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Abstract
Online prediction from experts is a fundamental problem in machine learning and several works
have studied this problem under privacy constraints. We propose and analyze new algorithms
for this problem that improve over the regret bounds of the best existing algorithms for non-
adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds
of 𝑂 (

√︁
𝑇 log 𝑑 + log 𝑑/𝜀) for the stochastic setting and 𝑂 (

√︁
𝑇 log 𝑑 + 𝑇1/3 log 𝑑/𝜀) for oblivious

adversaries (where 𝑑 is the number of experts). For pure DP, our algorithms are the first to obtain sub-
linear regret for oblivious adversaries in the high-dimensional regime 𝑑 ≥ 𝑇 . Moreover, we prove
new lower bounds for adaptive adversaries. Our results imply that unlike the non-private setting,
there is a strong separation between the optimal regret for adaptive and non-adaptive adversaries for
this problem. Our lower bounds also show a separation between pure and approximate differential
privacy for adaptive adversaries where the latter is necessary to achieve the non-private 𝑂 (

√
𝑇)

regret.

1. Introduction

We study the problem of differentially private online prediction from experts (DP-OPE), where the
algorithm interacts with an adversary for 𝑇 rounds. In each round, the algorithm picks an expert
𝑥𝑡 ∈ [𝑑] and the adversary chooses a loss function ℓ𝑡 : [𝑑] → [0, 1]. The algorithm incurs loss
ℓ𝑡 (𝑥𝑡 ) at round 𝑡, and the goal is to design algorithms that minimize the regret, that is, the cumulative
loss compared to the best fixed expert in hindsight, defined as

𝑅𝑒𝑔𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥★∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥★).

Online prediction from experts is an important problem in machine learning with numerous
applications (Arora et al., 2012). Without any privacy restrictions, the power of the adversary
(oblivious adversary that picks the losses in advance versus adaptive adversary that picks the losses
online in response to the algorithm) does not change the optimal rates for this problem (Cesa-
Bianchi and Lugosi, 2006). This has perhaps led prior work in private online experts to focus on
the strongest notion of adaptive adversaries (Jain et al., 2012; Smith and Thakurta, 2013; Jain and
Thakurta, 2014; Agarwal and Singh, 2017). In this work, we study the problem of DP-OPE against
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oblivious adversaries as well and show that, somewhat surprisingly, the power of the adversary can
significantly affect the optimal rates for this problem.

We consider three types of adversaries: the strongest, adaptive adversary, can choose the loss
sequence (ℓ𝑡 )𝑇𝑡=1 adversarially in an online manner, where the loss ℓ𝑡 may depend arbitrarily on
the choices made by the algorithm in previous time steps (𝑥ℓ)𝑡−1

ℓ=1 . A slightly weaker notion is that
of an oblivious adversary, which chooses a sequence of loss functions in advance. The weakest
adversary is the stochastic adversary which chooses a distribution over loss functions and at each
round samples a loss function i.i.d. from this distribution.

In the classical non-private setting, all of these adversarial models are equivalent, in the sense
that they all induce an optimal rate of order

√︁
𝑇 log 𝑑 (Cesa-Bianchi and Lugosi, 2006). We study

algorithms that are required to be differentially private, where we view the sequence of loss functions
as the dataset and adjacent datasets differ in a single loss function. We note that all our algorithms
are private with respect to adaptive adversaries (see Section 2 for precise definitions) and only the
utility bounds assume a weaker adversary.

Under the constraint of (𝜀, 𝛿)-differential privacy, the best existing results obtain regret of order√︁
𝑇 log 𝑑 + min

(
1
𝜀

√︁
𝑇 log(1/𝛿) log 𝑑,

1
𝜀

√︁
𝑑 log(1/𝛿) log 𝑑 log2 𝑇

)
for adaptive adversaries (Jain and Thakurta, 2014; Agarwal and Singh, 2017). For pure 𝜀-differential
privacy, the best existing regret (Jain and Thakurta, 2014) is of order√︁

𝑇 log 𝑑 + 𝑑 log 𝑑 log2 𝑇

𝜀
.

However, none of existing results prove any lower bounds (besides the trivial non-private lower
bound

√︁
𝑇 log 𝑑) to certify the optimality of these rates; thus, it is currently unclear whether these

rates are optimal for adaptive adversaries, let alone for oblivious and stochastic adversaries.

1.1. Our contributions

We study DP-OPE for different types of adversaries and develop new algorithms and lower bounds.
More precisely, we obtain the following results.

Faster rates for oblivious adversaries (Section 3.1): We develop new algorithms for DP-OPE
with oblivious adversaries based on a lazy version of the multiplicative weights algorithm. For pure
𝜀-DP, our algorithms obtain regret √

𝑇 log 𝑑
𝜀

.

This is the first algorithm to achieve sub-linear regret for pure DP in the high-dimensional regime
𝑑 ≥ 𝑇 . For approximate (𝜀, 𝛿)-DP, our algorithm achieves regret√︁

𝑇 log 𝑑 + 𝑇
1/3 log1/3(1/𝛿) log 𝑑

𝜀
.

This essentially demonstrates that the privacy cost for DP-OPE is negligible as long as 𝜀 ≫ 𝑇−1/6.
In contrast, previous work has established privacy cost 𝜀−1

√︁
𝑇 log 𝑑 log(1/𝛿) which is larger than

the non-private cost even when 𝜀 is constant and 𝛿 = 1/𝑇 . See Tables 1a and 1b for more details.
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Separation between adaptive and oblivious adversaries (Section 4): We prove the first lower
bounds for DP-OPE with adaptive adversaries that are stronger than the non-private lower bounds.
These bounds show that any private algorithm must suffer linear regret if 𝜀 ≤ 1/

√
𝑇 for approximate

DP and 𝜀 ≤ 1/10 for pure DP. As our algorithms for oblivious adversaries obtain sub-linear regret in
this regime of privacy parameters, this demonstrates that the oblivious model is significantly weaker
than the adaptive model in the private setting (see Fig. 1). Moreover, these lower bounds show a
separation between pure and approximate DP for DP-OPE with adaptive adversaries as the latter is
necessary to obtain sub-linear regret.

Near-optimal rates for stochastic adversaries (Section 3.2): We design a general reduction that
transforms any algorithm for private stochastic optimization in the offline setting into an algorithm
for private online optimization with nearly the same rates (up to logarithmic factors). By building on
algorithms for the offline setting (Asi et al., 2021b), we obtain regret 𝑂 (

√︁
𝑇 log 𝑑 + 𝜀−1 log 𝑑 log𝑇)

for DP-OPE with stochastic adversaries. Moreover, using this reduction with general algorithms for
differentially private stochastic convex optimization (DP-SCO) (Feldman et al., 2020), we obtain
near-optimal regret𝑂 (

√
𝑇 + 𝜀−1√𝑑 log𝑇) for the problem of DP-OCO (online convex optimization)

with stochastic adversaries, improving over the best existing result
√
𝑇𝑑1/4/𝜀 (Kairouz et al., 2021).

Improved rates for DP-OCO (Section 5): Building on our improvements for DP-OPE, we improve
the existing rates for DP-OCO where the algorithms picks 𝑥𝑡 ∈ X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 1} and the
adversary picks ℓ𝑡 : X → ℝ. Our rates improve over the rates of Kairouz et al. (2021) in certain
regimes.
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Figure 1: Regret bounds for private prediction from experts against oblivious adversaries for the
high-dimensional regime 𝑑 ≥ 𝑇 . We denote the privacy parameter 𝜀 = 𝑇−𝛼 and regret 𝑇𝛽 , and plot
𝛽 as a function of 𝛼 (ignoring logarithmic factors).

1.2. Related work

Dwork et al. (2010) were the first to study differentially private learning in the online setting and
introduced the binary tree mechanism which is an important building block of many private algo-
rithms in the online setting. In our context of online prediction from experts, there has been several
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Prior work This work

Stochastic √︁
𝑇 log 𝑑 + min

(√
𝑇 log 𝑑

𝜀
,

√
𝑑 log 𝑑

𝜀

) √︁
𝑇 log 𝑑 + log 𝑑

𝜀

Oblivious
√︁
𝑇 log 𝑑 + 𝑇1/3 log 𝑑

𝜀

Adaptive None

(a) Approximate (𝜀, 𝛿)-DP.

Prior work This work

Stochastic √︁
𝑇 log 𝑑 + 𝑑 log 𝑑

𝜀

√︁
𝑇 log 𝑑 + log 𝑑

𝜀

Oblivious
√
𝑇 log 𝑑

𝜀

Adaptive None

(b) Pure 𝜀-DP.

Table 1: Upper bounds for DP-OPE with different types of adversaries. For readability, we omit
logarithmic factors that depend on 𝑇 and 1/𝛿.

works that study this problem under the constraint of differential privacy (Jain et al., 2012; Smith and
Thakurta, 2013; Jain and Thakurta, 2014; Agarwal and Singh, 2017). The best existing algorithms
depend on the dimensionality regime: in the high-dimensional setting, Jain and Thakurta (2014)
developed an algorithm based on follow-the-regularized-leader (FTRL) with entropy regularization
that achieves regret 𝑂 (𝜀−1

√︁
𝑇 log 𝑑 log(1/𝛿)) for (𝜀, 𝛿)-DP. For low dimensional problems, Agar-

wal and Singh (2017) developed an improved algorithm that uses the binary tree mechanism to
estimate the running sum of the gradients in the FTRL framework. Their algorithm achieves regret
𝑂 (

√︁
𝑇 log 𝑑 + 𝜀−1𝑑 log 𝑑 log2 𝑇) for 𝜀-DP. Moreover, extending their algorithm to (𝜀, 𝛿)-DP results

in regret 𝑂 (
√︁
𝑇 log 𝑑 + 𝜀−1

√︁
𝑑 log(1/𝛿) log 𝑑 log2 𝑇). More recently, Asi et al. (2023) considered

DP-OPE in the realizable regime where there is a zero-loss expert, and propose new algorithms that
obtain near-optimal regret (𝑝𝑜𝑙𝑦) (log 𝑑)/𝜀 up to logarithmic factors.

A slightly related and somewhat easier problem is that of differentially private stochastic convex
optimization (DP-SCO) which has been extensively investigated recently (Bassily et al., 2014, 2019;
Feldman et al., 2020; Asi et al., 2021b,a). In DP-SCO, we are given 𝑛 samples from some distribution
and we wish to minimize the excess population loss. In contrast to the online setting, here all 𝑛
samples are given to the algorithm and it is required to produce only one model; this makes the
online version harder as the algorithm has to output a model at each time-step. However, we note that
our reduction in Section 3.2 shows that DP-SCO is essentially as hard as DP-OCO with stochastic
adversaries (up to logarithmic factors). For oblivious and adaptive adversaries, the online setting may
be harder as it allows general loss functions that are not necessarily generated from a distribution.
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Perhaps most closely related to our problem in the non-private setting is online learning with
limited switching (Kalai and Vempala, 2005; Geulen et al., 2010; Altschuler and Talwar, 2018; Chen
et al., 2020; Sherman and Koren, 2021). In this setting, the algorithm aims to minimize the regret
when having a budget of at most 𝑆 switches, that is, it can update its decision at most 𝑆 times. This
constraint is (informally) somewhat related to privacy as the less you update the model, the less
information is leaked about the data. The ideas developed in this literature turn out to be useful for
our DP-OPE setting. Indeed, our algorithms in Section 3.1 build on ideas from Geulen et al. (2010)
which developed a lazy version of multiplicative weights to limit the number of switches. Moreover,
similarly to our results, the hardness of online learning problems with limited switching can depend
on the power of the adversary. For example, for OCO with limited switching, the optimal rate is√
𝑇 + 𝑇/𝑆 for oblivious adversaries and

√
𝑇 + 𝑇/

√
𝑆 for adaptive adversaries (Chen et al., 2020;

Sherman and Koren, 2021). Despite of these similarities, our results do not establish a fundamental
connection between privacy and switching constraints and we leave this as an open question for
future research.

2. Problem setting and preliminaries

Online prediction from experts (OPE) is an interactive 𝑇-round game between an online algorithm
A and adversary Adv. At round 𝑡, the algorithm A chooses an expert 𝑥𝑡 ∈ [𝑑] and the adversary Adv
picks a loss function ℓ𝑡 ∈ L = {ℓ | ℓ : [𝑑] → [0, 1]} simultaneously. We let A𝑡 (ℓ1, . . . , ℓ𝑡−1) = 𝑥𝑡
denote the mapping of algorithm A at round 𝑡. Similarly, we define Adv𝑡 to be the mapping of the
adversary at round 𝑡 (we provide more details on the input of Adv𝑡 below depending on the type of
the adversary). The algorithm observes ℓ𝑡 (after choosing 𝑥𝑡 ) and incurs loss ℓ𝑡 (𝑥𝑡 ). For a predefined
number of rounds 𝑇 , the regret of the algorithm A is defined as

𝑅𝑒𝑔𝑇 (A) =
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥★∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥★).

We consider three types of adversary Adv for choosing the sequence of loss functions {ℓ𝑡 }𝑇𝑡=1. To
help define privacy, we will diverge from the traditional presentation of these models in online
learning literature. The adversary will consist of a sequence of 𝑇 data points 𝑧1, . . . , 𝑧𝑇 ∈ Z, and
an algorithm ℓ that generates the sequence of losses.

For both stochastic and oblivious adversaries the loss function at step 𝑡 is generated based on
data point 𝑧𝑡 alone; i.e. ℓ𝑡 (·) = ℓ(·; 𝑧𝑡 ), where for all 𝑧 ∈ Z, ℓ(·; 𝑧) is an admissible loss function for
the relevant setup. The two models differ in the choice of the sequence 𝑧1, . . . , 𝑧𝑇 : for a stochastic
adversary, the sequence of 𝑧𝑖’s is chosen i.i.d. from some distribution 𝑃 (chosen by the adversary).
For an oblivious adversary, this sequence itself is adversarially chosen. In other words:

𝑅𝑒𝑔
(stochastic)
𝑇

(A) = sup
ℓ,𝑃

𝔼𝑧1,...,𝑧𝑇∼𝑃𝑇 [𝑅𝑒𝑔𝑇 (A)|ℓ𝑡 (·) = ℓ(·; 𝑧𝑡 )],

𝑅𝑒𝑔
(oblivious)
𝑇

(A) = sup
ℓ

sup
𝑧1,...,𝑧𝑇 ∈Z𝑇

[𝑅𝑒𝑔𝑇 (A)|ℓ𝑡 (·) = ℓ(·; 𝑧𝑡 )] .

In the case of an adaptive adversary, the loss at step 𝑡 can depend on the algorithm’s choices in
previous steps. Thus ℓ𝑡 (·) = ℓ(·; 𝑧𝑡 , 𝑥1:𝑡−1), where as before this loss function is constrained to be
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an admissible loss function for all possible values of inputs 𝑧𝑡 , 𝑥1:𝑡−1. The adaptive regret is then the
worst case regret over 𝑧1, . . . , 𝑍𝑇 and the mapping ℓ:

𝑅𝑒𝑔
(adaptive)
𝑇

(A) = sup
ℓ

sup
𝑧1,...,𝑧𝑇 ∈Z𝑇

[𝑅𝑒𝑔𝑇 (A)|ℓ𝑡 (·) = ℓ(·; 𝑧𝑡 , 𝑥1:𝑡−1)] .

Given data 𝑧1:𝑇 = (𝑧1, . . . , 𝑧𝑇 ) ∈ Z𝑇 , we let A ◦ Adv(𝑧1:𝑇 ) = 𝑥1:𝑇 denote the output of the
interaction between the algorithm A and adversary Adv given inputs 𝑧1:𝑇 .

Under this setting, the goal is to design private algorithms that minimize the appropriate notion
of regret. To this end, we extend the standard definition of (𝜀, 𝛿)-differential privacy (Dwork et al.,
2006b,a) to the online setting. Like most previous works, we study a stronger notion of privacy that
holds even against adaptive adversaries.1

Definition 1 (Adaptive DP). A randomized algorithm A is (𝜀, 𝛿)-differentially private against
adaptive adversaries ((𝜀, 𝛿)-DP) if, for all sequencesS = (𝑧1, . . . , 𝑧𝑇 ) ∈ Z𝑇 andS′ = (𝑧′1, . . . , 𝑧

′
𝑇
) ∈

Z𝑇 that differ in a single element, for any ℓ defining an adaptive adversary Adv, and for all events
O in the output space of A ◦ Adv, we have

Pr[A ◦ Adv(S) ∈ O] ≤ 𝑒𝜀 Pr[A ◦ Adv(S′) ∈ O] + 𝛿.

As remarked earlier, all our algorithms will be differentially private against adaptive adversaries,
and the other adversary models are considered only from the the point of view of utility. This is
consistent with a long line of work on private learning algorithms, where privacy is proven for
worst-case inputs while utility bounds often make distributional or other assumptions on the data.

3. Private algorithms for prediction from experts

We begin our algorithmic contribution by developing new algorithms for oblivious (Section 3.1)
and stochastic adversaries (Section 3.2). The main idea is to save the privacy budget by limiting
the number of model updates. Though, the way in which this is done varies significantly depending
on the adversary: for stochastic adversaries, we allow for log(𝑇) updates at fixed time-steps 𝑡 = 2𝑖 ,
while for oblivious adversaries we employ a more adaptive time-step strategy for updates based on
the underlying data.

3.1. Oblivious adversaries using shrinking dartboard

In this section, we present our main algorithms for DP-OPE with oblivious adversaries. We build on
the shrinking dartboard algorithm (Geulen et al., 2010) to develop a private algorithm that improves
over the best existing results for both pure and approximate DP. For 𝜀-DP, our algorithm obtains regret
𝜀−1√𝑇 log 𝑑 which nearly matches the non-private regret for constant 𝜀; this is the first algorithm for
pure DP that achieves sub-linear regret for oblivious adversaries. For approximate DP, our algorithm
obtains regret

√︁
𝑇 log 𝑑 + 𝜀−1(𝑇 log(1/𝛿))1/3 log 𝑑: our algorithm achieves negligible privacy cost

compared to the non-private regret in the high-dimensional regime. Previous algorithms obtain
regret roughly 𝜀−1

√︁
𝑇 log 𝑑 log(1/𝛿) for 𝑑 ≥ 𝑇 which is 𝜀−1

√︁
log(1/𝛿) larger than the non-private

regret.

1. Jain et al. (2021) recently formalized DP against adaptive adversaries for a different online learning problem. Their
notion is equivalent to ours, but our presentation may be easier to work with.
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Key to our improvements in this section (similarly to limited switching OPE; Geulen et al., 2010)
is the observation that the distribution of the multiplicative weights (MW) algorithm does not change
significantly between consecutive time-steps. Thus, by using a correlated sampling procedure, we
can preserve the same marginal distribution as MW while updating the model with small probability.
As this limits the number of model updates, this will allow us to assign higher privacy budget for
each model update, hence improving its utility.

Another obstacle that arises from this approach is that the switching probability (to preserve the
same marginal distribution) depends on the underlying data 𝑝switch = 1 − (1 − 𝜂)ℓ𝑡−1 (𝑥𝑡−1 ) . This is
clearly not private as the probability of switching is zero whenever ℓ𝑡−1(𝑥𝑡−1) = 0. To tackle this
issue, we guarantee privacy by adding another switching step that forces the algorithm to switch
with probability 𝑝 regardless of the underlying data.

Algorithm 1 Private Shrinking Dartboard
Require: Step size 𝜂 > 0, switching probability 𝑝 ∈ [0, 1], switching budget 𝐾

1: Set 𝑤1
𝑖
= 1, 𝑝1

𝑖
= 1

𝑑
for all 𝑖 ∈ [𝑑]

2: Choose expert 𝑥1 from the distribution 𝑃1 = (𝑝1
1, . . . , 𝑝

1
𝑑
)

3: Set 𝑘 = 1
4: for 𝑡 = 2 to 𝑇 do
5: Set 𝑤𝑡

𝑖
= 𝑤𝑡−1

𝑖
(1 − 𝜂)ℓ𝑡−1 (𝑖) for all 𝑖 ∈ [𝑑]

6: Set 𝑝𝑡
𝑖
=

𝑤𝑡
𝑖∑𝑑

𝑖′=1 𝑤
𝑡
𝑖′

for all 𝑖 ∈ [𝑑]
7: Sample 𝑧𝑡 ∼ Ber(1 − 𝑝)
8: if 𝑧𝑡 = 1 then
9: Sample 𝑧𝑡 ∼ Ber(𝑤𝑡

𝑥𝑡−1/𝑤
𝑡−1
𝑥𝑡−1)

10: if 𝑧𝑡 = 1 then
11: 𝑥𝑡 = 𝑥𝑡−1
12: else if 𝑘 < 𝐾 then
13: 𝑘 = 𝑘 + 1
14: Sample 𝑥𝑡 from 𝑃𝑡

15: Receive ℓ𝑡 : [𝑑] → [0, 1]
16: Pay cost ℓ𝑡 (𝑥𝑡 )

The following theorem states the privacy guarantees and the upper bounds on the regret of Al-
gorithm 1. We defer the proof to Appendix A.1.

Theorem 2. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an oblivious adversary. Algorithm 1 with 𝑝 < 1/2,
𝜂 < 1/2, and 𝐾 = 4𝑇 𝑝 has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝜂𝑇 + ln 𝑑

𝜂
+ 2𝑇𝑒−𝑇 𝑝/3.

Moreover, Algorithm 1 is (𝜀, 𝛿)-DP where

𝜀 =

{ 5𝜂
𝑝
+ 100𝑇 𝑝𝜂2 + 20𝜂

√︁
𝑇 𝑝 log(1/𝛿) if 𝛿 > 0;

𝜂

𝑝
+ 16𝑇 𝑝𝜂 if 𝛿 = 0.
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Before proving Theorem 2, we illustrate the implication of this result when optimizing the
parameters in the algorithm. We have the following regret for approximate DP (see Appendix A.2
for the proof).

Corollary 3. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an oblivious adversary. Let 𝜀 ≤ 1 and set
𝜀0 = min(𝜀/2, log1/3(1/𝛿)𝑇−1/6√ln 𝑑) and 0 < 𝛿 ≤ 1 such that 𝑇 ≥ Ω(log(1/𝛿)). Setting
𝑝 = 1/(𝑇 log(1/𝛿))1/3 and 𝜂 = 𝑝𝜀0/20, Algorithm 1 is (𝜀, 𝛿)-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝑂

(
√
𝑇 ln 𝑑 + 𝑇

1/3 log1/3(1/𝛿) ln 𝑑
𝜀

)
.

Moreover, we have the following regret for pure DP (proof in Appendix A.3).

Corollary 4. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an oblivious adversary. Let 𝜀 ≤ 1. Setting
𝑝 = 1/

√
𝑇 and 𝜂 = 𝑝𝜀/20, Algorithm 1 is 𝜀-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝑂

(√
𝑇 ln 𝑑
𝜀

)
.

3.1.1. Private batched shrinking dartboard

For smaller values of 𝜀, we present a batch version of Algorithm 1 that groups losses in a batch of
size 𝐵 and applies the same update. For a batch size 𝐵, we define the grouped loss

ℓ̃𝑡 =
1
𝐵

𝐵(𝑡+1)∑︁
𝑖=𝐵𝑡

ℓ𝑖 .

The batch version of Algorithm 1 then runs Algorithm 1 on the grouped loss ℓ̃𝑡 for 𝑇 = ⌈𝑇/𝐵⌉
iterations. The following theorem state the regret of this algorithm. We prove the theorem in Ap-
pendix A.5

Theorem 5. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an oblivious adversary. Algorithm 1 with batch
size 1 ≤ 𝐵 ≤ 𝑇 , 𝑝 < 1/2, 𝜂 < 1/2, and 𝐾 = 4𝑇 𝑝/𝐵 has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝜂𝑇 + 𝐵 ln 𝑑

𝜂
+ 2𝑇𝑒−𝑇 𝑝/3𝐵.

Moreover, for 𝛿 > 0, Algorithm 1 is (𝜀, 𝛿)-DP where

𝜀 =
5𝜂
𝐵𝑝

+ 100𝑇 𝑝𝜂2/𝐵3 + 20𝜂
𝐵

√︁
12𝑇 𝑝/𝐵 log(1/𝛿).

Optimizing the batch size 𝐵, we obtain the following regret. Fig. 1 illustrates that this algorithm
offers improvements over the original version (without batches) in the high-privacy regime. We
defer the proof to Appendix A.4.

Corollary 6. Let log2/3 (1/𝛿 ) log(𝑑)
𝑇

≤ 𝜀 ≤ log2/3 (1/𝛿 ) log(𝑑)
𝑇1/3 and 𝛿 ≤ 1. Setting 𝐵 =

log2/5 (1/𝛿 ) log3/5 (𝑑)
𝑇1/5𝜀3/5 ,

𝑝 = ( 𝐵
𝑇 log(1/𝛿 ) )

1/3 and 𝜂 = 𝐵𝑝𝜀/40, Algorithm 1 is (𝜀, 𝛿)-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝑂

(
𝑇2/5 log1/5(1/𝛿) log4/5(𝑑))

𝜀4/5 + 2𝑇𝑒−𝑇 𝑝/3𝐵

)
.
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3.2. Stochastic adversaries

In this section, we consider stochastic adversaries and present a reduction from private online learn-
ing problems—including OPE and online convex optimization (OCO) in general—to the (offline)
differentially private stochastic convex optimization (DP-SCO) (Bassily et al., 2019). This reduc-
tion demonstrates that the (offline) DP-OCO problem is not harder than private online learning for
stochastic adversaries: any algorithm for DP-SCO can be transformed into an online algorithm with
stochastic adversaries with nearly the same rate (up to logarithmic factors). Using existing algo-
rithms for DP-SCO (Asi et al., 2021b), this reduction then results in regret

√︁
𝑇 log 𝑑 +𝜀−1 log 𝑑 log𝑇

for private prediction from experts (Corollary 8) and regret
√
𝑇 + 𝜀−1√𝑑 log𝑇 for general DP online

convex optimization in ℓ2-geometry (Corollary 13).
Our reduction builds on algorithms for DP-SCO. In this problem, the loss functions are sampled

i.i.d. from some distribution ℓ𝑖
iid∼𝑃 where ℓ𝑖 : X → ℝ and the goal is to minimize the population loss

𝐿 (𝑥) = 𝔼ℓ∼𝑃 [ℓ(𝑥)] given 𝑛 samples ℓ1, . . . , ℓ𝑛
iid∼𝑃. The performance of an algorithm A given 𝑛 sam-

ples is measured by its excess population loss, that is, Δ𝑛 (A) = 𝔼[𝐿 (A(ℓ1, . . . , ℓ𝑛)) − inf𝑥∈X 𝐿 (𝑥)].
Given an algorithm A for DP-SCO, we design an online algorithm that updates the model only

a logarithmic number of times—during the time-steps 𝑡 = 1, 2, 4, 8, . . . , 𝑇 . For each such time-step
𝑡, we run A on the past 𝑡/2 samples to release the next model. As the loss functions are from the
same distribution, the previous model generated by A should perform well for future loss functions.
We present the full details in Algorithm 2.

Algorithm 2 Limited Updates for Online Optimization with Stochastic Adversaries
Require: Parameter space X, DP-SCO algorithm A

1: Set 𝑥0 ∈ X
2: for 𝑡 = 1 to 𝑇 do
3: if 𝑡 = 2ℓ for some integer ℓ ≥ 1 then
4: Run an optimal (𝜀, 𝛿)-DP-SCO algorithm A over X with samples ℓ𝑡/2, . . . , ℓ𝑡−1.
5: Let 𝑥𝑡 denote the output of the private algorithm
6: else
7: Let 𝑥𝑡 = 𝑥𝑡−1
8: Receive ℓ𝑡 : X → ℝ.
9: Pay cost ℓ𝑡 (𝑥𝑡 )

We have the following regret for Algorithm 2. We defer the proof to Appendix B.1.

Theorem 7. Let ℓ1, . . . , ℓ𝑇 : X → ℝ be convex functions chosen by a stochastic adversary, ℓ𝑖
iid∼𝑃.

Let A be a (𝜀, 𝛿)-DP algorithm for DP-SCO. Then Algorithm 2 is (𝜀, 𝛿)-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤

log𝑇∑︁
𝑖=1

2𝑖Δ2𝑖 (A).

Now we present the implications of this reduction for DP-OPE with stochastic adversaries. We
use the algorithm for DP-SCO in ℓ1-geometry from Asi et al. (2021b). This algorithm, denoted Aℓ1 ,
has excess population loss Δ𝑛 (Aℓ1) = 𝑂 (

√︁
log(𝑑)/𝑛 + log(𝑑)/𝑛𝜀). We have the following result

which we prove in Appendix B.2.
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Corollary 8. Let ℓ1, . . . , ℓ𝑇 : [𝑑] → [0, 1] be chosen by a stochastic adversary, ℓ𝑖
iid∼𝑃. Then

Algorithm 2 using Aℓ1 is 𝜀-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝑂

(√︁
𝑇 log 𝑑 + log 𝑑 log𝑇

𝜀

)
.

4. Lower bounds

In this section, we prove new lower bounds for adaptive adversaries which show a separation from
the non-adaptive case. In particular, we show that for 𝜀 = 1/

√
𝑇 , an adaptive adversary can force

any (𝜀, 𝛿)-DP algorithm to incur a linear regret Ω(𝑇). Similarly, any 𝜀-DP algorithm with 𝜀 ≤ 1/10
must incur linear regret against adaptive adversaries. On the other hand, the results of Section 3
show that a sub-linear regret is possible for both privacy regimes with oblivious adversaries.

Our lower bound is based on finger-printing lower bound constructions (Bun et al., 2018) which
are the basic technique for proving lower bounds in the offline setting. The idea is to design a
reduction that uses a DP-OPE algorithm for estimating the signs of the mean of high-dimensional
inputs; a problem which is known to be hard under differential privacy. The following theorem
summarizes our main lower bound for (𝜀, 𝛿)-DP. We defer the proof to Appendix C.1.

Theorem 9. Let 𝑇 be sufficiently large and 𝑑 ≥ 2𝑇 . Let 𝜀 ≤ 1 and 𝛿 ≤ 1/𝑇3. If A is (𝜀, 𝛿)-DP then
there is an adaptive adversary such that

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≥ Ω

(
min

(
𝑇,

1
(𝜀 log𝑇)2

))
.

Proof. (sketch) We illustrate the main ideas of the lower bound for 𝜀 ≤ 1/(
√
𝑇 log𝑇), where we

have to prove that the regret has to be linear in this case. We will reduce the problem of private
sign estimation to DP-OPE with adaptive adversaries and use existing lower bounds for private sign
estimation (see Theorem 15). In this problem, we are given an input matrix 𝑋 ∈ {−1, +1}𝑛×𝑝 (each
row 𝑋𝑖 is a user) and the goal is to estimate the sign of the columns for each consensus columns (e.g.
constant column).

To this end, given an algorithm A for DP-OPE and an input 𝑋 ∈ {−1, +1}𝑛×𝑝, we have the
following procedure for estimating the signs of the columns of 𝑋 . We design an online experts
problem that has 𝑑 = 2𝑝 experts where column 𝑗 ∈ [𝑝] in 𝑋 will have two corresponding experts
2 𝑗 and 2 𝑗 + 1 (corresponding to the sign of column 𝑗). We design the loss functions in a way that
will allow to estimate the signs of the columns based on the experts chosen by the algorithm. In
particular, at round 𝑡 ∈ [𝑇], we pick a random user 𝑖 ∈ [𝑛] and define a loss function based on
the user 𝑋𝑖 . We will make ℓ𝑡 (2 𝑗 + 1) = 0 and ℓ𝑡 (2 𝑗 + 2) = 1 if the sign of the 𝑗’th column is
𝑋𝑖 𝑗 = −1, and will set ℓ𝑡 (2 𝑗 + 1) = 1 and ℓ𝑡 (2 𝑗 + 2) = 0 if the sign is 𝑋𝑖 𝑗 = +1. This implies that
the algorithm will either estimate the correct sign of some column 𝑗 ∈ [𝑝] or suffer +1 in regret.
However, the algorithm can keep estimating the sign of the same column and still suffer low regret.
In order to prevent this, once the algorithm has estimated the sign of a column 𝑗 , we increase the
loss of all experts corresponding to that column to 1, hence preventing the algorithm from iteratively
estimating the sign of the same column. Overall, this implies that a low-regret algorithm will be able
to estimate the signs of most of the columns, which is a contradiction to lower bounds for private
sign estimation. We formalize these ideas and complete the proof in Appendix C.1.
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■

We also have the following lower bound for pure differential privacy. It shows that pure DP
algorithms cannot learn against adaptive adversaries, that is, they must suffer linear regret for constant
𝜀.

Theorem 10. Let 𝜀 ≤ 1/10 and 𝑑 ≥ 2𝑇 . If A is 𝜀-DP then there is an adaptive adversary such that

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≥ Ω (𝑇) .

We can also extend the previous lower bounds to larger values of 𝜀 (see proof in Appendix C.3).

Theorem 11. Let 1 ≤ 𝑘 ≤ 𝑂 (𝑝1−𝜌) for 0 < 𝜌 < 1, 𝑑 = 2𝑘
(𝑝
𝑘

)
= 2Θ(𝑘 log 𝑝) , 𝑇 = 𝑝/𝑘 , and

𝜀 ≤
√

𝑘/𝑇
200𝜌 log(𝑇 ) where 𝑝 is sufficiently large. If A is (𝜀, 𝛿)-DP with 𝛿 ≤ 1/𝑇3, then there is an

adaptive adversary such that

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≥ Ω

( √︁
𝑇 log 𝑑

𝜀 log3/2 𝑇

)
.

Finally, we note that for stochastic adversaries, existing lower bounds for DP-SCO immediately
imply lower bounds for the online setting using online-to-batch transformations. As there is a lower
bound of log(𝑑)/𝑇𝜀 for private selection (Steinke and Ullman, 2017b), this implies a lower bound
on the (normalized) excess loss for DP-SCO with linear functions in ℓ1-geometry (as one can reduce
private selection to this problem; Asi et al., 2021b). This implies a lower bound of log(𝑑)/𝜀 for
DP-OPE.

5. Implications for DP-OCO in ℓ2-geometry

In this section, we derive several implications of our techniques for differentially private online
convex optimization (DP-OCO) in ℓ2-geometry. In this setting, the algorithm chooses 𝑥𝑡 ∈ X where
X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} and the adversary responds with loss functions ℓ𝑡 : X → ℝ𝑑 that
are convex and 𝐿-Lipschitz. Building on our techniques for DP-OPE, we propose new algorithms
that improve over the best existing regret bounds for DP-OCO (Kairouz et al., 2021) which achieve
𝑑1/4

√︁
𝑇/𝜀 for stochastic and adaptive adversaries. Our algorithms obtain (up to logarithmic factors)

near-optimal regret
√
𝑇+

√
𝑑/𝜀 for stochastic adversaries, and

√
𝑇𝑑+𝑇1/3𝑑/𝜀 for adaptive adversaries.

5.1. Oblivious adversaries

Using our private shrinking dartboard algorithm, in this section we develop algorithms that improve
the regret for oblivious adversaries. Our algorithms construct a covering of the parameter space X
then apply our private shrinking dartboard algorithm where the experts are the elements of the cover.
By optimizing the size of the cover to balance the error from the approximation error and the error
due to the number of experts, we obtain the following regret for DP-OCO in ℓ2-geometry. We defer
the proof to Appendix D.1.
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Theorem 12. Let X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} and ℓ1, . . . , ℓ𝑇 : X → ℝ be convex and 𝐿-Lipschitz
functions chosen by an oblivious adversary. There is an (𝜀, 𝛿)-DP that has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝐿𝐷 · 𝑂

(√︁
𝑇𝑑 log𝑇 + 𝑇

1/3𝑑 log1/3(1/𝛿) log𝑇
𝜀

)
.

In the high-privacy regime, this result can improve over the previous work (Kairouz et al., 2021)
which has regret

√
𝑇𝑑1/4/

√
𝜀. For example, if 𝑑 = 1 and 𝜀 = 𝑇−1/4, then our regret is roughly 𝑇7/12

while their regret is 𝑇5/8.

5.2. Stochastic adversaries

For stochastic adversaries, we use the reduction in Section 3.2 (Algorithm 2) with optimal algorithms
for DP-SCO in ℓ2-geometry to obtain optimal regret bounds. More precisely, we use an optimal
(𝜀, 𝛿)-DP-SCO algorithm from Feldman et al. (2020), which we call Aℓ2 . As this algorithm has
excess loss Δ𝑛 = 𝐿𝐷 ·𝑂 (1/

√
𝑛+

√
𝑑/𝑛𝜀), the following result follows immediately from Theorem 7.

We defer the proof to Appendix D.2. We also note that we can also obtain regret bounds for pure
𝜀-DP using existing (pure) DP algorithms for DP-SCO (Asi et al., 2021c) with our reduction.

Corollary 13 (DP-OCO in ℓ2-geometry). Let X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} and ℓ1, . . . , ℓ𝑇 : X → ℝ

be convex and 𝐿-Lipschitz functions chosen by a stochastic adversary, ℓ𝑖
iid∼𝑃. Then Algorithm 2

using Aℓ2 is (𝜀, 𝛿)-DP and has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝐿𝐷 · 𝑂

(
√
𝑇 +

√
𝑑 log𝑇
𝜀

)
This regret is near-optimal up to logarithmic factors since we have the lower bound

√
𝑇 +

√
𝑑/𝜀

for the offline version of this problem (DP-SCO in ℓ2-geometry) where all of the samples are given
in advance (Bassily et al., 2014, 2019).
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Appendix A. Proofs for Section 3.1

A.1. Proof of Theorem 2

We build on the following lemma.

Lemma 14. Let 𝑃̂𝑡 be the marginal distribution of 𝑥𝑡 of Algorithm 1. Then

𝑃̂𝑡 − 𝑃𝑡



𝑇𝑉

≤ 𝑒−𝑇 𝑝/3.

Proof. Let 𝑘𝑡 be the value of 𝑘 at iteration 𝑡. We roughly show that if 𝑘𝑡 < 𝐾 then 𝑃𝑡 = 𝑃̂𝑡 . As
𝑃(𝑘𝑡 > 𝐾) is very small, this will prove the claim. Recall that 𝑘𝑡 =

∑
𝑖≤𝑡 1{𝑧𝑖 = 0}. Note that

𝑃(𝑧𝑡 = 0) ≤ 𝑝 + (1 − 𝑝)𝜂 ≤ 2𝑝. Therefore, letting 𝑦𝑡 ∼ Ber(𝑝 + (1 − 𝑝)𝜂) we have

𝑃(𝑘𝑡 > 𝐾) ≤ 𝑃(𝑘𝑇 > 𝐾)

= 𝑃(
𝑇∑︁
𝑖=1

1{𝑧𝑖 = 0} > 𝐾)

≤ 𝑃(
𝑇∑︁
𝑖=1

1{𝑦𝑖 = 0} > 𝐾)

≤ 𝑒−𝑇 𝑝/3,

where the last inequality follows from a Chernoff bound (Lemma 17).
Now we proceed to show that 𝑃̂𝑡 and 𝑃𝑡 are close. To this end, we first define 𝑄𝑡 to be the

marginal distribution of 𝑥𝑡 in Algorithm 1 when 𝐾 = 𝑇 + 1 (that is, no limit on switching). We prove
by induction that 𝑄𝑡 = 𝑃

𝑡 . The base case for 𝑡 = 1 is trivial. Assuming correctness for 𝑡, we have
that for 𝑥 ∈ [𝑑]

𝑄𝑡 (𝑥) = 𝑝𝑝𝑡𝑥 + (1 − 𝑝) 𝑤
𝑡
𝑥

𝑤𝑡−1
𝑥

𝑄𝑡−1(𝑥) + (1 − 𝑝)𝑝𝑡𝑥
𝑑∑︁

𝑥′=1
𝑄𝑡−1(𝑥′) (1 −

𝑤𝑡
𝑥′

𝑤𝑡−1
𝑥′

)

= 𝑝𝑝𝑡𝑥 + (1 − 𝑝) 𝑤
𝑡
𝑥

𝑤𝑡−1
𝑥

𝑤𝑡−1
𝑥

𝑊 𝑡−1 + (1 − 𝑝)𝑤
𝑡
𝑥

𝑊 𝑡

𝑑∑︁
𝑥′=1

𝑤𝑡−1
𝑥′

𝑊 𝑡−1

𝑤𝑡−1
𝑥′ − 𝑤𝑡

𝑥′

𝑤𝑡−1
𝑥′

= 𝑝𝑝𝑡𝑥 + (1 − 𝑝)
(
𝑤𝑡

𝑥

𝑊 𝑡−1 + 𝑤
𝑡
𝑥

𝑊 𝑡

𝑊 𝑡−1 −𝑊 𝑡

𝑊 𝑡−1

)
= 𝑝𝑡𝑥 .

Now consider 𝑃̂. Let 𝑄0
𝑡 and 𝑄1

𝑡 be the conditional distribution of 𝑄𝑡 given 𝑘𝑡 < 𝐾 or 𝑘𝑡 ≥ 𝐾 ,
respectively. Moreover, let 𝑃̂0

𝑡 and 𝑃̂1
𝑡 be the conditional distribution of 𝑃̂𝑡 given 𝑘𝑡 < 𝐾 or

𝑘𝑡 ≥ 𝐾 , respectively. Note that 𝑄𝑡 (𝑥) = 𝑃(𝑘𝑡 < 𝐾)𝑄0
𝑡 + 𝑃(𝑘𝑡 < 𝐾)𝑄1

𝑡 and that 𝑃̂𝑡 (𝑥) = 𝑃(𝑘𝑡 <
𝐾)𝑃̂0

𝑡 + 𝑃(𝑘𝑡 < 𝐾)𝑃̂1
𝑡 . Noting that 𝑃0

𝑡 = 𝑄
𝑡
0, we have

𝑃̂𝑡 − 𝑃𝑡




𝑇𝑉

=


𝑃̂𝑡 −𝑄𝑡




𝑇𝑉

=


𝑃(𝑘𝑡 < 𝐾) (𝑃̂0

𝑡 −𝑄0
𝑡 ) + 𝑃(𝑘𝑡 > 𝐾) (𝑃̂1

𝑡 −𝑄1
𝑡 )




𝑇𝑉

≤ 𝑃(𝑘𝑡 < 𝐾)


𝑃̂0

𝑡 −𝑄0
𝑡



 + 𝑃(𝑘𝑡 > 𝐾) 

𝑃̂1
𝑡 −𝑄1

𝑡




𝑇𝑉

≤ 𝑃(𝑘𝑡 > 𝐾).

■
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Proof. First, we begin by analyzing the regret. Lemma 14 shows that 𝑃̂𝑡 the marginal distribution
of 𝑥𝑡 is the same as that of the (non-private) shrinking dartboard algorithm 𝑃𝑡 , therefore Theorem 3
of Geulen et al. (2010) shows that for 𝜂 ≤ 1/2

𝔼𝑥𝑡∼𝑃̂𝑡

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 )
]
= 𝔼𝑥𝑡∼𝑃𝑡

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 )
]
+ 𝔼𝑥𝑡∼𝑃̂𝑡

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 )
]
− 𝔼𝑥𝑡∼𝑃𝑡

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 )
]

≤ 𝐸𝑥𝑡∼𝑃𝑡

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 )
]
+ 2𝑇



𝑃̂𝑡 − 𝑃𝑡



𝑇𝑉

≤ (1 + 𝜂) min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) +
ln 𝑑
𝜂

+ 2𝑇𝑒−𝑇 𝑝/3

≤ min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) + 𝜂𝑇 + ln 𝑑
𝜂

+ 2𝑇𝑒−𝑇 𝑝/3.

Let us now analyze privacy. Assume we have two neighboring sequences that differ at time-step
𝑡1. Let 𝑍𝑡 and 𝑋𝑡 denote the random variables for 𝑧𝑡 and 𝑥𝑡 in the algorithm when run for the first
sequence and let 𝑌𝑡 = 1 − 𝑍𝑡 . Similarly, let 𝑍 ′

𝑡 , 𝑌 ′
𝑡 , and 𝑋 ′

𝑡 denote the same for the neighboring
sequence. We consider the pairs 𝑊𝑡 = (𝑋𝑡 , 𝑍𝑡+1) (where 𝑋0 = 0) and prove that 𝑊𝑡 given {𝑊ℓ}𝑡−1

ℓ=0
and𝑊 ′

𝑡 given {𝑊 ′
ℓ
}𝑡−1
ℓ=0 are 𝜀𝑡 -indistinguishable where

𝜀𝑡 =


0 if 𝑡 < 𝑡1
𝜂/𝑝 if 𝑡 = 𝑡1
1
{∑𝑡−1

ℓ=1𝑌ℓ < 𝐾
}

4𝑌𝑡𝜂 if 𝑡 > 𝑡1

The result then follows from advanced composition (Dwork and Roth, 2014): note that 𝑌𝑡 ∈ {0, 1}
therefore we have that the final privacy parameter is

𝜀 𝑓 ≤
3
2

𝑇∑︁
𝑡=1

𝜀2
𝑡 +

√√√
6

𝑇∑︁
𝑡=1

𝜀2
𝑡 log(1/𝛿)

≤ 3
2
( 𝜂

2

𝑝2 + 16𝐾𝜂2) +

√︄
6( 𝜂

2

𝑝2 + 16𝐾𝜂2) log(1/𝛿)

≤ 5𝜂
𝑝

+ 24𝐾𝜂2 + 𝜂
√︁

100𝐾 log(1/𝛿)

≤ 5𝜂
𝑝

+ 100𝑇 𝑝𝜂2 + 20𝜂
√︁
𝑇 𝑝 log(1/𝛿).

Similarly, the result for 𝛿 = 0 follows from basic composition. To finish the proof, consider the
pair 𝑊𝑡 and 𝑊 ′

𝑡 . First, note that if 𝑡 < 𝑡1 then clearly 𝑊𝑡 and 𝑊 ′
𝑡 are 0-indistinguishable as they do

not depend on ℓ𝑡1 or ℓ′𝑡1 . For 𝑡 = 𝑡1, note that 𝑋𝑡1 and 𝑋 ′
𝑡1

has the same distribution. Moreover, the
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definition of 𝑍𝑡 implies that 𝑍𝑡 and 𝑍 ′
𝑡 are 𝜂/𝑝-indistinguishable since

𝑃(𝑍𝑡 = 1)
𝑃(𝑍 ′

𝑡 = 1) ≤ (1 − 𝑝)
(1 − 𝑝) (1 − 𝜂)

=
1

1 − 𝜂
= 1 + 𝜂

1 − 𝜂
≤ 1 + 2𝜂
≤ 𝑒2𝜂 .

Moreover, since 𝜂 ≤ 𝑝𝜀 we have

𝑃(𝑍𝑡 = 0)
𝑃(𝑍 ′

𝑡 = 0) ≤ 𝑝 + (1 − 𝑝)𝜂
𝑝

≤ 1 + 𝜂
𝑝
≤ 𝑒𝜂/𝑝 .

Now consider 𝑡 > 𝑡1. If
∑𝑡−1

ℓ=1𝑌ℓ ≥ 𝐾 or 𝑌𝑡 = 𝑌 ′
𝑡 = 0 then 𝑋𝑡 = 𝑋𝑡−1 and 𝑋 ′

𝑡 = 𝑋 ′
𝑡−1 and thus

𝑋𝑡 and 𝑋 ′
𝑡 are 0-indistinguishable. If 𝑌𝑡 = 𝑌 ′

𝑡 = 0 then 𝑋𝑡 and 𝑋 ′
𝑡 are 4𝜂-indistinguishable since

𝑤𝑡
𝑥/𝑤

′𝑡
𝑥 ≤ 1/(1 − 𝜂) ≤ 𝑒2𝜂 which implies that 𝑃(𝑥𝑡 = 𝑥)/𝑃(𝑥′𝑡 = 𝑥) ≤ 𝑒4𝜂 . Overall, 𝑋𝑡 and 𝑋 ′

𝑡

are 4𝑌𝑡𝜂-indistinguishable. Moreover, since 𝑡 > 𝑡1, we have that 𝑍𝑡+1 is a function of 𝑋𝑡 and ℓ𝑡
and 𝑍 ′

𝑡+1 is a function of 𝑋 ′
𝑡 and ℓ′𝑡 = ℓ𝑡 , hence by post-processing we get that 𝑍𝑡+1 and 𝑍 ′

𝑡+1 are
4𝑌𝑡𝜂-indistinguishable. Overall, we have that𝑊𝑡 and𝑊 ′

𝑡 are 1
{∑𝑡−1

ℓ=1𝑌ℓ < 𝐾
}

4𝑌𝑡𝜂-indistinguishable.
■

A.2. Proof of Corollary 3

For these parameters, Algorithm 1 has privacy

𝜀0/4 + 𝑇 𝑝3𝜀2
0/4 + 𝜀0

√︃
𝑇 𝑝3 log(1/𝛿) ≤ 2𝜀0.

As 𝜀0 ≤ 𝜀/2, this proves the claim about privacy. Moreover, its regret is

𝜂𝑇 + ln 𝑑
𝜂

+ 2𝑇𝑒−𝑇 𝑝/3 ≤ 𝑇 𝑝𝜀0/20 + 20 ln 𝑑/(𝑝𝜀0) + 2𝑇𝑒−𝑇 𝑝/3

≤ 𝑇2/3𝜀0

log1/3(1/𝛿)
+ 20𝑇1/3 log1/3(1/𝛿) ln 𝑑

𝜀0
+ 2𝑇𝑒−𝑇 𝑝/3

≤
√
𝑇 ln 𝑑 + 20𝑇1/3 log1/3(1/𝛿) ln 𝑑

𝜀0
+ 2𝑇𝑒−𝑇 𝑝/3

≤ 𝑂
(
√
𝑇 ln 𝑑 + 𝑇

1/3 log1/3(1/𝛿) ln 𝑑
𝜀

)
,

where the last inequality follows as 𝜀0 = min(𝜀/2, log1/3 (1/𝛿 )
√

ln 𝑑

𝑇1/6 ).
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A.3. Proof of Corollary 4

For these parameters, Algorithm 1 has privacy

𝜀/20 + 16𝑇 𝑝𝜂 ≤ 𝜀/10 + 16𝑇 𝑝2𝜀/20 ≤ 𝜀.

Moreover, its regret is

𝜂𝑇 + ln 𝑑
𝜂

+ 2𝑇𝑒−𝑇 𝑝/3 ≤ 𝑇 𝑝𝜀/20 + 20 ln 𝑑/(𝑝𝜀) + 2𝑇𝑒−𝑇 𝑝/3

≤
√
𝑇 + 20

√
𝑇 ln 𝑑
𝜀

+ 2𝑇𝑒−𝑇 𝑝/3,

where the last inequality follows since 𝜀 ≤ 1.

A.4. Proof of Corollary 6

For these parameters, Algorithm 1 has privacy

5𝜂
𝐵𝑝

+ 100𝑇 𝑝𝜂2

𝐵3 + 20𝜂
𝐵3/2

√︁
𝑇 𝑝 log(1/𝛿) ≤ 𝜀/8 + 𝑇 𝑝

3𝜀2

16𝐵
+ 𝜀

2

√︃
𝑇 𝑝3 log(1/𝛿)/𝐵 ≤ 𝜀.

Moreover, its regret is

𝜂𝑇 + 𝐵 ln 𝑑
𝜂

+ 2𝑇𝑒−𝑇 𝑝/3𝐵 ≤ 𝑇𝐵𝑝𝜀/40 + 40 ln 𝑑/(𝑝𝜀) + 2𝑇𝑒−𝑇 𝑝/3𝐵

≤ 𝑇2/3𝐵4/3𝜀

log1/3(1/𝛿)
+ 40𝑇1/3 log1/3(1/𝛿) ln 𝑑

𝐵1/3𝜀
+ 2𝑇𝑒−𝑇 𝑝/3𝐵

≤ 𝑂
(
𝑇2/5 log1/5(1/𝛿) log4/5(𝑑))

𝜀4/5 + 2𝑇𝑒−𝑇 𝑝/3𝐵

)
,

where the last inequality follows by choosing 𝐵 =
log2/5 (1/𝛿 ) log3/5 (𝑑)

𝑇1/5𝜀3/5 (note that 𝐵 ≥ 1 for 𝜀 ≤
log2/3 (1/𝛿 ) log(𝑑)

𝑇1/3 ) and noticing that 𝑇 𝑝/𝐵 ≥ Ω(𝑇2/5) for these parameters as we have a lower bound
on 𝜀.

A.5. Proof of Theorem 5

The same analysis as in Theorem 2 yields regret

𝔼


𝑇̃∑︁
𝑡=1

ℓ̃𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ̃𝑡 (𝑥)
 ≤ 𝜂𝑇 + ln 𝑑

𝜂
+ 2𝑇𝑒−𝑇̃ 𝑝/3.

Setting 𝑥𝑡 = 𝑥⌊𝑡/𝐵⌋ and multiplying both sides by 𝐵, we have regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝜂𝑇 + 𝐵 ln 𝑑

𝜂
+ 2𝑇𝑒−𝑇̃ 𝑝/3.
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Let us now analyze privacy. The privacy follows the same steps as in the proof of Theorem 2
with two main differences. First, let 𝑡 = 𝑡1 be the time such that ℓ̃𝑡1 contains the differing loss
function and let ℓ̃𝑡 = ℓ̃𝑡 (𝑥𝑡−1) and ℓ̃′𝑡 = ℓ̃′𝑡 (𝑥𝑡−1). Note that |ℓ̃𝑡1 − ℓ̃′𝑡1 | ≤ 1/𝐵 thus we have that 𝑍𝑡 and
𝑍 ′
𝑡 are 𝜂/(𝐵𝑝)-indistiguishable since

𝑃(𝑍 ′
𝑡 = 1)

𝑃(𝑍𝑡 = 1) ≤ (1 − 𝑝) (1 − 𝜂)ℓ̃′𝑡−1

(1 − 𝑝) (1 − 𝜂)ℓ̃𝑡−1

≤ (1 − 𝜂)−|ℓ̃𝑡−1−ℓ̃′𝑡−1 |

≤ 𝑒2𝜂/𝐵.

Moreover, assuming w.l.o.g. that ℓ̃′
𝑡−1 ≥ ℓ̃𝑡−1, we have

𝑃(𝑍 ′
𝑡 = 0)

𝑃(𝑍𝑡 = 0) ≤ 𝑝 + (1 − 𝑝) (1 − (1 − 𝜂)ℓ̃′𝑡−1)
𝑝 + (1 − 𝑝) (1 − (1 − 𝜂)ℓ̃𝑡−1)

≤ 1 + (1 − 𝑝) |1 − (1 − 𝜂)ℓ̃′𝑡−1−ℓ̃𝑡−1 |
𝑝 + (1 − 𝑝) (1 − (1 − 𝜂)ℓ̃𝑡−1)

≤ 1 + |1 − (1 − 𝜂)ℓ̃′𝑡−1−ℓ̃𝑡−1 |
𝑝

≤ 1 +
|ℓ̃′
𝑡−1 − ℓ̃𝑡−1 |

𝑝
≤ 𝑒𝜂/(𝐵𝑝) .

The second difference in the privacy analysis is that the sensitivity of the score of the exponential
mechanism is now 1/𝐵 hence 𝑋𝑡 and 𝑋 ′

𝑡 are now 4𝜂/𝐵-DP. This shows that 𝑊𝑡 given {𝑊ℓ}𝑡−1
ℓ=0 and

𝑊 ′
𝑡 given {𝑊 ′

ℓ
}𝑡−1
ℓ=0 are 𝜀𝑡 -indistinguishable where

𝜀𝑡 =


0 if 𝑡 < 𝑡1
𝜂/(𝐵𝑝) if 𝑡 = 𝑡1
1
{∑𝑡−1

ℓ=1𝑌ℓ < 𝐾
}

4𝑌𝑡𝜂/𝐵 if 𝑡 > 𝑡1

The result then follows from advanced composition (Dwork and Roth, 2014): the final privacy
parameter is

𝜀 𝑓 ≤
3
2

𝑇∑︁
𝑡=1

𝜀2
𝑡 +

√√√
6

𝑇∑︁
𝑡=1

𝜀2
𝑡 log(1/𝛿)

≤ 3
2
( 𝜂
𝐵𝑝

+ 16𝐾𝜂2/𝐵2) +

√︄
6( 𝜂2

𝐵2𝑝2 + 16𝐾𝜂2/𝐵2) log(1/𝛿)

≤ 5𝜂
𝐵𝑝

+ 24𝐾𝜂2/𝐵2 + 10𝜂
𝐵

√︁
𝐾 log(1/𝛿)

≤ 5𝜂
𝐵𝑝

+ 100𝑇 𝑝𝜂2/𝐵3 + 20𝜂
𝐵

√︁
12𝑇 𝑝/𝐵 log(1/𝛿).
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Appendix B. Proofs for Section 3.2

B.1. Proof of Theorem 7

The privacy claim is immediate as each sample ℓ𝑖 is used only once in running a single (𝜀, 𝛿)-DP
algorithm. Now we prove the claim about utility. Consider time-step 𝑡 = 2𝑖 where we invoke a
DP-SCO algorithm with 𝑡/2 = 2𝑖−1 samples. Therefore the guarantees of the algorithm imply that
at iteration 𝑡 we have

𝔼ℓ𝑡∼𝑃

[
ℓ𝑡 (𝑥𝑡 ) − min

𝑥∈[𝑑 ]
ℓ𝑡 (𝑥)

]
≤ 𝑂 (Δ2𝑖 ) .

Therefore at phase 𝑖, that is 2𝑖 ≤ 𝑡 ≤ 2𝑖+1, the total regret is at most

𝔼


2𝑖+1∑︁
𝑡=2𝑖

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

2𝑖+1∑︁
𝑡=2𝑖

ℓ𝑡 (𝑥)
 ≤ 𝑂

(
2𝑖Δ2𝑖

)
.

Summing over 𝑖 proves the claim.

B.2. Proof of Corollary 8

The algorithm Aℓ1 is 𝜀-DP and has excess population loss Δ𝑛 = 𝑂 (
√︁

log(𝑑)/𝑛 + log(𝑑)/𝑛𝜀) (Asi
et al., 2021b, Theorem 6). Thus, Theorem 7 implies that

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤

log𝑇∑︁
𝑖=1

2𝑖Δ𝑖

≤ 𝑂
(log𝑇∑︁
𝑖=1

2𝑖/2
√︁

log(𝑑) + log(𝑑)/𝜀
)

≤ 𝑂
(√︁
𝑇 log(𝑑) + log(𝑑) log(𝑇)/𝜀

)
.

Appendix C. Proofs for Section 4

C.1. Proof of Theorem 9

We build on the following property of the padded Tardos code as done in finger-printing lower
bounds. Given a matrix 𝑋 ∈ {−1, +1} (𝑛+1)×𝑝, we say that 𝑗 ∈ [𝑝] is a consensus column if the
column is equal to the all one vector or its negation. Let 𝑋(𝑖) ∈ {−1, +1}𝑛×𝑝 denote the matrix that
results from removing the 𝑖’th row in 𝑋 . Moreover, we let 𝑋̄ ∈ ℝ𝑝 denote the sum of the rows of 𝑋 ,
that is, 𝑋̄ 𝑗 =

∑𝑛+1
𝑖=1 𝑋𝑖 𝑗 . Finally, for 𝑣 ∈ ℝ𝑝 let sign(𝑣) ∈ {−1, +1}𝑝 denote the signs of the entries

of 𝑣

Theorem 15 (Talwar et al., 2015, Theorem 3.2). Let 𝑝 = 1000𝑚2 and 𝑛 = 𝑚/log𝑚 for sufficiently
large 𝑚. There exists a matrix 𝑋 ∈ {−1, +1} (𝑛+1)×𝑝 such that

• There are at least 0.999𝑝 consensus columns in 𝑋(𝑖)

• Any algorithm A : {−1, +1}𝑛×𝑝 → {−1, +1}𝑝 such that


A(𝑋(𝑖) ) − sign( 𝑋̄(𝑖) )




0 ≤ 1/4 for

all 𝑖 ∈ [𝑛 + 1] with probability at least 2/3 then A is not (1, 𝑛−1.1)-DP.
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Building on Theorem 15, we can now prove our main lower bound.

Proof of Theorem 9. First, we prove the lower bound for 𝜀 ≤ 1/(
√
𝑇 log𝑇), that is, we prove the

regret has to be linear in this case. We will reduce the problem of private sign estimation to DP-OPE
with adaptive adversaries and use the lower bound of Theorem 15. To this end, given an algorithm
A for DP-OPE and an input 𝑋 ∈ {−1, +1}𝑛×𝑝, we have the following procedure for estimating the
signs of the columns of 𝑋 . We design an online experts problem that has 𝑑 = 2𝑝 experts where
column 𝑗 ∈ [𝑝] in 𝑋 will have two corresponding experts 2 𝑗 and 2 𝑗 + 1 (corresponding to the sign
of column 𝑗). We initialize the vector of signs 𝑠 𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑝. We have 𝑇 = 0.9𝑝 rounds
and at round 1 ≤ 𝑡 ≤ 𝑇 we sample a user 𝑖𝑡 ∼ [𝑛] (arbitrarily while enforcing that each 𝑖 ∈ [𝑛]
appears at most 2𝑇/𝑛 times) and play a loss function ℓ𝑡 : [𝑑] → {0, 1} such that

ℓ𝑡 (2 𝑗 + 1) =
{

1 if 𝑠 𝑗 ≠ 0
𝑋𝑖𝑡 , 𝑗+1

2 otherwise

We also set

ℓ𝑡 (2 𝑗 + 2) =
{

1 if 𝑠 𝑗 ≠ 0
−𝑋𝑖𝑡 , 𝑗+1

2 otherwise

The idea of this loss function is that the 2 𝑗 + 1 and 2 𝑗 + 2 experts will represent the signs of the
𝑗’th column. If the sign of the 𝑗’th column is +1, then expert 2 𝑗 + 2 will have better loss and hence
should be picked by the algorithm. Moreover, whenever the algorithm has estimated the sign of the
𝑗’th column (𝑠 𝑗 ≠ 0), we set the loss to be 1 for both experts 2 𝑗 + 1 and 2 𝑗 + 2, in order to force the
online algorithm to estimate the sign of new columns.

Then, given the output of the algorithm A at time 𝑡, that is 𝑥𝑡 = A(ℓ1, . . . , ℓ𝑡−1) we set 𝑠 𝑗 = −1
if 𝑥𝑡 = 2 𝑗 + 1 and 𝑠 𝑗 = 1 if 𝑥𝑡 = 2 𝑗 + 2 and otherwise we keep 𝑠 𝑗 unchanged. Moreover, there is an
expert that achieves optimal loss, that is, for some 𝑥★ ∈ [𝑑] we have

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥★) = 0.

This follows since 𝑋 has at least 0.999𝑝 consensus columns hence there is a zero-loss expert after
𝑇 = 0.9𝑝 iterations. Now we show that if an algorithm A has small regret, then the vector 𝑠 estimates
the sign of at least 0.8𝑝 columns. To this end, let 𝑗𝑡 = ⌊𝑥𝑡/2⌋ denote the column corresponding
to the expert picked by the algorithm at time 𝑡, 𝑆 = { 𝑗𝑡 : 𝑡 ∈ [𝑇]}, and 𝑆cons = { 𝑗 ∈ [𝑝] :
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column j is a consensus column}. Observe that the regret of the algorithm is

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) =
∑︁
𝑗𝑡 ∈𝑆

1
{
𝑠 𝑗𝑡 = 1

}
ℓ𝑡 (2 𝑗𝑡 + 2) + 1

{
𝑠 𝑗𝑡 = −1

}
ℓ𝑡 (2 𝑗𝑡 + 1)

=
1
2

∑︁
𝑗𝑡 ∈𝑆

1
{
𝑠 𝑗𝑡 = 1

}
(−𝑋𝑖𝑡 , 𝑗𝑡 + 1) + 1

{
𝑠 𝑗𝑡 = −1

}
(𝑋𝑖𝑡 , 𝑗𝑡 − 1)

=
1
2

∑︁
𝑗𝑡 ∈𝑆

1
{
𝑠 𝑗𝑡 = 1, 𝑋𝑖𝑡 , 𝑗𝑡 = −1

}
+ 1

{
𝑠 𝑗𝑡 = −1, 𝑋𝑖𝑡 , 𝑗𝑡 = 1

}
=

1
2

∑︁
𝑗𝑡 ∈𝑆

1
{
𝑠 𝑗𝑡 ≠ 𝑋𝑖𝑡 , 𝑗𝑡

}
≥ −0.001𝑝 + 1

2

∑︁
𝑗𝑡 ∈𝑆∩𝑆cons

1
{
𝑠 𝑗𝑡 ≠ 𝑋𝑖𝑡 , 𝑗𝑡

}
≥ −0.001𝑝 + 1

2

∑︁
𝑗𝑡 ∈𝑆∩𝑆cons

1
{
𝑠 𝑗𝑡 ≠ sign( 𝑋̄) 𝑗𝑡

}
.

Assume towards a contradiction that A is (1/200
√
𝑇 log(𝑇), 𝛿)-DP where 𝛿 ≤ 1/𝑇3 and that the

expected regret is at most 𝑇/1000. Markove inequality implies that with probability at least 9/10
the regret is at most 𝑇/100. Under this event we have∑︁

𝑗𝑡 ∈𝑆∩𝑆cons

1
{
𝑠 𝑗𝑡 ≠ sign( 𝑋̄) 𝑗𝑡

}
≤ 0.002𝑇.

Now note that we can assume that the online algorithm picks 𝑥𝑡 such that each 𝑗𝑡 appears at most
one. Otherwise we can modify the algorithm to satisfy this property while not increasing the regret:
whenever the algorithm picks 𝑥𝑡 such that 𝑗𝑡 appeared before, the loss of this expert is 1, hence we
can randomly pick another expert 𝑥𝑡 such that 𝑗𝑡 has not appeared. This implies that |𝑆 | = 𝑇 = 0.9𝑝
and hence |𝑆∩𝑆cons | ≥ 0.85𝑝. Therefore we have that 𝑠 𝑗𝑡 = sign( 𝑋̄) 𝑗𝑡 for at least 0.8𝑝 columns from
𝑆cons with probability 0.9. To finish the proof, we need to argue about the final privacy guarantee of
the sign vector 𝑠; we will prove that 𝑠 is (1, 𝑇𝛿)-DP which will give a contradiction to Theorem 15
and prove the claim. To this end, note that the algorithm A is (1/200

√
𝑇 log(𝑇), 𝛿)-DP. Moreover,

recall that each row 𝑖 ∈ [𝑛] appears at most 𝑘 ≤ 2𝑇/𝑛 ≤ 2𝑝/𝑛 ≤ 200√𝑝 log(𝑝) times, hence group
privacy implies the final output 𝑠 is (𝑘𝜀, 𝑘𝛿)-DP, that is, (1, 1/𝑇2)-DP.

Now we proceed to prove the lower bound for larger values 𝜀 ≥ 1/(
√
𝑇 log𝑇). Note that if

𝜀 ≥ log(𝑇)/𝑇1/4 then the non-private lower bound of
√︁
𝑇 log 𝑑 is sufficient. Otherwise, consider

an algorithm A that is 𝜀-DP and consider an adversary that in the first 𝑇0 < 𝑇 iterations behaves
the same as the above where 𝜀 = 1/(

√
𝑇0 log𝑇0). Then in the last 𝑇 − 𝑇0 iterations it sends

ℓ𝑡 (𝑥) = 0 for all 𝑥 ∈ [𝑑]. The above lower bound implies that the algorithm has to pay regret
Ω(𝑇0) = Ω(1/(𝜀 log𝑇0)2). The claim follows as 𝑇0 ≤ 𝑇 .

■

C.2. Proof for Theorem 10

To prove a lower bound for pure DP, we use the following version of Theorem 15 for this setting.
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Theorem 16 (Steinke and Ullman, 2017a, Theorem A.1). Let 𝑑 = 1000𝑛 and 𝑛 sufficiently large.
Let X = {𝑋 ∈ {−1, +1}𝑛×𝑑 : all the columns in 𝑋 are consensus columns}. Let A : {−1, +1}𝑛×𝑑 →
{−1, +1}𝑑 be an algorithm such that for all 𝑋 ∈ X,

𝔼[∥A(𝑋) − sign(𝑋)∥0] ≤ 1/4.

Then A is not 1-DP.

Using the bound of Theorem 16 and following the same steps as in the proof of Theorem 15, the
lower bound of Theorem 10 now follows.

C.3. Proof of Theorem 11

We use similar ideas to the one in the proof of Theorem 9 where we used a DP-OPE algorithm for
sign estimation. Instead of designing two experts for each column, the idea here is to look at subsets
of columns of size 𝑘 and design 2𝑘 experts to represent the sign vector of these 𝑘 columns.

Given an input 𝑋 ∈ {−1, +1}𝑛×𝑝 where we assume for simplicity that 𝑝/𝑘 is an integer, we
design an expert problem with 𝑑 = 2𝑘

(𝑝
𝑘

)
experts. Instead of representing the experts as integers

𝑥 ∈ [𝑑], we use an equivalent representation where an expert is a pair (𝑆, 𝑣) where 𝑆 ⊂ [𝑝] is a set
of columns of size 𝑘 and 𝑣 ∈ {−1, +1}𝑘 represents the signs that this expert assigns for columns in
𝑆. We initialize the vector of signs 𝑠 𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑝.

Here we have 𝑇 = 0.9𝑝/𝑘 rounds and at round 1 ≤ 𝑡 ≤ 𝑇 we sample a user 𝑖𝑡 ∼ [𝑛] (arbitrarily
while enforcing that each 𝑖 ∈ [𝑛] appears at most 2𝑇/𝑛 times) and play a loss function ℓ𝑡 such that

ℓ𝑡 (𝑆, 𝑣) =


1 if 𝑠 𝑗 ≠ 0 for some 𝑗 ∈ 𝑆
0 otherwise if sign( 𝑋̄𝑆) = 𝑣
1 otherwise

Now, given the output of the algorithm A at time 𝑡, that is 𝑥𝑡 = (𝑆𝑡 , 𝑣𝑡 ) we set 𝑠𝑆𝑡 = 𝑣𝑡 (we assume
without loss of generality that each 𝑗 ∈ [𝑝] will appear in at most a single 𝑆𝑡 . Otherwise, similarly
to the proof of Theorem 9, we can ensure this property while not increasing the regret). Moreover,
at the end of the game, there is a set 𝑆 ⊂ [𝑝] of size 𝑘 that contains only consensus columns which
were not estimated earlier (𝑆 ∩ 𝑆𝑡 = ∅ for all 𝑡). This follows from the fact that 𝑋 has at least 0.999𝑝
consensus columns hence there is at least 0.05𝑝 ≥ 𝑘 consensus columns that have not appeared in
𝑆1, . . . , 𝑆𝑇 , hence there is an expert (𝑆, 𝑣) such that

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑆, 𝑣) = 0.
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Now we show that if an algorithm A has small regret, then the vector 𝑠 estimates the sign of at least
0.8𝑝 columns. Observe that the regret of the algorithm is

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) =
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑆𝑡 , 𝑣𝑡 )

=

𝑇∑︁
𝑡=1

1
{
sign( 𝑋̄𝑆𝑡 ) ≠ 𝑣𝑡

}
=

𝑇∑︁
𝑡=1

1
{
sign( 𝑋̄𝑆𝑡 ) ≠ 𝑠𝑆𝑡

}
.

Assume towards a contradiction that A is (𝜀, 𝛿)-DP where 𝜀 ≤
√

𝑘/𝑇
200 log(𝑇 ) and 𝛿 ≤ 1/𝑇3 and that the

expected regret is at most 𝑇/1000. Markov inequality implies that with probability at least 9/10 the
regret is at most 𝑇/100. Note that |𝑆 | = 𝑘𝑇 = 0.9𝑝. Under this event we have

𝑇∑︁
𝑡=1

1
{
sign( 𝑋̄𝑆𝑡 ) ≠ 𝑠𝑆𝑡

}
≤ 0.002𝑇.

Hence we have that sign( 𝑋̄𝑆𝑡 ) = 𝑠𝑆𝑡 for at least 0.9𝑇 rounds. As each round has 𝑘 distinct columns,
we have 𝑠 𝑗 = sign( 𝑋̄ 𝑗) for at least 0.9𝑘𝑇 ≥ 0.8𝑝. As there are at most 0.001𝑝 non-consensus
columns, this means that 𝑠 𝑗 = sign( 𝑋̄ 𝑗) for at least 0.75𝑝 consensus columns. Now we prove that 𝑠
is also (1, 1/𝑇2)-DP which gives a contradiction to Theorem 15. To this end, note that the algorithm

A is (𝜀, 𝛿)-DP where 𝜀 ≤
√

𝑘/𝑇
200 log(𝑇 ) ≤ 𝑘/√𝑝

200𝜌 log(𝑝) . Moreover, recall that each row 𝑖 ∈ [𝑛] appears at
most 𝑘𝑖 ≤ 2𝑇/𝑛 ≤ 2𝑝/(𝑛𝑘) ≤ 200√𝑝 log(𝑝)/𝑘 times, hence group privacy implies the final output
𝑠 is (max𝑖 𝑘𝑖𝜀, 𝑇𝛿)-DP, that is, (1, 1/𝑇2)-DP.

Appendix D. Proofs for Section 5

D.1. Proof of Theorem 12

We assume without loss of generality that 𝐿 = 1 (otherwise divide the loss by 𝐿). As X has
diameter 𝐷, we can construct a cover 𝐶 = {𝑐1, . . . , 𝑐𝑀 } of X such that min𝑖∈[𝑀 ] ∥𝑥 − 𝑐𝑖 ∥2 ≤ 𝜌

for all 𝑥 ∈ X where 𝑀 ≤ 2𝑑 log(4/𝜌) (Duchi, 2019, Lemma 7.6). Consider the following algorithm:
run Algorithm 1 where the experts are the elements of the cover 𝐶. Corollary 3 now implies that
this algorithm has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈𝐶

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝑂

(
√
𝑇 ln𝑀 + 𝑇

1/3 log1/3(1/𝛿) ln𝑀
𝜀

)
.
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Since ℓ𝑡 is 1-Lipschitz, we now get

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤ 𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈𝐶

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) + min
𝑥∈𝐶

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) − min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]

= 𝑂

(
√
𝑇 ln𝑀 + 𝑇

1/3 log1/3(1/𝛿) ln𝑀
𝜀

+ 𝑇𝜌
)

= 𝑂

(√︁
𝑇𝑑 log(1/𝜌) + 𝑇

1/3 log1/3(1/𝛿)𝑑 log(1/𝜌)
𝜀

+ 𝑇𝜌
)

= 𝑂

(√︁
𝑇𝑑 log(𝑇) + 𝑇

1/3𝑑 log1/3(1/𝛿) log(𝑇)
𝜀

)
,

where the last inequality follows by setting 𝜌 = 1/𝑇 .

D.2. Proof of Corollary 13

The algorithm Aℓ2 is (𝜀, 𝛿)-DP and has excess loss Δ𝑛 = 𝐿𝐷 ·𝑂 (1/
√
𝑛+

√
𝑑/𝑛𝜀). Thus, Theorem 7

implies that

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡 ) − min
𝑥∈[𝑑 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≤

log𝑇∑︁
𝑖=1

2𝑖Δ𝑖

≤ 𝑂 (𝐿𝐷)
log𝑇∑︁
𝑖=1

2𝑖/2 +
√
𝑑/𝜀

≤ 𝐿𝐷 · 𝑂 (
√
𝑇 +

√
𝑑 log(𝑇)/𝜀).

Appendix E. Concentration for sums of geometric variables

In this section, we proof a concentration result for the sum of geometric random variables, which
allows us to upper bound the number of switches in the sparse-vector based algorithm. We say
that 𝑍 is geometric random variable with success probability 𝑝 if 𝑃(𝑊 = 𝑘) = (1 − 𝑝)𝑘−1𝑝 for
𝑘 ∈ {1, 2, . . . }. To this end, we use the following Chernoff bound.

Lemma 17 (Mitzenmacher and Upfal, 2005, Ch. 4.2.1). Let 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖 for 𝑋𝑖
iid∼Ber(𝑝). Then

for 𝛿 ∈ [0, 1],

ℙ(𝑋 > (1 + 𝛿)𝑛𝑝) ≤ 𝑒−𝑛𝑝𝛿2/3 and ℙ(𝑋 < (1 − 𝛿)𝑛𝑝) ≤ 𝑒−𝑛𝑝𝛿2/2.

The following lemma demonstrates that the sum of geometric random variables concentrates
around its mean with high probability.

Lemma 18. Let 𝑊1, . . . ,𝑊𝑛 be iid geometric random variables with success probability 𝑝. Let
𝑊 =

∑𝑛
𝑖=1𝑊𝑖 . Then for any 𝑘 ≥ 𝑛

ℙ(𝑊 > 2𝑘/𝑝) ≤ exp (−𝑘/4).
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Proof. Notice that 𝑊 is distributed according to the negative binomial distribution where we can
think of 𝑊 as the number of Bernoulli trials until we get 𝑛 successes. More precisely, let {𝐵𝑖}
for 𝑖 ≥ 1 be Bernoulli random variables with probability 𝑝. Then the event 𝑊 > 𝑡 has the same
probability as

∑𝑡
𝑖=1 𝐵𝑖 < 𝑛. Thus we have that

ℙ(𝑊 > 𝑡) ≤ ℙ(
𝑡∑︁

𝑖=1
𝐵𝑖 < 𝑛).

We can now use Chernoff inequality (Lemma 17) to get that for 𝑡 = 2𝑛/𝑝:

ℙ(
𝑡∑︁

𝑖=1
𝐵𝑖 < 𝑛) ≤ exp (−𝑡 𝑝/8) = exp (−𝑛/4).

This proves that
ℙ(𝑊 > 2𝑛/𝑝) ≤ exp (−𝑛/4).

The claim now follows by noticing that
∑𝑛

𝑖=1𝑊𝑖 ≤
∑𝑘

𝑖=1𝑊𝑖 for 𝑊𝑖 iid geometric random variable
when 𝑘 ≥ 𝑛, thus ℙ(∑𝑛

𝑖=1𝑊𝑖 ≥ 2𝑘/𝑝) ≤ ℙ(∑𝑘
𝑖=1𝑊𝑖 ≥ 2𝑘/𝑝) ≤ exp (−𝑘/4)

■
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