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Sampling from a high-dimensional distribution is a fundamental task in statistics, engineering,
and the sciences. A canonical approach is the Langevin Algorithm, i.e., the Markov chain for
the discretized Langevin Diffusion. This is the sampling analog of Gradient Descent. However,
despite being studied for several decades in multiple communities, tight mixing time bounds (a.k.a.,
convergence analyses) for this algorithm remain unresolved even in the seemingly simple setting of
log-concave distributions over a bounded domain.

Our main result characterizes the mixing time of the Langevin Algorithm to its stationary dis-
tribution in this setting (and others). This mixing result can be combined with any bound on the
discretization bias in order to sample from the stationary distribution of the Langevin Diffusion. In
this way, we disentangle the study of the mixing and bias of the Langevin Algorithm.

Our key technical insight is to use a new Lyapunov function to analyze the convergence of the
Langevin Algorithm. Specifically, the Lyapunov function we propose is the shifted divergence—a
quantity studied in the differential privacy literature (Feldman et al., 2018; Altschuler and Talwar,
2022). Briefly, this Lyapunov function is a version of the Rényi divergence that is smoothed in
optimal transport distance, and we use the amount of smoothing to measure the progress of the
Langevin Algorithm. In addition to giving a short, simple proof of optimal mixing bounds, this
analysis approach also has several additional appealing properties:

• Our approach removes all unnecessary assumptions required by other sampling analyses (e.g.,
warm starts, curvature assumptions on the set, etc.).

• Our approach unifies many settings: it gives tight bounds if the Langevin Algorithm uses
projections, mini-batch gradients, or strongly convex potentials (whereby our mixing time
improves exponentially).

• Our approach unifies many metrics: it proves mixing in the stringent notion of Rényi diver-
gence, which implies mixing in all common metrics via standard comparison inequalities.

• Our approach exploits convexity only through the contractivity of a gradient step—reminiscent
of how convexity is used in textbook proofs of Gradient Descent.

. Extended abstract. Full version appears as arXiv:2210.08448, v2.
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