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Abstract
Proper losses (or proper scoring rules) have been used for over half a century to elicit users’ subjec-
tive probability from the observations. In the recent machine learning community, we often tackle
downstream tasks such as classification and bipartite ranking with the elicited probabilities. Here,
we engage in assessing the quality of the elicited probabilities with different proper losses, which
can be characterized by surrogate regret bounds to describe the convergence speed of an estimated
probability to the optimal one when optimizing a proper loss. This work contributes to a sharp anal-
ysis of surrogate regret bounds in two ways. First, we provide general surrogate regret bounds for
proper losses measured by the L1 distance. This abstraction eschews a tailor-made analysis of each
downstream task and delineates how universally a loss function operates. Our analysis relies on a
classical mathematical tool known as the moduli of convexity, which is of independent interest per
se. Second, we evaluate the surrogate regret bounds with polynomials to identify the quantitative
convergence rate. These devices enable us to compare different losses, with which we confirm that
the lower bound of the surrogate regret bounds is Ω(ε1/2) for popular loss functions.

1. Introduction

Proper losses (Buja et al., 2005) are loss functions to measure the discrepancy between a proba-
bilistic prediction and an expected outcome, and have been studied in the field of statistics (Shuford
et al., 1966; Savage, 1971; Schervish, 1989; Gneiting and Raftery, 2007) and machine learning
(Masnadi-Shirazi and Vasconcelos, 2009; Reid and Williamson, 2009b, 2010; Agarwal, 2014). The
celebrated log loss belongs to this class corresponding to the Shannon entropy. In this view, proper
losses are a generalization of the log loss with respect to the Shannon entropy, often referred to as
generalized entropies. The elicited probability via proper loss minimization is then used for down-
stream tasks such as classification (by choosing the most plausible outcome) and bipartite ranking
(by scoring more plausible items higher) (Narasimhan and Agarwal, 2013). Therefore, we are inter-
ested in quantitatively characterizing the performance of the elicit probability under a downstream
task. A surrogate regret bound is useful in this regard, where the suboptimality of a given probabil-
ity (called regret) under a downstream task is upper bounded by the regret of a proper loss.

In the previous literature, surrogate regret bounds have been derived for the binary classification
problem (Reid and Williamson, 2009b), bipartite ranking (Agarwal, 2014), and property elicitation
(Agarwal and Agarwal, 2015). These works leverage the one-to-one correspondence between a
proper loss and a generalized entropy (Savage, 1971), and a regret bound of a proper loss is written
by the corresponding generalized entropy (as we will review in Section 2). In a different line,
Frongillo and Waggoner (2021) recently showed that surrogate regret bounds of binary classification
cannot be faster than the square-root rate when a loss function is sufficiently smooth, and highlighted
polyhedral losses (Finocchiaro et al., 2019) achieving the linear regret rate. However, these works
have derived a surrogate regret bound for each downstream problem independently, and moreover,
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the bounds are expressed in terms of generalized entropies and are not straightforwardly comparable
with each other.

In this work, we aim at providing a unified framework to derive surrogate regret bounds and
quantify their polynomial rate. To unify surrogate regret bounds of different downstream tasks, we
focus on regret bounds of the L1 distance, taking the following form:

|η − η̂| ≤ ψ(Rℓ(η, η̂)), (1)

where η and η̂ are true and estimated probabilities, respectively, Rℓ is the regret of a proper loss ℓ,
and ψ is the regret rate function. The formal definitions will be stated later. We refer to Eq. (1) as
the L1 regret bounds. We consider the L1 regret bound because the regrets of many downstream
tasks can be upper bounded by |η − η̂| (Reid and Williamson, 2009b; Menon et al., 2013; Agarwal,
2014). Then, our first main theorem (Theorem 6) shows that the rate function ψ can be expressed by
the moduli of convexity (Figiel, 1976), which describe curvature information of convex functions,
of a generalized entropy. Our second main theorem (Theorem 10) yields the polynomial regret rate
such that ψ(ε) = Ω(εr) and ψ(ε) = O(εR) for some r and R. These polynomial rates are far more
interpretable than the original ψ and can be used to compare the convergence speed of different
proper losses. With these main results, we show that ψ(ε) = Ω(

√
ε) for a number of loss functions

(Proposition 11). We believe that these results altogether support the design of a new loss function
from the perspective of statistical estimation.

Related work. Moduli of convexity are key components in this paper. The moduli have been
initially introduced to study and generalize uniformly convex Banach spaces (Figiel, 1976) and
uniformly convex functions later (Borwein et al., 2009). The moduli have been applied to rate
estimation of the Bregman divergences (Sprung, 2019), whose idea is partially related to the current
paper, but we are concerned with the Jensen–Bregman divergence (see Section 3.1). Several works
on statistics and machine learning leveraged the moduli to analyze estimation errors (Mendelson,
2002; Bartlett et al., 2006). The polynomial evaluation of the moduli have been provided for Lp

space (Hanner, 1956) and Orlicz space (Hudzik, 1991). The derivation of the polynomial rates
(including our results) often relies on the Simonenko index (Simonenko, 1964). Ishige et al. (2022)
studied a hierarchy of generalized convex functions via an analogous analysis. Mey and Loog (2021)
showed error analysis of class probability estimation by leveraging moduli of continuity, which is a
closely related yet different notion from the moduli of convexity.

Despite that the connection between moduli of convexity and loss functions has not been pointed
out so far, Zhang (2004, Theorem 2.1) derived surrogate regret bounds for binary classification based
on a similar idea to leverage the L1 distance. Later, Steinwart (2007), Osokin et al. (2017), and Bao
et al. (2020) have introduced a notion called calibration function to characterize surrogate regret
bounds for classification problems, which is akin to moduli of convexity in this paper. We leverage
moduli of convexity to point out a systematic way to derive surrogate regret bounds for various
downstream tasks (concerning binary outcomes) beyond classification problems.

2. Review of loss function structures

In this section, we introduce the basics of loss functions and their structure.

Notation. The extended real line is denoted by R := R ∪ {∞}. We occasionally use notation
R≥0 := [0,∞) and R≥0 := [0,∞]. In this paper, we mostly focus on a (convex) function over
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one-dimensional space X ⊆ R. The domain of a function f : X → R is denoted by dom(f) :=
{x ∈ X | f(x) <∞}. We write the convex conjugate of f by f⋆(η) := supx∈dom(f) ηx − f(x).
The convex biconjugate of f is denoted by f⋆⋆. For a convex function f : X → R, the associated
Bregman divergence (Bregman, 1967) is defined as

Bf (x ∥x0) := f(x)− f(x0)− f ′(x0)(x− x0)

for any x, x0 ∈ X . Here, f ′ is the right derivative of f , which always exists for convex functions.
We do not mention the differentiability to avoid unnecessary technicality unless otherwise noted.1

Below, some additional notations are introduced. We write [x]+ := max {x, 0}. For the sign
of real values sign(x) ∈ {0, 1}, we adopt the convention sign(0) = 0. The one-dimensional
probability simplex is denoted by △ :=

{
η ∈ R2

≥0

∣∣ ⟨η,1⟩ = 1
} ∼= [0, 1]. The Iverson bracket JAK

is 1 if the predicate A is true otherwise 0. We employ the infinitesimal asymptotic notations O, Θ,
and Ω. For example, f(ε) = O(g(ε)) should be understood as lim supε→0+ f(ε)/g(ε) < ∞. The
other asymptotic notations are interpreted in the same way.

Problem setup. Let (X ,X , µ) be a probability space that represents the input space. Throughout
this paper, we concentrate on supervised learning associated with the binary outcome space Y :=
{0, 1}. We usually suppose that an underlying probability distribution P on X × Y generates both
i.i.d. training and test samples; nonetheless, the main scope of this paper is a relationship between
loss functions and hence most of the discussions involve test samples only. In binary supervised
learning, the fundamental target is the class probability η(x) := P(Y = 1 | X = x) ∈ △ because it
is amenable to future changes of a decision rule in, e.g., class-imbalanced problems (Kotłowski and
Dembczyński, 2016) and classification with rejection (Charoenphakdee et al., 2021). Occasionally,
one may seek problem-specific decision rules such as the Bayes classifier f∗(x) := sign(η(x)− 1

2)
and the Bayes scorer for bipartite ranking s∗(x) = ι(η(x)) for some monotone function ι (Menon
and Williamson, 2014). These decision rules are typically “irreversible” transforms of η and there-
fore class probability estimation is an essential step in supervised learning. Despite that one may
do better estimation by directly solving the decision problem of interest (Frongillo and Waggoner,
2021), we shed light on class probability estimation as it serves as a flexible and versatile component
in decision-making. We measure the quality of estimated probabilities with the L1 distance.

Proper losses. Proper losses are typical choices for class probability estimation, which is intro-
duced from now on based on the presentation of Reid and Williamson (2010). Let ℓ : Y×△ → R≥0

be a loss function, where ℓ(y, η̂) assesses a probability estimate η̂ ∈ △ for a binary label y ∈ Y .
Define the pointwise risk of a pointwise probability estimate η̂ ∈ △ at a ground-truth η ∈ △ as

Lℓ(η, η̂) := E
Y∼η

ℓ(Y, η̂) = ηℓ(1, η̂) + (1− η)ℓ(0, η̂),

which is the Bernoulli average of a proper loss with mean η. The pointwise Bayes risk is the minimal
achievable value of Lℓ(η, ·), denoted as Lℓ(η) := inf η̂∈△ Lℓ(η, η̂). A loss function ℓ is said to be
proper if Lℓ(η) = Lℓ(η, η) for all η ∈ △, which is a minimum necessary condition as a reasonable
loss. A strictly proper loss is a proper loss whose pointwise risk Lℓ(η, η̂) is uniquely minimized at
η̂ = η. As we will see later, Lℓ forms a rich structure of proper losses. The pointwise Bayes risk Lℓ

1. Liese and Vajda (2006) discussed the first- and second-order differentiability for non-smooth functions when dis-
cussing the Bregman divergences.
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is evidently concave over △ because it is the pointwise infimum of linear functions (Agarwal, 2014,
Lemma 1).

We remark that the full risk for a (µ-measurable) class probability estimator η̂ : X → △ is
recovered from the pointwise risk as Lℓ[η, η̂] := EX∼µ Lℓ(η(X), η̂(X)), with the (full) Bayes risk
Lℓ[η] := inf η̂∈△X Lℓ[η, η̂] = EX∼µ Lℓ(η(X)).2 The full Bayes risk determines the difficulty of a
task. As seen here, we use η for both pointwise and full estimators with abuse of notation but it
should be clear from the context.

The pointwise Bayes risk Lℓ, sometimes referred to as the generalized entropy, induces much of
the structure of a proper loss. Before showing them, an additional technical condition is introduced.
We say a proper loss ℓ is regular if ℓ(y, η̂) ∈ R≥0 for all y ∈ Y and η̂ ∈ △ except possibly that
ℓ(0, 1) = ∞ or ℓ(1, 0) = ∞ (Savage, 1971; Gneiting and Raftery, 2007; Agarwal, 2014). With this
condition, a proper loss is connected to the Bregman divergence.

Theorem 1 (Savage (1971)) A regular loss ℓ : Y × △ → R≥0 is proper if and only if for all
η, η̂ ∈ △,

Lℓ(η, η̂) = Lℓ(η̂) + (η − η̂)L′
ℓ(η̂). (2)

In addition, the (pointwise) ℓ-regret is equal to the Bregman divergence generated with −Lℓ:

Rℓ(η, η̂) := Lℓ(η, η̂)− Lℓ(η) = B−Lℓ
(η ∥ η̂). (3)

The regularity is needed to ensure Eq. (2) at the endpoints η, η̂ ∈ {0, 1}. The regret measures the
suboptimality of an estimate η̂ from η, following the geometry induced by −Lℓ.

It is further known that the strict properness of ℓ can be tested with the generalized entropy.

Theorem 2 (Theorem 4 in Agarwal (2014)) ℓ is strictly proper if and only if Lℓ is strictly con-
cave.

From these statements, we see that a generalized entropy is a powerful device to characterize a
proper loss. Given Theorem 1, it is possible to generate a proper loss from a concave function.

Corollary 3 Given a concave function H : △ → R≥0, define a binary loss ℓH : Y × △ → R≥0

as follows: for all η̂ ∈ △,

ℓH(1, η̂) := H(η̂) + (1− η̂)H ′(η̂), ℓH(0, η̂) := H(η̂)− η̂H ′(η̂), (4)

where H ′(η̂) is the right derivative of H at η̂. Then, ℓH is a regular proper loss.

Later, we discuss properties of proper losses by focusing on a concave function H merely, but we
remark that the associated proper loss can be recovered from H by Corollary 3.

When optimizing a proper loss in the machine learning pipeline, a number of previous works
operate with an inverse link function, which translates a real-valued prediction into a probabilistic
prediction η̂ ∈ △. Specifically, Buja et al. (2005) and Reid and Williamson (2010) emphasized the
benefit of canonical links because the composition of a proper loss and the corresponding canonical
link is convex. In addition, Agarwal et al. (2014) discussed the design of a canonical proper loss
for a given link function and Bao and Sugiyama (2021) drew its connection to the Fenchel–Young
losses (Blondel et al., 2020). In this work, we leave a choice of link functions out of account and
devote ourselves to solely analyzing the convergence of probabilistic predictions.

2. The infimum is taken over all measurable functions. The last identity requires suitable measurability conditions on ℓ,
but we do not discuss it in detail. From Steinwart (2007, Theorem 3.2), it is sufficient to have Lℓ(η) < ∞ (∀η ∈ △).
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Regret. Given a joint distribution P, we seek a class probability estimator η̂ ∈ △X that is as close
to the optimal class probability function η ∈ △X as possible. The suboptimality is measured by the
(full) ℓ-regret associated with a proper loss ℓ:

Regℓ[η, η̂] := Lℓ[η, η̂]− Lℓ[η] = E
X∼µ

Rℓ(η(X), η̂(X)). (5)

We mainly analyze the pointwise regret Rℓ as it is free from the variational problem.
A class probability estimator is used for downstream decision-making. We specifically pay at-

tention to binary classification and bipartite ranking. The goal of binary classification is to correctly
predict binary label y ∈ Y , where a classifier x 7→ sign(η̂(x)− 1

2) built on η̂ ∈ △X is evaluated by
the following 0-1 regret (Reid and Williamson, 2009b, Lemma 8):

Reg01[η, η̂] := E
X∼µ

R01(η(X), η̂(X)); R01(η, η̂) :=
∣∣η − 1

2

∣∣ qmin {η, η̂} ≤ 1
2 < max {η, η̂}

y
.

(6)
The goal of bipartite ranking is to predict higher scores for inputs labeled with y = 1 than ones with
y = 0. A class probability estimator η̂ ∈ △X directly used as a scorer is evaluated by the following
ranking regret (Clémençon et al., 2008, Example 1): for π := P(Y = 1),

Regrank[η, η̂] :=
1

2π(1−π) E
X,X′∼µ2

Rrank(η(X), η(X ′), η̂(X), η̂(X ′)),

Rrank(η, η
′, η̂, η̂′) := |η − η′|

{q
(η̂ − η̂′)(η − η′) < 0

y
+ 1

2

q
η̂ = η̂′

y}
.

(7)

To see downstream optimality for η̂ obtained via proper loss minimization, surrogate regret
bounds R01(η, η̂) ≤ ψ01(Rℓ(η, η̂)) and Rrank(η, η

′, η̂, η̂′) ≤ ψrank(Rℓ(η, η̂)) + ψrank(Rℓ(η
′, η̂′))

are informative. Nevertheless, deriving regret bounds for each downstream task may obfuscate
how universally a proper loss ℓ behaves well. We instead seek an upper bound of the L1 distance
|η − η̂| by Rℓ(η, η̂) as an intermediate step because the downstream regrets can be bounded by the
L1 distance such as R01(η, η̂) ≤ |η − η̂| (Menon et al., 2013, Lemma 4) and Rrank(η, η

′, η̂, η̂′) ≤
|η − η̂| + |η′ − η̂′| (Agarwal, 2014, Corollary 12). For this reason, this work primarily focuses on
the L1 regret bound |η − η̂| ≤ ψ(Rℓ(η, η̂)) in Eq. (1) and attempts to derive the rate function ψ.

Previously, Agarwal (2014) proved regret bounds with a loss function class called strongly
proper losses: a proper loss ℓ : Y × △ → R≥0 is said to be λ-strongly proper for λ > 0 if for
all η, η̂ ∈ △,

Lℓ(η, η̂)− Lℓ(η) ≥ λ
2 (η − η̂)2. (8)

Interestingly, a strongly proper loss is tightly related to the strong concavity of a generalized entropy:
for λ > 0, a regular proper loss ℓ is λ-strongly proper if and only if Lℓ is λ-strongly concave (Agar-
wal, 2014, Theorem 10). Popular loss functions such as log loss and exponential loss are strongly
proper. The strong properness immediately induces the L1 regret bound |η − η̂| ≤

√
2Rℓ(η, η̂)/λ,

and thus ψ(ε) = O(
√
ε). This result has been used to derive regret bounds for bipartite ranking

(Agarwal, 2014), imbalanced classification (Kotłowski and Dembczyński, 2016), and noisy label
classification (Zhang et al., 2021). Our work essentially extends their direction beyond strongly
proper losses.

3. Main results

This section explicates our main results: the L1 regret upper bounds (Theorem 6) and polynomial
evaluation of regret rate functions (Theorem 10). These results yield a finer hierarchy of proper
losses. The proofs of other technical statements are deferred to Appendix A.
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3.1. Preparation: Moduli of convexity

Before the presentation, a key device for analysis, modulus of convexity, is introduced.

Definition 4 (Modulus of convexity) Given a proper convex function f : △ → R, the modulus of
convexity of f is the function δf : [0, 1] → R≥0 satisfying

δf (ε) := inf

{
f(η) + f(η′)

2
− f

(
η + η′

2

) ∣∣∣∣ η, η′ ∈ △, |η − η′| ≥ ε

}
. (9)

Definition 4 follows Borwein et al. (2009), and is the infimum of the Jensen–Bregman diver-
gence generated by f (Nielsen and Boltz, 2011): Jf (η ∥ η′) := f(η)+f(η′)

2 − f(η+η′

2 ). As the
Jensen–Bregman divergence has a connection to the Bregman divergence such as Jf (η ∥ η′) =
1
2{Bf

(
η
∥∥ η+η′

2

)
+ Bf

(
η′
∥∥ η+η′

2

)
}, some works define moduli based on the Bregman divergence

(Sprung, 2019). The Jensen–Bregman divergence is more convenient for our purpose because it
admits an upper bound with the total variation (Lin, 1991), moreover, it is expressed without the
derivative of the generator f .

The moduli of convexity are non-negative, nondecreasing, and satisfy δf (0) = 0. These basic
properties can be confirmed by Jensen’s inequality and the monotonicity of the domain of the in-
fimum. Thanks to these properties, the biconjugate δ⋆⋆f is a proper convex function. Note that the
modulus δf (ε) itself is not necessarily convex in ε.3 The moduli have richer information about the
convexity of a function, which we state below for the sake of completeness.

Proposition 5 Suppose that f : △ → R is convex and lower semicontinuous. Then, f is strictly
convex if and only if δf (ε) > 0 for all ε ∈ (0, 1]. Further, f is strongly convex if and only if there
exists κ > 0 such that δf (ε) ≥ κε2 for all ε ∈ [0, 1].

3.2. Main result 1: Regret bounds

The first main result is the L1 regret upper bounds of proper losses. This result leads to a unified
proof of the 0-1 regret bounds via the Bregman divergence (Reid and Williamson, 2009b, Theorem
3), the 0-1 regret bounds via strongly proper losses (Menon et al., 2013, Lemma 4), and the ranking
regret bounds via strongly proper losses (Agarwal, 2014, Theorem 13).

Theorem 6 (Regret upper bounds) For a regular proper loss ℓ : Y × △ → R≥0, the following
inequality holds for all η, η̂ ∈ △:

δ−Lℓ
(|η − η̂|) ≤ 1

2
Rℓ(η, η̂). (10)

The inequality is tight. If δ⋆⋆−Lℓ
is invertible, then |η − η̂| ≤ (δ⋆⋆−Lℓ

)−1(12Rℓ(η, η̂)) for all η, η̂ ∈ △.

Proof By the definition of δ−Lℓ
, we have J−Lℓ

(η ∥ η̂) ≥ δ−Lℓ
(|η − η̂|). In addition, Theorem 1

ensuresRℓ(η, η̂) = B−Lℓ
(η ∥ η̂). To show Eq. (10), the remaining piece is to show 1

2B−Lℓ
(η ∥ η̂) ≥

J−Lℓ
(η ∥ η̂) for all η, η̂ ∈ △. Figure 1 graphically illustrates the relationship between B−Lℓ

(η ∥ η̂)
and J−Lℓ

(η ∥ η̂). The convexity of −Lℓ implies

−Lℓ

(
η + η̂

2

)
≥ −Lℓ(η̂)− L′

ℓ(η̂)

(
η + η̂

2
− η̂

)
= −Lℓ(η̂)−

1

2
L′
ℓ(η̂)(η − η̂).

3. A counterexample is the (negative) norm entropies with, e.g., α = 3 (see Section 4).
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0
1ηη̂

η̂+η
2

(η̂,−Lℓ(η̂))

(η,−Lℓ(η))

≥ J(η∥η̂)

B(η∥η̂)

−Lℓ(η)

Figure 1: Relationship between the Jensen–Bregman divergence J−Lℓ
(η ∥ η̂) and Bregman divergence B−Lℓ

(η ∥ η̂).
J−Lℓ

(η ∥ η̂) is the gap between the secant and −Lℓ(η) at the midpoint η̂+η
2

, which is majorized by B−Lℓ
(η ∥ η̂), the

first-order approximation error of −Lℓ(η̂) at η.

This indicates the desiderata:

J−Lℓ
(η ∥ η̂) ≤ −Lℓ(η) + Lℓ(η̂)

2
+ Lℓ

(
η + η̂

2

)
≤ 1

2

{
−Lℓ(η) + Lℓ(η̂) + L′

ℓ(η̂)(η − η̂)
}︸ ︷︷ ︸

=B−Lℓ
(η ∥ η̂)

.

The tightness of the inequality is easy to see by choosing η̂ = η.

Therefore, we emphasize that the L1 regret bound (1) is dominated by ψ = (δ⋆⋆−Lℓ
)−1. The-

orem 6 can be viewed as a generalized Pinsker’s inequality (Reid and Williamson, 2009a) in that
the L1 distance |η − η̂| is bounded by the Bregman divergence Rℓ(η, η̂), which generalizes the
Kullback–Leibler divergence. It does not only assess the quality of class probability estimation in
terms of the L1 distance but also recover the several existing regret bounds for specific downstream
tasks.

Corollary 7 (0-1 regret bounds) For a regular proper loss ℓ with invertible δ⋆⋆−Lℓ
, the 0-1 regret is

bounded as follows: Reg01[η, η̂] ≤ (δ⋆⋆−Lℓ
)−1

(
1
2Regℓ[η, η̂]

)
for all η, η̂ ∈ △X .

Corollary 8 (Ranking regret bounds) For a regular proper loss ℓ with invertible δ⋆⋆−Lℓ
, the rank-

ing regret is bounded as follows: Regrank[η, η̂] ≤ 1
π(1−π)(δ

⋆⋆
−Lℓ

)−1
(
1
2Regℓ[η, η̂]

)
for all η, η̂ ∈ △X ,

where π := P(Y = 1).

Corollary 7 is akin to the 0-1 regret bounds of Reid and Williamson (2011, Corollary 27) with a
symmetric −Lℓ,

4 and Corollary 8 is an extension of Agarwal (2014, Theorem 13) beyond strongly
proper losses. Thus, we see that the modulus of convexity of a generalized entropy −Lℓ enables us
to derive the regret bounds in a comprehensive way.

4. We say a generalized entropy Lℓ is symmetric when Lℓ(η) = Lℓ(1− η).
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0
1ε∗

δ⋆⋆−Lℓ
(ε)

(ε∗, δ⋆⋆−Lℓ
(ε∗))

κ1ε
pℓ

κ2ε
qℓ

0
1ε∗

S̃−Lℓ
(ε)

qℓ

pℓ

Iℓ

Figure 2: (Left) The modulus of convexity δ⋆⋆−Lℓ
and the corresponding rate evaluation κ1ε

pℓ ≤ δ⋆⋆−Lℓ
(ε) ≤ κ2ε

qℓ

(Theorem 10). (Right) The Simonenko order function S̃−Lℓ
and the corresponding upper/lower order pℓ and qℓ.

3.3. Main result 2: Polynomial rate evaluation

The second main result is the polynomial rate evaluation of the regret bounds. The regret bounds
obtained in Section 3.2 are expressed by (δ⋆⋆−Lℓ

)−1, which would not immediately tell us much how
fast the convergences are. Ideally, the polynomial rate evaluation of (δ⋆⋆−Lℓ

)−1 (equivalently, the
rate of δ⋆⋆−Lℓ

) would provide us much more insights into loss comparison. More specifically, the
polynomial rate of δ⋆⋆−Lℓ

close to the origin ε = 0 is of the most importance because it governs the
convergence speed around the optimum.

Hence, we first define a concept to characterize the polynomial rate of a given function. We call
it the Simonenko order function as it owes a lot to the earlier studies on the relevant concept called
the Simonenko indices (Simonenko, 1964; Hudzik, 1991; Fiorenza and Krbec, 1997).

Definition 9 For a non-negative, nondecreasing, and convex f : [0, C] → R≥0 for some C > 0
satisfying f(t) = 0 if and only if t = 0, Simonenko order function Sf : (0, C] → R is defined as
follows:

Sf (t) :=
tf ′(t)

f(t)
. (11)

Owing to the Simonenko order function, we are ready to evaluate the polynomial rate of δ⋆⋆−Lℓ
.

For simplicity, we use an auxiliary notation S̃H := Sδ⋆⋆H specifically for the Simonenko order func-
tion of the biconjugated moduli. In the definition of the Simonenko order function of δ⋆⋆H , (δ⋆⋆H )′

should be understood as the right derivative, which always exists for convex function δ⋆⋆H .

Theorem 10 (Polynomial rate evaluation) Let ℓ : Y×△ → R≥0 be a regular and strictly proper
loss. For a fixed ε∗ ∈ (0, 1], define the interval Iℓ := S̃−Lℓ

((0, ε∗]), pℓ := sup Iℓ, and qℓ := inf Iℓ.
Then, the following inequalities hold: for all ε ∈ [0, ε∗],

κ1ε
pℓ ≤ δ⋆⋆−Lℓ

(ε) ≤ κ2ε
qℓ , where κ1 :=

δ⋆⋆−Lℓ
(ε∗)

εpℓ∗
and κ2 :=

δ⋆⋆−Lℓ
(ε∗)

εqℓ∗
. (12)

Proof In this proof, we simply write δ instead of δ⋆⋆−Lℓ
. The Simonenko order function is well-

defined for δ because ℓ is strictly proper, which implies δ(ε) > 0 for ε > 0 (Proposition 5).
The following proof idea is based on Hudzik (1991). As the two inequalities in Eq. (12) can be

proven essentially in the same manner, we only show the proof for κ1εpℓ ≤ δ(ε). By the definition

8
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of pℓ, we have pℓ = supt∈(0,ε∗]
tδ′(t)
δ(t) ≥ tδ′(t)

δ(t) for all t ∈ (0, ε∗]. Then, for all ε ∈ (0, ε∗],

pℓ

∫ ε∗

ε

dt

t
≥

∫ ε∗

ε

δ′(t)

δ(t)
dt.

Here, the integrals should be understood as the Henstock–Kurzweil integral (Bartle, 2001), which
recovers the Riemann integral for Riemann integrable functions. We need this technicality to han-
dle the (possibly) noncontinuous integrand δ′(t)/δ(t). This integrand is the right derivative of the
primitive function ln δ(t) and hence ln δ(t) has the derivative δ′(t)/δ(t) all but countably many
points on (0, ε∗). This is because proper convex δ is differentiable almost everywhere in (0, ε∗)
(Rockafellar, 1970, Theorem 25.5). Then, by the generalized second fundamental theorem of cal-
culus (Bartle, 2001, Theorem 4.7), the definite integral of δ′(t)/δ(t) is ln δ(ε∗) − ln δ(ε). Hence,
we obtain pℓ(ln ε∗ − ln ε) ≥ ln δ(ε∗)− ln δ(ε), from which we can show the desired inequality.

From Theorem 10, we have (δ⋆⋆H )−1(ε) = Ω(ε1/pℓ) and (δ⋆⋆H )−1(ε) = O(ε1/qℓ). This implies
that smaller pℓ and qℓ induce a faster regret rate. Additionally, the polynomial rate evaluation be-
comes better as the interval Iℓ becomes smaller. When the upper and lower rates match (pℓ = qℓ),
the inequality (12) is tight: δ⋆⋆−Lℓ

(ε) = κ1ε
pℓ . In a nutshell, the regret convergence rate of different

proper losses can be compared by looking at the interval Iℓ. Figure 2 illustrates the polynomial rate
evaluation of δ⋆⋆−Lℓ

(Left) and the relationship between S̃−Lℓ
and Iℓ (Right).

Note that, though the analysis of Theorem 10 is specialized for δ⋆⋆−Lℓ
, it should apply to broader

contexts. Examples of the Simonenko order functions are shown in Section 4.

4. Examples of loss functions

We summarize examples of losses in terms of their associated (negative) Bayes risks H := −Lℓ

below. A few examples are borrowed from Blondel et al. (2020). The detailed computations are
shown in Appendix B.

Shannon entropy. Consider H(η) = η ln η + (1 − η) ln(1 − η). The associated proper loss is
the log loss (Buja et al., 2005), a common loss function in the maximum likelihood and logistic
regression. Then, δ⋆⋆H ≡ δ

(1)
H and S̃H ≡ S

(1)
H , where

δ
(1)
H (ε) := H

(
1 + ε

2

)
−H

(
1

2

)
and S

(1)
H (ε) :=

εH ′(1+ε
2 )

2{H(1+ε
2 )−H(12)}

. (13)

The explicit forms are obtained as follows:

δ⋆⋆H (ε) =

(
1 + ε

2

)
ln

(
1 + ε

2

)
+

(
1− ε

2

)
ln

(
1− ε

2

)
+ ln 2 and S̃H(ε) =

ε ln
(
1+ε
1−ε

)
2δ⋆⋆H (ε)

.

Note that Reid and Williamson (2011, Corollary 27) showed the 0-1 regret bound

ψRW(R01(η, η̂)) ≤ Rℓ(η, η̂) where ψRW(ε) = H

(
1

2
+ ε

)
−H

(
1

2

)
, (14)

for symmetric entropy H , where ψRW is the same as δ(1)H up to scale. Despite δ⋆⋆H ≡ δ
(1)
H when H

is the Shannon entropy, δ⋆⋆H (ε) ≤ δ
(1)
H (ε) in general and hence the 0-1 regret bound with ψRW is

9
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0

ε∗

Rℓ(η, η̂)δ⋆⋆H (ε∗)

Polynomial bound (Rℓ(η, η̂)/2κ1)
1/pℓ

Pinsker’s inequality
√
2Rℓ(η, η̂)

L1 regret bound (δ⋆⋆H )−1(12Rℓ(η, η̂))

Pinsker’s inequality
is better

Polynomial bound
is better

δ0

Figure 3: For the L1 regret bound (δ⋆⋆H )−1( 1
2
Rℓ(η, η̂)) (Theorem 6, shown by the bold line) with the log loss ℓ, we show

the two upper bounds: the polynomial bound (Rℓ(η, η̂)/2κ1)
1/pℓ (Theorem 10) and Pinsker’s inequality

√
2Rℓ(η, η̂).

δ0 is the intersecting point of the two bounds. When 0 < Rℓ(η, η̂) < δ0, Pinsker’s inequality is smaller, and when
δ0 < Rℓ(η, η̂) ≤ δ⋆⋆H (ε∗), the polynomial bound is smaller. Although Pinsker’s inequality is better around the origin, it
becomes loose around (δ⋆⋆H (ε∗), ε∗). Note that the polynomial bound does not necessarily upper bound (δ⋆⋆H )−1 when
Rℓ(η, η̂) > δ⋆⋆H (ε∗) for general entropy H (while it still does for the negative Shannon entropy H).

occasionally better than our Corollary 7 because they directly bound the 0-1 regret while we bound
the L1 regret as an intermediate milestone. This bypass is necessary to treat the 0-1 and ranking
regret bounds in a unified way.

From Theorems 6 and 10, we obtain |η − η̂| ≤ (δ⋆⋆H )−1(12Rℓ(η, η̂)) ≤ {Rℓ(η, η̂)/2κ1}1/pℓ .
Remark that the rightmost {Rℓ(η, η̂)/2κ1}1/pℓ is slightly worse than the rate of Pinsker’s inequality
|η − η̂| ≤

√
2Rℓ(η, η̂) (and the regret bound via strongly proper losses (Agarwal, 2014)) around

the origin, attributed to pℓ > 2 (see Figure 4). This is because the polynomial rate bound (12)
pays an extra price to tightly bound the entire range Rℓ(η, η̂) ∈ [0, δ⋆⋆H (ε∗)]. This is important to
finely characterize the polynomial rate of δ⋆⋆H around the origin. As ε∗ → 0, the polynomial rate pℓ
approaches to the rate of Pinsker’s inequality asymptotically. See Figure 3 for the comparison.

Boosting/exponential loss. Consider H(η) = −2
√
η(1− η), which is the associated Bayes risk

with the exponential loss (Buja et al., 2005; Agarwal, 2014), being used with AdaBoost. Then,

δ⋆⋆H (ε) = δ
(1)
H (ε) = 1−

√
1− ε2 and S̃H(ε) = S

(1)
H (ε) =

ε2√
1− ε2(1−

√
1− ε2)

.

We refer to this H as the exponential entropy for convenience.

Norm entropies. Consider H(η) = {ηα + (1 − η)α}1/α − 1 for α ≥ 2, which is the α-norm
of the probability vector [η; 1 − η]. It is also known as the pseudo-spherical entropy, with the
pseudo-spherical loss being associated (Gneiting and Raftery, 2007). When α = 2, this recovers

10
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the spherical loss (Agarwal, 2014). In this case, δ⋆⋆H ≡ δ
(2)
H and S̃H ≡ S

(2)
H , where

δ
(2)
H (ε) :=

H(0) +H(ε)

2
−H

(ε
2

)
and S

(2)
H (ε) :=

ε{H ′(ε)−H ′( ε2)}
H(0) +H(ε)− 2H( ε2)

. (15)

The modulus in Eq. (15) is evidence that the L1 regret bound is not necessarily δ(1)H in general
unlike the 0-1 regret bound of Reid and Williamson (2011) mentioned above. We refer to the 2-
norm entropy as the spherical entropy for convenience. Note that the norm entropies with α > 2
induces strictly but not strongly proper losses (cf. Agarwal (2014, Theorem 10)).

Squared norm entropies. Consider H(η) = 1
2{η

α + (1 − η)α}2/α − 1
2 for α > 1, which is the

squared α-norm of the probability vector [η; 1− η]. The associated modulus and Simonenko order
function entail two modes depending on the value of α:

δ⋆⋆H (ε) =

{
δ
(2)
H (ε) if α ≥ 2

δ
(1)
H (ε) if 1 < α ≤ 2

and S̃H(ε) =

{
S
(2)
H (ε) if α ≥ 2

S
(1)
H (ε) if 1 < α ≤ 2

.

When α = 2, this recovers the Gini index and squared loss (Brier score) as the generalized entropy
and proper loss, respectively (Buja et al., 2005), where δ⋆⋆H (ε) = ε2

4 and S̃H(ε) = 2.

Polynomial entropies. To interpolate between the (negative) entropy corresponding to the 0-1
(and hinge) loss −min{η, 1 − η} (Buja et al., 2005; Masnadi-Shirazi and Vasconcelos, 2009) and
the Gini index, we consider H(η) =

∣∣η − 1
2

∣∣α − 1
2α for α > 1. The two entropies are interpolated

with α = 1 (0-1) and α = 2 (Gini). In this case,

δ⋆⋆H (ε) =

{
δ
(1)
H (ε) =

(
ε
2

)α if α > 2

δ
(2)
H (ε) if 1 < α ≤ 2

and S̃H(ε) =

{
S
(1)
H (ε) = α if α > 2

S
(2)
H (ε) if 1 < α ≤ 2

.

When α = 1, Theorem 10 is no longer applicable because the polynomial 1-entropy is not strictly
convex, The corresponding modulus is δ⋆⋆H (ε) = [ε − 1

2 ]+, for which the only valid polynomial
lower bound is 0 = κε∞ (for any κ > 0), so we informally interpret the order as ∞ in this case.
Note that the polynomial entropies with α > 2 induces strictly but not strongly proper losses (cf.
Agarwal (2014, Theorem 10)).

5. Discussion

Hierarchy of proper losses. The polynomial rate evaluation in Theorem 10 provides us a quan-
titative comparison of the L1 regret bounds. Specifically, for a fixed ε∗, two proper losses ℓ1 and
ℓ2 can be compared as follows: if pℓ1 ≤ pℓ2 , ℓ1 admits the faster L1 regret upper rate than that
of ℓ2. This comparison eventually constitutes a loss hierarchy of proper losses. See Figure 4 (for
ε∗ = 0.5). The Shannon entropy (associated with the log loss), exponential loss, and squared α-
norm entropies admit the L1 regret lower rates Ω(ε1/2) (qℓ = 2), while the upper rates O(ε1/pℓ)
differ among loss functions and the squared 2-norm entropy has the tight upper rateO(ε1/2). Hence,
we can argue that the squared 2-norm entropy entails the fastest regret rate, followed by the Shannon
entropy and exponential loss.

Nonetheless, please be aware that the final learning performance is not solely dominated by
surrogate regret—indeed, the sample complexity and optimization governs as well. We believe that
surrogate regret bounds provided in this work may cooperate with standard sample complexity and
optimization analyses to characterizes the overall learning performance.
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Figure 4: Rate comparison of different losses (associated with the corresponding entropies) for ε∗ = 0.5. For each loss,
the upper and lower ends indicate the orders p and q, respectively. Each interval illustrates Iℓ, corresponding to the rate
evaluation κ1ε

p ≤ δ⋆⋆H (ε) ≤ κ2ε
q for ε ∈ [0, ε∗] (Theorem 10). The smaller p and q are, the polynomial rate of the

modulus δ⋆⋆H is better. In addition, the polynomial rate evaluation becomes nearly tight as p and q become closer.

Pitfall of polyhedral losses. Frongillo and Waggoner (2021) claimed that polyhedral losses (in-
cluding the hinge loss) can be good alternatives to smooth losses thanks to the linear 0-1 regret rate.
Despite its merit, the hinge loss may not be a sensible choice when the L1 regret is to be bounded.

The (negative) Bayes risk associated with the hinge loss isH(η) = −min {η, 1− η} (Masnadi-
Shirazi and Vasconcelos, 2009), for which the modulus of convexity is δ⋆⋆H (ε) = [ε − 1

2 ]+. Conse-
quently, for η, η̂ ∈ △ such that |η − η̂| ≤ 1

2 , we cannot obtain the L1 regret bound via Theorem 6.5

Its tightness asserts that the hinge loss has trouble estimating η in the sense of the L1 regret. Al-
though this does not contradict the linear 0-1 regret rate, we conjecture that the ranking regret of
the hinge loss is vacuous in light of the relationship between the ranking regret and the L1 re-
gret (Narasimhan and Agarwal, 2013). This discussion applies to any non-strictly proper losses
because the biconjugated modulus δ⋆⋆H of a non-strictly convex entropy H entails a positive ε0 with
δ⋆⋆H (ε0) = 0 (Proposition 5).

Limitation of this work. We are mainly concerned with the L1 regret because of its versatility to
relate proper losses to many other tasks. However, the L1 regret bounds may be suboptimal when
some specific tasks such as binary classification are of our interest.

As an example, recap the polynomial entropy H(η) = |η − 1
2 |

α − 1
2α . When 1 < α ≤ 2, the

modulus δ⋆⋆H changes the mode to δ(2)H , for which a quadratic lower bound (δ
(2)
H )−1(ε) = Ω(ε1/2) al-

ways exists (see Appendix B.5). By contrast, the direct 0-1 regret rate ψRW by Reid and Williamson
(2011) is characterized by the mode δ(1)H (see Eq. (14)), which is α-polynomial δ(1)H (ε) = (ε/2)α.
Hence, the 0-1 regret rate (δ

(1)
H )−1(ε) = Θ(ε1/α) is faster than the L1 regret rate (δ

(2)
H )−1(ε) =

Ω(ε1/2) when 1 < α < 2, which means that the moduli may fail to capture the exact 0-1 regret rate
in some cases.

5. By taking the inverse of δ⋆⋆H , the L1 regret bound informally reads |η − η̂| ≤ 1
2
Rℓ(η, η̂) +

1
2

, which is vacuous.

12



PROPER LOSSES, MODULI OF CONVEXITY, AND SURROGATE REGRET BOUNDS

The L1 regret rate is no faster than Ω(ε1/2) with many entropies shown in Section 4. Conse-
quently, the 0-1 regret bound obtained via the L1 regret bound cannot escape from sacrificing the
optimality in this case.

Proposition 11 For H being any of the Shannon entropy, exponential entropy, spherical entropy,
squared α-norm entropies with α > 1, and α-polynomial entropies with α > 1, lim

ε→0+
S̃H(ε) ≥ 2.

Refer to each derivation in Appendix B for the proof. Proposition 11 implies that the L1 regret
rate of the corresponding ℓ is (δ⋆⋆H )−1(ε) = Ω(ε1/2). This lower bound is achieved by the squared
2-norm entropy. We can see this from Figure 4, where the upper order pℓ of the squared 2-norm
entropy is pℓ = 2, matching the lower order qℓ = 2. By contrast, other entropies such as the
Shannon entropy induce the suboptimal regret upper bounds, as long as ε∗ > 0. We conjecture that
Proposition 11 holds under a broader class of generalized entropies (including the α-norm entropies
with α > 2), and leave it for future work.
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Appendix A. Proofs

A.1. Proof of Proposition 5

Proof If f is strictly convex, then the strict inequality f(η)+f(η′)
2 > f(η+η′

2 ) holds for all η, η′ with
η ̸= η′. Fix ε ∈ (0, 1], then the extreme value theorem ensures the existence of minimizers η∗, η′∗
with |η∗−η′∗| ≥ ε such that f(η)+f(η′)

2 −f(η+η′

2 ) ≥ f(η∗)+f(η′∗)
2 −f(η∗+η′∗

2 ) > 0 for all η, η′ with |η−
η′| ≥ ε. Note that the extreme value theorem can be invoked because f is lower semicontinuous (and
so is the objective to be minimized in δf ) and the domain {η, η′ ∈ △ | |η − η′| ≥ ε} is compact.
Thus, δf (ε) > 0.

Conversely, δf (ε) > 0 for all ε ∈ (0, 1] implies that f(η)+f(η′)
2 − f(η+η′

2 ) > 0 for all η, η′ with
η ̸= η′. For t = 1

2 , it is trivial to see f(tη + (1 − t)η′) < tf(η) + (1 − t)f(η′). For t ∈ (12 , 1),
we can assume η < η′ and hence tη + (1 − t)η′ < η+η′

2 without loss of generality. Then, for
t̃ := 2t− 1 ∈ (0, 1),

f(tη + (1− t)η′) = f

(
t̃η + (1− t̃)

η + η′

2

)
≤ t̃f(η) + (1− t̃)f

(
η + η′

2

)
< t̃f(η) + (1− t̃)

f(η) + f(η′)

2
= tf(η) + (1− t)f(η′),

which implies the strict convexity of f . For t ∈ (0, 12), we can show the strict inequality similarly.
Hence, δf (ε) > 0 implies the strict convexity of f .

If f is strongly convex with parameter κ̃ > 0, the inequality f(η)+f(η′)
2 − f(η+η′

2 ) ≥ κ̃
8 |η− η′|2

holds for all η, η′. Given ε ∈ [0, 1], we can show the existence of minimizers η∗, η′∗ with |η∗−η′∗| ≥
ε such that δf (ε) ≥ f(η∗)+f(η′∗)

2 − f(η∗+η′∗
2 ) ≥ κ̃

8ε
2 by using the same argument as in the strict

convexity case.
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Conversely, suppose that δf (ε) ≥ κε2 for all ε ∈ [0, 1]. As δf (ε) is nondecreasing in ε, the

modulus of convexity indeed satisfies δf (ε) = inf
{

f(η)+f(η′)
2 − f(η+η′

2 )
∣∣∣ |η − η′| = ε

}
. Then,

the quadratic lower bound of δf (ε) implies that f(η)+f(η′)
2 − f(η+η′

2 ) ≥ κ|η − η′|2 for all η, η′.
Using this inequality and the same argument as in the strict convexity case, we can show

tf(η) + (1− t)f(η′)− f(tη + (1− t)η′) ≥ 1

2
κ̃t(1− t)|η − η′|2

with some κ̃ > 0 for all η, η′, and t ∈ [0, 1]. Hence, δf (ε) > 0 implies the strong convexity of f .

A.2. Proof of Corollary 7

Proof By beginning from Eq. (6),

R01(η, η̂) =
∣∣η − 1

2

∣∣ qmin {η, η̂} ≤ 1
2 < max {η, η̂}

y
≤ |η − η̂|,

where the inequality can be seen as follows: if η > η̂,

min {η, η̂} ≤ 1
2 < max {η, η̂} =⇒ η̂ ≤ 1

2 < η

=⇒
∣∣η − 1

2

∣∣ ≤ |η − η̂|,

and it is proven similarly otherwise. Thus, by invoking Theorem 6,

Reg01[η, η̂] = E
X∼µ

R01(η(X), η̂(X))

≤ E
X∼µ

[
|η(X)− η̂(X)|

]
≤ E

X∼µ

[
(δ⋆⋆−Lℓ

)−1
(
1
2Rℓ(η(X), η̂(X))

)]
≤ (δ⋆⋆−Lℓ

)−1
(
1
2 E
X∼µ

Rℓ(η(X), η̂(X))
)

= (δ⋆⋆−Lℓ
)−1

(
1
2Regℓ[η, η̂]

)
,

where the last inequality follows from Jensen’s inequality. Note that the invertible convex function
δ⋆⋆−Lℓ

always has the concave inverse (δ⋆⋆−Lℓ
)−1.

A.3. Proof of Corollary 8

Proof The proof mostly follows Agarwal (2014, Corollary 12), but is shown subsequently for the
sake of completeness. By beginning from Eq. (7),

Rrank(η, η
′, η̂, η̂′) = |η − η′|

{q
(η̂ − η̂′)(η − η′) < 0

y
+

1

2

q
η̂ = η̂′

y}
≤ |η − η′|

q
(η̂ − η̂′)(η − η′) ≤ 0

y

≤ |η̂ − η|+ |η̂′ − η′|,
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where the last inequality can be seen as follows: if η > η′,

(η̂ − η̂′)(η − η′) ≤ 0 =⇒ η̂ ≤ η̂′

=⇒ η − η′ ≤ (η − η̂) + (η̂′ − η′)

=⇒ |η − η′| ≤ |η − η̂|+ |η̂′ − η′|,

and it is proven similarly otherwise. Thus, by invoking Theorem 6,

Regrank[η, η̂] =
1

2π(1− π)
E

X,X′∼µ2
Rrank(η(X), η(X ′), η̂(X), η̂(X ′))

≤ 1

2π(1− π)
E

X,X′∼µ2

[
|η̂(X)− η(X)|+ |η̂(X ′)− η(X ′)|

]
=

1

π(1− π)
E

X∼µ

[
|η̂(X)− η(X)|

]
≤ 1

π(1− π)
E

X∼µ

[
(δ⋆⋆−Lℓ

)−1
(
1
2Rℓ(η(X), η̂(X))

)]
≤ 1

π(1− π)
(δ⋆⋆−Lℓ

)−1
(
1
2 E
X∼µ

Rℓ(η(X), η̂(X))
)

=
1

π(1− π)
(δ⋆⋆−Lℓ

)−1
(
1
2Regℓ[η, η̂]

)
,

where the last inequality follows from Jensen’s inequality. Note that the invertible convex function
δ⋆⋆−Lℓ

always has the concave inverse (δ⋆⋆−Lℓ
)−1.

Appendix B. Additional derivations for examples

B.1. Shannon entropy

Here, we discuss the Shannon entropyH(η) = η ln η+(1−η) ln(1−η). The modulus is computed
as follows:

δH(ε) = inf
η∈[ ε

2
,1− ε

2
]

{
H

(
η − ε

2

)
+H

(
η + ε

2

)
2

−H (η)

}
,

where we write the objective asG(η). The first and second derivatives ofG are computed as follows:

G′(η) =
1

2
ln

(
η − ε

2

1 + ε
2 − η

)
+

1

2
ln

(
η + ε

2

1− ε
2 − η

)
− ln

(
η

1− η

)
,

G′′(η) =
1

2(η − ε
2)

+
1

2(η + ε
2)

− 1

η︸ ︷︷ ︸
≥0

+
1

2(1 + ε
2 − η)

+
1

2(1− ε
2 − η)

− 1

1− η︸ ︷︷ ︸
≥0

≥ 0,
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where the inequalities can be seen from Jensen’s inequality. Hence, G is convex and η = 1
2 is the

minimizer, so the modulus and order function are computed as follows:

δH(ε) = G
(
1
2

)
= δ

(1)
H (ε) =

(
1 + ε

2

)
ln

(
1 + ε

2

)
+

(
1− ε

2

)
ln

(
1− ε

2

)
+ ln 2,

S̃H(ε) =
ε ln

(
1+ε
1−ε

)
(1 + ε) ln(1+ε

2 ) + (1− ε) ln(1−ε
2 ) + 2 ln 2

.

Further, δ⋆⋆H ≡ δH is witnessed. To compute the limit ε→ 0+, we invoke l’Hôpital’s rule twice:

lim
ε→0+

S̃H(ε) = lim
ε→0+

ln(1 + ε)− ln(1− ε) + ε
1+ε +

ε
1−ε

ln(1+ε
2 )− ln(1−ε

2 )

= lim
ε→0+

1
1+ε +

1
1−ε +

1
(1+ε)2

+ 1
(1−ε)2

1
1+ε +

1
1−ε

= 2.

B.2. Exponential entropy

Here, we discuss the exponential entropy H(η) = −2
√
η(1− η). The modulus is computed as

follows:

δH(ε) = inf
η∈[ ε

2
,1− ε

2
]

{
H

(
η − ε

2

)
+H

(
η + ε

2

)
2

−H (η)

}
,

where we write the objective asG(η). The first and second derivatives ofG are computed as follows:

G′(η) =
η − 1+ε

2

2
√
(η − ε

2)(1 +
ε
2 − η)

+
η − 1−ε

2

2
√
(η + ε

2)(1−
ε
2 − η)

−
η − 1

2√
η(1− η)

,

G′′(η) =
1

8((η − ε
2)(1 +

ε
2 − η))3/2

+
1

8((η + ε
2)(1−

ε
2 − η))3/2

− 1

4(η(1− η))3/2
≥ 0,

where the last inequality is attributed to Jensen’s inequality. Hence, G is convex and η = 1
2 is the

minimizer, so the modulus and order function are computed as follows:

δH(ε) = G(12) = δ
(1)
H (ε) = 1−

√
1− ε2,

S̃H(ε) =
ε2√

1− ε2(1−
√
1− ε2)

.

Further, δ⋆⋆H ≡ δH is witnessed. To compute the limit ε→ 0+, we invoke l’Hôpital’s rule:

lim
ε→0+

S̃H(ε) = lim
ε→0+

2ε
−ε√
1−ε2

+ 2ε
= 2.

B.3. Norm entropies

Here, we discuss the norm entropies H(η) = {ηα + (1 − η)α}1/α − 1 for α ≥ 2. Due to the
symmetry of H about η = 1

2 , the modulus is computed as follows:

δH(η) = inf
η∈[ ε

2
, 1
2
]

{
H

(
η − ε

2

)
+H

(
η + ε

2

)
2

−H (η)

}
,
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where we write the objective as G(η). The first derivative of G is computed as follows:

G′(η) =
G̃(η − ε

2) + G̃(η + ε
2)

2
− G̃(η) ≥ 0

where G̃(η) := {ηα + (1− η)α}
1
α
−1 {ηα−1 − (1− η)α−1

}
, and the inequality holds due to the

convexity of G̃ for η ∈ [ ε2 ,
1
2 ]. Hence, G is nondecreasing and minimized at η = ε

2 , so the modulus
and order function are computed as follows:

δH(ε) = G
(ε
2

)
= δ

(2)
H (ε) =

H(ε)

2
−H

(ε
2

)
,

S̃H(ε) =
ε{H ′(ε)−H ′( ε2)}
H(ε)− 2H( ε2)

.

Further, δ⋆⋆H ≡ δH is witnessed. For the norm entropies, we only compute the limit of the Simonenko
order function when α = 2. First, we simplify the higher-order derivatives of H:

H(η) = ∥η∥2 − 1,

H ′(η) = (∥η∥2)′ = (2η − 1)∥η∥−1
2 ,

H ′′(η) = ∥η∥−3
2 ,

H ′′′(η) = 3(1− 2η)∥η∥−5
2 ,

where ∥η∥2 is a shorthand for
√
η2 + (1− η)2. By using them, the limit at ε → 0+ can be com-

puted as follows:

lim
ε→0+

S̃H(ε) = 2 + lim
ε→0+

ε
{
H ′′′(ε)− 1

4H
′′′ ( ε

2

)}
H ′′(ε)− 1

2H
′′
(
ε
2

) = 2 + lim
ε→0+

ε{3(1− 2ε) + 3
4(ε− 1)}

∥ε∥22(1− 1
2)

= 2,

where l’Hôpital’s rule is invoked twice at the first identity.

B.4. Squared norm entropies

Here, we discuss the squared norm entropies H(η) = 1
2{η

α + (1− η)α}2/α − 1
2 for α > 1. Due to

the symmetry of H about η = 1
2 , the modulus is computed as follows:

δH(η) = inf
η∈[ ε

2
, 1
2
]

{
H

(
η − ε

2

)
+H

(
η + ε

2

)
2

−H (η)

}
,

where we write the objective as G(η). The first derivative of G is computed as follows:

G′(η) =
G̃(η − ε

2) + G̃(η + ε
2)

2
− G̃(η),

where G̃(η) := {ηα + (1− η)α}
2
α
−1{ηα−1 − (1− η)α−1}.
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When 1 < α ≤ 2, G′(η) ≤ 0 holds for η ∈ [ ε2 ,
1
2 ] because of the concavity of G̃. This indicates

that G is nonincreasing and hence minimized at η = 1
2 , so the modulus and order function are

computed as follows:

δH(ε) = G

(
1

2

)
= δ

(1)
H (ε) = H

(
1 + ε

2

)
−H

(
1

2

)
,

S̃H(ε) =
εH ′(1+ε

2 )

2{H(1+ε
2 )−H(12)}

.

Further, δ⋆⋆H ≡ δH is witnessed. To compute the limit at ε → 0+, we compute the higher-order
derivatives of H first:

H(η) = 1
2∥η∥

2
α − 1

2 ,

H ′(η) = ∥η∥α{ηα−1 − (1− η)α−1},
H ′′(η) = (2− α)∥η∥2(1−α)

α {ηα−1 − (1− η)α−1}2 + (α− 1)∥η∥2−α
α {ηα−2 + (1− η)α−2},

H ′′′(η) = 2(2− α)(1− α)∥η∥2−3α
α {ηα−1 − (1− η)α−1}3

+ 3(2− α)(α− 1)∥η∥2(1−α)
α {ηα−1 − (1− η)α−1}{ηα−2 + (1− η)α−2}

+ (α− 1)(α− 2)∥η∥2−α
α {ηα−3 − (1− η)α−3},

where ∥η∥α is a shorthand for {ηα + (1 − η)α}1/α. Then, the limit of the order function can be
computed as follows:

lim
ε→0+

S̃H(ε) = 2 + lim
ε→0+

1
4εH

′′′(1+ε
2 )

1
2H

′′(1+ε
2 )

= 2,

where l’Hôpital’s rule is used twice at the first identity and the second identity is attributed to

H ′′(12) = (α− 1)2
1+2α−α2

α > 0 and H ′′′(12) = 0.
When 2 < α, G′(η) ≥ 0 holds for η ∈ [ ε2 ,

1
2 ] because of the convexity of G̃. This indicates that

G is nondecreasing and hence minimized at η = ε
2 , so the modulus and order function are computed

as follows:

δH(ε) = G
(ε
2

)
= δ

(2)
H (ε) =

H(ε)

2
−H

(ε
2

)
,

S̃H(ε) =
ε{H ′(ε)−H ′( ε2)}
H(ε)− 2H( ε2)

.

Further, δ⋆⋆H ≡ δH is witnessed. The limit of the order function can be computed as follows:

lim
ε→0+

S̃H(ε) = 2 + lim
ε→0+

ε{H ′′′(ε)− 1
4H

′′′( ε2)}
H ′′(ε)− 1

2H
′′( ε2)

= 2,

where l’Hôpital’s rule is used twice at the first identity and the second identity is attributed to
H ′′(0) = 1 and H ′′′(0) = 0.

B.5. Polynomial entropies

Here, we discuss the polynomial entropies H(η) =
∣∣η − 1

2

∣∣α − 1
2α for α > 1. When 1 < α ≤ 2,

the modulus is computed as follows:

δH(ε) = inf
η∈[ ε

2
,1− ε

2
]

{∣∣η − 1+ε
2

∣∣α +
∣∣η − 1−ε

2

∣∣α
2

−
∣∣∣∣η − 1

2

∣∣∣∣α
}
,
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where we write the objective as G(η). As G is symmetric about η = 1
2 , we only need to consider

η ∈ [ ε2 ,
1
2 ]. When ε

2 ≤ η ≤ 1−ε
2 , the right derivative of G is

G′(η)

α
= −

(
1+ε
2 − η

)α−1
+
(
1−ε
2 − η

)α−1

2
+

(
1

2
− η

)α−1

≥ 0,

where the inequality can be seen from Jensen’s inequality being applied to a concave function
η 7→

(
1
2 − η

)α−1. When 1−ε
2 < η ≤ 1

2 , the right derivative of G can be evaluated as

G′(η)

α
=

−
(
1+ε
2 − η

)α−1
+
(
η − 1−ε

2

)α−1

2
+

(
1

2
− η

)α−1

=: G̃(η).

If α = 2, G̃(η) = 0. Otherwise, the second derivative of G̃ is evaluated as

G̃′′(η)

(α− 1)(α− 2)
=

−
(
1+ε
2 − η

)α−3
+
(
η − 1−ε

2

)α−3

2
+

(
1

2
− η

)α−3

≥
−
(
1+ε
2 − η

)α−3
+
(
η − 1−ε

2

)α−3

2
≥ 0,

from which we see G̃′′(η) ≤ 0 and G̃ is concave in η ∈ (1−ε
2 , 12 ]. Then,

G′(η) ≥ min

{
G′

(
1− ε

2

)
, G′

(
1

2

)}
= 0.

Hence, G is nondecreasing for ε
2 ≤ η ≤ 1

2 and minimized at η = ε
2 , which implies that δH(ε) =

G(ε/2) = δ
(2)
H (ε):

δH(ε) =
|2ε− 1|α − 2|ε− 1|α + 1

2α+1
.

Further, δ⋆⋆H ≡ δH is witnessed. The Simonenko order function is computed as follows: for ε < 1
2 ,

S̃H(ε) =
2αε{(1− ε)α−1 − (1− 2ε)α−1}

(1− 2ε)α − 2(1− ε)α + 1
.

When α = 2, S̃H(ε) = 2. Below, we compute the limit at ε → 0+ for 1 < α < 2, by invoking
l’Hôpital’s rule twice:

lim
ε→0+

S̃H(ε)

= lim
ε→0+

2α{(1− ε)α−1 − (1− 2ε)α−1}+ 2αε · (α− 1){−(1− ε)α−2 + 2(1− 2ε)α−2}
α{−2(1− 2ε)α−1 + 2(1− ε)α−1}

= lim
ε→0+

(1− ε)α−1 − (1− 2ε)α−1 + (α− 1)ε{−(1− ε)α−2 + 2(1− 2ε)α−2}
−(1− 2ε)α−1 + (1− ε)α−1

= lim
ε→0+

1

2(1− 2ε)α−2 − (1− ε)α−2

{
− (1− ε)α−2 + 2(1− 2ε)α−2

+ (α− 2)ε
{
(1− ε)α−3 − 4(1− 2ε)α−3

}
− (1− ε)α−2 + 2(1− 2ε)α−2

}
= 2,
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where l’Hôpital’s rule is invoked at the first and third identities.
When α > 2, we compute the modulus in the same way as the case 1 < α ≤ 2. Again, G is

symmetric about η = 1
2 , so we only need to consider η ∈ [ ε2 ,

1
2 ]. We can confirmG is nonincreasing

in this range similarly, so the modulus is computed as follows:

δH(ε) = G

(
1

2

)
= δ

(1)
H (ε) =

(ε
2

)α
and δ⋆⋆H ≡ δH .

The Simonenko order function is computed as follows:

S̃H(ε) =
ε · α

2

(
ε
2

)α−1(
ε
2

)α = α.

Its infinitesimal limit is α as well.
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