
Proceedings of Machine Learning Research vol 195:1–41, 2023 36th Annual Conference on Learning Theory

Quadratic Memory is Necessary for Optimal Query Complexity in
Convex Optimization: Center-of-Mass is Pareto-Optimal

Moı̈se Blanchard MOISEB@MIT.EDU

Junhui Zhang JUNHUIZ@MIT.EDU

Patrick Jaillet JAILLET@MIT.EDU

Massachusetts Institute of Technology

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We give query complexity lower bounds for convex optimization and the related feasibility prob-
lem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for
first-order convex optimization with deterministic algorithms. In particular, this shows that center-
of-mass cutting-planes algorithms in dimension d which use Õ(d2) memory and Õ(d) queries are
Pareto-optimal for both convex optimization and the feasibility problem, up to logarithmic factors.
Precisely, building upon techniques introduced in [23], we prove that to minimize 1-Lipschitz con-
vex functions over the unit ball to 1/d4 accuracy, any deterministic first-order algorithms using at
most d2−δ bits of memory must make Ω̃(d1+δ/3) queries, for any δ ∈ [0, 1]. For the feasibility
problem, in which an algorithm only has access to a separation oracle, we show a stronger trade-
off: for at most d2−δ memory, the number of queries required is Ω̃(d1+δ). This resolves a COLT
2019 open problem of Woodworth and Srebro.
Keywords: Convex optimization, feasibility problem, first-order methods, cutting-planes, center-
of-mass, memory lower bounds, query complexity

1. Introduction

We consider the canonical problem of first-order convex optimization in which one aims to minimize
a convex function f : Rd → R with access to an oracle that for any query x returns (f(x),∇f(x))
the value of the function and a subgradient of f at x. Arguably, this is one of the most fundamental
problems in optimization, mathematical programming and machine learning.

A classical question is how many oracle queries are required to find an ϵ-approximate min-
imizer for any 1-Lipschitz convex functions f : Rd → R over the unit ball. We denote by
Bd(x, r) = {x′ ∈ Rd : ∥x − x′∥2 ≤ r} the ball centered in x of radius r. There exist meth-
ods that given first-order oracle access only need O(d log 1/ϵ) queries and this query complexity
is worst-case optimal [29] when ϵ ≪ 1/

√
d. Known methods achieving the optimal O(d log 1/ϵ)

query complexity fall in the broad class of cutting plane methods, that build upon the well-known
ellipsoid method [47; 38] which uses O(d2 log 1/ϵ) queries. These include the inscribed ellipsoid
[41; 31], volumetric center or Vaidya’s method [3; 42], approximate center-of-mass via sampling
techniques [20; 6] and recent improvements [19; 17]. Unfortunately, all these methods suffer from
at least Ω(d3 log 1/ϵ) time complexity and further require storing all subgradients, or at least an
ellipsoid in Rd, therefore at least Ω(d2 log 1/ϵ) bits of memory. These limitations are prohibitive
for large-scale optimization, hence cutting plane methods are viewed as rather impractical and less
frequently used for high-dimensional applications. On the other hand, the simplest, perhaps most
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commonly used and practical gradient descent requires O(1/ϵ2) queries, which is not optimal for
ϵ≪ 1/

√
d, but only needs O(d) time per query and O(d log 1/ϵ) memory.

A natural question is whether one can preserve the optimal query lower bounds from cutting-
planes methods with simpler methods, for instance, inspired by gradient descent techniques. Such
hope is largely motivated by the fact that in many different theoretical settings, cutting plane meth-
ods have achieved state-of-the-art runtimes including semidefinite programming [1; 19], submod-
ular optimization [24; 14; 19; 16] or equilibrium computation [34; 15]. Towards this goal, [43]
first posed this question in terms of query complexity / memory trade-off: given a certain num-
ber of bits of memory, which query complexity is achievable? While cutting planes methods re-
quire Ω(d2 log 1/ϵ) memory, gradient descent only requires storing one vector and as a result, uses
O(d log 1/ϵ) memory, which is information-theoretically optimal [43]1. Understanding this trade-
off could pave the way for the design of more efficient methods in convex optimization.

The first result in this direction was provided in [23], where they showed that it is impossible to
be both optimal in query complexity and in memory. Specifically, any potentially randomized algo-
rithm that uses at most d1.25−δ memory must make at least Ω̃(d1+4/3δ) queries. Thus, a super-linear
amount of memory d1.25 is required to achieve the optimal rate of convergence (that is achieved by
algorithms using more than quadratic memory). However, this leaves open the fundamental ques-
tion of whether one can improve over the memory of cutting-plane methods while keeping optimal
query complexity.

Question (COLT 2019 [43]). Is it possible for a first-order algorithm that uses at most O(d2−δ)
bits of memory to achieve query complexity Õ(dpolylog 1/ϵ) when d = Ω(logc 1/ϵ) but d =
o(1/ϵc) for all c > 0?

In this paper, building upon the techniques introduced in [23], we provide a negative answer to
this question: quadratic memory is necessary to achieve optimal query complexity with determinis-
tic algorithms. As a result, cutting plane methods including the standard center-of-mass algorithm
are Pareto-optimal up to logarithmic factors within the query complexity / memory trade-off. Our
main result for convex optimization is the following.

Theorem 1 For ϵ = 1/d4 and any δ ∈ [0, 1], a deterministic first-order algorithm guaranteed to
minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses at least d2−δ bits or
makes Ω̃(d1+δ/3) queries.

A key component of cutting plane methods is that they merely rely on the subgradient infor-
mation at each query to restrict the search space. As a result, these can be used to solve the larger
class of feasibility problems that are essential in mathematical programming and optimization. In a
feasibility problem, one aims to find an ϵ-approximation of an unknown vector x⋆, and has access to
a separation oracle. For any query x, the separation oracle either returns a separating hyperplane g
from x toBd(x

⋆, ϵ)—such that ⟨g,x−z⟩ > 0 for any z ∈ Bd(x
⋆, ϵ)—or signals that ∥x−x⋆∥ ≤ ϵ.

This class of problems is broader than convex optimization since the negative subgradient always
provides a separating hyperplane from a suboptimal query to the optimal set. Hence, feasibility and
convex minimization problem are closely related and it is often the case that obtaining query lower
bounds for the feasibility problem simplifies the analysis while still providing key insights for the

1. Ω(d log 1/ϵ) bits of memory are already required just to represent the answer to the optimization problem.
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more restrictive convex optimization problem [29; 32]. Thus, a similar fundamental question is to
understand the query complexity / memory trade-off for the feasibility problem. As noted above,
any lower bound for convex optimization yields the same lower bound for the feasibility problem.
Here, we can significantly improve over the previous trade-off.

Theorem 2 For ϵ = 1/(48d2
√
d) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to solve

the feasibility problem over the unit ball with ϵ accuracy uses at least d2−δ bits of memory or makes
at least Ω̃(d1+δ) queries.
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Figure 1: Trade-offs between memory and oracle complexity for minimizing 1-Lipschitz convex
functions over the unit ball (adapted from [43; 23]). The dashed pink (resp. green) region
corresponds to historical information-theoretic lower bounds (resp. upper bounds) on the
memory and query-complexity. The solid pink region corresponds to the recent lower
bound trade-off from [23], which holds for randomized algorithms. In our work, we
show that the solid red region is not achievable for any deterministic algorithm. For the
feasibility problem, we also show that the dashed red region is not achievable either for
any deterministic algorithm.

1.1. Literature review

Recently, there has been a series of studies exploring the trade-offs between sample complexity and
memory constraints for learning problems, such as linear regression [39; 37], principal component
analysis (PCA) [25], learning under the statistical query model [40] and other general learning
problems [7; 8; 26; 27; 5; 13; 18; 10; 11].

For parity problems that meet certain spectral (mixing) requirements, [36] that an exponential
number of random samples is needed if the memory is sub-quadratic. Subsequently, similar trade-
offs have then been obtained for various other discrete learning problems [35; 26; 18; 27; 5; 13]
(finite concept class). For continuous problems, [37] was the first work to show sample complexity
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/ memory lower bounds in the case of linear regression, building upon a computation tree argument
introduced in [35]. They show that for accuracy ϵ ≤ 1/dO(log d), sub-quadratic memory algorithms
require O(d log log 1/ϵ), instead of d samples with full quadratic memory.

It should also be pointed out that [11] studied linear prediction problems under the streaming
model by analyzing the Approximate Null-Vector Problem (ANVP). Both ANVP and the Orthog-
onal Vector Game proposed in [23] (which we build upon in this work) aim at finding vectors that
lie approximately in the null space of a stream of vectors, but under different settings. A major
difference is that ANVP considers a streaming setting whereas in the Orthogonal Vector Game (and
the game introduced in this work), the player has access to the complete input in the beginning, then
fixes a memory-constrained message based on the input.

In contrast to learning with random samples, there is limited understanding of the memory-
constrained optimization and feasibility problems. [30] demonstrated that, in the absence of mem-
ory constraints, finding an ϵ-approximate solution for Lipschitz convex functions requires Ω(d log 1/ϵ)
queries, which can be achieved by the center-of-mass method using O(d2 log2 1/ϵ) bits of memory.
At the other extreme, gradient descent needs Ω(1/ϵ2) queries but onlyO(d log 1/ϵ) bits of memory,
the minimum memory needed to represent a solution. These two extreme cases are represented by
dashed pink “impossible region” and dashed green “achievable region” in Figure 1. Since then, [23]
showed that there is a trade-off between memory and query for convex optimization: it is impossible
to be both optimal in query complexity and memory. Their lower bound is represented by the solid
pink “impossible region” in Figure 1. In this paper, we significantly improve these results to match
the quadratic upper bound of cutting plane methods. Additionally, there has been recent progress in
the study of query complexity for randomized algorithms [45; 44], and communication complexity
for convex optimization in the distributed setting [2; 46].

On the algorithmic side, the afore-mentioned methods that achieve O(poly(d)) query complex-
ity [47; 38; 41; 31; 3; 42; 20; 6; 19; 17] all require at least Ω(d2 log 1/ϵ) bits of memory. There is also
significant literature on memory-efficient optimization algorithms, such as the Limited-memory-
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [33; 22]. However, the convergence be-
havior for even the original BFGS on non-smooth convex objectives is still a challenging, open
question [21].

Comparison with [23] Our proof techniques build upon those introduced in [23]. We follow the
proof strategy that they introduced to derive lower bounds for the memory/query complexity. Below,
we delineate which ideas and techniques are borrowed from [23] and which are the novel elements
that we introduce. Details on these proof elements are given in Section 2.1.

First, [23] define a class of difficult functions for convex optimization of the following form

max

{
∥Ax∥∞ − η0, η1

(
max
i≤N

v⊤
i x− iγ

)}
, (1)

where A ∼ U({±1}d/2×d) is a matrix with±1 entries sampled uniformly, and vi ∼ U(d−1/2{±1}d)
are sampled independently, uniformly within the rescaled hypercube. To give intuition on this
class, the term ∥Ax∥∞ − η0 acts as barrier : in order to observe subgradients from the other term,
one needs to use queries x that are approximately within the nullspace of A. The second term
maxi≤N v⊤

i x − iγ is the “Nemirovski” function, which was used in previous works [28; 4; 9] to
obtain lower bounds in parallel convex optimization. At a high level, the limitation in the lower
bounds from [23] comes from the fact that one is limited in the number N of vectors v1, . . . ,vN
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that can be used in the Nemirovski function. To resolve this issue, we introduce adaptivity within
the choice of a modified Nemirovski function. At a high level, we choose the vectors v1, . . . ,vN

depending on the queries of the algorithm which allows to fit in more terms. In turn, this allows to
improve the lower bounds.

As a second step, [23] relate the optimization problem on the defined class of functions to an
Orthogonal Vector Game. In this game, the goal is to find vectors that are approximately orthogonal
to a matrix A with access to row queries of A. The argument is as follows: because of the barrier
term ∥Ax∥∞ − η0, optimizing the Nemirovski function requires exploring independent directions
of the nullspace of A, which is performed at informative queries. With our new class of functions,
we can adapt this logic. However, the adaptivity in the vectors vi provides information to the learner
on A in addition to the queried rows of A. We therefore need to modify the game by introducing
an Orthogonal Vector Game with Hints, where hints encapsulate this extra information.

For the last step, [23] give an information-theoretic argument to provide a query complexity
lower bound on the defined Orthogonal Vector Game. We show that a similar argument holds for
our modified game. The main added difficulty resides in bounding the information leakage from the
hints, and we show that these provide no more information than the memory itself.

As a last remark, the lower bounds provided in [23] hold for randomized algorithms, while the
adaptivity of our procedure only applies to deterministic algorithms.

1.2. Outline of paper

In Section 2, we formally define our setup and give a brief overview of our proof techniques. A
sketch of the proof of Theorem 1 for convex optimization is given in Section 3, with full details
given in Appendix A. In Appendix B we consider the feasibility problem and prove Theorem 2.

2. Formal setup and overview of techniques

Standard results in oracle complexity give the minimal number of queries for algorithms to solve
a given problem. However, this does not account for possible restrictions on the memory available
to the algorithm. In this paper, we are interested in the trade-off between memory and query com-
plexity for both convex optimization and the feasibility problem. Our results apply to a large class
of memory-constrained algorithms. We give below a general definition of the memory constraint
for algorithms with access to an oracle O : S → R taking as input a query q ∈ S and returning a
response O(q) ∈ R.

Definition 3 (M -bit memory-constrained deterministic algorithm) Let O : S → R be an ora-
cle. An M -bit memory-constrained deterministic algorithm is specified by a query function ψquery :
{0, 1}M → S and an update function ψupdate : {0, 1}M ×S ×R → {0, 1}M . The algorithm starts
with the memory state Memory0 = 0M and iteratively makes queries to the oracle. At iteration t,
it makes the query qt = ψquery(Memoryt−1) to the oracle, receives the response rt = O(qt) then
updates its memory Memoryt = ψupdate(Memoryt−1, qt, rt).

The algorithm can stop making queries at any iteration and the last query is its final output.
Notice that the memory constraint applies only between each query but not for internal computa-
tions: the computation of the update ψupdate and the query ψquery can potentially use unlimited
memory. This is a rather weak memory constraint on the algorithm; a fortiori, our negative results
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also apply to stronger notions of memory-constrained algorithms. In Definition 3, we ask the query
and update functions to be time-invariant, which in our context is without loss of generality: any
M -bit algorithm using T queries with time-dependent query and update functions [43; 23] can be
turned into an (M + ⌈log T ⌉)-bit time-invariant algorithm by storing the iteration number t as part
of the memory. The query lower bounds we provide are at most T ≤ poly(d). Hence, an additional
log T = O(log d) bits to the memory size M does not affect our main results, Theorems 1 and 2.

In this paper, we use the above described framework to study the interplay between query com-
plexity and memory for two fundamental problems in optimization and machine learning.

Convex optimization. We first consider convex optimization in which one aims to minimize a
1-Lipschitz convex function f : Bd(0, 1) → R on the unit ball. The goal is to output a point
x̃ ∈ Bd(0, 1) such that f(x̃) ≤ minx∈Bd(0,1) f(x) + ϵ, referred to as ϵ-approximate solutions. The
optimization algorithm has access to a first order oracle OCO : Bd(0, 1)→ R× Rd, which for any
query x returns the couple (f(x), ∂f(x)) where ∂f(x) is a subgradient of f at the query point x.

Feasibility problem. Second, we consider the trade-off between memory and query complexity
for the feasibility problem, where the goal is to find an element x̃ ∈ Q for a convex set Q ⊂
Bd(0, 1). Instead of a first-order oracle, the algorithm has access to a separation oracle OF :
Bd(0, 1) → {Success} ∪ Rd. For any query x ∈ Bd(0, 1), the separation oracle either returns
Success reporting that x ∈ Q, or provides a separating vector g ∈ Rd, i.e., such that for all x′ ∈ Q,

⟨g,x− x′⟩ > 0.

We say that an algorithm solves the feasibility problem with accuracy ϵ > 0 if it can solve any
feasibility problem for which the successful set contains a ball of radius ϵ, i.e., such that there exists
x⋆ ∈ Bd(0, 1) satisfying Bd(x

⋆, ϵ) ⊂ Q.
The feasibility problem is at least as hard as convex optimization in the following sense: an

algorithm that solves the feasibility problem with accuracy ϵ/L can be used to solve L-Lipschitz
convex optimization problems by feeding the subgradients from first-order queries to the algorithm
as separating hyperplanes. Alternatively, from any 1-Lipschitz function f one can derive a feasibil-
ity problem, where the feasibility set is Q = {x ∈ Bd(0, 1), f(x) ≤ f⋆ + ϵ} and the separating
oracle at x /∈ Q is a subgradient ∂f(x) at x.

Remark 4 Although we consider the case of constrained optimization, one can efficiently reduce
the problem of approximate Lipschitz convex optimization over the unit ball to unconstrained ap-
proximate Lipschitz convex optimization [23]. Hence, our results also apply to the latter setting at
the expense of losing poly(d) factors in the necessary accuracy ϵ in Theorem 1. For the feasibility
problem, there is no loss, Theorem 2 applies directly for the unconstrained feasibility setting.

2.1. Overview of proof techniques and innovations

We prove the two main Theorems 1 and 2 with similar techniques, hence for conciseness, we only
give here the main ideas used to derive lower bounds for convex optimization. Although our proof
borrows techniques from [23], we introduce key innovations involving adaptivity to improve the
lower bounds up to the maximum quadratic memory for deterministic algorithms—up to logarithmic
factors. We recall, however, that the bounds in [23] hold for randomized algorithms as well. In the
proofs, we aim to optimize the dependence of the parameters in d. Constants, however, are not
necessarily optimized.
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An adaptive optimization procedure. At the high level, we design an optimization procedure
which for any algorithm constructs a hard family of convex functions adaptively on its queries. To
be precise, the procedure constructs functions from the following family of convex functions with
appropriately chosen parameters η, γ1, γ2, pmax, lp, δ:

FA,v(x) = max

{
∥Ax∥∞ − η, ηv⊤

0 x, η

(
max

p≤pmax,l≤lp
v⊤
p,lx− pγ1 − lγ2

)}
. (2)

We take A ∼ U({±1}n×d) and v0 ∼ U(Dδ) uniformly sampled in the beginning, where Dδ ⊂
Sd−1 is a (finite) discretization of the sphere. The first term ∥Ax∥∞ − η acts as a barrier term: in
order to observe subgradients from the other terms, one needs the query x to satisfy ∥Ax∥∞ ≤ 2η.
These are called informative queries as introduced in [23]. Hence, informative queries must lie
approximately in the orthogonal space to the lines of A. The second term ηv⊤

0 x ensures that
queries with low objective (in particular with objective at most −ηγ1/2) have norm bounded away
from 0. Thus, these queries, once renormalized, will still belong approximately to the nullspace of
A denoted Ker(A).

The adaptivity to the algorithm is captured in the third term, which is constructed along the
optimization process. This construction proceeds by periods p = 1, 2, . . . , pmax designed so that
during each period p, the algorithm is forced to visit a subspace of Ker(A) of dimension k. To do
so, we iteratively construct vectors vp,1, . . .vp,lp as follows. Suppose that at the beginning of step t
of period p, one has defined vectors vp,1, . . . ,vp,l.

• The procedure first evaluates the explored subspace of the algorithm during this period. In
practice, the procedure keeps in memory exploratory queries xip,1 , . . . ,xip,r during period p
up to time t. The exploratory subspace is then Span(xip,1 , . . . ,xip,r).

• If a query with a sufficiently low objective is queried, we sample a new vector vp,l+1 which
is approximately orthogonal to the exploratory subspace. The corresponding new term in the
objective is v⊤

p,l+1x− pγ1 − (l + 1)γ2.

Once this new term is added to the objective, the algorithm is constrained to make queries with an
additional component along the direction −vp,l+1. Since this vector is approximately orthogonal to
all previous queries, this forces the algorithm to query vectors linearly independent from all previous
queries in period p. The period then ends once the dimension of the exploratory subspace reaches
k, having defined lp vectors vp,1, . . . ,vp,lp . As discussed above, the exploratory subspace must
increase dimension for any additional such vector. Thus, after lp ≤ k vectors, period p ends.

The constructed family of convex functions in Eq (2) is similar to the family described in Eq (1)
that were considered in [23]. However, by sampling the vectors vp,l adaptively, the optimization
procedure is able to fit in more terms, thereby providing a significant improvement in the lower
bounds.

Benefits of adaptivity. We now expand on how the adaptive terms allow improving the lower
bound of [23] to match the quadratic upper bound of cutting plane methods. The limitation in
the functions of the form Eq (1) comes from the fact that the offset in the Nemirovski function is
γ = Ω(

√
k log d/d). This offset is necessary to ensure that with high probability, 1: subgradients

v1, . . . ,vN are discovered exactly in this order and 2: that any query which visits a new vector vi

must not lie in the subspace formed by the last k last informative vectors. Indeed, for the last claim,
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from high-dimensional concentration, for a random unit vector v and a k dimensional subspace E,
∥PE(v)∥ = Θ(

√
k log d/d). This offset is not necessary for our procedure, since by construction,

at each period, a k-dimensional subspace of Ker(A) is forced to be explored. As a result, we can
take γ1 = Θ(

√
log d/d). This offset is still necessary to ensure that vectors vp,l are discovered in

their order of construction (lexicographic order on (p, l)) with high probability.

An Orthogonal Vector Game with Hints. The next step of the proof involves linking the opti-
mization of the above-mentioned constructed functions with an Orthogonal Vector Game with Hints.
Similarly to the game introduced by [23], the goal for the player is to find k linearly-independent
vectors approximatively in Ker(A). To do so, the player can access an M -bit message Message
and make m queries, where M = ckd for a small constant c > 0. In the game introduced by
[23], the queries are lines of the matrix A. They then show that to find k dimensions of Ker(A),
where A is taken uniformly at random A ∼ {±1}d/2×d, (nearly) all the lines of A must be queried.
The argument is information-theoretic: each new dimension of Ker(A) must be (approximately)
orthogonal to all lines of A. Hence, this provides additional mutual information O(k) for every line
of A, including the d/2−m lines that were not observed through queries. This extra information on
A can only be explained by the message, which has M bits. Hence, M ≥ O(k)(d/2−m). Setting
the constant c > 0 appropriately, this shows that m = Ω(d).

In our case, the optimization procedure ensures that the algorithm needs to explore k dimensions
ofKer(A) in each period. However, each query yields a response from the optimization oracle that
can either be a line of A (corresponding to the term ∥Ax∥∞ − η of Eq (2)) or v0 (term ηv⊤

0 x
of Eq (2)), or previously defined vectors vp,′l,′ . Since the vectors vp′,l′ have been constructed
adaptively on the queries of the algorithm, which themselves may depend on lines of A, during a
period p, responses vp′,l′ for p′ < p are a source of information leakage for A from previous periods.
As a result, the query lower bound on the game introduced by [23] is not sufficient for our purposes.
Instead, we introduce an Orthogonal Vector Game with Hints, where hints correspond exactly to
these vectors vp′,l′ from previous periods. Informally, the game corresponds to a simulation of one
of the periods of the optimization procedure: for each query x, the oracle returns the subgradient
that would have been returned in the optimization procedure, up to minor details.

Bounding the information leakage. Once the link is settled, the goal is to prove lower bounds on
the number of queries needed to solve the Orthogonal Vector Game with Hints. The main difficulty
is to bound the information leakage from these hints. We recall that hints are of the form vp′,l′ , which
have been constructed adaptively on the queries of the algorithm during period p′. In particular, these
contain information on the lines of A queried during period p′ < p, which may be complementary
with those queried during period p. If this total information leakage through the hints yields a
mutual information with Ker(A) significantly higher than that of the M bits of Message, obtained
lower bounds cannot possibly reflect any trade-off with memory constraints. It is therefore essential
to obtain information leakage at most Õ(M) = Õ(dk).

To solve this issue, we introduce a discretization Dδ of the unit sphere where the vectors vp,l

take value. Next, we show that each individual vector vp′,l′ from previous periods can only provide
information Õ(k) on the matrix A. To have an intuition on this, note that for any (at most) k vectors
x1, . . . ,xk, the volume of the subset of the unit sphere Sd−1 of vectors approximately orthogonal
to x1, . . . ,xk, say S(x1, . . . ,xk) = {y ∈ Sd−1 : |y⊤xi| ≤ d−3, i ≤ k} is qk = Ω(1/d3k).
Hence, since the vector v is roughly taken uniformly at random within Dδ ∩S(x1, . . . ,xk), we can
show that the mutual information of v with the initial vectors x1, . . . ,xk is at most O(− log qk) =
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O(k log d). As a result, even if m = d, the total information leakage through the vectors vp′,l′

from previous periods, is at most O(kd log d). The formal proof involves an anti-concentration
bounds on the distance of a random unit vector to a linear subspace of dimension k, as well as a
more involved discretization procedure than the one presented above. In summary, by introducing
adaptive functions through the optimization procedure, we show that the same memory-sample
trade-off holds for the Orthogonal Vector Game with Hints and the game without hints introduced
in [23], up to logarithmic factors.

3. Memory-constrained convex optimization

To prove our results we need to use discretizations of the unit sphere Sd−1, which we construct
by first partitioning Sd−1 into N(δ) = (O(1)/δ)d regions of equal area and diameter at most
δ, i.e. Vδ = {Vi(δ), i ∈ [N(δ)]} (the existence of which is guaranteed by Lemma 10). Here
δ > 0 is taken as parameter. Then we take one point as the representative of each region, i.e.
Dδ = {bi(δ), i ∈ [N(δ)]} ⊂ Sd−1, where for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ). With these notations we
define the discretization function ϕδ such that for any x ∈ Sd−1, ϕδ(x) = bi(δ) where x ∈ Vi(δ).

3.1. Definition of the difficult class of optimization problems

In this section we present the class of functions that we use to prove our lower bounds. Throughout
the paper, we pose n = ⌈d/4⌉. We first define some useful functions. For any A ∈ Rn×d, we define
gA as follows

gA(x) = aimin , imin = min{i ∈ [n], |a⊤
i x| = ∥Ax∥∞}.

With this function we can define a subgradient function for x 7→ ∥Ax∥∞,

g̃A(x) = ϵgA(x), ϵ = sign(gA(x)⊤x).

We are now ready to introduce the class of functions which we use for our lower bounds. These
are of the following form.

FA,v(x) = max

{
∥Ax∥∞ − η, ηv⊤

0 x, η

(
max

p≤pmax

max
l≤lp

v⊤
p,lx− pγ1 − lγ2

)}
.

Here, A ∈ {±1}n×d is a matrix. Also, v0 and the terms vp,l are vectors in Rd. More precisely,
these vectors will lie in the discretization Dδ for δ = 1/d3. We postpone the definition of pmax

and lp for p ≤ pmax. Last, we use the following choice for the remaining parameters: η = 2/d3,

γ1 = 12
√

log d
d and γ2 = γ1

4d . For convenience, we also define the functions

FA(x) = max{∥Ax∥∞ − η, ηv⊤
0 x}

FA,v,p,l(x) = max

{
∥Ax∥∞ − η, ηv⊤

0 x, η

(
max

(p′,l′)≤lex(p,l),l′≤lp′
v⊤
p′,l′x− p′γ1 − l′γ2

)}
,

with the convention FA,v,1,0 = FA. The functions FA,v,p,l will encapsulate the current state of the
function to be minimized: it will be updated adaptively on the queries of the algorithm. We also
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define a subgradient function for FA,v,p,l by first favoring lines of A, then vectors from v in case of
ties, as follows,

∂FA,v,p,l(x) =


g̃A(xt) if FA,v,l,p(x) = ∥Ax∥∞ − η,
ηv0 otherwise and if FA,v,l,p(x) = ηv⊤

0 x,

ηvp,l otherwise and if (p, l) = argmax(p′,l′)≤lex(p,l)
v⊤
p′,l′x− p′γ1 − l′γ2.

In the last case, ties are broken by lexicographic order. We also pose ∂FA,v = ∂FA,v,pmax,lpmax
.

We consider a so-called optimization procedure described in Procedure 1, which will con-
struct the sequence of vectors v = (vp,l) adaptively on the responses of the considered algo-
rithm. Throughout this section, we use a parameter 1 ≤ k ≤ d/3 − 1 — which will be taken
as k = Θ̃(M/d) where M is the memory of the algorithm — and let pmax be the largest number
which satisfies the following constraint.

pmax ≤ min{cd,1(d− 1)/k, cd,2(d/k)
1/3 − 1}, (3)

where cd,1 = 1/(902 log2 d) and cd,2 = 1/(81 log2/3 d).
The optimization procedure is described in Procedure 1. First, we sample independently A ∼

U({±1}n×d) and v0 ∼ U(Dδ). The matrix A and vector v0 are then fixed for the rest of the
learning procedure. Next, we describe the adaptive procedure to return subgradients. It proceeds
by periods, until pmax periods are completed, unless the total number of iterations reaches d2, in
which case the construction procedure ends as well. First, we say that a query is informative if
FA(x) ≤ η. The procedure proceeds by periods p ∈ [pmax] and in each period constructs the
vectors vp,1, . . . ,vp,k iteratively. We are now ready to describe the procedure at time t when the
new query xt is queried. Let p ≥ 1 be the index of the current period and vp,1, . . . ,vp,l be the
vectors of this period constructed so far: the first period is p = 1 and we allow l = 0 here. As
will be seen in the construction, we always have l ≥ 1 except at the very beginning for which we
use the notation FA,v,1,0 = FA. Together with these vectors, the oracle keeps in memory indices
ip,1, . . . , ip,r with r ≤ k of exploratory queries. The constructed vectors from previous periods are
vp′,l′ for p′ < p and l′ ≤ lp′ .

1. If xt is not informative, i.e. FA(xt) > η, then procedure returns (∥Axt∥∞ − η, g̃A(xt)).

2. Otherwise, we follow the next steps. If r ≤ k − 1 and

FA,v,p,l(xt) ≤ −
ηγ1
2

and
∥PSpan(xip,r′

,r′≤r)⊥(xt)∥

∥xt∥
≥ γ2

4
,

we set ip,r+1 = t and increment r. In this case, we say that xt is exploratory. Next,

(a) Recalling that FA,v,p,l is constructed so far, if FA,v,p,l(xt) ≥ η(−pγ1 − lγ2 − γ2/2),
we do not do anything.

(b) Otherwise, and if r < k, let bp,1, . . . , bp,r be the result from the Gram-Schmidt decom-
position of xip,1 , . . . ,xip,r . Then, let yp,l+1 be a sample of the distribution obtained by
the uniform distribution yp,l+1 ∼ U(Sd−1 ∩

{
z ∈ Rd : |b⊤p,r′z| ≤ 1

d3
,∀r′ ≤ r

}
). We

then pose vp,l+1 = ϕδ(yp,l+1). Having defined this new vector, we increment l.

10
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Procedure 1: The optimization procedure for algorithm alg

Input: d, k, pmax, algorithm alg

Part 1: Procedure to adaptively construct v
1 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).
2 Initialize the memory of alg to 0 and let p = 1, r = l = 0.
3 for t ≥ 1 do
4 if t > d2 then Set (P,L) = (p, l) and break the for loop ;
5 Run alg with current memory to obtain a query xt

6 if FA(xt) > η then // Non-informative query
7 return (∥Axt∥∞ − η, g̃A(xt)) as response to alg.
8 else // Informative query
9 if r ≤ k − 1 and FA,v,p,l(xt) ≤ −ηγ1/2 and ∥PSpan(xip,r′

,r′≤r)⊥(xt)∥/∥xt∥ ≥ γ2
4 then

10 Set ip,r+1 = t and increment r ← r + 1.
11 if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and r < k then
12 Compute Gram-Schmidt decomposition bp,1, . . . , bp,r of xip,1 , . . . ,xip,r .
13 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p,r′z| ≤ d−3, ∀r′ ≤ r}.
14 Define vp,l+1 = ϕδ(yp,l+1) and increment l← l + 1.
15 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and p+ 1 ≤ pmax then
16 Set lp = l and ip+1,1 = t.
17 Compute the Gram-Schmidt decomposition bp+1,1 of xip+1,1 .
18 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p+1,1z| ≤ d−3}.
19 Define vp+1,1 = ϕδ(yp+1,1), increment p← p+ 1 and reset l = r = 1.
20 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) then// End of the construction
21 Set lpmax = l, ipmax+1,1 = t.
22 Set (P,L) = (pmax, l) and break the for loop.
23 return (FA,v,p,l(xt),∂FA,v,p,l(xt)) as response to alg.
24 end

Part 2: Procedure once v, P , L are constructed
25 for t′ ≥ t do return (FA,v,P,L(xt′), ∂FA,v,P,L(xt′)) as response to the query xt′ ;

(c) Otherwise, if r = k, this ends period p. We write the total number of vectors de-
fined during period p as lp := l. If p + 1 ≤ pmax, period p + 1 starts from t =
ip+1,1. Similarly to above, let bp+1,1 be the result of the Gram-Schmidt procedure on
xp+1,1, and we sample yp+1,1 according to a uniform distribution yp+1,1 ∼ U(Sd−1 ∩{
z ∈ Rd : |b⊤p+1,1z| ≤ 1

d3

}
). Then, we pose vp+1,1 = ϕδ(yp+1,1), increment p, and

reset l = r = 1.

After these steps, with the current values of p and l, we return (FA,v,p,l(xt), ∂FA,v,l,p(xt)).

If we finish the last period p = pmax, or if we reach a total number of iterations d2, the construction
phase of the function ends. In both cases, let us denote by P,L the last defined period and vector
vP,L. In particular, we have p ≤ pmax From now on, the final function to optimize is FA,v,P,L and
the oracle is a standard first-order oracle for this function, using the subgradient function ∂FA,v,P,L.
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3.2. Sketch of proof for Theorem 1

We relate Procedure 1 to the standard convex optimization problem and prove query lower bounds
under memory constraints for this procedure. Before doing so, we formally define what we mean
by solving this optimization procedure.

Definition 5 Let alg be an algorithm for convex optimization. We say that an algorithm alg is
successful for the optimization procedure with probability q ∈ [0, 1] and accuracy ϵ > 0, if taking
A ∼ U({±1}n×d), running alg with the responses given by the procedure, and denoting by x⋆(alg)
the final answer returned by alg, with probability at least q over the randomness of A and of the
procedure, one has

FA,v,P,L(x
⋆(alg)) ≤ min

x∈Bd(0,1)
FA,v,P,L(x) + ϵ.

The optimization procedure is designed such that with probability at least 1−C
√
log d/d2, the

procedure returns responses that are consistent with a first-order oracle of the function FA,v,P,L

where vP,L is the last vector to have been defined.

Proposition 6 Let A ∈ {±1}n×d and v0 ∈ Dδ. On an event E of probability at least 1 −
C
√
log d/d2 on the randomness of the procedure for some universal constant C > 0, all responses

of the optimization procedure are consistent with a first-order oracle for the function FA,v,P,L: for
any t ≥ 1, if (ft, gt) is the response of the procedure at time t for query xt, then ft = FA,v,P,L(xt)
and gt = ∂FA,v,P,L(xt).

Now observe that for any constructed vectors v, the function FA,v,P,L is
√
d-Lipschitz. As a re-

sult, if there exists an algorithm for convex optimization that guarantees precision ϵ for 1-Lipschitz
functions, by rescaling, there exists an algorithm alg which is successful for the optimization pro-
cedure with probability 1− C

√
log d/d2 and precision ϵ

√
d. In the next proposition, we show that

to be successful, such an algorithm needs to properly define the complete function FA,v, i.e., to
complete all periods until pmax.

Proposition 7 Let alg be a successful algorithm for the optimization procedure with probability
q ∈ [0, 1] and precision η/(2

√
d). Suppose that alg performs at most d2 queries during the opti-

mization procedure. Then when running alg with the responses of the optimization procedure, alg
succeeds and ends the period pmax with probability at least q − C

√
log d/d for some universal

constant C > 0.

Next, we introduce an Orthogonal Vector Game with Hints, Game 2, where the main difference
with the game introduced in [23] is that the player can provide additional hints. Using Proposition
7, we prove that solving the optimization procedure implies solving Game 2.

Proposition 8 Let m ≤ d. Suppose that there is an M -bit algorithm that is successful for the
optimization procedure with probability q for accuracy ϵ = η/(2

√
d) and uses at most mpmax

queries. Then, there is an algorithm for Game 2 for parameters (d, k,m,M,α = 2η
γ1
, β = γ2

4 ), for
which the Player wins with probability at least q −C

√
log d/d for some universal constant C > 0.

Last, we give a m = Ω̃(d) query lower bound for Game 2.

12
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Game 2: Orthogonal Vector Game with Hints
Input: d, k, m, M , α, β

1 Oracle: Set n← ⌊d/4⌋, sample A ∼ U({±1}n×d).
2 Player: Observe A
3 for l ∈ [d] do
4 Player: Based on A and any previous queries and responses, submit at most k vectors

xl,1, . . . ,xl,rl .
5 Oracle: Perform the Gram-Schmidt decomposition bl,1, . . . , bl,rl of xl,1, . . . ,xl,rl . Then, sam-

ple a vector yl ∈ Sd−1 according to a uniform distribution U(Sd−1 ∩ {z ∈ Rd : ∀r ≤
rl, |b⊤l,rz| ≤ d−3}). As response to the query, return vl = ϕδ(yl) to the player.

6 end
7 Player: Based on A, all previous queries and responses, store an M -bit message Message.
8 Player: Based on A, all previous queries and responses, submit a function g : Bd(0, 1) →

({aj , j ≤ n} ∪ {vl, l ≤ d})× [d2] to the Oracle.
9 for i ∈ [m] do

10 Player: Based on Message, any previous queries x1, . . . ,xi−1 and responses g1, . . . , gi−1 from
this loop phase, submit a query xi ∈ Rd.

11 Oracle: As the response to query zi, return gi = g(zi).
12 end
13 Player: Based on all queries and responses from this phase {zi, gi, i ∈ [m]}, and on Message,

return some vectors y1, . . . ,yk to the oracle.
14 The player wins if the returned vectors have unit norm and satisfy for all i ∈ [k]

1. ∥Ayi∥∞ ≤ α

2. ∥PSpan(y1,...,yi−1)
⊥(yi)∥2 ≥ β.

Proposition 9 Let k ≥ 20M+3d log(2d)+1
cHn . And let 0 < α, β ≤ 1 such that α(

√
d/β)5/4 ≤ 1

2 . If the
Player wins the Orthogonal Vector Game with Hints (Game 2) with probability at least 1/2, then
m ≥ cH

8(30 log d+cH)d.

Putting everything together, we prove our main result.

Proof of Theorem 1 We set n = ⌈d/4⌉ and k = ⌈20M+3d log(2d)+1
cHn ⌉. By Proposition 6, with prob-

ability at least 1−C
√
log d/d2, the procedure is consistent with a first-order oracle for convex opti-

mization. Hence, since the functions FA,v,P,L are
√
d-Lipschitz, anyM -bit algorithm guaranteed to

solve convex optimization within accuracy ϵ = η/(2d) = 1/d4 for 1-Lipschitz functions, yields an
algorithm that is successful for the optimization procedure with probability at least 1−C

√
log d/d2

and precision ϵ
√
d = η/(2

√
d). Suppose that it uses at most Q queries. Then, by Proposition

8, there is a strategy for Game 2 for parameters (d, k, ⌈Q/pmax⌉ + 1,M, α = 2η
γ1
, β = γ2

4 ) in
which the Player wins with probability at least 1 − C ′√log d/d. For d large enough, this proba-

bility is at least 1/2. Further, 2η
γ1

(
4
√
d

γ2

)5/4
≤ (4/3)5/4

3 ηd3 ≤ 1
2 . Hence, by Proposition 9, one has
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⌈Q/pmax⌉+ 1 ≥ cH
8(30 log d+cH)d. Because one has pmax = Θ((d/k)1/3 log−2/3 d), this implies

Q = Ω

(
(d/k)1/3d

log5/3 d

)
= Ω

(
d5/3

(M + log d)1/3 log5/3 d

)
.

In particular, if M = d1+δ for δ ∈ [0, 1], the number of queries is Q = Ω̃(d1+(1−δ)/3).
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Appendix A. Complete proofs of Section 3

In this section, we give the complete details of our tradeoffs between memory and query complexity
for convex optimization. Throughout the proof, we will use concentration bounds relegated to
Appendix C. First, the construction of the discretizations Dδ with equal-area partitions uses the
following result.

Lemma 10 ([12] Lemma 21) For any 0 < δ < π/2, the sphere Sd−1 can be partitioned into
N(δ) = (O(1)/δ)d equal volume cells, each of diameter at most δ.

A.1. Properties and validity of the optimization procedure

We begin with a simple lemma showing that during each period p at most lp ≤ k vectors vp,1, . . . ,vp,lp

are constructed.

Lemma 11 At any time of the construction procedure, l ≤ r. In particular, since r ≤ k, we have
lp ≤ k for all periods p ≤ pmax.

Proof Fix a period p. We prove this by induction. The claim is satisfied for any l = 1 when p ≥ 2
since in this case, at the first time t = ip,1 of the period p we also construct the first vector vp,1.
For p = 1, note that the first informative query t that falls in scenarios (2b) or (2c) is exploratory.
Indeed, in these cases we have FA,v,1,0(xt) < η(−γ1 − γ2/2) ≤ −ηγ1/2, and the second criterion
for an exploratory query is immediate ∥PSpan(xi1,r′

,r′≤0)(xt)∥ = 0 since no indices i1,r have been
defined yet.

We now suppose that the claim holds for l− 1 ≥ 1. Let tp,l be the time when vp,l is constructed
and ip,1, . . . , ip,r the indices constructed until the beginning of iteration tp,l. If a new index ip,r′
was constructed in times (tp,l−1, tp,l) then the claim holds immediately. Suppose that this is not the
case. Note that tp,l falls in scenario (2b) which means in particular that

η(v⊤
p,l−1xtp,l − pγ1 − (l − 1)γ2) ≤ FA,v,p,l−1(xtp,l) < η(−pγ1 − (l − 1)γ2 − γ2/2).

As a result,
|y⊤

p,l−1xtp,l | ≥ |v
⊤
p,l−1xtp,l | − δ >

γ2
2
− δ.

Next, when r ≥ l− 1 is the number of indices constructed so far, we decompose yp,l−1 = α1bp,1+

. . . + αrbp,r + ỹp,l−1 where ỹp,l−1 ∈ Span(xip,r′ , r
′ ≤ r)⊥. Since by construction of yp,l−1 one

has |αr′ | ≤ d−3 for all r′ ≤ r, we have

∥ỹp,l−1 − yp,l−1∥ ≤
√
r

d3
≤ 1

d2
√
d
.

Therefore,

∥PSpan(xip,r′
,r′≤r)⊥(xtp,l)∥ ≥ |ỹ

⊤
p,l−1xtp,l | ≥ |y

⊤
p,l−1xtp,l | −

1

d2
√
d
>
γ2
2
− 1

d2
√
d
− δ ≥ γ2

4
.

As a result, tp,l is exploratory, hence ip,r+1 = tp,l. This ends the proof of the recursion and the
lemma.

18



QUADRATIC MEMORY IS NECESSARY FOR OPTIMAL CONVEX OPTIMIZATION

We recall that P and L denote the last defined period and vector vP,L. From Lemma 11, we
have in particular P ≤ pmax and L ≤ k. The next step involves showing that with high probability,
the returned values and vectors returned by the above procedure are consistent with a first-order
oracle for minimizing the function FA,v,P,L, as stated in Proposition 6.

Proof of Proposition 6 Consider a given iteration t. We aim to show that we have (ft, gt) =
(FA,v,P,L(xt), ∂FA,v,P,L(xt)). By construction, if t ≥ d2, the result is immediate. Now suppose
t ≤ d2. We first consider the case when xt is non-informative (1). By definition, FA(xt) > η.
Since for any (p, l) ≤lex (P,L) one has |v⊤

p,lxt| ≤ ∥vp,l∥∥xt∥ ≤ 1, we have

FA,v,P,L(xt) = max

{
FA(xt), η

(
max

(p,l)≤lex(P,L)
v⊤
p,lx− pγ1 − lγ2

)}
= FA(xt).

As a result, the response of the procedure for xt is consistent with FA,v,P,L and the returned sub-
gradient is g̃A(xt) = ∂FA,v,P,L(xt). Therefore, it suffices to focus on informative queries (2). We
will denote by tp,l the index of the iteration when vp,l has been defined, for (p, l) ≤lex (P,L). Con-
sider a specific couple (p, l) ≤lex (P,L), and let r denote the number of constructed indices on or
before tp,l. Let bp,1, . . . , bp,r the corresponding vectors resulting from the Gram-Schmidt procedure
on xip,1 , . . . ,xip,r . Then, conditionally on the history until time tp,l, the vector vp,l was defined as
vp,l = ϕδ(yp,l), where yp,l is sampled as ∼ U(Sd−1 ∩ {z ∈ Rd : |b⊤p,r′z| ≤ d−3, ∀r′ ≤ r}). As a
result, from Lemma 21, for any t ≤ tp,l, we have

P

(
|x⊤

t vp,l| ≥ 3

√
2 log d

d
+

2

d2

)
≤ 6
√
2 log d

d6
.

We then define the following event

E =
⋂

(p,l)≤lex(P,L)

⋂
t≤tp,l

{
|x⊤

t vp,l| < 3

√
2 log d

d
+

2

d2

}
,

which by the union bound has probability P(E) ≥ 1−3
√
2 log d/d2. We are now ready to show that

the construction procedure is consistent with optimizing FA,v,P,L on the event E . As seen before,
we can suppose that xt is informative (2). Using the same notations as before, because E is met, for
any p < p′ ≤ P and l′ ≤ lp′ , we have for d ≥ 2,

v⊤
p′,l′xt − p′γ1 − l′γ2 < 3

√
2 log d

d
+

1

d
− pγ1 − γ1 ≤ −pγ1 −

γ1
2
≤ −pγ1 − dγ2 −

γ2
2
,

where we used 3
√
2 + 1 ≤ 6 and 2dγ2 ≤ γ1/2. As a result, we obtain that

max
(p′,l′)≤lex(P,L),p′>p

v⊤
p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 −

γ2
2
.

Next, we consider the case of vectors vp,l′ where l ≤ l′ ≤ lp and tp,l′ ≥ t (this also includes
the case when we defined vp,l at time t = tp,l). We write l̃ for the smallest such index l. As a
remark, l̃ ∈ {l, l + 1}. Note that if such indices exist, this means that before starting iteration t, the
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procedure has not yet reached r = k. There are two cases. If xt was exploratory, we have t = ip,r
hence ∥PSpan(bp,r′ ,r

′≤r)⊤(xt)∥ = 0. If xt is not exploratory, either

∥PSpan(bp,r′ ,r
′≤r)⊤(xt)∥ <

γ2
4
∥xt∥ ≤

γ2
4
, (4)

or we have FA,v,p,l(xt) > −ηγ1/2. We start with the last scenario when FA,v,p,l(xt) > −ηγ1/2.
Then, on E , one has

max
(p,l)<lex(p′,l′)≤lex(P,L)

v⊤
p′,l′xt − p′γ1 − l′γ2 ≤ −γ1 + 3

√
2 log d

d
+

1

d
≤ γ1

2

As a result, this shows that FA,v,P,L(xt) = FA,v,p,l(xt). Hence using a first-order oracle from
FA,v,l,p at xt is already consistent with FA,v,P,L. Thus, for whichever step (2a), (2b) or (2c) is
performed, since these can only increase the knowledge on v, the response given by the construction
procedure is consistent with minimizing FA,v.

It remains to treat the first two scenarios in which we always have Eq (4). In particular, when
writing xt = α1bp,1 + . . . + αrbp,r + x̃t where x̃t = PSpan(bp,r′ ,r

′≤r)⊥(xt), we have ∥x̃t∥ < γ2
4 .

As a result, for l̃ ≤ l′ ≤ lp, one has for

|v⊤
p,l′xt| ≤ |y⊤

p,l′xt|+ δ ≤ |α1||y⊤
p,l′bp,1|+ . . .+ |αr||y⊤

p,l′bp,r|+ ∥x̃t∥+ δ

< ∥α∥1
1

d3
+
γ2
4

+ δ

≤ γ2
4

+
1

d2
√
d
+

1

d3
≤ γ2

2
,

where in the last inequality we used d ≥ 3. As a result, provided that l̃ exists, this shows that

max
l̃≤l′≤lp

v⊤
p,l′xt − pγ1 − l′γ2 = v⊤

p,l̃
xt − pγ1 − l̃γ2 < −pγ1 − l̃γ2 +

γ2
2
. (5)

On the other hand, if t = ip+1,1, the same reasoning works for t viewing it as in period p+1, which
shows for this case that

max
l′≤lp+1

v⊤
p+1,l′xt − (p+ 1)γ1 − l′γ2 = v⊤

p+1,1xt − (p+ 1)γ1 − γ2 < −(p+ 1)γ1 −
γ2
2
. (6)

As a conclusion of these estimates, we showed that on E , we have

FA,v,P,L(xt) = max
{
FA,v,p,l(xt), η(v

⊤
p′,l′xt − p′γ1 − l′γ2)

}
:= F̃A,v,t(xt)

where (p′, l′) is the very next vector that is defined after starting iteration t (potentially, it has tp′,l′ =
t if we defined a vector at this time). It then suffices to check that the value and vector returned by
the procedure are consistent with the right-hand side. By construction, if we constructed vp′,l′ at
step t: case (2b) or (2c), then the procedure directly uses a first-order oracle for F̃A,v,t. Further,
by construction of the subgradients since they break ties lexicographically in (p, l), the returned
subgradient is exactly ∂FA,v,P,L(xt). It remains to check that this is the case when no vector vp′,l′ is
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defined at step t: case (2a). This corresponds to the case when FA,v,p,l(xt) ≥ η(−pγ1− lγ2−γ/2).
In this case, the upper bound estimates from Eq (5) and Eq (6) imply that

v⊤
p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 − γ/2,

and as a result, FA,v,P,L(xt) = FA,v,p,l(xt). Therefore, using a first-order oracle of FA,v,p,l at
xt is valid, and the break of ties of the subgradient of F̃A,v,t is the same as the break of ties of
∂FA,v,P,L(xt). This ends the proof that on E the procedure gives responses consistent with an opti-
mization oracle forFA,v,P,L with subgradient function ∂FA,v,P,L. Because P(E) ≥ 1−C

√
log d/d2

for some constant C > 0, this ends the proof of the proposition.

Last, we provide an upper bound on the optimal value of FA,v,P,L.

Proposition 12 Let A ∼ U({±1}n×d) and v0 ∼ U(Dδ). For any algorithm alg for convex
optimization, let v be the resulting set of vectors constructed by the randomized procedure. With
probability at least 1− C

√
log d/d over the randomness of A, v0 and v, we have

min
x∈Bd(0,1)

FA,v(x) ≤ −
η

30
√

(kpmax + 1) log d
,

for some universal constant C > 0.

Proof For simplicity, let us enumerate all the constructed vectors v1, . . . ,vlmax by order of con-
struction. Hence, lmax ≤ pmaxk. We use the same enumeration for y1, . . . ,ylmax

. Next, let
Cd =

√
40(lmax + 1) log d and consider the following vector,

x̄ = − 1

Cd

lmax∑
l=0

PSpan(ai,i≤n)⊥(vl).

In particular, note that we included v0 in the sum. For convenience, we write PA⊥ instead of
PSpan(ai,i≤n)⊥ . Also, for convenience let us define zl =

∑
l′≤l PA⊥(vl). Fix an index 1 ≤ l ≤

lmax. Then, by Lemma 21, with t0 :=
√

6 log d
d + 2

d2
, we have

P
(
|PA⊥(vl+1)

⊤zl| > t0∥zl∥
)
= P

(
|v⊤

l+1PA⊥(zl)| > t0∥zl∥
)

≤ P
(
|v⊤

l+1PA⊥(zl)| > t0∥PA⊥(zl)∥
)

≤ 2
√
6 log d

d2
.

Similarly, we have that

P
(
|v⊤

l+1zl| > t0∥zl∥
)
≤ 2
√
6 log d

d2
.

We consider the event E =
⋂

l≤lmax
{|v⊤

l zl−1|, |PA⊥(vl)
⊤zl−1| ≤ t0∥zl∥}, which since lmax ≤ d,

by the union bound has probability at least 1− 4
√
6 log d/d. Then, on E , for any l < lmax,

∥zl+1∥2 ≤ ∥zl∥2 + ∥PA⊥(vl+1)∥2 + 2|PA⊥(vl+1)
⊤zl| ≤ ∥zl∥2 + 1 + 2t0∥zl∥.
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We now prove by induction that ∥zl∥2 ≤ 40 log d · (l + 1), which is clearly true for z0 since
∥z0∥ = ∥PA⊥(v0)∥ ≤ ∥v0∥ ≤ 1. Suppose this is true for l < lmax. Then, using the above

equation and the fact that t0 ≤ 3
√

log d
d for d ≥ 4,

∥zl+1∥2 ≤ 40 log d · (l + 1) + 1 + 6
√
40 log d

√
l + 1

d
≤ 40 log d · (l + 2),

where we used lmax + 1 ≤ d, which completes the induction. In particular, on E , we have that
∥x̄∥ ≤ 1. Also, observe that by construction x̄ ∈ Span(ai, i ≤ n)⊥ so that ∥Ax̄∥∞ = 0. Next, for
any 0 ≤ l ≤ lmax, we have

v⊤
l x̄ = −

v⊤
l zlmax

Cd
= − 1

Cd

∥PA⊥(vl)∥2 + v⊤
l zl−1 +

∑
l<l′≤lmax

v⊤
l PA⊥(vl′)

 .

We will give estimates on each term of the above equation. First, if the indices ip,1, . . . , ip,r were
defined before defining vl, we denote ỹ = PSpan(xip,r′

,r′≤r)⊥(yl), the component of yl which is

perpendicular to the explored space at that time. Then, we can write yl = αl
1bp,1+. . .+α

l
rbp,1+ỹl,

and note that

∥ỹl∥ =
√
∥yl∥ − (αl

1)
2 − . . .− (αl

r)
2 ≥

√
1− k

d6
≥ 1− 1

d5
.

Then, we have

∥PA⊥(vl)∥ ≥ ∥PA⊥(yl)∥ − δ
≥ ∥PSpan(ai,i≤n, bp,r′ ,r≤r′)⊥(yl)∥ − δ

= ∥PSpan(ai,i≤n, bp,r′ ,r≤r′)⊥(ỹl)∥ − δ

≥
∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r

′≤r)⊥

(
ỹl

∥ỹl∥

)∥∥∥∥− 1

d5
− δ.

As a result, since δ = d−3, this shows that

∥PA⊥(vl)∥2 ≥
∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r

′≤r)⊥

(
ỹl

∥ỹl∥

)∥∥∥∥2 − 2δ.

Now observe that dim(Span(ai, i ≤ n, bp,r′ , r
′ ≤ r)⊥) ≥ d − n − k, while ỹl

∥ỹl∥
is a uniformly

random unit vector in Span(bp,r′ , r ≤ r′)⊥. Therefore, using Proposition 20 we obtain for t < 1,

P
(
∥PA⊥(vl)∥2 + 2δ − d− n− k

d
≤ −t

)
≤ P

(∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r
′≤r)⊥

(
ỹl

∥ỹl∥

)∥∥∥∥2 − d− n− k
d

≤ −t

)
≤ e−(d−k)t2 .
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As a result since d− n− k ≥ d/2, we obtain

P

(
∥PA⊥(vl)∥2 ≤

1

2
− 2

√
log d

d
− 2δ

)
≤ 1

d2
.

Nwxt, define F =
⋂

l≤lmax
{∥PA⊥(vl)∥2 ≥ 1

2 − 2
√

log d
d − 2δ}, which since lmax + 1 ≤ d and by

the union bound has probability at least P(F) ≥ 1 − 1/d. Next, we turn to the last term. For any
0 ≤ l < lmax, we focus on the sequence (

∑l+u
l′=l+1 v

⊤
l PA⊤(yl′))1≤u≤lmax−l and first note that this

is a martingale. These increments are symmetric (because yl′ is symmetric) even conditionally on

A and vl,yl, . . . ,yl′−1. Next, let t1 = 2
√

3 log d
d + 2

d2
. Note that for d ≥ 4, we have t1 ≤ 4

√
log d
d .

Further, by Lemma 21,

P(|v⊤
l PA⊤(yl′)| > t1) = P(|PA⊤(vl)

⊤yl′ | > t1) ≤
4
√
3 log d

d4
,

where we used the fact that PA⊥ is a projection. Let Gl =
⋂

l<l′≤lmax
{|v⊤

l PA⊤(vl′)| ≤ t1},
which by the union bound has probability P(Gl) ≥ 1 − 4

√
3 log d/d3. Next, we define Il,u =

(v⊤
l PA⊤(yl+u) ∧ t1) ∨ (−t1), the increments capped at absolute value t1. Because v⊤

l PA⊤(yl+u)
is symmetric, so is Il,u. As a result, these are bounded increments of a martingale, to which we can
apply the Azuma-Hoeffding inequality.

P

(∣∣∣∣∣
lmax−l∑
u=1

Il,u

∣∣∣∣∣ ≤ 2t1
√

(lmax − l) log d

)
≥ 1− 2

d2
.

We denote byHl this event. Observe that on Gl, the increments Il,u and v⊤
l PA⊤(yl+u) coincide for

all 1 ≤ u ≤ lmax − l. As a result, on Gl ∩Hl we obtain∣∣∣∣∣∣
∑

l<l′≤lmax

v⊤
l PA⊥(vl′)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

l<l′≤lmax

v⊤
l PA⊥(yl′)

∣∣∣∣∣∣+ (lmax − 1)δ

≤

∣∣∣∣∣
lmax−l∑
u=1

Il,u

∣∣∣∣∣+ (d− 2)δ

≤ 2t1
√
lmax log d+ (d− 2)δ.

Then, on the event E ∩ F ∩
⋂

l≤lmax
Gl ∩Hl, for any 1 ≤ l ≤ lmax one has

v⊤
l zlmax ≥

1

2
− 2

√
log d

d
− t0∥zl∥ − 2t1

√
lmax log d−

1

d2

≥ 1

2
− 2

√
log d

d
− 3 log d

√
40
lmax + 1

d
− 8 log d

√
lmax

d
− 1

d2

≥ 1

2
− 30 log d

√
lmax + 1

d

≥ 1

6
,
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where in the last inequalities we used the fact that lmax ≤ kpmax ≤ cd,1d−1 where cd,1 = 1
902 log2 d

as per Eq (3). As a result, we obtain that on E ∩F ∩
⋂

l≤lmax
Gl ∩Hl, which has probability at most

1− C
√
log d/d for some constant C > 0,

max
p≤pmax,l≤k

v⊤
p,lx̄ ≤ −

1

6Cd
≤ − 1

40
√
(kpmax + 1) log d

.

Since ∥Ax̄∥∞ = 0, and η ≥ η

40
√

(kpmax+1) log d
, this shows that

FA,v(x̄) ≤ −
η

40
√

(kpmax + 1) log d
.

This ends the proof of the proposition.

A.2. Reduction from convex optimization to the optimization procedure

Next, we prove Proposition 7 which shows that to be successful for the optimization procedure, an
algorithm needs to properly define the function FA,v, i.e., to complete all periods until pmax.

Proof of Proposition 7 Let x⋆(alg) = xT denote the final answer of alg when run with the
optimization procedure. By hypothesis, we have T ≤ d2. As before, let P ≤ pmax and L ≤ k be
the indices such that the last vector constructed by the optimization procedure is vP,L. Let E be the
event when alg run on the optimization procedure does not end period pmax. We focus on E and
consider two cases.

First, suppose that T > tP,L, i.e., the last vector was not constructed at time T . As a result,
this means that xT corresponds either to a non-informative query—scenario (1)—in which case
FA,v,P,L(xT ) ≥ FA(xT ) ≥ η, or this means that FA,v,P,L(xt) ≥ η(−Pγ1−Lγ2−γ/2)—scenario
(2a).

Second, we suppose that T = tP,L, i.e., the last vector was constructed at time T . Then, by
construction of vP,L and yP,L, we have indices iP,1, . . . , iP,r ≤ T such that with the Gram-Schmidt
decomposition bP,1, . . . , bP,r of xiP,1 , . . . ,xiP,r , we have |b⊤p,r′yP,L| ≤ d−3 for all r′ ≤ r. In
particular, writing xT = α1bP,1 + . . . + αrbP,r + x̃T , where x̃T ∈ Span(xiP,r′ , r

′ ≤ r)⊥, either
we have iP,r = T , in which case x̃T = 0, or xT was not exploratory in which case we directly
have FA,v,P,L(xT ) ≥ FA,v,P,L−1(xT ) > −ηγ1/2, or we have ∥x̃T ∥ < ∥xT ∥γ2/4 ≤ γ2/4. For all
remaining cases to consider, we obtain

|v⊤
P,LxT | ≤ |y⊤

P,LxT |+ δ ≤ ∥α∥1
d3

+ ∥x̃T ∥+ δ ≤ 1

d3
+

1

d2
√
d
+
γ2
4
<
γ2
2
.

In the last inequality, we used d ≥ 4. This shows that FA,v,P,L(xT ) ≥ η(−Pγ1−Lγ2−γ2/2). As a
result, in all cases this shows that FA,v,P,L(x

⋆(alg)) ≥ η(−Pγ1−Lγ2−γ2/2) ≥ −η(pmax+1)γ1.
Now define the event

F =

{
min

x∈Bd(0,1)
FA,v(x) ≤ −

η

40
√
(kpmax + 1) log d

}
.
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By Proposition 12 we have P(F) ≥ 1− C
√
log d/d. From Eq (3),

(pmax + 1)3/2 ≤ 1

60γ1
√
k log d

.

Thus,

(pmax + 1)γ1 ≤
1

60
√
k(pmax + 1) log d

≤ 1

60
√
(kpmax + 1) log d

Then, since FA,v,P,L ≤ FA,v, this shows that on E ∩ F ,

FA,v,P,L(x
⋆(alg)) ≥ −η(pmax + 1)γ1 ≥ min

x∈Bd(0,1)
FA,v(x) +

η

120
√
(kpmax + 1) log d

> min
x∈Bd(0,1)

FA,v,P,L(x) +
η

2
√
d

where in the last inequality, we used kpmax ≤ cd,1d − 1. As a result, letting G be the event when
alg succeeds for precision ϵ = η/(2

√
d). By hypothesis, P(G) ≥ q. By the above equations, one

has E ∩ F ∩ G = ∅. Therefore, P(G ∩ Ec) ≥ P(G) − P(G ∩ E ∩ F) − P(Fc) ≥ q − C
√
log d/d.

This ends the proof of the proposition.

A.3. Reduction of the optimization procedure to the Orthogonal Vector Game with Hints

Using the result from Proposition 7, we show that solving the optimization procedure implies solv-
ing the Orthogonal Game with Hints with high probability.

Proof of Proposition 8 Let alg be an M -bit algorithm solving the feasibility problem with mpmax

queries with probability at least q. Below, we describe the strategy for Game 2.
In the first part of the strategy, the player observes A. First, submit an empty query to the

Oracle to obtain a vector v0, which as a result is uniformly distributed among Dδ. We then proceed
to simulate the optimization procedure for alg using parameters A and v0 (lines 3-6 of Game 2).
Precisely, whenever a new vector vp,l needs to be defined according to the optimization procedure,
the player submits the corresponding vectors xip,1 , . . . ,xip,r to the oracle and receives in return a
vector which defines vp,l. In this manner, the player simulates exactly the optimization procedure.
In all cases, the number of queries in this first phase is at most 1 + kpmax ≤ d. For the remaining
queries to perform, the player can query whichever vectors, these will not be used in the rest of the
strategy. If the simulation did not end period pmax, the complete procedure fails. We now describe
the rest of the procedure when period pmax was ended. During the simulation, the algorithm records
the time ip,1 when period p started for all p ≤ pmax + 1. Recall that for pmax + 1, we only
define ipmax+1,1, this is the time that ends period pmax. By hypothesis, ipmax+1,1 ≤ mpmax. As
a result, there must be a period p ≤ pmax which uses at most m queries: ip+1,1 − ip,1 ≤ m.
We define the memory Message to be the memory of alg just before starting iteration ip,1, at the
beginning of period p (line 7 of Game 2). Next, since the period pmax was ended, the vectors vp,l

for p ≤ pmax, l ≤ lp were all defined. The player can therefore submit the function gA,v to the
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Oracle (line 8 of Game 2) as follows,

gA,v : x 7→



(gA(x), 1) if FA,v(x) = ∥Ax∥∞ − η,
(v0, 2) otherwise and if FA,v(x) = ηv⊤

0 x,

(vp,l, 2 + (p− 1)k + l) otherwise and if
(p, l) = argmax

(p′,l′)≤lex(pmax,lpmax )
v⊤
p′,l′x− pγ1 − lγ2.

(7)

Intuitively, the first component of gA,v gives the subgradient ∂FA,v to the following two exceptions:
we always return ai instead of ±ai and we return v0 (resp. vp,l) instead of ηv0 (resp. ηvp,l). The
second term of gA,v has values in [2 + pmaxk]. Hence, since 2 + pmaxk ≤ d2, the function gA,v

takes values in ({aj , j ≤ n} ∪ {vl, l ≤ d})× [d2].
The strategy then proceeds to play the Orthogonal Vector Game in a second part (lines 9-12

of Game 2) and use the responses of the Oracle to simulate the run of alg for the optimization
procedure in period p. To do so, we set the memory state of the algorithm alg to be Message. Then,
for the next m iterations we proceed as follows. At iteration i of the process, we run alg with its
current state to obtain a new query zi which is then submitted to the oracle of the Orthogonal Vector
Game, to get a response (gi, si). We then use this response to simulate the response that was given
by the optimization procedure in the first phase, computing (vi, g̃i) as follows

(vi, g̃i) =


(|g⊤

i zi| − η, sign(g⊤
i zi)gi) si = 1,

(ηg⊤
i zi, ηgi) si = 2,

(η(g⊤
i zi − pγ1 − lγ2), ηgi) si = 2 + (p− 1)k + l, p ≤ pmax, 1 ≤ l ≤ k.

(8)

We can easily check that in all cases, vi = FA,v(zi) and that g̃i = ∂FA,v(zi). We then pass (vi, g̃i)
as response to alg for the query zi so it can update its state. Further, having defined i1 = 1, the
player can keep track of exploratory queries by checking whether

vi ≤ −
ηγ1
2

and
∥PSpan(zir′

,r′≤r)⊥(zi)∥
∥zi∥

≥ γ2
4
,

where i1, . . . , ir are the indices defined so far. We perform m such iterations unless alg stops
and use the last remaining queries arbitrarily. Next, we check if the last index ik was defined. If
not, we pose ik = m + 1 and let zm+1 be the next query of alg. The final returned vectors are
zi1

∥zi1
∥ , . . . ,

zik
∥zik

∥ . This ends the description of the player’s strategy.
We now show that the player wins with good probability. First, since alg makes at most

mpmax ≤ d2 queries, by Proposition 7, on an event E of probability at least q − C
√
log d/d,

alg succeeds and ends the period pmax. On E , by construction, the first phase of the strategy does
not fail. Next, we show that in the second phase (lines 9-12 of Game 2), the queried vectors coin-
cide exactly with the queried vectors from the corresponding period p in the first phase (lines 3-6 of
Game 2). To do so, we only need to check that the responses provided to alg coincide with the re-
sponse given by the optimization procedure. First, recall that on E , all periods are completed, hence
FA,v,P,L = FA,v. Next, by Proposition 6, the responses of the procedure are consistent with opti-
mizing FA,v,P,L and subgradients ∂FA,v,P,L on an event F of probability at least 1−C ′√log d/d2.
Therefore, on E ∩F , it suffices to check that the responses provided to alg are consistent with FA,v,
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Algorithm 3: Strategy of the Player for the Orthogonal Vector Game with Hints
Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A
1 Initialize the memory of alg to be 0.
2 Submit ∅ to the Oracle and use the response as v0.
3 Run alg with the optimization procedure knowing A and v0 until the first exploratory query xi1,1 .
4 for p ∈ [pmax] do
5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step.
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If alg stopped

before, return the strategy fails. When needed to sample a unit vector vp′,l′ , submit vectors
xip′,1 , . . .xip′,r′ to the Oracle where ip′,1, . . . , ip′,r′ are the exploratory queries defined at that
stage. We use the corresponding response of the Oracle as vp′,l′ .

7 if ip+1,1 − ip,1 ≤ m then
8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;
11 if Message has not been defined yet then return The strategy fails;
12 Submit gA,v to the Oracle as defined in Eq (7).

Part 2: Strategy to make queries
13 Set the memory state of alg to be Message and define i1 = 1, r = 1.
14 for i ∈ [m] do
15 Run alg with current memory to obtain a query zi.
16 Submit zi to the Oracle from Game 2, to get response (gi, si).
17 Compute (vi, g̃i) using zi, gi and si as defined in Eq (8) and pass (vi, g̃i) as response to alg.
18 if vi ≤ −ηγ1/2 and ∥PSpan(zir′

,r′≤r)⊥(zi)∥/∥zi∥ ≥ γ2
4 then

19 Set ir+1 = i and increment r ← r + 1.
20 end

Part 3: Strategy to return vectors
21 if index ik has not been defined yet then
22 With the current memory of alg find a new query zm+1 and set ik = m+ 1.

23 return
{

zi1
∥zi1

∥ , . . . ,
zik

∥zik
∥

}
to the Oracle.

which we already noted: at every step i, (vi, g̃i) = (FA,v(zi), ∂FA,v(zi)). This proves that the
responses and queries coincide exactly with those given by the optimization procedure on E ∩ F .

Next, by construction, the chosen phase p had at most m iterations. Thus, on E ∩ F , among
z1, . . . ,zm+1, we have the vectors xip,1 , . . . ,xip,k . Further, if ik was not defined during part 2 of
the strategy, this means that ik = m+1, as defined in the player’s strategy (line 21-22 of Algorithm
3). As a result, for all u ≤ k, we have ziu = xip,u . We now show that the returned vectors
xip,1

∥xip,1
∥ , . . . ,

xip,k

∥xip,k
∥ are successful for Game 2. First, because ip,1, . . . , ip,k are exploratory queries,

27



BLANCHARD ZHANG JAILLET

we have directly for u ≤ k,

∥PSpan(xip,v ,v<u)⊥(xip,u)∥
∥xip,u∥

≥ γ2
4
.

Next, if l is the index of the last constructed vector vp,l before ip,u in the optimization procedure,
one has FA,v,p,l(xip,u) ≤ −ηγ1/2. Therefore, ∥Axip,u∥∞ ≤ FA,v,p,l(xip,u) + η ≤ η. Further,
ηv⊤

0 xip,u ≤ FA,v,p,l(xip,u) ≤ −ηγ1/2. This proves that ∥xip,u∥ ≥ γ1/2. Putting the previous two
inequalities together yields

∥Axip,u∥∞
∥xip,u∥

≤ 2η

γ1
.

As a result, this shows that the returned vectors are successful for Game 2 for the desired param-
eters α = 2η/γ1 and β = γ2/4. Thus, the player wins on E ∩ F , which has probability at least
q − (C + C ′)

√
log d/d2 by the union bound. This ends the proof of the proposition.

A.4. Query lower bound for the Orthogonal Vector Game with Hints

Before proving a lower bound on the necessary number of queries for Game 2, we need to introduce
two results. The first one is a known concentration result for vectors in the hypercube. It shows that
for a uniform vector in the hypercube, being approximately orthogonal to k orthonormal vectors has
exponentially small probability in k.

Lemma 13 ([23]) Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix Z = [z1, . . . ,zk] ∈
Rd×k with orthonormal columns,

P(∥Z⊤h∥∞ ≤ t) ≤ 2−cHk.

We will also need an anti-concentration bound for random vectors, which intuitively provides a
lower bound for the previous concentration result. The following lemma shows that for a uniformly
random unit vector, being orthogonal to k orthonormal vectors is still achievable with exponentially
small probability in k.

Lemma 14 Let k < d and x1, . . . ,xk be k orthonormal vectors. Then,

Py∼U(Sd−1)

(
|x⊤

i y| ≤
1

d3
,∀i ≤ k

)
≥ 1

ed−4d3k
.

Proof Let y ∼ U(Sd−1) be a uniformly random unit vector. Then, for i < k and any y1, . . . , yi−1

such that |y1|, . . . , |yi−1| ≤ 1
d3

, we have

P
(
|yi| ≤

1

d3
| y1, . . . , yi−1

)
= Pu∼U(Sd−i)

|u1| ≤ 1

d3
√
1− (y21 + . . .+ y2i−1)


≥
∫ 1/d3

0 (1− y2)(d−i−1)/2dy∫ 1
0 (1− y2)(d−i−1)/2dy

≥ (1− d−6)d/2

d3
≥ e−d−5

d3
,
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where in the last equation we used d ≥ 2. Therefore, we can show by induction that P(|yi| ≤
1/d3, ∀i ≤ k) ≥ e−kd−5

d3k
. Thus, by isometry this shows that

P
(
|x⊤

i y| ≤
1

d3
,∀i ≤ k

)
≥ 1

ed−4d3k
.

This ends the proof of the lemma.

We are now ready to prove the query lower bound for Game 2 given in Proposition 9. Precisely,
we show that for an appropriate choice of parameters, one needs m = Ω̃(d) queries. The proof is
closely inspired from the arguments given in [23]. The main added difficulty arises from bounding
the information leakage of the provided hints. As such, our goal is to show that these do not provide
more information than the message itself.

Proof of Proposition 9 We first define some notations. Let Y = [y1, . . . ,yk] be the matrix storing
the final outputs from the algorithm. Next, for the responses of the oracle (g1, s1), . . . , (gm, sm),
we first store all the scalar responses in a vector c = [s1, . . . , sm]. We then focus on the responses
g1, . . . , gm. Let G̃ denote the matrix containing these responses of the oracle which are lines of
A. Let G be the matrix containing unique columns from G̃, augmented with rows of A so that it
has exactly m columns which are all different rows of A. Last, let A′ be the matrix A once the
rows from G are removed. Next, let Ṽ be a matrix containing the responses of the oracle which are
vectors vl, ordered by increasing index l. As before, let V be the matrix Ṽ where we only conserve
unique columns and append it with additional vectors vl so that V has exactly m columns. We
denote by w1, . . . ,wm these vectors, and recall that they are vectors vl ordered by increasing order
of index l. Last, we define a vector j of indices such that j(i) contains the information of which
column of the matrices G or V corresponds gi. Precisely, if gi is a line a from A, we set j(i) = j
where j is the index of the column from G corresponding to a. Otherwise, if j is the index of the
column from V corresponding to gi, we set j(i) = m+ j.

Next, we argue that Y is a deterministic function of Message, the matrices G, V and the vector
of indices j and c. First, c provides the scalar responses directly. For the d-dimensional component
of the responses, first, note that from G, V and j one can easily recover the vectors g1, . . . , gm.
Next, using the algorithm for the second section of the Orthogonal Vector Game with Hints set with
initial memory Message and the vectors g1, . . . , gm as responses of the oracle, one can inductively
compute the queries x1, . . . ,xm. Last, Y is a deterministic function of xi, gi, i ∈ [m] and Message.
This ends the claim that there is a function ϕ such that Y = ϕ(Message,G,V , j, c). By the data
processing inequality,

I(A′;Y | G,V , j, c) ≤ I(A′;Message | G,V , j, c) ≤ H(Message | G,V , j, c) ≤M. (9)

In the last inequality we used the fact that Message uses at most M bits. We have that

I(A′;Y | G,V , j, c) = H(A′ | G,V , j, c)−H(A′ | Y ,G,V , j, c). (10)

In the next steps we bound the two terms. We start with the second term of the right hand side
of Eq (10) using similar arguments to the proof given in [23]. Let E be the event when the Player
succeeds at Game 2. Consider the case when Y is a winning matrix. Then we have ∥Ayi∥∞ ≤ α
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for all i ≤ k. As a result, any line a of A′ satisfies ∥Y ⊤a∥∞ ≤ α. Further, we have that
∥PSpan(yj ,j<i)⊥(yi)∥ ≤ β for all i ≤ k. By Lemma 22, there exist ⌈k/5⌉ orthonormal vectors

Z = [z1, . . . ,z⌈k/5⌉] such that for any x ∈ Rd one has ∥Z⊤x∥∞ ≤
(√

d
β

)5/4
∥Y ⊤x∥∞. In

particular, all lines a of A′ satisfy

∥Z⊤a∥∞ ≤

(√
d

β

)5/4

α ≤ 1

2
,

where we used the hypothesis in the parameters α and β. By Lemma 13, one has∣∣∣∣{a ∈ {±1}d : ∥Z⊤a∥∞ ≤
1

2

}∣∣∣∣ ≤ 2dPh∼U({±1}d)

(
∥Z⊤h∥∞ ≤

1

2

)
≤ 2d−cH⌈k/5⌉.

Therefore, we proved that if Y ′ is a winning vector, H(A′ | Y = Y ′) ≤ (n −m)(d − cHk/5).
Otherwise, if Y ′ loses, we can directly use H(A′ | Y = Y ′) ≤ (n − m)d. Combining these
equations gives

H(A′ | Y ,G,V , j, c) ≤ H(A′ | Y )

≤ P(Ec)(n−m)d+ P(E)(n−m)(d− cHk/5)
≤ (n−m)(d− P(E)cHk/5).

Next, we turn to the first term of the right-hand side of Eq (10).

H(A′ | G,V , j, c) = H(A | G,V , j, c) = H(A | V )− I(A;G, j, c | V )

≥ H(A | V )−H(G, j, c)

≥ H(A | V )−md−m log(2m)−m log(d2)

= H(A)− I(A;V )−md− 3m log(2d)

= (n−m)d− 3m log(2d)− I(A;V ).

In the second inequality, we use the fact that G uses md bits and j can be stored with m log(2m)
bits. By the chain rule,

I(A;V ) =
∑
i≤m

I(A;wi | w1, . . . ,wi−1).

Next, if wi = vl, recalling that the vectors wi′ = vl′ are ordered by increasing index of l′, we have

I(A;wi | w1, . . . ,wi−1) = H(wi | w1, . . . ,wi−1)−H(wi | A,w1, . . . ,wi)

≤ H(wi)−H(wi | A,w1, . . . ,wi,xl,1, . . . ,xl,rl)

= log |Dδ| −H(wi | xl,1, . . . ,xl,rl).

In the last equality, we used the fact that if bl,1, . . . , bl,rl are the resulting vectors from the Gram-
Schmidt decomposition of xl,1, . . . ,xl,rl , yl is generated uniformly in Sd−1∩{y : ∀r ≤ rl, |b⊤l,ry| ≤
d−3} independently from the past history, and vl = ϕδ(yl). By Lemma 14, we know that

Pz∼U(Sd−1)

(
∀r ≤ rl, |b⊤l,rz| ≤ d−3

)
≥ 1

ed−4d3k
.
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As a result, for any bj(δ) ∈ Dδ, one has

P(wi = bj(δ) | xl,1, . . . ,xl,rl) ≤
Pz∼U(Sd−1)(z ∈ Vj(δ))

Pz∼U(Sd−1)

(
∀r ≤ rl, |b⊤l,rz| ≤ d−3

) ≤ ed
−4
d3k

|Dδ|
,

where we used the fact that each cell has the same area. In particular, this shows that

H(wi | xl,1, . . . ,xl,rl) = Eb∼wi|xl,1,...,xl,rl
[− log pwi|xl,1,...,xl,rl

(b)] ≥ log

(
|Dδ|

ed−4d3k

)
.

Hence,
I(A;wi | w1, . . . ,wi−1) ≤ 3k log d+ d−4 log e.

Putting everything together gives

I(A′;Y | G,V , j) ≥ (n−m)d− 3m log(2d)− 3km log d− 2md−4 − (n−m)(d− P(E)cHk/5)

≥ cH
10
k(n−m)− 3km log d− 1− 3d log(2d),

where in the last equation we used d ≥ 2. Together with Eq (9), this implies

m ≥ cHkn/10−M − 1− 3d log(2d)

k(3 log d+ cH/10)
.

As a result, since k ≥ 20M+3d log(2d)+1
cHn and n ≥ d/4, we obtain

m ≥ cHn

60 log d+ 2cH
≥ cH

8(30 log d+ cH)
d.

This ends the proof of the proposition.

Appendix B. Memory-constrained feasibility problem

In this section, we prove the lower bound from Theorem 2 for the feasibility problem.

B.1. Defining the feasibility procedure

Similarly to Section 3, we pose n = ⌈d/4⌉. Also, for any matrix A ∈ {±1}n×d, we use the same
functions gA and g̃A. We use similar techniques as those we introduced for the optimization prob-
lem. However, since in this case, the separation oracle only returns a separating hyperplane, without
any value considerations of an underlying function, Procedure 1 can be drastically simplified, which
leads to improved lower bounds.

Let η0 = 1/(24d2), η1 = 1
2
√
d

, δ = 1/d3, and k ≤ d/3 − n be a parameter. Last, let pmax =

⌊(cd,1d − 1)/(k − 1)⌋, where cd,1 is the same quantity as in Eq (3). The feasibility procedure is
defined in Procedure 4. The oracle first randomly samples A ∼ U({±1}n×d) and v0 ∼ U(Dδ).
This matrix and vector are then fixed in the rest of the procedure. Whenever the player queries a
point x such that ∥Ax∥∞ > η0 (resp. v⊤

0 x > −η1), the oracle returns g̃A(x) (resp. v0). All
other queries are called informative queries. With this definition, it remains to define the separation
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oracle on informative queries. The oracle proceeds by periods in which the behavior is different. In
each period p, the oracle constructs vectors vp,1, . . . ,vp,k−1 inductively and keeps in memory some
queries ip,1, . . . , ip,k that will be called exploratory. The first informative query t will be the first
exploratory query and starts period 1.

Given a new query xt,

1. If ∥Ax∥∞ > η0, the oracle returns g̃A(xt).

2. If v⊤
0 xt > −η1, the oracle returns v0.

3. If xt was queried in the past sequence, the oracle returns the same vector that was returned
previously.

4. Otherwise, let p be the index of the current period and let vp,1, . . . ,vp,l be the vectors from
the current period constructed so far, together with their corresponding exploratory queries
ip,1 . . . , ip,l < t. Potentially, if p = 1 one may not have defined any such vectors at the
beginning of time t. In this case, let l = 0.

(a) If max1≤l′≤l v
⊤
p,l′xt > −η1 (with the convention max∅ = −∞), the oracle returns vp,l′

where l′ = argmaxl≤r v
⊤
p,lxt. Ties are broken alphabetically.

(b) Otherwise, if l < k − 1, we first define ip,l+1 = t. Then, let bp,1, . . . , bp,l+1 be the
result from the Gram-Schmidt decomposition of xip,1 , . . . ,xip,l+1

and let yp,l+1 be a
sample of the distribution obtained by the uniform distribution yp,l+1 ∼ U(Sd−1 ∩{
z ∈ Rd : |b⊤p,rz| ≤ 1

d3
,∀r ≤ l + 1

}
). We then pose vp,l+1 = ϕδ(yp,l+1). Having

defined this new vector, the oracle returns vp,l. We then increment l.
(c) Otherwise, if r = k, we define ip,k = ip+1,1 = t. If p + 1 ≤ pmax, this starts the

next period p + 1. As above, let bp+1,1 be the result of the Gram-Schmidt decom-
position of xip+1,1 and sample yp+1,1 according to a uniform yp+1,1 ∼ U(Sd−1 ∩{
z ∈ Rd : |b⊤p+1,1z| ≤ 1

d3

}
). We then pose vp+1,1 = ϕδ(yp+1,1) and the oracle returns

vp+1,1. We can then increment p and reset l = 1.

The above construction ends when the period pmax is finished. At this point, the oracle has defined
the vectors vp,l for all p ≤ pmax and l ≤ k. We then define the successful set as

QA,v =

{
x ∈ Bd(0, 1) : ∥Ax∥∞ ≤ η0,v⊤

0 x ≤ −η1, max
p≤pmax,l≤k−1

v⊤
p,lx ≤ −η1

}
.

From now on, the procedure uses any separation oracle for QA,v as responses to the algorithm,
while making sure to be consistent with previous oracle reponses if a query is exactly duplicated.
We next define what we mean by solving the above feasibility procedure.

Definition 15 Let alg be an algorithm for the feasibility problem. When running alg with the
responses of the feasibility procedure, we denote by v the set of constructed vectors and x⋆(alg)
the final answer returned by alg. We say that an algorithm alg is successful for the feasibility
procedure with probability q ∈ [0, 1], if taking A ∼ U({±1}n×d), with probability at least q over
the randomness of A and of the procedure, x⋆(alg) ∈ QA,v.

In the rest of this section, we first relate this feasibility procedure to the standard feasibility
problem, then prove query lower bounds to solve the feasibility procedure.
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Procedure 4: The feasibility procedure for algorithm alg

Input: d, k, pmax, algorithm alg

24 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).
25 Initialize the memory of alg to 0 and let p = 1, l = 0.
26 for t ≥ 1 do
27 Run alg with current memory to obtain a query xt

28 if ∥Axt∥ > η0 then return g̃A(xt) as response to alg ;
29 else if v⊤

0 xt > −η1 then return v0 as response to alg ;
30 else if Query xt was made in the past then return the same vector that was returned for xt ;
31 else
32 if max1≤l′≤l v

⊤
p,l′xt > −η1 then

33 return vp,l′ where l′ = argmaxl≤r v
⊤
p,lxt.

34 else if l < k − 1 then
35 Let ip,l+1 = t and compute Gram-Schmidt decomposition bp,1, . . . , bp,l+1 of

xip,1 , . . . ,xip,l+1
.

36 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p,l′z| ≤ d−3, ∀l′ ≤ l + 1} and define
vp,l+1 = ϕδ(yp,l+1).

37 return vp,l+1 as response to alg and increment l← l + 1.
38 else if p+ 1 ≤ pmax then
39 Set ip,k =, ip+1,1 = t and compute the Gram-Schmidt decomposition bp+1,1 of xip+1,1 .
40 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p+1,1z| ≤ d−3} and define vp+1,1 =

ϕδ(yp+1,1).
41 return vp+1,1 as response to alg, increment p← p+ 1 and reset l = 1.
42 else Set ipmax,k = t and break the for loop;
43 end

44 for t′ ≥ t do Use any separation oracle for QA,v consistent with previous responses ;

B.2. Reduction from the feasibility problem to the feasibility procedure

In the next proposition, we check that the above procedure indeed corresponds to a valid feasibility
problem.

Proposition 16 On an event of probability at least 1−C
√
log d/d, the procedure described above

is a valid feasibility problem. More precisely, the following hold.

• There exists x̄ ∈ Bd(0, 1) such that ∥Ax̄∥∞ = 0, v⊤
0 x̄ ≤ −4η1, and

max
p≤pmax,l≤k−1

v⊤
p,lx̄ ≤ −4η1.

• Let ϵ = min{η0/
√
d, η1}/2. Then, Bd

(
x̄− ϵ x̄

∥x̄∥ , ϵ
)
⊆ Bd(0, 1) ∩Bd(x̄, 2ϵ) ⊆ QA,v.

• Throughout the run of the feasibility problem, the separation oracle always returned a valid
cut, i.e., for any iteration t, if xt denotes the query and gt is the returned vector from the
oracle, one has

∀x ∈ QA,v, ⟨gt,xt − x⟩ > 0.
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Further, responses are consistent: if xt = xt′ , the responses of the procedure at times t and
t′ coincide.

We use a similar proof to that of Proposition 12.
Proof For convenience, we rename vp,l = v(p−1)(k−1)+l. Also, let lmax = pmax(k−1) ≤ cd,1d−1.
Next, let Cd =

√
40lmax log d. We define the vector

x̄ = − 1

Cd

lmax∑
l=0

PSpan(ai,i≤n)⊥(vl).

Since lmax ≤ pmax(k− 1) ≤ cd,1d− 1, the same arguments as in the proof of Proposition 12 show
that on an event E of probability at least 1− C

√
log d/d, we have ∥x̄∥ ≤ 1 and

max
0≤l≤lmax

v⊤
l x̄ ≤ −

1

40
√
(lmax + 1) log d

≤ − 2√
d
= −4η1,

where in the second inequality we used lmax ≤ cd,1d − 1. By construction, one has ∥Ax̄∥∞ = 0.
This ends the proof of the first claim of the proposition. We then turn to the second claim, which
is immediate from the fact that x 7→ ∥Ax∥∞ is

√
d-Lipschitz and both x 7→ v⊤

0 x and x 7→
maxp≤pmax,l≤k v

⊤
p,lx are 1-Lipschitz. Therefore, Bd(x̄ − ϵx̄/∥x̄∥, ϵ) ⊆ Bd(0, 1) ∩ Bd(x̄, 2ϵ) ⊂

QA,v. It remains to check that the third claim is satisfied. It suffices to check that this is the
case during the construction phase of the feasibility procedure. By construction of QA,v ⊂ {x :
∥Ax∥∞ ≤ η0}.

Hence, it suffices to check that for informative queries xt, the returned vectors gt are valid
separation hyperplanes. By construction, these can only be either v0 or vp,l for p ≤ pmax, l ≤ k−1.
We denote by w this vector. Let t′ be the first time xt was queried. There are two cases. Either
w was not constructed at time t′, in which case, by construction this means that we are in scenario
(2) or (4a). Both cases imply w⊤xt > −η1. Hence, w which is returned by the procedure is a
valid separation hyperplane. Now suppose that w = vp,l was constructed at time t′—scenarios
(4b) or (4c). By construction, one has |b⊤p,ryp,l| ≤ d−3 for all r ≤ l. Decomposing xt = xip,l =
αbp,1 + . . .+ αlbp,l, we obtain

|x⊤
t yp,l| ≤

∥α∥1
d3
≤ 1

d2
√
d
.

As a result, y⊤
p,lxt ≥ −1/(d2

√
d). Because vp,l = ϕδ(yp,l), we have ∥vp,l − yp,l∥ ≤ δ. Hence, for

any d ≥ 2,
w⊤xt ≥ −1/(d2

√
d)− δ > −η1.

Hence, w was a valid separation hyperplane. The last claim that the responses of the procedure
are consistent over time is a direct consequence from its construction. This ends the proof of the
proposition.

As a simple consequence of this result, solving the feasibility problem is harder than solving the
feasibility procedure with high probability.

Proposition 17 Let alg be an algorithm that solves the feasibility problem with accuracy ϵ =
1/(48d2

√
d). Then, it solves the feasibility procedure with probability at least 1− C

√
log d/d.
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Proof Let E be the event of probability at least 1−C
√
log d/d defined in Proposition 16. We show

that on E , alg solves the feasibility procedure. On E , the feasibility procedure emulates is a valid
feasibility oracle. Further, on E , the successful set contains a closed ball of radius ϵ. As a result, on
E , alg finds a solution to the feasibility problem emulated by the procedure.

Next, we show that it is necessary to finish the pmax periods to solve the feasibility procedure.

Proposition 18 Fix an algorithm alg. Then, if A denotes the event when alg succeeds and B
denotes the event when the procedure ends period pmax with alg, then E ⊆ B.

Proof Consider the case when the period pmax was not ended. Let x⋆ denote the last query per-
formed by alg. We consider the scenario in which x⋆ fell. Let t be the first time when alg submit-
ted query x⋆. For any of the scenarios (1), (2), or (4a), by construction of QA,v, we already have
xt /∈ QA,v. It remains to check scenarios (4b) and (4c) for which the procedure constructs a new
vector vp,l, where p is the index of the period of t and ip,1, . . . , ip,l = t are the previous exploratory
queries in period p. We decompose xt = xip,l = α1bp,1 + αlbp,l. By construction,

|x⊤
t yp,l| = |x⊤

ip,l
yp,l| ≤

∥α∥1
d3
≤ 1

d2
√
d
.

As a result, x⊤
t vp,l ≥ −|x⊤

t yp,l| − δ ≥ −d−2.5 − d−3 > −η1, for any d ≥ 2. Thus, xt = x⋆ /∈
QA,v. This shows that in order to succeed at the feasibility procedure, an algorithm needs to end all
pmax periods.

B.3. Reduction to the Orthogonal Vector Game with Hints.

The remaining piece of our argument is to show that solving the feasibility procedure is harder than
solving the Orthogonal Vector Game with Hints, Game 2.

Proposition 19 Let A ∼ U({±1}n×d). If there exists anM -bit algorithm that solves the feasibility
problem described above using mpmax queries with probability at least q over the randomness of
the algorithm, choice of A and the randomness of the separation oracle, then there is an algorithm
for Game 2 for parameters (d, k,m,M,α = η0

η1
, β = η1

2 ), for which the Player wins with probability
at least q over the randomness of the player’s strategy and A.

Proof Let alg be an M -bit algorithm solving the feasibility problem with mpmax queries with
probability at least q. In Algorithm 5, we describe the strategy of the player in Game 2.

In the first part of the strategy, the player observes A. Then they proceed to simulate the feasi-
bility problem with alg using parameters A. When needed to sample a vector vp,l (resp. v0), the
player submits the corresponding queries xip,1 , . . . ,xip,l (resp. ∅) useful to define vp,l. The player
then takes the response given by the Oracle as that vector vp,l (resp. v0), which simulates exactly a
run of the feasibility procedure. Further, since 1 + pmax(k − 1) ≤ d, the player does not run out of
queries. Importantly, during the run, the player keeps track of the length ip,k − ip,1 of period p. The
first time we encounter a period p with length at most m, we set Message = Memoryp, the memory
state of alg at the beginning of period p. If there is no such period, the strategy fails. Also, if alg
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Algorithm 5: Strategy of the Player for the Orthogonal Vector Game with Hints
Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A
1 Initialize the memory of alg to be 0.
2 Submit ∅ to the Oracle and use the response as v0.
3 Run alg with the optimization procedure knowing A and v0 until the first exploratory query xi1,1 .
4 for p ∈ [pmax] do
5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step.
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If alg stopped

before, return the strategy fails. When needed to sample a unit vector vp′,l′ , submit vectors
xip′,1 , . . .xip′,l′ to the Oracle. We use the corresponding response of the Oracle as vp′,l′ .

7 if ip+1,1 − ip,1 ≤ m then
8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;
11 if Message has not been defined yet then return The strategy fails;
12 Submit g̃A,v to the Oracle as defined in Eq (11).

Part 2: Strategy to make queries
13 Set the memory state of alg to be Message.
14 for i ∈ [m] do
15 Run alg with current memory to obtain a query zi.
16 Submit zi to the Oracle from Game 2, to get response (gi, si).
17 Compute g̃i using zi, gi and si as defined in Eq (12) and pass g̃i as response to alg.
18 end

Part 3: Strategy to return vectors
19 for l ∈ [k] do Set il to be the index i of the first query zi for which si = l, if it exists ;
20 if index ik has not been defined yet then
21 With the current memory of alg find a new query zm+1 and set ik = m+ 1.

22 return
{

zi1
∥zi1

∥ , . . . ,
zik

∥zik
∥

}
to the Oracle.

stopped before ending period pmax, the strategy fails. Next, the algorithm submits the following
function g̃A,v to the Oracle. Since the responses of the feasibility procedure are consistent over
time, we adopt the following notation. For a previously queried vector x of alg, we denote g(x)
the vector which was returned to alg during the first part (lines 3-9 of Algorithm 5).

g̃A,v : x 7→


(0, 1) if x was never queried in the first part,
(ai, 1) ow. and if g(x) ∈ {±ai}, i ≤ n,
(v0, 2) ow. and if g(x) = v0,

(vp′,l′ , 2 + l′1p′=p + k1p′=p+1,l′=1) ow. and if g(x) = vp′,l′ , p
′ ≤ pmax, l ≤ k − 1.

(11)
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Intuitively, the first component of g̃ gives the returned vector in the first period, at the exception that
we always return ai instead of {±ai}. The second term has values in [2 + k ≤ d2]. Hence, the
submitted function is valid.

Next, in the second part of the algorithm, the player proceeds to simulate a run the feasibility
procedure with alg on period p. To do so, we first set the memory state of alg to Message. Each
new query zi is submitted to the Oracle of Game 2 to get a response (gi, si). Then, we compute g̃i

as follows

g̃i =

{
gi if si ≥ 2,

sign(g⊤
i zi)gi if si = 1.

(12)

One can easily check that g̃i corresponds exactly to the response that was passed to alg in the first
part of the strategy. The player then passes g̃i to alg so that it can update its state. We repeat this
process for m steps. Further, the player can also keep track of the exploratory queries: the index
il of the first response satisfying si = 2 + l for l ≤ k − 1 (resp. si = 2 + k)is the exploratory
query which led to the construction of vp,l (resp. vp+1,1) in the first part. Last, we check if the last
index ik was defined. If not, we pose ik = m + 1 and let zm+1 be the next query of alg with the
current memory. The player then returns the vectors zi1

∥zi1
∥ , . . . ,

zik
∥zik

∥ . This ends the description of
the player’s strategy.

By Proposition 18, on an event E of probability at least q, the algorithm alg succeeds and ends
period pmax. As a result, similarly as in the proof of Proposition 8, since alg makes at most mpmax

queries, and there are pmax periods, there must be a period of length at most m. Hence the strategy
never fails at this phase of the player’s strategy on the event E . Further, we already checked that
in the second phase, the vectors g̃i passed to alg coincide exactly with the responses passed to alg
in the first part. Thus, this shows that during the second part, the player simulates exactly the run
of the feasibility problem on period p. More precisely, the queries coincide with the queries in the
feasibility problem at times ip,1, . . . ,min{ip,k, ip,1 +m − 1}. Because the first part succeeded on
E , we have ip,k ≤ ip,0 + m. Therefore, if ik has not yet been defined, this means that we had
ip,k = ip,1+m. Hence, the next query with the current memory zm+1 is exactly the query xip,k for
the feasibility problem. This shows that the vectors zi1 , . . . ,zik coincide exactly with the vectors
xip,1 , . . . ,xip,k when running alg on the feasibility problem in the first part.

We now show that the returned vectors are successful for Game 2. By construction, xip,1 , . . . ,xip,k

are all informative. In particular, ∥Axip,l∥∞ ≤ η0 for all 1 ≤ l ≤ k. Further, these queries did not
fall in scenario (2), hence v⊤

0 xip,l < −η1, which implies ∥xip,l∥ > η1 for all l ≤ k. As a result,

∥Axip,l∥∞
∥xip,l∥

≤ η0
η1
.

Next fix l ≤ k − 1. By construction of yp,l,

∥PSpan(xip,l′
,l′≤l)(yp,l)∥2 =

∑
l′≤l

|b⊤p,l′yp,l|2 ≤
k

d6
≤ 1

d5
.

Hence,

∥vp,l − PSpan(xip,l′
,l′≤l)⊥(yp,l)∥ ≤ ∥PSpan(xip,l′

,l′≤l)(yp,l)∥+ δ ≤ 1

d5
+ δ.
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As a result, since x⊤
p,l+1vp,l < −η1, we have

∥PSpan(xip,l′
,l′≤l)⊥(xp,l+1)∥ ≥ |x⊤

p,l+1PSpan(xip,l′
,l′≤l)⊥(yp,l)∥ > η1 −

1

d5
− δ ≥ η1

2
.

This shows that the returned vectors
xip,1

∥xip,1
∥ , . . . ,

xip,k

∥xip,k
∥ are successful for Game 2 with parameters

α = η0
η1

and β = η1
2 . This ends the proof that strategy succeeds on E for these parameters, which

ends the proof of the proposition.

We are now ready to prove the main result.

Proof of Theorem 2 Suppose that there is an algorithm alg for solving the feasibility problem to
optimality ϵ = 1/(48d2

√
d) with memory M and at most Q queries. Let k = ⌈20M+3d log(2d)+1

cHn ⌉.
By Proposition 17, it solves the feasibility procedure with parameter k with probability at least
1−C

√
log d/d. By Proposition 19 there is an algorithm for Game 2 that wins with probability 1/3

with m = ⌈Q/pmax⌉ and paraeters α = η0/η1 and β = η1/2. We check that

α

(√
d

β

)5/4

≤ 12d2η0 =
1

2
.

Hence, by Proposition 9, we have

m ≥ cH
8(30 log d+ cH)

d.

This shows that

Q ≥ Ω

(
pmax

d

log d

)
= Ω

(
d2

k log3 d

)
= Ω

(
d3

(M + log d) log3 d

)
.

This implies that for a memoryM = d2−δ with 0 ≤ δ ≤ 1 the number of queries isQ = Ω̃(d1+δ).

Appendix C. Concentration bounds

The following result gives concentration bounds for the norm of the projection of a random unit
vector onto linear subspaces.

Proposition 20 Let P be a projection in Rd of rank r and let x ∈ Rd be a random vector sampled
uniformly on the unit sphere x ∼ U(Sd−1). Then, for every t > 0,

max
{
P
(
∥P (x)∥2 − r

d
≥ t
)
,P
(
∥P (x)∥2 − r

d
≤ −t

)}
≤ e−dt2 .

Further, if r = 1 and d ≥ 2,

P

(
∥P (x)∥ ≥

√
t

d− 1

)
≤ 2
√
te−t/2.
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Proof First, by isometry, we can assume that P is the projection onto the coordinate vectors
e1, . . . er. Then, let y ∼ N (0, 1) be a normal vector. Note that x = y

∥y∥ ∼ U(S
d−1). Further,

∥x∥2 ≥ r

d
+ t ⇐⇒

(
1− r

d
− t
) r∑

i=1

y2i ≥
(r
d
+ t
) d∑

i=r+1

y2i .

Note that Z1 =
∑r

i=1 y
2
i and Z2 =

∑d
i=r+1 y

2
i are two independent random chi squared variables

of parameters r and d−r respectively. Recalling that the moment generating function of Z ∼ χ2(k)
is E[esZ ] = (1− 2s)−k/2 for s < 1/2. Therefore, for any

− 1

2(r/d+ t)
< s <

1

2(1− r/d− t)
, (13)

one has

P
(
∥P (x)∥2 − r

d
≥ t
)
≤ E

[
exp

(
s
(
1− r

d
− t
)
Z1 − s

(r
d
+ t
)
Z2

)]
=

[
1− 2s

(
1− r

d − t
)]−r/2[

1− 2s
(
r
d + t

)]−(d−r)/2
.

Let s = 1
2

(
1−r/d

1−r/d−t −
r/d

r/d+t

)
, which satisfies Eq (13). The previous equation readily yields

P
(∣∣∣∥P (x)∥2 − r

d

∣∣∣ ≥ t) ≤ exp

(
−d
2
dKL

(r
d
;
r

d
+ t
))
≤ e−dt2 .

In the last inequality we used Pinsker’s inequality dKL(r/d; r/d+ t) ≥ 2δ(B(r/d),B(d/r+ t))2 =
2t2, where B(q) is the Bernouilli distribution of parameter q. Replacing P with Id− P and r with
d− r gives the other inequality

P
(
∥P (x)∥2 − r

d
≤ −t

)
≤ e−dt2 .

This gives first claim. For the second claim, supposing that r = 1 < d, from the above equation,
we have

P
(
∥P (x)∥2 ≥ t

d

)
≤ exp

(
−d
2
dKL

(
1

d
;
t

d

))
=
√
t

(
1− t

d

1− 1
d

)(d−1)/2

≤
√
2te−t(d−1)/(2d).

Thus,

P
(
∥P (x)∥2 ≥ t

d− 1

)
≤
√

2(d− 1)

d

√
te−t/2,

which ends the proof of the proposition.

Next, we need the following lemma which gives a concentration inequality for discretized sam-
ples in Dd and approximately perpendicular to k ≤ d/3− 1 vectors.
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Lemma 21 Let 0 ≤ k ≤ d/3 − 1 and x1, . . . ,xk ∈ Bd(0, 1) be k orthonormal vectors in the
unit ball, and x ∈ Bd(0, 1). Denote by µ the distribution on the unit sphere corresponding to the
uniform distribution y ∼ U(Sd−1 ∩ {w ∈ Rd : |x⊤

i w| ≤ d−3,∀i ≤ k}). Let y ∼ µ. Then, for
t ≥ 2,

P

(
|x⊤y| ≥

√
t

d
+

1

d2

)
≤ 2
√
te−t/3.

Further, let δ ≤ 1 and z = ϕδ(y). Then for t ≥ 4,

P

(
|x⊤z| ≥

√
t

d
+

1

d2
+ δ

)
≤ 2
√
te−t/3.

Proof We use the same notations as above and denote by E = {|x⊤
i y| ≤ d−3, ∀i ≤ k} the event

considered and y ∼ µ. We decompose y = α1x1 + . . . + αkxk + y′, where y′ ∈ Span(xi, i ≤
k)⊥ := E. Note that y′

∥y′∥ is a uniformly random unit vector in E. As a result, using Proposition 20,
we obtain for any t ≥ 2,

P

(
|x⊤y′| ≥

√
t

d− k − 1

)
= P

(
|PE(x)

⊤y′| ≥
√

t

d− k − 1

)
≤ 2
√
te−t/2.

Also, because by definition of µ, we have |αi| ≤ d−3 for all i ≤ k, we obtain |x⊤y| ≤ k
d3

+
|x⊤y′| ≤ 1

d2
+ |x⊤y′|. As a result, using the fact that d − k − 1 ≥ 2d/3, the previous equation

shows that

P

(
|x⊤y| ≥

√
3t

2d
+

1

d2

)
≤ P

(
|x⊤y′| ≥

√
t

d− k − 1

)
≤ 2
√
te−t/2.

Next, we use the fact that ∥z − y∥ = ∥ϕδ(y)− y∥ ≤ δ to obtain

P

(
|x⊤z| ≥

√
t

d
+

1

d2
+ δ

)
≤ P

(
|x⊤y| ≥

√
t

d
+

1

d2

)
≤ 2
√
te−t/3.

This ends the proof of the lemma.

Appendix D. An improved result on robustly-independent vectors

The following lemma serves the same purpose as [23, Lemma 34]. Namely, from successful vectors
of the Game 2, it allows to recover an orthonormal basis that is still approximately in the nullspace
of A. The following version gives a stronger version that improves the dependence in d of our
chosen parameters.

Lemma 22 Let δ ∈ (0, 1] and suppose that we have r ≤ d unit norm vectors y1, . . . ,yr ∈ Rd.
Suppose that for any i ≤ k,

∥PSpan(yj ,j<i)⊥(yi)∥ ≥ δ.
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Let Y = [y1, . . . ,yr] and s ≥ 2. There exists ⌈r/s⌉ orthonormal vectors Z = [z1, . . . ,z⌈r/s⌉]

such that for any a ∈ Rd,

∥Z⊤a∥∞ ≤

(√
d

δ

)s/(s−1)

∥Y ⊤a∥∞.

Proof Let B = (b1, . . . , br) be the orthonormal basis given by the Gram-Schmidt decomposition
of y1, . . . ,yr. By definition of the Gram-Schmidt decomposition, we can write Y = BC where C
is an upper-triangular matrix. Further, its diagonal is exactly diag(∥PSpan(yl′ ,l

′<l)⊥(yl)∥, l ≤ r).
Hence,

det(Y ) = det(C) =
∏
l≤r

∥PSpan(yl′ ,l
′<l)⊥(yl)∥ ≥ δr.

We then introduce the singular value decomposition Y = Udiag(σ1, . . . , σr)V
⊤, where U ∈

Rd×r and V ∈ Rr×r have orthonormal columns, and σ1 ≥ . . . ≥ σr. Next, for any vector z ∈ Rd,
since the columns of Y have unit norm,

∥Y z∥2 ≤
∑
l≤r

|zl|∥yl∥2 ≤ ∥z∥1 ≤
√
d∥z∥2.

In the last inequality we used Cauchy-Schwartz. Therefore, all singular values of Y are upper
bounded by σ1 ≤

√
d. Thus, with r′ = ⌈r/s⌉

δr ≤ det(Y ) =

r∏
l=1

σl ≤ d(r
′−1)/2σr−r′+1

r′ ≤ dr/2sσ(s−1)r/s
r′ ,

so that σr′ ≥ δs/(s−1)/d1/(2s). We are ready to define the new vectors. We pose for all i ≤ r′,
zi = ui the i-th column of U . These correspond to the r′ largest singular values of Y and are
orthonormal by construction. Then, for any i ≤ r′, we also have zi = ui =

1
σi
Y vi where vi is the

i-th column of V . Hence, for any a ∈ Rd,

|z⊤
i a| =

1

σi
|v⊤

i Y
⊤a| ≤ ∥vi∥1

σi
∥Y ⊤a∥∞ ≤

d1/2+1/(2s)

δs/(s−1)
∥Y ⊤a∥∞.

This ends the proof of the lemma.
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