph(s) supπ πh(a|s)
ph(s)πexph (a|s)

= inf
πexp∈ΠS

max
s,h

1

mina π
exp
h (a|s)

= A,

where the last equality is because (mina π
exp
h (a|s))−1 ≥ A and the infimum over ΠS is achieved

by the uniform policy.

E.7.2. ERGODIC MDPS

Let α, β ∈ (0, 1) such that α > β. Further define the set of probability vectors such that

Pα,β =

{
q ∈ RS+ :

S∑
i=1

qi = 1, max
i
qi ≤ Sα−1,min

i
qi ≥

1− Sβ−1

S − 1

}
.

Note that such set is never empty since the vector (Sβ−1, 1−Sβ−1

S−1 , . . . , 1−Sβ−1

S−1 ) always satisfies the
inequalities in its definition. We define the class of MDPs Merg such that their transition kernel
satisfies

∀(h, s, a), ph(.|s, a) ∈ Pα,β.

Lemma 38 Assume thatM∈Merg, then C(PCE, ε) ≤ SαAH4/ε2.

Remark 39 Note that the ”ergodicity” of MDPs in Merg can be as small as one wishes: by taking
the limit β → 1, the constraint mins′ ph(s′|s, a) ≥ 1−Sβ−1

S−1 becomes vacuous so the MDP can be
non-ergodic. In that regime, α = 1 and we recover the minimax sample complexity (up to an H
factor) SAH3/ε2.

Proof First of all we note that

∀π ∈ Π ∀s ∈ S, pπh(s) =
∑
s′∈S

pπh−1(s)ph(s|s′, πh−1(s′))

≤
∑
s′∈S

pπh−1(s)Sα−1 = Sα−1. (29)

Similarly

∀π ∈ Π ∀s ∈ S, pπh(s) ≥ 1− Sβ−1

S − 1
. (30)
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Now using Lemma 13 we have that

ϕ?([sup
π
pπh(s, a)]h,s,a) ≤

H∑
h=1

inf
πexp∈ΠS

max
s

1

pπ
exp

h (s)

∑
a

sup
π
pπh(s, a)

=
H∑
h=1

inf
πexp∈ΠS

max
s

A supπ p
π
h(s)

pπ
exp

h (s)
= A

H∑
h=1

inf
πexp∈ΠS

max
s

supπ p
π
h(s)

pπ
exp

h (s)︸ ︷︷ ︸
:=Ch

,

(31)

Now fix h ∈ [H] and denote by πs any policy in arg maxπ∈Π p
π
h(s). Further define the stochastic

policy π̃ such that

pπ̃ =

∑
s′∈S p

πs

S
.

Using (30) we have that

∀s ∈ S, pπ̃h(s) =

∑
s′∈S p

πs
′

h (s)

S

≥
supπ∈Π p

π
h(s) + (S − 1)1−Sβ−1

S−1

S

=
supπ∈Π p

π
h(s) + 1− Sβ−1

S
. (32)

Therefore

Ch = inf
πexp∈ΠS

max
s

supπ p
π
h(s)

pπ
exp

h (s)

≤ max
s

supπ p
π
h(s)

pπ̃h(s)

(a)

≤ max
s

S supπ p
π
h(s)

supπ∈Π p
π
h(s) + 1− Sβ−1

= max
s

S

1 + 1−Sβ−1

supπ p
π
h(s)

(b)

≤ max
s

S

1 + S1−α(1− Sβ−1)

=
S

1 + S1−α − Sβ−α
≤ Sα,

where (a) uses (32) and (b) uses (29). Combining (31) with the previous inequality yields that
ϕ?([supπ p

π
h(s, a)]h,s,a) ≤ SαAH .

Appendix F. PRINCIPLE and its Analysis

F.1. Pseudo-code of PRINCIPLE

The pseudo code of PRINCIPLE is detailed in Algorithm 3.
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Algorithm 3 PRINCIPLE (PRoportIoNal Coverage with Implicit PoLicy Elimination)
1: Input: Precision ε, Confidence δ, set of reachable states S
2: Output: A policy π̂ that is ε-optimal w.p larger than 1− δ
3: Define target function c0

h(s, a) = 1 for all (h, s, a)
4: Execute COVGAME

(
c0, δ/4

)
to get dataset D0 and number of episodes d0 // BURN-IN

PHASE

5: Initialize episode count t0 ← d0 and statistics n0
h(s, a), r̂0

h(s, a), p̂0
h(.|s, a) using D̃0

6: Initialize the set of active distributions Ω0 ← Ω(p̂0)
7: for k = 1, . . . do
8: // PROPORTIONAL COVERAGE

9: Compute ckh(s, a) := 2k min
(

supρ̂∈Ωk−1 ρ̂h(s, a) +

2
√
Hβbpi(tk−1 + SAH2k, δ/2)21−k, 1

)
for all (h, s, a)

10: Execute COVGAME
(
ck, δ/4(k + 1)2

)
to get dataset D̃k and number of episodes Tk

11: if Tk > SAH2k then
12: Run PRUNEDATASET(D̃k, ck) to get effective dataset Dk and effective phase length dk
13: else
14: Set dk ← Tk and Dk ← D̃k
15: end if
16: Update effective episode count tk ← tk−1 + dk and statistics nkh(s, a), r̂kh(s, a), p̂kh(.|s, a)

using Dk
// STATE-ACTION-DISTRIBUTION ELIMINATION

17: Compute the lower confidence bound

V k
1 := sup

ρ̂∈Ω(p̂k),

max
h,s,a

ρ̂h(s,a)/nkh(s,a)≤2−k

ρ̂>r̂k −
√

22−kHβbpi(tk, δ/2)

18: Update the set of active state-action distributions

Ωk ←
{
ρ̂ ∈ Ω(p̂k) : ρ̂>r̂k ≥ V k

1 and max
h,s,a

ρ̂h(s, a)/nkh(s, a) ≤ 2−k
}

19: if
√

22−kHβbpi(tk, δ/2) ≤ ε then
20: Compute any ρ̂? ∈ arg maxρ̂∈Ωk ρ̂

>r̂k and extract the corresponding policy π̂
21: return π̂
22: end if
23: end for

F.2. Analysis of PRINCIPLE

To simplify the presentation of the algorithm and the analysis, we index the counts as well as
the empirical estimates of transitions and rewards by their phase number. Hence, for each triplet
(h, s, a), nkh(s, a), p̂kh(.|s, a) and r̂kh(s, a) will refer to the number of visits, the empirical transition
kernel and the empirical mean reward respectively after tk episodes, i.e. at the end of the k-th
phase. For a transition kernel p̃, we define the corresponding set of state-action distributions as
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Algorithm 4 PruneDataset

1: Input: Target counts c, Dataset D̃ such that nh(s, a; D̃) ≥ ch(s, a) for all (h, s, a)
2: Output: A datasetD of d ≤ SAH2k episodes satisfying nh(s, a;D) ≥ ch(s, a) for all (h, s, a)

3: Initialize dataset D ← ∅, episode number d ← 0 and dataset-counts nh(s, a;D) ← 0 for all
(h, s, a)

4: for episode e = (se` , a
e
` , R

e
`)1≤`≤H in D̃ do

5: if ∃` ∈ [H] such that n`(se` , a
e
` ;D) < c`(s

e
` , a

e
`) then

6: Update dataset-counts nh(seh, a
e
h;D)← nh(seh, a

e
h;D) + 1 for all h ∈ [H]

7: Update dataset D ← D ∪ {e} and episode number d← d+ 1
8: if nh(s, a;D) ≥ ch(s, a) for all (h, s, a) then
9: return (D, d)

10: end if
11: end if
12: end for

Ω(p̃) =
{
p̃π : π ∈ ΠS

}
. Finally, for a dataset of episodes D, nh(s, a;D) denotes the number of

visits of (h, s, a) in the episodes stored in D.

F.2.1. GOOD EVENT

We introduce the following events

Ebpi :=

(
∀k ∈ N?,∀π ∈ ΠS ,

∣∣V̂ π,k
1 − V π

1

∣∣ ≤
√√√√βbpi(tk, δ/2) min

(∑
s,a,h

pπh(s, a)2

nkh(s, a)
,
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)

)

and
∣∣∣ ∑
s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤
√√√√βbpi(tk, δ/2)

∑
s,a,h

pπh(s, a)2

nkh(s, a)
for all r̃ ∈ [0, 1]SAH

)
,

Ecov :=

(
∀k ∈ N, CovGame run with inputs (ck, δ/4(k + 1)2) terminates after at most

64mkϕ
?(ck) + Õ

(
mkϕ

?(1)SAH2(log(4(k + 1)2/δ) + S)
)

episodes and returns a dataset D̃k

such that for all (h, s, a), nh(s, a; D̃k) ≥ ckh(s, a)

)
,

where mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1 and βbpi(t, δ) = 16H2 log(2/δ) + 96SAH3 log(1 + t) is

defined in Appendix D. Then our good event is defined as the intersection

Egood := Ebpi ∩ Ecov.

Lemma 40 We have that PM(Egood) ≥ 1− δ.

Proof Let E denote the complementary event of E . We start by the following decomposition

PM(Egood) ≤ PM(Ecov) + PM(Ebpi ∩ Ecov).
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Now we bound each term separately. First observe that using Corollary 4 we have

PM(Ecov) ≤
∞∑
k=0

PM(CovGame with inputs (ck, δ/4(k + 1)2) fails)

≤
∞∑
k=0

δ

4(k + 1)2
=
δπ2

24
≤ δ/2.

Next, note that by design of PRINCIPLE n0
h(s, a) = nh(s, a; D̃0) and c0 = 1 so that Ecov ⊂(

∀(h, s, a), n0
h(s, a) ≥ 1

)
. Therefore we have

PM(Ebpi ∩ Ecov) ≤ PM
(
Ebpi and ∀(h, s, a) n0

h(s, a) ≥ 1
)

≤δ/2,

where we applied Theorem 28 and used the fact that βp(t, δ) ≤ βbpi(t, δ). Combining the two
inequalities above yields the desired result.

F.2.2. LOW CONCENTRABILITY / GOOD COVERAGE OF OPTIMAL POLICIES

Lemma 41 Under the good event, for all k ≥ 1 such that PRINCIPLE did not stop before phase
k, it holds that nh(s, a,Dk) ≥ ckh(s, a) for all (h, s, a) and dk ≤ SAH2k.

Proof Fix k ≥ 1 such that PRINCIPLE did not stop before phase k. By definition of the good event
we know that at the end of CovGame, nh(s, a; D̃k) ≥ ckh(s, a) for all (h, s, a). Now we distinguish
two cases. If Tk ≤ SAH2k: then the result follows immediately since in this case, by design of
PRINCIPLE (line 13 in Algorithm 3), Dk = D̃k and dk = Tk.
If Tk > SAH2k: the first statement is a direct consequence of the stopping condition of PRUNE-
DATASET run with parameters (D̃k, ck) (lines 7-8 in Algorithm 4). Now for the second statement,
observe that each new episode e added by PRUNEDATASET to Dk increments the dataset-count of
at least one triplet (h, s, a) that is not yet covered, i.e. nh(s, a;Dk) < ckh(s, a). By the pigeon-hole
principle it takes at most

∑
h,s,a c

k
h(s, a) episodes to ensure that nh(s, a,Dk) ≥ ckh(s, a) for all

(h, s, a). Therefore

dk ≤
∑
h,s,a

ckh(s, a) ≤ SAH2k,

where we used that ckh(s, a) ≤ 2k due to the clipping.

The next lemma shows that the set of active state-action distributions always contains the distri-
butions induced by optimal policies.

Lemma 42 Under the good event, for all optimal policies π? ∈ Π? and all phases k ≥ 0, we have
that

p̂π
?,k ∈ Ωk and nkh(s, a) ≥ 2kpπ

?

h (s, a) ∀(h, s, a).

52



ACTIVE COVERAGE FOR PAC REINFORCEMENT LEARNING

Proof We fix an optimal policy π? and prove the statement by induction. For k = 0, the fact that
p̂π

?,0 ∈ Ω0 is trivial since Ω0 = Ω(p̂0) consists of all possible state-action distributions induced
in the MDP whose transition kernel is p̂0. Furthermore, under the good event we have that, for
all (h, s, a), n0

h(s, a) ≥ c0
h(s, a) = 1 ≥ 20 max

(
pπ

?

h (s, a), p̂π
?,0
h (s, a)

)
. Now suppose that the

property holds for phase k. Then we know that for any (h, s, a)∣∣p̂π?,k+1
h (s, a)− p̂π

?,k
h (s, a)

∣∣ ≤ ∣∣p̂π?,k+1
h (s, a)− pπ?h (s, a)

∣∣+
∣∣pπ?h (s, a)− p̂π

?,k
h (s, a)

∣∣
(a)

≤

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

+

√√√√βbpi(tk, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nkh(s, a)

(b)

≤ 2

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nkh(s, a)

(c)

≤ 2
√
βbpi(tk+1, δ/2)H2−k

= 2
√
βbpi(tk + dk+1, δ/2)H2−k

(d)

≤ 2
√
βbpi(tk + SAH2k+1, δ/2)H2−k, (33)

where (a) uses the event Ebpi for the reward r̃`(s′, a′) = 1
(
(`, s′, a′) = (h, s, a)

)
, (b) uses the facts

that t 7→ β(t, δ) is non-decreasing and nk+1
h (s, a) ≥ nkh(s, a), (c) uses the induction hypothesis

which yields that nkh(s, a) ≥ 2kpπ
?

h (s, a) and (d) uses Lemma 41. Similarly we have that

∣∣pπ?h (s, a)− p̂π
?,k
h (s, a)

∣∣ ≤√βbpi(tk + SAH2k+1, δ/2)H2−k (34)

Now thanks to Lemma 41, we know that for all (h, s, a), nk+1
h (s, a)−nkh(s, a) = nh(s, a,Dk+1) ≥

ck+1
h (s, a). Plugging the definition of ck+1 (Line 8 of Algorithm 3) we get that,

nk+1
h (s, a) ≥ 2k+1 min

(
sup
ρ̂∈Ωk

ρ̂h(s, a) + 2
√
Hβbpi(tk + SAH2k+1, δ/2)2−k, 1

)
(a)

≥ 2k+1 min
(
p̂π

?,k
h (s, a) + 2

√
Hβbpi(tk + SAH2k+1, δ/2)2−k, 1

)
(b)

≥ 2k+1 max
(
p̂π

?,k+1
h (s, a), pπ

?

h (s, a)
)
, (35)

where (a) uses that, by the induction hypothesis, p̂π
?,k ∈ Ωk and (b) uses (33) along with (34). In

particular we have proved that maxh,s,a p̂
π?,k+1
h (s, a)/nk+1

h (s, a) ≤ 2−(k+1). Now it remains to
show that (p̂π

?,k+1)>r̂k+1 ≥ V k+1
1 . Let us consider ρ̃ achieving the supremum in the definition of

V k+1
1 , i.e.

ρ̃ ∈ arg max
ρ̂∈Ω(p̂k+1),

max
h,s,a

ρ̂h(s,a)/nk+1
h (s,a)≤2−(k+1)

ρ̂>r̂k+1,

53



AL-MARJANI TIRINZONI KAUFMANN

and let π̃ be a policy corresponding to ρ̃4. Then we have that

(p̂π
?,k+1)>r̂k+1

(a)

≥ V ?
1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

≥ V π̃
1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

(b)

≥ ρ̃>r̂k+1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

ρ̃h(s, a)2

nk+1
h (s, a)

−

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

(c)

≥ ρ̃>r̂k+1 − 2
√

2−(k+1)Hβbpi(tk+1, δ/2)

= V k+1
1 (36)

where (a) uses the event Ebpi for policy π?, (b) uses the same event combined with the fact that ρ̃ =
p̂π̃,k+1, and (c) uses (35) and the fact that by definition of ρ̃,max

h,s,a
ρ̃h(s, a)/nk+1

h (s, a) ≤ 2−(k+1).

Now combining (35) with (36) gives that p̂π
?,k+1 ∈ Ωk+1. This finishes the proof.

F.2.3. CORRECTNESS

Lemma 43 Under the good event, if PRINCIPLE stops then the recommended policy satisfies V π̂
1 ≥

V ?
1 − ε.

Proof Suppose that PRINCIPLE stops at phase k ≥ 1. Let π? be any optimal policy and recall the
definition ρ̂? = arg maxρ̂∈Ωk ρ̂

>r̂k with ties broken arbitrarily. We have that

V π̂
1

(a)

≥ (ρ̂?)>r̂k −

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(b)

≥ (p̂π
?,k)>r̂k −

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(c)

≥ V ?
1 −

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)
−

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(d)

≥ V ?
1 − 2

√
2−kHβbpi(tk, δ/2)

(e)

≥ V ?
1 − ε,

where (a) uses the event Ebpi for policy π̂ and the fact that ρ̂? = p̂π̂,k, (b) uses the definition of
ρ̂? and the fact that, by Lemma 42, p̂π

?,k ∈ Ωk, (c) uses the event Ebpi for the policy π?, and (d)
uses that for all ρ ∈ Ωk,maxh,s,a ρh(s, a)/nkh(s, a) ≤ 2−k and (e) uses the stopping condition of
PRINCIPLE (Line 20 of Algorithm 3).

4. i.e. π̃ is the policy obtained by renormalization of ρ̃.
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F.2.4. UPPER BOUND ON THE NUMBER OF PHASES

Lemma 44 Define the index of the final phase of PRINCIPLE, κf := inf
{
k ∈ N+ :

√
22−kHβbpi(tk, δ/2) ≤

ε
}

. Further let τ denote the number of episodes played by the algorithm. Then under the good event,
it holds that κf <∞ and

2κf ≤ 8Hβbpi(τ, δ/2)

ε2
.

Proof To prove that κf is finite we write

tk =
k∑
j=0

dj

≤ d0 + SAH
k∑
j=1

2j

≤ Õ
(
ϕ?(1)SAH2

(
log(4/δ) + S

))
+ SAH2k+1, (37)

where we have used the coverage event Ecov and Lemma 41 to upper bound d0 and (dk)1≤j≤k
respectively. This means that tk = Ok→∞

(
2k
)
. Now recall that

βbpi(t, δ) := 16H2 log(1/δ) + 96SAH3 log(1 + t). (38)

Combining (37) and (38) gives that

βbpi(tk, δ/2) = ok→∞
(
2k
)
.

Therefore κf = inf
{
k ∈ N+ :

√
22−kHβbpi(tk, δ/2) ≤ ε

}
is indeed finite. The proof of the

second statement is straightforward by noting that κf − 1 does not satisfy the stopping condition
(Line 12 in Algorithm 3) and using the (crude) upper bound tκf−1 ≤ τ .

Lemma 45 (UPPER BOUND ON PHASES WHERE A SUBOPTIMAL POLICY IS ACTIVE) Let π be
any suboptimal policy and k such that PRINCIPLE did not stop at phase k and p̂π,k ∈ Ωk. Further
let τ denote the number of episodes played by the algorithm. Then under the good event, we have
the inequality

2k ≤ 16Hβbpi(τ, δ/2)

max(ε,∆(π))2
,

where ∆(π) := V ?
1 (s1; r)− V π

1 (s1; r) denotes the policy gap of π.
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Proof Let π? be any optimal policy. Then we have

V ?
1 −

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)

(a)

≤ (p̂π
?,k)>r̂k

(b)

≤ sup
ρ̂∈Ω(p̂k),

max
h,s,a

ρ̂h(s,a)/nkh(s,a)≤2−k

ρ̂>r̂k

= V ?,k
1 +

√
22−kHβbpi(tk, δ/2)

(c)

≤ (p̂π,k)>r̂k +
√

22−kHβbpi(tk, δ/2)

(d)

≤ V π
1 +

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)
+
√

22−kHβbpi(tk, δ/2),

where (a) uses the event Ebpi for π?, (b) uses the definition of Ωk along with Lemma 42 which gives
that p̂π

?,k ∈ Ωk, (c) uses our assumption that p̂π,k ∈ Ωk and (d) uses the event Ebpi for policy π.
Rewriting the inequality above we get that

∆(π) = V ?
1 − V π

1

≤

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)
+

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)
+
√

22−kHβbpi(tk, δ/2)

≤ 2
√

2−kHβbpi(tk, δ/2) +
√

22−kHβbpi(tk, δ/2) = 4
√

2−kHβbpi(tk, δ/2), (39)

where the last inequality uses the fact that p̂π
?,k ∈ Ωk by Lemma 42 and that p̂π,k ∈ Ωk by

assumption. Therefore, using a crude bound tk ≤ τ we get that

2k ≤ 16Hβbpi(τ, δ/2)

∆(π)2
.

Combining the result above with Lemma 44 and the fact that k ≤ κf yields the final result.

F.2.5. UPPER BOUND ON THE PHASE LENGTH

Lemma 46 Let Tk denote the number of episodes played by PRINCIPLE during phase k ≥ 1.
Then we have

Tk ≤ 256Hβbpi(τ, δ/2)kϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+ 48k

√
Hβbpi(tk−1 + SAH2k−1, δ/2)2kϕ?(1)

+ Õ
(
kϕ?(1)SAH2

(
log(4(k + 1)2/δ) + S

))
.
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Proof Define mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1. Under the good event we have

Tk ≤ 64mkϕ
?(ck) + Õ

(
mkϕ

?(1)SAH2
(

log(4(k + 1)2/δ) + S
))

≤64kϕ?(ck) + Õ
(
kϕ?(1)SAH2

(
log(4(k + 1)2/δ) + S

))
, (40)

where the last inequality uses the fact that for all (h, s, a), ckh(s, a) ≤ 2k. Now we simplify the
expression of ϕ?(ck) as follows

ϕ?(ck) = ϕ?
([

2k min
(

sup
ρ̂∈Ωk−1

ρ̂h(s, a) + 2
√
Hβbpi(tk−1 + SAH2k−1, δ/2)21−k, 1

)]
h,s,a

)
≤ ϕ?

([
sup
π∈ΠS :

p̂π,k−1∈Ωk−1

2kp̂π,k−1
h (s, a) + 2

√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

]
h,s,a

)
,

(41)

where we have used that ϕ?(c) ≤ ϕ?(c′) if ∀(h, s, a) ch(s, a) ≤ c′h(s, a). Now fix a policy π in the
set {π ∈ ΠS : p̂π,k−1 ∈ Ωk−1}. Using the event Ebpi for the rewards r̃`(s′, a′) = 1

(
(`, s′, a′) =

(h, s, a)
)

we have that for all (h, s, a)

2kp̂π,k−1
h (s, a) ≤ 2kpπh(s, a) + 2k

√√√√βbpi(tk−1, δ/2)
∑
s′,a′,`

p̂π,k−1
` (s′, a′)2

nk−1
` (s′, a′)

(a)

≤ 2kpπh(s, a) + 2k
√
βbpi(tk−1, δ/2)H21−k

≤ 2kpπh(s, a) +
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

(b)

≤
32Hβbpi(τ, δ/2)pπh(s, a)

max(ε,∆(π))2
+
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1,

where (a) uses that max
s′,a′,`

p̂π,k−1
` (s′,a′)

nk−1
` (s′,a′)

≤ 21−k since p̂π,k−1 ∈ Ωk−1 and (b) uses Lemma 45. Plugging

the inequality above into (41) we get that

ϕ?(ck) ≤ ϕ?
([

sup
π∈ΠS

32Hβbpi(τ, δ/2)pπh(s, a)

max(ε,∆(π))2
+ 3
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

]
h,s,a

)
≤ 32Hβbpi(τ, δ/2)ϕ?

([
sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+ 3
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1ϕ?(1), (42)

where we used Lemma 10 in the last step. Combining (40) and (42) finishes the proof.
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F.2.6. TOTAL SAMPLE COMPLEXITY

Theorem 47 With probability at least 1− δ, the total sample complexity of PRINCIPLE satisfies

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where Õ hides poly-logarithmic factors in S,A,H, ε, log(1/δ) and ϕ?(1) and ∆(π) := V ?
1 (s1; r)−

V π
1 (s1; r) denotes the policy gap of π.

Proof We write

τ =

κf∑
k=0

Tk

≤ Õ
(
ϕ?(1)2SAH2

(
log(4/δ) + S

))
+

κf∑
k=1

Tk

≤
κf∑
k=1

256Hβbpi(τ, δ/2)kϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
︸ ︷︷ ︸

:=A

+

κf∑
k=1

48k
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2kϕ?(1)︸ ︷︷ ︸

:=B

+ Õ
( κf∑
k=1

kϕ?(1)SAH2
(

log(4(k + 1)2/δ) + S
))

︸ ︷︷ ︸
:=C

,

where we have used Lemma 46. Now we bound each term separately. First note that

A ≤ 256Hβbpi(τ, δ/2)ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
κ2
f

(a)

≤ 256Hβbpi(τ, δ/2)ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
(b)

≤ O
(

[H3 log(1/δ) + SAH4 log(1 + τ)]ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,

where (a) uses Lemma 44 and (b) uses the definition of βbpi. Similarly

B ≤ 48
√
Hβbpi(τ + SAH2κf−1, δ/2)2κfϕ?(1)κ2

f

(a)

≤ 48

√
4H2βbpi(τ + SAH2κf−1, δ/2)βbpi(τ, δ/2)

ε2
ϕ?(1) log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
≤ 48H

ε
βbpi(τ + SAH2κf−1, δ/2)ϕ?(1) log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
(b)

≤ O
(
ϕ?(1)

ε

[
H3 log(1/δ) + SAH4 log

(
1 + τ +

4SAH2βbpi(τ, δ/2)

ε2

)]
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,
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where (a) and (b) use Lemma 44. Finally

C ≤ Õ
(
ϕ?(1)SAH2

(
log(4(κf + 1)2/δ) + S

)
κ2
f

)
≤ Õ

(
ϕ?(1)SAH2

[
log
(4 log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
δ

)
+ S

]
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,

where we have used Lemma 44 again. Combining the three inequalities with the definition of βbpi

we get that

τ ≤ O
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

]
× polylog(τ, S,A,H, ϕ?(1), ε, log(1/δ))

)
.

Solving for τ yields

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈Π

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where Õ hides poly-logarithmic factors in S,A,H, ε, log(1/δ) and ϕ?(1).

Remark 48 (Reachability) While for the PCE algorithm we were able to reduce the sample com-
plexity by ignoring states that are hard to reach (which also allows using PCE when Assumption 1 is
violated), we did not manage to propose a similar improvement for PRINCIPLE. This is because in
reward-free exploration it is sufficient to guarantee that the true confidence intervals that depend on

the visitation probabilities under the true MDP are small, i.e.,
√
βRF(tk, δ)

∑
(h,s,a)

pπh(s,a)2

nkh(s,a)
≤ 2k.

This allows us to filter out all (h, s, a) for which supπ p
π
h(s, a) ≤ O(ε/SH2), by arguing that their

contribution to the true confidence interval is negligible. In contrast, the analysis of PRINCIPLE
crucially relies on concentrating the values of policies by minimizing their empirical confidence

intervals, i.e.,

√
βbpi(tk, δ)

∑
(h,s,a)

p̂π,kh (s,a)2

nkh(s,a)
≤ 2k. We do not see a straightforward way to ignore

the contribution of hard-to-reach states to these empirical confidence intervals.

F.3. Comparison with other BPI-algorithms

In this section we compare PRINCIPLE with other algorithms for Best-Policy Identification al-
gorithms that enjoy problem-dependent guarantees, namely PEDEL (Wagenmaker and Jamieson,
2022) and MOCA (Wagenmaker et al., 2022). Recalling that ∆(π) = V ?

1 (s1) − V π
1 (s1) denotes

the policy gap of π, we first note that by Theorem 7, the leading term in the sample complexity of
PRINCIPLE in the small (ε, δ) regime is PRINCIPLE(M, ε) log(1/δ) where

PRINCIPLE(M, ε) := H3ϕ?

[ sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

 .

We will now compare this term with the leading terms in the sample complexities of PEDEL and
MOCA respectively, in the same asymptotic regime.
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F.3.1. COMPARISON WITH PEDEL

Define the minimum policy gap

∆min(ΠD) :=

{
minπ 6=π? ∆(π), if the optimal policy π? is unique
0, otherwise.

Then instantiating Theorem 1 from Wagenmaker and Jamieson (2022) for our setting of tabular
MDPs (i.e. with d = SAH and Π = ΠD), we see that the sample complexity achieved by PEDEL
satisfies

τ ≤ Õ
(

PEDEL(M, ε)(log(1/δ) + SH) + poly(SAH, log(1/ε), log(1/δ))

)
where PEDEL(M, ε) := H4

H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2
.

Therefore the leading term PEDEL’s complexity in the small (ε, δ) regime is PEDEL(M, ε) log(1/δ).
The next lemma shows that, up to H factors, this rate is always better than the complexity measure
achieved by PRINCIPLE.

Lemma 49 For any MDPM, it holds that PEDEL(M, ε) ≤ H2PRINCIPLE(M, ε).

Proof Fix any h ∈ [H], ρ ∈ Ω, π ∈ ΠD. Then we have∑
s,a

pπh(s, a)2

ρh(s, a)
≤
(

max
s,a,h

pπh(s, a)

ρh(s, a)

)∑
s,a

pπh(s, a) = max
s,a,h

pπh(s, a)

ρh(s, a)
.

Therefore for all h ∈ [H], using that ΠD ⊂ ΠS we have

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2
≤ min

ρ∈Ω
max
π∈ΠD

max
s,a,h

pπh(s, a)/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

= min
ρ∈Ω

max
s,a,h

max
π∈ΠD

pπh(s, a)/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

≤ min
ρ∈Ω

max
s,a,h

sup
π∈ΠS

pπh(s, a)

ρh(s, a) max(ε,∆(π))2

= ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
.

Therefore

PEDEL(M, ε) := H4
H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

≤ H5ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
= H2PRINCIPLE(M, ε).
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F.3.2. COMPARISON WITH MOCA

Let us define the complexity functional,

MOCA(M, ε) := H2
H∑
h=1

min
ρ∈Ω

max
s,a

1

ρh(s, a)
min

( 1

∆̃h(s, a)2
,
Wh(s)2

ε2

)
+
H4
∣∣(h, s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

∣∣
ε2

,

where Wh(s) := supπ p
π
h(s) is the reachability of (h, s) and

∆̃h(s, a) :=

{
minb6=a V

?
h (s)−Q?h(s, b) if a is the unique optimal action at (h, s),

V ?
h (s)−Q?h(s, a) otherwise

is the value gap of (h, s, a). Theorem 1 together with Proposition 2 of Wagenmaker et al. (2022)
yield that the stopping time of MOCA satisfies

τ ≤ Õ
(

MOCA(M, ε) log(1/δ) +
poly

(
SAH, log(1/ε), log(1/δ)

)
ε

)
.

Therefore we see that MOCA(M, ε) log(1/δ) is the dominating term in the sample complexity of
MOCA in the regime of small ε and small δ. On the other hand, as stated earlier, the leading term
in PRINCIPLE’s complexity in that regime is PRINCIPLE(M, ε) log(1/δ). Therefore we compare
MOCA(M, ε) with PRINCIPLE(M, ε) to assess which algorithm is better in this regime.

Lemma 50 Fix any ∆ ∈ (0, 1]. There exists an MDPM where

MOCA(M, ε) = Ω

(
H5SA

ε2

)
while PRINCIPLE(M, ε) = O

(
H4SA

ε∆
+
H4 log(S) log(A)

ε2

)
.

Proof Consider the MDP in figure F.3.2 which consists of an initial state s1 and two sub-MDPs
depending on the action taken at step h = 1. If the learner takes action a1 it receives a reward ∆ > 0
and makes a transition to a sub-MDPM1 for which |S1| = log(S), |A1| = log(A), H1 = H − 1
and where the rewards can be anything. On the other hand, if it takes action a2 the learner will
receive zero reward and make a transition to a sub-MDPM2 for which |S2| = S − log(S), |A2| =
A,H2 = H − 1, the rewards are equal to zero everywhere and the transitions are deterministic, i.e.
p(s′|s, a) ∈ {0, 1} for all (s, a) ∈ S2 ×A2.
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s

s

s

Figure 1: MDP instance with large policy gaps and small value gaps.

Note that in this example ∆̃h(s, a) = 0 for all (h, s, a) ∈M2. Therefore

MOCA(M, ε) ≥
H4
∣∣(h, s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

∣∣
ε2

,

≥ H4(H − 1)(S − log(S))A

ε2
. (43)

On the other hand for all triplets (h, s, a) in the sub-MDPM2 we have

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤ sup

π∈ΠS

4π1(a2|s1)

(ε+ ∆(π))2
, (44)

where we used that pπh(s, a) ≤ π1(a2|s1) (since the only path to reach (h, s, a) is by playing action
a2 at s1) and that max(a, b) ≥ (a+ b)/2. Now, by the performance-difference lemma we have

∆(π) =
∑
h,s,a

pπh(s, a)[V ?
h (s)−Q?h(s, a)]

≥ pπ1 (s1, a2)[V ?
1 (s1)−Q?1(s1, a2)] = π1(a2|s1)∆.

Plugging this back into (44), we get

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤ sup

π∈ΠS

4π1(a2|s1)

(ε+ π1(a2|s1)∆)2

= sup
x∈[0,1]

4x

(ε+ x∆)2
=

1

ε∆

For triplets (h, s, a) outside of M2 (i.e. either at s1 or in the sub-MDP M1 ) we use the crude
bound

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤

supπ∈ΠS pπh(s, a)

ε2
.
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Therefore

PRINCIPLE(M, ε) = H3ϕ?

[ sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a


= H3ϕ?

[ sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
(1 ((h, s, a) ∈M2) + 1 ((h, s, a) /∈M2))

]
h,s,a


(a)

≤ H3ϕ?

[ sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
1 ((h, s, a) ∈M2)

]
h,s,a


+H3ϕ?

[ sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
1 ((h, s, a) /∈M2)

]
h,s,a


≤ H3ϕ?

([
1 ((h, s, a) ∈M2)

ε∆

]
h,s,a

)
+H3ϕ?

([
1 ((h, s, a) /∈M2) supπ∈ΠS pπh(s, a)

ε2

]
h,s,a

)
(b)

≤ H3
∑

(h,s,a)∈M2

1

ε∆ supπ∈ΠS pπh(s, a)
+H3

∑
(h,s,a)/∈M2

1

ε2

(c)
=
H3(H − 1)(S − log(S))A

ε∆
+
H3(H − 1) log(S) log(A)

ε2
(45)

where (a) uses the sub-linearity of the flow from Lemma 10, (b) uses the bound on ϕ? from Lemma
12 and (c) uses that the sub-MDP M2 has deterministic transitions. Combining (43) and (45)
finishes the proof.

Appendix G. Estimating State Reachability

Let AΠ be a regret minimizer that has a small regret for a (fixed) reward function r. If we set
this reward function to r(h,s)

h′ (s′, a′) = 1((s′ = s, h′ = h)) for a target pair (h, s) intuitively the
regret minimizer will visit as much as possible state s in step h and the total reward collected by
the algorithm, nth(s) =

∑
a∈A n

t
h(s, a), will be close to t×Wh(s), where the maximum visitation

probability Wh(s) = maxπ p
π
h(s) is actually the optimal value function in the MDP with reward

function r(h,s). The empirical number of visitations can thus be used to estimate the unknown
visitation probability.

This idea is already at the heart of the initialization phase of the MOCA algorithm, which re-
lies on repeatedly running the Euler algorithm. We propose a slightly simpler version below, that
doesn’t need any restart and relies on a generic algorithm AΠ satisfying some first-order regret
bound scaling with a quantity RΠ

δ (T ), as specified in the following theorem. ESTIMATEREACH-
ABILITY ((h, s); ε0, δ) outputs a valid confidence interval [W h(s),W h(s)] on the value of Wh(s),
which can be further used to eliminate all (h, s) whose maximum visitation probability is (slightly)
smaller than a target ε0.
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Algorithm 5 ESTIMATEREACHABILITY ((h, s); ε0, δ)

1: Input: Step h, state s, threshold ε0 > 0, failure probability δ ∈ (0, 1), regret minimizer AΠ

2: Output: An interval [W h(s),W h(s)]

3: Compute T = T (ε0, δ) = inf
{
T ∈ N : 4RΠ

δ/2(T ) + 6 log
(

4
δ

)
≤ ε0

4 T
}

4: Collect T episodes {(st1, at1, . . . , stH , atH)}t≤T using AΠ with reward r̃h′(s′, a′) = 1((s′ =
s, h′ = h)) and confidence 1− δ/2

5: Let nTh (s) =
∑T

t=1 1(sth = s) be the number of visits of (h, s)

6: Define W h(s) =
(
nTh (s)

2T − ε0
16

)
∨ 0 and W h(s) =

(
2nTh (s)
T + ε0

4

)
∧ 1

Theorem 51 Assume that, for all (h, s), when AΠ is run for the reward function r = r(h,s) and
confidence 1− δ up to some horizon T ∈ N, with probability larger than 1− δ,

T∑
t=1

V ?
1 (s1; r)−

T∑
t=1

V πt

1 (s1; r) ≤
√
RΠ
δ (T )TV ?(s1; r) +RΠ

δ (T ). (46)

For all (h, s), let [W h(s),W h(s)] be the output of ESTIMATEREACHABILITY (h, s; ε0, δ/(SH))
and define

X̂ =
{

(h, s) : W h(s) ≥ ε0

8

}
.

With probability 1− δ, the following holds:

• For all (h, s), Wh(s) ∈
[
W h(s),W h(s)

]
• {(h, s) : Wh(s) ≥ ε0} ⊆ X̂ ⊆

{
(h, s) : Wh(s) ≥ ε0

8

}
• For all (h, s) ∈ X̂ , W h(s) ≤ 36Wh(s).

Moreover, the (deterministic) sample complexity necessary to construct X̂ is

Tε0(δ) := SH × inf

{
T ∈ N? : T ∈ N : 4RΠ

δ/(2SH)(T ) + 6 log

(
4

δ

)
≤ ε0

4
T

}
.

In particular, using UCBVI as the regret minimizer, we have Tε0(δ) = Õ
(
S2AH2(log(SAHδ )+S)

ε0

)
.

Proof Let T = T (ε0, δ) be the (deterministic) number of episodes of ESTIMATEREACHABILITY

((h, s); ε0, δ), which satisfies

4RΠ
δ/2(T ) + 6 log

(
4

δ

)
≤ αε0T for α :=

1

4
. (47)

The analysis relies on the first-order bound on the regret of AΠ assumed in (46) and on a tight
control of the martingale

MT =

T∑
t=1

[
1(sth = s)− pπth (s)

]
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where pπh(s) = pπh(s, π(s)) is the probability to reach s under policy π. Observing that the increment
of this martingale is bounded in [−1, 1] and that its variance is upper bounded by Wh(s), we can
use Bernstein’s inequality to get that

P

(
|MT | ≤

√
2TWh(s) log

(
4

δ

)
+

2

3
log

(
4

δ

))
≥ 1− δ

2
.

Remarking that the regret of AΠ for the reward function r = r(h,s) can be written

T∑
t=1

V ?
1 (s1; r)−

T∑
t=1

V πt

1 (s1; r) = TWh(s)−
T∑
t=1

pπ
t

h (s) = TWh(s)− nTh (s) +MT

and that nTh (s) ≤ TWh(s) + MT , we obtain that with probability larger than 1 − δ, the following
two inequalities hold:

nTh (s) ≥ TWh(s)−

[√
Rδ/2(T )TWh(s) +Rδ/2(T ) +

√
2 log

(
4

δ

)
TWh(s) +

2

3
log

(
4

δ

)]

TWh(s) ≥ nTh (s)−

[√
2 log

(
4

δ

)
TWh(s) +

2

3
log

(
4

δ

)]

Using the AM-GM inequality above, this first yields

nTh (s)/2− g(δ) ≤ TWh(s) ≤ 2nTh (s) + f(T, δ),

where f(T, δ) := 4Rδ/2(T ) + 16
3 log

(
4
δ

)
and g(δ) := 7

6 log
(

4
δ

)
. Observing that g(δ) ≤ 1

4f(T, δ)
and f(T, δ) ≤ αε0T by inequality (47), we get

nTh (s)

2T
− αε0

4
≤Wh(s) ≤

2nTh (s)

T
+ αε0,

which also implies

Wh(s)

2
− αε0

2
≤
nTh (s)

T
≤ 2Wh(s) +

αε0

2
.

As the output of ESTIMATEREACHABILITY ((h, s); ε0, δ) can be written[
W h(s) =

(
nTh (s)

2T
− αε0

4

)
∨ 0,W h(s) =

(
2nTh (s)

T
+ αε0

)
∧ 1

]
and we get that with probability larger than 1− δ:

1. For any value of Wh(s),

Wh(s)

4
− αε0

2
≤W h(s) ≤Wh(s) ≤W h(s) ≤ 4Wh(s) + 2αε0.

2. If Wh(s) ≥ ε0, then Wh(s) ∈ [W h(s),W h(s)] ∈ [1−2α
4 Wh(s), (4 + 2α)Wh(s)].
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3. If Wh(s) < ε0, then Wh(s) ∈ [W h(s),W h(s)] ∈ [0, (4 + 2α) ε0].

Now if [W h(s),W h(s)] is the output of ESTIMATEREACHABILITY ((h, s); ε, δ/SH) and

X̂ =

{
(h, s) : W h(s) ≥ 1− 2α

4
ε0

}
we deduce that, with probability 1− δ:

• (h, s) with Wh(s) ≥ ε0 are all in X̂ .

• Since W h(s) ≤Wh(s), any (h, s) with Wh(s) < 1−2α
4 ε0 does not belong to X̂ .

This proves that {(h, s) : Wh(s) ≥ ε0} ⊆ X̂ ⊆ {(h, s) : Wh(s) ≥ 1−2α
4 ε0}. To prove the

last statement we remark that for (h, s) ∈ X̂ , if Wh(s) ≥ ε0, we have by 2. that W h(s) ≤
(4 + 2α)Wh(s) while if Wh(s) ∈

[
1−2α

4 ε0, ε0

)
we have by 3. that

W h(s) ≤ (4 + 2α) ε0 ≤ 4
4 + 2α

1− 2α
Wh(s)

Plugging the value α = 1/4 yields W h(s) ≤ 36Wh(s) in both cases.
To get an upper bound on the number of episodes used by an instance of ESTIMATEREACHA-

BILITY, we need to find a T that satisfies

T − 1 ≤ 16

ε0
RΠ
δ/(2SH)(T ) +

24

ε0
log

(
SAH

δ

)
. (48)

For UCBVI, Theorem 19 yields Rδ(T ) = 2562SAH
(
log
(

2SAH
δ

)
+ 6S

)
log2(T + 1). Using the

bound log2(x) ≤ 4
√
x we get a first crude upper bound on T by solving a quadratic equation which

gives the final scaling by plugging back this crude bound in (48).
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