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Abstract
This manuscript investigates the one-pass stochastic gradient descent (SGD) dynamics of a two-
layer neural network trained on Gaussian data and labels generated by a similar, though not nec-
essarily identical, target function. We rigorously analyse the limiting dynamics via a deterministic
and low-dimensional description in terms of the sufficient statistics for the population risk. Our
unifying analysis bridges different regimes of interest, such as the classical gradient-flow regime
of vanishing learning rate, the high-dimensional regime of large input dimension, and the overpa-
rameterised “mean-field” regime of large network width, covering as well the intermediate regimes
where the limiting dynamics is determined by the interplay between these behaviours. In par-
ticular, in the high-dimensional limit, the infinite-width dynamics is found to remain close to a
low-dimensional subspace spanned by the target principal directions. Our results therefore provide
a unifying picture of the limiting SGD dynamics with synthetic data.
Keywords: Stochastic gradient descent, mean-field limit, two-layer neural network

1. Introduction

A detailed understanding of the performance of stochastic gradient descent (SGD) in neural network
is a major endeavour in machine learning, and significant progress was achieved in the context of
large two-layers neural networks. In particular the optimisation over wide two-layer neural networks
can be rigorously studied using a well defined partial differential equation (PDE) (Mei et al., 2018;
Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden, 2019; Sirignano and Spiliopoulos, 2020).
A consequence of these results is the global convergence of overparametrised two-layer networks
towards perfect learning provided that the number of hidden neurons is large, the learning rate is
sufficiently small, and enough data is at disposal. This line of work is commonly referred to as
the mean-field limit of neural networks. The phenomenology in this regime was also studied for
synthetic data with simple target functions by Mei et al. (2019); Abbe et al. (2022).

Interestingly, the SGD dynamics of two-layer neural networks trained on synthetic Gaussian
data was considered as early as in the seminal work of Saad and Solla (1995a,b, 1996), and has
witnessed a renewal of activity over the last few years (Tan and Vershynin, 2019; Goldt et al.,
2019; Veiga et al., 2022; Arous et al., 2022). However, differently from the mean-field limit, these
works investigated the opposite limit of fixed hidden layer width and diverging data dimension,
and studied the limiting SGD dynamics through a set of ordinary differential equations (ODEs).

© 2023 L. Arnaboldi, L. Stephan, F. Krzakala & B. Loureiro.



ARNABOLDI STEPHAN KRZAKALA LOUREIRO

Figure 1: We discuss a unifying low-dimensional
description of the one-pass SGD dynamics
eq. (3) for two-layers neural networks as γ/dp→
0+. This includes, in particular, the mean-field
(p → ∞), the high-dimensional (d → ∞) and
the classical gradient flow (γ→0) limits.

Given these different limits, one may naturally
wonder what is the relation, if any, between
these sets of works. More generally, given data
in dimension d and a two-layer network with
p hidden units trained by SGD with a learn-
ing rate γ, one might inquire about the differ-
ent regimes beside the mean-field (p→∞) and
high-dimensional (d → ∞) ones. This is the
question investigated in this work. We consider
a two-layer network trained on Gaussian data
and labels given by a similar, though not neces-
sarily identical, two-layer neural network target
(hereafter also referred to as the teacher), and
investigate the one-pass stochastic gradient de-
scent (SGD) dynamics as a function of the rel-
evant parameters d, p and γ. As summarised in
Fig.1, we show that as long as γ/dp → 0+, a
unifying deterministic description can be pro-
vided. In particular, our description recovers all
the previously studied limits (mean field, high-
dimensional and the classical gradient flow regime) and builds a bridge between them in a unified
formalism. Namely, our main contributions are:
• Starting from the general approach of Saad and Solla (1995a, 1996), we build on the non-
asymptotic results Veiga et al. (2022) and show how it allows to describe the entire phase space
in Fig.1, that interpolates between the high-dimensional, classical, and mean-field limits.
• We unveil a remarkable dimension independence in the classical gradient-flow limit: once the
initial conditions are given, the dynamics in terms of the sufficient statistics turns out to be entirely
independent from the data dimension d.
• We explicitly construct the mean-field solution starting from the ODEs in the mean-field regime,
bridging the hitherto different worlds of (Saad and Solla, 1995a, 1996) with the mean-field ”hydro-
dynamic” approach. More precisely, for p → ∞, we show how the ODEs simplify and give rise to
a mean-field PDE, thanks to a decoupling of the learning dynamics that is found to remain close to
a low-dimensional subspace spanned by the target principal directions.
• We further discuss how the SGD dynamics in the mean-field regime behave differently whether
the input dimension d is small or large, leading to different finite-d and high-d dimensionless PDEs.
This complements the recent “dimension-free” results in Hajjar and Chizat (2022); Abbe et al.
(2022).
• We provide a numerical solver for these equations. A GitHub repository with the code employed
in the present work is available at https://github.com/IdePHICS/DimensionlessDynamicsSGD. We
discuss in particular the interesting case of quadratic activation that allows to drastically reduce the
complexity of the ODEs & PDEs.

Related work — Stochastic gradient descent was first introduced Robbins and Monro (1951)
as a stochastic approximation method, and later applied as an approximation to population risk
minimization in Bottou and LeCun (2003); Bottou and Bousquet (2007). Its properties have been
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extensively studied for finite learning rate and input dimension in the strongly convex setting (Pflug,
1986; Moulines and Bach, 2011; Dieuleveut et al., 2017, 2020), and more recently in convex prob-
lems in the interpolating regime (Ma et al., 2018; Vaswani et al., 2019; Zou et al., 2021; Varre et al.,
2021), to cite a few. High-dimensional limits of SGD were studied in Tan and Vershynin (2019);
Ben Arous et al. (2021) for non-convex, single-index models. Recently, Arous et al. (2022) has
generalised and abstracted this discussion.

In the context of two-layer neural networks, the high-dimensional limit of SGD draws back
from the seminal work of Saad and Solla (1995a,b, 1996) and was subsequently studied by many
authors under different settings (Biehl and Schwarze, 1995; Copelli and Caticha, 1995; Biehl et al.,
1996; Goldt et al., 2019, 2020, 2021; Refinetti et al., 2021). The infinite-width (a.k.a. mean-field)
limit of the SGD dynamics of two-layer neural networks was studied by Mei et al. (2018); Chizat
and Bach (2018); Rotskoff and Vanden-Eijnden (2019); Sirignano and Spiliopoulos (2020), who
proved global convergence under certain conditions on the architecture and initialization. A bridge
between these two limits was discussed by Veiga et al. (2022), who studied the joint limit where the
hidden-layer width and the learning rate scale with the diverging input dimension.

Closer to us, dimension-free limits of the mean-field equations have been derived by Abbe et al.
(2022) for low-dimensional target functions in the hypercube and by Hajjar and Chizat (2022) for
ReLU networks when the target is invariant under certain symmetries. Boursier et al. (2022) has
proven global convergence of the gradient flow dynamics at finite width for orthogonal input data.

Shortly after this work has been published, Berthier et al. (2023) independently presented in
their work part of the result exposed in Section 3.4.

2. Setting

In this manuscript we consider a supervised learning regression task where we are given n inde-
pendent samples (xν , yν)ν∈[n] ∈ Rd+1 from a probability distribution ρ. We are interested in the
problem of learning the training data with a (fully-connected) two-layer neural network:

fΘ(x) =
1

p

p∑

i=1

aiσ(w
⊤
i x), (1)

where Θ = (a,W) ∈ Rp(d+1) denote the trainable parameters and σ : R → R the activation func-
tion. Since one of our goals is to connect with this line of work, for convenience we have adopted the
mean-field normalisation (Mei et al., 2018; Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden,
2019; Sirignano and Spiliopoulos, 2020). As usual, training is performed via empirical risk min-
imisation, where the statistician chooses a loss function ℓ : (fΘ(x), y) ∈ R2 7→ ℓ(fΘ(x), y) ∈ R+

penalising deviations from the true labels and optimises the training parameters Θ by minimising
the loss over the training data. As it is common in regression, we use the square loss ℓ(ŷ, y) :=
1/2(ŷ − y)2, and focus on the generalisation error or population risk:

R(Θ) := E(x,y)∼ρ

[
1

2
(fΘ(x)− y)2

]
(2)

Training algorithm: This empirical risk minimisation problem being non-convex, different opti-
misation algorithms might reach different minima. Our goal is to characterise the training dynamics
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of two-layer networks under one-pass stochastic gradient descent:

Θν+1 = Θν − γ∇Θℓ(fΘν (xν), yν), ν ≤ n (3)

Note that in one-pass SGD, a fresh sample of data is used to estimate the gradient at each step,
and therefore the quantity of data seen by the algorithm coincides with the number of steps. In
particular, this means that at each step ν we have a random unbiased estimation of the population
gradient which is uncorrelated to the previous step, defining a Markov chain. It is useful to rewrite
eq. (3) by making explicit the effective noise of the process:

Θν+1 = Θν − γ∇ΘR(Θν) + γεν , εν := ∇Θ

[
R(Θν)− ℓ(fΘν (xν), yν)

]
(4)

which is a zero mean random variable. Therefore, characterising the training dynamics of one-pass
SGD translates into characterising this stochastic process.

Data model: Stochasticity in eq. (3) is induced by the draw of samples (x, y) ∼ ρ. In the
following, we will assume that the input xν are Gaussian xν ∼ N

(
0d, 1/dId

)
while yν is drawn

from the following generative model:

yν =
1

k

k∑

r=1

a⋆rσ
⋆(w⋆

r
⊤xν) +

√
∆zν , zν ∼ N (0, 1) (5)

In other words, the target function fΘ⋆ is itself a two-layers neural network with parameters Θ⋆ =
(a⋆,W⋆) ∈ Rk(d+1) and activation σ⋆. This setting, commonly refereed to as the teacher-student
scenario, provides a rich data model for studying generalisation, and has been employed both in
the analysis of one-pass SGD (Saad and Solla, 1996; Goldt et al., 2019; Veiga et al., 2022) but also
more broadly in high-dimensional statistics (Loureiro et al., 2021). In particular, we will be mostly
interested in the realisable scenario where k ≤ p, and therefore the minimum of the population risk
in eq. (2) is achieved by perfectly learning the target.

Technical assumptions: We assume that the SGD dynamics remains in a bounded subset of Rp×d:

Assumption A1 On an event with high probability, the SGD iterates are bounded in the following
sense: for some K > 0, we have

∀i ∈ [p], ∥wi∥2 ≤ K. (6)

This assumption can be easily checked on either the simulations or their deterministic approxima-
tions (see below), or otherwise enforced with a weight decay (as in Wang and Johansson (2022)).

Assumption A2 The student activation function σ is twice differentiable, with ∥σ(i)∥∞ ≤ K for
i = 0, 1, 2. The teacher activation σ⋆ is also upper bounded by K.

Note that in some plots, we will sometimes use the function σ(x) = x2, which does not satisfy this
assumption. However, Assumption A1 ensures that we stay in a bounded subset of Rd, hence we
can replace σ by σ ∧K for K sufficiently large.
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Simplifying assumptions: Since most of the interesting phenomenology happens at the hidden-
layer, to lighten the discussion in the following we will focus on the case in which a⋆r = 1 and
aνi = 1 are fixed throughout learning and p is divisible by k. All of the discussion that follows
can be readily generalised to the case in which aν is learned and p ≥ k generically. We shall also
assume that the teacher matrix W⋆ is full rank; this can be avoided with a more careful definition of
projections, but complicates the analysis.

Initialization: Unless otherwise specified, student weights at initialization are chosen to be in-
dependent Gaussian in numerical experiments

w0
i ∼ N (0d, Id) ∀i = 1, . . . , p.

The teacher weights instead, are fixed to be orthonormalized:

w⋆
r ⊥ w⋆

s , ||w⋆
r ||22 = d ∀r, s = 1, . . . , k

We stress out the fact that these initialization is not an hypothesis for our theoretical results, but it is
just a convenient way for running experiments. The choice of initial conditions depends just on the
particular property of the dynamics we want to highlight.

3. The three limit regimes and their dimensionless description

As discussed before, the optimisation problem introduced in Sec. 2 defines a non-convex optimi-
sation problem. Moreover, modern neural networks operate in a regime where both the data di-
mension d and the number of parameters in the network p are large. Therefore, characterising the
evolution of the weights Θν ∈ Rp(d+1) amounts to studying p(d + 1) non-linear, coupled, non-
convex stochastic process - a challenging problem even for numerical methods. As motivated in the
introduction Sec. 1, in this section we derive a tractable, low-dimensional description for SGD in
different regimes of practical interest.

3.1. Main concepts

Sufficient statistics: A first observation is that the performance of the predictor (Θν)ν≤n at iter-
ation ν ≤ n only depends on the statistics of the student and teacher pre-activations

λν := Wνxν ∈ Rp, λ⋆ν := W⋆xν ∈ Rk (7)

Moreover, since xν is Gaussian and independent from (Wν ,W⋆), the pre-activations are jointly
Gaussian vectors (λν ,λ⋆ν) ∼ N (0p+k,Ω

ν) with covariance:

Ων :=

(
Qν Mν

Mν⊤ P

)
=

(
1/dWνWν⊤ 1/dWνW⋆⊤

1/dW⋆Wν⊤ 1/dW⋆W⋆⊤

)
∈ R(p+k)×(p+k) (8)

which is the sufficient statistics matrix for the population risk in eq. (2). Massaging eq. (3), we can
derive a closed set of stochastic processes governing the evolution of the sufficient statistics:

Mν+1
ir −Mν

ir =
γ

pd
σ′(λν

i )λ
⋆ν
r Eν

Qν+1
ij −Qν

ij =
γ

pd

(
σ′(λν

i )λ
ν
j + σ′(λν

j )λ
ν
i

)
Eν +

γ2 ||xν ||22
p2d

σ′(λν
i )σ

′(λν
j ) Eν2

(9)
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where we defined for convenience the displacement vector

Eν :=
1

k

k∑

r=1

σ⋆(λ⋆ν
r )− 1

p

p∑

j=1

σ(λν
j ) +

√
∆zν . (10)

Note that so far we have made no approximations: these equations are exact, and allow us to trade
the p(d+1) dimensional process for Θν in Eq. (3) for a p(k+p) dimensional process for (Mν ,Qν).
This can be particularly convenient if d ≫ k, p.

The process in Eq. (9) has been previously studied in different limits and particular cases. For
instance, Tan and Vershynin (2019) studied the stochastic dynamics in particular case of k = p = 1
and σ(x) = x2, also known as phase retrieval, and Ben Arous et al. (2021) extended this discussion
for arbitrary σ. More important to our work, Saad and Solla (1995a, 1996) has shown that this
process admits a deterministic limit when d→∞ at fixed p, γ, characterized by the following ODE:

dM
dt

= Ψ(M)(Ω),
dQ
dt

= Ψ(GF)(Ω) +
γ

p
Ψ(Var)(Ω), (SS-ODE)

where the right-hand side functions are defined by the following equations.

Ψ
(M)
ir (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)λ

⋆
r E
]

Ψ
(GF)
ij (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[(
σ′(λi)λj + σ′(λj)λi

)
E
]

Ψ
(Var)
ij (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)σ

′(λj) E2
]

(11)

where E is defined as in Eq. (10). As will be discussed later in Section 3.2, the superscript notation
for the right-hand side is suggestive of their interpretation. This convergence was made rigorous by
Goldt et al. (2019) and Veiga et al. (2022), who showed the following non-asymptotic result:

Theorem 1 (Veiga et al. (2022)) We place ourselves under Assumptions A1-A2. Let Ων be the
random process of Eq. (9), and Ω(t) the solution to the ODE (SS-ODE) with starting point Ω(0) =
Ω0. Define the stepsize δt = γ/pd, and assume that γ/p = O(1). Then there exists a constant C > 0
such that for any ν ≥ 0,

∥Ων − Ω(νδt)∥∞ ≤ eCνδt

√
γ

pd
(12)

Veiga et al. (2022) also described the behavior of Ω for various choices of γ and p. In particular,
when γ/p ≪ 1, equations (SS-ODE) reduce to the following simpler ones:

dM
dt

= Ψ(M)(Ω),
dQ
dt

= Ψ(GF)(Ω) (GF-ODE)

Our key observation is that the deterministic description above is valid beyond the high-dimensional
limit d → ∞ on which previous works (Saad and Solla, 1995a; Goldt et al., 2019; Veiga et al., 2022)
have focused. Indeed, Thm. 1 is non-asymptotic in (d, p, γ), and can thus be applied in any setting
where γ/pd ≪ 1. This is leveraged to provide a tractable, low-dimensional description of SGD in
different scenarios of interest which we summarise in Fig. 1.
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3.2. The classical regime

The first and most well-studied scenario is the classical regime in which γ → 0+ at fixed dimensions
d, p = O(1). Defining the continuous weight Θν = Θ(νδt) via linear interpolation, a classical
result from stochastic optimisation (Robbins and Monro, 1951) is that one-pass SGD converges to
gradient flow on the population risk:

dΘ(t)

dt
= −∇ΘR(Θ(t)) (13)

Or in words: the effective SGD noise εν in eq. (4) is subleading in this limit. Note that this is a
deterministic ordinary differential equation of dimension p(d + 1). Since d, p = O(1), if they are
small eq. (13) provides a computationally efficient description of the SGD dynamics, since it can
be easily implemented and solved in a computer. Nonetheless, an alternative description can be
derived from the sufficient statistics of eq. (8). Indeed, Thm. 1 guarantees that in the limit γ → 0+,
the stochastic process in eq. (9) converges to the deterministic limit of eq. (GF-ODE). This ODE
can be easily seen to be equivalent to the one of (13), through the following identity:

d ⟨wi,wj⟩
dt

=

〈
wi,

dwj

dt

〉
+

〈
dwi

dt
,wj

〉

This gives rise to ordinary differential equations in p(k + p) parameters. Therefore, depending on
the values of (d, p), it can offer a more compact description of the evolution of the performance of
the predictor than eq. (13).

As it was previously hinted by the notation, equation (GF-ODE) also provides an intuitive inter-
pretation of the right-hand side of the stochastic process (9). Indeed, the terms proportional to γ/pd
in eq. (9) correspond exactly to the terms inside of the expectation in eq. (GF-ODE), and correspond
to the projection of the population gradient along the weights (Θ,Θ⋆). The remaining term, which
is proportional to γ2/p2d, comes from the variance of the effective noise ε, which is subleading in
the limit γ → 0+. This agrees with the characterization of the terms given in Arous et al. (2022),
where an additional Brownian motion correction term at finer scales is also derived.

In Figure 2 (left) we plot the trajectories of individual neurons in the space spanned by the two
target neurons (k = 2); Mjr/

√
QjjPrr is the (normalised) scalar product between wj and w∗

r . While,
initially, all neurons are pointing to the superposition of the two teacher weights ((

√
2/2,

√
2/2),

yellow dot)1, in the last phase of learning they ”specialize” and split evenly to one of the two
((1, 0), (0, 1), red squares). Note how the ODE trajectories follows closely the simulated ones.

Finally, our results imply a remarkable dimension independence property: Differently from
(13), the alternative description (GF-ODE) turns out to be independent of the data dimension d.
Given the initial conditions of the sufficient statistics (the overlaps), then the trajectories will behave
exactly in the same way whether d is large or small (see the illustration in Figure 2 (right)). This
remarkable property is a direct consequence of the Gaussianity assumption on the data. Note,
of course, that dimensionality still plays a crucial role through the initialisation. Indeed, for the
typically employed random initialization θ0i ∼ N (0d, σ

2Id), the initial correlation between the

1. Without loss of generality let’s assume the teacher weights are w∗
1 = (1, 0, 0) and w∗

2 = (0, 1, 0). Indeed,

the teacher function is f∗ = 1/2
(

erf
(
x1/

√
2
)
+ erf

(
x2/

√
2
))

. Assuming that in the first phase the student learns

the teacher “linearly”, the student takes the form f̂ = erf
(
w · x/

√
2
)
.The minimum loss is achieved when w =

(1/2, 1/2, 0), that corresponds exactly to the point (
√

2/2,
√
2/2) in the plot.

7



ARNABOLDI STEPHAN KRZAKALA LOUREIRO

Mj1/
√
QjjP11

M
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ODE

d = 5
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d = 50

Figure 2: Dimension independence of the dynamics in the classical regime: Comparison be-
tween the simulated SGD dynamic and the analytical one obtained by integrating the differential
equations. All the plots are using σ = erf(·/

√
2). (Left:) Trajectories for the cosine similarity

between each network neural and the target; time evolution in simulation is blue to green, ODE
trajectories in orange (k = 2, p = 10, γ = 5×10−2,∆ = 0). (Right:) Different low-dimensional
simulations, starting from the same identical initial condition , see Appendix D Veiga et al. (2022)
for the details on the initialization used . (k = 5, p = 10, γ = 5× 10−2,∆ = 10−3).

hidden-units and the target, parameterised by M0
rj ∼ 1/

√
d, explicitly depends on d. Since M=0 is

often a fixed-point of the dynamics, d=O(1) or d≫1 will lead effectively to different behaviours.
The fluctuations visible in the final plateaus of Figure 2 (right)) result from the stochastic process

in Equation (9): Ψ(Var) and consequently Ψ(noise) are proportional to ||xν ||22/d. When d = O(1) then
this term is not concentrating to 1 and leads to a fluctuation. Let us again stress the fact that this is an
effect visible only when performing numerical experiments with finite d, whereas in the true limit
the fluctuations disappear and the dynamic is described by deterministic ODEs. A more detailed
discussion can be found in Appendix A.

3.3. The high-dimensional regime

Modern machine learning practice often involves high-dimensional data. As early as in (Saad and
Solla, 1995a, 1996) it has motivated the study of the d → ∞ limit of the SGD dynamics (4),
under the assumption of fixed learning rate and model complexity p, γ = O(1). This setting has
witnessed a renewal of interest recently Tan and Vershynin (2019); Goldt et al. (2019); Veiga et al.
(2022); Arous et al. (2022). In particular, a remarkable phenomenon arises: differently from the
classical limit eq. (GF-ODE) discussed above, in high-dimension the variance term induced by the
SGD effective noise yields an explicit contribution to the limiting dynamics (SS-ODE). This term
can yield a finite risk contribution at large times even for architectures for which the population
gradient flow would otherwise converge to zero population risk (i.e. perfect learning of the target
fΘ⋆), so that the large time dynamics plateau at finite risk (see for instance Goldt et al. (2019);
Arous et al. (2022)). This is a major difference between the classical and high-dimensional regime.
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For strongly convex problems, it is known that SGD with fixed learning rate γ converges to a
stationary distribution of variance ∝ γ Pflug (1986); Dieuleveut et al. (2020), leading to an asymp-
totic risk that closely resembles the one observed by Saad and Solla (1995a) in the high-dimensional
regime. This suggests a similar phenomenology in the basin of the global minima, although making
this statement precise is challenging due to the non-convexity of the risk for two-layer networks. As
noted by Veiga et al. (2022), this noise term is subleading in γ/p, and can be mitigated by either tak-
ing γ → 0+ (i.e. seeing a lot of data) or overparametrising p → ∞. However, since eqs. (SS-ODE)
are a system of p(p+k) ordinary differential equations, they become intractable in the limit p → ∞,
which is a major shortcoming of this description.

3.4. The overparametrised regime

In both the classical and high-dimensional regimes, the effective description of the SGD dynamics
rely on quantities which scale with the hidden-layer width p, and therefore they are not adequate
to wide models. Yet, in many scenarios of interest we need to deal with wide, overparametrised
networks. The problem is finding an effective low-dimensional description of one-pass SGD for the
overparametrised regime p → ∞ was first addressed by Mei et al. (2018); Chizat and Bach (2018);
Rotskoff and Vanden-Eijnden (2019); Sirignano and Spiliopoulos (2020). The key idea in this line
of work is to define an empirical density over the weights θνi := (aνi ,w

ν
i ):

µ̂ν
p(θ) =

1

p

p∑

i=1

δ(θ − θν
i ) (14)

and to derive a closed-form update for the density µ̂ν
p(θ) from the SGD update of the weights,

eq. (4). In the limit p → ∞, those works have shown that the empirical density converges to an
asymptotic density over Rd+1, which for sufficiently small learning rate satisfies a partial differential
equation (PDE) that became known in the literature as the mean-field limit. Drawing from the theory
of PDEs and optimal transport, this description allowed for the derivation of important mathematical
guarantees on the dynamics, such as the global convergence of SGD for two-layers neural networks.

However, the empirical measure µ̂ν
p is defined on Rd+1, so a problem still remains when d is

large. Indeed, as remarked in Bach and Chizat (2022) it remains challenging to draw quantitative
results from this description except for considerably low-dimensional data. However, since in our
setting the target function (5) only acts on a low-dimensional subspace of Rd, it is possible to
exploit the symmetries of the problem to derive an approximation of constant dimension. This low-
dimensional equivalent stems from invariance properties of mean-field equations, which were also
used in Abbe et al. (2022) and studied in depth in Hajjar and Chizat (2022). However, Abbe et al.
(2022) only considers the d → ∞ limit, while we derive a limit that is valid for any value of d.
Hajjar and Chizat (2022), on the other hand, is closer to our work (see e.g. their Lemma 4.2), but
only handles the approximation of the dynamics by PDEs instead of ODEs.

Decomposing the dynamics: The starting point of this low-dimensional description is the de-
composition of W as

W = Wproj +W⊥, (15)

where Wproj is the orthogonal projection on the teacher vectors W ⋆. This projection can be ex-
pressed using the sufficient statistics defined in eq. (8):

W = MP−1W ⋆ +W⊥. (16)

9
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Similar to (7), we can then define the orthogonal pre-activations and its covariance matrix:

λ⊥ν = W⊥νxν (17)

Q⊥ = W⊥(W⊥)⊤ = Q−MP−1M⊤ . (18)

Since we are in a regime where γ/p ≪ 1, the ODE approximation of SGD corresponds to equations
(GF-ODE). From there, with a little algebra (see Appendix B), we can derive the corresponding
equations for Q⊥:

dQ⊥
ij

dt
= E(λ⊥,λ)

[(
σ′(λi)λ

⊥
j + σ′(λj)λ

⊥
i

)
E
]
:= Ψ⊥

ij(Ω). (19)

Low-dimensional approximation: Informally, the interesting part of the dynamics happens in a
low-dimensional space: the one spanned by the target weights W ⋆. The remainder of the dynam-
ics only depends on the student-student vector interactions, which are orthogonally invariant. We
therefore make the following assumption to enforce this invariance at the start:

Assumption A3 The initial vectors (w1, . . . ,wp) are drawn i.i.d from an orthogonally invariant
and K2/d-subgaussian distribution µ0, for some constant K > 0.

We show in the appendix how we can then approximate the dynamics by only tracking the
evolution of M and diag(Q⊥), and using the following ansatz:

w⊥
i ≈

√
q⊥ii · gi, (20)

where gi are i.i.d uniform random variables on Sd−k−1 independent from the q⊥ii . More precisely,
we consider the reduced parameters Θ̃ = (M, q) ∈ Rp(k+1), and the following mean-field equiva-
lent of the overlaps:

Ω̃ =

(
Q̃ M

M⊤ P

)
, Q̃ = MP−1M⊤ +D√

qΞD√
q (21)

where D√
q is the diagonal matrix whose entries are the

√
qi, and Ξ is a random matrix with inde-

pendent entries such that

Ξii = 1, Ξij = ⟨g, g′⟩ with g, g′ ∼ Unif
(
Sd−k−1

)

Then, the mean-field ODEs read

dM
dt

= EΞ

[
Ψ(M)(Ω̃)

] dqi
dt

= EΞ

[
Ψ⊥

ii (Ω̃)
]
. (MF-ODE)

Similarly, given the parameters Θ, the risk is computed as

R(Θ̃) = EΞ

[
R(Ω̃)

]
(22)

The consistency of this approximation is given by the following theorem:

10
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Figure 3: The mean-field regime: Comparison between population risks of the simulated learning
dynamic and the corresponding deterministic evolution, for (left) mean-field low-dimensional
regime with squared activation function (k = 2, d = 5, γ = 1,∆ = 0) and (right:) mean-field
high-dimensional regime. Apart from finite size effects, there is agreement between ODEs and
simulated dynamics (k = 5, d = 1000, γ = 10).

Theorem 2 Under asms. A2 and A3, let Ω(t) and Θ̃(t) denote the solutions of the ODES (GF-ODE)
and (MF-ODE), respectively. Then with probability at least 1− e−z2 on the initialization:

sup
t∈[0,T ]

∣∣∣R(Ω(t))−R(Θ̃(t))
∣∣∣ ≤ CeCT

(√
log(pT ) + z

)
/
√
p .

The proof is given in Appendix C. It uses key elements from the mean-field study of Mei et al.
(2019). Indeed, both the solutions of (GF-ODE) & (MF-ODE) can be viewed as the “particle
dynamics” approximations (see e.g. Chertock (2017)) of two mean-field PDEs µt, µ̃t on the space
of network weights w ∈ Rd and the space or reduced parameters (m, q) ∈ Rk+1, respectively. In
turn, the invariance property of µ0 extends to µ̃t for every t ≥ 0, which implies that R(µt) = R(µ̃t).

Remark 3 We do not imply in any way, shape or form that Equation (20) represents the actual
distribution of the w⊥

i , or that (as in (21)) then entries of Q⊥ are independent. Rather, it is the
structure of the update equations that allows for this approximation to hold.

The high-dimensional limit of mean-field: When d → ∞, the off-diagonal entries of the matrix
Ξ are of order 1/

√
d, which suggests that they can be neglected safely. We therefore define the

following equivalent of ΩMF, which does not depend on auxiliary random variables:

Ω̄ =

(
Q̄ M

M⊤ P

)
, Q̄ = MP−1M⊤ + diag(q) (23)

The following lemma then holds:

11
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Lemma 4 For any (M, q) ∈ Rp(k+1), we have:
∥∥∥∥EΞ

[
Ψ(M)(Ω̃)

]
−Ψ(M)(Ω̄)

∥∥∥∥
∞

≤ C√
d
, and

∥∥∥∥EΞ

[
Ψ(⊥)(Ω̃)

]
−Ψ(⊥)(Ω̄)

∥∥∥∥
∞

≤ C√
d
. (24)

We thus define the high-dimensional equivalent of (MF-ODE):

dM
dt

= Ψ(M)(Ω̄)
dqi
dt

= Ψ⊥
ii (Ω̄). (HDMF-ODE)

The same propagation of perturbations arguments discussed in Appendix B of Veiga et al. (2022),
and the Lipschitz property of the risk, easily imply the following theorem:

Theorem 5 Under Assumptions A2 & A3, let Ω(t) and Θ̄(t) denote the solutions of the ODES
(GF-ODE) and (HDMF-ODE), respectively. Then with probability at least 1− e−z2 on the initial-
ization:

sup
t∈[0,T ]

∣∣R(Ω(t))−R(Θ̄(t))
∣∣ ≤ CeCT

(√
log(pT ) + z√

p
+

1√
d

)

This approximation eliminates the need to compute expectations in (MF-ODE). As in the low-
dimensional case, (HDMF-ODE) are the “particle dynamics” approximations of the mean-field PDE
µ̄t in the space of reduced parameters (m, q) ∈ Rk+1. Indeed, the equation in the space of measures
furnish an effectively low-dimensional description of the high-dimensional mean-field limit, while
the ODE are still p(k + 1)-dimensional.

We now argue that this phenomenon is not only a consequence of rotation invariance, but also a
simple concentration result. Indeed, irrespective of Assumption A3, we show the following result:

∣∣∣∣Eλ⋆,λ⊥∼N (0,Ω)

[
σ(λi)λ

⊥
i E
]
− Eλ⋆,λ⊥∼N (0,Ω̄)

[
σ(λi)λ

⊥
i E
]∣∣∣∣ ≤ c

√
Q⊥

ii ·
∥Q⊥∥op

p
, (25)

For a random sub-gaussian initialization, classical matrix concentration arguments (see Vershynin
(2018), Theorem 4.4.5) imply

∥Q⊥∥op = O

(
1 +

p

d

)

and common sense arguments (the presence of an attracting force towards Q⊥ = 0) indicates that
this quantity stays within the same order of magnitude. On the other hand, by Assumption A1, the
Qii (and hence the Q⊥

ii ) remain bounded by an absolute constant during the trajectory. We therefore
expect, using standard results from ODE perturbation, that

∥Ω̄(t)− Ω̃(t)∥∞ ≤ eCt

(√
1

p
+

√
1

d

)
. (26)

Contrary to the low-dimensional regime and the theorem above, this derivation does not require any
rotation invariance of the w⊥

i ; simply, the averaging properties of Ψ(M) are enough to show direct
concentration properties on the dynamics.

It is instructive to look at a concrete example where the phenomenology discussed above be-
comes explicit. Perhaps the simplest one is given by the square activation σ(x) = x2, for which

12
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the expectation in eq. (11) can be explicitly expressed in terms of polynomials of the covariance
matrices (Qν ,Mν ,P) (see Appendix E for the derivation):

Ψ(M)(Ω) = 2

(
Tr [P]

k
− Tr [Q]

p

)
M+ 4

(
PM

k
− MQ

p

)

Ψ(GF)(Ω) = 4

(
Tr [P]

k
− Tr [Q]

p

)
Q+ 8

(
M⊤M

k
− Q2

p

)

Ψ(⊥)(Ω) = 4

(
Tr [P]

k
− Tr [Q]

p

)
Q⊥ − 4

p

(
QQ⊥ +Q⊥Q

)
.

(27)

Similarly, the population risk as a function of the sufficient statistics reads:

R(Ω)=
Tr [P]2 + 2Tr

[
P2
]

2k2
−
Tr [P]Tr [Q] + 2Tr

[
MM⊤

]

pk
+
Tr [Q]2 + 2Tr

[
Q2
]

2p2
+
∆

2
. (28)

The high-dimensional mean field limit is then particularly simple. Recalling the definition of Ω̄
in Equation (23), we obtain the explicit equations by replacing Ω with Ω̄. The situation is, however,
different for the low-dimensional mean-field limit, due to the randomness introduced by matrix Ξ.
The ODEs and the risk, given the parameters Θ̃, are

EΞ

[
Ψ(M)(Ω̃)

]
= Ψ(M)(Ω̄) EΞ

[
Ψ(noise)(Ω̃)

]
= Ψ(noise)(Ω̄)

EΞ

[
Ψ⊥

ii (Ω̃)
]
= Ψ⊥

ii (Ω̄)−
8

p

∑p
j=1,j ̸=i qj

d− k
qi

EΞ

[
R(Ω̃)

]
= R(Ω̄) +

1

p2

∑p
i=1

∑p
j=1,j ̸=i qiqj

d− k
.

(29)

In this case, the low-dimensional corrections are therefore just additive terms. As expected, these
corrections vanish when d → ∞, where we fall back to the high-dimensional mean-field. Con-
versely, when d = k the correction diverges, but we don’t need to track q anymore since the teacher
weights are spanning the whole space Rd, and the orthogonal space is null; hence Q⊥ = 0 and
this is a stable point of the dynamics. In Figure 3 we show some numerical experiments using this
activation function; for a more detailed discussion see Appendix F.

Our work provides a comprehensive analysis of the one-pass SGD dynamics of two-layer neural
networks. The study bridges different regimes of interest, offers a unifying picture of the limiting
SGD dynamics, sheds light on the behavior of neural networks trained on synthetic data and, we
believe, provides a useful tool for further investigations of the performance of these networks.
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Appendix A. Effect of noise on Equations (GF-ODE)

In this appendix we present some corrective terms to Equations (GF-ODE) that allows to have better
results when numerically integrating ODEs and comparing them to simulations.

In Veiga et al. (2022) the terms proportional to γ/p are neglected completely when running
numerical integrations. However, we noticed that a term from Ψ

(Var)
ij (Ω) could be kept in order to

get better agreement between ODEs and simulation in presence of label noise at small but finite
γ/p ≪ 1. Letting E∗ := E −

√
∆z, we can decompose

Ψ
(Var)
ij (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)σ

′(λj) E∗2
]
+ E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)σ

′(λj)∆
]
,

allowing us to define

Ψ
(noise)
ij (Ω) := E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)σ

′(λj)∆
]
. (30)

The asymptotic of this term at late times t ≫ 1 was explicitly computed in Biehl and Schwarze
(1995) and Goldt et al. (2019) for different architectures, where it was found that Ψ(noise)

ij ∝ ∆. In

these cases, when the dynamics approaches the point where E∗ ∼ γ∆/p, then the term Ψ
(GF)
ij (Ω) is

of the same order of γ/pΨ
(noise)
ij (Ω), while the remaining part of Ψ(Var)

ij (Ω) is still negligible since
is scaling as E∗2. It follows that the first order correction in γ/p of equations (GF-ODE) is given by:

dM
dt

= Ψ(M)(Ω),
dQ
dt

= Ψ(GF)(Ω) +
γ

p
Ψ(noise)(Ω). (GF-ODE-NOISE)

Despite vanishing in the true γ/p → 0+ limit, the new term enables ODE to catch the behaviour for
large times, when simulating small but finite γ/p.

Figure 4 shows a numerical experiment explicitly designed to show the effect of noise term.
The fluctuations visible in the final plateaus result from the stochastic process in Equation (9):
Ψ(Var) and consequently Ψ(noise) are proportional to ||xν ||22/d. When d = O(1) then this term is
not concentrating to 1 and leads to a fluctuation. Let us again stress the fact that this is an effect
visible only when performing numerical experiments with finite GP, whereas in the true limit the
fluctuations disappear and the dynamic is described by deterministic ODEs.

Appendix B. Derivation of Eq. (19) and local fields covariance

Let’s start by taking the time derivative of Eq. (18)

dQ⊥

dt
=

dQ

dt
− dM

dt
P−1M⊤ −MP−1 dM

⊤

dt
:= Ψ⊥(Ω),

and plugging in equations (GF-ODE) and (11) one after the other we get

Ψ⊥
ij(Ω)=E

[
(
σ′(λi)λj+σ′(λj)λi

)
E−

k∑

r=1

k∑

t=1

σ′(λi)λ
⋆
rE
[
P−1
]
rt

[
M⊤
]
tj
−

k∑

r=1

k∑

t=1

[M]ir

[
P−1
]
rt
λ⋆
tσ

′(λi)E
]

=E


E

k∑

r=1

k∑

t=1

(
σ′(λi)

(
λj−λ⋆

r

[
P−1

]
rt

[
M⊤
]
tj

)
+ σ′(λj)

(
λi−[M]ir

[
P−1

]
rt
λ⋆
t

))
 ,
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Figure 4: comparison between the simulated learning dynamic and the one obtained by integrating
the differential equations, in the classical regime; k = 4, p = 8, γ = 5 × 10−2, d = 10, σ =
erf(·/

√
2). Learning the same teacher with different level of noise.

where all the expected value are intended over (λ,λ⋆) ∼ N (0p+k,Ω). Starting from the definition
of λ⊥

λ⊥ = W⊥x =
(
W −MP−1W ⋆

)
x = λ−MP−1λ⋆,

and writing single component

λ⊥
i = λi −

k∑

r=1

k∑

t=1

[M]ir

[
P−1

]
rt
λ⋆
t ,

substituting in the expression above we finally get

Ψ⊥
ij(Ω) = E

[(
σ′(λi)λ

⊥
j + σ′(λj)λ

⊥
i

)
E
]
. (31)

The explicit computation of the expected value depends on the particular activation function
used. Even though, the final expression can only be function of the covariance matrix entries, since
all the local fields are zero-mean Gaussian variables. We report the covariance matrix of local fields

Cov
[
λ,λ⊥,λ⋆

]
=




Q Q⊥ M
Q⊥ Q⊥ 0
M⊤ 0 P


 , (32)

where Q⊥ = Q−MP−1M⊤ as defined above.
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Appendix C. Mean-field approximation: proof of Theorem 2

Preliminaries We begin by recalling the results of Mei et al. (2019). For any distribution µ on
Rd, we define the network function

f̂µ(x) =

∫
σ(w⊤x)dµ(w). (33)

It is easy to check that when

µ = µp(W ) :=
1

p

p∑

i=1

δwi ,

then f̂µ = fΘ, where fΘ was defined in (1). The associated network risk is then given by

R̂(µ) = Ex∼N (0,1/dId)

[
1

2

(
fΘ⋆(x)− f̂µ(x)

)2]
. (34)

Similarly, we can consider the continuous equivalent of the gradient flow equation as follows:

φ(w, µ) = Ex∼N (0,1/dId)

[
σ′(w⊤x)x

(
fΘ⋆(x)− f̂µ(x)

)]
. (35)

Through conservation of matter arguments, the evolution of the empirical measure for particles
following the gradient flow equation (13) obeys the following partial differential equation:

∂tµt = ∇w ·
(
µt φ( · , µt)

)
(GF-PDE)

Theorem 6 (Mei et al. (2019), Propositions 13-16) Let µ0 be a K2/d-subgaussian distribution,
and consider the following two processes:

• the solution µt of (GF-PDE) with initial value µ0,

• the solution W (t) of the gradient flow ODE (13), with initial conditions wi(0) ∼ µ0 i.i.d.

Then for any T ≥ 0 we have

sup
t∈[0,T ]

∣∣∣R(W (t))− R̂(µt)
∣∣∣ ≤

CeCT
(√

log(pT ) + z
)

√
p

(36)

with probability at least 1− e−z2 .

As we have already mentioned in the section devoted to the gradient flow regime, the solution
Ω(t) of (GF-ODE) is exactly the overlap matrix of W (t), and hence the term R(W (t)) can be
replaced by R(Ω(t)) in (36).
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Rotation invariance The crux of Theorem 2 lies in the rotation invariance of µ0. Indeed, as
noticed in Abbe et al. (2022); Hajjar and Chizat (2022), such symmetries are conserved throughout
the mean-field dynamics.

Proposition 7 (Hajjar and Chizat (2022), Proposition 2.1) Let U be a linear transformation, and
assume that the initial measure µ0, the teacher function f⋆ and the data measure ρ are all invariant
under U . Let µt be the solution to (GF-PDE) with initial condition µ0. Then µt is U -invariant for
all t ≥ 0.

Write Rd = V ⋆ ⊕ V ⊥, where V ⋆ is the span of W ⋆ and V ⊥ is its orthogonal subspace. Propo-
sition 7 then implies immediately that µt is rotation-invariant on V ⊥. Hence, if we define the
following function:

h(w) =

(
W ⋆w

d
, ∥w⊥∥2

)
(37)

where w⊥ is the projection of w on V ⊥, then µt is only determined by its pushforward µ̃t = h#µt.
Conversely, for a set of reduced parameters (m, q) ∈ Rd, and g ∈ Sd−k−1, we define

w̃ = W ⋆⊤P−1m+
√
q · g, (38)

where g is a uniform unit vector in V ⊥. Then µt is the measure of w̃ when (m, q) ∼ µ̃t and
g ∼ Unif(Sd−k−1). This allows us to write the reduced equations for µ̃t:

∂tµ̃t = ∇(m,q) ·
(
µ̃tφ̃( · , µ̃t)

)

φ̃m((m, q), µ̃) = Ex,g

[
σ′(w̃⊤x)W ⋆x

(
fΘ⋆(x)− f̃µ̃(x)

)]

φ̃q((m, q), µ̃) = Ex,g

[
σ′(w̃⊤x)

√
q g⊤x

(
fΘ⋆(x)− f̃µ̃(x)

)]
(DF-PDE)

where x = (z, r) ∼ N (0, 1/dId) is a normalised Gaussian vector, g ∼ Unif(Sd−k−1), and

f̃µ̃(x) =

∫
σ(w̃⊤x)dµ̃(m, q)dν(g) (39)

The associated population risk is now

R̃(µ̃) := Ex∼N (0,1/dId)

[
1

2

(
fΘ⋆(x)− f̃µ̃(x)

)2]
. (40)

We have therefore shown the following proposition:

Proposition 8 Assume that µ0 is rotation-invariant on V ⊥. Consider these two processes:

• the solution µt of (GF-PDE) with initial value µ0,

• the solution µ̃t of (DF-PDE) with initial value h#µ0.

Then, for all t ≥ 0, we have
R̂(µt) = R̃(µ̃t) (41)
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Back to ODEs Consider a population of p particles (m, q) that evolve according to the following
equations:

dmi

dt
= φ̃m(mi(t), µ̃p(t))

dqi
dt

= φ̃q(qi(t), µ̃p(t))

(DF-ODE)

where µ̃p(t) is the empirical distribution of the population:

µ̃p(t) =
1

p

p∑

i=1

δmi(t),qi(t).

Then, by the same arguments as Theorem 6, we have:

Proposition 9 Assume that µ̃0 is a K2/d-subgaussian distribution, and consider the two pro-
cesses:

• the solution µ̃t of (GF-PDE) with initial value µ̃0,

• the solution Θ̃(t) = (mi(t), qi(t))i of (DF-ODE) with initial conditions mi(0), qi(0) ∼ µ̃0

i.i.d.

Then for all T ≥ 0, we have

sup
t∈[0,T ]

∣∣∣R̃(Θ̃(t))− R̃(µ̃t)
∣∣∣ ≤

CeCT
(√

log(pT ) + z
)

√
p

, (42)

with probability at least 1− e−z2 , where R̃(Θ(t)) = R̃(µ̃p(t)).

In conclusion, we have shown the following:

Theorem 10 Assume that conditions A2 and A3 are both satisfied, and define

M0 =
W0W⋆⊤

d
, Q0 =

W0W0⊤

d
, q0 = diag

(
Q0 −M0P−1M0⊤

)
. (43)

Consider the two following processes:

• the solution Ω(t) of (GF-ODE) with initial value Ω0,

• the solution Θ̃(t) of (DF-ODE) with initial value (M0, q0).

Then for any T ≥ 0, we have

sup
t∈[0,T ]

∣∣∣R(Ω(t))− R̃(Θ̃(t))
∣∣∣ ≤

CeCT
(√

log(pT ) + z
)

√
p

, (44)

with probability at least 1− e−z2 .
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Matching the equations To show that Theorem 10 implies Theorem 2, we need to show the
following:

• the update equations for (MF-ODE) and (DF-ODE) are the same

• the risk definitions for R̃(Θ̃) matches the one from (22).

We will only show it for φ̃m; the rest is done similarly. Expanding the definition, we have

φ̃m((mi, qi), µ̃p)r =
1

k

k∑

s=1

⟨σ′(λ̃i)λ
⋆
rσ(λ

⋆
s)⟩ −

1

p

p∑

j=1

⟨σ′(λ̃i)λ
⋆
rσ(λ̃j)⟩ (45)

where λ̃i = w̃⊤
i x and ⟨·⟩ denotes the expectation with respect to x, g. On the other hand,

Ψ(M)(Ω) =
1

k

k∑

s=1

⟨σ′(λi)λ
⋆
rσ(λ

⋆
s)⟩ −

1

p

p∑

j=1

⟨σ′(λi)λ
⋆
rσ(λj)⟩, (46)

without any expectation on g; hence we only need to match the expressions term by term. The first
sums of (45) and (46) are actually identical (since the marginal distribution of λ⋆

i is independent
from g), so we look at the second ones:

⟨σ′(λ̃i)λ
⋆
rσ(λ̃j)⟩ =

∫
Ex∼N (0,1/dId)

[
σ′(λ̃i)λ

⋆
rσ(λ̃j)

]
dν(gi)dν(gj) (47)

For i ̸= j and a given realization of gi, gj , the covariance matrix of (λ̃i, λ̃j , λ
⋆
r) is

Cov
[
λ̃i, λ̃j , λ

⋆
r

]
=




m⊤
i P

−1mi + qi m⊤
i P

−1mj +
√
qiqjξij mir

m⊤
i P

−1mj +
√
qiqjξij m⊤

i P
−1mi + qi mjr

mir mjr prr




where ξij = ⟨gi, gj⟩. It is easy to check that this is exactly equal to Ω̃ijr, where Ω̃ is defined in
(21). Finally, by linearity of expectation, since we never have a three-way correlation term between
gi, gj , gℓ, we can consider all the ξij to be independent. This ends the proof of Theorem 2.

Appendix D. Proofs for the high-dimensional mean-field approximation

D.1. Preliminaries

We first provide several bounds on expectations of functions of Gaussians, that will be used through-
out this section. We begin by recalling the classical Gaussian Poincaré inequality (see e.g. Boucheron
et al. (2013), Theorem 3.20):

Lemma 11 Let f : Rd → R be a differentiable function, and X ∼ N (0, I). Then

Var(f(X)) ≤ E
[
∥∇f(X)∥2

]
.

If X ∼ N (0,Σ), the following bounds hold instead:

Var(f(X)) ≤ E
[
⟨∇f(X),Σ∇f(X)⟩

]
≤ ∥Σ∥op · E

[
∥∇f(X)∥2

]
.
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Now, we provide some concentration bounds for expectations of random variables. Let h : R →
R be a function, and z a random variable; our goal is to bound

∣∣E[h(z)]− h(E[z])
∣∣

under different assumptions on f, z.

Lemma 12 Assume that h is L-Lipschitz, and that z has a second moment. Then
∣∣E[h(z)]− h(E[z])

∣∣ ≤ L
√
Var(z) (48)

Proof By Jensen’s inequality, we have
∣∣E[h(z)]− h(E[z])

∣∣ ≤ E
[
|h(z)− h(E[z])|

]

≤ LE[|z − E[z]|]
≤ L

√
Var(z)

where the last line uses the Cauchy-Schwarz inequality.

Lemma 13 Assume that h is twice differentiable, with
∥∥∥h(k)

∥∥∥
∞

≤ K, and that z has a fourth
moment. Then ∣∣E[h(z)]− h(E[z])

∣∣ ≤ K

2

√
E
[
(z − s)4

]
(49)

Proof For simplicity, let s = E[z]. By the Lagrange formula for Taylor series, we can write

h(x) = h(s) + (x− s)h′(s) + (x− s)2R(x) (50)

where R is bounded by K/2. Plugging z into this equation,

∣∣E[h(z)]− h(s)
∣∣ =

∣∣∣∣E
[
(z − s)2R(z)

]∣∣∣∣ ≤
√
E
[
(z − s)4

]
E
[
R(z)2

]
(51)

via the Cauchy-Schwarz inequality, and the result ensues.

D.2. Proof of Lemma 4

We only show the result for Ψ(M); the one for Ψ⊥ ensues from similar methods. Recalling the
expansion in (46) as a sum of 3-point correlation functions, we define the following function of
3× 3 matrices:

f(Σ) = Ez∼N (0,Σ)

[
σ′(z1)z2σ(z3).

]
(52)

Then Ψ(M)(Ω) is simply an average of f(Σ) for Σ submatrices of Ω. We first show the following
bound:

Lemma 14 Under Assumption A2, the function f satisfies the following inequality: for any Σ, Σ′

such that
∥∥Σ′ − Σ

∥∥
∞ ≤ K,

∣∣f(Σ′)− f(Σ)
∣∣ ≤ C(1 +

√
Σ22)

∥∥Σ′ − Σ
∥∥
∞ (53)
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Proof Let Σ and Σ′ be two positive semidefinite matrices, and δΣ = Σ′ − Σ. We can write
δΣ = δΣ1 − δΣ2 where both δΣi are positive, and

∥δΣi∥∞ ≤ C∥δΣi∥op ≤ C∥δΣ∥op ≤ C ′∥δΣ∥∞

using norm equivalence. Hence, we shall assume from now on that δΣ is positive semidefinite, and
write

z′ = z + δz

where δz ∼ N (0, δΣ) is independent from z. Define

δσ = σ(z′3)− σ(z3) and δσ′ = σ′(z′1)− σ′(z1)

Then

f(Σ′)− f(Σ) = E
[
σ′(z1)z2δσ + σ′(z1)δz2σ(z3) + δσ′z2σ(z3)

]

+ E
[
δσ′δz2σ(z3) + δσ′z2δσ + σ′(z1)δz2δσ

]

+ E[δσ′δz2δσ]

Since δz is independent from z, and σ satisfies Assumption A2, we can apply Lemma 13 to get

|Eδz3 [δσ]| ≤ CδΣ33,

and hence by the Cauchy-Schwarz inequality
∣∣∣E
[
σ′(z1)z2δσ

]∣∣∣ ≤ C ′
√

Σ22 δΣ33.

A similar bound holds for the two other terms of the first line. For the second line, another applica-
tion of Cauchy-Schwarz yields

Eδz

[
δσ′z2δσ

]
≤ z2

√
E[(δσ)2]

√
E[(δσ′)2]

≤ z2
√
δΣ11δΣ33

by a combination of Lemmas 11 and 12. A similar bound holds for the third line, and it is easily
checked that all of the obtained bounds are lower than the one of Lemma 14.

Now, the expansion of Ψ(M)(Ω̃) − Ψ(M)(Ω̄) is an average of terms of the form f(Σ̃) − f(Σ̄),

where (Σ̃−Σ̄)ij is either 0 or
√

q⊥ii q
⊥
jjξij . Hence, we can write each of those terms as h(ξij)−h(0),

and by Assumption A1 and Lemma 14, the function h is Lipschitz. Lemma 4 then ensues from an
application of Lemma 12.

D.3. Proof of Eq. (25)

We begin by showing the following lemma. Recall the definition of E :

E =
1

k

k∑

r=1

σ(λ⋆
r)−

1

p

p∑

i=1

σ(λi) (54)
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Lemma 15 There exists a constant c ≥ 0 such that for any choice of λ⋆,

Varλ⊥ (E) ≤ c ∥Q⊥∥op
p

Proof We apply the Gauss-Poincaré inequality of Lemma 11 to

f(λ⊥) =

p∑

i=1

σ([Mλ⋆]i + λ⊥
i ), which implies [∇f ]i = σ′(λi)

Whenever σ is Lipschitz, we thus have ∥∇f(λ⊥)∥2 ≤ cp, and the lemma ensues.

We are now in a position to show Eq. (25). For brevity, we denote by E (resp. EMF) the
expectations with respect to λ⊥ ∼ N (0, Q⊥) (resp. λ⊥ ∼ N (0, diag(Q⊥))). Since the marginals
of both distributions are the same, and by linearity,

E
[
f(λ⊥

i )
]
= EMF

[
f(λ⊥

i )
]

and E [E ] = EMF [E ] .

Under the distribution N (0,diag(Q⊥)), λ⊥
i is almost independent from E , except for the term

containing σ(λi). We can thus write, for any λ⋆

EMF

[
Eiλ⊥

i

]
= E

[
σ′(λi)λ

⊥
i

]
E [E ]− 1

p
EMF

[
σ′(λi)λ

⊥
i σ(λi)

]
+

1

p
E
[
σ′(λi)λ

⊥
i

]
E
[
σ(λi)

]

Hence,

E
[
Eiλ⊥

i

]
−EMF

[
Eiλ⊥

i

]
= E

[
σ′(λi)λ

⊥
i

(
E − E [E ]

)]
− 1

p
E
[
σ′(λi)λ

⊥
i

(
σ(λi)− E[σ(λi)]

)]
(55)

Now, using the Cauchy-Schwarz inequality,

∣∣∣∣E
[
σ′(λi)λ

⊥
i

(
E − E [E ]

)]∣∣∣∣ ≤
√
E
[(

σ′(λi)λ⊥
i

)2]
E
[(
E − E [E ]

)2]
.

For Lipschitz σ, the first term is easily bounded by cQ⊥
ii , and the second is exactly the variance

computed in Lemma 15. The second term in (55) being clearly negligible before the first, we finally
get

∣∣∣∣E
[
Eiλ⊥

i

]
− EMF

[
Eiλ⊥

i

]∣∣∣∣ ≤ c

√
Q⊥

ii ·
∥Q⊥∥op

p
, (56)

and Eq. (25) ensues by taking the expectation w.r.t λ⋆ on both sides.

Appendix E. Derivation of explicit expression for the squared activation

In this appendix we show how to derive the differential equations for the dynamics when both σ
and σ∗ are the square function. We will not present the Ψ(Var) term since we never use the square
activation in the high-dimensional regime.
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The starting points are Equations (11) and the fact that R = E2/2. Due to the linearity of the
expected value, we can reduce the expectation on products of E and λ. Let’s start with the population
risk. The expected values we need can be expanded to

E(λ,λ⋆)∼N (0p+k,Ω)

[
E2
]
=

1

k2

k∑

r,s=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ(λ∗

r)σ(λ
∗
s)
]
+

1

p2

k∑

j,l=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ(λj)σ(λl)

]

− 2

pk

p∑

j=1

k∑

r=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ(λj)σ(λ

∗
r)
]
,

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λlE

]
=
1

k

k∑

r′=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λlσ(λ

∗
r′)
]

− 1

p

p∑

l′=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λlσ(λl′)

]
,

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λ

∗
rE
]
=
1

k

k∑

r′=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λ

∗
rσ(λ

∗
r′)
]

− 1

p

p∑

l′=1

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λj)λ

∗
rσ(λl′)

]
.

These expansions are still valid for any generic activation function. Before specializing in σ(x) =
x2, we introduce a shorthand in the notation. We will use

ωαβ := [Ω]αβ ,

where the indices α and β can discriminate between teacher and student local fields, as well as
the numerical index. Actually, this notation allow us to compute also Ψ⊥(Ω) by expanding Equa-
tion (19) as above, and using the matrix in Equation (32) as covariance for the normal distribution.

With this consideration, there are only 2 types of expected values to be computed. Let us write
them explicitly, using our specific activation function

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ(λα)σ(λβ)

]
= E(λ,λ⋆)∼N (0p+k,Ω)

[
(λα)2(λβ)2

]
,

E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λα)λβσ(λγ)

]
= 2E(λ,λ⋆)∼N (0p+k,Ω)

[
λαλβ(λγ)2

]
.

We are left with some expected values of polynomials of Gaussian variables. Since the local fields
all have zero mean, these are nothing but moments of a Gaussian distribution with multiple variables.
The standard result used to calculate these is the Isserlis’ Theorem:

E(λ,λ⋆)∼N (0p+k,Ω)

[
(λα)2(λβ)2

]
= ωααωββ + 2ω2

αβ,

2E(λ,λ⋆)∼N (0p+k,Ω)

[
λαλβ(λγ)2

]
= 2ωαβωγγ + 4ωαγωβγ .
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By retracing all steps backward and making the necessary substitutions, we can arrive at an explicit
form of the Equations (GF-ODE). In order to obtain a matrix form such as in the Equations (27),
we have to write in a closed form all the summations appeared during the derivation and use the fact
that Q and P are symmetric matrices.

Appendix F. Numerical experiments in the mean-field limit

In this appendix we show the result of some numerical experiments we performed to verify the
statements exposed in Section 3.4.

First of all we checked that the point Q⊥ = 0 is a fixed point of the dynamic. We compare
a simulation of this case with an integration of just the matrix M. Since when Q⊥ = 0, M is a
sufficient statistic by itself, we expect it to be the only parameter to be evolved to characterize the
dynamics. Figure 5 (a) shows agreement between simulation and ODE integration.

Secondary, we would like to test is the actual need to calculate expected value on the matrix
Ξ when integrating the mean field in low dimension. In Figure 5 (b) we present the results for
erf activation function: not taking into account the off-diagonal terms, the integration of the ODEs
do not match the simulated dynamics even for large p. The effect becomes even more evident by
comparing Figure 5 (c) with Figure 3 (a). In fact, we can see that in the case of quadratic activation,
neglecting the matrix Ξ leads to a mismatch of population risk even at the initial instant, as it follows
naturally from Equation (29). We do not see such a marked difference in the case of σ = erf(·/

√
2)

since the latter is an odd function and non-diagonal terms of Ξ are symmetric random variables.
Finally, we looked at the evolution of the distribution of student weights. We use use k = 1 to

have just one teacher vector w⋆ ∈ Rd, while p = 5000 to have enough sample to understand how
the distribution is evolving. In particular, we are looking at the distribution of the cosines of the
angles between student weights and w⋆; in Figure 5 (d) we plot this distribution a 3 different times
of the evolution. At t = 0, the distribution is uniform, as expected since we sample weights from a
spherical invariant distribution with d = 3. During the evolution, the student’s weight moves in the
direction of w⋆ and −w⋆ (since σ is an even function the sign of the weights does not count). At
large time, the distribution is essentially 1/2 (δw⋆ + δ−w⋆), which represents perfect learning.
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Figure 5: (a) Evolution from starting point Q⊥ = 0, tracking only M. (b) - (c) Low-dimension
simulations and the corresponding ODE trajectory, without the off-diagonal entries of matrix Ξ
(d) Histogram for the distribution of teacher student-teacher weights overlappings, at different
times.
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