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Abstract
We investigate the computational efficiency of multitask learning of Boolean functions over the
d-dimensional hypercube, that are related by means of a feature representation of size k ≪ d shared
across all tasks. We present a polynomial time multitask learning algorithm for the concept class of
halfspaces with margin γ, which is based on a simultaneous boosting technique and requires only
poly(k/γ) samples-per-task and poly(k log(d)/γ) samples in total.

In addition, we prove a computational separation, showing that assuming there exists a concept
class that cannot be learned in the attribute-efficient model, we can construct another concept class
such that can be learned in the attribute-efficient model, but cannot be multitask learned efficiently—
multitask learning this concept class either requires super-polynomial time complexity or a much
larger total number of samples.
Keywords: multitask learning, shared feature representation, learning halfspaces, attribute-efficient
learning, computational hardness

1. Introduction

A remarkable pattern in modern machine learning is that complex models often transfer surprisingly
well to solve new tasks with very little additional data for that task—far less than one would need
to solve that task from scratch. This sort of multitask learning (sometimes called meta learning,
transfer learning, or few-shot learning) (Thrun, 1998; Thrun and Mitchell, 1995; Argyriou et al.,
2008; Pontil and Maurer, 2013; Baxter, 1997; Thrun and Pratt, 2012; Sun et al., 2017) is possible
because the tasks share some common structure that makes a model for one task relevant for solving
the others. One useful structure is a shared representation. We assume that there is a low-dimensional
representation of the data that is sufficient for solving every learning task—because the relevant
features are shared across all tasks, we can pool the data for all tasks to find the representation, and
because this is low-dimensional, each task can then be solved with relatively few samples.

The existence of low-dimensional representations often provably reduces the number of samples
needed to solve each task (Maurer et al., 2016; Tripuraneni et al., 2020), and popular heuristics like
MAML (Finn et al., 2017) or other gradient-based methods (e.g. (Nichol and Schulman, 2018; Raghu
et al., 2019; Antoniou et al., 2019)) are often successful at multitask learning. However, much less
is known about computationally efficient algorithms for exploiting these shared representations, or
about complexity-theoretic barriers that are specific to multitask learning. While there is an elegant
emerging body of research on provably efficient methods for multitask learning (Balcan et al., 2015;

© 2023 K. Bairaktari, G. Blanc, L.-Y. Tan, J. Ullman & L. Zakynthinou.



BAIRAKTARI BLANC TAN ULLMAN ZAKYNTHINOU

Du et al., 2020; Tripuraneni et al., 2021; Thekumparampil et al., 2021; Collins et al., 2022), so far this
work is currently limited to simple regression problems, or makes strong distribution assumptions, or
both, so little is known about algorithms for classification tasks or for more general distributions.

In this work we focus on the particular setting of binary classification where the shared represen-
tation is simply a subset of the input features. In this setting we give the first computationally efficient
algorithm for multitask learning of halfspaces, under a distribution-free margin assumption on the
halfspaces but with no distributional assumptions. This result follows from a more general extension
of AdaBoost (Freund and Schapire, 1997) to the multitask setting. We also prove a computational
separation, showing that under a natural complexity assumption, there is a concept class such that: (1)
The class can be learned in the attribute-efficient model (Littlestone, 1987)—any single task can be
learned in polynomial time with sample complexity proportional to the number of relevant features.
(2) The class cannot be multitask learned efficiently—the corresponding multitask problem where
we want to learn multiple concepts over the same set of features cannot be solved efficiently unless
the total data across all tasks is much larger.

1.1. Our Results

We now give a more detailed, but still high-level and informal statement of our two main results. To
describe our results we need to introduce some notation, although we defer formal preliminaries
to Section 2. We assume that there are n learning tasks. For each task there is a corresponding
distribution D(i) over labeled examples (x, y) ∈ {±1}d × {±1}. We assume realizable tasks
so that there is a known concept class C and for each task there is some f (i) ∈ C such that
Pr(x,y)∼D(i) [f (i)(x) = y] = 1. Our learning algorithm is given m samples from each distribution

D(i), for a total of mn samples, and must return f̂ (1), . . . , f̂ (n) that label the data well on average
over the tasks 1

n

∑n
i=1 Pr(x,y)∼D(i) [f̂ (i)(x) = y] ≈ 1.

A naı̈ve baseline solution is to solve each task separately, and our goal is to improve over this
baseline. Since we can’t hope to do so without some relationship between the functions f (i), in this
work we consider cases where:

1. the functions in C have a small number of relevant coordinates, and

2. the total number of relevant coordinates among all of the functions f (1), . . . , f (n) is small.

The set of up to k coordinates in total that are relevant for at least one of the tasks is what we call
the shared representation—they are shared because they are the same across tasks, and they are
a representation because we can think of these coordinates as a way of reducing examples to a
lower-dimensional form that suffices for learning.

Efficient Multitask Learning of Halfspaces. First we consider the case where C consists of
k-sparse, γ-margin halfspaces, meaning functions of the form f(x) = sign(θ · x) for some θ ∈ Rd

with at most k non-zero coordinates, which also satisfy the condition |θ · x| ≥ γ · ∥θ∥2 for all inputs
x. Note that our margin condition is weaker than the standard margin assumption. 1

Since each halfspace is k-sparse, the naı̈ve baseline of solving each task separately would require
m = O(k log(d)) samples for each task. In many applications, the number of total features d may

1. The typical margin condition used in the literature requires that |θ · x| ≥ γ′∥θ∥2∥x∥2. For example this condition is
used to analyze the classical Perceptron algorithm for learning halfspaces. A margin of γ in our definition corresponds
to a margin of γ′/∥x∥2 = γ/

√
d using that definition.
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be extremely large relative to the number of relevant features k, so we think of drawing log(d)
samples-per-task as prohibitive. Our main theorem says that, assuming a shared representation of k
features, we can indeed do better provided the number of tasks is at least log(d).

Theorem 1 (Informal) Suppose we have n distributions D(1), . . . , D(n) each labeled by a k-sparse,
γ-margin halfspace. There is a poly(d, k, n,m, 1/γ)-time algorithm that draws m samples from
each task and solves the multitask learning problem provided each task has m ≥ poly(k/γ) samples
and there are nm ≥ poly(k log(d)/γ) samples in total.

The key feature of our result is that the number of samples per task can be entirely independent of
d provided we have enough tasks to solve. Note that requirement of having at least poly(k log(d))
total samples is necessary up to polynomial factors—in the special case where all the tasks are
identical, the problem is simply that of learning a single k-sparse γ-margin halfspace which requires
Ω(k log d) samples.

We achieve this result via a generalization of the AdaBoost algorithm for the multitask setting. In
the single-task setting, a boosting algorithm takes a sequence of weak learners that predict the label
slightly better than random, and combines them to obtain a strong learner that predicts the labels
nearly perfectly. We give a variant for the multitask setting that takes a sequence of weak learners
that have some advantage over random on average over tasks and combine them to obtain a new
learner that predicts labels nearly perfectly.

Separating Multitask and Attribute-Efficient Learning. The strength of Theorem 1 is that
its total sample complexity is close to the information-theoretically optimal number of samples
needed to learn a single k-sparse halfspace, which is O(k log(d)), and the overall running time
is polynomial in d. Single-task learning algorithms with these properties—polynomial running
time and sample-complexity growing polynomially in the number of relevant features, and only
polylogarithmically in the number of irrelevant features—are called attribute efficient Littlestone
(1987). For multi-task learning, the most interesting regime is where the total sample complexity also
satisfies this property, and in this regime, multi-task learning strictly generalizes attribute-efficient
learning by splitting the samples into multiple tasks, with only a few samples per task.

Attribute-efficient learning is a very challenging problem and large-margin halfspaces are one
of the few classes with known attribute-efficient learning algorithms algorithm (Littlestone, 1987;
Valiant, 1999). Perhaps any problem that has an attribute-efficient learner also has a polynomial-time
multi-task learner under a shared-feature representation? We give strong evidence that this is not the
case, by showing that, under a plausible assumption, there is some class C′ consisting of functions of
k + log log(d) relevant variables, that can be learned in the attribute-efficient model but for which
there is no efficient multitask learning algorithm.

Theorem 2 (Informal) Assume there is some class of functions C with k relevant variables and
a distribution D such that C has a sample-efficient learner over D, but every efficient learner for
C requires many more samples. Then there is another concept class C′ over d′ ≲ d + log log(d)
features with k′ ≲ k + log log(d) relevant variables and a distribution D′ such that:

1. C′ can be attribute-efficiently learned over D′

2. C′ can be multitask learned with few samples in exponential time, but

3. any polynomial-time algorithm that multitask learns C′ over D′ requires many more samples.
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An interesting feature of this result is that it gives representation-independent hardness, meaning it
makes no assumptions about the form of the multitask learner’s output.

We note that there are many concept classes that could be used to instantiate our assumption, an
obvious example being k-sparse parities. For parities, O(k log(d)) samples suffice for exponential-
time algorithms, but the best known efficient algorithms require Ω(d1−1/k) samples (Klivans and
Servedio, 2006). Our result is quantitative and can be instantiated with many choices of parameters,
so we give a concrete example. If we assume that the current attribute-efficient learning algorithms
for k-sparse parities are optimal, then we get another concept class that can be attribute-efficient
learned with s = poly(k log(d)) samples, and can be multitask learned with nm = O(k log(d)) total
samples and m = O(k log log(d)) samples-per-task, but for which any polynomial-time multitask
learner requires nm = Ω(d1−1/k) total samples whenever there are n = Ω(log d) tasks.

We note that our separation only holds for attribute-efficient and multitask learning for the
specific distribution E over the d′ − d new features of class C′ of our example. In contrast, our
positive result for learning halfspaces is distribution-free. It is an intriguing open problem to separate
distribution-free attribute-efficient and multitask learning.

2. Preliminaries

For an integer n, we write [n] = {1, . . . , n}. Each unlabeled sample is a vector of features x ∈ {±1}d.
We use xj to denote the j-th feature of sample x and x−j to denote the vector x with the j-th
coordinate removed. We consider Boolean classifiers of the form f : {±1}d → {±1}. We also
write v|vj=b to denote the vector v where the j-th coordinate is set to b ∈ {±1}. We say a feature
is relevant if changing its value has the potential to change the value of the function, and define
Rel(f) = {j ∈ [d] | ∃v−j ∈ {±1}d−1 s.t. f(v|vj=+1) ̸= f(v|vj=−1)}.

We write (x, y) ∼ D when (x, y) is drawn from a distribution D. We denote the support of a
distribution D by Supp(D).

In the multitask learning setting, we assume that there exist n tasks (or users) and each task
i ∈ [n] consists of a distribution D(i) over labeled samples in {±1}d × {±1} and a classification
function f (i) such that y = f (i)(x) for any (x, y) ∈ Supp(D). For each task, we receive a sam-
ple set of size m, denoted by S(i) =

{
(x

(i)
1 , y

(i)
1 ), . . . , (x

(i)
m , y

(i)
m )
}

where (x
(i)
j , y

(i)
j ) is the j-th

sample drawn i.i.d. from D(i) and y
(i)
j = f (i)(x

(i)
j ) is its label. Our goal is to design a learning

algorithm, which, given S(1), . . . , S(n), returns hypotheses for each task, h(1), . . . , h(n), with small
average error. For each task i ∈ [n] and hypothesis h(i), we define the population and training
error by error(i)(h(i)) := Pr(x,y)∼D(i) [h(i)(x) ̸= y] and êrror

(i)
(h(i)) = 1

m

∑
(x,y)∈S(i) 1[h(i)(x) ̸=

y], respectively and the population and training average error by avg-error(h(1), . . . , h(n)) :=
1
n

∑
i∈[n] error

(i)(h(i)) and ̂avg-error(h(1), . . . , h(n)) := 1
n

∑
i∈[n] êrror

(i)
(h(i)), respectively. More

formally, the single task setting, where n = 1, is equivalent to the PAC (probably approximately
correct) learning model (in its realizable case), introduced by (Valiant, 1984), where our goal is to
return a single hypothesis h(1) so that with probability at least 1 − δ over the randomness of the
dataset and the algorithm, error(1)(h(1)) ≤ ε, for given accuracy parameters ε, δ ∈ (0, 1). Similarly,
in the multitask setting, our goal is to return hypotheses h(1), . . . , h(n) so that with probability at
least 1− δ, avg-error(h(1), . . . , h(n)) ≤ ε.

Multitask learning can be more sample-efficient than single-task learning when the tasks are
related. Intuitively, if samples for one task are informative for learning a good hypothesis for another
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task, then pooling all samples to learn all tasks simultaneously may require less samples in total than
learning each task separately. In order to formalize the relationship between tasks, we adopt one of
the standard assumptions in the literature, that of a shared-feature representation. More specifically,
this representation will take the form of a small subset of the features that contains the relevant
variables for every task (although we can consider other constraints on the set of relevant features).

Definition 1 (Multitask Learning under Shared-Feature Representation) Let C be a class of
functions f : {±1}d → {±1} and let V ⊆ 2[d] be a collection of subsets of [d]. We say that
C is V-multitask learnable for a class of distributions D with n tasks, m samples-per-task, and
accuracy parameters ε, δ ∈ (0, 1) if there exists algorithm A such that ∀f (1), . . . , f (n) ∈ C that
satisfy

⋃
i∈[n]Rel(f

(i)) ∈ V , ∀D(1), . . . , D(n) ∈ D, given m i.i.d. samples from each D(i) labeled
by f (i), returns hypotheses h(1), . . . , h(n) such that with probability at least 1− δ over the samples
and the algorithm, avg-error(h(1), . . . , h(n)) ≤ ε, i.e., 1

n

∑
i∈[n] Pr(x,y)∼D(i) [h(i)(x) ̸= y] ≤ ε.

Note that, under this definition, it is not required that all features in V are relevant for all tasks
but rather that for each task, the relevant features belong in V .

Instead of minimizing the average error among all n tasks, another natural but stronger require-
ment would be to minimize the maximum error per task: maxi∈[n] error

(i). This cannot be achieved
under the shared-feature representation assumption in the general case. Suppose that the last n− 1
tasks only depend on a single variable whereas the first task depends on the remaining k − 1 relevant
variables. In this case, only the samples of S(1) are informative for the first task and so returning a
hypothesis h(1) with error(1)(h(1)) ≤ ε would require m to be as large as required for the single-task
setting (for example, for (k − 1)-sparse halfspaces, m = O(k log(d))). This is in contrast to other
settings (e.g. the collaborative learning setting (Blum et al., 2017)) which however make much
stronger assumptions on the relationship between tasks.

Comparison with attribute-efficient learning We aim to study the computational efficiency
of multitask learning under a shared-feature representation of size k ≪ d together with sample
efficiency. If we are only concerned with sample complexity, we can solve the problem by brute-force
in poly(dk) time. If we are only concerned with computational complexity, then each user can learn
their own task given enough samples-per-task. Thus the most interesting regime is when we require
the number of samples in total and per task to be close to the information-theoretic minimum, and
require an algorithm running in time poly(d, k). In this regime, if we were to assume all users have
the same task, the problem would become exactly that of attribute efficient learning, and thus a
natural question is whether multitask learning can be harder than attribute efficient learning or not.

We give a formal definition of attribute-efficient learning (Littlestone, 1987) here. In Section 4,
we will construct a class of functions and distribution for which attribute-efficient learning is feasible
in polynomial time but multitask learning is not, unless the total number of samples is much larger.

Definition 2 (Attribute-Efficient Learning) Let C be a class of functions f : {±1}d → {±1}.
Let len(C) denote the description length of the class.2 We say that C is attribute-efficient learnable
for a class of distributions D with accuracy parameters ε, δ ∈ (0, 1), if there exists a poly(d)-time
algorithm A such that ∀f ∈ C, ∀D ∈ D, given s = poly(len(C)) samples from D labeled by f ,
returns a hypothesis h such that with probability at most 1− δ over the randomness of the sample
and the algorithm, Pr(x,y)∼D[h(x) ̸= y] ≤ ε.

2. We will use a binary encoding scheme.
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For example, in the case where the concept class C is the class of parity functions on at most k
features, the size of the class is |C| = O

((
d
k

)
· 2k
)

and its description length is len(C) = log |C| =
O(k log(d)). So in this case, attribute-efficient learning C would require a learning algorithm with
sample complexity s = poly(k log(d)). As mentioned above, under the assumption that there
exists a shared-feature representation of size k ≪ d, multitask learning with n tasks and m = s/n
samples-per-task is strictly more general and is reduced to the attribute-efficient setting when all
tasks have the same classifier and distribution over unlabeled examples. In this example, we would
be interested in designing a multitask learning algorithm with n tasks, each having a (potentially
different) parity function over a subset of the shared features V ⊆ [d], |V | ≤ k, and a distribution
D(i) over {±1}d × {±1}, with m = poly(k log(d))/n samples-per-task. What is more, since we
consider the total number of features d to be too high, we would be interested in multitask learning
algorithms which are accurate even in the regime where m≪ log(d) < s.

3. Efficient multitask learning of halfspaces

In this section, we present a multitask learning algorithm for the case where each task is a large-
margin halfspace classifier over some subset of a common set of features V ⊆ [d] such that |V | ≤ k.
For each task i ∈ [n], we have a function f (i) : {±1}d → {±1} of the form f (i)(x) = sign(θ(i) · x),
where θ(i) ∈ Rd. For simplicity, we only consider linear separators. Furthermore, we assume that
each task’s classifier f (i) is such that no example x falls too close to the boundary of the halfspace
θ(i). That is, we assume that all classifiers f (i) are halfspaces with margin γ, as defined below.

Definition 3 For any f : {±1}d → {±1} a classifier of the form f(x) = sign(θ · x), we say that
such an f is a halfspace with margin γ with respect to a distribution D if it holds that |θ·x|

∥θ∥2 ≥ γ for
all x ∈ supp(D). We call γ the margin.

Note that this is a weaker condition than the standard large-margin assumption that is used in single-
task learning. The standard large-margin assumption requires that |θ·x|

∥θ∥2∥x∥2 ≥ γ for all x ∈ Supp(D).

In our setting ∥x∥2 =
√
d and thus our assumption is weaker. In fact, under the standard assumption,

a single task can already be solved using a sample size of Õ(1/γ2ε) (see (Blum, 2006) and references
therein), which is independent of d, yet if we executed the same analysis under our assumption the
bound would translate to Õ(d/γ2ε)

Remark 1 (Example margin: Sparse integer weighted halfspaces) One simple class of halfspaces
with large margin are k-sparse halfspaces with bounded integer weights. More formally, let D be
any distribution over {±1}d+1 where, for x ∼ D, xi+1 = 1 with probability 1 (the last index is used
to encode a bias term). Consider any w ≥ 1, θ ∈ Rd+1 where θi is an integer in [−w,w] for all
i ≤ d, and θd+1 = 1/2. Then, for all x ∈ supp(D), |θ · x| ≥ 1/2. In particular, if θ is k-sparse,
then f(x) = sign(θ · x) has margin 1

2w
√
k

which notably is independent of d.

The main theorem of this section is the following.

Theorem 3 (Large-margin halfspaces are multitask learnable) Let Vk = {V ⊆ [d] | |V | ≤
k}. Let D be a class of distributions and Cγ be the class of halfspaces with margin γ with

respect to every D ∈ D (Definition 3). For any ε, δ ∈ (0, 1), m = Ω
(
k2 log2(1/ε)

γ2ε

)
, nm =
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Ω
(
k2 log(d) log(1/ε)

γ2ε
+ log(1/δ)

ε

)
, class Cγ is Vk-multitask learnable for distributions D with n tasks,

m samples-per-task, and accuracy parameters ε, δ ∈ (0, 1), in time O(nmdk2 log(1/ε)
γ2 ).

In particular, if n = Ω(log d) and δ = d−O(1), having m = O(k
2 log2(1/ε)

γ2ε
) samples-per-task suffices.

To prove Theorem 3, we need the next fact, ensuring that large-margin classifiers have a feature that
is highly correlated with the label. This feature will serve as a weak learner in our analysis.

Fact 1 (Discriminator Lemma) Let f : {±1}d → {±1} be a halfspace classifier over features in
V , such that |V | ≤ k. That is, f(x) = sign(θ · x) and θj = 0 for all j /∈ V . If f has margin γ w.r.t.
D, there exists a feature ℓ ∈ V such that

∣∣E(x,y)∼D[f(x) · xℓ]
∣∣ ≥ γ√

k
.

There exist several similar statements in the literature, see for example (Hajnal et al., 1993). We
prove this version in Appendix A.1 for completeness. Our simultaneous boosting algorithm will use
a generalization of this fact, stated in Lemma 1 below and proven in Appendix A.2.

BOOST(S(1), . . . , S(n),H, t) :

Input: Samples S(1), . . . , S(n) each with m points, a concept classH, and a step count t.
Output: A hypothesis for each of the n tasks.

Initialize the hypotheses h(1), . . . , h(n) each to the constant 0 functions.

Repeat t times:

1. (Reweight points). For each i ∈ [n] and j ∈ [m], set w(i)
j = exp(−y(i)j · h(i)(x

(i)
j ))

and for each i ∈ [n] set W (i) =
∑

j∈[m]w
(i)
j .

2. (Choose a weak learner). Choose h⋆ to maximize

h⋆ = argmax
h∈H

∑
i∈[n]

W (i) ·

∑
j∈[m]

w
(i)
j

W (i)
· y(i)j h(x

(i)
j )

2

(1)

3. (Update hypotheses). For each i ∈ [n], update h(i) ← h(i) + α(i) · h⋆ where

α(i) =
1

2
ln

∑j∈[m]w
(i)
j · 1[y

(i)
j = h⋆(x

(i)
j )]∑

j∈[m]w
(i)
j · 1[y

(i)
j ̸= h⋆(x

(i)
j )]

 .

Output h(1), . . . , h(n).

Figure 1: Pseudocode for simultaneous boosting

Definition 4 (Simultaneous weak-learning assumption) A class of weak learners,H, satisfies the
Γ-simultaneous weak-learning assumption for functions f (1), . . . , f (n){±1}d → {±1} w.r.t. to a

7
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class of distributions D, if for all input distributions D(1), . . . , D(n) ∈ D and nonnegative weights
w1, . . . , wn, there exists h ∈ H satisfying

∑
i∈[n]wi · E(x,y)∼D(i) [f (i)(x)h(x)]2 ≥ Γ ·

∑
i∈[n]wi.

Lemma 1 (Simultaneous discriminator lemma) Let f (1), . . . , f (n) : {±1}d → {±1} be halfs-
paces over a set of features V ⊆ [d], such that |V | ≤ k, and that have margin γ w.r.t. every distribu-
tion in a class D. Then, the class of single feature projection functions,Hproj := {x 7→ xℓ | ℓ ∈ [d]}
satisfies the (Γ = γ2

k2
)-simultaneous weak-learning assumption for functions f (1), . . . , f (n) w.r.t D.

Lemma 2 (Simultaneous boosting fits a training set) For any samples S(1), . . . , S(n) of size m,
weak-learning classH, and number of steps t, let BOOST(S(1), . . . , S(n),H, t) return h(1), . . . , h(n).
For each s ∈ [t], let Γs ∈ [0, 1] be unique value that satisfies the following expression when h⋆ is
chosen in the sth iteration:

∑
i∈[n]

W (i) ·

∑
j∈[m]

w
(i)
j

W (i)
· y(i)j h⋆(x

(i)
j )

2

= Γs ·
∑
i∈[n]

W (i)

Then,
1

nm

∑
i∈[n]

∑
j∈[m]

1[sign(h(i)(x
(i)
j )) ̸= y

(i)
j ] ≤

∏
s∈[t]

(
1− Γs

2

)
.

Note that Γs is defined in such a way that, ifH satisfies the Γ-simultaneous weak-learning assumption,
then Γs ≥ Γ for all iterations. The proof of Lemma 2 is in Appendix A.3

As an immediate corollary, if H satisfies the simultaneous weak-learning assumption, for an
appropriate choice of t, simultaneous boosting will fit the training set with almost perfect accuracy.

Corollary 1 Let any functions f (1), . . . , f (n) and H be a class of weak-learners satisfying the
Γ-simultaneous weak-learning assumption for f (1), . . . , f (n). Then, for any samples S(1), . . . , S(n)

of size m labeled by f (1), . . . , f (n) and t = O
(
log(1/ε)

Γ

)
, BOOST(S(1), . . . , S(n),H, t) returns

hypotheses h(1), . . . , h(n) such that ̂avg-error(h(1), . . . , h(n)) ≤ ε. 3

We also bound the running time of simultaneous boosting. We include the proof in Appendix A.4.

Proposition 1 (Running time) The running time of BOOST(S(1), . . . , S(n),H, t) when each S(i)

has m samples is O(nmt|H|).

The last step in proving Theorem 3 is bounding the generalization error. We first prove a general
theorem on bounding generalization in the multitask setting using VC dimension in Section 3.1 and
then apply it to learning large-margin halfspaces to complete our proof in Appendix A.9.

3. For conciseness, here we slightly abuse notation by writing ̂avg-error(h(1), . . . , h(n)) to denote the average training
error of the classification functions sign(h(i)(x)).

8
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3.1. Generalization based on VC dimension

The goal of this section is to prove the following theorem bounding the number of samples needed to
generalize in the multitask setting. The formal version is given in Theorem 5.

Theorem 4 (Generalization in the multitask setting) Let C be a class of functions f : {±1}d →
{±1} and V ⊆ 2[d] be subsets of features. For VC(C | V) as defined in Definition 8, any ε, δ ∈ (0, 1),
and m = O

(
VC(C | V) · log(1/ε)ε

)
, nm = O

(
log |V|+log(1/δ)

ε

)
, given random size-m samples

for each of n tasks, any h(1), . . . , h(n) ∈ C with a shared-feature representation V ∈ V with
̂avg-error(h(1), . . . , h(n)) ≤ ε, will have avg-error(h(1), . . . , h(n)) ≤ 4ε with probability 1− δ.

VC(C | V) will correspond to the VC dimension of the concept class once a representation is fixed. It
can be substantially smaller than VC(C). For example, if C is the set of all k-sparse halfspaces, then
VC(C) = Θ(k log d). However, if all n tasks correspond to a halfspace over the same k features,
then we take V := {V ⊆ 2[d] | |V | ≤ k}, and have VC(C | V) = k + 1. Once a representation is
fixed, C just corresponds to halfspaces over a set of k features, which has VC dimension Θ(k).

Theorem 4 roughly speaking, says that each task need only have enough samples to learn
assuming the representation V ∈ V is already known, and the total number of samples should be
enough to learn which representation V is used. We begin with some basic definitions.

Definition 5 (Generalization failure probability, single-task setting) For a concept class C of
functions f : X → {±1}, distribution D over X × {±1}, error parameter ε > 0, and sam-
ple size m, we define δgen(C,m, ε,D) to be the probability, over a random sample S of m points
from D, that there exists some f ∈ C that has at most ε error on the sample S but for which
Pr(x,y)∼D[f(x) ̸= y] ≥ 4ε. We define the generalization failure probability of C with sample size m
and error parameter ε to be δgen(C,m, ε) := supdistribution D δgen(C,m, ε,D).

Any algorithm that returns a hypothesis h ∈ C with less than ε error on m random samples will learn
to error < 4ε with probability at least 1− δgen(C,m, ε). We extend this notion to multitask learning.

Definition 6 (Generalization failure probability, multitask setting) For a concept class C of func-
tions f : {±1}d → {±1}, V ⊆ 2[d] a collection of subsets of features, distributions D(1), . . . , D(n)

over {±1}d × {±1}, error parameter ε, number of tasks n, and samples-per-task m, we define
δgen(C,V, n,m, ε,D(1), . . . , D(n)) to be the probability over random samples S(i) ∼ (D(i))m,
i ∈ [n], that there are h(1), . . . , h(n) ∈ C satisfying

⋃
i∈[n]Rel(h

(i)) ∈ V for which simul-
taneously ̂avg-error(h(1), . . . , h(n)) ≤ ε but avg-error(h(1), . . . , h(n)) ≥ 4ε. Then, we define,
δgen(C,V, n,m, ε) := supdistributions D(1),...,D(n) δgen(C,V, n,m, ε,D(1), . . . , D(n)).

Once again, any algorithm that returns hypotheses h(1), . . . , h(n) with average error at most ε
on the training set, will, given m samples per task, with probability 1 − δgen(C,V, n,m, ε), learn
hypotheses with avg-error(h(1), . . . , h(n)) < 4ε. We extend classical results bounding δgen(C,m, ε)
based on VC dimension to the multitask setting. We begin with the basic definitions of VC theory.

Definition 7 (VC dimension (Vapnik and Chervonenkis, 1971)) For any concept class C and do-
main X , the shattering number of n points is ΠC(n) := maxx1,...,xn∈X |{(c(x1), . . . , c(xn)) : c ∈ C}| ,
i.e., the maximum number of unique assignments functions in the concept class can take on a set of n
points. The VC dimension of C, denoted VC(C) := sup{d ∈ N : ΠC(d) = 2d}, is the cardinality of
the largest data set for which every unique assignment to that set is satisfied by a function in C.

9
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In the multitask setting, rather than scaling with the VC dimension of C, the number of samples
needed per task will scale with the VC dimension after the representation is already known.

Definition 8 (VC dimension given representation) Given a concept class C ⊆ {f : {±1}d →
{±1}} and V ⊆ 2[d] a collection of subsets of features, for any V ⊆ [d], let (C | V ) := {f ∈
C : Rel(f) ⊆ V }, be the concepts consistent with a shared representation V . We define the VC
dimension of C given the representation V to be VC(C | V) := maxV ∈V VC(C | V ).

We are most interested in settings where VC(C | V) ≪ VC(C). We can now formalize the main
result of this section.

Theorem 5 (Generalization bound in the multitask setting, formal version of Theorem 4) Given
a concept class C of functions f : {±1}d → {±1}, V ⊆ 2[d] a collection of subsets of features, and
accuracy parameters ε, δ, set m = O

(
VC(C | V) · log(1/ε)ε

)
, and n s.t. nm = O

(
log |V|+log(1/δ)

ε

)
.

Then δgen(C,V, n,m, ε) ≤ δ.

The proof of Theorem 5 follows Blumer, Ehrenfeucht, Haussler, and Warmuth’s classical VC
generalization bounds (Blumer et al., 1989), with appropriate modifications made for the multitask
setting. To do so, we need to define an extension of shattering numbers to the multitask setting.

Definition 9 For any function f : X → Y and sample S = (x1, . . . , xm) ∈ Xm, we use f(S) as
shorthand for the vector (f(x1), . . . , f(xm)). For any concept class C of functions f : {±1}d →
{±1} and V ⊆ 2[d] a collection of subsets of features, we define the shattering number for n tasks
and m samples-per-task, denoted ΠC,V(n,m), to be

max
S(1),...,S(n)∈({±1}d)m

∣∣∣{(f (1)(S(1)), . . . , f (n)(S(n))) : f (1), . . . , f (n) ∈ C and ∪i∈[n] Rel(f (i)) ∈ V
}∣∣∣

to be the maximum number of unique assignments for n tasks each with m data points.

We can now state the main technical lemma of this section.

Lemma 3 For any concept class C of functions f : {±1}d → {±1}, V ⊆ 2[d] a collection of
subsets of features, error parameter ε > 0, number of tasks n, and samples-per-task m, if nmε ≥ 2,
then δgen(C,V, n,m, ε) ≤ 2 ·ΠC,V(n, 2m) · exp (−nmε/10) .

We’ll collect two basic probability facts that will be used in the proof of Lemma 3.

Fact 2 (Application of Chebyshev’s inequality) Let x be a random variable in R with mean µ

and for which Var[x] ≤ µ2

8 . Then, Pr [x ≥ µ/2] ≥ 1
2 .

The second fact we need is a slight twist on standard Chernoff bounds. We prove it in Appendix A.5.

Proposition 2 For any m,n, ℓ ∈ N, suppose there are n groups of 2m items, and of the 2nm items,
ℓ are marked. If we uniformly select m items from each of the n groups without replacement, the
probability at least 2ℓ

3 items are selected in total is at most exp(−ℓ/20)).

The proof of Lemma 3 in Appendix A.6 mostly follows the exposition in (Kearns and Vazirani,
1994, §3.5.2) of (Blumer et al., 1989)’s classic result, with appropriate modifications for the multitask
setting.

We are now nearly ready to prove Theorem 5. As in classical VC theory, we’ll apply the
Sauer-Shelah Lemma.

10
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Fact 3 (Sauer-Shelah Lemma (Sauer, 1972; Shelah, 1972)) For any concept class C and sample-
size m ≥ VC(C), ΠC(m) ≤

(
em

VC(C)

)VC(C)
.

We’ll plug in Fact 3 as a blackbox into the following proposition, which we prove in Appendix A.7,
to bound shattering numbers in the multitask setting.

Proposition 3 For any concept class C of functions f : {±1}d → {±1}, V ⊆ 2[d] a collection of
subsets of features and sample size m ≥ VC(C | V),

ΠC,V(n,m) ≤
∑
V ∈V

(Π(C|V )(m))n ≤ |V| ·
(

em

VC(C | V)

)n·VC(C|V)
.

Theorem 5 is an easy consequence of Lemma 3 and Proposition 3 (proven in Appendix A.8).
Then, in Appendix A.9, we apply the machinery from Section 3.1 to complete the proof of Theorem 3.

4. Lower Bound

We present a lower bound that separates attribute-efficient learning from multitask learning with
near-optimal computational and sample efficiency. We start with a function class Ck, which contains
exactly one function gV for each subset of features V of size at most k. Therefore, knowing the set
of relevant features V suffices to learn the function gV . Now, we assume that our dataset consists
of samples whose label is either a bit from a t-secret sharing scheme with probability ε, where the
secret is V , or the output of the original function gV from Ck otherwise. We show that this new
function class C(t)k is attribute-efficient learnable for this data distribution because, for number of
samples that is linear in the description length of the function class len(C(t)k ) , we see all the bits
of all the t shares with high probability. In this way, we can recover the secret V , which uniquely
identifies the labeling function. In the multitask setting, every user has their own function from C(t)k ,
corresponding to different subsets of features V (1), . . . , V (n). We consider the case where every user
has t− 1 samples, so recovering the secret through the shares is impossible. Assuming that the total
number of samples is less than the number of samples that are necessary to learn Ck in poly(d) time,
we prove that, by ignoring the shares and using only the rest of the samples, we can multitask learn
C(t)k for the same data distribution in time dkpoly(d), but we cannot multitask learn it in any poly(d)
time.

Let us now describe our construction in more detail. For k ∈ N, the function class Ck is a class
of Boolean functions gV : {±1}d → {±1} that depend only on the variables in set V ∈ V , where
V = {V ⊆ [d] | |V | ≤ k}. Namely, Ck = {gV : {±1}d → {±1} : V ∈ V}. For example, Ck could
be the class of parity functions over at most k variables, that is, gV (x) =

∏
i∈V xi when |V | ≤ k.

We can describe the set V using a string Ṽ in {±1}k(log(d)+1). More specifically, we encode
every coordinate in V into a {±1} string of length log(d) and use the extra first (most significant)
bit to denote that this is a valid coordinate by setting it to +1. If |V | ≤ k, then we encode each
of the remaining k − |V | coordinates into a string of length log(d) + 1 that consists only of −1.
Since the binary string Ṽ uniquely identifies the corresponding gV , the description length of Ck is
len(Ck) = k(log(d) + 1).

For our lower bound, we consider that set V is a secret that we want to share using a simple
secret-sharing scheme. A t-secret sharing scheme “hides” the secret in t shares so that: (1) the secret
can be reconstructed using the t shares, and (2) the secret cannot be reconstructed with the knowledge

11
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of any t− 1 or fewer shares. In addition to the secret V , our scheme will receive as input a vector
r ∈ {±1}tk(log(d)+1), which represents the randomness of the scheme. For every p ∈ [t] we denote
the pth share of the secret-sharing scheme with input secret V , randomness vector r, and threshold t,
by sharet(V ; r)p. It is generated as follows:

sharet(V ; r)p =

{(
r(p−1)k(log(d)+1)+1, . . . , rpk(log(d)+1)

)
, if p ∈ [t− 1]

((
∏t−1

p′=1 r(p−1)k(log(d)+1)+1) Ṽ1, . . . , (
∏t−1

p′=1 rpk(log(d)+1)) Ṽk(log(d)+1)), if p = t.

To reconstruct the secret, we compute (
∏t

p=1 sharet(V ; r)p,1, . . . ,
∏t

p=1 sharet(V ; r)p,k(log(d)+1))

which must be equal to Ṽ . Then, we split the string into k substrings of length log(d) + 1 and
interpret each separately. If a substring starts with −1, we ignore it. Otherwise, we ignore the first
bit and consider that the element whose binary encoding we see is in V .

Using this secret sharing scheme, we define the class of functions C(t)k and distribution Eε, for
which we prove the separation of Theorem 7 as follows:

Definition 10 Given function class Ck, we define the class C(t)k = {fV,r | V ∈ V and r ∈
{±1}tk(log(d)+1)} of functions fV,r : {±1}d+log(tk(log d+1))+1 → {±1} defined by

fV,r(x, p, q, b) =

{
sharet(V ; r)p,q, if b = 1

gV (x), if b = −1,

where gV ∈ Ck, q ∈ {±1}log(k(log d+1)) and p ∈ {±1}log(t) indicate the qth bit of the pth share.

Definition 11 We let distribution Eε = Ber(1/2)log(tk(log(d)+1)) × Ber(ε), where Ber(ε) denotes
the Bernoulli distribution with support {±1} and parameter ε.

We draw (p, q, b) from Eε. That is, p and q are chosen uniformly at random, whereas the bit b = 1
with probability ε and −1 otherwise.We now state our separation in Theorem 6 and Theorem 7,
which we prove in Appendix B.1 and Appendix B.2 respectively.

Theorem 6 Function class C(t)k (Definition 10) is attribute-efficient learnable for the class of dis-
tributions D′ over labeled examples, where each example’s features are drawn from Dx × Eε s.t.
Dx ∈ ∆({±1}d) and Eε as in Definition 11, with accuracy parameters (ε, δ), sample complexity
N = Õ

(
tk log(d) log(1/δ)ε

)
= Õ(len(C(t)k )), and time complexity O(N).

Theorem 7 Assume that at least s ≤ a(d) examples are necessary to learn class Ck in poly(d) time
for distribution D over labeled examples, where a(d) is a polynomial in d and the features are drawn
from Dx ∈ ∆({±1}d), for all accuracy parameters ε ∈ (0, 1/2), δ ∈ (0, 1). Let set of subsets
V(t)k = {V = Vx∪{d+1, . . . , d+log(tk(log d+1))+1} | Vx ⊆ [d], |Vx| ≤ k}. Then for distribution
D′, where the features are drawn from Dx × Eε, and n tasks with m ≥ O

(
k
ε log(

1
ε ) log(

n
δ )
)

samples-per-task, such that O
(
1
ε (k log(d) + log(1δ ))

)
≤ nm < s, class C(m+1)

k is V(m+1)
k -multitask

learnable in (2d)ka(d) time with accuracy parameters (2ε, δ), but C(m+1)
k is not V(m+1)

k -multitask
learnable in any poly(d) time with accuracy parameters ( ε

32 , δ).
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For threshold t = m+ 1, Theorem 6 says that for N ≥ Õ(mk
ε log(d) log(1δ )), samples we can

attribute-efficient learn C(m+1)
k for distribution over the features of the examples Dx × Eε with

parameters (ε, δ). But by Theorem 7, for nm = N ∈ [O(1ε (k log (d) + log (1δ ))), s) samples we

cannot V(m+1)
k -multitask learn C(m+1)

k for the same distribution in polynomial time with parameters
(ε/32, δ). Combining the two theorems, we see that we can attribute-efficient learn C(m+1)

k but not
multitask learn it in polynomial time with respect to the size of the input, when each task has m
samples for m ∈

[
O
(
k
ε log(

1
ε ) log(

n
δ )
)
, Õ
(

ε·s
k log d log ( 1

δ
)

))
.

Learning k-sparse parities. To make the result more concrete we look at the case where Ck
consists of k-sparse parities. The best known polynomial time algorithms to learn this Ck require
Ω(d1−1/k) samples (Klivans and Servedio, 2006). If d1−1/k samples are required to learn this class
in polynomial time, then for N ∈

[
Õ(k

2 log (d)
ε2

log (1δ ) log (
n
δ )), d

1−1/k
)

samples we can multitask

learn C(m+1)
k in (2d)ka(d) time for m = O(kε log (

1
ε ) log (

n
δ )) and attribute-efficient learn it in some

poly(d) time, but we need more samples in total to multitask learn it in any poly(d) time.
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Appendix A. Proofs from Section 3

A.1. Proof of Fact 1

Proof By assumption, ∀x ∈ supp(D), |θ·x|
∥θ∥2 ≥ γ. Then,

∥θ∥2γ ≤ E
(x,y)∼D

[|θ · x|]

= E
(x,y)∼D

[f(x) · θ · x]

=
∑
j∈V

(θj E
(x,y)∼D

[f(x) · xj ])

≤ ∥θ∥1max
j∈V
| E
(x,y)∼D

[f(x) · xj ]|

The proof is complete by observing that ∥θ∥2
∥θ∥1 ≥

1√
|V |
≥ 1√

k
.

15
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A.2. Proof of Lemma 1

Proof Let Hrelevant ⊆ Hproj be the projection functions corresponding to the |V | ≤ k relevant
features. Then,

max
h∈Hrelevant

∑
i∈[n]

wi · E
x∼D(i)

[f (i)(x)h(x)]2

 ≥ 1

|Hrelevant|
·

∑
h∈Hrelevant

∑
i∈[n]

wi · E
x∼D(i)

[f (i)(x)h(x)]2

≥ 1

k
·
∑
i∈[n]

wi · max
h∈Hrelevant

(
E

x∼D(i)
[f (i)(x)h(x)]2

)

≥ 1

k
·
∑
i∈[n]

wi ·
γ2

k
(Fact 1)

≥ γ2

k2
(
∑

i∈[n]wi = 1)

A.3. Proof of Lemma 2

Proof For each s ∈ [t], let h(1)s , . . . , h
(n)
s be the hypothesis at the end of the s(th) iteration, with

s = 0 use to denote the start of the algorithm. We will track the exponential loss,

Ls :=
∑
i∈[n]

∑
j∈[m]

exp
(
−y(i)j · h

(i)
s (x

(i)
j )
)
.

We will prove, by induction, that Ls ≤ nm ·
∏

s∈[t]
(
1− Γs

2

)
. The base case of s = 0 holds with

equality. For any s ≥ 1, let w(i)
j and W (i) be the weights during the sth iteration. Then,

Ls =
∑
i∈[n]

∑
j∈[m]

exp
(
−y(i)j · h

(i)
s (x

(i)
j )
)

=
∑
i∈[n]

∑
j∈[m]

exp
(
−y(i)j ·

(
h
(i)
s−1(x

(i)
j ) + α(i)

s · h⋆s(x
(i)
j )
))

=
∑
i∈[n]

∑
j∈[m]

w
(i)
j · exp

(
−y(i)j · α

(i)
s · h⋆s(x

(i)
j )
)
.

For each i ∈ [n], we’ll use the shorthand:

W (i)
= :=

∑
j∈[m]

w
(i)
j · 1[y

(i)
j = h⋆(x

(i)
j )],

W
(i)
̸= :=

∑
j∈[m]

w
(i)
j · 1[y

(i)
j ̸= h⋆(x

(i)
j )].
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Hence,

Ls =
∑
i∈[n]

W (i)
= · exp(−α(i)

s ) +W
(i)
̸= · exp(α

(i)
s )

=
∑
i∈[n]

W (i)
= ·

√√√√W
(i)
̸=

W
(i)
=

+W
(i)
̸= ·

√√√√W
(i)
=

W
(i)
̸=

=
∑
i∈[n]

2

√
W

(i)
= ·W (i)

̸=

Note that W (i)
= +W

(i)
̸= = W (i). For each i ∈ [n], we define

γ(i) :=
∑
j∈[m]

w
(i)
j

W (i)
· y(i)j h⋆(x

(i)
j ).

and observe W
(i)
= −W

(i)
̸= = W (i) · γ(i). As a result, we have that W (i)

= = W (i)/2 · (1 + γ(i)) and

W
(i)
̸= = W (i)/2 · (1− γ(i)). Continuing,

Ls =
∑
i∈[n]

2

√
W

(i)
= ·W (i)

̸=

=
∑
i∈[n]

W (i) ·
√
(1 + γ(i)) · (1− γ(i))

≤
∑
i∈[n]

W (i) · (1− (γ(i))2

2
)

= Ls−1 −
∑
i∈[n]

W (i) · (γ
(i))2

2

= Ls−1 −
1

2
·
∑
i∈[n]

W (i)

∑
j∈[m]

w
(i)
j

W (i)
· y(i)j h⋆(x

(i)
j )

2

= Ls−1 −
Γs

2
·
∑
i∈[n]

W (i)

= Ls−1 ·
(
1− Γs

2

)
(
∑

i∈[n]W
(i) = Ls−1)

Hence, we have that Lt ≤ nm ·
∏

s∈[t]
(
1− Γs

2

)
. The desired holds because classification error

is upper bounded by Lt/(nm).

A.4. Proof of Proposition 1

Proof The running time is dominated by finding which weak-learner maximizes Equation (1). To
do so so, we can loop over all |H| weak-learners and compute their advantage, which takes time
O(nm). This must be done in each of t iterations, given a total runtime of O(nmt|H|).
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A.5. Proof of Proposition 2

Proof The expected number of items selected is µ = ℓ/2. First, suppose that we selected the items
with replacement. Then, whether each marked item is selected is independent. In this setting, by a
standard Chernoff bound, we have that the probability at least 2ℓ

3 = (1 + 1
2)µ items are selected is at

most exp(−µ/10) = exp(−ℓ/20).
At a high level, sampling without replacement can only improve this bound. In more detail, let X

be the number of marked items selected when sampling with replacement, and Y be for the setting of
sampling without replacement. The only information about X needed for the above Chernoff bound
to hold is an upper bound on the moment generating function E[eλX ] for appropriately chosen λ. It
is therefore sufficient to argue that E[eλY ] ≤ E[eλX ] for every λ ∈ R.

Let x1, . . . ,xn and y1, . . . ,yn be random variables indicating the number of marked items
selected from each of the n groups when sampling with replacement and without replacement
respectively. As x1, . . . ,xn are independent,

E[eλX ] =
∏
i∈[n]

E[eλxi ].

Similarly y1, . . . ,yn are independent, as the items selected in one group do not effect the items
selected in other groups, so,

E[eλY ] =
∏
i∈[n]

E[eλyi ].

It is therefore sufficient to prove thatE[eλyi ] ≤ E[eλxi ] for each i ∈ [n]. This is proven in (Hoeffding,
1994, Theorem 4), which states that sampling without replacement can only decrease the moment
generating function.

A.6. Proof of Lemma 3

Proof Fix distributions D(1), . . . , D(n) each over {±1}d × {±1}. For each i ∈ [n], let S(i) ∼
(D(i))m be a size-m random sample, and let A be the event that there are h(1), . . . , h(n) ∈ C
satisfying

⋃
i∈[n]Rel(h

(i)) ∈ V for which

1. At most ε-fraction of points in S are misclassified:∑
(x,y)∈S(i)

1[h(i)(x) ̸= y] ≤ nmε.

2. The population error satisfies avg-error(h(1), . . . , h(n)) ≥ 4ε, i.e.,

1

n

∑
i∈[n]

ε(i) ≥ 4ε where ε(i) := Pr
(x,y)∼D(i)

[h(i)(x) ̸= y].

Our goal is to upper bound Pr[A]. Suppose we draw fresh samples T (i) ∼ (D(i))m for each
i ∈ [n]. Let z(i)j indicate whether h(i) misclassifies the jth point in T (i). Then, z(i)j ∼ Ber(ε(i)), and
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the z
(i)
j are independent across i ∈ [n], j ∈ [m]. Using Z =

∑
i∈[n],j∈[m] z

(i)
j to indicate the total

number of points misclassified on the fresh samples, we have

E[Z] = m
∑
i∈[n]

ε(i) ≥ 4nmε.

Var[Z] = m
∑
i∈[n]

ε(i)(1− ε(i)) ≤ E[Z].

Applying Fact 2, as long as 4nmε ≥ 8, Pr[Z ≥ 2nmε] ≥ 1
2 . Let B be the event, depending on

both the original S samples and the fresh T samples, that there are h(1), . . . , h(n) ∈ C satisfying⋃
i∈[n]Rel(h

(i)) ∈ V meeting the following three criteria.

1. At most ε-fraction of points in S are misclassified:∑
i∈[n]

∑
(x,y)∈S(i)

1[h(i)(x) ̸= y] ≤ nmε.

2. The average test error is at least 4ε:

1

n

∑
i∈[n]

Pr
(x,y)∼D(i)

[h(i)(x) ̸= y] ≥ ε.

3. At least 2ε-fraction of points in T are misclassified:∑
i∈[n]

∑
(x,y)∈T (i)

1[h(i)(x) ̸= y] ≥ 2nmε.

Due to the first two criteria, B can only occur if A occurs. Furthermore, Pr[B | A] = Pr[Z ≥
2nmε] ≥ 1

2 . As a result, we have that

2Pr[B] = 2(Pr[B | A] Pr[A]) ≥ 2(
1

2
Pr[A]) = Pr[A].

Therefore, in order to upper bound Pr[A], it is sufficient to upper bound Pr[B]. Indeed we will show
that just the first and third criteria of B are unlikely to occur together.

We consider an alternative and equivalent generation process for the samples. For each task
i ∈ [n], we draw 2m samples from D(i). Then, we partition half of those samples into S(i) and the
other half into T (i).

Consider a single possible labeling for all 2nm points. Let ℓ be the total number of misclassified
points, and ℓS and ℓT be the number of misclassified points that are partitioned into S and T
respectively. Then, in order for B to occur, it must be the case that ℓS ≤ nmε and ℓT ≥ 2nmε. In
particular, this implies that ℓ ≥ 2nmε and ℓT

ℓ ≥
2
3 .

By Proposition 2, for a single labeling of the 2nm points, B occurs with probability at most
exp(−nmε

10 ). There are only ΠC,V(n, 2m) possible labelings for the 2nm points. Therefore, we can
upper bound,

Pr[A] ≤ 2Pr[B] ≤ 2 ·ΠC,V(n, 2m) · exp (−nmε/10) .
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A.7. Proof of Proposition 3

Proof First, we prove the first inequality. For any V ∈ V , given that
⋃

i∈[n]Rel(f
(i)) = V , the

number of unique ways that f (i) can classify a sample of size m is at most Π(C|V )(m). Therefore,
the total ways to classify all nm points is at most (Π(C|V )(m))n. Summing over all V ∈ V gives us
the desired upper bound.

To prove the second inequality, we just plug in Fact 3, giving Π(C|V )(m) ≤
(

em
VC(C|V)

)VC(C|V)

A.8. Proof of Theorem 5

Proof For the m,n given, we’ll have m ≥ VC(C | V), so Proposition 3 applies, and nmε ≥ 2, so
Lemma 3 applies. Therefore,

δgen(C,V, n,m, ε) ≤ 2 ·ΠC,V(n, 2m) · exp (−nmε/10) (Lemma 3)

≤ 2|V| ·
(

2em

VC(C | V)

)n·VC(C|V)
· exp (−nmε/10) (Proposition 3)

By setting m = O
(
VC(C | V) · log(1/ε)ε

)
, we have that

(
2em

VC(C | V)

)n·VC(C|V)
≤ exp (nmε/20) .

As a result, we can bound

δgen(C,V, n,m, ε) ≤ 2|V| · exp (−nmε/20)

which is at most δ when nm = O
(
log |V|+log(1/δ)

ε

)
, as desired.

A.9. Proof of Theorem 3

Proof Pick any f (1), . . . , f (n) ∈ Cγ with shared representation in Vk. By Lemma 1, the class of
projection functionsHproj := {x 7→ xℓ | ℓ ∈ [d]} satisfies the (Γ = γ2

k2
)-simultaneous weak-learning

assumption for f (1), . . . , f (n).
Let S(1), . . . , S(n) be samples of m points for each of the n tasks. By Corollary 1, for,

t = O

(
log(4/ε)

Γ

)
= O

(
k2 log(1/ε)

γ2

)
the output of BOOST(S(1), . . . , S(n),Hproj, t) will have average training error at most ε/4.

Next, we prove generalization. The hypotheses output by BOOST all depend on the same t
projection functions, so have a shared representation in Vt = {V ⊆ [d] | |V | ≤ t} which satisfies
log |Vt| = O(t log d). Once a representation V ⊆ [d] is fixed the class (Cγ | V ) consists of γ-margin
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halfspaces of the coordinates in V , which has VC dimension at most |V |. Therefore, VC(Cγ | V) ≤ t.
Applying Theorem 5 gives that, if n,m are chosen so that

m = O

(
t · log(1/ε)

ε

)
= O

(
k2 log2(1/ε)

γ2ε

)
,

nm = O

(
t log(d) + log(1/δ)

ε

)
= O

(
(k2/γ2) log(1/ε) log(d) + log(1/δ)

ε

)
,

then with probability 1 − δ, hypotheses h(1), . . . , h(n) output by BOOST(S(1), . . . , S(n),Hproj, t)
have avg-error(h(1), . . . , h(n)) ≤ ε.

Finally, the runtime is bounded by Proposition 1.

Appendix B. Proofs from Section 4

B.1. Proof of Theorem 6

Proof Let S be the input sample of size N = 8
ε tk(log(d) + 1) ln(2tk(log(d)+1)

δ ). Each labeled
example from S is of the form ((x, p, q, b), fV,r(x, p, q, b)) where x ∼ Dx, p and q are drawn
uniformly at random, and b ∼ Ber(ε). By the definition of the secret-sharing scheme, since V, r are
fixed, given all the bits of all the shares, that is, if ∀p, q, there exists x ∈ {±1}d such that example
(x, p, q, 1) ∈ S, then we can recover the secret V . We will describe the recovery algorithm at the end
of this proof.

We denote the number of examples with b = 1 by N1. Let Y1, . . . , YN1 be independent random
variables such that Yi = 1{bi = 1}, where bi is the value of b of the ith example and 1{A} is 1
when A is true and 0 otherwise. Then N1 =

∑N
i=1 Yi and E[N1] = εN . Let Hp,q be the event that

∄x : (x, p, q, 1) ∈ S, that is, the dataset does not include an example of the form (x, p, q, 1) for any
x ∈ {±1}d.

Pr [∃p, q Hp,q] ≤ Pr
[
∃p, q Hp,q|N1 ≥

ε

8
N
]
+ Pr

[
N1 <

ε

8
N
]

(2)

We first bound the first term of Equation (2). Since p, q are drawn uniformly at random, the probability
that a pair (p, q) is drawn is

(
2log(t)+log(k(log(d)+1))

)−1
= (tk(log(d) + 1))−1. By union bound we

have that

Pr
[
∃p, q Hp,q|N1 ≥

ε

8
N
]
≤ tk(log(d) + 1)Pr

[
Hp,q|N1 ≥

ε

8
N
]

≤ tk(log(d) + 1)

(
1− 1

tk(log(d) + 1)

) ε
8
N

= tk(log(d) + 1)

(
1− 1

tk(log(d) + 1)

)tk(log(d)+1) ln(2tk(log(d)+1)/δ)

(substituting for the value of ε
8N )

≤ tk(log(d) + 1)e− ln(2tk(log(d)+1)/δ) (since (1− 1/x)x ≤ e−x)

≤ δ

2
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We now turn to the second term of Equation (2). Since N > 8
ε ln

2
δ , it is easy to verify that

ε
2N >

√
2εN ln 2

δ . This implies that ε
8N < ε

2N < εN −
√
2εN ln(2/δ).

Recall that N1 =
∑N

i=1 Yi is a sum of independent random variables in {0, 1} and E[N1] = εN .

Let β =

√
2 ln(2/δ)

εN ∈ (0, 1), then

Pr

[
N1 <

εN

8

]
≤ Pr

[
N1 < εN −

√
2εN ln(2/δ)

]
= Pr [N1 < (1− β)εN ]

≤ e−β2εN/2

(by Chernoff bounds (Mitzenmacher and Upfal, 2017, Theorem 4.5))

=
δ

2
.

Overall, by Equation (2), we conclude that with probability at least 1− δ, the input sample includes
all pairs p, q.

The process of reconstructing the secret set V computes the product of the labels of the samples
with b = 1 per coordinate q for all p, ignoring possible duplicates, which takes time O(N) =

O
(
tk(log(d)+1)

ε ln
(
2tk(log(d)+1)

δ

))
. Then converts Ṽ to V in O(k(log(d)+1) time. After recovering

the secret V , our algorithm returns the unique function gV . Overall, the algorithm has time complexity
O
(
tk log(d)

ε ln
(
tk log(d)

δ

))
. The description length of the class C(t)k is len(C(t)k ) = log(|C(t)k |) =

log(|V| · 2tk(log(d)+1)) = O(tk log(d)). Thus, given polynomial in the description length of class
C(t)k examples, this algorithm runs in polynomial time in len(C(t)k ), and with probability 1− δ, returns
a hypothesis h = gV with error at most ε, that is,

Pr
(x,p,q,b)∼Dx×Eε

[h(x, p, q, b) ̸= fV,r(x, p, q, b)]

≤ Pr
(x,p,q)∼Dx×E

(1)
ε

[h(x, p, q, 1) ̸= fV,r(x, p, q, 1)] · ε

+ Pr
(x,p,q)∼Dx×E

(−1)
ε

[h(x, p, q,−1) ̸= fV,r(x, p, q,−1)]

≤ ε,

where E
(1)
ε and E

(−1)
ε correspond to distribution Eε conditioned on b = 1 and b = −1, respectively.

The parameter t is a free parameter that determines the description length of C(t)k and the time
and sample complexity correspondingly. However, for any t ∈ N, C(t)k is attribute-efficient learnable
with sample complexity poly(len(C(t)k )) and time complexity poly(len(C(t)k )), that is, polynomial in
the size of the input dataset.

B.2. Proof of Theorem 7

Proof We first prove that C(m+1)
k is V(m+1)

k -multitask learnable in exponential time in k log(d). We
consider that the given dataset is S = {(x(i)j , p

(i)
j , q

(i)
j , b

(i)
j , y

(i)
j )i∈[n],j∈[m]}, where (x(i)j , p

(i)
j , q

(i)
j , b

(i)
j , y

(i)
j )
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is drawn i.i.d. from D(i), that is (x(i)j , p
(i)
j , q

(i)
j , b

(i)
j ) ∼ Dx × Eε and y

(i)
j = f (i)(x

(i)
j , p

(i)
j , q

(i)
j , b

(i)
j ),

for f (i) ∈ C(t)k .
Every task i is associated with a set V (i) ⊆ Vx such that f (i)(x, p, q,−1) = gV (i)(x). The naive

algorithm iterates over every possible Vx ⊆ [d] of size k and for each task i ∈ [n] finds a V̂ (i) ⊆ Vx

that defines a function gV̂ (i) ∈ Ck that is consistent with the samples of this task with b = −1. In
more detail, in time O(

(
d
k

)
nm2k) ≤ O((2d)knm), this algorithm finds ĥ(1), . . . , ĥ(n) in Ck such that

ĥ(i)(x
(i)
j , p

(i)
j , q

(i)
j , b

(i)
j ) = y

(i)
j , ∀i ∈ [n] and j ∈ [m] s.t. b(i)j = −1.

We will now show that for any f (1), . . . , f (n) ∈ C(t)k and D(1), . . . , D(n) where the features
are drawn from Dx × Eε, with probability at least 1− δ over the samples the average error of the
functions ĥ(1), . . . , ĥ(n) is

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y] ≤ 2ε.

There are two ways the result is influenced by our decision to ignore samples with b = 1. Firstly,
when we draw a new sample to predict its label we have not learnt anything about the secret shares,
thus

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y] ≤

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y | b = −1] + ε. (Pr[b = 1] = ε)

Secondly, the number of samples we actually use is smaller than the number of samples we have in
total. Let L(i)(h) = Pr(x,p,q,b,y)∼D(i) [h(x, p, q, b) ̸= y | b = −1] be the error of function h when it
is used for task i . Then,

Pr
S

 1

n

∑
i∈[n]

L(i)(ĥ(i)) ≥ ε


≤ Pr

S

 1

n

∑
i∈[n]

L(i)(ĥ(i)) ≥ ε |

(
N−1 > O

(
k log(d) + log(3δ )

ε

))
∧
(
∀i ∈ [n] N

(i)
−1 > O

(
k

ε
log(

1

ε
)

))
+ Pr

S

[
N−1 ≤ O

(
k log(d) + log(3δ )

ε

)]
+ Pr

S

[
∃i ∈ [n] : N

(i)
−1 ≤ O

(
k

ε
log(

1

ε
)

)]
, (3)

where N−1 is the total number of samples with b = −1 and N
(i)
−1 is the number of samples of task i

with b = −1.
Our approach learns functions gV (1) , . . . , gV (n) ∈ Ck using only the relevant samples. Let

V = {Vx : Vx ⊆ [d], |Vx| ≤ k} and (Ck | Vx) = {g ∈ Ck : Rel(g) ⊆ Vx}, then VC(Ck|V) =
maxVx∈V log(|(Ck | Vx)|) = maxVx∈V log(|{gV ∈ Ck : V ⊆ Vx}|) = k. Additionally, we have
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that |V| ≤
(
d
k

)
2k ≤ ek ln(ed). Applying Theorem 5, we have that for N−1 ≥ O(k log(d)+log(3/δ)

ε ) and

mini∈[n]N
(i)
−1 ≥ O(kε log(1/ε)) with probability at least 1− δ/3 over the samples with b = −1 we

output ĥ(1), . . . , ĥ(n) such that

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y | b = −1] ≤ ε.

This bounds the first term of Equation (3) by δ/3.
We can write N−1 as the sum of independent random variables Y (i)

j = 1{b(i)j = −1}, specifically

N−1 =
∑

i∈[n]
∑

j∈[m] Y
(i)
j , with expectation E[N−1] = (1−ε)nm. For nm > 8 · 1

(1−ε)ε(k log(d)+

log(3δ )), we can see that (1−ε)
2 nm >

√
2(1− ε)nm ln(3/δ) and, hence, (1−ε)

8 nm < (1−ε)
2 nm <

(1− ε)nm−
√

2(1− ε)nm ln(3/δ). As a result, for β =
√

2 ln(3/δ)
(1−ε)nm ∈ (0, 1)

Pr

[
N−1 ≤ O

(
1

ε
(k ln(d) + ln(

3

δ
)

)]
≤ Pr

[
N−1 ≤

(1− ε)

8
nm

]
= Pr[N−1 ≤ (1− β)(1− ε)nm]

≤ e−β2(1−ε)nm/2 =
δ

3
.

(by Chernoff bound (Mitzenmacher and Upfal, 2017, Theorem 4.5))

This bounds the second term of Equation (3) by δ/3, for nm ≥ O(1ε (k log (d) + log (1δ ))), because
1

1−ε < 2.
Similarly, we see that for all tasks i ∈ [n] the number of samples we use can also be written

as a sum of random variables, i.e. N
(i)
−1 =

∑
j∈[m] Y

(i)
j , with expectation E[N (i)

−1] = (1 − ε)m.

Assuming that m ≥ 8 k
(1−ε)ε log(1/ε) log(3n/δ), for all tasks (1−ε)

2 m >
√

2(1− ε)m ln(3n/δ) and
(1−ε)

8 ln(3n/δ)m < (1−ε)m
2 < (1− ε)m−

√
2(1− ε)m ln(3n/δ).Therefore, for γ =

√
2 ln(3/δ)
(1−ε)m ∈ (0, 1)

Pr

[
∃i ∈ [n] : N

(i)
−1 ≤ O

(
k

ε
log(1/ε)

)]
≤ nPr

[
N

(i)
−1 ≤ O

(
k

ε
log(1/ε)

)]
≤ nPr

[
N

(i)
−1 ≤

(1− ε)

8 ln(3n/δ)
m

]
≤ nPr

[
N

(i)
−1 ≤ (1− ε)m−

√
2(1− ε)m ln(3n/δ)

]
= nPr

[
N

(i)
−1 ≤ (1− γ)(1− ε)m

]
≤ e−γ2(1−ε)m/2 =

δ

3
.

(by Chernoff bound (Mitzenmacher and Upfal, 2017, Theorem 4.5))

This bounds the last term of Equation (3) by δ/3 for m ≥ O(kε log (1ε) log (n/δ)). All in all, we see
that with probability at least 1− δ over the samples

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y | b = −1] ≤ ε
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and, hence,
1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[ĥ(i)(x, p, q, b) ̸= y] ≤ 2ε.

Therefore, we conclude that C(m+1)
k is V(m+1)

k -multitask learnable with accuracy parameters (2ε, δ),

at most m = O
(
k
ε log(

1
ε ) log

(
log(d)

δ

))
samples-per-task and nm = O

(
k
ε (log(d) + log(1δ ))

)
samples overall, in time (2d)knm. Since nm < s ≤ a(d), the time is (2d)ka(d). This concludes the
first part of the proof.

For the second, let A be a poly(d)-time V(m+1)
k -multitask learning algorithm for class C(m+1)

k

with accuracy (ε/32, δ). For any f (1), . . . , f (n) ∈ C(m+1)
k and D(1), . . . , D(n) where the features of

the examples are drawn from Dx ×Eε, with probability at least 1− δ, it returns h(1), . . . , h(n) such
that

1

n

∑
i∈[n]

Pr
(x,p,q,b,y)∼D(i)

[h(i)(x, p, q, b) ̸= y] ≤ ε

32
. (4)

We will use A to attribute-efficient learn the function class Ck.
Let S = ((x1, y1), . . . , (xN , yN )) be the dataset, where xi ∼ Dx, and yi = gV (xi) for gV ∈ Ck.

We construct dataset S′ as follows. We first split the dataset into n tasks, with m examples each, de-
noting the jth example of the ith task by (x

(i)
j , y

(i)
j ). We choose {ri}i∈[n] from {±1}(m+1)k(log(d)+1),

such that for all pairs i ̸= i′, ri ̸= ri′ . Then for every example j ∈ [m] of every task i ∈ [n] we draw
(p

(i)
j , q

(i)
j , b

(i)
j ) from distribution Eε. We set:

ỹ
(i)
j =

{
share(m+1)(Vaux; ri)p,q if b = 1

y
(i)
j if b = −1

where Vaux is such that Ṽaux = {−1}k(log(d)+1). Creating the new dataset of size nm×(d+log((m+
1)k(log d+1))+2) requires time O(nm(m+k log(d)), which is at most s2+sd log(d) ≤ poly(d).

For the new dataset S′ = {(x(i)j , p
(i)
j , q

(i)
j , b

(i)
j , ỹ

(i)
j )j∈[m],i∈[n]}we have that (x(i)j , p

(i)
j , q

(i)
j , b

(i)
j ) ∼

Dx×Eε. Moreover, for every task i ∈ [n], since the number of examples is m, which is smaller than
the reconstruction threshold of the secret-sharing scheme which is m+ 1, there exists r′i such that
share(m+1)(Vaux; ri)p = share(m+1)(V ; r′i)p for all p that appear in this task’s dataset. Thus, there
exist f (i) = fV,r′i in C(m+1)

k for every i ∈ [n], such that ỹ(i)j = f (i)(x
(i)
j , p

(i)
j , q

(i)
j , b

(i)
j ).

If we giveA the dataset S′, then by assumption, in poly(d) time with probability 1− δ, it returns
functions h(1), . . . , h(n) that satisfy the guarantee of Equation (4). Since Pr[b = −1] = 1− ε, we
have that

1

n

n∑
i=1

Pr
(x,p,q)∼Dx×E

(−1)
ε

[
h(i)(x, p, q,−1) ̸= gV (x)

]
≤ ε

32(1− ε)
≤ ε

16
, (5)

where E
(−1)
ε is the distribution Eε conditional on b = −1.

In order to get a prediction for a new x, we compute

h(x) = majority({h(i)(x, p, q,−1)}i∈[n],p∈[m+1],q∈[k(log(d)+1)]).
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This process takes O(n(m+ 1)k(log(d) + 1)d) time. We define the set of good parameters

Good =
{
(i, p, q) ∈ [n]× [m+ 1]× [k(log(d) + 1)] : Prx∼Dx

[
h(i)(x, p, q,−1) ̸= gV (x)

]
≤ ε

4

}
.

(6)
The size of Good is at least 3

4n(m+ 1)k(log(d) + 1) because otherwise, if

|Bad| = |[n]× [m+ 1]× [k(log(d) + 1)] \ Good| > 1

4
n(m+ 1)k(log(d) + 1),

by Equation (5),

1

n(m+ 1)k(log(d) + 1)

n∑
i=1

m+1∑
p=1

k(log(d)+1)∑
q=1

Pr
x∼Dx

[
h(i)(x, p, q,−1) ̸= gV (x)

]
≤ ε

16

⇒ 1

n(m+ 1)k(log(d) + 1)

∑
(i,p,q)∈Bad

Pr
x∼Dx

[
h(i)(x, p, q,−1) ̸= gV (x)

]
≤ ε

16

⇒ |Bad|
n(m+ 1)k(log(d) + 1)

· ε
4
<

ε

16

⇒ 1

4
· ε
4
<

ε

16
,

which is a contradiction.
For the majority h(x) to make a mistake, at least half of {h(i)(x, p, q,−1)}i∈[n],p∈[m+1],q∈[k(log(d)+1)]

must make a mistake on x. This requires that at least a 1
4 fraction of {h(i)(x, p, q,−1)}(i,p,q)∈Good

makes a mistake. Thus, by the definition of the Good set (Equation (6)),

Prx∼Dx [h(x) ̸= gV (x)] ≤ 4 · ε
4
≤ ε.

Therefore, this process runs in poly(d) time and returns a hypothesis h such that with probability at
least 1− δ, has error at most ε for every function of class Ck. By our assumption, this would be a
contradiction and as a result we conclude that no such algorithm A exists.
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