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Abstract
We consider the problem of mixed sparse linear regression with two components, where two k-
sparse signals β1,β2 ∈ Rp are to be recovered from n unlabelled noisy linear measurements. The
sparsity is allowed to be sublinear in the dimension (k = o(p)), and the additive noise is assumed to
be independent Gaussian with variance σ2. Prior work has shown that the problem suffers from a

k
SNR2 -to- k2

SNR2 statistical-to-computational gap, resembling other computationally challenging high-
dimensional inference problems such as Sparse PCA and Robust Sparse Mean Estimation (Brennan
and Bresler, 2020b); here SNR := ∥β1∥2/σ2 = ∥β2∥2/σ2 is the signal-to-noise ratio. We estab-
lish the existence of a more extensive k

SNR2 -to-k
2(SNR+1)2

SNR2 computational barrier for this problem
through the method of low-degree polynomials, but show that the problem is computationally hard
only in a very narrow symmetric parameter regime. We identify a smooth information-computation
tradeoff between the sample complexity n and running time exp(Θ̃(k2(SNR + 1)2/(nSNR2)) for
any randomized algorithm in this hard regime. Via a simple reduction, this provides novel rigorous
evidence for the existence of a computational barrier to solving exact support recovery in sparse
phase retrieval with sample complexity n = õ(k2). Our second contribution is to analyze a simple
thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the
associated mixed regression detection problem in O(np) time and matches the sample complex-
ity required for (non-mixed) sparse linear regression of k(SNR+1)

SNR log p; this allows the recovery
problem to be subsequently solved by state-of-the-art techniques from the dense case. As a spe-
cial case of our results, we show that this simple algorithm is order-optimal among a large family
of algorithms in solving exact signed support recovery in sparse linear regression. To the best of
our knowledge, this is the first thorough study of the interplay between mixture symmetry, signal
sparsity, and their joint impact on the computational hardness of mixed sparse linear regression.
Keywords: Low-Degree Polynomials, Computational Lower Bounds, Sparse Linear Regression,
Mixture Models, High-Dimensional Statistics

1. Introduction

This work considers the problem of two-component mixed sparse linear regression (MSLR), where
the goal is to estimate two k-sparse signals β1,β2 ∈ Rp from n unlabelled noisy linear measure-
ments. The model is defined as follows.

Definition 1 (MSLR) For X ∈ Rn×p, w ∈ Rn, and z ∈ Rn, consider the model:

y = Xβ1 ⊙ z +Xβ2 ⊙ (1− z) +w,

where ⊙ denotes element-wise product between vectors, Xi,j
i.i.d.∼ N (0, 1), wi

i.i.d.∼ N (0, σ2), zi
i.i.d.∼

Bernoulli(ϕ), and β1,β2 ∈ Rp each k-sparse. Given (X,y) the objective is to estimate β1, β2.
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This model was introduced by Quandt and Ramsey (1978) and has since been widely studied in the
machine learning and statistics communities; see, e.g., Städler et al. (2010); Chen et al. (2014); Yi
et al. (2014); Fan et al. (2018); Javanmard et al. (2022) and the references therein.

If the latent variables (zi)i∈[n] are observed, the problem reduces to solving two separate linear
regressions. However, in many applications, the latent variables may be unknown as the data may
come from different unlabelled sub-populations. The MSLR model captures this effect and has been
applied to a variety of settings including market segmentation (Wedel and Kamakura, 2000), music
perception (Viele and Tong, 2002), health care (Deb and Holmes, 2000; Luo et al., 2022; Im et al.,
2022), and various others (Li et al., 2022; Kazor and Hering, 2019). Variants of mixed regression
models called hierarchical mixtures-of-experts have long been studied in the machine learning com-
munity (Jordan and Jacobs, 1994), where they have been used for ensemble learning, and in Gated
Recurrent Units and Attention Networks (Makkuva et al., 2019).

The maximum-likelihood estimator is a natural choice for estimating the signals β1,β2. How-
ever, the resulting optimization problem is non-convex and NP-hard (Yi et al., 2014). The problem
is therefore challenging both statistically and computationally, and a variety of efficient estimators
have been proposed. These include spectral methods (Chaganty and Liang, 2013; Yi et al., 2014;
Zhang et al., 2022), expectation-maximization (EM) (Khalili and Chen, 2007; Faria and Soromenho,
2010; Städler et al., 2010), alternating minimization (Yi et al., 2014; Shen and Sanghavi, 2019;
Ghosh and Kannan, 2020), convex relaxation (Chen et al., 2014), moment descent methods (Li and
Liang, 2018; Chen et al., 2020), and the use of tractable non-convex objectives (Zhong et al., 2016;
Barik and Honorio, 2022).

Despite recent works addressing the statistical and computational feasibility of mixed linear
regression (including but not limited to Azizyan et al. (2013); Pal et al. (2022, 2021)), little is un-
derstood about the problem in the high-dimensional sparse regime where both the sample size n
and the sparsity k can be sublinear in the dimension p, over the range of all SNR scalings, where
SNR := ∥β1∥22/σ2 = ∥β2∥22/σ2 is the signal-to-noise ratio. This regime is motivated by a variety of
recent statistical applications, ranging from biology to communications (we refer to the monographs
Hastie et al. (2015); Giraud (2021) which contain multiple references). The assumptions in Defini-
tion 1 of i.i.d. Gaussian data rows xi and additive Gaussian noise wi have been often considered
broadly in the high-dimensional statistics literature as an idealized assumption (e.g., Wainwright
(2009a,b); Arias-Castro et al. (2011); Janson et al. (2017)).

One aspect of this formulation that is starting to become clear is that in a symmetric parameter
regime, the MSLR problem is hard, i.e., it cannot be solved by polynomial-time algorithms at the
information-theoretically optimal sample complexity nIT = Θ̃(k/SNR2) (Fan et al., 2018). Ex-
haustive search typically yields statistically near-optimal estimators for the signal support sets, but
the running time is exponential in k. The recent works of Brennan and Bresler (2020b); Fan et al.
(2018) provided different ways of quantifying this phenomenon, evidencing a fundamental algorith-
mic barrier for algorithms performing at all sample complexities n = õ(k2/SNR2) and sparsities
k = o(

√
p) in a very narrow and symmetric parameter regime which we call Symmetric Balanced

Mixture of Sparse Linear Regressions (SB-MSLR), defined as

SB-MSLR : ϕ = 1/2 and β1 = −β2. (1)

(Here we recall that ϕ is the mixture parameter in Definition 1, so ϕ = 1
2 implies that each yi is

equally likely to come from β1 or β2.) This phenomenon has been termed a k
SNR2 -to- k2

SNR2 statistical-
to-computational gap, where the problem is solvable with order k/SNR2 samples, but efficient
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algorithms require at least order k2/SNR2 samples. (Throughout this paper, by efficient algorithms
we mean those with running time O(pη) for some constant η > 0.) This computational threshold
is similar in order to those derived for a multitude of statistical estimation problems, from variants
of Planted Clique, e.g., sparse PCA and robust mean estimation (Brennan and Bresler, 2020b).
Notably, SB-MSLR is close to a prominent formulation of sparse phase retrieval where y = |Xβ|+w
(Brennan and Bresler, 2020b; Fan et al., 2018), which has been widely studied and is believed to
possess a k-to-k2 statistical-computational gap (Liu et al., 2021; Wu and Rebeschini, 2021).

The special case of sparse linear regression (SLR), where there is only one signal (i.e., β1 =
β2 in Definition 1) has been extensively studied in the last few decades (Candes and Tao, 2005;
Donoho, 2006; Wainwright, 2009b). For SLR, the statistical-computational gap is much smaller,
but still exists. Indeed, in the regime where k = o(p), the information-theoretically optimal sample
complexity for SLR is of order k log(p/k)

log(1+SNR) (Wang et al., 2010; Reeves et al., 2019); in contrast, recent
works such as Bandeira et al. (2022); Gamarnik and Zadik (2022) have established lower bounds
in the regime SNR → ∞ via the study of the Overlap Gap Property and Low Degree polynomials,
and shown that a sample complexity of order at least k log p is required for efficiently solving
SLR. Moreover, upper bounds of the same order can be obtained using a number of algorithms
(Wainwright, 2009b; Bandeira et al., 2022; Gamarnik and Zadik, 2022).

In this paper, for both MSLR and the special case of SLR, we present new algorithmic lower
bounds as well as upper bounds obtained by analyzing a simple thresholding algorithm. The thresh-
olding algorithm, which we call CORR, was used by Bandeira et al. (2022) to obtain upper bounds
for approximate support recovery (up to o(k) errors) in SLR, in the setting of binary signal and
SNR→∞ with growing k. In all our results, we make the dependence on SNR explicit, so that they
hold for all SNR regimes, including SNR = Θ(1) and for SNR = o(1). Before summarizing our
results, we define the class of prior distributions we consider for the signals β1,β2.

Signal Priors We consider joint priors for β1,β2 that are marginally uniform over k-sparse vec-
tors β1,β2 ∈ Rp with equal norm ∥β∥2. The case where the two signals have equal norm is more
challenging as each entry of the observation y will have the same variance regardless of which
signal it corresponds to. We denote such a prior by P∥β∥2(D), where the non-zero entries of each
vector take values in D ⊆ R. We assume that βmin := min{|β| | β ∈ D} > 0.

Notation We use boldface font for vectors and matrices and plain font to denote scalars (e.g.
a and a, respectively). For X ∈ Rn×p, xi denotes the i-th row of this matrix and Xj the
j-th column of this matrix. Throughout the work, we adopt the standard asymptotic notation
O(·),Ω(·), o(·), ω(·), and Θ(·). We let Õ(·) and analogous variants denote these relations up to
polylog factors. By ≲, ≳, ≃ we denote inequalities and equality up to constants, respectively. We
let [n] := {1, 2 · · ·n}. For the MSLR setting in Definition 1 and the parameter regime SB-MSLR in
(1), we let MSLR \ SB-MSLR refer to the MSLR problem with associated parameters lying outside the
SB-MSLR parameter regime.

1.1. Our Contributions

In what follows, our computational lower bound results hold in full generality for signals with
bounded amplitude in the scaling regime p → ∞, n → ∞ and k = o(

√
p). Our algorithmic

achievability results hold for general signals with high probability in the sublinear sparsity regime
p→∞, n→∞, k = o(p), and n = ω(k).

3



ARPINO VENKATARAMANAN

Computational Lower Bounds for MSLR We provide novel rigorous evidence through the study
of low-degree polynomials (Kunisky et al., 2022; Schramm and Wein, 2022; Hopkins, 2018) that
there exists a fundamental algorithmic barrier to solving a detection (hypothesis testing) variant of
SB-MSLR at all sample complexities n = o(k

2(SNR+1)2

SNR2 · 1
log p) and sparsities k = o(

√
p). Moreover,

we show that this computational barrier implies a smooth tradeoff between sample and time com-
plexities, preventing algorithms with running time less than exp(Θ̃(k

2

n · (SNR + 1)2/SNR2)) from
succeeding. These results extend those of Brennan and Bresler (2020b); Fan et al. (2018) by show-
ing that SB-MSLR has a significant statistical-to-computational gap in all SNR regimes (including the
noiseless and SNR = ω(1) regimes), and by identifying a smooth tradeoff between sample size and
running time in the hard regime.

We then provide polynomial-time reductions between the detection and recovery variants of
SB-MSLR, for signals taking nonzero values in {1,−1}, translating our hardness results to evidence
that exact support recovery is just as hard for growing SNR values. We also show that any MSLR

regime containing SB-MSLR as a subproblem must be hard, by reducing the SB-MSLR exact recov-
ery problem to exact recovery in the more general Partially Symmetric Balanced MSLR regime, or
PSB-MSLR , where

PSB-MSLR : ϕ =
1

2
, and β1,j = −β2,j for j ∈ J ⊆ supp(β1) ∩ supp(β2), with |J | = Θ(k). (2)

Our computational lower bounds for the noiseless version of SB-MSLR yield equivalent lower bounds
for exact support recovery in sparse phase retrieval, where y = |Xβ| + w. This provides novel
rigorous evidence of a computational barrier and a smooth information-computation tradeoff for
solving exact support recovery in sparse phase retrieval with n = õ(k2) samples, addressing a
prominent open question on the hardness of this problem (Liu et al., 2021; Brennan and Bresler,
2020b; Wu and Rebeschini, 2021).

Algorithms for MSLR Perhaps surprisingly, however, we prove that the above algorithmic barrier
vanishes outside of SB-MSLR. We show that a simple thresholding algorithm called CORR solves the
detection variant of MSLR outside of SB-MSLR with O(np) running time and sample complexity n of
order k(SNR+1)

SNR log p, matching that required for efficiently solving sparse linear regression. We note
that SB-MSLR is a very narrow parameter regime. Indeed, for signal priors (on the non-zero values)
that are absolutely continuous with respect to the Lebesgue measure, the constraint (1) almost surely
does not hold, and therefore, CORR succeeds on a set of measure one.

In terms of the original recovery problem, CORR is proven to exactly recover the joint support
of both signals outside of a regime slightly broader than PSB-MSLR (see Theorem 8 for a precise
statement). Recovery of the joint support then reduces the problem to the dense or proportionally-
sparse case (k/p = n/p = Θ(1)) where existing algorithms can infer β1 and β2 exactly. This
extends the recent work of Mazumdar and Pal (2022) which provides an exact joint support recovery
algorithm for the case of binary signals (drawn from {0, 1}p) with sample complexity of order
k(SNR+1)

SNR log3 p. We highlight that the assumption of binary signals with all the non-zero entries
equal to 1 is restrictive as it does not encompass the important regimes SB-MSLR, PSB-MSLR where
the problem is hard. We can summarize the algorithmically hard parameter regimes in set notation
as:

“Low-degree hard detection”
SB-MSLR ⊂

“Exact support recovery
is hard by reduction”

PSB-MSLR ⊂ MSLR.
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Lower Bounds and Algorithms for SLR Our results also provide clarity into the computational
barriers that arise in the special case of sparse linear regression (SLR), where β1 = β2. As men-
tioned in the introduction, previous authors have established that a sample complexity of at least
order k log p is required for efficient algorithms (Bandeira et al., 2022; Gamarnik and Zadik, 2022),
with matching algorithmic upper bound results available for the case SNR → ∞ (Wainwright,
2009b; Bandeira et al., 2022; Gamarnik and Zadik, 2022). We extend these findings and provide
rigorous low-degree evidence that polynomial-time algorithms require sample complexity of order
at least nSLRalg := k(SNR+1)

SNR log p for the detection variant of SLR (in the regime where ∥β∥22 is of
order k). Our proof technique consists of a vanilla low-degree calculation for SLR; this is different
from the approach of Bandeira et al. (2022), who established a connection between the low-degree
method and the Franz-Parisi criterion to obtain computational lower bounds for SLR. Our direct
proof technique allows us to explicitly quantify the role of SNR in the problem.

Furthermore, we prove that CORR solves both detection and signed support recovery in SLR with
9nSLRalg samples, for all SNR scalings and general sparse signal priors. Moreover, it runs in O(np)
time which can be significantly more efficient than alternative solutions such as the Lasso depending
on the convergence criterion used (Wainwright, 2009b). This in turn certifies the order optimality
of CORR for exact signed support recovery in SLR with respect to the class of algorithms that are
analytic polynomials of the input of degree at most O(log p) (including spectral methods running in
O(log p) iterations). We note that the statistical-computational gap in SLR between k log(p/k)

log(1+SNR) and
nSLRalg is only up to multiplicative constants unless SNR = ω(1).

Our contributions are summarized along with existing results in Table 1 below, for signals tak-
ing values in {−1, 0, 1}. In Table 1, nIT denotes the information-theoretic threshold for detection
(and by reduction, recovery) and nalg denotes the sample threshold for efficient algorithms. Impor-
tantly, we show that MSLR behaves like SLR outside of the narrow SB-MSLR regime, and reconcile
existing results in the literature proving achievable sample complexity of order k in the binary case
(Mazumdar and Pal, 2022) but of order k2 in the general case (Städler et al., 2010). These results
lead us to believe that the k

SNR2 -to-k
2(SNR+1)2

SNR2 gap arises from brittle symmetries in the signals, and
that SB-MSLR and SLR are computationally very different problems, the former only inefficiently
solvable in high-dimensional settings.

1.2. Connections to Previous Work

Among the first works rigorously evidencing statistical-to-computational gaps was that of Barak
et al. (2016) who proved a tight computational lower bound for the Planted Clique (PC) problem
using the sum-of-squares (SOS) hierarchy. Based on the SOS method, Hopkins (2018) then formu-
lated a conjecture (a version of Conjecture 2 described in the next subsection) on the optimality of
low-degree polynomials for hypothesis testing. This approach has yielded evidence for computa-
tional barriers in high-dimensional inference problems such as sparse PCA (Hopkins and Steurer,
2017; Bandeira et al., 2020). Other approaches to evidencing computational barriers include the
failure of classes of algorithms such as statistical query (Diakonikolas et al., 2019), local (Linial,
1992; Gamarnik and Sudan, 2017) and message passing algorithms (Zdeborova and Krzakala, 2016;
Krzakala et al., 2007), and the reduction from variants of canonical “hard” problems such as Planted
Clique (Berthet and Rigollet, 2013; Brennan and Bresler, 2020b).

Notably, the problem of high-dimensional MSLR has attracted attention as the special case of
SB-MSLR has been shown to exhibit a k-to-k2 statistical-to-computational gap, which we more pre-
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Information-theoretic
lower bound nIT

Algorithmic lower
bound nalg

Algorithms

MSLR (Previous) Θ̃(k/SNR2) (Fan
et al., 2018)

Θ̃(k2/SNR2) (Fan
et al., 2018; Brennan
and Bresler, 2020b)

ℓ1-penalization
(
n = Ω(k2),

SNR → ∞); Polynomial
Identities

(
for 0-1 valued sig-

nals, n = Ω(k(SNR+1)
SNR log3 p)

)
(Städler et al., 2010; Mazum-
dar and Pal, 2022)

MSLR (This Work)

SB-MSLR,PSB-MSLR Θ
(
k2(SNR+1)2

SNR2
1

log p

)
MSLR \ SB-MSLR CORR

(
n = Ω

(k(SNR+1)
SNR log p

))
SLR (Previous) Θ

(
2k log (p/k)
log2 (1+SNR)

)
(Wang et al., 2010;
Gamarnik and Zadik,
2022; Reeves et al.,
2019)

Θ(k log p) (Wain-
wright, 2009b;
Gamarnik and Zadik,
2022; Bandeira et al.,
2022; Arpino, 2021)

Lasso, CORR , Search, OMP
(n = Ω(k log p), SNR →
∞) (Wainwright, 2009b; Ban-
deira et al., 2022; Gamarnik
and Zadik, 2022; Wainwright,
2009a; Cai and Wang, 2011)

SLR (This Work) Θ
(
k(SNR+1)

SNR log p
)

CORR (n ≥ 8k(SNR+1)
β2
minSNR

log 2p)

Table 1: Summary of contributions for signals taking values in {−1, 0, 1}.

cisely define as a k
SNR2 -to- k2

SNR2 gap. This was identified through the study of average-case reductions
from Planted Clique (Brennan and Bresler, 2020b) and the statistical query model (Fan et al., 2018).
After noticing that no polynomial-time algorithms for SB-MSLR were known to succeed below sam-
ple complexity Θ̃(k2/SNR2), Fan et al. (2018) derived lower bounds on the information-theoretic
and computational limits of an associated detection problem. Specifically, they proved that the
information-theoretic minimal sample complexity is n = Θ̃(k/SNR2), while statistical query algo-
rithms (and conjecturally polynomial-time algorithms) are proven to fail for all sample complexities
below the larger threshold of n = õ

(
k2/SNR2

)
. This matches in order the failure threshold of many

existing algorithms in the literature, although it has not been rigorously shown that the computa-
tional lower bound is tight.

Similarly, Brennan and Bresler (2020b) proved that the associated detection problem we con-
sider in this work (SB-MSLR− D) reduces to a variant of the PC detection problem termed “Secret
Leakage PC” in a regime contained within sample complexity n = o

(
k2/SNR2

)
. The detection ver-

sion of Planted Clique can be formulated as that of identifying whether a clique of size k has been
artifically “planted” in an Erdös-Rényi graph of size n. The problem can be solved by exhaustive
search for k = Ω(log n). The Planted Clique conjecture is that there is no polynomial time algo-
rithm solving PC if k = o(

√
n). There are a variety of sources of evidence for the PC conjecture, see

Feldman et al. (2013); Barak et al. (2016); Brennan and Bresler (2020b) and the references therein.
The results above provide evidence for a k

SNR2 -to- k2

SNR2 statistical-to-computational gap between
the information-theoretic and the computational limits of SB-MSLR. More broadly, the work in
Brennan and Bresler (2020a) makes a step towards understanding the pervasiveness of k-to-k2 gaps
in high-dimensional statistics by showing that efficient algorithms for learning mixtures with k-
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sparse means require at least Ω̃(k2) sample complexity. In Theorem 4, we sharpen the existing
computational lower bounds for SB-MSLR, evidencing a more extensive k

SNR2 -to-k
2(SNR+1)2

SNR2 gap,
which unlike earlier lower bounds, indicates a significant computational barrier even in the noiseless
regime (SNR =∞).

1.3. The Low-Degree Method

The low-degree method is a framework for obtaining lower bounds on the complexity of hypothesis
testing problems, that emerged from the study of the sum-of-squares hierarchy (Barak et al., 2016;
Hopkins et al., 2017; Hopkins and Steurer, 2017; Hopkins, 2018). The low-degree method boils
down to rigorously ruling out the possibility of low-degree polynomial functions of the input for
solving a given hypothesis testing problem. Consider the setting of simple binary hypothesis testing,
where one seeks to to distinguish between two distributions PN and QN over RN , where N is the
(potentially growing) problem size. Given a sample x drawn from either PN or QN , the goal is to
identify whether x originated from the former or the latter through a hypothesis test. In our setting
of MSLR, we can view N = np + n as the total dimension of our data (X,y), and notice that
logN = O(log p). We consider two notions of success in testing:

• Strong Detection/Distinguishing: the test succeeds with probability 1− o(1) as p→∞.

• Weak Detection/Distinguishing: the test succeeds with probability 1
2 + ϵ for some constant

ϵ > 0.

A degree-D polynomial algorithm denotes a sequence of (possibly random) multivariate poly-
nomials gN : RN → R of degree D, and f≤D we denotes the orthogonal projection of a function
f onto the space of degree-D polynomials. Over the last decade, it has been established that for a
large array of high-dimensional testing problems (including sparse PCA, planted clique, commu-
nity detection, and many others), the class of degree-O(log p) polynomial algorithms is strictly as
powerful as the best known polynomial-time algorithms (Bandeira et al., 2020; Ding et al., 2023;
Hopkins, 2018; Hopkins and Steurer, 2017; Hopkins et al., 2017; Kunisky et al., 2022). This is
formalized in the following conjecture.

Conjecture 2 (The Low Degree Conjecture Coja-Oghlan et al. (2022); Hopkins (2018)) Define

the chi-square divergence between PN and QN as χ2(PN∥QN ) := Ex∼QN

dPN (x)
dQN (x)

2
− 1, and let

χ2
≤D(PN∥QN ) be its projection onto the space of degree-D polynomials.

• If χ2
≤D(PN∥QN ) = O(1) for some D = ω(logN), strong detection has no polynomial-time

algorithm and furthermore requires runtime exp(Ω̃(D)).

• If χ2
≤D(PN∥QN ) = o(1) for some D = ω(logN), weak detection has no polynomial-time

algorithm and furthermore requires runtime exp(Ω̃(D)).

A variety of state-of-the-art algorithms can be approximated by low-degree polynomials and
therefore rigorously ruled out by low-degree lower bounds of the above form, including the impor-
tant class of spectral methods (see Theorem 4.4 of Kunisky et al. (2022)), and all statistical query al-
gorithms (Brennan et al., 2021). Recent works have also proven the equivalence between low-degree
polynomial algorithms and well-established algorithmic solutions derived from statistical physics
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in certain classes of problems (Bandeira et al., 2022; Montanari and Wein, 2022). Although degree
O(log p) polynomials are not proven to encompass all polynomial-time algorithms, the success of
such a polynomial in hypothesis testing tends to indicate the success of general polynomial-time
algorithms. In this light, we aim to provide concrete evidence for computational hardness in MSLR

and SLR by proving a low-degree lower bound of the form χ2
≤D(PN∥QN ) = O(1) for an associated

detection problem, which can then be reduced to recovery. For more background on the low-degree
method, see Appendix A.

2. Main Results

2.1. Lower bounds for MSLR

We begin by defining a detection variant of MSLR, where given (X,y) the goal is to distinguish
between two hypotheses: one in which the data correspond to the MSLR model, and another in
which X and y are independent.

Definition 3 (Detection Variant MSLR− D) For X ∈ Rn×p, σ > 0, and w ∈ Rn, consider the
following hypothesis testing problem:

P(X)⊗ P(y) :
[
X
y

]
=

[
X√

∥β∥22
σ2 + 1 ·w

]

P(X,y) :

[
X
y

]
=

[
X

1
σXβ1 ⊙ z + 1

σXβ2 ⊙ (1− z) +w

]
where (β1,β2) ∼ P∥β∥2(D), and Xi,j

i.i.d.∼ N (0, 1), wi
i.i.d.∼ N (0, 1), zi

i.i.d.∼ Bernoulli(ϕ). The task is
to construct a function f which strongly distinguishes P(X)⊗ P(y) from P(X,y).

Notice that the marginal distributions of P(X) ⊗ P(y) and P(X,y) are equal, so as to rule out
solutions that simply threshold the moments of y and ignore X . The corresponding detection
variant of SB-MSLR, denoted by SB-MSLR− D, is defined similarly to MSLR− D in the parameter
regime of SB-MSLR given in (1). From this formulation we obtain the following hardness result for
SB-MSLR− D. The proof is given in Appendix B.3.

Theorem 4 (Low-degree lower bound for SB-MSLR− D) Consider the setting of SB-MSLR− Dwith
β1,β2 ∼ P∥β∥2(D), and bounded amplitude signals (βmin = Θ(∥β∥∞)). For sample sizes n

where n = ω(max{k, log p}) and n = o
(
k2(SNR+1)2

SNR2 · 1
log p

)
, Conjecture 2 implies that any ran-

domized algorithm requires running time exp
(
Ω̃
(
min

{
k2(SNR+1)2

nSNR2 , n
}))

to solve SB-MSLR− D

in the regime k = o(
√
p).

Theorem 4 is our main low-degree hardness result. There are three regimes of interest, which we
describe in terms of nSB-MSLR

alg := k2(SNR+1)2

SNR2 . First, if n = Ω
(
nSB-MSLR
alg /log p

)
, the lower bound

on the running time in Theorem 4 equals eÕ(log p), and hence does not rule out polynomial-time
solutions. Otherwise, Theorem 4 (via Conjecture 2) implies a smooth tradeoff between sample
size n and super-polynomial (but sub-exponential) running time exp

(
Ω̃
(
nSB-MSLR
alg /n

))
, for n =

ω((nSB-MSLR
alg )

1
2 ); this is reminiscent of a similar tradeoff in Sparse PCA (Ding et al., 2023). In the
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third case, where n = o((nSB-MSLR
alg )

1
2 ), Theorem 4 implies that eΩ̃(n) running time is required. Thus

there are three distinct computational regimes depending on the sample complexity n: the first
permitting polynomial-time solutions, the second enforcing a smooth inversely related information-
computation tradeoff, and the last implying an exponential increase in running time as the sample
size increases. This extends the results of (Brennan and Bresler, 2020b; Fan et al., 2018) which
indicated that the n = õ(k2/SNR2) sample regime presents statistical-query and planted-clique
related algorithmic barriers for SB-MSLR− D with signals in {−1, 0, 1}p; note that a lower bound of
order k2/SNR2 is vacuous in the noiseless setting, as well as in the natural setting where SNR =
∥β∥22
σ2 = Θ(k).

The work in Fan et al. (2018) proved that the information-theoretic minimal sample complexity
of SB-MSLR− D is n = Θ̃(k/SNR2), which is vacuous for SNR = ω(

√
k). The information-

theoretic minimal sample complexity of the related sparse phase retrieval (SPR) detection problem,
however, is known to be of order k log p for a broad class of signal-to-noise ratios (see, for example,
Theorem 3.2 in Cai et al. (2016) and Section 6.1 in Lecué and Mendelson (2015)). By straightfor-
ward reductions from SLR to SB-MSLR to SPR, one can show that the information-theoretic sample
complexity of detection in SB-MSLR lies between k log (p/k)

log (1+SNR) and k log p. In this light, Theorem 4
certifies a statistical-computational gap in SB-MSLR− D of order at least k for broad SNR regimes.

We highlight that Theorem 4 rigorously rules out the success of analytic polynomials of the
input of degree at most O(log p), including spectral methods. The k = o(

√
p) assumption is often

standard for detection lower bounds where the signal is k-sparse (see (Brennan and Bresler, 2020b;
Fan et al., 2018; Ding et al., 2023) and references therein), and can at times be lifted by conditioning
away a certain bad event (Bandeira et al., 2022).

Remark 5 We have included the bounded amplitude assumption in Theorem 4 for interpretability.
The dependence on ∥β∥∞ can be made explicit by replacing k2 in Theorem 4 with ∥β∥42/∥β∥4∞.
We believe the dependence on ∥β∥∞ is an artifact of the proof technique; see Appendix B.3.

Through Theorem 28 in Appendix C, we provide a polynomial-time reduction from SB-MSLR− D

to exact support recovery in PSB-MSLR , for signals in {−1, 0, 1}p and SNR = ω(1), transferring
hardness from Theorem 4 to this case. In Appendix C.3, we provide a polynomial-time reduction
from SB-MSLR− D to both exact support recovery and detection in sparse phase retrieval (SPR) for
signals with non-zero entries in {−1, 0, 1}p, translating the hardness results of Theorem 4 to SPR.
This provides novel rigorous evidence for the conjecture that SPR is computationally infeasible for
sample sizes n = õ(k2) (Wu and Rebeschini, 2021; Li et al., 2022; Brennan and Bresler, 2020b).

2.2. Algorithms for MSLR

We denote the support sets of β1,β2 by S1,S2, respectively. Note that |S1| = |S2| = k. Let us
define the following quantities:

⟨β⟩2min := min
j∈S1∪S2

(ϕβ1,j + (1− ϕ)β2,j)
2,

⟨β⟩2>0 := min
j∈S1∪S2

(ϕβ1,j+(1−ϕ)β2,j)>0

(ϕβ1,j + (1− ϕ)β2,j)
2.

Note that ⟨β⟩2>0 > 0 for (β1,β2) ∼ P∥β∥2(D) outside of the SB-MSLR regime. Also recall that
βmin = min{|β| | β ∈ D} > 0.

9
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Definition 6 (CORR ) Let CORR be the algorithm that outputs an estimate of the joint support set
S1 ∪S2 of β1, β2 according to Ŝ1 ∪ S2 =

{
j ∈ [p] :

∣∣∣ ⟨Xj ,y⟩
∥y∥2

∣∣∣ ≥ τ}, where τ =
√
2(1 + ϵ

2) log 2p

for some ϵ ∈ (0, 1).

Theorem 7 (Success of CORR on MSLR− D outside SB-MSLR) Consider the general setting of MSLR− D\
SB-MSLR with (β1,β2)∼ P∥β∥2(D). Let ϵ ∈ (0, 1) be the parameter used in CORR . Then provided

n ≥ 32(1 + ϵ)

min{ϕ2β2
min, (1− ϕ)2β2

min, ⟨β⟩2>0}
∥β∥22 (SNR+ 1)

SNR
log 2p,

the CORR algorithm solves strong detection in MSLR− D \ SB-MSLR.

The proof of Theorem 7 is given in Appendix D.2. In the natural setting where ∥β∥22 is of
order k, the theorem implies that CORR solves MSLR− D outside of the SB-MSLR regime with square-
root the number of samples implied by the low-degree lower bound in Theorem 4, up to log factors.
Indeed, the sample complexity in Theorem 7 matches the optimal sample complexity for the simpler
SLR− D problem; see Theorem 10 below. This theorem effectively quantifies the extent to which
one can solve MSLR with the sample complexity of SLR. The proof of Theorem 7 also holds in the
more general case where ⟨β⟩2>0 > 0 and the signal norms ∥β1∥2, ∥β2∥2 are not constrained to be
equal. For signal priors on the nonzero entries that are absolutely continuous with respect to the
Lebesgue measure, the event {⟨β⟩2>0 > 0} has measure one, as ϕβ1 + (1 − ϕ)β2 ̸= 0 is almost
surely satisfied.

Theorem 8 (Sucess of CORR for recovery in MSLR for ⟨β⟩2min > 0) Consider the general setting
of MSLR with either σ = 0, ϕ ̸= 1/2 (noiseless), or ϕ = 1/2,SNR = Ω(k) (balanced). Let
(β1,β2)∼ P∥β∥2(D). Let ϵ ∈ (0, 1) be the parameter used in CORR , and

n ≥ 32(1 + ϵ)

min{ϕ2β2
min, (1− ϕ)2β2

min, ⟨β⟩2min}
∥β∥22(SNR+ 1)

SNR
log 2p.

Then there exists an algorithm which, in combination with CORR , exactly recovers β1 and β2 (up to
relabeling) with probability at least 1− c1(kp + ke−c2n + k

n + 1
pc2 ) for constants c1, c2 > 0.

The proof of Theorem 8, given in Appendix D.3, first uses CORR for support recovery, followed
by existing recovery algorithms for the noiseless and balanced cases of dense (k/p = Θ(1)) mixed
linear regression (Yi et al., 2014; Chen et al., 2014). Under the condition ⟨β⟩2min > 0, which is
slightly more restrictive than SB-MSLR, Theorem 8 yields a sample complexity of the same order as
that for SLR. We note that for signal priors on the nonzero entries that are absolutely continuous
with respect to the Lebesgue measure, the event {⟨β⟩2min > 0} has measure one. We highlight that
the noiseless case can be formulated as a mixed variant of compressed sensing with independent
Gaussian design (Yu and Sapiro, 2011).

Remark 9 The restriction to the noiseless and balanced cases in Theorem 8 is due to the guarantees
provided by existing algorithms in the dense case, for which experiments indicate success far beyond
these regimes (Yi et al., 2014; Chen et al., 2014).

10
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2.3. Lower bounds for Sparse Linear Regression (SLR)

We define the detection variant of SLR, called SLR− D, as per Definition 3 with the constraint
β1 = β2. The following lower bound for SLR− D is proved in Appendix B.2.

Theorem 10 (Low-degree lower bound for SLR− D) Consider the setting of SLR− D (Definition
3 under β1 = β2) with β∼P∥β∥2 (D). For n = ω(log p) and n ≤ (1−ϵ)(1−2θ) ∥β∥22

∥β∥2∞
(SNR+1)
SNR log p

for any ϵ ∈ (0, 1), Conjecture 2 implies that any randomized algorithm requires running time eΩ̃(n)

to solve SLR− D in the regime k = O(pθ) ≤ √p with θ ∈ (0, 1/2].

In the natural setting where ∥β∥22 is of order k and the entries have bounded amplitude, the low-
degree lower bound on n is of order k(SNR+1)

SNR log p. This matches the order of existing lower bounds
for SLR in (Bandeira et al., 2022; Gamarnik and Zadik, 2022), but has the advantage of being valid
for all SNR regimes and generic priors on the sparse signal β. We believe that the dependence of
the bound on ∥β∥∞ is an artifact of the proof technique; see Appendix B.2.

A reduction from SLR− D to SLR follows similarly to the reduction from SB-MSLR− D to
SB-MSLR, which is given in Appendix C.

2.4. Algorithms for SLR

Theorem 11 Consider the setting of SLR with β∼P∥β∥2(D). Let ϵ ∈ (0, 1) be the parameter used

in CORR . Then for n ≥ 8(1+ϵ)
β2
min
∥β∥22

(SNR+1)
SNR log 2p, we have that CORR solves strong detection in

SLR− D.

We next consider a slight variant of CORR that recovers the signed support of β. It produces β̂ with
entries given by

β̂j = 1

{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}
sign

(
⟨Xj ,y⟩
∥y∥2

)
, for j ∈ [p], (3)

where sign(x) equals 1 for x > 0, equals −1 for x < 0, and 0 for x = 0.

Theorem 12 Consider the setting of SLR with β∼P∥β∥2(D). Let ϵ ∈ (0, 1) be the parameter used

in the above variant of CORR . Then for n ≥ 8(1+ϵ)
β2
min
∥β∥22

(SNR+1)
SNR log 2p, the vector β̂ in (3) equals

the signed support of β with probability at least 1− (kp +2ke−c2n+ 1
pc2 ) for some constant c2 > 0.

The proofs of Theorem 11 and Theorem 12 are given in Appendix D.4. The sample complexity
required for the success of CORR matches the low-degree lower bound in Theorem 10 up to constants,
which rigorously certifies the order optimality of CORR among low-degree polynomial algorithms,
including spectral methods running in O(log p) iterations, in all SNR regimes. These achievable
sample complexities also match those of previous work (Wainwright, 2009b; Bandeira et al., 2022;
Gamarnik and Zadik, 2022; Cai and Wang, 2011; Donoho and Tanner, 2010), with the important
extension that they hold for all SNR scalings and general sparse signal priors.
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3. Proof Ideas

Low-Degree Lower Bounds Theorem 4 amounts to proving that χ2
≤D(P(X,y)∥P(X)⊗P(y)) =

O(1) in MSLR− D (Definition 3) with β1 = −β2 and ϕ = 1/2, for n in the regime speci-
fied in the theorem. We rewrite the expression for χ2

≤D(P(X,y)∥P(X) ⊗ P(y)) in Conjec-
ture 2 in terms of multivariate Hermite polynomials in the data (X,y) of degree up to D. For
α = [α1, α2, . . . , αnp+n], with αi ∈ N, the normalized Hermite polynomial of order α is denoted

by H̃α(X,y)√
α!

. The precise definition of the polynomial is given in Appendix B, but the key fact we

will use is that
{

H̃α√
α!

}
form an orthonormal system with respect to the null distribution in Definition

3 (see Proposition 18 in Appendix B). Using this, we have

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 = E(X,y)∼P(X)⊗P(y)

(
dP(X,y)

d(P(X)⊗ P(y))

)2

≤D

=
∑

0≤|α|≤D

1

α!
E

P(X)⊗P(y)

[
dP(X,y)

d(P(X)⊗ P(y))
H̃α(X,y)

]2
=

∑
0≤|α|≤D

1

α!
E

P(X,y)

[
H̃α(X,y)

]2
, (4)

where α! =
∏

i αi!. The key element of the proof involves subsequently upper bounding (4) through
Hermite polynomial identities and multinomial-theorem manipulations, yielding a weighted sum
over D moments of the overlap ⟨β(1)

1 ,β
(2)
1 ⟩, where β

(1)
1 ,β

(2)
1 are two i.i.d copies of the signal β1

(see Lemma 24). Each of these D moments can be bounded for k ≤ √p, allowing the entire sum

over D ≃ min
{

k2(SNR+1)2

nSNR2 , n
}

terms to converge, and yielding the result. The case of SLR in
Theorem 10 is similar, but with the simplification β1 = β2, we can afford to set D ≃ n and still
have this sum converge, yielding the key difference in lower bounds between SLR and SB-MSLR.

Reductions from detection to recovery We follow the procedure for average-case reductions
outlined by Brennan and Bresler (2020b). We transfer computational hardness from SB-MSLR− D

to recovery in SB-MSLR by forming an average-case reduction for k-sparse signals in {−1, 0, 1}p.
Denote the parameter regime of Theorem 4 as the “critical” parameter regime. Given any sequence
of parameters P in the critical regime, we construct another sequence of parameters P ′ in the criti-
cal regime with the following property: if there exists a randomized polynomial-time algorithm A′

solving exact recovery in PSB-MSLR with parameter scaling P ′, then we can construct a randomized
polynomial-time algorithm solving SB-MSLR− D with parameter scaling P . This would in turn con-
tradict Theorem 4, implying computational hardness of exact recovery in PSB-MSLR in the critical
regime. We first provide an average case reduction from SB-MSLR− D to exact recovery in SB-MSLR
in Lemma 26, and then reduce exact recovery in SB-MSLR to exact recovery in PSB-MSLR in Theorem
28.

The CORR algorithm For MSLR, the proofs of Theorems 7 and 8 crucially rely on Theorem 37,
which shows that CORR recovers the joint support of the signals (S1 ∪S2) if n satisfies the condition
in Theorem 8. To prove Theorem 37, we analyze the quantity uj :=

⟨Xj ,y⟩
∥y∥2 in three cases. When

j ∈ (S1 ∪ S2)∁, we have that uj
i.i.d.∼ N (0, 1) for j ∈ [p] by the independence of Xj and y. The

typical value of maxj∈[p] uj in this case is
√
2 log p, and we can bound the probability of a false

12
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positive by standard concentration bounds, detailed in Lemma 45. When j ∈ S1 ∩S2, we show that
conditioned on y, z,β1,β2, uj is normally distributed with mean

E [uj | y, z,β1,β2] =
∥y{z=1}∥22β1,j + ∥y{z=0}∥22β2,j

∥y∥2(∥β∥22 + σ2)
, (5)

and variance less than 1 (Lemma 40). Here, ∥y{z=1}∥2 denotes the norm of the vector with entries
(yi1{zi=1})i∈[n]. For large n, p and j ∈ [p], the typical value of the conditional mean above is√

n
∥β∥22+σ2 (ϕβ1,j + (1− ϕ)β2,j), which is greater than

√
2(1 + ϵ/2) log 2p for

n ≥ 2(1 + ϵ)

⟨β⟩2min
(∥β∥22 + σ2) log 2p ≃ (1 + ϵ)

k(SNR+ 1)

⟨β⟩2minSNR
log 2p.

The remaining case j ∈ S1∆S2 is similar, with the conditional mean obtained by setting β2,j = 0 in
(5). The results for SLR in Theorems 11, 12 follow a similar reasoning, with E [uj | y, z,β1,β2] =
βj∥y∥2
∥β∥22+σ2 .

4. Discussion

In this work we rigorously characterize the computational hardness of Mixed Sparse Linear Regres-
sion (MSLR) through the method of low-degree polynomials. We evidence that in the highly symmet-
ric SB-MSLR regime, randomized polynomial-time algorithms cannot solve an associated detection
problem with sample complexity n = õ

(
k2(SNR+1)2

SNR2

)
, revealing a statistical-computational gap of

order at least k. Outside of the SB-MSLR regime, however, a simple polynomial-time algorithm CORR

succeeds in solving detection with minimal sample complexity.
We note that our low-degree statistical-computational gap for SB-MSLR persists even in the

noiseless (SNR = ∞) regime. Recent discoveries have highlighted that evidence for statistical-
to-computational gaps do not always hold in the noiseless setting. Examples include “brittle” al-
gorithms such as Gaussian elimination “breaking” the statistical-to-computational gap in learning
parities (Zadik et al., 2022). It was also recently found in Zadik et al. (2022) that the LLL family
of algorithms, originating from cryptography, can break the statistical-to-computational gaps pre-
dicted in certain noiseless clustering problems. Further, in a recent talk by Zadik (2021), a proof
sketch was presented for a lattice-based algorithm that can recover β ∈ Rp in dense noiseless phase
retrieval with p+ 1 measurements — this breaks a conjectured statistical-to-computational gap for
dense phase retrieval, but the algorithm does not capture the sparse problem structure present in
MSLR. To the best of our knowledge, noiseless inference in SB-MSLR and sparse phase retrieval still
cannot be achieved with fewer than order k2 log p samples for the case of k-sparse β ∈ {−1, 0, 1}p.
Such an achievement, if possible, would constitute an interesting and novel contribution.
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Amnon Jakimovski, Ambikeshwar Sharma, and József Szabados. Hermite and Hermite-Birkhoff
Interpolation and Walsh Equiconvergence. In Walsh Equiconvergence of Complex Interpolating
Polynomials, pages 25–54. Springer Monographs in Mathematics, 2006.

Lucas Janson, Rina Foygel Barber, and Emmanuel Candès. EigenPrism: inference for high di-
mensional signal-to-noise ratios. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(4):1037–1065, 2017.

Adel Javanmard, Simeng Shao, and Jacob Bien. Prediction Sets for High-Dimensional Mixture of
Experts Models, October 2022. arXiv:2210.16710.

16



STATISTICAL-COMPUTATIONAL TRADEOFFS IN MIXED SPARSE LINEAR REGRESSION

Michael I. Jordan and Robert A. Jacobs. Hierarchical Mixtures of Experts and the EM Algorithm.
Neural Computation, 6(2):181–214, March 1994.

Karen Kazor and Amanda S. Hering. Mixture of Regression Models for Large Spatial Datasets.
Technometrics, 61(4):507–523, 2019.

Abbas Khalili and Jiahua Chen. Variable selection in finite mixture of regression models. Journal
of the American Statistical Association, 102(479):1025–1038, 2007.

Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka
Zdeborova. Gibbs states and the set of solutions of random constraint satisfaction problems.
Proceedings of the National Academy of Sciences, 104:10318–10323, June 2007.

Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. Notes on Computational Hardness
of Hypothesis Testing: Predictions Using the Low-Degree Likelihood Ratio. In Mathematical
Analysis, its Applications and Computation, Springer Proceedings in Mathematics & Statistics,
pages 1–50, 2022.
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Appendix A. Additional background on the Low Degree Method

In this section, we give additional background on the low-degree method, the chi-squared divergence
and its orthogonal projection onto the space of low-degree polynomials. Consider the setting in
Section 1.3, where the task is to distinguish between two probability distributions PN and QN over
RN where N is the (potentially growing) problem size. Given a sample x drawn from PN or QN ,
one seeks to identify whether x originated from the former or the latter through a hypothesis test.
Recall the notions of strong and weak detection from Section 1.3.

One powerful method of identifying whether strong or weak detection is possible is through the
study of the chi-squared divergence χ2(PN∥QN ). Indeed, assume that PN is absolutely continuous
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with respect to QN , and let L = dPN
dQN

be the likelihood ratio. We have:

χ2(PN∥QN ) := Ex∼QN
L(x)2 − 1

= sup
f :Rp→R

(Ex∼PN
f(x))2

Ex∼QN
f(x)2

− 1

= sup
f :Rp→R

Ex∼QN
f(x)=0

(Ex∼PN
f(x))2

Ex∼QN
f(x)2

,

where the equivalences follow from standard arguments (see Kunisky et al. (2022)). Interpreting
the above result, the chi-squared divergence represents optimality in the L2 sense. It relates to
the squared maximum expectation any function can have under PN , while still being bounded in
the space L2(QN ). In fact, the chi-square divergence between two distributions can rigorously
characterize their behaviour under testing:

Lemma 13 (Adapted from Lemma 2 of Montanari et al. (2015) and Lemma 7.1 of Coja-Oghlan et al. (2022))

• If χ2(PN∥QN ) = O(1) as N →∞, then strong detection is impossible.

• If χ2(PN∥QN ) = o(1) as N →∞, then weak detection is impossible.

This result is powerful, as it identifies the chi-square divergence as a sufficient quantity for find-
ing identifying results in testing. Note however, that this quantity reveals nothing with regards to
computation.

The computational analogue of the chi-square divergence is the degree-D chi-square divergence
χ2
≤D(PN∥QN ). This quantity measures whether PN and QN can be distinguished by a degree-D

polynomial of the input x. Consider the Hilbert Space L2(QN ), where for functions f, g : Rp → R
we have the inner product ⟨f, g⟩ := Ex∼QN

[f(x)g(x)] and the corresponding norm ∥f∥QN
=√

⟨f, f⟩QN
. Additionally, denote R[x]≤D as the space of multivariate polynomials from Rp to R of

degree at most D, and let f≤D denote the orthogonal projection of f onto R[x]≤D in L2(QN ). We
can then define χ2

≤D(PN∥QN ) as follows:

χ2
≤D(PN∥QN ) := Ex∼QN

L≤D(x)2 − 1 (6)

= ∥L≤D∥2QN
− 1

= sup
f∈R[x]≤D

(Ex∼PN
f(x))2

Ex∼QN
f(x)2

− 1

= sup
f∈R[x]≤D

Ex∼QN
f(x)=0

(Ex∼PN
f(x))2

Ex∼QN
f(x)2

.

The proof of this result can be found in Hopkins (2018); Kunisky et al. (2022). The low-degree chi-
square divergence can therefore interpreted analogously to chi-square divergence: it quantifies the
maximum expectation any low-degree function can have under PN while still being in the degree-
D polynomial subspace of L2(QN ). We then have the analogue of Lemma 13 for low-degree
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polynomial functions of the input and, conjecturally, general polynomial-time algorithms, given by
Conjecture 2.

In this work, we consider testing between distributions that do not simply consist of signal plus
noise, but instead of linearly transformed signals plus noise. Along with the recent work in Bandeira
et al. (2022); Arpino (2021), this is, to the best of our knowledge, among the first applications of
the low-degree method to such problems, which were previously believed to be out of reach from
current methods (Schramm and Wein, 2022).

Appendix B. Proofs of Low-Degree Lower Bounds

Preliminaries and Notation. All results concerning the low-degree hardness of the associated
problems are asymptotic in p, as we take p → ∞ first. We use the conventions from Schramm and
Wein (2022). Let N = {0, 1, 2, · · · } and [n] = {1, 2 · · ·n}. We define 00 := 1. We denote by
boldface a multiset or vector, so for α ∈ Nn we mean α = [α1, α2, . . . , αn] for αi ∈ N, ∀i ∈ [n].
For α ∈ Nn, define |α| =

∑n
i=1 αi, α! =

∏n
i=1 αi! and (for X ∈ Rn) Xα =

∏n
i=1X

αi
i . Let

abs(α) denote the entry-wise absolute value operation on the vector α. We use α ≥ β to mean
αi ≥ βi for all i. The operations α+ β and α− β are performed entrywise. For α,β ∈ Nn with
α ≥ β, define

(
α
β

)
=
∏n

i=1

(
αi
βi

)
. We use subindices to denote subsets of a vector or multiset, so

for α ∈ Nn×(p+1), we let αp+1 := [α1,p+1, . . . , αn,p+1] denote the p + 1th column of the matrix
α. We let α·,:p denote the entire n × p submatrix obtained by selecting only up to the pth column,
and αi,:p the vector consisting of elements from the ith row up to the pth column. We denote by
[A y] the matrix formed through the horizontal concatenation of y ∈ Rn onto A ∈ Rn×p, forming
an n× (p+ 1) real matrix. Unless otherwise indicated, we let ∥ · ∥ := ∥ · ∥Qp and ⟨·, ·⟩ := ⟨·, ·⟩Qp .
We use 1 to denote the indicator function.

The univariate Hermite polynomials Hk(x) for k ≥ 0 are defined by the recursion H0(x) = 1,
andHk+1(x) = xHk(x)−H ′

k(x). For α ∈ NN , letHα denote the multivariate Hermite polynomial
of order α, defined asHα(u) =

∏N
i=1Hαi(ui), for u ∈ RN . ForN ∈ N , the normalizedN -variate

Hermite polynomials 1√
α!
Hα form a complete orthonormal system of (multivariate) polynomials

for L2(N (0, IN )) (see Kunisky et al. (2022)).
In what follows, we give further basic facts regarding Hermite polynomials (see Kunisky et al.

(2022) for more detailed descriptions), along with two auxiliary combinatorial lemmas that will be
of use for the main proofs.

Proposition 14 (Gaussian Integration by Parts, Prop. 2.10 in Kunisky et al. (2022)) If f : R→
R is k-times continuously differentiable and f(y) and its first k derivatives are bounded byO (exp(|y|α))
for some α ∈ (0, 2), then

Ey∼N (0,1) [Hk(y)f(y)] = Ey∼N (0,1)

[
dkf

dyk
(y)

]
.

Proposition 15 (Hermite derivative (Jakimovski et al., 2006)) For n ∈ N, m ∈ N:

H(m)
n (x) =

n!

(n−m)!
Hn−m(x).
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Proposition 16 (Hermite sum formula, Prop 3.1 in Schramm and Wein (2022)) For any k ∈ N
and z, µ ∈ R,

Hk(z + µ) =
k∑

l=0

(
k

l

)
µk−lHl(z).

Proposition 17 (Hermite multiplication formula Oldham et al. (2009)) For γ ∈ R,

Hn(γx) =

⌊n
2
⌋∑

i=0

γn−2i
(
γ2 − 1

)i(n
2i

)
(2i)!

i!
2−iHn−2i(x).

Proposition 18 Consider the null distribution P(X)⊗ P(y) whose law given by

N (0, 1)⊗n×p ⊗N
(
0,
∥β∥22
σ2

+ 1

)⊗(p+1)

.

Let u = [X y] ∈ RN×(p+1). Then, an orthonormal system with respect to this null distribution,
indexed by α ∈ Nn×(p+1), is given by

1√
α!
H̃α(u) :=

1√
α!

n∏
i=1

p∏
j=1

Hαi,j (ui,j)Hαi,p+1

 ui,p+1√
∥β∥22
σ2 + 1

 .

Proof Let α(1),α(2) ∈ Nn×(p+1). Then,

EP(X)⊗P(y)
1√
α(1)!

H̃α(1)(u)
1√
α(2)!

H̃α(2)(u)

=
1√

α(1)!α(2)!
EP(X)⊗P(y)

n∏
i=1

p∏
j=1

H
α
(1)
i,j

(ui,j)Hα
(1)
i,p+1

 ui,p+1√
∥β∥22
σ2 + 1

H
α
(2)
i,j

(ui,j)Hα
(2)
i,p+1

 ui,p+1√
∥β∥22
σ2 + 1


=

1√
α(1)!α(2)!

E
n∏

i=1

p∏
j=1

H
α
(1)
i,j

(ui,j)Hα
(2)
i,j

(ui,j)E
n∏

i=1

H
α
(1)
i,p+1

 ui,p+1√
∥β∥22
σ2 + 1

H
α
(2)
i,p+1

 ui,p+1√
∥β∥22
σ2 + 1


=

1√
α(1)!α(2)!

E
n∏

i=1

p∏
j=1

H
α
(1)
i,j

(ui,j)Hα
(2)
i,j

(ui,j)E
n∏

i=1

H
α
(1)
i,p+1

(wi)Hα
(2)
i,p+1

(wi)

=
1√

α(1)!α(2)!

√
α(1)!α(2)!

n∏
i=1

p∏
j=1

1{α(1)
i,j =α

(2)
i,j }

n∏
i=1

1{α(1)
i,p+1=α

(2)
i,p+1}

= 1α(1)=α(2) ,

where wi
i.i.d.∼ N (0, 1) are independent of all other variables for i ∈ [n].

23



ARPINO VENKATARAMANAN

Lemma 19 For β ∈ N even:

β
2∑

ξ=0

(
β

2ξ

)
(2ξ)!

ξ!

(
−1

2

)ξ

(β − 2ξ − 1)!! = 1β=0.

Proof We have:

β
2∑

ξ=0

(
β

2ξ

)
(2ξ)!

ξ!

(
−1

2

)ξ

(β − 2ξ − 1)!! =

β
2∑

ξ=0

β!

ξ!(β − 2ξ)!!

(
−1
2

)ξ

=

β
2∑

ξ=0

β!

ξ! · (β2 − ξ)! · 2
β
2
−ξ

(
−1
2

)ξ

=
β!

(β2 )! · 2
β
2

β
2∑

ξ=0

(β
2

ξ

)
(−1)ξ

=
β!

(β2 )! · 2
β
2

(1 + (−1))
β
2

= 1β=0.

Lemma 20 For p ≥ 4 and k ≤ √p, it holds that pk

4k! ≤
(
p
k

)
.

Proof Note that
(
p
k

)
≥ pk

4k! if and only if:

k−1∏
j=1

(
1− j

p

)
≥ 1

4

Then applying the k ≤ √p assumption:

k−1∏
j=1

(
1− j

p

)
≥

⌊√p⌋∏
i=1

(
1− j

p

)
≥
(
1− 1
√
p

)√
p

Now notice that for
√
p ≥ 2, we have that (1− 1√

p)
√
p ≥ 1

4 , leading to the desired result.

B.1. Low-degree analysis for MSLR: general mixtures

In subsection, we prove two technical lemmas. The first (Lemma 21) derives an expression for the
projection of the likelihood ratio onto the multivariate Hermite polynomial H̃α defined in Propo-
sition 18. The second lemma (Lemma 22) derives an explicit expression for the low-degree chi-
squared divergence.
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Lemma 21 Let β1,β2 ∼ P∥β∥2(D). Let L = dP(X,y)
dP(X)⊗P(y) be the likelihood ratio, and H̃α the

Hermite polynomial defined in Proposition 18. Then, for α ∈ Nn×(p+1), we have

⟨L, H̃α⟩ =

 1
σ√

∥β∥22
σ2 + 1

|αp+1|

∥β∥|αp+1|−|α·,:p|
2 αp+1!

·
n∏

i=1

1{αi,p+1−|α·,:p|=0} E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

 .

Proof We begin by expanding the inner product:

⟨L, H̃α⟩

= E
P(X)⊗P(y)

[
dP(X,y)

dP(X)⊗ P(y)
H̃α(X,y)

]

= E
P(X,y)

 n∏
i=1

 p∏
j=1

Hαi,j (Xi,j)

Hαi,p+1

( 1σXβ1 ⊙ z + 1
σXβ2 ⊙ (1− z) +w

)
i√

∥β∥22
σ2 + 1

 ,

and applying Gaussian Integration by Parts (Proposition 14) we obtain

⟨L, H̃α⟩

= E
X,β1,β2,z,w

n∏
i=1

 1
σ√

∥β∥22
σ2 + 1

|αi,:p|
αi,p+1!

(αi,p+1 − |αi,:p|)!

·
p∏

j=1

(β1,jzi + β2,j(1− zi))αi,j Hαi,p+1−|αi,:p|

( 1σXβ1 ⊙ z + 1
σXβ2 ⊙ (1− z) +w

)
i√

∥β∥22
σ2 + 1


=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|

E
X,β1,β2,z,w

n∏
i=1

αi,p+1!

(αi,p+1 − |αi,:p|)!

·
p∏

j=1

(β1,jzi + β2,j(1− zi))αi,j Hαi,p+1−|αi,:p|

( 1σXβ1 ⊙ z + 1
σXβ2 ⊙ (1− z) +w

)
i√

∥β∥22
σ2 + 1

 .
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We then apply the Hermite multiplication and addition formulas outlined in Propositions 16 and 17:

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|

E
X,β1,β2,z,w

n∏
i=1

αi,p+1!

(αi,p+1 − |αi,:p|)!

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

·
⌊
αi,p+1−|αi,:p|

2
⌋∑

ξ=0

 1√
∥β∥22
σ2 + 1

αi,p+1−|αi,:p|−2ξ (
1

∥β∥22
σ2 + 1

− 1

)ξ (
αi,p+1 − |αi,:p|

2ξ

)
(2ξ)!

ξ!
2−ξ

·Hαi,p+1−|αi,:p|−2ξ

((
1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z) +w

)
i

)

=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|

E
X,β1,β2,z,w

n∏
i=1

αi,p+1!

(αi,p+1 − |αi,:p|)!

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

·
⌊
αi,p+1−|αi,:p|

2
⌋∑

ξ=0

 1√
∥β∥22
σ2 + 1

αi,p+1−|αi,:p|−2ξ (
1

∥β∥22
σ2 + 1

− 1

)ξ (
αi,p+1 − |αi,:p|

2ξ

)
(2ξ)!

ξ!
2−ξ

·
αi,p+1−|αi,:p|−2ξ∑

η=0

(
αi,p+1 − |αi,:p| − 2ξ

η

)((
1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z)

)
i

)αi,p+1−|αi,:p|−2ξ−η

Hη (wi)︸ ︷︷ ︸
̸= 0 only if η = 0

,

which we simplify by noting that Hη (wi) ̸= 0 only if η = 0 to obtain:

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|

E
X,β1,β2,z

n∏
i=1

αi,p+1!

(αi,p+1 − |αi,:p|)!

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

·
⌊
αi,p+1−|αi,:p|

2
⌋∑

ξ=0

 1√
∥β∥22
σ2 + 1

αi,p+1−|αi,:p|−2ξ (
1

∥β∥22
σ2 + 1

− 1

)ξ (
αi,p+1 − |αi,:p|

2ξ

)
(2ξ)!

ξ!
2−ξ

·
((

1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z)

)
i

)αi,p+1−|αi,:p|−2ξ

.
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Now switching the sum with the product and grouping terms we obtain:

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|
n∏

i=1

αi,p+1!

(αi,p+1 − |αi,:p|)!
E

[X,β1,β2,z]∼P(X,y)

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

·
⌊
αi,p+1−|αi,:p|

2
⌋∑

ξ=0

(
αi,p+1 − |αi,:p|

2ξ

)
(2ξ)!

ξ!

( 1σXβ1 ⊙ z + 1
σXβ2 ⊙ (1− z)

)
i√

∥β∥22
σ2 + 1

αi,p+1−|αi,:p|−2ξ (
−∥β∥22

σ2

2
(∥β∥22

σ2 + 1
)
)ξ

=

 1
σ√

∥β∥22
σ2 + 1

|α·,:p|
αp+1!

(αp+1 − |α·,:p|)!
E

[X,β1,β2,z]∼P(X,y)

∑
0≤ξ≤⌊

αi,p+1−|αi,:p|
2

⌋

n∏
i=1

·
(
αi,p+1 − |αi,:p|

2ξi

)
(2ξi)!

ξi!


−

∥β∥22
σ2

∥β∥22
σ2 +1

2


ξi 1

σ√
∥β∥22
σ2 + 1

αi,p+1−|αi,:p|−2ξi

·

 p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j (Xβ1 ⊙ z +Xβ2 ⊙ (1− z))
αi,p+1−|αi,:p|−2ξi
i

 ,

which by simplification and expansion then leads us to

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|α·,p+1|
αp+1!

(αp+1 − |α·,:p|)!
∑

0≤ξ≤⌊
αi,p+1−|αi,:p|

2
⌋

·

(
n∏

i=1

(
αi,p+1 − |αi,:p|

2ξi

)
(2ξi)!

ξi!

(
−∥β∥22

2

)ξi
)

· E
[X,β1,β2,z]∼P(X,y)

n∏
i=1

 p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

 p∑
j=1

Xi,jβ1,jzi +

p∑
j=1

Xi,jβ2,j(1− zi)

αi,p+1−|αi,:p|−2ξi
 .
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Bringing out the expectation with respect to β1,β2 we then obtain:

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|α·,p+1|
αp+1!

(αp+1 − |α·,:p|)!
∑

0≤ξ≤⌊
αi,p+1−|αi,:p|

2
⌋

E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j



·
n∏

i=1

(
αi,p+1 − |αi,:p|

2ξi

)
(2ξi)!

ξi!

(
−∥β∥22

2

)ξi

E
X,z

 p∑
j=1

Xi,jβ1,jzi +

p∑
j=1

Xi,jβ2,j(1− zi)

αi,p+1−|αi,:p|−2ξi

=

 1
σ√

∥β∥22
σ2 + 1

|α·,p+1|
αp+1!

(αp+1 − |α·,:p|)!
∑

0≤ξ≤⌊
αi,p+1−|αi,:p|

2
⌋

E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j


·

n∏
i=1

(
αi,p+1 − |αi,:p|

2ξi

)
(2ξi)!

ξi!

(
−∥β∥22

2

)ξi

E
w∼N (0,∥β∥22)

wαi,p+1−|αi,:p|−2ξi ,

where
∑p

j=1Xi,jβ1,jzi+
∑p

j=1Xi,jβ2,j(1− zi)∼N (0, ∥β∥22), both marginally and conditionally
on β1,β2, z, and hence is independent of

∏n
i=1

∏p
j=1 (β1,jzi + β2,j(1− zi))αi,j (since β1,β2 are

constrained to have norm ∥β∥2 according to our prior). After switching the sum with the product,
combining the known equation for Gaussian moments Ew∼N (0,∥β∥22)w

b = (b − 1)!!∥β∥b21{b even}
with additional factorial simplifications, and applying Lemma 19, we obtain

⟨L, H̃α⟩

=

 1
σ√

∥β∥22
σ2 + 1

|αp+1|
αp+1!

(αp+1 − |α·,:p|)!
∑

0≤ξ≤⌊
αi,p+1−|αi,:p|

2
⌋

·

(
n∏

i=1

(
αi,p+1 − |αi,:p|

2ξi

)
(2ξi)!

ξi!

(
−∥β∥22

2

)ξi
)

E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j


·

(
n∏

i=1

(αi,p+1 − |αi,:p| − 2ξi − 1)!! · ∥β∥αi,p+1−|αi,:p|−2ξi
2 1{αi,p+1−|αi,:p|−2ξi even}

)

=

 1
σ√

∥β∥22
σ2 + 1

|αp+1|
αp+1!

(αp+1 − |α·,:p|)!
∥β∥|αp+1|−|α·,:p|

2

·
n∏

i=1

⌊
αi,p+1−|αi,:p|

2
⌋∑

ξ

(
αi,p+1 − |αi,:p|

2ξ

)
(2ξ)!

ξ!

(
−1
2

)ξ

· (αi,p+1 − |αi,:p| − 2ξ − 1)!! · 1{αi,p+1−|αi,:p|−2ξ even} E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j


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=

 1
σ√

∥β∥22
σ2 + 1

|αp+1|
αp+1!

(αp+1 − |α·,:p|)!
∥β∥|αp+1|−|α·,:p|

2

·
n∏

i=1

1{αi,p+1−|αi,:p|=0} E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j


=

 1
σ√

∥β∥22
σ2 + 1

|αp+1|

∥β∥|αp+1|−|α·,:p|
2 αp+1!

n∏
i=1

1{αi,p+1−|α·,:p|=0} E
β1,β2

 n∏
i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

 ,
which leads to the desired result.

Lemma 22 Let (β(1)
1 ,β

(1)
2 ) and (β

(2)
1 ,β

(2)
2 ) be two independent copies of signals sampled from

P∥β∥2(D), and likewise for z(1) and z(2) sampled entrywise from Bernoulli(ϕ). We then have

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 = E

(β
(1)
1 ,β

(1)
2 ),(β

(2)
1 ,β

(2)
2 )

i.i.d.∼ P
z(1),z(2)

i.i.d.∼ Ber(ϕ)

⌊D
2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2

·
∑

|αp+1|= d
2

n∏
i=1

⟨β(1)
1 z

(1)
i + β

(1)
2 (1− z(1)i ),β

(2)
1 z

(2)
i + β

(2)
2 (1− z(2)i )⟩αi,p+1 .

Proof We begin the proof by applying Lemma 21 to obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

=
∑

0≤|α|≤D

1

α!
⟨L, H̃α⟩

2

=
∑

0≤|α|≤D

1

α!

 1
σ√

∥β∥22
σ2 + 1

2|αp+1|

∥β∥2|αp+1|−2|α·,:p|
2 (αp+1!)

2

·
n∏

i=1

1{αi,p+1−|α·,:p|=0}

E
n∏

i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

2

=
D∑

d=0

d∑
h=0

∑
|αp+1|=h

∑
|α·,:p|=d−h

1

α!

 1
σ√

∥β∥22
σ2 + 1

2|αp+1|

∥β∥2|αp+1|−2|α·,:p|
2 (αp+1!)

2

·
n∏

i=1

1{αi,p+1−|α·,:p|=0}

E
n∏

i=1

p∏
j=1

(β1,jzi + β2,j(1− zi))αi,j

2

.

We next split a squared expectation into the expectation of the multiplication of two independent
random variables: (Ew [w])2 = Ew(1)

[
w(1)

]
Ew(2)

[
w(2)

]
= Ew(1),w(2)

[
w(1)w(2)

]
, where we have
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chosen w(1) and w(2) to be two independent and identically distributed random variables. Continu-
ing in this way, we obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

=
D∑

d=0

d∑
h=0

∑
|αp+1|=h

∑
|α·,:p|=d−h

1

α!

 1
σ√

∥β∥22
σ2 + 1

2|αp+1|

∥β∥2|αp+1|−2|α·,:p|
2 (αp+1!)

2

·
n∏

i=1

1{αi,p+1−|αi,:p|=0}︸ ︷︷ ︸
=⇒

∑n
i=1 αi,p+1−|αi,:p|=0 =⇒ 2h−d=0 =⇒ d even

· E
(β

(1)
1 ,β

(1)
2 ),(β

(2)
1 ,β

(2)
2 )

i.i.d.∼ P
z(1),z(2)

i.i.d.∼ Ber(ϕ)

n∏
i=1

p∏
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)αi,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)αi,j

,

which we simplify after noticing
∑n

i=1 αi,p+1 − |αi,:p| = 0 implies d must be even,

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

= E
⌊D

2
⌋∑

d
2
=0

∑
|αp+1|= d

2

∑
|α·,:p|= d

2

1

αp+1! ·α·,:p!

(
1

∥β∥22 + σ2

) d
2

∥β∥02(αp+1!)
2

·
n∏

i=1

1{αi,p+1−|αi,:p|=0}

·
n∏

i=1

p∏
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)αi,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)αi,j

= E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2

·
∑

|αp+1|= d
2

(αp+1!)
2

αp+1!

∑
|α·,:p|= d

2

1

α·,:p!

n∏
i=1

1{αi,p+1−|αi,:p|=0}

·
n∏

i=1

p∏
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)αi,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)αi,j

,
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and can be re-ordered in order to more clearly apply the multinomial theorem:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

= E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

αp+1!

·
∑

|α1,:p|=α1,p+1

1

α1,:p!
. . .

∑
|αn,:p|=αn,p+1

1

αn,:p!

n∏
i=1

p∏
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)αi,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)αi,j

= E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

αp+1!

·
∑

|α1,:p|=α1,p+1

∏p
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)α1,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)α1,j

α1,:p!

. . .
∑

|αn,:p|=αn,p+1

∏p
j=1

(
β
(1)
1,j z

(1)
i + β

(1)
2,j (1− z

(1)
i )
)αn,j

(
β
(2)
1,j z

(2)
i + β

(2)
2,j (1− z

(2)
i )
)αn,j

αn,:p!
.

We then apply the multinomial theorem to obtain the result:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

= E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

n∏
i=1

⟨β(1)
1 z

(1)
i + β

(1)
2 (1− z(1)i ),β

(2)
1 z

(2)
i + β

(2)
2 (1− z(2)i )⟩αi,p+1 .

In the next two subsections, we prove the computational lower bounds for SLR− D (Theorem
10 and SB-MSLR− D (Theorem 4) by specializing Lemma 22.

B.2. Special Case: SLR− D

Proof [Proof of Theorem 10] In Theorem 23 below, recalling that SNR = ∥β∥22/σ2, we let

n = (1 − ϵ)(1 − 2θ)
∥β∥22
β∥2∞

SNR+1
SNR log p. Then Theorem 23 implies that for all D ≤ 2ϵ

1−ϵn, we

have χ2
≤D(P(X,y)∥P(X) ⊗ P(y)) = O(1). Applying Conjecture 2 with D = 2ϵ

1−ϵn and recall-

ing n = ω(log p) (by the assumptions of the theorem), we have that running time exp
(
Ω̃(n)

)
is

required.

Theorem 23 (General SLR− D lower bound) Consider the setting of SLR− D (Definition 3 with
β1 = β2). Let β ∼ P∥β∥2(D). If k = O(pθ) ≤ √p for some θ ∈ (0, 1/2], then for any ϵ ∈ (0, 1),
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n ≤ (1 − ϵ)(1 − 2θ)
(
∥β∥22+σ2

∥β∥2∞

)
log p and D ≤ 2ϵ

1−ϵn, we have χ2
≤D(P(X,y)∥P(X) ⊗ P(y)) =

O(1).

Proof Let S(1) and S(2) denote the support sets of β(1) and β(2), respectively. We apply Lemma
22 to obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 = E

⌊D
2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

n∏
i=1

⟨β(1),β(2)⟩αi,p+1

= E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

⟨β(1),β(2)⟩
d
2

≤ E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2
(D

2 + n− 1

n− 1

)
⟨β(1),β(2)⟩

d
2

≤ E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2
(
D
2 + n

) d
2

d
2 !

⟨β(1),β(2)⟩
d
2

≤ E
β(1),β(2)i.i.d.∼ P

exp

(
1
σ2

∥β∥22
σ2 + 1

(
D

2
+ n

)
⟨β(1),β(2)⟩

)

≤ E
β(1),β(2)i.i.d.∼ P

exp

(
⟨β(1),β(2)⟩
∥β∥2∞

(1− 2θ) log p

)
.

We then apply Lemma 20 and notice that ⟨β(1),β(2)⟩ ≤ ∥β∥2∞|S(1)∩S(2)| to obtain, for p > 4 and
k ≤ p:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 = E

β(1),β(2)i.i.d.∼ P
exp

(
⟨β(1),β(2)⟩
∥β∥2∞

(1− 2θ) log p

)
≤ E

⟨β(1),β(2)⟩
exp

(
|S(1) ∩ S(2)|(1− 2θ) log p

)
≤

k∑
l=0

(
k
l

)(
p−k
k−l

)(
p
k

) exp (l(1− 2θ) log p)

≤
k∑

l=0

4k!

pk
kl

l!

(p− k)k−l

(k − l)!
exp (l(1− 2θ) log p)

≤ 4
k∑

l=0

(
k2

p

)l

exp (l(1− 2θ) log p)

= 4
k∑

l=0

(
k2

p2θ

)l

= O(1).
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B.3. Special Case: SB-MSLR− D

Proof [Proof of Theorem 4] This follows from Theorem 25 below. Choosing any sample size
n such that n ≥ k, n = ω(log p), and n = o((∥β∥22 + σ2)2/(∥β∥4∞ log p)), we have that

χ2
≤D(P(X,y)∥P(X) ⊗ P(y)) = O(1) for D = (

√
2 − 1)min

{
(∥β∥22+σ2)2

n∥β∥4∞
, n
}

. We then in-

voke Conjecture 2 and use ∥β∥22
σ2 = SNR, and notice that for signals with bounded amplitude, we

have k∥β∥∞/σ2 ≳ SNR ≳ k∥β∥∞/σ2.

Lemma 24 For SB-MSLR− D, we have that:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 ≤ E

β(1),β(2)

⌊D
4
⌋∑

d
4
=0

(
1

∥β∥22 + σ2

) d
2
(
D
4 + n

) d
4

d
4 !

⟨β(1),β(2)⟩
d
2 ,

where β(1),β(2) are two independent copies of the random variable β
d
= β1.

Proof We begin by applying the assumptions into Lemma 22 and applying independence of the zi’s.
Notice that in the context of SB-MSLR, we have in particular that ϕβ1 + (1 − ϕ)β2 = 0, and hence
we plug in β := β1 = − ϕ

1−ϕβ2.

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

≤ E
⌊D

2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

n∏
i=1

⟨β(1)
1 z

(1)
i + β

(1)
2 (1− z(1)i ),β

(2)
1 z

(2)
i + β

(2)
2 (1− z(2)i )⟩αi,p+1

= E
β

⌊D
2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

·
n∏

i=1

(
ϕ2⟨β(1)

1 ,β
(2)
1 ⟩

αi,p+1 + ϕ(1− ϕ)⟨β(1)
1 ,β

(2)
2 ⟩

αi,p+1

+ ϕ(1− ϕ)⟨β(1)
2 ,β

(2)
1 ⟩

αi,p+1 + (1− ϕ)2⟨β(1)
2 ,β

(2)
1 ⟩

αi,p+1

)
= E

β

⌊D
2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

·
n∏

i=1

(
ϕ2 + 2ϕ(1− ϕ)

(
− ϕ

1− ϕ

)αi,p+1

+ (1− ϕ)2
(

ϕ

1− ϕ

)2αi,p+1
)
⟨β(1),β(2)⟩αi,p+1

= E
β

⌊D
2
⌋∑

d
2
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2

n∏
i=1

(
ϕ+ (1− ϕ)

(
− ϕ

1− ϕ

)αi,p+1
)2

⟨β(1),β(2)⟩αi,p+1 .
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We now notice that the term inside of the product equals zero for all αi,p+1 odd if and only if
ϕ = 1/2, which is the case for SB-MSLR. So we sum only over even terms to obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1

= E
β

⌊D
2
⌋∑

d
2
=0

even

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2even

n∏
i=1

⟨β(1),β(2)⟩αi,p+1

= E
β

⌊D
4
⌋∑

d
4
=0

(
1

∥β∥22 + σ2

) d
2 ∑
|αp+1|= d

2even

⟨β(1),β(2)⟩|αp+1|

= E
β

⌊D
4
⌋∑

d
4
=0

(
1

∥β∥22 + σ2

) d
2
(d

4 + n− 1

n− 1

)
⟨β(1),β(2)⟩

d
2

≤ E
β

⌊D
4
⌋∑

d
4
=0

(
1

∥β∥22 + σ2

) d
2
(
D
4 + n

) d
4

d
4 !

⟨β(1),β(2)⟩
d
2 .

Theorem 25 (General SB-MSLR− D lower bound) Consider the setting of SB-MSLR− D with joint

prior P∥β∥2(D). If k ≤
√

p
e , and k ≤ D ≤ 2(

√
2 − 1)min

{
(∥β∥22+σ2)2

n∥β∥4∞
, n
}

, we have that

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) = O(1).

Proof We first apply the result of Lemma 22 to obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 ≤

D
4∑

d
4
=0

(
1

(∥β∥22 + σ2)2

) d
4
(
D
4 + n

) d
4

d
4 !

E
β(1),β(2)i.i.d.∼ P

⟨β(1),β(2)⟩
d
2

≤

D
4∑

d
4
=0

(
1

(∥β∥22 + σ2)2

) d
4
(
D
4 + n

) d
4

d
4 !

E
β(1),β(2)i.i.d.∼ P

⟨abs(β(1)),abs(β(2))⟩
d
2 ,

where ⟨β(1),β(2)⟩ ≤ ⟨abs(β(1)),abs(β(2))⟩, and we recall abs(β) denotes the entry-wise abso-
lute value operation on the vector β. Notice that by Lemma 20 we have, for p > 4, k ≤ √p,

E
β(1),β(2)i.i.d.∼ P

⟨abs(β(1)),abs(β(2))⟩
d
2 ≤

k∑
l=0

(
k
l

)(
p−k
k−l

)(
p
k

) (l∥β∥2∞)
d
2

≤ 4

k∑
l=0

(
k2

p

)l

(l∥β∥2∞)
d
2 .

34



STATISTICAL-COMPUTATIONAL TRADEOFFS IN MIXED SPARSE LINEAR REGRESSION

We then obtain:

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 ≤ 4

D
4∑

d
4
=0

(
1

(∥β∥22 + σ2)2

) d
4
(
D
4 + n

) d
4

d
4 !

k∑
l=0

(
k2

p

)l

(l∥β∥2∞)
d
2 .

With the aim of bounding the right hand side, we enforce condition i): (D/4 + n)D ≤ (∥β∥22 +
σ2)2/∥β∥4∞. After switching sums, this yields

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 ≤ 4

k∑
l=0

(
k2

p

)l
D
4∑

d
4
=0

(
(∥β∥22+σ2)2∥β∥4∞
D(∥β∥22+σ2)2∥β∥4∞

) d
4

d
4 !

l
d
2

≤ 4
k∑

l=0

(
k2

p

)l

exp

(
l2

D

)
.

We now enforce condition ii): k ≤ D to obtain the result,

χ2
≤D(P(X,y)∥P(X)⊗ P(y)) + 1 ≤ 4

k∑
l=0

(
k2

p

)l

exp (l)

= 4

k∑
l=0

(
k2e

p

)l

= O(1).

Note that conditions i) and ii) are satisfied for any n > 0 and k ≤ D ≤ 2(
√
2−1)min

{
(∥β∥22+σ2)2

n∥β∥4∞
, n
}

.

Appendix C. Proofs of Polynomial-Time Reductions

Consider signed support recovery in the MSLR problem, where we seek to recover the support of
β1 and β2, along with the along with the signs of their entries. Take (β1,β2) ∼ P∥β∥2({−1, 1}),
and let S1 := supp(β1) = {j ∈ [p] : β1,j ̸= 0}, and S2 defined similarly for β2. We study the
computational hardness of the problem as we vary two parameters of our joint signal distribution,
the overlap ξ and the signed overlap τ respectively:

ξ =
|S1 ∩ S2|

k
, τ =

⟨β1,β2⟩
|S1 ∩ S2|

,

that are of constant order, i.e., do not scale with respect to n, p, k. Previous work (Gamarnik and
Zadik, 2022) studies exact support recovery in sparse linear regression and the computational hard-
ness that arises from the overlap distribution of two identical copies of the signal. We extend the
analysis by considering exact signed support recovery by varying the parameter τ , which measures
the relative frequency of +1 and −1 entries with the same index. Note that for ξ = 1, τ = 1 we
have the usual SLR problem, for ξ = 1, τ = −1 we have the SB-MSLR regime, and importantly for
ϕ = 1/2, τ ∈ (−1, 1), ξ > 0 we have the PSB-MSLR regime. We denote MSLRξ,τ and MSLR− Dξ,τ as
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the MSLR and MSLR− D problems with the joint signal prior P∥β∥2({−1, 1}) constrained to signals
(β1,β2) with overlap and signed overlap ξ and τ respectively.

Using these definitions, we first form in Lemma 26 a polynomial-time reduction from SB-MSLR− D

to exact signed support recovery in SB-MSLR within the scaling regime of Theorem 4. Notice that
MSLR− D1,−1 is equivalent to the SB-MSLR− D problem. Next, we prove a polynomial-time reduc-
tion from exact signed support recovery in SB-MSLR to exact signed support recovery in MSLRξ,τ
for τ ∈ (−1, 1), ξ > 0 (PSB-MSLR ) within the scaling regime of Theorem 4, proving that if exact
signed support recovery can be achieved in PSB-MSLR , then it can also be achieved in SB-MSLR.

Combining the two arguments above, we have that solving exact signed support recovery in
PSB-MSLR implies solving strong detection in SB-MSLR− D, which would contradict the implication
in Theorem 4 that SB-MSLR− D cannot be solved in polynomial time, resulting in Theorem 28. For
more background on the logic of average-case reductions, we refer to (Brennan and Bresler, 2020b).

The reduction from SLR− D to SLR is nearly identical to that in Lemma 26 with the midly less
restrictive condition that SNR ≥ 1, and hence the proof is omitted.

Throughout the proofs, we use the following measure of recovery error for mixtures of linear
regressions (Chen et al., 2014):

ρ((β̂1, β̂2), (β1,β2)) := min
{∥∥∥β̂1 − β1

∥∥∥
2
+
∥∥∥β̂2 − β2

∥∥∥
2
,
∥∥∥β̂1 − β2

∥∥∥
2
+
∥∥∥β̂2 − β1

∥∥∥
2

}
.

This error measure takes into account recovery of the two signals up to relabelling. For vectors a,
b, â, b̂ ∈ Rp, define

∥(â, b̂)− (a, b)∥∞ := min
{
∥â− a∥∞ + ∥b̂− b∥∞, ∥b̂− a∥∞ + ∥â− b∥∞

}
.

Notice that for ϵ ∈ [0, 1) and signals (β1,β2)∼ P∥β∥2({−1, 1}) we have that

P
[
ρ((β̂1, β̂2), (β1,β2)) > ϵ

]
→ 0 ⇐⇒ P

[
∥(β̂1, β̂2)− (β1,β2)∥∞ > ϵ

]
→ 0,

Main Statements We begin by defining the parameter regimes of interest:

C1 =
{
(pi, ni, ki, σi)

∞
i=1 ⊂ N4 : pi = ωi(1), ki = o(

√
pi), ni = ω(max{ki, log pi}) ,

ni = o

(
(ki + σ2i )

2 · 1

log pi

)}
. (7)

C2 =
{
(pi, ni, ki, σi)

∞
i=1 ⊂ N4 : pi = ωi(1), ki = o(

√
pi), ni = ω(max{ki, log pi}) ,

ni ≳
ki log pi

log(1 + ki
σ2
i
)

 . (8)

Notice that C1, C2 are both contained within the parameter regime where SB-MSLR− D encounters
a computational barrier, as per Theorem 4. The following lemmas consist of two sub-reductions
which together give the reduction argument from SB-MSLR− D to exact recovery in PSB-MSLR .

Lemma 26 Let (β1,β2)∼P∥β∥2({−1, 1}),SNR = ω(1). Given a sequence of parameters {(pi, ni, ki, σi)}∞i=1

in C2 for SB-MSLR− D and SB-MSLR, if for any ϵ > 0 there exists a randomized polynomial-time
algorithm A for SB-MSLR producing (β̂1, β̂2) with P

[
∥(β̂1, β̂2)− (β1,β2)∥∞ < ϵ

]
→

(i→∞)
1, then

there exists a randomized polynomial-time detection algorithm A′ for SB-MSLR− D with vanishing
Type I+II errors as i→∞.
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The proof of Lemma 26 is given in Section C.1.

Lemma 27 Fix signal priors to beP∥β∥2({−1, 1}). For any sequence of parameters {(p′i, n′i, k′i, σ′i)}∞i=1

in C1 for PSB-MSLR with solution β′
1,β

′
2 and problem instances (X ′,y′), there exists a sequence

of parameters {(pi, ni, ki, σi)}∞i=1 in C1 for SB-MSLR with solution β1,β2 and problem instances
(X,y) such that, for any randomized polynomial time algorithm A′ for PSB-MSLR outputting
(β̂′

1, β̂
′
2) with

P
[
∥(β̂′

1, β̂
′
2)− (β′

1,β
′
2)∥∞ > 0

]
→ 0,

we can construct a second randomized polynomial time algorithm A for PSB-MSLR outputting
(β̂1, β̂2) such that

P
[
∥(β̂1, β̂2)− (β1,β2)∥∞ > 0

]
→ 0.

The proof of Lemma 27 is given in Section C.2.

Theorem 28 (Reduction from SB-MSLR− D to exact recovery in PSB-MSLR ) Consider the setting
of PSB-MSLR (2) with joint signal priorP∥β∥2({−1, 1}). Any randomized polynomial-time algorithm
A solving PSB-MSLR within parameter regimes C1∩C2 and with SNR = ω(1) would contradict The-
orem 4.

Proof Suppose there exists a randomized polynomial-time algorithm A solving exact recovery in
PSB-MSLR with signals in {−1, 0, 1}p and parameter regime contained in C1 defined in (7). Then by
Lemma 27 we would have a randomized polynomial time algorithm A′ solving exact recovery in
SB-MSLR within this regime. By Lemma 26, we would then consequently have a polynomial-time
algorithm solving SB-MSLR− D in the scaling regime C1 ∩ C2, which is contained in the scaling
regime of Theorem 4 and hence contradicts Theorem 4.

Remark 29 Note that the lower bounds k log p
log(1+SNR) in constraint C1 in (7) used in Theorem 28 are

not restrictive as this is the information-theoretic minimal sample complexity for support recovery
in SLR (Reeves et al., 2019; Gamarnik and Zadik, 2022; Wang et al., 2010).

C.1. Reduction from SB-MSLR− D to SB-MSLR

We utilize a variant of a theorem in Gamarnik and Zadik (2017) to construct our reduction, Lemma
30. Consider the following optimization problem for σ > 0:

ψ := min n−
1
2 ∥σw −Xβ1 ⊙ z −Xβ2 ⊙ (1− z)∥2

s.t. β1,β2 ∈ {−1, 0, 1}p, z ∈ {0, 1}n (9)

∥β1∥0 = ∥β2∥0 = k,

where X
i.i.d.∼ N (0, 1), independent from wi

i.i.d.∼ N (0, 1).

Lemma 30 Let ψ be as defined in (9). For δ > 0 we have:

P
[
ψ ≥ e−(1+δ)/2 exp

(
−2k(log p+ 1)

n

)√
k + σ2

]
≥ 1− e−

δ
2
n.
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The proof follows by nearly identical arguments as that of Theorem 3.1 in (Gamarnik and Zadik,
2017) and is hence omitted.

Proof [Proof of Lemma 26] Throughout the proof, we drop the i subscript in the parameters
(pi, ni, ki, σi) for convenience. We refer to SB-MSLR and SB-MSLR− D as MSLRξ,τ and MSLR− Dξ,τ
respectively, with ξ = 1, τ = −1. We take P := P(X,y) to represent the planted measure in the
formulation of SLR− D, and Q := P(X)⊗ P(y) to represent the null measure. We emphasize that,
since β ∼ P∥β∥2({−1, 1}), ∥β∥22 and k are interchangeable. As prescribed in the statement of the

lemma, suppose that P
[
ρ((β̂1, β̂2), (β1,β2)) < ϵ

]
→

(i→∞)
1 for any ϵ > 0.

Define the two following events under the planted hypothesis P:

Ω̃1 :=
{
{β̂1 = β1, β̂2 = β2} ∪ {β̂2 = β1, β̂1 = β2}

}
,

and

Ω̃2 := {|wq| < |σ−1⟨Xq,β2 − β1⟩+ wq|, ∀q ∈ [n]}.

Note that by assumption, Ω̃1 occurs with probability 1 − o(1) under P. Indeed, we can choose
ϵ < 1 in the definition of our given algorithm A and since β̂1, β̂2,β1,β2 ∈ {−1, 0, 1}p we obtain

that P
[
Ω̃1

]
→ 1. We first consider the planted hypothesis P. Let νq

i.i.d.∼ N (0, (1 − ξτ) k
σ2 ), and

gq ∼ N (0, 1), independent from each other and from wq, for q ∈ [n]. In this case we have by
symmetry that

P
[
Ω̃∁
2

∣∣∣Ω̃1

]
= P

[
{|wq| ≥ |σ−1⟨Xq,β2 − β1⟩+ wq|, ∀q ∈ [n]}

]
=

∫
P [{|wq| ≥ |νq + wq|, ∀q ∈ [n]}|wq] P[dwq]

= 2

∫ ∞

0
P [νq ∈ [−2wq, 0], ∀q ∈ [n]}|wq] P[dwq]

= 2

∫ ∞

0
P
[
{gq ∈ [−2wq/((1− ξτ)k/σ2), 0], ∀q ∈ [n]}

∣∣wq

]
P[dwq],

where we have

P
[
{gq ∈ [−2wq/((1− ξτ)k/σ2), 0], ∀q ∈ [n]}

∣∣wq

]
→ 0 as k/σ2 →∞,

and P
[
{g ∈ [−2wq/((1− ξτ)k/σ2), 0], ∀q ∈ [n]}

∣∣wq

]
≤ 1, so we can apply the Dominated Con-

vergence Theorem to obtain that

P
[
Ω̃∁
2

∣∣∣Ω̃1

]
= 2

∫ ∞

0
P
[
{gq ∈ [−2wq/((1− ξτ)k/σ2), 0], ∀q ∈ [n]}

∣∣wq

]
P[dwq]→ 0 as k/σ2 →∞.

We therefore have that P
[
Ω̃2

∣∣∣Ω̃1

]
= 1− o(1), and hence P

[(
Ω̃1, Ω̃2

)]
= 1− o(1).
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Next, note that under the planted hypothesis P and in the joint event (Ω̃1, Ω̃2) we have for
indices q such that zq = 1:

|yq −
1

σ
⟨Xq, β̂1⟩| = |yq −

1

σ
⟨Xq,β1⟩|

= |wq|

< | 1
σ
⟨Xq,β1 − β2⟩+ wq|

= |yq −
1

σ
⟨Xq,β2⟩|

= |yq −
1

σ
⟨Xq, β̂2⟩|.

An analogous statement with β̂1 and β̂2 swapped holds for indices q such that zq = 0. We therefore
have that under (Ω̃1, Ω̃2) we can exactly estimate z using the above thresholding procedure, and we
call this exact estimate ẑ. We then define our detection algorithm in this case:

A′
([

X
y

])
=

{
p, n−1/2∥y − 1

σXβ̂1 ⊙ ẑ − 1
σXβ̂2 ⊙ (1− ẑ)∥ ≤

√
5

q, n−1/2∥y − 1
σXβ̂1 ⊙ ẑ − 1

σXβ̂2 ⊙ (1− ẑ)∥ >
√
5
.

We will proceed to prove that A′ has vanishing Type II error. Indeed, under P and under the high-
probability event (Ω̃1, Ω̃2) we have:

∥y − 1

σ
Xβ̂1 ⊙ ẑ − 1

σ
Xβ̂2 ⊙ (1− ẑ)∥2

= ∥ 1
σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z) +w − 1

σ
Xβ̂1 ⊙ ẑ − 1

σ
Xβ̂2 ⊙ (1− ẑ)∥2

≤ ∥w∥2 + ∥
1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z)− 1

σ
Xβ̂1 ⊙ ẑ − 1

σ
Xβ̂2 ⊙ (1− ẑ)∥2

= ∥w∥2.

We therefore have

P

[
A′
([

X
y

])
= q

]
= P

[
A′
([

X
y

])
= q

∣∣∣∣(Ω̃1, Ω̃2)
∁
]
· P
[
(Ω̃1, Ω̃2)

∁
]
+ P

[{
A′
([

X
y

])
= q

}
∩ (Ω̃1, Ω̃2)

]
≤ P

[
A′
([

X
y

])
= q

∣∣∣∣(Ω̃1, Ω̃2)
∁
]
· P
[
(Ω̃1, Ω̃2)

∁
]
+ P

[{
∥w∥2 >

√
5n
}
∩ (Ω̃1, Ω̃2)

]
≤ 1 · o(1) + P

[{
∥w∥2 >

√
5n
}]

≤ 1 · o(1) + e−n = o(1),

where the last inequality is obtained using a standard chi-square large deviation tail bounds (Exam-
ple 2.11 of Wainwright (2019)):

P

[
∥w∥2 <

√
n+ 2

√
nt+ 2t

]
≥ 1− e−t,
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and taking t =
√
n.

We now turn to showing that A′ has vanishing Type I error. Under the null hypothesis Q we
have by definition of ψ in Definition 9 that

∥y − 1

σ
Xβ̂1 ⊙ ẑ − 1

σ
Xβ̂2 ⊙ (1− ẑ)∥2 ≥ ψ,

where we recall from Lemma 30 that

Q

[
ψ ≥ e−3/2 exp

(
−2k(log p+ 1)

n

)√
k + σ2

]
≥ 1− e−n,

hence it would suffice to show that

e−3/2 exp

(
−2k(log p+ 1)

n

)√
k + σ2 >

√
5.

In order to do so, choose n∗ = 4k(log p+1)

log (1+ k
σ2 )−log 5−3

= Θ( 4k log p

log(1+ k
σ2 )

) and notice that if the inequality

holds for n∗, it must hold for all n ≥ n∗ since the left hand side is increasing with n. We plug in n∗

to obtain

e−3/2 exp

(
−1/2 log(1 + k

σ2
) + log

√
5 + 3/2

)√
1 + 2

k

σ2
=

√
1 + 2 k

σ2√
1 + k

σ2

√
5 >
√
5,

and therefore we have that

Q

[
A′
([

X
y

])
= q

]
= Q

[
∥y − 1

σ
Xβ̂1 ⊙ ẑ − 1

σ
Xβ̂2 ⊙ (1− ẑ)∥2 >

√
5

]
≥ Q

[
ψ >

√
5
]

≥ Q

[
ψ ≥ e−3/2 exp

(
−2k(log p+ 1)

n

)√
k + σ2

]
≥ 1− e−n.

Importantly, note that n satisfies the constraints of C2.

C.2. Reduction from SB-MSLR to PSB-MSLR

Proof [Proof of Lemma 27] First, recall that the PSB-MSLR regime implies,

ϕ = 1/2 and β1,j = −β2,j for j ∈ J ⊆ supp(β1) ∩ supp(β2) with C1k ≤ |J | ≤ C2k,

for some constants 1 ≥ C1, C2 > 0. Without loss of generality, we can take |J | = Ck for some
constant 0 < C ≤ 1, and all constants that follow can be lower bounded or upper bounded accord-
ingly. In light of this, PSB-MSLR corresponds to MSLRξ,τ for some τ ∈ (−1, 1) and some ξ > 0,
where we recall that ξ, τ are of constant order, i.e., do not scale with respect to n, p, k.
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For brevity, we denote P′ := PSB-MSLR and P := SB-MSLR. Let c = 1− τ ·ξ+1
2 ∈ (0, 1) denote

the proportion of matching non-zero entries with opposite sign between β1 and β2 (intuitively, this
corresponds to the “hard” portion of the signal), and note that it is fixed. Note that this follows since
τ · ξ = ⟨β1,β2⟩

k for ξ > 0.
Given a sequence of parameters {p′i, n′i, k′i, σ′i}∞i=1 ⊆ C1 for P′, consider the sequence of pa-

rameters {(pi, ni, ki, σi)}∞i=1 = {(cp′i, n′i, ck′i, σ′i)}∞i=1 for P. Notice that {(pi, ni, ki, σi)}∞i=1 ⊆ C1
since (dropping the subscript i notation for convenience):

• k = ck′ = o(cC
√
p′) = o(c3/2C

√
p) = o(

√
p)

• n = n′ = o
(
(k′ + (σ′)2)2 · 1

log p′

)
= o

(
(k + σ2)2 · 1

log p

)
,

• n = n′ = ω(max{k′, log p′}) = ω(max{k, log p}),

and hence the parameter regimes of P are also contained in C1. For i ∈ N, let J = (X,y) denote
an instance of P with parameters (pi, ni, ki, σi), where we recall:[

X
y

]
=

[
X

1
σXβ1 ⊙ z + 1

σXβ2 ⊙ (1− z) +w

]
.

We now want to show that, given a sequence of parameters {p′i, n′i, k′i}∞i=1 ⊆ C1 for P′ and a
randomized polynomial-time algorithm A′ solving it, we can construct a randomized polynomial-
time algorithm A solving P along the above parameter sequence {pi, ni, ki}∞i=1 ⊆ C1. We will
construct our desired algorithm A by composing A′ with a pre- and post-processing step. Indeed,
we let A = B ◦ A′ ◦ D, where we define B and D below.

First, let RS denote the random variable that reshuffles entries of a given size p vector or the
columns of a given p-column matrix according to a uniform shuffling of the index set [p]. Let
IRS denote the random variable which inverts this reshuffling process on a vector or matrix, such
that IRS ◦ RS is the identity operation. Let 1 denote the all-ones vector of any size (to be in-
ferred from context). Let 1̄1 and 1̄2 denote two independent copies of a (1 − c)k′ sparse vector in
{0, 1,−1}(1−c)p′ . We now define our pre- and post-processing procedures Algorithms 1, 2, which
can be seen to run in randomized polynomial time with respect to p.

Algorithm 1: D(X,y), where (X,y) is an instance of P(p, n, k, σ)

Data: V ∈ Rn×(1−c)/c p with columns i.i.d.∼ N (0, In)
ỹ ← y + 1

σV 1

X̃ ← RS
[
V X

]
return (X̃, ỹ)

Algorithm 2: B(β̃1, β̃2), where (β̃1, β̃2) are both in {0, 1,−1}p′[
1̄1

β1

]
← IRS(β̃1)[

1̄2

β2

]
← IRS(β̃2)

return (β1,β2)
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Proposition 31 For i ∈ N, (X,y) an instance of P(pi, ni, ki, σi), and (X ′,y′) an instance of

P′(p′i, n
′
i, k

′
i), we have that D(X,y)

d
= (X ′,y′).

Proof Let (X̃, ỹ) := D(X,y). First note that X̃ d
= X ′ since

[
V X

]
has dimensions n × (p +

1−c
c p) = n′ × (cp′ + (1− c)p′) = n′ × p′. Next, note that we can decompose ỹ as follows:

ỹ = y +
1

σ
V 1

=
1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z) +

1

σ
V 1+ w

=
1

σ
Xβ1 ⊙ z +

1

σ
Xβ2 ⊙ (1− z) +

1

σ
V 1⊙ z +

1

σ
V 1⊙ (1− z) + w

=
1

σ
(RS
[
V X

]
)

(
RS

[
1̄1

β1

])
⊙ z +

1

σ

(
RS
[
V X

])(
RS

[
1̄2

β2

])
⊙ (1− z) + w

and hence ỹ is the output of a MSLR model with size cp′+(1−c)p′ = p′ signals
(
RS

[
1̄1

β1

]
, RS

[
1̄2

β2

])
containing ck′ non-zero opposing sign entries from (β1,β2) and (1 − c)k′ remaining non-zero
entries from appending 1̄, for a total support of size k′. Additionally, these signals are linearly
transformed by a design matrix that is i.i.d Gaussian and n′ × p′ as mentioned above. The first and
second point together imply that ỹ is the output of a MSLRξ,τ model and D(X,y) = (X̃, ỹ)

d
=

(X ′,y′).

Following Proposition 31, all that is left to show is that P[∥B ◦ A′ ◦ D(X,y)− (β1,β2)∥∞ >
0]→ 0. Indeed, the following steps hold due to Proposition 31 and the definition of B:

∥A′(X ′,y′)− (β′
1,β

′
2)∥∞

d
=

∥∥∥∥A′(RS(
[
V X

]
),y +

1

σ
V 1)−

(
RS

[
1̄1

β1

]
, RS

[
1̄2

β2

])∥∥∥∥
∞

=

∥∥∥∥A′ ◦ D(X,y)−
(
RS

[
1̄1

β1

]
, RS

[
1̄2

β2

])∥∥∥∥
∞

≥
∥∥∥∥B ◦ A′ ◦ D(X,y)− B

(
RS

[
1̄1

β1

]
, RS

[
1̄2

β2

])∥∥∥∥
∞

= ∥A(X,y)− (β1,β2)∥∞ ,

and hence:

P
[
∥A′(X ′,y′)− (β′

1,β
′
2)∥∞ > 0

]
→ 0 =⇒ P [∥A(X,y)− (β1,β2)∥∞ > 0]→ 0,

where A runs in randomized polynomial time with respect to the input size p since it is a composi-
tion of randomized polynomial time procedures with respect to p.
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C.3. Reduction from SB-MSLR− D to SPR

In this section, we present a polynomial-time reduction from strong detection in noiseless SB-MSLR− D

to exact support recovery in SPR , for signals with non-zero entries in {−1, 0, 1}p. More specifically,
we consider the following symmetric SLR problem.

Definition 32 (S− SLR) For X ∈ Rn×p, w ∈ Rn, and z ∈ Rn, consider the model:

y = g (Xβ) +w,

where ⊙ denotes element-wise product between vectors, Xi,j
i.i.d.∼ N (0, 1), wi

i.i.d.∼ N (0, σ2), β ∈ Rp

each k-sparse, and g : Rn → Rn a separable entry-wise even function (gi(x) = gi(−x) for i ∈ [n]
and x ∈ R). Given (X,y) the objective is to estimate β.

We note that setting gi(x) = |x| and gi(x) = x2 yields two standard formulations of the phase
retrieval problem with sparse signals (SPR) (Candès et al., 2015; Liu et al., 2021). We seek to show
hardness within the parameter scaling regime of Theorem 4 in the noiseless case (SNR+1

SNR = 1) , and
hence we prove a reduction within the constraint set C3:

C3 =
{
(pi, ni, ki, σi)

∞
i=1 ⊂ N4 : ∃C ∈ R+ s.t. pi = ωi(1), ki = o(

√
pi), ,

ni = ω(max{ki, log pi})ni = o

(
k2i ·

1

log pi

)}
. (10)

We note that C3 is just C1 in (7), but with the stricter constraint ni = o
(
k2i · 1

log pi

)
. We begin with

a lemma, which we use to initiate our reduction in Theorem 34.

Lemma 33 Fix signal priors to beP∥β∥2({−1, 1}). For any sequence of parameters {(p′i, n′i, k′i, σ′i)}∞i=1

in C3 for S− SLR with solution β′ and problem instances (X ′,y′), there exists a sequence of pa-
rameters {(pi, ni, ki, σi = 0)}∞i=1 in C3 for SB-MSLR (noiseless) with solution β1,β2 and problem
instances (X,y) such that, for any randomized polynomial time algorithm A′ for S− SLR produc-
ing β̂′ with

P
[
∥β̂′ − β∥∞ > 0

]
→ 0,

we can construct a second randomized polynomial time algorithmA for SB-MSLR outputting (β̂1, β̂2)
such that

P
[
∥(β̂1, β̂2)− (β1,β2)∥∞ > 0

]
→ 0.

Proof We drop the subscript i notation for convenience. For brevity, let P′ := S− SLR, and P :=
SB-MSLR. Given a sequence of parameters {p′i, n′i, k′i, σ′i}∞i=1 in C3 for P′, consider the sequence
of parameters {(pi, ni, ki, σi)}∞i=1 = {(p′i, n′i, k′i, 0)}∞i=1 for P. Notice that {(pi, ni, ki, σi)}∞i=1 in
C3. Let (X,y) be a problem instance of P with parameters {(pi, ni, ki, σi)}∞i=1, and recall that
for noiseless SB-MSLR the observation is of the form (X,y = Xβ ⊙ (2z − 1)). We apply a

preprocessing step to construct ỹ := g(y) + w ∈ Rn were w
i.i.d.∼ N (0, 1), done in randomized

polynomial time. Notice that (X, ỹ) is now an instance of P′, by virtue of g being symmetric with
respect to sign flips. We then run algorithmA′ on (X, ỹ) to obtain β̂′ with P

[
∥β̂′ − β∥∞ > 0

]
→

0 as per the problem statement. Without loss of generality setting (β̂1, β̂2) = (β̂,−β̂), we have an
algorithm A which yields P

[
∥(β̂1, β̂2)− (β1,β2)∥∞ > 0

]
→ 0.
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Theorem 34 (Reduction from SB-MSLR− D to exact recovery in SPR ) Consider the setting of SPR
with joint signal prior P∥β∥2({−1, 1}). Any randomized polynomial-time algorithm A solving SPR

in parameter regime C2 ∩ C3 and SNR = ω(1) would contradict Theorem 4.

Proof We first reduce SB-MSLR− D to SB-MSLR within the constraint set C2 (8), using Lemma
26. We then reduce noiseless SB-MSLR to SPR using Lemma 33 within the constraint set C3 (10)
by choosing g(x) = |x| or g(x) = x2 depending on the precise definition of SPR . Throughout,
we have let SNR = ω(1) to satisfy Lemma 26. Suppose there exists a randomized polynomial-
time algorithm A solving exact recovery in SPR with signals with non-zero entries in {−1, 0, 1}p,
i.e. P

[
∥β̂′ − β∥∞ > 0

]
→ 0. Then by the aforementioned chain of reductions we would have

a randomized polynomial time algorithm A′ solving strong detection in SB-MSLR− D with signals
with non-zero entries in {−1, 0, 1}p in the scaling regime C2∩C3, which is included in the parameter
regime stated in Theorem 4 and would hence contradict Theorem 4.

For completeness, we also include a reduction from SB-MSLR− D to a detection variant of SPR in
Theorem 36.

Definition 35 (Detection Variant SPR− D ) For X ∈ Rn×p, σ > 0, and w(1),w(2) ∈ Rn, con-
sider the following hypothesis testing problem:

P(X)⊗ P(y) :
[
X
y

]
=

[
X√

∥β∥22
σ2 |w1|+w2

]

P(X,y) :

[
X
y

]
=

[
X

1
σ |Xβ|+w

]
where (β1,β2) ∼ P∥β∥2(D), and Xi,j

i.i.d.∼ N (0, 1), wi
i.i.d.∼ N (0, 1), zi

i.i.d.∼ Bernoulli(ϕ). The task is
to construct a function f which strongly distinguishes P(X)⊗ P(y) from P(X,y).

Theorem 36 Fix signal priors to beP∥β∥2({−1, 1}). For any sequence of parameters {(p′i, n′i, k′i, σ′i)}∞i=1

in C3 for SPR− D with signal β′ and problem instances (X ′,y′), there exists a sequence of param-
eters {(pi, ni, ki, σi = 0)}∞i=1 ⊆ C3 for SB-MSLR− D (noiseless) with signals β1,β2 and problem
instances (X,y) such that, for any randomized polynomial time algorithmA′ solving strong detec-
tion in P′, we can construct a second randomized polynomial time algorithm A for solving strong
detection in P.

Proof We drop the subscript i notation for convenience. For brevity, let P′ := SPR− D, and P :=
SB-MSLR− D. Given a sequence of parameters {p′i, n′i, k′i, σ′i}∞i=1 in C3 for P′, consider the sequence
of parameters {(pi, ni, ki, σi)}∞i=1 = {(p′i, n′i, k′i, 0)}∞i=1 for P. Notice that {(pi, ni, ki, σi)}∞i=1 is
in C3. Let (X,y) be a problem instance of P with parameters {(pi, ni, ki, σi)}∞i=1, and recall
that in noiseless SB-MSLR− D the observation in the alternative hypothesis is of the form (X,y =

Xβ⊙(2z−1)). We apply a preprocessing step to construct ỹ := |y|+w ∈ Rn were w i.i.d.∼ N (0, 1),
done in randomized polynomial time. Notice that under both hypotheses, (X, ỹ) is an instance of
P′, by virtue of g being symmetric with respect to sign flips (even). We can then run algorithm A′

on (X, ỹ) to solve the hypothesis testing problem of P on (X,y).
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Appendix D. Proofs for efficient algorithms

D.1. CORR for support recovery in MSLR

Theorem 37 (CORR achieves joint support recovery in MSLR) Consider the general setting of MSLR,
(β1,β2)∼ P∥β∥2(D). Let ϵ ∈ (0, 1) be the one used in CORR . Then provided

n ≥ 32(1 + ϵ)

min{ϕ2β2
min, (1− ϕ)2β2

min, ⟨β⟩2min}
k(SNR+ 1)

SNR
log 2p,

we have that CORR outputs the exact joint support of signals β1 and β2 with probability at least
1− c1(kp + ke−c2n + k

n + 1
pc2 ) for constants c1, c2 > 0.

Proof Let δ > 0 to be chosen later, and for two sets A and B denote the symmetric difference
A∆B := (A \B) ∪ (B \A). Let τ :=

√
2(1 + ϵ/2) log 2p and define the error event

E := ∪j∈S1∪S2

{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ < τ

}
∪

{
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥ τ
}
.

From here we partition the set of indices j ∈ S1 ∪ S2 into two sets,

Ja := {j ∈ [p] : j ∈ S1 ∩ S2}, Jb := {j ∈ [p] : j ∈ S1∆S2},

with respect to which we perform a union bound:

P [E ] ≤ P
[
∪j∈S1∪S2

{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ < τ

}]
+ P

[
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥ τ
]

≤ P
[
∪ja∈Ja

{∣∣∣∣⟨Xja ,y⟩
∥y∥2

∣∣∣∣ < τ

}]
+ P

[
∪jb∈Jb

{∣∣∣∣⟨Xjb ,y⟩
∥y∥2

∣∣∣∣ < τ

}]
+ P

[
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥ τ
]

≤ 2kP
[∣∣∣∣⟨Xja ,y⟩
∥y∥2

∣∣∣∣ < τ

]
+ 2kP

[{∣∣∣∣⟨Xjb ,y⟩
∥y∥2

∣∣∣∣ < τ

}]
+ P

[
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥ τ
]
, (11)

where ja ∈ Ja, jb ∈ Jb, and q ∈ (S1 ∪ S2)∁. Analyzing the last term, we note that for q /∈ S1 ∩ S2
we have ⟨Xq ,y⟩

∥y∥2
i.i.d.∼ N (0, 1). We therefore have,

P

[
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
i)

≤ P

[
max

q∈(S1∪S2)∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2 log 2p+
ϵ

2
√
8

√
log 2p

]
ii)

≤ (2p)−
1
16(

ϵ
2)

2

,

where i) follows from
√
2(1 + ϵ/2) ≥

√
2 + ϵ

2
√
8
, and ii) from a tail bound on the maximum of

standard Gaussians (see P
[
Ω∁
2(t)
]

in Lemma 45). Applying Lemmas 39 and 38 respectively (and
choosing δ > 0 small enough to satisfy these) to the first two terms in (11) we obtain that, for some
constants c1, c2 > 0,

P [E ] ≤ c1
(
k

p
+ ke−c2n +

k

n
+

1

pc2

)
.
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The principal concentration lemmas.

Lemma 38 (General Bound for j ∈ S1∆S2) Consider the setting of MSLR. Let j∗ ∈ S1∆S2.
Then if n ≥ 32(1+ϵ)

min{ϕ2,(1−ϕ)2}β2
min

(∥β∥22 + σ2) log 2p for any ϵ ∈ (0, 1) we obtain that

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤ 1

p
+ 4e−

δ2n
8 +

39

δ2n
.

Proof Let gi
i.i.d.∼ N (0, 1) (independent from y, z,β1,β2) for i ∈ [n] and δ > 0 to be chosen later.

Without loss of generality, we can assume j∗ ∈ S1 \ S2. We begin by considering fixed β1, β2, y
and z vectors, and hence the initial randomness of interest lies in the design matrix X . Define

• σ(1)i := yi
∥y∥2

√
1−

β2
1,j∗

∥β∥22+σ2 ,

• σ(2)i := yi
∥y∥2 ,

• µ(1)i :=
y2i

∥y∥2
β1,j∗

∥β∥22+σ2 ,

• µ(2)i := 0,

and notice that for τ ∈ R,

P [Xj∗,i ≤ τ |β1,β2,y, z] = P

zi
 yi · β1,j∗

∥β∥22 + σ2
+

√
1−

β2
1,j∗

∥β∥22 + σ2
gi

+ (1− zi)gi ≤ τ

∣∣∣∣∣∣β1,β2, yi, zi

 ,

which follows from Lemma 40. We then have that

P
[
Xj∗,i

yi
∥y∥2

≤ τ
∣∣∣∣y, z] = P

[
zi(µ

(1)
i + σ

(1)
i gi) + (1− zi)(µ(2)i + σ

(2)
i gi) ≤ τ

∣∣∣y, z] ,
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from which it follows that for τ > 0,

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤ τ ∣∣∣∣β1,β2,y, z

]
= P

[∣∣∣∣∣
n∑

i=1

zi(µ
(1)
i + σ

(1)
i gi) + (1− zi)(µ(2)i + σ

(2)
i gi)

∣∣∣∣∣ ≤ τ
∣∣∣∣∣β1,β2,y, z

]

= P

[∣∣∣∣∣
n∑

i=1

(ziµ
(1) + (1− zi)µ(2)) + (ziσ

(1) + (1− zi)σ(2))gi

∣∣∣∣∣ ≤ τ
∣∣∣∣∣β1,β2,y, z

]

i)
= P

∣∣∣∣∣∣
n∑

i=1

(ziµ
(1) + (1− zi)µ(2)) + g1

(
n∑

i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

∣∣∣∣∣∣ ≤ τ
∣∣∣∣∣∣β1,β2,y, z


= P


n∑

i=1

(ziµ
(1) + (1− zi)µ(2)) + g1

(
n∑

i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ


∩

−τ ≤
n∑

i=1

(ziµ
(1) + (1− zi)µ(2)) + g1

(
n∑

i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2


∣∣∣∣∣∣β1,β2,y, z


ii)

≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ −

∣∣∣∣∣
n∑

i=1

(ziµ
(1) + (1− zi)µ(2))

∣∣∣∣∣
∣∣∣∣∣∣β1,β2,y, z


= P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ −

∣∣∣∣∣
n∑

i=1

y2i /∥y∥2
∥β∥22 + σ2

· ziβ1,j∗

∣∣∣∣∣
∣∣∣∣∣∣β1,β2,y, z


=: P [A|β1,β2,y, z] , (12)

where i) holds by the closure of Gaussian random variables under finite sum, and ii) holds by
symmetry of the Gaussian g1 and since P [B1 ∩B2] ≤ mini∈{1,2} P [Bi].

Using the high probability events Ω1(δ),Ω4(δ) defined in Lemma 45, we have

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤ τ] = ∫
β1,β2

∫
y,z

P
[∣∣∣∣⟨Xj∗,i,y⟩
∥y∥2

∣∣∣∣ ≤ τ ∣∣∣∣β1,β2,y, z

]
dP[β1,β2,y, z]

≤
∫
β1,β2

∫
Ω1(δ)∩Ω4(δ)

P
[∣∣∣∣⟨Xj∗,i,y⟩
∥y∥2

∣∣∣∣ ≤ τ ∣∣∣∣y, z] dP[β1,β2,y, z]

+

∫
β1,β2

P
[
(Ω1(δ) ∩ Ω4(δ))

∁
∣∣∣β1,β2

]
dP[β1,β2]

=

∫
β1,β2

∫
Ω1(δ)∩Ω4(δ)

P [A|β1,β2,y, z] dP[β1,β2,y, z] + P
[
(Ω1(δ) ∩ Ω4(δ))

∁
]

≤
∫
β1,β2

∫
Ω1(δ)∩Ω4(δ)

P [A|β1,β2,y, z] dP[β1,β2,y, z] + P
[
Ω∁
1(δ)

]
+ P

[
Ω∁
4(δ)

]
. (13)
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Now setting τ =
√
2(1 + ϵ/2) log 2p and n ≥ 32(1+ϵ)

ϕ2β2
min

(∥β∥22+σ2) log p we obtain that for (y, z) ∈
Ω1(δ) ∩ Ω4(δ):

P [A|β1,β2,y, z]

= P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ −

∣∣∣∣∣
n∑

i=1

y2i /∥y∥2
∥β∥22 + σ2

· ziβ1,j∗

∣∣∣∣∣
∣∣∣∣∣∣β1,β2,y, z


≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣ ∥y∥2
∥β∥22 + σ2

ϕβ1,j∗ −

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]

≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣
√

n(1− δ)
∥β∥22 + σ2

ϕβ1,j∗ −

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]

≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣√32(1 + ϵ)(1− δ) log 2p−

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]
,

(14)

where for small enough δ > 0, we have√
2(1 + ϵ/2)−

∣∣∣∣√32(1 + ϵ)(1− δ)−
√

2(3 + δ)/(1− δ)(1 + σ2/∥β∥22)
∣∣∣∣ ≤ −√2. (15)

Hence we obtain that the right hand side of the inequality in (14) is negative, leading us to the
following inequality for (y, z) ∈ Ω1(δ) ∩ Ω4(δ),

P [A|β1,β2,y, z] ≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

)1/2

≤ −
√

2 log 2p

∣∣∣∣∣∣β1,β2,y, z


≤ exp

(
− 2 log 2p

2
∑n

i=1(ziσ
(1)
i + (1− zi)σ(2)i )2

)
i)

≤ exp

− 2 log 2p

2
∑n

i=1
y2i

∥y∥22

 ≤ 1

2p
, (16)

where i) follows almost surely from the fact that zi ∈ {0, 1} and
(
1−

β2
1,j∗

∥β1∥22+σ2

)
≤ 1. We

generalize to the case where j ∈ S2 \ S1, and hence consider the analogous result with ϕ and β1
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replaced with (1 − ϕ) and β2. Putting it all together in (13) using Lemma 45 and choosing δ > 0
small enough to satisfy (15), we obtain that for n ≥ 32

min{ϕ2,(1−ϕ)2}β2
min

(1 + ϵ)(∥β∥22 + σ2) log 2p,

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤ 1

p
+ 4e−

δ2n
8 +

39

δ2n
. (17)

Lemma 39 (General Bound for j ∈ S1 ∩ S2) Consider the setting of MSLR. Let j∗ ∈ S1 ∩ S2.
Then if n ≥ 32(1+ϵ)

(ϕβ1,j∗+(1−ϕ)β2,j∗ )2
(∥β∥22 + σ2) log 2p for any ϵ ∈ (0, 1) we obtain that

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤ 1

p
+ 4e−

δ2n
8 +

39

δ2n
.

Proof The proof is along the same lines as that of Lemma 38, with the main difference being in the
conditional means and variances of Xj∗,i, for i ∈ [n]. As before, let gi

i.i.d.∼ N (0, 1) (independent
from y, z,β1,β2) for i ∈ [n] and δ > 0 to be chosen later. Define

• σ(1)i := yi
∥y∥2

√
1−

β2
1,j∗

∥β∥22+σ2 ,

• σ(2)i := yi
∥y∥2

√
1−

β2
2,j∗

∥β∥22+σ2 ,

• µ(1)i :=
y2i

∥y∥2
β1,j∗

∥β∥22+σ2 ,

• µ(2)i :=
y2i

∥y∥2
β2,j∗

∥β∥22+σ2 ,

and notice that for τ ∈ R,

P [Xj∗,i ≤ τ |β1,β2,y, z]

= P

zi
 yi · β1,j∗

∥β∥22 + σ2
+

√
1−

β2
1,j∗

∥β∥22 + σ2
gi


+(1− zi)

 yi · β2,j∗

∥β∥22 + σ2
+

√
1−

β2
2,j∗

∥β∥22 + σ2
gi

 ≤ τ
∣∣∣∣∣∣β1,β2, yi, zi

 ,
which follows from Lemma 40. We then have that

P
[
Xj∗,i

yi
∥y∥2

≤ τ
∣∣∣∣y, z] = P

[
zi(µ

(1)
i + σ

(1)
i gi) + (1− zi)(µ(2)i + σ

(2)
i gi) ≤ τ

∣∣∣y, z] .
Then, using the same steps as in (12), we obtain that for for τ > 0:

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤ τ ∣∣∣∣β1,β2,y, z

]

= P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ −

∣∣∣∣∣
n∑

i=1

y2i /∥y∥2
∥β∥22 + σ2

· (ziβ1,j∗ + (1− zi)β2,j∗)

∣∣∣∣∣
∣∣∣∣∣∣β1,β2,y, z


=: P [A|β1,β2,y, z] . (18)
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Using the high probability events Ω1(δ),Ω3(δ) defined in Lemma 45, by the same arguments as in
(13) we have

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤ τ]
≤
∫
β1,β2

∫
Ω1(δ)∩Ω3(δ)

P [A|β1,β2,y, z] dP[β1,β2,y, z] + P
[
Ω∁
1(δ)

]
+ P

[
Ω∁
3(δ)

]
, (19)

Now setting τ =
√

2(1 + ϵ/2) log 2p and n ≥ 32
⟨β⟩2min

(1 + ϵ)(∥β∥22 + σ2) log 2p we obtain that for
(y, z) ∈ Ω1(δ) ∩ Ω3(δ),

P [A|β1,β2,y, z]

= P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤ τ −

∣∣∣∣∣
n∑

i=1

y2i /∥y∥2
∥β∥22 + σ2

· (ziβ1,j∗ + (1− zi)β2,j∗)

∣∣∣∣∣
∣∣∣∣∣∣β1,β2,y, z


≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣ ∥y∥2
∥β∥22 + σ2

(ϕβ1,j∗ + (1− ϕ)β2,j∗)−

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]

≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣
√

n(1− δ)
∥β∥22 + σ2

(ϕβ1,j∗ + (1− ϕ)β2,j∗)−

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]

≤ P

g1( n∑
i=1

(ziσ
(1)
i + (1− zi)σ(2)i )2

) 1
2

≤
√
2(1 + ϵ/2) log 2p

−

∣∣∣∣∣√32(1 + ϵ)(1− δ) log 2p−

√
2(3 + δ) log 2p

(1− δ)(1 + σ2/∥β∥22)

∣∣∣∣∣
∣∣∣∣∣β1,β2,y, z

]
,

(20)

where√
2(1 + ϵ/2)−

∣∣∣∣√32(1 + ϵ)(1− δ)−
√

2(3 + δ)/(1− δ)(1 + σ2/∥β∥22)
∣∣∣∣ ≤ −√2, (21)

for small enough δ > 0. Hence we obtain that the right hand side of (20) is negative, leading us to
the following inequality for (y, z) ∈ Ω1(δ) ∩ Ω3(δ), obtained via the same steps as (16):

P [A|β1,β2,y, z] ≤
1

2p
.
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Putting it all together in (19) using Lemma 45 and choosing δ > 0 small enough to satisfy (20) we
obtain that for n ≥ 32

⟨β⟩2min
(1 + ϵ)(∥β∥22 + σ2) log 2p,

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤ 1

p
+ 4e−

δ2n
8 +

39

δ2n
.

The conditioning lemmas.

Lemma 40 (General conditioning lemma) Consider the setting of MSLR.
For j∗ ∈ S1 ∩ S2 and i ∈ [n] it holds that:

Xj∗,i|(yi,β1, zi = 1) ∼N

(
yi · β1,j∗

∥β1∥22 + σ2
,

(
1−

β2
1,j∗

∥β1∥22 + σ2

))
, (22)

Xj∗,i|(yi,β2, zi = 0) ∼N

(
yi · β2,j∗

∥β1∥22 + σ2
,

(
1−

β2
2,j∗

∥β1∥22 + σ2

))
. (23)

For j∗ ∈ S1∆S2 (without loss of generality j∗ ∈ S1 \ S2) and i ∈ [n] it holds that

Xj∗,i|(yi,β1, zi = 1) ∼N

(
yi · β1,j∗

∥β1∥22 + σ2
,

(
1−

β2
1,j∗

∥β1∥22 + σ2

))
, (24)

Xj∗,i|(yi, zi = 0) ∼N (0, 1) (25)

Proof To prove (22) and (24), recall that

yi = zi(Xβ1)i + (1− zi)(Xβ2)i + wi,

and hence given zi = 1 we have

yi =
∑

j ̸=j∗∈S1

β1,jXj,i + β1,j∗Xj∗,i + wi,

implying that

Xj∗,i | (yi,β1, zi = 1) = Xj∗,i

∣∣∣∣∣∣
β1, yi =

∑
j ̸=j∗∈S1

β1,jXj,i + β1,j∗Xj∗,i + wi

 .

Therefore, applying Corollary 43, we obtain that Xj∗,i|(yi,β1, zi = 1)∼N
(

yiβ1,j∗

∥β1∥22+σ2 ,

(
1−

β2
1,j∗

∥β1∥22+σ2

))
.

The result in (23) is proved in the same way, but replacing β1 with β2.
For (25), notice that given zi = 0 we have

yi =
∑
j∈S2

β2,jXj,i + wi,

which is independent of Xj∗,i by definition, and hence Xj∗,i|(yi, zi = 0) has the same distribution
as Xj∗,i ∼N (0, 1).
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Lemma 41 (General conditioning lemma) Let a∼N (0,Σk×k), and b ∈ Rk a fixed vector. Then:

a|

 k∑
j=1

bjaj = η

∼N (ηv,BΣk×kB
T
)

where, letting 1 denote the all-ones vector,

v =
1

bT Σ̃1
Σ̃1, B = Ik×k − vbT , Σ̃ = E

[
a(a⊙ b)T

]
.

Proof Let B be a deterministic matrix, and η :=
∑k

j=1 bjaj . Then (Ba, η) is jointly normal. We
will construct a fixed matrix B and fixed vector v such that

• Ba is independent from η

• a = Ba+ ηv.

If the above holds, then by independence we have the required result that a|η∼N
(
ηv,BΣBT

)
. In

order for the first point to hold, their covariances must be zero, implying

E [Baη] = E
[
Ba(a⊙ b)T1

]
= BΣ̃1 = 0.

Meanwhile, the second point is satisfied by choosing B = I − vbT . Combining these two facts, we
obtain the result.

Corollary 42 Consider the setting of SLR, let j∗ ∈ S, and i ∈ [n]. Then it holds that

Xj∗,i

∣∣∣∣∣∣
∑

j∈S
Xj,i + wi = η

 ∼N ( η

k + σ2
,

(
1− 1

k + σ2

))

Proof Apply Lemma 41 conditioning on the sum
∑

j∈S Xj,i+wi =: η, where we recall
[
XS wi

]
∼

N (0,Σ) with

Σ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · σ2

 ∈ R(k+1)×(k+1)

yielding

v =
1

k + σ2


1
1
...
σ2


and

B =


(1− 1

k+σ2 ) − 1
k+σ2 · · · − 1

k+σ2

− 1
k+σ2 (1− 1

k+σ2 ) · · · − 1
k+σ2

...
...

. . .
...

− 1
k+σ2 − 1

k+σ2 · · · (1− 1
k+σ2 )

 .
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Noticing that (BΣBT )j∗,j∗ = 1− 1
k+σ2 , we obtain the result.

Corollary 43 Consider the setting of SLR, and let b ∈ Rp be fixed. Let j∗ ∈ S, and i ∈ [n]. Then
it holds that

Xj∗,i

∣∣∣∣∣∣
∑

j∈S
bjXj,i + wi = η

 ∼N ( η · bj∗
∥b∥22 + σ2

,

(
1−

b2j∗

∥b∥22 + σ2

))

Proof The result is obtained by applying Lemma 41 conditioning on the sum
∑

j∈S bjXj,i+wi = η.
We then have that

Σ̃ = E



X1,i

X2,i
...
wi



b1X1,i

b2X2,i
...
wi


T
 =


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · σ2

 ∈ R(k+1)×(k+1)

yielding

v =
1

∥b∥22 + σ2


b1
b2
...
σ2


and

B =


(1− b21

∥b∥22+σ2 ) − b1b2
∥b∥22+σ2 · · · − b1

∥b∥22+σ2

− b2b1
∥b∥22+σ2 (1− b22

∥b∥22+σ2 ) · · · − b2
∥b∥22+σ2

...
...

. . .
...

− σ2b1
∥b∥22+σ2 − σ2b2

∥b∥22+σ2 · · · (1− σ2

∥b∥22+σ2 )

 .

Noticing that (BΣBT )j∗,j∗ = 1−
b2
j∗

∥b∥22+σ2 , we obtain the result.

Lemma 44 Consider the setting of MSLR as in Definition 1. Then y and z are independent.

Proof Let g ∼ N (0, 1), and A an event in the sigma algebra. By Bayes rule, for every i ∈ [n] it
holds that

P [zi = 1|yi ∈ A] =
P [yi ∈ A|zi = 1]P[zi = 1]

P[y]

=
P [yi ∈ A|zi = 1]P[zi = 1]

P [yi ∈ A|zi = 1]P[zi = 1] + P [yi ∈ A|zi = 0]P[zi = 0]

=
P[
√
∥β∥22 + σ2g ∈ A]ϕ

P[
√
∥β∥22 + σ2g ∈ A]ϕ+ P[

√
∥β∥22 + σ2g ∈ A](1− ϕ)

= ϕ

= P[zi = 1],
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and the analogous result holds for the case zi = 0. The result then follows by recalling that yi and
zi are i.i.d. across the i indices.

High-probability events and Concentration inequalities

Lemma 45 (High-probability events) Consider the setting of MSLR. Let gq
i.i.d.∼ N (0, 1) for q ∈ [p]

and δ ∈ (0, 1), t > 0, j∗ ∈ [p]. Define the following events that will be necessary for the analysis of
CORR on MSLR:

Ω1(δ) :=
{
(∥β∥22 + σ2)n(1− δ) ≤ ∥y∥2 ≤ (∥β∥22 + σ2)n(1 + δ)

}
,

Ω2(t) :=

{
max
q∈[p]
|gq| ≤

√
2 log 2p+

√
2t log 2p

}
,

Ω3(δ) :=

{∣∣∣∣∣
n∑

i=1

(ziβ1,j∗ + (1− zi)β2,j∗)
y2i /∥y∥2
∥β∥22 + σ2

−(ϕβ1,j∗ + (1− ϕ)β2,j∗)
∥y∥2

∥β∥22 + σ2

∣∣∣∣ <
√

2(3 + δ) log (2p)

(1− δ)(1 + σ2/∥β∥22)

}
,

Ω4(δ) :=

{∣∣∣∣∣
n∑

i=1

ziβ1,j∗
y2i /∥y∥2
∥β∥22 + σ2

− ϕβ1,j∗
∥y∥2

∥β∥22 + σ2

∣∣∣∣∣ <
√

2(3 + δ) log (2p)

(1− δ)(1 + σ2/∥β∥22)

}
,

Ω5(δ) :=
{∣∣∥y∥44 − 3n(∥β∥22 + σ2)2

∣∣ < δn(∥β∥22 + σ2)2
}
.

Then, the above events all occur with high probability. Specifically,

• P
[
Ω∁
1(δ)

]
≤ 2e−

δ2n
8 as per Example 2.11 in Wainwright (2019) noting that yi

i.i.d.∼ N (0, ∥β∥22+
σ2) both marginally and conditionally on z (similarly for the setting of SLR).

• P
[
Ω∁
2(t)
]
≤ 1

(2p)t as per Lemma 5.2 in van Handel (2014).

• P
[
Ω∁
3(δ)

∣∣∣Ω1(δ),Ω5(δ)
]
≤ 1

2p as per Lemma 47 and consequently P
[
Ω∁
3(δ)

]
≤ 1

2p+2e−
δ2n
8 +

39
δ2n

.

• P
[
Ω∁
4(δ)

∣∣∣Ω1(δ),Ω5(δ)
]
≤ 1

2p as per Lemma 47 with β2,j∗ = 0 and consequently P
[
Ω∁
4(δ)

]
≤

1
2p + 2e−

δ2n
8 + 39

δ2n
.

• P
[
Ω∁
5(δ)

]
≤ 39

δ2n
as per Lemma 46.

Lemma 46 (Fast ℓ4 norm concentration) Let y ∈ Rn with yi
i.i.d.∼ N (0, σ2) for i ∈ [n]. Then for

δ > 0 we have,

P
[∣∣∥y∥4 − 3n(σ2)2

∣∣ ≥ δn(σ2)2] ≤ 39

δ2n
.
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Proof The proof follows from a standard application of Chebyshev’s inequality. We first recall
that the pth centered Gaussian moment is given by (variance)

p
2 (p − 1)!!, and consequently by in-

dependence we have that E
[
∥y∥44

]
= 3n(σ2)2. We then proceed with Chebyshev’s inequality (see

Boucheron et al. (2013)) for t > 0:

P
[∣∣∥y∥44 − E

[
∥y∥44

]∣∣ ≥ t] ≤ nVar(y41)
t2

=
n
(
Ey81 −

(
Ey41

)2)
t2

=
n(σ2)4((7− 1)!!− 9)

t2
=

39n(σ2)4

t2
.

We set t = n(σ2)2 to obtain

P
[∣∣∥y∥44 − E

[
∥y∥44

]∣∣ ≥ n(σ2)2] ≤ 39n(k + σ2)4

n2(σ2)4
=

39

n
.

Lemma 47 Consider the setting of MSLR. For t > 0, δ > 0, j∗ ∈ [p] we have that

P

[∣∣∣∣∣
n∑

i=1

(ziβ1,j∗ + (1− zi)β2,j∗)
y2i /∥y∥2
∥β∥22 + σ2

− (ϕβ1,j∗ + (1− ϕ)β2,j∗)
∥y∥22

∥β∥22 + σ2

∣∣∣∣∣ ≥ t
∣∣∣∣∣Ω1(δ),Ω5(δ)

]

≤ exp

(
− (1− δ)
2(3 + δ)

(1 + σ2/∥β∥22)t2
)

Proof Consider y ∈ Ω1(δ) ∩ Ω5(δ) in Lemma 45. We first apply Hoeffding’s inequality (see
Boucheron et al. (2013)), then the definitions of Ω1(δ) and Ω5(δ) to obtain,
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P

[∣∣∣∣∣
n∑

i=1

(ziβ1,j∗ + (1− zi)β2,j∗)
y2i /∥y∥2
∥β∥22 + σ2

− (ϕβ1,j∗ + (1− ϕ)β2,j∗)
∥y∥22

∥β∥22 + σ2

∣∣∣∣∣ ≥ t
∣∣∣∣∣y
]

≤ exp

− 2t2∑n
i=1(β1,j∗ − β2,j∗)2

y4i /∥y∥22
(∥β∥22+σ2)2


= exp

− 2t2

(β1,j∗ − β2,j∗)2
∥y∥44
∥y∥22

1
(∥β∥22+σ2)2


≤ exp

− 2t2

(β1,j∗ − β2,j∗)2
3n(∥β∥22+σ2)2+δn(∥β∥22+σ2)2

∥y∥22
1

(∥β∥22+σ2)2


≤ exp

− 2t2

(β1,j∗ − β2,j∗)2
3n(∥β∥22+σ2)2+δn(∥β∥22+σ2)2

n(∥β∥22+σ2)(1−δ)
1

(∥β∥22+σ2)2


= exp

(
− 2(∥β∥22 + σ2)t2

(β1,j∗ − β2,j∗)2
3+δ
1−δ

)
i)

≤ exp

(
−2(∥β∥22 + σ2)t2

4∥β∥22 3+δ
1−δ

)

= exp

(
− (1− δ)
2(3 + δ)

(1 + σ2/∥β∥22)t2
)
,

where i) follows from (β1,j∗ −β2,j∗)
2 ≤ ∥β1−β2∥22 and the triangle inequality. Applying the law

of total probability to the above, we obtain the result.

D.2. CORR for MSLR− D

Proof [Proof of Theorem 7] We first note that, since (β1,β2) ∼ P∥β∥2(D), the two signals have
equal norm. Hence, the complement of the SB-MSLR regime can be equivalently expressed through
the condition ϕβ1 + (1− ϕ)β2 ̸= 0.

Let CORR(X,y) denote the output of running CORR on inputs X,y. Consider the test function

g

([
X
y

])
:=

{
p CORR(X,y) ̸= ∅
q CORR(X,y) = ∅

.

Let
[
X
y

]
∼ P(X)⊗ P(y). Recall that CORR outputs the following set

CORR(X,y) =

{
j ∈ [p] :

∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}
.
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As in the proof of Theorem 37, we note that

P
[
max
q∈[p]

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
≤ P

[
max
q∈[p]

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2 log 2p+
ϵ

2
√
8

√
log 2p

]
.

(26)

Noting that for
[
X
y

]
∼P(X)⊗ P(y) we have that ⟨Xq ,y⟩

∥y∥2
i.i.d.∼ N (0, 1), we apply Lemma 45 to (26)

and obtain that

P
[
max
q∈[p]

∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
≤ (2p)−

1
8(

ϵ
2)

2

,

and hence we have that, under P(X)⊗ P(y), g
([

X
y

])
= q with probability 1− o(1).

Conversely, let
[
X
y

]
∼P(X,y). Let J ⊆ supp(β1)∪supp(β2) such that ϕβ1,j+(1−ϕ)β2,j ̸=

0 for j ∈ J . From Lemma 39, we then have that,

P [|CORR(X,y)| = 0] = P
[
∩j∈[p]

{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

}]
≤ P

[
∩j∈J

{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

}]
≤ P

[∣∣∣∣⟨XJ1 ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤
(
1

p
+ 6e

δ2n
w +

39

δ2n

)
= o(1),

and hence we have that, under P(X,y), g
([

X
y

])
= p with probability 1− o(1).

D.3. Recovery algorithms for MSLR

General recovery algorithm for MSLR A recovery algorithm for MSLR in the noiseless and bal-
anced regimes is given in Theorem 8. We measure the recovery error in MSLR as in Chen et al.
(2014),

ρ(θ̂,θ) := min
{∥∥∥β̂1 − β1

∥∥∥
2
+
∥∥∥β̂2 − β2

∥∥∥
2
,
∥∥∥β̂1 − β2

∥∥∥
2
+
∥∥∥β̂2 − β1

∥∥∥
2

}
,

where θ̂ = (β̂1, β̂2) and θ = (β1,β2).
Proof [Proof of Theorem 8] In the case of σ = 0, ϕ ̸= 1/2 (noiseless), we first apply CORR and
then the Alternating Minimization (AM) algorithm of Yi et al. (2014). Theorem 48 shows that this
succeeds in the regime of interest.

In the case of ϕ = 1/2 (balanced), SNR = Ω(k), we first apply CORR and then the algorithm
of Chen et al. (2014). Theorem 56 proves that in the high SNR regime SNR = Ω(1), we have that
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ρ(θ̂, θ) = Θ

(
σ
√

k
n

)
. In order for exact recovery to be achieved for all allowable finite n, we

would require
√

σ2k
(∥β∥22+σ2) log p

→ 0, which is satisfied for SNR = ∥β∥22/σ2 = Ω(k), implying a
non-vanishing signal-to-noise ratio with respect to the support set. This is satisfied by hypothesis,
and hence CORR together with Algorithm 6 succeeds in solving asymptotically exact recovery (up
to relabeling of β1 and β2) in the regime of interest.

Recovery algorithm for noiseless, unbalanced MSLR In this section we will show that the CORR
algorithm can be used to reduce the MSLR problem to a dense problem where n, k = Θ(p) and
the signal is not assumed to be sublinearly sparse, where state-of-the-art algorithms for this dense
mixed linear regression case can then infer β1 from β2. In the noiseless case with ϕ ̸= 1/2, we can
apply CORR together with the existing polynomial-time Alternating Minimization (AM) algorithm
from Yi et al. (2014) to fully solve MSLR in what is a constant number of steps. We recall that
Theorem 37 only provided guarantees on the support recovery of the joint signal, whereas now with
the execution of the AM algorithm on the reduced joint support set one can fully infer β1 from β2.
Define the mixture proportions,

n1
n

:=

∑n
i=1 zi
n

n2
n

:=

∑n
i=1(1− zi)

n
.

We begin by stating the theorem.

Theorem 48 (Success of CORR+ AM on noiseless MSLR) Consider the general setting of MSLRwith
parameters p, n, k, σ = 0, ϕ ̸= 1/2, (β1,β2)∼ P∥β∥2(D). Suppose

n ≥ 32

min{ϕ2β2
min, (1− ϕ)2β2

min, ⟨β⟩2min}
(1 + ϵ)∥β∥22 log 2p

for ϵ ∈ (0, 1) used in CORR . Then with probability at least 1 − c1(
k
p + ke−c2n + k

n + 1
pc2 ) for

constants c1, c2 > 0, the output θ̂ = (β̂1, β̂2) of CORR+ Algorithm 3 + Algorithm 5 satisfies

ρ(θ̂, θ) = 0.

Proof [Proof of Theorem 48] By Theorem 37, we can recover the joint support set (at most of size
2k) of signals (β1,β2) with probability at least 1− c1(kp + ke−c2n + k

n + 1
pc2 ) by running CORR.

After running CORR and identifying the < 2k joint support set indices, we restrict the regression
problem to these indices by removing all other columns from the design matrix X (as these do not
influence the output y since they do not correspond to support indices of β1 or β2). We are then
tasked with solving a two-component mixtures of regressions problem with n samples and signals
of dimension between k and 2k (importantly, the dimension is no longer p).

From this point, the idea is to spectrally initialize (β
(0)
1 ,β

(0)
2 ) using Algorithm 3 for which

Proposition 50 provides guarantees, pass (β(0)
1 ,β

(0)
2 ) into Algorithm 5 for which Theorem 51 pro-

vides guarantees on geometric error decay given this initialization, and run Algorithm 5 for a finite
number of iterations guaranteed by Proposition 52.
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The condition on sample size n of Proposition 50 is met, since it is assumed that n ≳ ∥β∥22 log 2p ≥
β2
mink log 2p and k log 2p = ω(k log2 k). The condition of Theorem 51 is met by the result of

Proposition 50. The condition of Proposition 52 is met by running Algorithm 5 (resampling) with
O(k log2 k) samples (see Remark 53).

What remains to show is that n1 ̸= n2, as this is required by Remark 49. Recall n1 =
∑n

i=1 zi
and n2 =

∑n
i=1(1− zi) and zi are independent Bernoulli(ϕ). Without loss of generality assuming

ϕ < 1/2, there exists a δ ∈ (0, 1) such that,

P

[
1

n

n∑
i=1

zi ≥ 1/2

]
≤ P

[
1

n

n∑
i=1

zi ≥ (1 + δ)ϕ

]
≤ e−Θ(n),

after applying a standard Chernoff bound. This high probability statement can be absorbed into the
1 − c1(kp + ke−c2n + k

n + 1
pc2 ) high probability statement provided by CORR , choosing adjusted

constants c1, c2 > 0.
We hence conclude that running CORR followed by Algorithm 3 followed by Algorithm 5 we

obtain ρ(θ(t), θ) = 0 in finite t with probability at least 1− c1(kp + ke−c2n + k
n + 1

pc2 ).

Their initialization algorithm is based on the positive semidefinite matrix:

M :=
1

n

n∑
i=1

y2i xi ⊗ xi

which serves as an unbiased estimator of a matrix whose two largest eigenvectors span the space
spanned by β1,β2.

Remark 49 It is stated in Fan et al. (2018) that, when the mixture frequencies are equal to each
other (n1 = n2), the top two eigenvectors of EM will not be β1,β2. Hence, their algorithms only
work for the case ϕ ̸= 1/2 and σ = 0 (noiseless).

Outside of the case ϕ = 1/2, when the mixture proportions are known, an approximation of
β1,β2 can be computed in closed form through Algorithm 3, where

sign(b) =

{
1, b = 1

−1, b = 2.

In what follows, we state the iterative algorithms proposed in Fan et al. (2018) and their guarantees.

Algorithm 3: Initialization with proportion information
Data: Input: n1, n2, samples {(yi,xi), i = 1, 2, ..., n}
M ← 1

N

∑N
i=1 y

2
i xi ⊗ xi

Compute top 2 eigenvectors and eigenvalues (vb, λb), b = 1, 2 of (M − I)/2
Compute β

(0)
b =

√
1−∆b

2 vb + sign(b)
√

1+∆b
2 v−b, where ∆b =

(λb−λ−b)
2+n2

b−n2
−b

2(λ−b−λb)nb
, b = 1, 2

return β
(0)
1 ,β

(0)
2
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Algorithm 4: AM
Data: Initial β(0)

1 ,β
(0)
2 , # iterations t0, samples {(yi,xi), i = 1, 2, ..., N}

for t = 0, · · · , t0 − 1 do
J1, J2 ← ∅

for i = 1, 2, · · · , N do
if
∣∣∣yi − ⟨xi,β

(t)
1 ⟩
∣∣∣ < ∣∣∣yi − ⟨xi,β

(t)
2 ⟩
∣∣∣ then

J1 ← J1 ∪ {i}
else

J2 ← J2 ∪ {i}
end

end
β
(t+1)
1 ← argminβ∈Rk ∥yJ1 −XJ1β∥2

β
(t+1)
2 ← argminβ∈Rk ∥yJ2 −XJ2β∥2

end
return β

(t0)
1 ,β

(t0)
2

Proposition 50 (Yi et al., 2014) Consider the initialization method in Algorithm 3. Given any con-
stant ĉ < 1/2, with probablity at least 1− 1

p2
, the approach produces an initialization (β

(0)
1 ,β

(0)
2 )

satisfying

ρ(θ(0), θ) ≤ ĉ min{n1/n, n2/n} ∥β1 − β2∥2,

if

n ≥ c1
(
1

δ̃

)2

p log2 p.

Here c1 is a constant that depends on ĉ. And√
δ̃ = ĉ

√
min{n1/n, n2/n}

3
∥β1 − β2∥2(

√
1− κ)κ,

where κ =
√

1− 4(1− ⟨β1,β2⟩2)n1
n

n2
n .

Algorithm 5: AM with resampling
Data: Initial β(0)

1 ,β
(0)
2 , # iterations t0, samples {(yi,xi), i = 1, 2, ..., N}

Partition the samples {(yi,xi)} into t0 disjoint sets: S1, ...,St0
for t = 1, · · · , t0 do

Use St to run Algorithm 4 initialized with (β
(t−1)
1 ,β

(t−1)
2 ) and returning (βt

1,β
t
2)

end
return β

(t0)
1 ,β

(t0)
2

Theorem 51 Yi et al. (2014) Consider one iteration in Algorithm 5. For fixed (β
(t−1)
1 ,β

(t−1)
2 ),

there exist absolute constants c̃, c1, c2 such that if

ρ(θ(t−1), θ) ≤ c̃ min{n1/n, n2/n} ∥β∗
1 − β∗

2∥2,
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and if the number of samples in that iteration satisfies

|St| ≥
(

c1
min{n1/n, n2/n}

)
p,

then with probability greater than 1− exp(−c2p) we have a geometric decrease in the error at the
next stage, i.e.

ρ(θ(t), θ) ≤ 1

2
ρ(θ(t−1), θ)

Proposition 52 (Exact Recovery) Yi et al. (2014) There exist absolute constants c1, c2 such that if

ρ(θ(t−1), θ) ≤ c1
p2
∥β1 − β2∥2

and
1

min{n1/n, n2/n}
p < |St| < c2p,

then with probability greater than 1− 1
p ,

ρ(θ(t), θ) = 0.

Remark 53 It is easy to see, and remarked in Fan et al. (2018) (pp. 11-12, above and below
Proposition 4) that, running Algorithm 5 with guarantees given in Theorem 51, one would require
O(p log2 p) samples to obtain ρ(θ(t−1), θ) ≤ c1

p2
∥β∗

1 − β∗
2∥2 for the constant c1 > 0 suitable for

Proposition 52.

Algorithm for MSLR in the balanced case Consider the case of Mixtures of Linear Regressions
(MLR) as in Chen et al. (2014), where n, k = Θ(p), and σ2 is known. Further, consider the balanced
regime where ϕ = 1/2, but β1,j ̸= −β2,j for any j ∈ S1 ∩ S2 (⟨β⟩2min ̸= 0). We claim that
we can solve the aforementioned MSLR problem in this regime by recovering the joint support of
β1,β2 using CORR , and then running the algorithm in Chen et al. (2014) for general mixed linear
regression. This latter Algorithm 6 is outlined below. As motivated in (Chen et al., 2014), the

Algorithm 6: Estimate β’s (Chen et al., 2014)
Data: (X,y) ∈ Rn×p × Rn

Let (K̂, ĝ) := argminK,g

∑n
i=1

(
−
〈
xix

⊤
i ,K

〉
+ 2yi ⟨xi, g⟩ − y2i + σ2

)2
+ λ ∥K∥∗

Compute the matrix Ĵ = ĝĝ⊤ − K̂, and its first eigenvalue-eigenvector pair λ̂ and v̂

Compute β̂1, β̂2 = ĝ ±
√
λ̂v̂

return (β̂1, β̂2)

algorithm performs a convex penalized least squares optimization to determine matrix and vector
(K̂, ĝ), ĝ being a naive estimate of β1,β2 and the leading eigenvector-eigenvalue of Ĵ a necessary

correction. We define the value α :=
∥β1−β2∥

2
2

∥β1∥
2
2+∥β2∥

2
2

.

Definition 54 (Chen et al., 2014) Let n1 = {i ∈ [n] : zi = 1} denote the number of samples ob-
tained from β1, and n2 the analogous for β2. We define the following regularity conditions, required
for our further proofs:
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1. X is an i.i.d. standard Gaussian matrix,

2. α ≥ c3,

3. min{n1, n2} ≥ c4p,

4. λ = Θ(σ(∥β1∥2 + ∥β2∥2 + σ)
√
np log3 n),

5. n ≥ c3p log8 n,

6. |n1 − n2| = O
(√
n log n

)
,

for some constants 0 < c3 < 2 and c4.

Theorem 55 Chen et al. (2014) Suppose the conditions in Definition 54 hold. There exist constants
c1, c2, c4 > 0 such that with probability at least 1−c1n−c2 , the output θ̂ = (β̂1, β̂2) of Algorithm 3

satisfies

ρ(θ̂, θ) ≤ c4σ
√
p

n
log4 n+ c4min

{
σ2

∥β1∥2 + ∥β2∥2
, σ
( p
n

)1/4}
log4 n.

The result in Theorem 55 implies that, in the high-snr regime ∥β∥22/σ2 = Ω(1), we have that

ρ(θ̂, θ) = Θ(σ
√

p
n). This holds since ∥β1∥2 + ∥β2∥2 = 2

√
k.

Theorem 56 (Success of CORR+ Algorithm 6 on MSLR) Consider the general setting of MSLR
with parameters p, n, k, ϕ = 1/2, (β1,β2) ∼ P∥β∥2(D). Suppose the conditions of Definition
54 hold. There exist constants c1, c2, c4 > 0 such that, provided

n ≥ 32

min{ϕ2β2
min, (1− ϕ)2β2

min, ⟨β⟩2min}
(1 + ϵ)(∥β∥22 + σ2) log 2p

for ϵ ∈ (0, 1) used in CORR , with probability at least 1 − c1(kp + ke−c2n + k
n + 1

pc2 ), the output

θ̂ = (β̂1, β̂2) of CORR+ Algorithm 6 satisfies

ρ(θ̂, θ) ≤ c4σ
√

2k

n
log4 n+ c4min

{
σ2

∥β1∥2 + ∥β2∥2
, σ

(
2k

n

)1/4
}
log4 n.

Proof [Proof of Theorem 56] By Theorem 37, we can recover the joint support set (at most of size
2k) of signals (β1,β2) with probability at least 1− c1(kp + ke−c2n + k

n + 1
pc2 ) by running CORR.

After running CORR and identifying the < 2k joint support set indices, we restrict the regression
problem to these indices by removing all other columns from the design matrix X (as these do not
influence the output y since they do not correspond to support indices of β1 or β2). We are then
tasked with solving a two-component mixtures of regressions problem with n samples and signals
of dimension between k and 2k. We run Algorithm 3 on this simplified regression problem, to
obtain (β̂1, β̂2).

What remains is to show that the assumptions of Theorem 55 hold with p replaced by 2k. Indeed,
condition 1. holds since without loss of generality we can assume β1 ̸= β2, otherwise the problem
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setting would be that of SLR. Condition 3., 4., 5. hold by the definition of the MSLR problem, and by
freedom with respect to λ and c3.

Condition 2. holds with probability at least 1− exp (−Θ(n)), indeed by Hoeffding’s inequality
(Boucheron et al., 2013) we have that

P [n1 < 2c4k] = P

[
n∑

i=1

zi < 2c4k

]

= P

[
n∑

i=1

(zi − ϕ) < 2c4k − ϕn

]

= P

[
n∑

i=1

(−zi + ϕ) ≥ ϕn− 2c4k

]
≤ exp (−Θ(n)) ,

where ϕn−2c4k is positive for some c4 > 0 since by assumption n ≥ 32(1+ϵ)
min{(2ϕ−1)2,ϕ2,(1−ϕ)2}(1+

ϵ)(k + σ2) log p and (k + σ2) log p = ω(k), analogously for n2.
In the case ϕ = 1/2 (so that 2ϕ − 1 = 0), we have that condition 6. holds with probability

exp(−Θ(log n)) by Hoeffding’s inequality,

P

[∣∣∣∣∣
n∑

i=1

zi −
n∑

i=1

(1− zi)

∣∣∣∣∣ ≥ Θ(
√
n log n)

]

≤ P

[
n∑

i=1

(2zi − 1) ≥ Θ(
√
n log n)

]
+ P

[
n∑

i=1

(−2zi + 1) ≥ Θ(
√
n log n)

]

≤ 2 exp

(
−2Θ(n log n)

2n

)
= exp (−Θ(log n)) .

The above events occur with probability at least 1 − exp(−Θ(log n)), and the event that CORR
succeeds occurs with probability 1− c1(kp + ke−c2n + k

n + 1
pc2 ). These two events occur together

with probability at least 1− c1(kp + ke−c2n + k
n + 1

pc2 ) for adjusted constants c1, c2 > 0. Applying
Theorem 55, we obtain the result.

D.4. CORR for signed support recovery in SLR

Proof [Proof of Theorem 11] The proof proceeds similarly as that of Theorem 7. Let CORR(X,y)
denote the output of running CORR on inputs X,y. Consider the test function

g

([
X
y

])
:=

{
p CORR(X,y) ̸= ∅
q CORR(X,y) = ∅

.

Let
[
X
y

]
∼ P(X)⊗ P(y). Recall that CORR outputs the following set
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CORR(X,y) =

{
j ∈ [p] :

∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}
.

As in the proof of Theorem 12, we note that for
[
X
y

]
∼ P(X)⊗ P(y) we have ⟨Xq ,y⟩

∥y∥2
i.i.d.∼

N (0, 1). Applying Lemma 45 to (27) we obtain,

P
[
max
q∈[p]

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
≤ P

[
max
q∈[p]

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2 log 2p+
ϵ

2
√
8

√
log 2p

]
,

(27)

≤ p−
1
16

( ϵ
2
)2 = o(1),

and hence we have that, under P(X)⊗ P(y), g
([

X
y

])
= q with probability 1− o(1).

Conversely, let
[
X
y

]
∼ P(X,y). We then apply Theorem 12 to deduce that CORR(X,y) =

supp(β) ̸= ∅ with probability at least 1−
(
k
p + 2ke−c2n + 1

pc2

)
for some constant c2 > 0. Hence,

under P(X,y), g
([

X
y

])
= p with probability 1− o(1).

In what follows, we consider the modified CORR algorithm in (3) for estimating the signed
support of β.
Proof [Proof of Theorem 12] Let S denote the support set of β. Define the error event

E = ∪j∈S
{∣∣∣∣⟨Xj ,y⟩
∥y∥2

∣∣∣∣ <√2(1 + ϵ/2) log 2p

}
∪
{
max
q∈S∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

}
.

The theorem claim follows by demonstrating that P [E ] = o(1). With this in mind, we perform
a union bound

P [E ] ≤ kP
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ <√2(1 + ϵ/2) log 2p

]
+ P

[
max
q∈S∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
:= kν1 + ν2

where j∗ ∈ S. We first focus on ν2, where we notice ⟨Xq ,y⟩
∥y∥2

i.i.d.∼ N (0, 1) for q ∈ S∁. Applying
Lemma 45, we deduce that

ν2 = P
[
max
q∈S∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2(1 + ϵ/2) log 2p

]
≤ P

[
max
q∈S∁

∣∣∣∣⟨Xq,y⟩
∥y∥2

∣∣∣∣ ≥√2 log 2p+
ϵ

2
√
8

√
log 2p

]
≤ (2p)−

1
16(

ϵ
2)

2

,
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since
√
2(1 + ϵ/2) ≥

√
2 + ϵ

2
√
8
. Setting n ≥ 8(1+ϵ)

β2
min

(∥β∥22 + σ2) log 2p for some ϵ ∈ (0, 1), the
bound for ν1 follows from applying Lemma 57 below:

ν1 ≤
1

2p
+ 2e−

δ2n
8 .

Putting it all together, we obtain that P [E ] ≤ k
2p + 2ke−c2n + 1

pc2 , for some constant c2 > 0.

Lemma 57 (Concentration bound for SLR) Consider the setting of SLR for j∗ ∈ S. Then for
n ≥ 8(1+ϵ)

β2
min

(∥β∥22 + σ2) log 2p we have

P
[∣∣∣∣⟨Xj∗ ,y⟩
∥y∥2

∣∣∣∣ ≤√2(1 + ϵ/2) log 2p

]
≤ 1

p
+ 2e−

δ2n
8

Proof Let ν := P
[∣∣∣ ⟨Xj∗ ,y⟩

∥y∥2

∣∣∣ ≤√2(1 + ϵ/2) log 2p
]

and δ > 0 to be chosen later. We begin by
conditioning on the event Ω1 := Ω1(δ) from Lemma 45, and apply Lemma 41 (for the case zi = 1)

denoting gi
i.i.d.∼ N (0, 1) for i ∈ [n] as independent (also from y, z) unit normal Gaussians, obtaining

ν =

∫
P

[∣∣∣∣∣XT
j∗ξ

∥ξ∥2

∣∣∣∣∣ <√2(1 + ϵ/2) log 2p

∣∣∣∣∣ y
]
dP [y]

=

∫
P

∣∣∣∣∣∣
n∑

i=1

gi
yi
∥y∥2

√
1−

β2
j∗

∥β∥22 + σ2
+

βj∗ · y2i /∥y∥2
∥β∥22 + σ2

∣∣∣∣∣∣ <√2(1 + ϵ/2) log 2p

∣∣∣∣∣∣ y
 dP [y]

=

∫
P

∣∣∣∣∣∣g1
√

1−
β2
j∗

∥β∥22 + σ2
+

βj∗ · ∥y∥2
∥β∥22 + σ2

∣∣∣∣∣∣ <√2(1 + ϵ/2) log 2p

∣∣∣∣∣∣ y
 dP [y]

≤ P

∣∣∣∣∣∣g1
√

1−
β2
j∗

∥β∥22 + σ2
+

βj∗ · ∥y∥2
∥β∥22 + σ2

∣∣∣∣∣∣ <√2(1 + ϵ/2) log 2p

∣∣∣∣∣∣ Ω1

+ P
[
Ω∁
1

]

= P

g1
√

1−
β2
j∗

∥β∥22 + σ2
+

βj∗ · ∥y∥2
∥β∥22 + σ2

<
√
2(1 + ϵ/2) log 2p


∩

−√2(1 + ϵ/2) log 2p ≤ g1

√
1−

β2
j∗

∥β∥22 + σ2
+

βj∗ · ∥y∥2
∥β∥22 + σ2


∣∣∣∣∣∣ Ω1

+ P
[
Ω∁
1

]

≤ P

g1
√

1−
β2
j∗

∥β∥22 + σ2
<
√

2(1 + ϵ/2) log 2p−
∣∣∣∣βj∗ · ∥y∥2
∥β∥22 + σ2

∣∣∣∣
∣∣∣∣∣∣ Ω1

+ P
[
Ω∁
1

]

≤ P

g1
√

1−
β2
j∗

∥β∥22 + σ2
<
√

2(1 + ϵ/2) log 2p−

∣∣∣∣∣βj∗ ·
√
n(∥β∥22 + σ2)(1− δ)
∥β∥22 + σ2

∣∣∣∣∣
∣∣∣∣∣∣ Ω1

+ P
[
Ω∁
1

]

= P

g1
√

1−
β2
j∗

∥β∥22 + σ2
<
√

2(1 + ϵ/2) log 2p−

∣∣∣∣∣βj∗

√
n(1− δ)
∥β∥22 + σ2

∣∣∣∣∣
∣∣∣∣∣∣ Ω1

+ P
[
Ω∁
1

]
.
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Now setting n ≥ 8(1+ϵ)
β2
min

(∥β∥22 + σ2) log 2p and applying standard sub-Gaussian bounds (see
Wainwright (2019)) we obtain

ν ≤ P

g
√

1−
β2
j∗

∥β∥22 + σ2
< (
√

2(1 + ϵ/2)−
√
8(1 + ϵ)(1− δ))

√
log 2p

+ P
[
Ω∁
1

]

≤ exp

−(
√
2(1 + ϵ/2)−

√
8(1 + ϵ)(1− δ))2 log 2p

2

(
1−

β2
j∗

∥β∥22+σ2

)
+ 2e−

δ2n
8 ,

where √
2(1 + ϵ/2)−

√
8(1 + ϵ)(1− δ) < −

√
2 (28)

for δ > 0 small enough. Hence, choosing δ to satisfy (28) above, we obtain that for k large enough,

ν ≤ exp

− 2 log 2p

2

(
1−

β2
j∗

∥β∥22+σ2

)
+ 2e−

δ2n
8

≤ exp

(
−2 log 2p

2

)
+ 2e−

δ2n
8

≤ 1

2p
+ 2e−

δ2n
8 .
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