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Abstract
We consider the problems of testing and learning quantum k-junta channels, which are n-qubit to
n-qubit quantum channels acting non-trivially on at most k out of n qubits and leaving the rest of
qubits unchanged. We show the following.

1. An Õ(k)-query algorithm to distinguish whether the given channel is k-junta channel or is far from
any k-junta channels, and a lower bound Ω(

√
k) on the number of queries;

2. An Õ
(
4k
)
-query algorithm to learn a k-junta channel, and a lower bound Ω

(
4k/k

)
on the number of

queries.

This gives the first junta channel testing and learning results, and partially answers an open problem
raised by Chen et al. (2023). In order to settle these problems, we develop a Fourier analysis frame-
work over the space of superoperators and prove several fundamental properties, which extends the
Fourier analysis over the space of operators introduced in Montanaro and Osborne (2010).
Keywords: Quantum Channels, Junta Channels, Fourier Analysis, Influence

1. Introduction

It is crucial in quantum computing to understand the behavior of a quantum process, which is also
modeled as a quantum channel, in a black-box manner. The most general method for doing this
is quantum process tomography (QPT). But it requires a large amount of computational resources,
which is exponential in the number of qubits it acts on, as noted by Chuang and Nielsen (1997)
and Gutoski and Johnston (2014).

A quantum channel is referred to as a k-junta channel if it acts non-trivially on up to k out of n
qubits, leaving the rest qubits unchanged. Characterizing a k-junta channel is easier if k is small,
hence it is interesting to find efficient algorithms to test whether a quantum channel is a k-junta
channel and learn k-junta channels. The problems of testing and learning k-junta boolean functions
is also an important problem in theoretical computer science, having a rich history of research,
see Goldreich (2017) and Bhattacharyya and Yoshida (2022). More recently, testing and learning
k-junta unitaries has been explored by Montanaro and Osborne (2010); Wang (2011); Chen et al.
(2023)

In this paper, we are concerned about the testing and learning k-junta channels. The setting is as
follows. Given oracle access to a quantum channel Φ, the algorithm is supposed to output an answer
about the channel Φ, where access means the algorithm queries the oracle with any n-qubit quantum
state ρ and obtains Φ(ρ) as an output. For both problems, it requires a distance function dist(·, ·) to

© 2023 Z. Bao & P. Yao.



BAO YAO

formulate far and close rigorously. With the assistance of the oracle, we are supposed to determine
whether Φ is a k-junta channel or far from any k-junta channels in the testing problem or output
a description of Φ̃, which is close to Φ with respect to the distance. In this work we choose the
distance function induced by the inner product over superoperators, which will be formally defined
in Section 3.

The first main result is an algorithm testing whether a given black-box channel is a k-junta
channel or far from any k-junta channel with Õ(k) queries where Õ(·) hides ε and logarithmic
factor of k.

Theorem 1 (Testing Quantum k-Junta Channels) There exists an algorithm such that, given or-
acle access to an n-qubit to n-qubit quantum channel Φ, it makes O(k log k/ε2) queries and deter-
mines whether Φ is a k-junta channel or dist(Φ,Ψ) ≥ ε for any k-junta channel Ψ with probability
at least 9/10. Furthermore, Any quantum algorithm achieving this task requires Ω(

√
k) queries.

Our second main result is a learning algorithm, which is given a black-box k-junta channel and
outputs a description of a channel close to the channel with O(4k/ε2) queries. We also show that
the algorithm is almost optimal. Hence we can learn a k-junta channel efficiently, especially without
dependence on the total number of qubits.

Theorem 2 (Learning Quantum k-Junta Channels) There exists an algorithm, given oracle ac-
cess to an n-qubit to n-qubit k-junta channel Φ, it makes O(4k/ε2) queries and outputs a de-
scription of channel Ψ satisfying dist(Φ,Ψ) ≤ ε with probability at least 9/10. Furthermore, any
quantum algorithm achieving this task requires Ω

(
4k/k

)
queries.

Both algorithms are proved via Fourier-analytic techniques over superoperators defined in Sec-
tion 3. In particular, we turn both problems to estimating the influence of a superoperator, which is
a generalization of the influence of boolean functions O’Donnell (2014) and the influence of oper-
ators Montanaro and Osborne (2010). We prove a series of fundamental properties of the Fourier
analysis and the influence of superoperators extending similar results on operators. The lower bound
on testing k-junta channels combines the result of testing boolean k-juntas obtained by Bun et al.
(2020) and a structural result for k-junta channels. The lower bound on learning k-junta channels is
obtained by a reduction from learning k-junta unitaries.

Besides, we exhibit a simple Influence-Estimator to estimate the influence of channels in Ap-
pendix F. Compared with the estimator in Chen et al. (2023), where it requires entanglement and
2-qubit operations, our Influence-Estimator requires only single-qubit operations and is as efficient
as theirs. Therefore, it might be easily implemented in the lab.

Contributions

1. We develop Fourier analysis over superoperators and prove several basic properties around
influence, which are an extension of Fourier analysis over operators Montanaro and Osborne
(2010) and may be of independent interest;

2. We present the first k-junta channel testing algorithm and a lower bound for this problem,
partially answering an open problem raised by Chen et al. (2023). In addition, we show an
almost optimal algorithm for k-junta channel learning problems;

3. We construct a new and simple Influence-Estimator, which may be easy to implement in the
lab since it includes only single-qubit operations.
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Organization In Section 1.1, we present a brief overview of related works. Section 1.2 provides a
high-level overview of the proof techniques. After establishing some preliminaries regarding quan-
tum channels in Section 2, we demonstrate our Fourier-analytic techniques in Section 3, including
properties of our distance function. In Section 4 and Section 5, we prove our k-junta channel testing
and learning results respectively. Finally, we conclude in Section 6.

1.1. Related Work

A boolean function f : {0, 1}n → {0, 1} is a k-junta if its value only depends on at most k coor-
dinates of the inputs. Testing and learning boolean juntas has been extensively studied for decades.
The first result explicitly related to testing juntas is obtained by Parnas et al. (2002), where an
O(1)-queries algorithm is given to test 1-juntas. Then Fischer et al. (2004) turned their eyes onto
k-junta testing problem and gave an Õ(k2)-queries algorithm. This upper bound was improved
by Blais (2009) to a nearly optimal algorithm which requires only O(k log k) queries, provided
an Ω(k) lower bound proved by Chockler and Gutfreund (2004). More recently, Sağlam (2018)
gave an Ω(k log k) lower bound, which closed the gap. Junta testing has also been investigated in
the setting where only non-adaptive queries are allowed Servedio et al. (2015), Chen et al. (2018)
and Liu et al. (2019). Learning k-junta boolean function has spawned a large body of work. The
learning algorithm obtained by Mossel et al. (2003) was a breakthrough and followed by a series
of work Lipton et al. (2005), Arpe and Reischuk (2007), Arpe and Mossel (2008) and Arvind et al.
(2009) discussing k-junta learning problem under different circumstances, such as learning sym-
metric juntas, learning with noise, agnostically learning and considering parameterized learnability.
Meanwhile, Bshouty and Costa (2018) tried to understand this problem in the membership query
model, and Levi and Waingarten (2019), Blais et al. (2019) and De et al. (2019) turned their eyes to
tolerant learning k-juntas. More recently, people paid more and more attention to learning k-junta
distribution, see Aliakbarpour et al. (2016) and Chen et al. (2021) for more details.

It is expected that a speedup can be obtained when we use a quantum computer to test or learn
boolean juntas. In Atici and Servedio (2007), Atici and Servedio gave the first quantum algorithm,
which tests k-junta boolean functions with O(k) queries. More recently, Ambainis et al. (2016)
constructed a quantum algorithm which needs only Õ(

√
k) queries. This was shown to be optimal

up to a polylogarithmic factor Bun et al. (2020) In addition, Atici and Servedio (2007) also gave an
O
(
2k
)
-sample quantum algorithm for learning k-junta boolean function in the PAC model.

In quantum computing, it is natural to consider the situation where behind the oracle is a quan-
tum operation instead of a boolean function. The quantum junta unitary testing problem is to decide
if a unitary U with oracle access is a k-junta or ε-far from any k-junta unitary.

Wang gave an algorithm testing k-junta unitaries withO(k) queries in Wang (2011). Montanaro
and Osborne gave a different tester for dictatorship, i.e., 1-junta in Montanaro and Osborne (2010).
Recently, Chen, Nadimpalli and Yuen have settled both the quantum testing and learning of quantum
juntas problem providing nearly tight upper and lower bounds in Chen et al. (2023). See Table 1.1
for more details.

The algorithms of testing and learning boolean juntas heavily rely on the Fourier analysis of
boolean functions, which is nowadays a rich theory and has wide applications in many branches of
theoretical computer science. Readers may refer to O’Donnell (2014) or de Wolf (2008) for more
details. Fourier analysis on quantum operations has received increasing attention in the past couple
of years. Montanaro and Osborne (2010) initiated the study of Fourier analysis on the space of
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operators and established several interesting properties. Influence is a key notion in Fourier analysis,
which describes how much the function value is affected by some subset of inputs and has many
applications in theoretical computer science. The analogous notion in the space of operators has
also played a crucial role in designing testing and learning algorithms of k-junta unitaries in Wang
(2011), Chen et al. (2023).

We summarize related works in Table 1.1.

Table 1: Our contributions and prior work on testing and learning boolean and quantum k-juntas.

Classical Testing Quantum Testing Quantum Learning

f : {0, 1}n → {0, 1} O(k log k)
Blais (2009)

Õ(
√
k)

Ambainis et al. (2016)
O(2k)

Atici and Servedio (2007)
Ω(k log k)

Sağlam (2018)
Ω(
√
k)

Bun et al. (2020)
Ω(2k)

Atici and Servedio (2007)

Unitary U ∈M2n×2n — Õ(
√
k)

Chen et al. (2023)
O(4k)

Chen et al. (2023)

— Ω(
√
k)

Chen et al. (2023)
Ω(4k/k)

Chen et al. (2023)

Channel Φ, n to n qubits — Õ(k)
this work

O(4k)
this work

— Ω(
√
k)

this work
Ω(4k/k)
this work

1.2. Techniques

In this section, we give a high-level technical overview of our main results.

1.2.1. TESTING JUNTA CHANNELS

Our junta testing algorithm is inspired by the algorithm for k-junta boolean function testing by Atici
and Servedio (2007). The algorithm deeply relies on the notion of the influence of superoperators,
which captures how much a subset of input qubits affect the output of a channel; see Section 3.1
for more details. The influence of a superoperator is defined through the formal Fourier analysis
framework over superoperators. We prove in Section 3.1 that it has many properties similar to the
influence of boolean functions and unitaries.

To prove the lower bound, we reduce k-junta channel testing to k-junta boolean function testing,
which has a lower bound Ω(

√
k) by Bun et al. (2020). To make the reduction work, we prove that a

tester for k-junta channels is also a tester of k-junta boolean function, if we view a boolean function
as a quantum channel. Moreover, we also show that our algorithm naturally induces a tester for
k-junta unitaries.

1.2.2. LEARNING JUNTA CHANNELS

The learning algorithm is inspired by the algorithms in Atici and Servedio (2007); Chen et al. (2023).
We apply PAULI-SAMPLE to the Choi-state of the channel to find the high-influence registers. Then
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we apply the efficient quantum state tomography algorithm by O’Donnell and Wright (2017) to
learn the reduced density operator on the qubits with high influence. The lower bound of learning
k-junta channels is obtained by reducing learning k-junta unitaries to learning k-junta channels.

1.2.3. INFLUENCE ESTIMATOR

We propose a new Influence-Estimator to estimate influence for channels, which only needs single-
qubit operations. To achieve this, we utilize the ideas from the CSS code and quantum money. The
estimator uses Hadamard operators to exchange bit-flip effects and phase-flip effects imposed by
the channel and finally decides whether the channel changes the target subset of input qubits too
much; see Section F.

2. Preliminary

We assume that readers are familiar with elementary quantum computing and information theory.
Readers may refer to Chapters 1 and 2 of Nielsen and Chuang (2000) and Chapters 1 and 2 of Wa-
trous (2018) for more detailed backgrounds. For natural number n ≥ 1, [n] represents {1, 2, . . . , n}.
In represents an n× n identity matrix. The subscript may be omitted whenever it is clear from the
context. We say a Hermitian matrix is a positive semidefinite matrix (PSD) if all the eigenvalues are
nonnegative.

Throughout the paper, we assume that the whole quantum system has n qubits. Let N = 2n

be the dimension of the system. Denote Σ = [N ] X = CΣ. L(X) represents the set of all the
linear maps from X to X itself. Therefore all n-qubit quantum states are a subset of L(X). We
note that L(X) is isomorphic to CN×N , the set of N × N matrices. For any A ∈ L(X), let
vec(A) = (A ⊗ I)

∑N
i=1 |i, i〉 be the “stretching” column vector of A. For x ∈ Zn4 and T ⊆ [n],

let xT ∈ ZT4 be the substring of x obtained by restricting x to all the coordinates in T . We write
0T ∈ ZT4 to denote all zero string on coordinates in T . The superscript may be dropped whenever it
is clear from the context. We use A∗ to stand for the conjugate transpose of A.

Recall the definition of Pauli operators given by

σ0 =

(
1 0
0 1

)
= I, σ1 =

(
0 1
1 0

)
= X, σ2 =

(
0 −i
i 0

)
= Y, σ3 =

(
1 0
0 −1

)
= Z.

It forms an orthogonal basis for L(C2) (over C) with respect to the Hilbert-Schmidt inner product.
For any x ∈ Zn4 , let σx = ⊗ni=1σxi . It is easy to check {σx}x∈Zn

4
is an orthogonal basis for

L(CN ) = L(X).
For x ∈ Zn4 , |v(σx)〉 represents the quantum state corresponding to column vector vec(σx). It is

easy to check {|v(σx)〉}x∈Zn
4

is an orthogonal basis in C22n .

2.1. Superoperators and quantum channels

A superoperator on L(X) is a linear map from L(X) to itself. T (X) represents the set of all
superoperators on L(X). A quantum channel Φ : L(X)→ L(X) is completely positive and a trace
preserving superoperator. In this work, we concern ourselves with the channels mapping n qubits
to n qubits. We use C(X) to denote the set of all quantum channels from L(X) to itself. For any
unitary U ∈ L(X), ΦU represents the channel which acts U on the state, i.e., ΦU (ρ) = UρU∗. For
any boolean function g : {0, 1}n → {0, 1}, we define Φg = ΦUg , where Ug is the unitary defined
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to be Ug |x〉 = (−1)g(x) |x〉 for x ∈ {0, 1}n. Next, we introduce the Kraus representation and the
Choi representation of superoperators. The properties and relations around two representations are
postponed to Appendix A.

Definition 3 (Kraus representations, Choi Representations, Choi states) Given superoperator Φ ∈
T (X), its Kraus representation is

Φ(ρ) =
∑
s∈Σ

AsρB
∗
s

where As, Bs ∈ L(X). Its Choi representation is

J(Φ) =
∑
a,b∈Σ

Φ(|a〉〈b|)⊗ |a〉〈b| = (Φ⊗ I)

∑
a,b∈Σ

|a〉〈b| ⊗ |a〉〈b|

 ∈ L(X ⊗X),

where J is a linear map from T (X) to L(X ⊗X).
For a quantum channel Φ, the Choi state v(Φ) is defined to be

v(Φ) =
J(Φ)

TrJ(Φ)
.

The Choi state of unitaries is defined similarly. Note that for a unitary U , its Choi state is a pure
state, denoted by |v(U)〉.

By Fact 25, v(Φ) is a density operator if Φ is a quantum channel.
At the end of this section we introduce k-junta channels.

Definition 4 (k-Junta Channels) Given Φ ∈ C(X) and a subset T ⊆ [n], we say Φ is a T -junta
channel if Φ = ΦT ⊗ IT c . Φ is a k-junta channel if Φ is a T -junta channel for some T ⊆ [n] of size
k.

3. Fourier Analysis over superoperators

We are ready to introduce the Fourier analysis over superoperators. For any superoperators Φ,Ψ ∈
T (X), define the inner product 〈Φ,Ψ〉 = 〈J(Φ), J(Ψ)〉 = Tr J(Φ)∗J(Ψ). It is easy to verify that
〈·, ·〉 is an inner product and (T (X), 〈·, ·〉) forms a finite-dimensional Hilbert space. The norm of
Φ is defined to be ‖Φ‖ =

√
〈Φ,Φ〉 = ‖J(Φ)‖2, where ‖ · ‖2 is the Frobenius norm. The distance

between Φ and Ψ is defined to be

D(Φ,Ψ) =
1

N
√

2
‖Φ−Ψ‖ =

1

N
√

2
‖J(Φ)− J(Ψ)‖2 (1)

The normalizer N
√

2 simply keeps the distance between two quantum channels in [0, 1].
Provided the definitions above, we are going to introduce an orthogonal basis.

Definition 5 (Orthogonal Basis for Superoperators) For any x, y ∈ Zn4 , let

Φx,y(ρ) = σxρσy. (2)
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Proposition 6 {Φx,y}x,y∈Zn
4

forms an orthogonal basis in (T (X), 〈·, ·〉). Besides, ‖Φx,y‖ = N
for all x, y ∈ Zn4 .

The proof is deferred to Appendix B. We are ready to define the Fourier expansions of superop-
erators now.

Definition 7 (Fourier Expansion of Superoperators) For superoperator Φ ∈ T (X), the Fourier
expansion of Φ is defined to be

Φ =
∑

x,y∈Zn
4

Φ̂(x, y)Φx,y

where Φx,y is defined by Eq. (2). Φ̂(x, y)’s are the Fourier coefficients of Φ and Φ̂(x, y) =
1
N2 〈Φx,y,Φ〉. Moreover, we define Φ̂ to be the N2 ×N2 matrix with entries

(
Φ̂(x, y)

)
x,y∈Zn

4

.

Lemma 8 There exists unitary U such that Φ̂ = 1
NU

∗J(Φ)U . Therefore, Φ̂ is PSD if and only
if J(Φ) is PSD. In particular, if J(Φ) is PSD, then Φ̂(x, x) ∈ R for all x ∈ Zn4 . For a quantum
channel Φ, we have 0 ≤ Φ̂(x, x) ≤ 1 for all x ∈ Zn4 and

∑
x∈Zn

4
Φ̂(x, x) = Tr Φ̂ = 1.

The proof is deferred to Appendix C.

3.1. Influence

Given superoperator Φ ∈ T (X) and a subset S ⊆ [n], the influence of S on Φ measures how much
the qubits in S affect Φ. It is an extension of the influence on operators introduced by Montanaro
and Osborne (2010), which, in turn, is inspired by the analogous notion for boolean functions. We
will establish several properties of the influence on quantum channels, which enable us to design
both testing algorithms and learning algorithms for k-junta channels.

Definition 9 (Influence of superoperators) Given superoperator Φ ∈ T (X), S ⊆ [n], the influ-
ence of Φ on S is defined as

InfS [Φ] =
∑

x∈Zn
4 ;xS 6=0

Φ̂(x, x).

We use Infi[Φ] to represent Inf{i}[Φ] for convenience.

Notice that the influence of a superoperator can be negative, which is different from operators
in Montanaro and Osborne (2010) or boolean functions. However, we only concern ourselves about
completely positive superoperators, whose influence is always nonnegative by Lemma 8.

The following proposition follows from Lemma 8 directly.

Proposition 10 Given quantum channel Φ ∈ C(X), S ⊆ [n], it holds that 0 ≤ InfS [Φ] ≤ 1.

The following are some basic properties of influence, which can be easily derived from the
definition and Lemma 8.

Proposition 11 Given quantum channel Φ ∈ C(X) and S, T ⊆ [n], we have
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1. S ⊆ T ⇒ InfS [Φ] ≤ InfT [Φ];

2. InfS [Φ] + InfT [Φ] ≥ InfS∪T [Φ];

3. Inf∅[Φ] = 0, Inf [n][Φ] = 1.

The following key theorem states that the closeness between a quantum channel and juntas is
captured by the influence.

Theorem 12 (Influence and Distance from k-Junta Channels) Let Φ ∈ C(X) be a quantum
channel. If there exists a subset T ⊆ [n] satisfying that InfT c [Φ] ≤ ε for 0 ≤ ε < 1, then there
exists a T -junta channel Φ′′ such that D(Φ,Φ′′) ≤

√
ε+ ε/

√
2.

To obtain this theorem, we construct a T -junta channel Φ′′ explicitly from Φ by two steps.
Firstly we construct a T -junta “sub-channel” Φ′ and then complement it into a T -junta channel Φ′′.
The proof of Theorem 12 is deferred to Appendix D.

Corollary 13 Given quantum channel Φ, if Φ is ε-far from any k-junta channels, then InfT c [Φ] ≥
ε2/4 for all T ⊆ [n] with |T | ≤ k.

3.2. Characterizations of Distance Function

In this section, we will compare the distance given in Eq. (1) with other metrics measuring the
distances between two quantum channels. All the proofs in this section can be found in Appendix E.

Chen et al. (2023) introduced a distance dist(·, ·) between unitaries, with which the authors gave
optimal testing and learning algorithms for k-junta unitaries. The distance dist(·, ·) is defined as
follows.

dist(U, V ) =
1√
2N

min
θ∈[0,2π)

‖U − eiθV ‖2 (3)

The following lemma asserts that the distance D(·, ·) in Eq. (1) and dist(·, ·) in Eq. (3) are
equivalent when considering unitary operations. Recall that ΦU is defined in section 2.1.

Lemma 14 (Related to distance between Unitaries) For unitary matrices U and V , it holds that

dist(U, V ) ≤ D(ΦU ,ΦV ) ≤
√

2dist(U, V ).

The following proposition proves that D(·, ·) captures the average operator distance between
two channels. We expect that our distance function could be used in other channel property testing
problems.

Proposition 15 (Related to average-case operator distance) For quantum channels Φ and Ψ, it
holds that∫

ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ =

2N

N + 1
D(Φ,Ψ)2 +

1

N(N + 1)
‖Φ(I)−Ψ(I)‖22,

where the integral is taken over the Haar measure on all the unit vectors ψ.
Especially for unital channels Φ and Ψ, i.e., Φ(I) = Ψ(I) = I , we have∫

ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ =

2N

N + 1
D(Φ,Ψ)2
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Similar properties have been established for the distance dist(·, ·) between two unitaries in
Proposition 21 of Montanaro and de Wolf (2016). We refer interested readers to the discussion
about the reason for the chosen distances in Section 5.1.1 of Montanaro and de Wolf (2016)

Finally, we prove that D(·, ·) can be very far from the worst-case operator norm. Here we
consider the 1 to 2 diamond norm.

Definition 16 (1 to 2 Diamond Norm) Given Φ ∈ T (X), its 1 to 2 diamond norm is defined to be

‖Φ‖�,1→2 = ‖Φ⊗ 1X‖1→2 = max
ρ:‖ρ‖1=1

{‖(Φ⊗ 1X)(ρ)‖2}

Proposition 17 (Related to worst-case operator distance) For quantum channels Φ and Ψ, it
holds that √

2D(Φ,Ψ) ≤ ‖Φ−Ψ‖�,1→2 ≤ N ·
√

2D(Φ,Ψ)

Both equalities above can be achieved.

4. Testing k-Junta Quantum Channels

In this section, we show an Õ(k)-query k-junta channel testing algorithm and an Ω(
√
k) lower

bound. First, we prove an upper bound on the sample complexity by presenting a k-junta channel
tester, where the analysis of the algorithm relies on the Fourier analysis of superoperators. The lower
bound is obtained by reducing k-junta boolean function testing to k-junta channel testing. Finally,
we show that the k-junta channels testing problem is the natural extension of k-junta unitary testing
problem under our distance function of channels, which gives an alternative proof of the lower
bound.

4.1. Õ(k) Upper Bound and Ω(
√
k) Lower Bound

We firstly show our k-junta channel tester. Our tester is inspired by Atici and Servedio (2007) with
minor changes.

Algorithm 1: PAULI-SAMPLE(Φ, γ)
Input : Oracle access to quantum channel Φ ∈ C(X), γ
Output : S ⊆ [n]

1: Initialize S = ∅;
2: Repeat the following for O(1/γ) times;

• Prepare n EPR states and apply Φ to the half of them to obtain v(Φ);
• Measure all qubits in the Pauli basis, {|v(σx)〉}x∈Zn

4
;

• Given the measurement outcome x, set S ← S ∪ supp(x);
3: Return S.

Theorem 18 (Property of Algorithm 2, Restatement of Theorem 1) Given quantum channel Φ ∈
C(X), with probability at least 9/10, the algorithm JUNTA-CHANNEL-TESTER(Φ, k, ε) outputs
“Yes” if Φ is a k-junta, and outputs “No” if Φ is ε-far from any k-junta channel. The algorithm
makes O

(
k log k/ε2

)
queries to the channel Φ.
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Algorithm 2: JUNTA-CHANNEL-TESTER(Φ, k, ε)
Input : Oracle access to quantum channel Φ ∈ C(X), k, ε
Output : “Yes” or “No”

1: Let S = PAULI-SAMPLE(Φ, ε2/8k log k);
2: Output “Yes” if |S| ≤ k, or else output “No”.

An algorithm is a (k, ε)-channel junta tester if it can distinguish whether the given channel is
k-junta or is ε-far from any k-junta channels. (k, ε)-classical junta testers and (k, ε)-unitary junta
testers are defined similarly.

Lemma 19 A (k,
√
ε/2)-channel junta tester is a (k, ε)-classical junta tester.

Combining Lemma 19 with the Ω(
√
k) lower bound on testing k-junta boolean function proved

by Bun et al. (2020), we obtain an Ω(
√
k) lower bound on testing k-junta channels. Our key

technical lemma is as follows. Recall that Φg is defined in Section 2.1 for boolean function g.

Lemma 20 For a k-junta channel Φ, there exists a k-junta boolean function g′ satisfying that
D(Φ,Φg′) = mingD(Φ,Φg), where the minimization is over all boolean functions g : {0, 1}n →
{0, 1}.

With the assistance of this result around the distance structure of k-junta channels, we obtain
the desired reduction in Lemma 19. See Appendix G for the detailed proofs.

4.2. Reduction from k-Junta Unitary Testing

To show our distance function induced by Fourier analysis over superoperators is a natural extension
of the distance function on unitaries discussed in Montanaro and de Wolf (2016), we provide an extra
reduction from k-junta unitary testing. It gives an alternative proof of our testing lower bound. All
the proofs can be found in Appendix G.

Lemma 21 (Reduction from Testing k-Junta Unitaries to Testing k-Junta Channels) A (k, ε)-
channel junta tester is naturally a (k, ε/2)-unitary junta tester.

The key technical result is as follows:

Lemma 22 For every k-junta channel Φ′, there exists a k-junta unitary V , such that D(Φ′,ΦV ) =
minV D(Φ′,ΦV ), where the minimization is over all unitaries V .

5. Learning k-Junta Quantum Channels

In this section, we prove a nearly tight bound on k-junta learning problem. Our algorithm is inspired
by the learning algorithms in Atici and Servedio (2007) and Chen et al. (2023). We describe the
algorithm JUNTA-CHANNEL-LEARNER as follows.

10
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Algorithm 3: JUNTA-CHANNEL-LEARNER(Φ, k, ε)
Input : Oracle access to k-junta channel Φ ∈ C(X), ε
Output : A classical description of Φ in the form of its Choi representation, a 4n × 4n

matrix
1: Let S = PAULI-SAMPLE(Φ, ε2/8k log k);
2: Set t = O(4k/ε2). Call QUANTUM-STATE-PREPARATION(Φ, S) for 10t times to obtain at

least t copies of quantum state ψS ;
3: Return CHANNEL-TOMOGRAPHY(ψ⊗tS , ε)⊗ v(IS

c
) as the result.

Algorithm 4: QUANTUM-STATE-PREPARATION(Φ, S ⊆ [n])
Input : Oracle access to k-junta channel Φ ∈ C(X), γ
Output : A 2|S|-qubit quantum state, or “error”

1: Prepare the state v(Φ);
2: Measure 2|Sc| qubits in Sc onto the Pauli basis {|σx〉}x∈Z|Sc|

4

;

3: If the measurement result is 0S
c
, return the untouched 2|S| qubits. Otherwise, return “error”.

Theorem 23 (Property of Algorithm 3, Restatement of Theorem 1) Given oracle access to k-
junta channel Φ, with probability at least 9/10, JUNTA-CHANNEL-LEARNER(Φ, k, ε) outputs the
description of quantum channel Ψ such that D(Φ,Ψ) ≤ ε. Furthermore, this algorithm makes
O(4k/ε2) queries.

As for the k-junta channel learning lower bound, recall Lemma 14 shows that our distance
function over channels is equivalent to the distance between unitaries used in Chen et al. (2023),
up to a constant factor, it is very natural to reduce learning k-junta unitaries to learning k-junta
channels, and therefore the following lower bound follows.

Theorem 24 (Lower Bound on Learning k-Junta Channels) Any algorithm learning k-junta chan-
nels within precision ε under D(·, ·) requires Ω(4k log(1/ε)/k) queries.

6. Conclusion

We exhibit two algorithms, one for testing k-junta channels and one for learning k-junta channels
and lower bounds respectively. The k-junta channel learning algorithm is nearly optimal. Our
algorithms generalize the work Atici and Servedio (2007); Chen et al. (2023) about testing and
learning k-junta unitaries and k-junta boolean function. To design the algorithms and prove the
lower bounds, we introduce the Fourier analysis over the space of superoperators, which extends
the Fourier analysis over operators in Montanaro and Osborne (2010). As Montanaro and de Wolf
(2016) mentioned, there was not much work on testing the properties of quantum channels. We
expect more applications in designing algorithms for testing and learning quantum channels through
the Fourier analysis presented in this paper.

11
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Algorithm 5: CHANNEL-TOMOGRAPHY(ψ⊗O(4k/ε2), ε)
Input : Independent copies of ψ and ε, enough for TOMOGRAPHY

Output : A classical description of ψ
1: Run TOMOGRAPHY(ψ⊗O(4k/ε2), 0.04ε) to obtain a description of state ψ;
2: Find out, by only local calculation, the Choi state closest to ψ and return the description.
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Appendix A. Properties on Kraus and Choi Representations

In this section, we list some basic properties of Kraus and Choi representations, whose proofs can
be found in Section 2.2 in Watrous (2018).

Fact 25 Given superoperators Φ ∈ T (X),Φ′ ∈ T (X ′), it holds that

1. Φ is completely positive if and only if it has a Kraus representation Φ(ρ) =
∑

s∈ΣAsρA
∗
s.

It is trace preserving if and only if its Kraus representation Φ(ρ) =
∑

s∈ΣAsρB
∗
s . satisfies

that
∑

s∈ΣB
∗
sAs = I;

2. Φ is completely positive if and only if J(Φ) is PSD. It is trace preserving if and only if
TrX1 J(Φ) = IX2 , where J is viewed as a map from L(X) to L(X1) ⊗ L(X2) with X1 =
X2 = X;

14
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3. If Φ(ρ) =
∑

s∈ΣAsρB
∗
s , we have

J(Φ) =
∑
s∈Σ

vec(As)vec(Bs)
∗;

4. J(Φ⊗ Φ′) = J(Φ)⊗ J(Φ′).

Appendix B. Fourier Basis of Superoperators Is Well-defined

Here we list some basic properties of the inner product and the norm introduced in Section 3, which
are easy to verify by the definitions.

Fact 26 (Properties of Inner Product and Norm)

1. Given Φ(ρ) = AρB∗ and Ψ(ρ) = CρD∗, we have 〈Φ,Ψ〉 = 〈A,C〉 · 〈D,B〉;

2. For Φ(ρ) = AρB∗, we have ‖Φ‖ =
√
〈Φ,Φ〉 =

√
〈A,A〉 · 〈B,B〉 = ‖A‖2 · ‖B‖2;

3. Suppose Φ = Φ1 ⊗ Φ2 and Ψ = Ψ1 ⊗Ψ2. We have 〈Φ,Ψ〉 = 〈Φ1,Ψ1〉 · 〈Φ2,Ψ2〉.

We are going to prove Proposition 6 now.

Proposition 6 {Φx,y}x,y∈Zn
4

forms an orthogonal basis in (T (X), 〈·, ·〉). Besides, ‖Φx,y‖ = N
for all x, y ∈ Zn4 .

Proof
Norm. ∀x, y ∈ Zn4 , ‖Φx,y‖ = ‖σx‖2‖σy‖2 = N using Fact 26.
Orthogonality. ∀x, x′, y, y′ ∈ Zn4 ,x 6= x′ or y 6= y′, we have

〈
Φx,y,Φx′,y′

〉
=
∏
i∈[n]

〈
Φxi,yi ,Φx′i,y

′
i

〉
=
∏
i∈[n]

〈
σxi , σx′i

〉
·
〈
σy′i , σyi

〉
= 0

All equalities follow from Fact 26 directly. Note that for non-zero vectors, orthogonality implies
linear independence.

Basis, spanning the whole space. The dimension of T (X) is N4 = 24n and we have 42n = 24n

linearly independent vectors in {Φx,y}x,y∈Zn
4

.
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Appendix C. Properties of Fourier Expansions of Superoperators

Lemma 8 There exists unitary U such that Φ̂ = 1
NU

∗J(Φ)U . Therefore, Φ̂ is PSD if and only
if J(Φ) is PSD. In particular, if J(Φ) is PSD, then Φ̂(x, x) ∈ R for all x ∈ Zn4 . For a quantum
channel Φ, we have 0 ≤ Φ̂(x, x) ≤ 1 for all x ∈ Zn4 and

∑
x∈Zn

4
Φ̂(x, x) = Tr Φ̂ = 1.

Proof By the definition of Φ̂, we have

Φ̂(x, y) =
1

N2
〈Φx,y,Φ〉

=
1

N2
Tr(vec(σx)vec(σy)

∗)
∗
J(Φ)

=
1

N2
vec(σx)∗J(Φ)vec(σy),

where the second equality is by the definition of the inner product and the fact that J(Φx,y) =
vec(σx)vec(σy)

∗. Therefore

Φ̂ =
1

N
U∗J(Φ)U

where U = [vec(σx)/
√
N ]x∈Zn

4
is a unitary.

The next corollary follows from the properties of Kraus and Choi representations in Fact 25.
We note that Φ(ρ) =

∑
x,y∈Zn

4
Φ̂(x, y)σxρσy is a Kraus representation of Φ. Therefore Φ ∈ T (X)

is trace preserving if and only if
∑

x,y∈Zn
4

Φ̂(x, y)σyσx = I .

Corollary 27 Let Φ ∈ T (X) be a superoperator. The following statements are equivalent.

1. Φ ∈ T (X) is completely positive.

2. Φ̂ is PSD.

The following statements are equivalent as well.

1. Φ ∈ T (X) is trace preserving.

2.
∑

x,y∈Zn
4

Φ̂(x, y)σyσx = I .

Corollary 28 (Relations between Fourier Expansion and Norm and Distance) Let Φ,Ψ ∈ T (X)
be superoperators and Φ̂, Ψ̂ be the corresponding Fourier expansions. Then

1. ‖Φ‖ = N
∥∥∥Φ̂
∥∥∥

2
= N

√∑
x,y∈Zn

4

∣∣∣Φ̂(x, y)
∣∣∣2;

2. D(Φ,Ψ) = 1√
2

∥∥∥Φ̂− Ψ̂
∥∥∥

2
= 1√

2

√∑
x,y∈Zn

4

∣∣∣Φ̂(x, y)− Ψ̂(x, y)
∣∣∣2.
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Appendix D. Proof of Theorem 12

Theorem 12 (Influence and Distance from k-Junta Channels) Let Φ ∈ C(X) be a quantum
channel. If there exists a subset T ⊆ [n] satisfying that InfT c [Φ] ≤ ε for 0 ≤ ε < 1, then there
exists a T -junta channel Φ′′ such that D(Φ,Φ′′) ≤

√
ε+ ε/

√
2.

Proof We need two steps to construct Φ′′ explicitly. Firstly we construct a k-junta sub-channel Φ′,
which is completely positive and trace non-increasing, and then turn it to a channel Φ′′.

Construction of sub-channel Φ′ Let

Φ′(ρ) =
∑

x,y∈Zn
4 ;xTc=yTc=0

Φ̂(x, y)σxρσy

Notice that Φ is a quantum channel. By Fact 26 and Corollary 27, it is easy to see Φ′ is a T -junta
sub-channel. Notice that Φ̂′ is a principle submatrix of PSD matrix Φ̂, which implies Φ̂′ is PSD.
Then again by Corollary 27, J(Φ̂′) is also PSD. Now we bound the distance between Φ and Φ′ from
above.

By Corollary 28, we have

2 ·D(Φ,Φ′)2 =
∑

x,y∈Zn
4 ;xTc 6=0 or yTc 6=0

∣∣∣Φ̂(x, y)
∣∣∣2

For any x, y ∈ Zn4 we have
∣∣∣Φ̂(x, y)

∣∣∣2 ≤ Φ̂(x, x)Φ̂(y, y) since Φ̂ is a PSD matrix. This implies

∑
x,y∈Zn

4 ;xTc 6=0 or yTc 6=0

∣∣∣Φ̂(x, y)
∣∣∣2 ≤

∑
x,y∈Zn

4 :xTc 6=0 or yTc 6=0

Φ̂(x, x)Φ̂(y, y)

≤

 ∑
x,y∈Zn

4 :xTc 6=0

+
∑

x,y∈Zn
4 :yTc 6=0

 Φ̂(x, x)Φ̂(y, y). (4)

Notice
∑

x∈Zn
4

Φ̂(x, x) = 1 by Lemma 8. We have

RHS of Eq. (4) = 2
∑

x∈Zn
4 ;xTc 6=0

Φ̂(x, x)

To summarize, we have

2 ·D(Φ,Φ′)2 ≤ 2
∑

x∈Zn
4 ;xTc 6=0

Φ̂(x, x) = 2 · InfT c [Φ] ≤ 2ε

We claim that
∑

x,y∈Zn
4 ;xTc=yTc=0 Φ̂(x, y)σyσx ≤ I .
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Let

A =
∑

x,y∈Zn
4 ,xTc=yTc=0

Φ̂(x, y)σyσx, (5)

B =
∑

x,y∈Zn
4 ,xTc 6=0,yTc 6=0

Φ̂(x, y)σyσx,

C1 =
∑

x,y∈Zn
4 ,xTc=0,yTc 6=0

Φ̂(x, y)σyσx,

C2 =
∑

x,y∈Zn
4 ,xTc 6=0,yTc=0

Φ̂(x, y)σyσx.

We note that A =
∑

x′,y′∈ZT
4

Φ̂(x′ ◦ 0T
c
, y′ ◦ 0T

c
)σy′σx′ ⊗ IT

c
=: A′ ⊗ IT c

, where x′ ◦ 0T
c

is the concatenation of x′ and 0T
c
. Same for y′ ◦ 0T

c
. To see A ≤ I , it is enough to show A′ ≤ I ,

which is equivalent to TrA′ |φ〉〈φ| ≤ 1 for any quantum state |φ〉T .
Let IT c be a 2|T

c| × 2|T
c| identity matrix. Notice that TrA(|φ〉〈φ| ⊗ ITc

2|Tc| ) = Tr(A′ · |φ〉〈φ|). It
suffices to prove that TrA(|φ〉〈φ| ⊗ ITc

2|Tc| ) ≤ 1 for arbitrary quantum state |φ〉. To this end,

1 = Tr Φ(|φ〉〈φ| ⊗ IT c

2|T c| )

=
1

2|T c| (TrA(|φ〉〈φ| ⊗ IT c) + TrB(|φ〉〈φ| ⊗ IT c) + TrC1(|φ〉〈φ| ⊗ IT c) + TrC2(|φ〉〈φ| ⊗ IT c))

≥ 1

2|T c| (TrA(|φ〉〈φ| ⊗ IT c) + TrC1(|φ〉〈φ| ⊗ IT c) + TrC2(|φ〉〈φ| ⊗ IT c))

=
1

2|T c| (TrA(|φ〉〈φ| ⊗ IT c))

where the first inequality is because B is a principle sub-matrix of Φ̂, which is also PSD by Corol-
lary 27; the last equality is because TrC1(|φ〉〈φ| ⊗ IT c) + TrC2(|φ〉〈φ| ⊗ IT c) = 0. To see this, we
will prove that TrC1(|φ〉〈φ| ⊗ IT c) = 0.

TrC1(|φ〉〈φ| ⊗ IT c) =
∑

x,y∈Zn
4 ,xTc=0,yTc 6=0

Φ̂(x, y) Trσyσx(|φ〉〈φ| ⊗ IT c)

=
∑

x,y∈Zn
4 ,xTc=0,yTc 6=0

Φ̂(x, y) 〈φ|σyT σxT |φ〉 · 〈σyTc , σxTc 〉

= 0

TrC2(|φ〉〈φ| ⊗ IT c) = 0 follows from the same argument. Therefore A ≤ I .
Construction of Channel Φ′′ We set

Φ′′(ρ) = Φ′(ρ) +
√
I −Aρ

√
I −A,

whereA is given in Eq. (5). By Corollary 27, we have J(Φ′′) = J(Φ′)+vec
(√
I −A

)
vec
(√
I −A

)∗,
which is PSD. Notice that A = A′ ⊗ IT c . Thus Φ′′ is also a T-junta completely positive map. To
prove Φ′′ is a channel, it suffices to prove that Φ′′ is trace-preserving. By the Kraus representation
of Φ′′

Φ′′(ρ) =
∑

x,y∈Zn
4 ;xTc=yTc=0

Φ̂(x, y)σxρσy +
√
I −Aρ

√
I −A,
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we have ∑
x,y∈Zn

4 ;xTc=yTc=0

Φ̂(x, y)σyσx +
√
I −A

√
I −A = A+

√
I −A

√
I −A = I,

which implies Φ′′ is trace preserving according to Fact 25.
Next we bound the distance between Φ′ and Φ′′ from above. Note that J(Φ′′) = J(Φ′) +

vec
(√
I −A

)
vec
(√
I −A

)∗, we have

D(Φ′′,Φ′) =
1

N
√

2

∥∥J(Φ′′)− J(Φ′)
∥∥

2
=

1

N
√

2

∥∥∥vec
(√

I −A
)

vec
(√

I −A
)∗∥∥∥

2

=
1

N
√

2

∥∥∥√I −A∥∥∥2

2
=

1

N
√

2
Tr(I −A)

From the definition of A, we have 1
N TrA =

∑
x∈Zn

4 ,xTc=0 Φ̂(x, x) = 1− InfT c [Φ], which implies

1

N
√

2
Tr(I −A) =

1√
2

InfT c [Φ].

Therefore

D(Φ′′,Φ′) ≤ 1√
2

InfT c [Φ] ≤ ε√
2
.

In conclusion, Φ′′ is a T -junta channel and D(Φ,Φ′′) ≤
√
ε+ ε/

√
2, which completes the proof.

Appendix E. Characterization of Distance Function

E.1. Proof of Lemma 14

Lemma 14 (Related to distance between Unitaries) For unitary matrices U and V , it holds that

dist(U, V ) ≤ D(ΦU ,ΦV ) ≤
√

2dist(U, V ).

Proof It’s easy to see

dist(U, V ) =

√
1− 1

N
|〈U, V 〉|

and

D(ΦU ,ΦV ) =

√
1− 1

N2
|〈U, V 〉|2

Let α = 1
N |〈U, V 〉| ∈ [0, 1]. Lemma 14 follows from the inequality

√
1− α ≤

√
1− α2 ≤√

2
√

1− α.
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E.2. Comparison with other operator norms

Proposition 15 (Related to average-case operator distance) For quantum channels Φ and Ψ, it
holds that∫

ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ =

2N

N + 1
D(Φ,Ψ)2 +

1

N(N + 1)
‖Φ(I)−Ψ(I)‖22,

where the integral is taken over the Haar measure on all the unit vectors ψ.
Especially for unital channels Φ and Ψ, i.e., Φ(I) = Ψ(I) = I , we have∫

ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ =

2N

N + 1
D(Φ,Ψ)2

Proof Let J = J(Φ)− J(Ψ) = J(Φ−Ψ) =
∑

i,j∈[N ] Ji,j ⊗ |i〉〈j|, where Ji,j = (Φ−Ψ)(|i〉〈j|).

‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22 = ‖TrX2(J · (I ⊗ |ψ〉〈ψ|))‖22

=

∥∥∥∥∥∥
∑

i,j∈[N ]

Ji,j 〈j|ψ〉 〈ψ|i〉

∥∥∥∥∥∥
2

2

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
〈i|ψ〉 〈ψ|j〉

〈
j′
∣∣ψ〉 〈ψ∣∣i′〉

Note that 〈i|ψ〉 〈ψ|j〉 〈j′|ψ〉 〈ψ|i′〉 = Tr (|j〉〈i| ⊗ |i′〉〈j′|) · (|ψ〉〈ψ| ⊗ |ψ〉〈ψ|), we have∫
ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
Tr
(
|j〉〈i| ⊗

∣∣i′〉〈j′∣∣) · ∫
ψ
|ψ〉〈ψ|⊗2 dψ

=
∑

i,j,i′,j′∈[N ]

〈
Ji,j , Ji′,j′

〉
Tr
(
|j〉〈i| ⊗

∣∣i′〉〈j′∣∣) · I + F

N(N + 1)

=
1

N(N + 1)

 ∑
i,j∈[N ]

〈Ji,j , Ji,j〉+
∑

i,j∈[N ]

〈Ji,i, Jj,j〉


In the second equality we use the fact that

∫
ψ |ψ〉〈ψ|

⊗2 dψ = (I + F )/N(N + 1), where F is
the swap operator which interchanges two n-qubit quantum systems; see Lemma 7.24 of Watrous
(2018). The third equality follows from Tr((A⊗B)F ) = TrAB.

By the definition of J , we have

‖J(Φ)− J(Ψ)‖22 = ‖J‖22 = 〈J, J〉 =
∑

i,j∈[N ]

〈Ji,j , Ji,j〉

‖Φ(I)−Ψ(I)‖22 =

∥∥∥∥∥∥
∑
i∈[N ]

Ji,i

∥∥∥∥∥∥
2

2

=

〈∑
i∈[N ]

Ji,i,
∑
j∈[N ]

Jj,j

〉
=
∑

i,j∈[N ]

〈Ji,i, Jj,j〉
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and therefore ∫
ψ
‖Φ(|ψ〉〈ψ|)−Ψ(|ψ〉〈ψ|)‖22dψ

=
1

N(N + 1)

 ∑
i,j∈[N ]

〈Ji,j , Ji,j〉+
∑

i,j∈[N ]

〈Ji,i, Jj,j〉


=

1

N(N + 1)

(
‖J(Φ)− J(Ψ)‖22 + ‖Φ(I)−Ψ(I)‖22

)
=

2N

N + 1
D(Φ,Ψ)2 +

1

N(N + 1)
‖Φ(I)−Ψ(I)‖22

Proposition 17 (Related to worst-case operator distance) For quantum channels Φ and Ψ, it
holds that √

2D(Φ,Ψ) ≤ ‖Φ−Ψ‖�,1→2 ≤ N ·
√

2D(Φ,Ψ)

Both equalities above can be achieved.

Proof We will show
1

N
‖J(Φ)− J(Ψ)‖2 ≤ ‖(Φ−Ψ)⊗ 1X‖1→2 ≤ ‖J(Φ)− J(Ψ)‖2.

Let |Ψ0〉 = 1√
N

∑
i∈X |ii〉, we have

1

N
‖J(Φ)− J(Ψ)‖2 = ‖((Φ−Ψ)⊗ IX)(|Ψ0〉〈Ψ0|)‖2 ≤ ‖(Φ−Ψ)⊗ IX‖1→2

and the first inequality follows immediately. To prove the next inequality, By the following fact, the
1→ 2 diamond norm can be achieved by a rank-1 Hermitian matrix.

Fact 29 (Theorem 3.51 in Watrous (2018)) There exists an unit vector u ∈ X⊗X , which satisfies
that ‖Φ−Ψ‖�,1→2 = ‖((Φ−Ψ)⊗ IX)(uu∗)‖2.

Let u be the unit vector in Fact 29 and A be a matrix satisfying that u = vec(A) =
√
N(A ⊗

I) |Ψ0〉 =
√
N(I ⊗AT ) |Ψ0〉. We have

‖Φ−Ψ‖�,1→2 = ‖((Φ−Ψ)⊗ I)(vec(A)vec(A)∗)‖2
= N ·

∥∥((Φ−Ψ)⊗ I)((I ⊗AT ) |Ψ0〉〈Ψ0| (I ⊗AT )∗)
∥∥

2

= N ·
∥∥(I ⊗AT )((Φ−Ψ)⊗ I)(|Ψ0〉〈Ψ0|)(I ⊗AT )∗

∥∥
2

=
∥∥(I ⊗AT )(J(Φ)− J(Ψ))(I ⊗AT )∗

∥∥
2

Applying the norm inequality ‖ABC‖2 ≤ ‖A‖∞‖B‖2‖C‖∞ and
∥∥I ⊗AT∥∥∞ =

∥∥AT∥∥∞ =
‖A‖∞ ≤ ‖A‖2, we have∥∥(I ⊗AT )(J(Φ)− J(Ψ))(I ⊗AT )∗

∥∥
2
≤
∥∥I ⊗AT∥∥∞ · ‖J(Φ)− J(Ψ)‖2 ·

∥∥(I ⊗AT )∗
∥∥
∞

≤ ‖A‖22 · ‖J(Φ)− J(Ψ)‖2
= ‖J(Φ)− J(Ψ)‖2
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The last equality is because ‖A‖2 = ‖vec(A)‖2 = ‖u‖2 = 1.
To see the tightness of the first inequality, let Φ = ΦU where U = X ⊗ I⊗n−1 and ΦU is

defined in section 2.1. Let Ψ be an identity channel, it’s easy to check ‖J(Φ)− J(Ψ)‖2/N =
‖Φ−Ψ‖�,1→2 =

√
2. For second inequality, let Φ be

Φ(|1〉〈1|) = |2〉〈2| ,Φ(|2〉〈2|) = |1〉〈1|
Φ(|i〉〈i|) = |i〉〈i| ,∀i 6= 1, 2

Φ(|i〉〈j|) = 0N×N , ∀i 6= j

and Ψ be

Ψ(|i〉〈i|) = |i〉〈i| ,∀i
Ψ(|i〉〈j|) = 0N×N ,∀i 6= j

To verify Φ and Ψ are quantum channels, note that J(Φ) and J(Ψ) are both PSD and they are trace
preserving obviously. Meanwhile, ‖J(Φ)− J(Ψ)‖2 =

√
2 = ‖(Φ−Ψ)(|1〉〈1|)‖2.

Appendix F. A Simple Influence Estimator

In this section, we will describe a new influence estimator. The estimator only includes single-qubit
operations though it fulfills the same function efficiently as the raw influence estimator in Chen et al.
(2023), which needs two-qubit operations and maximally entanglement states.

Algorithm 6: INFLUENCE-ESTIMATOR(Φ, S)
Input : Oracle access to quantum channel Φ ∈ C(X), S ⊆ [n]
Output : Y ∈ {0, 1}

1: Uniformly randomly choose i ∈ {0, 1}S , j ∈ {0, 1}Sc
. Prepare state |i〉S |j〉Sc ;

2: Query Φ to obtain Φ(|i〉〈i|S ⊗ |j〉〈j|Sc);
3: Measure qubits in S over computational basis, set Y1 = 0 if the result is i, otherwise set
Y1 = 1;

4: Uniformly randomly choose i ∈ {0, 1}S , j ∈ {0, 1}Sc
. Prepare state |i〉S |j〉Sc . Apply

Hadamard gates to obtain H⊗S |i〉S ⊗ |j〉Sc ;
5: Query Φ to obtain Φ(H⊗S |i〉〈i|S H⊗S ⊗ |j〉〈j|Sc), and then apply Hadamard gates to obtain

H⊗S ⊗ IScΦ(H⊗S |i〉〈i|S H
⊗S ⊗ |j〉〈j|Sc)H

⊗S ⊗ ISc

6: Measure qubits in S over computational basis. Set Y2 = 0 if the result is i, otherwise set
Y2 = 1;

7: Return Y = Y1 ∨ Y2.

Theorem 30 Given quantum channel Φ and S ⊆ [n], let Y be the output of Algorithm 6. For
arbitrary δ > 0, we have:
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1. InfS [Φ] = 0⇒ Y = 0 with probability 1;

2. InfS [Φ] ≥ δ ⇒ E[Y ] ≥ δ/2.

Proof In the first case, when InfS [Φ] = 0, we know Φ = Φ̃Sc ⊗ IS , therefore Y1 = Y2 = 0 with
probability 1 and thus Y = 0 with probability 1. We focus on the second case.

Pr[Y1 = 0] =
1

2n

∑
i∈{0,1}S

∑
j∈{0,1}n−S

Pr[Y1 = 0 | i, j]

=
1

2n

∑
i

∑
j

Tr (〈i|S ⊗ ISc) · Φ(|i, j〉〈i, j|) · (|i〉S ⊗ ISc)

=
1

2n

∑
i

∑
j

∑
x,y∈Zn

4

Tr 〈i| ⊗ I · Φ̂(x, y)σx |i, j〉〈i, j|σy · |i〉 ⊗ I

=
1

2n

∑
i

∑
j

∑
x,y∈Zn

4

Φ̂(x, y) 〈i|σxS |i〉 〈i|σyS |i〉 · 〈j|σyScσxSc |j〉

=
1

2n

∑
x,y∈Zn

4

Φ̂(x, y)

(∑
i

〈i|σxS |i〉 〈i|σyS |i〉

)
·

∑
j

〈j|σyScσxSc |j〉


For the summation in the first bracket, We note that if xS /∈ {0, 3}S , say, xS contains 1 or 2,

〈i|σxS |i〉 = 0 for all i. Same for yS . Thus if xS 6= yS ∈ {0, 3}S , then
∑

i 〈i|σxS |i〉 〈i|σyS |i〉 = 0.
For the summation in the second bracket, we have

∑
j 〈j|σyScσxSc |j〉 = 〈σySc , σxSc 〉, which is

zero if ySc 6= xSc and 2n−S if ySc = xSc . Hence,

Pr[Y1 = 0] =
1

2n

∑
x,y∈Zn

4

Φ̂(x, y)

(∑
i

〈i|σxS |i〉 〈i|σyS |i〉

)
·

∑
j

〈j|σyScσxSc |j〉


=

∑
x∈Zn

4 ;xS∈{0,3}S
Φ̂(x, x)

To bound Pr[Y2 = 0], the argument is almost the same except that we actually query Φ′ =∑
x,y Φ̂′(x, y)Φx,y instead of Φ =

∑
x,y Φ̂(x, y)Φx,y, where Φ̂′(x′, y′) = Φ(x, y) for all x, y, x′, y′,

where x′, y′ are obtained from x, y, respectively, by flipping 1 to 3 and 3 to 1. Therefore

Pr[Y2 = 0] =
∑

x∈Zn
4 ;xS∈{0,1}S

Φ̂(x, x)

Recall that
1− InfS [Φ] =

∑
x∈Zn

4 ;xS=0

Φ̂(x, x)

By the union bound, we have that

E[Y1 + Y2] = Pr[Y1 = 1] + Pr[Y2 = 1] ≥ InfS [Φ]
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and

E[Y ] = E
[

1

2
(Y1 + Y2) +

1

2
(Y1 − Y2)2

]
≥ 1

2
InfS [Φ]

The conclusion follows.

Appendix G. Testing Quantum k-Junta Channels

G.1. Õ(k) Upper Bound on Testing k-Junta Quantum Channels, Proof of Theorem 18

Theorem 18 (Property of Algorithm 2, Restatement of Theorem 1) Given quantum channel Φ ∈
C(X), with probability at least 9/10, the algorithm JUNTA-CHANNEL-TESTER(Φ, k, ε) outputs
“Yes” if Φ is a k-junta, and outputs “No” if Φ is ε-far from any k-junta channel. The algorithm
makes O

(
k log k/ε2

)
queries to the channel Φ.

Proof Let R be the subset of [n], over which Φ acts non-trivially. Recall that S is the output of
the call to Algorithm 2, PAULI-SAMPLE in line 1. It is easy to see S ⊆ R. We will show with
probability at least 0.9, InfR−S [Φ] = InfSc [Φ] ≤ ε2/8.

For all i ∈ [n] and Infi[Φ] ≥ ε2/8k, the probability that i never occurs in supp(x) is at most(
1− ε2/8k

)O(8k log k/ε2) ≤ 0.1/k. By a union bound, with probability 0.9 for all i ∈ [n], Infi[Φ] ≥
ε2/8k we have i ∈ S and therefore InfSc [Φ] ≤

∑
i∈Sc Infi[Φ] ≤ ε2/8 with probability at least 0.9.

If Φ is a k-junta, |S| ≤ |R| ≤ k and therefore the tester will always outputs “Yes”. In other case,
if Φ is ε-far from any k-junta channel, according to Corollary 13, any subset T ⊆ [n] with |T | ≤ k,
InfT c [Φ] ≥ ε2/4 must hold. This fact induces that thet tester will output “No” with probability at
least 0.9 since |S| > k if InfSc [Φ] ≤ ε2/8 occurs.

Besides, JUNTA-CHANNEL-TESTER(Φ, k, ε) makes O(k log k/ε2) queries to Φ. Theorem 18
follows.

G.2. Ω(
√
k) Lower Bound on Testing Quantum k-Junta Channels, Proof of Lemma 20 and

Lemma 19

Before proving Lemma 20, we need the following technical lemma.

Lemma 31 Let n,m be natural numbers and ra,b ∈ R, ra,a ≥ 0 for a, b ∈ [n]. The maximum
value

max
x

∑
a,b∈[n]

ra,bxaxb

s.t. xa ∈ [−m,m],∀a ∈ [n]

can be achieved if we restrict x satisfying that xa ∈ {m,−m}, for all a ∈ [n].
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Proof For arbitrary a ∈ [n],

∂2
∑

a,b∈[n] ra,bxaxb

(∂xa)
2 = 2ra,a ≥ 0.

Thus the objective function is convex in xa for all a ∈ [n]. The conclusion follows.

We will prove our key technical lemma, Lemma 20.

Lemma 20 For a k-junta channel Φ, there exists a k-junta boolean function g′ satisfying that
D(Φ,Φg′) = mingD(Φ,Φg), where the minimization is over all boolean functions g : {0, 1}n →
{0, 1}.

Proof For any k-junta channel Φ, let boolean function g minimize D(Φ,Φg). We will show g could
be a k-junta boolean function.

g = arg min
g

D(Φ,Φg)

= arg min
g

∥∥∥∥∥∥
∑

a,b∈{0,1}n
(Φ(|a〉〈b|)− Φg(|a〉〈b|))⊗ |a〉〈b|

∥∥∥∥∥∥
2

2

= arg min
g

∑
a,b∈{0,1}n

‖Φ(|a〉〈b|)− Φg(|a〉〈b|)‖22

= arg min
g

∑
a,b∈{0,1}n

(
〈a|Φ(|a〉〈b|) |b〉 − (−1)g(a)+g(b)

)2

Since Φ is a k-junta channel, there exists T ⊆ [n],|T | = k, such that Φ(ρ) = Φ̃(ρT ) ⊗ ρT c . We
have

g = arg min
g

∑
a,b∈{0,1}n

(
〈a|Φ(|a〉〈b|) |b〉 − (−1)g(a)+g(b)

)2

= arg min
g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′, a′′

∣∣ Φ̃(
∣∣a′〉〈b′∣∣)⊗ ∣∣a′′〉〈b′′∣∣ ∣∣b′, b′′〉− (−1)g(a

′,a′′)+g(b′,b′′)
)2

= arg min
g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′
∣∣ Φ̃(

∣∣a′〉〈b′∣∣) ∣∣b′〉− (−1)g(a
′,a′′)+g(b′,b′′)

)2

= arg max
g

∑
a′,b′∈{0,1}T

a′′,b′′∈{0,1}Tc

(〈
a′
∣∣ Φ̃(

∣∣a′〉〈b′∣∣) ∣∣b′〉+ 〈a′| Φ̃(|a′〉〈b′|) |b′〉
)
· (−1)g(a

′,a′′) · (−1)g(b
′,b′′)

= arg max
g

∑
a′,b′∈{0,1}T

(〈
a′
∣∣ Φ̃(

∣∣a′〉〈b′∣∣) ∣∣b′〉+ 〈a′| Φ̃(|a′〉〈b′|) |b′〉
)
· g′(a′) · g′(b′)
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where g′(a′) =
∑

a′′∈{0,1}Tc (−1)g(a
′,a′′),a′ ∈ {0, 1}T . Let ra′,b′ = 2Re

(
〈a′| Φ̃(|a′〉〈b′|) |b′〉

)
, we

know ra′,a′ ≥ 0 since Φ̃(|a′〉〈b′|) is PSD.
Combining with Lemma 31, we know that there exists g′ which achieves the maximum satisfy-

ing that g′(a′) = 2n−k or g′(a′) = −2n−k, for all a′ ∈ {0, 1}T . Thus, we can take k-junta boolean
function g to obtain the minimum of D(Φ,Φg).

Before we prove Lemma 19, we need the following lemma.

Lemma 32 Given boolean function f , if f is ε-far from any k-junta boolean function, then for any
k-junta boolean function g, we have D(Φf ,Φg) ≥

√
2ε.

Proof For k-junta boolean function g, if 1/2 ≥ D(f, g) ≥ ε, we claim that D(Φf ,Φg) ≥√
2D(f, g) ≥

√
2ε. Recall that D(f, g) = Prx[f(x) 6= g(x)].

D(Φf ,Φg) =
1√
2N
‖vec(Uf )vec(Uf )∗ − vec(Ug)vec(Ug)

∗‖2

=
1√
2N

√ ∑
a,b∈{0,1}n

[
(−1)f(a)+f(b) − (−1)g(a)+g(b)

]2
=

√
2

N

√ ∑
a,b∈{0,1}n

(1[f(a) 6= g(a)] · 1[f(b) = g(b)] + 1[f(a) = g(a)] · 1[f(b) 6= g(b)])

=

√
2

N

√
2(1−D(f, g))D(f, g) ·N2

≥
√

2ε

Lemma 19 A (k,
√
ε/2)-channel junta tester is a (k, ε)-classical junta tester.

Proof We will analyze the output of a (k,
√
ε/2)-channel junta tester given oracle to Φf for some

boolean function f : {0, 1}n → {0, 1}.
If f is a k-junta, it is easy to see Φf is also a k-junta. Thus the channel junta tester outputs “Yes”

with probability at least 9/10.
If f is ε-far from any k-junta boolean function, we are going to show Φf is

√
ε/2-far from any

k-junta channel. We give an illustration of our proof as Figure 1. Our goal is show for any k-junta
channel Φ′, D(Φf ,Φ

′) = d3 is large. We firstly show, from Lemma 32, that for any k-junta boolean
function g, D(Φf ,Φg) = d1 is also large (as Step 1 in figure 1). Next we show for any k-junta
channel Φ′, there exists k-junta boolean function g such that D(Φ′,Φg) ≤ D(Φf ,Φ

′), i.e., d2 ≤ d3.
Finally, we conclude that d3 ≥ (d2 + d3)/2 ≥ d1.

For any k-junta channel Φ′, let g = arg ming is a boolean function D(Φ′,Φg). Then g is a k-junta by
Lemma 20. We have

D(Φ′,Φg) ≤ D(Φ′,Φf )

and since g is a k-junta, according to Lemma 32,

D(Φf ,Φg) ≥
√

2ε
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Φg Φf

Φ′

d1

d3d2

boolean function channel

k-junta channel

Step 1: d1 is large
Step 2: d2 ≤ d3

Goal: d3 is large

Figure 1: Illustration of proof of Lemma 19

To conclude, we have

D(Φ′,Φf ) ≥ 1

2

(
D(Φ′,Φf ) +D(Φ′,Φg)

)
≥ 1

2
D(Φf ,Φg) ≥

√
ε

2

for any k-junta channel Φ′.

G.3. Reduction from k-Junta Unitary Testing, Proof of Lemma 22 and Lemma 21

The proof of Lemma 22 follows the same line as Lemma 20. We first show a lemma similar to
Lemma 31, which will be used later.

Lemma 33 Let n be a natural number. For a, b ∈ [n], let Aa,b ∈ Cn×n be an n × n matrix. Set
A =

∑
a,b∈[n]Aa,b ⊗ |a〉〈b| ∈ Cn2×n2

to be the Choi representation of a quantum channel Φ. In
other words, A is PSD and there exists (Bs)s, Bs ∈ Cn×n, s.t., A =

∑
s vec(Bs)vec(Bs)

∗ and∑
sB
∗
sBs = I . The maximum value

max
V ∈Cn×n

∑
a,b∈[n]

〈a|V ∗Aa,bV |b〉

s.t. V ∗V ≤ I

can be achieved if we restrict V satisfying that V ∗V = I .
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Proof Note that

∑
a,b∈[n]

〈a|V ∗Aa,bV |b〉 = vec(V )∗Avec(V )

=
∑
s

vec(V )∗vec(Bs)vec(Bs)
∗vec(V )

=
∑
s

|〈V,Bs〉|2,

where V takes over all matrices in

{V | V ∈ Cn×n, V ∗V ≤ I}
= {WΣW ′ |W,W ′ are unitaries,Σ is a diagonal real matrix,−I ≤ Σ ≤ I}

by the SVD decomposition. Suppose Σ = Diag(x1, . . . , xn). It is not hard to see

∑
s

|〈V,Bs〉|2 =
∑
s

∣∣〈WΣW ′ |W,Bs
〉∣∣2

is a quadratic form in x1, . . . , xn. The coefficients of xa is B′2s,aa ≥ 0, where B′s = W ∗BsW
′∗. By

Lemma 22, the maximum can be achieved if xa = ±1. We conclude the result.

Lemma 22 For every k-junta channel Φ′, there exists a k-junta unitary V , such that D(Φ′,ΦV ) =
minV D(Φ′,ΦV ), where the minimization is over all unitaries V .

Proof For any k-junta channel Φ′, let unitary V minimize D(Φ′,ΦV ). We will show V could be a
k-junta unitary.

V = arg min
V

D(Φ′,ΦV )

= arg min
V

∥∥∥∥∥∥
∑

a,b∈{0,1}n

(
Φ′(|a〉〈b|)− ΦV (|a〉〈b|)

)
⊗ |a〉〈b|

∥∥∥∥∥∥
2

2

= arg min
V

∑
a,b∈{0,1}n

∥∥Φ′(|a〉〈b|)− ΦV (|a〉〈b|)
∥∥2

2

= arg min
V

∑
a,b∈{0,1}n

∥∥Φ′(|a〉〈b|)− V |a〉〈b|V ∗
∥∥2

2
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Since Φ′ is a k-junta, there exists T ⊆ [n],|T | = k, s.t., Φ′ = Φ̃′T ⊗ IT c . Let V =
∑

x∈ZTc
4
Vx⊗σx.

Besides, because
∑

a,b ‖V |a〉〈b|V ∗‖
2
2 = 4n, we have:

V = arg min
V

∑
a,b∈{0,1}n

∥∥Φ′(|a〉〈b|)− V |a〉〈b|V ∗
∥∥2

2

= arg max
V

∑
a,b∈{0,1}n

Re
{
〈b|V ∗Φ′(|b〉〈a|)V |a〉

}
= arg max

V

∑
a,b∈{0,1}n

〈b|V ∗Φ′(|b〉〈a|)V |a〉

= arg max
V

∑
a′,b′∈{0,1}T

∑
a′′,b′′∈{0,1}Tc

∑
x,y∈ZTc

4

〈
b′
∣∣V ∗x Φ̃′(

∣∣b′〉〈a′∣∣)Vy ∣∣a′〉 · 〈b′′∣∣σx ∣∣b′′〉 · 〈a′′∣∣σy ∣∣a′′〉
= arg max

V

∑
a′,b′∈{0,1}T

∑
x,y∈ZTc

4

〈
b′
∣∣V ∗x Φ̃′(

∣∣b′〉〈a′∣∣)Vy ∣∣a′〉 · Trσx · Trσy

= arg max
V

∑
a′,b′∈{0,1}T

〈
b′
∣∣V ∗0Tc Φ̃′(

∣∣b′〉〈a′∣∣)V0Tc

∣∣a′〉
where the second equality follows from∥∥Φ′(|a〉〈b|)− V |a〉〈b|V ∗

∥∥2

2
=
∥∥Φ′(|a〉〈b|)

∥∥2

2
+ ‖V |a〉〈b|V ∗‖22 − 2 · Re

{
〈b|V ∗Φ′(|b〉〈a|)V |a〉

}
=
∥∥Φ′(|a〉〈b|)

∥∥2

2
+ ‖|a〉〈b|‖22 − 2 · Re

{
〈b|V ∗Φ′(|b〉〈a|)V |a〉

}
and the first two terms have nothing to do with V . The third equality is because, if a = b,
〈b|V ∗Φ′(|b〉〈a|)V |a〉 ∈ R and Re {〈b|V ∗Φ′(|b〉〈a|)V |a〉} = 〈b|V ∗Φ′(|b〉〈a|)V |a〉. If a 6= b,∑
a,b∈{0,1}n,a6=b

〈b|V ∗Φ′(|b〉〈a|)V |a〉 =
∑

a,b∈{0,1}n,a<b

〈b|V ∗Φ′(|b〉〈a|)V |a〉+ 〈a|V ∗Φ′(|a〉〈b|)V |b〉

=
∑

a,b∈{0,1}n,a<b

〈b|V ∗Φ′(|b〉〈a|)V |a〉+ 〈b|V ∗Φ′(|b〉〈a|)V |a〉

=
∑

a,b∈{0,1}n,a<b

2 · Re
{
〈b|V ∗Φ′(|b〉〈a|)V |a〉

}
∈ R

Notice that TrT c V ∗V =
∑

x,y∈ZTc
4
V ∗x Vy〈σx, σy〉 = 2n−k

∑
x∈ZTc

4
V ∗x Vx = 2n−kIT . By Lemma 33,

the maximum can be achieved when V ∗
0TcV0Tc = IT , which implies Vx = 0 for x 6= 0T

c
. Thus, we

can take k-junta unitary V to obtain the minimum of D(Φ′,ΦV ).

The proof of Lemma 21 is similar to Lemma 19.

Lemma 21 (Reduction from Testing k-Junta Unitaries to Testing k-Junta Channels) A (k, ε)-
channel junta tester is naturally a (k, ε/2)-unitary junta tester.

Proof Let U be a unitary matrix. It suffices to show that if U is ε-far from any k-junta unitary,
then ΦU is ε/2-far from any k-junta channel. We firstly show that for any k-junta unitary V ,
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D(ΦU ,ΦV ) is large. Next, we show for any k-junta channel Φ′, there exists k-junta unitary V such
that D(Φ′,ΦV ) ≤ D(Φ′,ΦU ).

For any k-junta channel Φ′, let V = arg minunitary V D(Φ′,ΦV ). By Lemma 22, V is k-junta.
For any unitary U , if U is ε-far from any k-junta unitary, then therefore D(ΦU ,ΦV ) ≥ ε. Thus

D(ΦU ,Φ
′) ≥ 1

2
(D(ΦU ,Φ

′) +D(Φ′,ΦV )) ≥ 1

2
D(ΦU ,ΦV ) ≥ ε/2.

The last inequality follows directly from Lemma 14. We complete the proof.

Appendix H. O(4k/ε2) Upper Bound on Learning Quantum k-Junta Channels,
Proof of Theorem 23

Before describing the learning algorithm JUNTA-CHANNEL-LEARNER, we introduce a tomography
algorithm from O’Donnell and Wright (2017).

Fact 34 (Corollary 1.4 of O’Donnell and Wright (2017)) There exists an algorithm TOMOGRAPHY,
which is given O(4k/ε2) copies of an unknown 2k qubit state ρ and outputs the description an esti-
mated state ρ̃ satisfying that ‖ρ− ρ̃‖2 ≤ ε, with probability at least 0.99.

Now we are ready to prove Theorem 23.

Theorem 23 (Property of Algorithm 3, Restatement of Theorem 1) Given oracle access to k-
junta channel Φ, with probability at least 9/10, JUNTA-CHANNEL-LEARNER(Φ, k, ε) outputs the
description of quantum channel Ψ such that D(Φ,Ψ) ≤ ε. Furthermore, this algorithm makes
O(4k/ε2) queries.

Proof Let R be the subset of [n], over which Φ acts non-trivially. Recall that S is the output of the
call to Algorithm 1, PAULI-SAMPLE in line 1 of JUNTA-CHANNEL-LEARNER(Φ, k, ε). It is easy
to see S ⊆ R. With the similar analysis as the proof of Theorem 18, with probability at least 0.99,
InfR−S [Φ] ≤ ε2/8 holds.

Let Φ = ΦR ⊗ IR
c

and v(Φ) = v(ΦR) ⊗ v(IR
c
). Consider the quantum state ψ returned by

QUANTUM-STATE-PREPARATION. We conclude that the probability that it does not output “error”
is

Tr v(Φ) ·
(
IS ⊗

∣∣v(IS
c
)
〉〈
v(IS

c
)
∣∣) =

∑
x,y∈Zn

4

Φ̂(x, y) Tr v(ΦxS ,yS ) · 〈v(σ0)| v(ΦxSc ,ySc ) |v(σ0)〉

=
∑

x∈Zn
4 ,xSc=0

Φ̂(x, x)

= InfS [Φ] ≥ 1− ε2/8.

The step 2 of JUNTA-CHANNEL-LEARNER collects t copies of ψ in 10t calls to the preparation
subroutine with probability at least 0.99 for large enough k, since the expectation of successful
collections is at least (1− ε2/8) · 10t ≥ 8t. We will show ψ ⊗ v(IR−S) is close to v(ΦR).
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It is easy to calculate that

ψ =
1

InfSΦ
IS ⊗ 〈v(σ0)| · v(Φ) · IS ⊗ |v(σ0)〉

=
1

InfSΦ

∑
x,y∈Zn

4

Φ̂(x, y)v(ΦxS ,yS ) · 〈v(σ0)| · v(ΦxSc ,ySc ) · |v(σ0)〉

=
1

InfSΦ

∑
x,y∈Zn

4 ,xSc=ySc=0

Φ̂(x, y)v(ΦxS ,yS )

Let ψ′ = InfS [Φ] · ψ =
∑

x,y∈Zn
4 ,xSc=ySc=0 Φ̂(x, y)v(ΦxS ,yS ). We have∥∥ψ ⊗ v(IS

c
)− v(Φ)

∥∥
2
≤
∥∥ψ ⊗ v(IS

c
)− ψ′ ⊗ v(IS

c
)
∥∥

2
+
∥∥ψ′ ⊗ v(IS

c
)− v(Φ)

∥∥
2

= (1− InfS [Φ])
∥∥ψ ⊗ v(IS

c
)
∥∥

2
+
∥∥ψ′ ⊗ v(IS

c
)− v(Φ)

∥∥
2

≤ ε2

8
+
∥∥ψ′ ⊗ v(IS

c
)− v(Φ)

∥∥
2

and

∥∥ψ′ ⊗ v(IS
c
)− v(Φ)

∥∥2

2
=

∥∥∥∥∥∥
∑

x,y∈Zn
4 ,xSc 6=0 or ySc 6=0

Φ̂(x, y)v(Φx,y)

∥∥∥∥∥∥
2

2

=
∑

x,y∈Zn
4 ,xSc 6=0 or ySc 6=0

∣∣∣Φ̂(x, y)
∣∣∣2

≤
∑

x,y∈Zn
4 ,xSc 6=0 or ySc 6=0

Φ̂(x, x)Φ̂(y, y)

≤ 2
∑

x,y∈Zn
4 ,xSc 6=0

Φ̂(x, x)Φ̂(y, y)

= 2InfSc [Φ] ≤ ε2

4

Therefore
1√
2

∥∥ψ ⊗ v(IS
c
)− v(Φ)

∥∥
2
≤ 1√

2
·
(
ε2

8
+
ε

2

)
≤ 0.45ε

By the step 1 of TOMOGRAPHY, we get a description of quantum state φ with probability 0.99
s.t. ‖φ− ψ‖2 ≤ 0.04ε and

∥∥φ⊗ v(IS
c
)− v(Φ)

∥∥
2
/
√

2 ≤ 0.49ε. After we find the closest Choi
state φ′ to φ in the step 2 of TOMOGRAPHY, we are sure that

∥∥φ′ ⊗ v(IS
c
)− v(Φ)

∥∥
2
≤ ε and the

returned channel is close to Φ with distance at most ε with probability at least 9/10.
To see the query complexity, the call to PAULI-SAMPLE costs only O

(
k log k/ε2

)
queries to Φ

and the preparation and tomography need O
(
4k/ε2

)
queries. The total queries are O

(
4k/ε2

)
.
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