
Proceedings of Machine Learning Research vol 195:1–48, 2023 36th Annual Conference on Learning Theory

Precise Asymptotic Analysis of Deep Random Feature Models

David Bosch DAVIDBOS@CHALMERS.SE
Ashkan Panahi ASHKAN.PANAHI@CHALMERS.SE
Department of Data Science and AI, Computer Science and Engineering, Chalmers University of Technology

Babak Hassibi HASSIBI@CALTECH.EDU

Department of Electrical Engineering, California Institute of Technology

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We provide exact asymptotic expressions for the performance of regression by an L−layer deep
random feature (RF) model, where the input is mapped through multiple random embedding and
non-linear activation functions. For this purpose, we establish two key steps: First, we prove a
novel universality result for RF models and deterministic data, by which we demonstrate that a deep
random feature model is equivalent to a deep linear Gaussian model that matches it in the first and
second moments, at each layer. Second, we make use of the convex Gaussian Min-Max theorem
multiple times to obtain the exact behavior of deep RF models. We further characterize the variation
of the eigendistribution in different layers of the equivalent Gaussian model, demonstrating that
depth has a tangible effect on model performance despite the fact that only the last layer of the
model is being trained.
Keywords: Asymptotic Analysis, Universality, Random Features Model, Convex Gaussian Min
Max Theorem, Learning Curves

1. Introduction

Recent experimental and theoretical results (Zhang et al., 2021; Belkin et al., 2019) have demon-
strated that the classical understanding of overparameterized machine learning (ML) models re-
quires further examination. One model that has been studied extensively is the random features
(RF) model (Rahimi and Recht, 2007), which is closely related to overparameterized neural net-
works (Daniely et al., 2016; Daniely, 2017; Jacot et al., 2018; Liu et al., 2021; Bach, 2017). In this
paper, we examine an extension of the RF model, which we call the deep RF (DRF) model, being
equivalent to a deep NN, but only trained in the output layer. We consider the asymptotic regime,
where the number of data points, model parameters, and input dimension grow infinite at constant
ratio (Belkin et al., 2020; Hastie et al., 2019; Bartlett et al., 2020b,a) and give exact expressions that
characterize the deep RF model in terms of training and generalization error.

Our analysis consists of two key steps. First, we prove universality, i.e. we demonstrate that the
DRF model is asymptotically equivalent to a deep Gaussian surrogate model, matching the original
model in the first and second moments, at each layer (Panahi and Hassibi, 2017; Oymak and Tropp,
2018). Universality for the 1-layer RF model has previously been proven, e.g. in (Hu and Lu, 2022).
We make use of a different proof technique to extend these results to arbitrary many layers and
introduce a new Gaussian surrogate model for DRF. This universality result alleviates the general
difficulty of analyzing RF or DRF models, as the non Gaussian features are in general not amenable
to stardard analysis techniques such as comparison theorem (Gordon, 1985; Thrampoulidis et al.,
2014), Gaussian widths (Chandrasekaran et al., 2012) or replica methods (Mézard et al., 1987).
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Having established universality, we then make use of the Convex Gaussian Min Max Theo-
rem (CGMT) (Thrampoulidis et al., 2014) to study DRFs. This theorem allows us to consider an
alternative optimization problem with the same asymptotic statistics, and is a popular tool in the
analysis of the asymptotic regime (Bosch et al., 2021; Chang et al., 2020; Dhifallah and Lu, 2020;
Thrampoulidis et al., 2015; Loureiro et al., 2021b; Bosch et al., 2022). We make use of a recur-
sive application of the CGMT (Bosch et al., 2022) to obtain asymptotic expressions for square loss
functions with arbitrary convex regularization for L-layer DRF models.

2. Related Works

The random features (RF) (Rahimi and Recht, 2007) model has been extensively examined in the
asymptotic regime, under a multitude of conditions. For an incomplete list see (Hastie et al., 2019;
Mei and Montanari, 2019; Montanari et al., 2019; Goldt et al., 2022, 2020; Gerace et al., 2020;
Dhifallah and Lu, 2020; Ghorbani et al., 2021; Bosch et al., 2022). In the case of ridge regression
(Louart et al., 2018; Mei and Montanari, 2019) exact expression for the training and generalization
error can be established. In other cases, exact analysis is difficult. It was observed by many authors
(Mei and Montanari, 2019; Hastie et al., 2019; Goldt et al., 2020; Gerace et al., 2020; Goldt et al.,
2022) that a Gaussian surrogate model that matched the first and second moments had asymptoti-
cally equivalent statistics. A concrete proof of RF universality is given in Hu and Lu (2022). We
utilize Lindeberg’s approach (Lindeberg, 1922) to demonstrate universality of DRF. This approach
has been used to prove universality results in many other optimization problems (Korada and Mon-
tanari, 2011; Panahi and Hassibi, 2017; Montanari and Nguyen, 2017; Oymak and Tropp, 2018;
Abbasi et al., 2019). Hu and Lu (2022) prove a central limit theorem between random features and
their Gaussian equivalent features as a key step in demonstrating universality. We make use of a dif-
ferent proof technique, by instead considering the problem in a dual space, where we may directly
bound the difference between the leave one out iterates.

Beside RF, universality has been demonstrated for many other models (Goldt et al., 2022; Sed-
dik et al., 2020; Dhifallah and Lu, 2021; Loureiro et al., 2021a; Gerace et al., 2022). Recently,
Montanari and Saeed (2022) gave a proof for the universality of empirical risk minimization for not
necessarily convex loss and regularization functions. Their result also assume that a central limit
theorem similar to (Hu and Lu, 2022) holds.

Subject to Gaussian features, the CGMT (Gordon, 1985; Thrampoulidis et al., 2014) is a pow-
erful tool in the determination of the asymptotic performance (Loureiro et al., 2021b; Dhifallah and
Lu, 2020; Thrampoulidis et al., 2015; Chang et al., 2020; Bosch et al., 2021, 2022). The CGMT
determines an alternative, asymptotically equivalent optimization problem in statistical properties.
In the case of correlated features, such as in the RF or DRF model, the alternative optimization
still remains intractable. This issue is resolved in (Bosch et al., 2022) by applying the CGMT twice.
Relying on the particular structure of the DRF covariance matrices, we extend the method of (Bosch
et al., 2022) where the CGMT is applied recursively to determine a nested scalar optimization that
is asymptotically equivalent to the DRF model.

The covariance matrices for the Gaussian surrogate model that we obtain are similar in structure
to the kernel matrices given in Lee et al. (2017). The authors demonstrate an exact equivalence
between an infinitely wide deep NN and a Gaussian Process with covariance kernels that are re-
cursively defined in a similar manner to the ones discussed in this paper. However, (Lee et al.,
2017) consider networks of fixed size but infinite width, while we consider the asymptotic regime,
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where the number of data points and the input dimensions grow as well, hence maintaining a rel-
atively narrower network. Furthermore, covariance matrices of the DRF model can be expressed
recursively, with the recursion depth determined by the number of layers. (Fan and Wang, 2020)
similarly analyze a the recursive structure of the covariance matrix for the conjugate kernel and
Neural tangent kernel by mean of free probability theory. The results for the deep random features
case was extended by (Schröder et al., 2023) around the same time as the initial submission of this
paper. We similarly use a free probability argument to analyze our obtained recursion. However,
we compute recursion for the closed form asymptotic equivalent expression for the population co-
variance instead of dealing with the distribution of the population covariance directly as in (Fan and
Wang, 2020; Schröder et al., 2023).

2.1. Paper Outline

In section 3, we introduce the DRF problem and its Gaussian surrogate, and express the necessary
assumptions for our results to hold. In section 4, we prove the main universality theorem of this
paper. Our proof takes two steps, first proving universality of a single layer, and subsequently using
an inductive argument to extend this result to a full DRF problem. In section 5, we give an alterative
scalar optimization problem derived by means of the CGMT, that is asymptotically equivalent to the
DRF problem subject to square loss and arbitrary, strongly convex regularization. We demonstrate
experimentally the veracity of the determined expressions.

3. Setup and Assumptions

3.1. Random Feature Model and Preliminaries

We consider a supervised learning setup with a dataset D = {(xk, yk) ∈ Rd × R}nk=1. To find a
relationship between the data points xk and the labels yk, we consider a function of the following
form

Yθ(x) =
1
√
p
θTF(x), θ ∈ Rp, (1)

where F : Rd → Rp is a given mapping of the data, called a feature map. We note that Yθ is
dependent upon the choice of the vector θ by a linear relation. This shows the main advantage of
(1): while Yθ can represent nonlinear functions, selecting θ amounts to a linear regression task. To
find the optimal value of θ, denote fi = F(xi) and take F as a matrix with fi as columns. We
consider the empirical risk minimization framework and the following optimization problem:

θ̂ = θ̂(F ) = arg min
θ∈Rp

1

n

n∑
i=1

ℓ

(
1
√
p
θT fi, yi

)
+R(θ). (2)

Here, ℓ(·, ·) is a loss function, and R(θ) is a regularization function. To measure the performance
of θ̂ we make use of two common metric for supervised learning, that being the training error
Etrain(F ), i.e the optimal value in (2), and the generalization error

Egen(F ) = E
[
ℓ

(
1
√
p
θ̂TF(xnew), ynew

)]
, (3)
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where the expectation is taken over (xnew, ynew), a new datapoint drawn from the same distribution
as the dataset D.

The main purpose of this paper is to obtain exact asymptotic expressions for the supervised
learning metrics Etrain, Egen and other properties of θ̂, when the feature map F is a deep random
feature, generalizing the random features maps (Rahimi and Recht, 2007). To define the deep
features, we remind the (shallow) random features are given by ϕ(x,wj) := σ(wT

j x), for j =

1, 2, . . . , p, where σ is an activation function, and wj ∼ N (0, 1dId) are a set of random weights.
In vector form, we express these relations as ϕ(x,W) = (σ(wT

j x))
p
j=1, where the matrix W has

rows wj . Then, the deep random features are given through the following recursion: For p0 =
d, p1, p2, . . . , pL ∈ N, we define the matrices W(l) ∈ Rpl×pl−1 for l = 1, . . . , L, each having
independent rows w(l)

j ∼ N (0, 1
pl−1

I). Letting x(0) := x we define

x(l) = ϕ(x(l−1),W(l)) = (σ(w
(l)T
j x(l−1)))plj=1, l = 1, . . . , L, (4)

3.2. Necessary Assumptions

Our results rely on the following assumptions:

A1 For some universal positive constants µ,M , the regularization function R is µ-strongly con-
vex and M -smooth with M -bounded third derivative in tensor (operator) norm. Moreover
∥∇R(0)∥ ≤ C.

A2 ℓ is a 1
Cn− strongly convex function in the first argument and its third derivative with respect

to the first argument is bounded by Cn for some constant C. Moreover, there exists a vector
α = (αk) called isolated predictions satisfying: αk ∈ argminα ℓ(α, yk), and ∥α∥2 ≤ C

√
n

for a fixed constant C.

A3 The activation function σ is an odd function applied element wise, with bounded derivatives.
Furthermore, let g1, g2 be Gaussian variables distributed as[

g1
g2

]
∼ N

(
0,

[
α1 ρ
ρ α2

])
. (5)

Let the functions η1(α1, α2, ρ) = E[σ(g1)σ(g2)] and η2(α1) = E[σ2(g1)]. Then η1, η2 should
be thrice differentiable at α1 = α2 = 1 and ρ = 0

A4 The dimensions of the number of data points n, the size of the input p0 = d and the size of
subsequent layers pl, where l = 1, . . . , L all grow to infinity at fixed ratios. We denote this
by n ∼ p0 ∼ · · · ∼ pL, where a ∼ b is defined to mean that a

b −−−−→
a,b→∞

C for some constant

C.

A5 For each layer, l, the weight matrix W(l) ∈ Rpl×pl−1 = [w
(l)
1 w

(l)
2 · · · w(l)

pl ]
T are indepen-

dent Gaussian variables w
(l)
i

i.i.d∼ N (0, 1
pl−1

Ipl−1
) for 1 ≤ i ≤ pl. Furthermore, W(l) are

independent of the input variables x.

Remark 1 For assumption 2, we note that the strong convexity assumption on the loss function
becomes less restrictive as n grows. In the asymptotic limit, the strong convexity is no longer a
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significant requirement. Furthermore, the isolated prediction vectors exist and the condition is
satisfied immediately if the loss function is minimized at the labels, i.e. it is minimized at the point
ℓ(yk, yk) <∞.

Remark 2 For assumption 3, we note that the condition holds for the majority of activation function
used in practice including tanh and the error function. Furthermore, if oddness is dropped, the
assumption on the functions η1 and η2 are additionally satisfied for functions like ReLU, sigmoids,
and Gaussian activations. However, we require oddness.

Finally we impose a condition upon the input vectors xi:

Definition 3 Let d ∼ n, we call a set {xk ∈ Rd}nk=1 regular if

1. Letting X = [x1 x2 · · · xn], there is a constant c <∞ such that 1√
n
∥X∥op < c

2. It holds that

max
i,j

∣∣∣∣1dxT
i xj − δij

∣∣∣∣ ≤ polylog n√
n

, (6)

where δij is the Kronecker delta.

Note that the first condition for regularity is trivially satisfied for finite n, however the condition
must also hold for a fixed c in the asymptotic limit. Further, note that regularity is exhibited by x
being Gaussian with high probability.

4. Universality

In the case of a single layer, it has been proven (Hu and Lu, 2022) that the following Gaussian
feature map has asymptotically equivalent statistics to the random features given in section 3

ϕ̃(x,W) = ρ1Wx+ ρ2g, (7)

where g is a standard normal vector, and ρ1, ρ2 are constants depending only on the activation
function, given by ρ1 = E[σ′(z)], ρ2 =

√
E[σ2(z)]− ρ20 + ρ21, z ∼ N (0, 1). Similarly we define

a deep Gaussian equivalent feature map, recursively. We define γ(0) = x, and then define

γ(l) = ϕ̃l(γ
(l−1),W(l)) := ρ1,lW

(l)γ(l−1) + ρ2,lg
(l), l = 1, . . . , L, (8)

where g(l) is an independent standard normal vector of dimension pl, and the constants ρ1,l, ρ2,l
are recursively defined as ρ1,l = E[σ′(αl−1z)], ρ2,l =

√
E[σ2(αl−1z)]− α2

l−1ρ
2
1,l, z ∼ N (0, 1).

Here, αl are constants given by the following recursive definition: α0 = 1, αl =
√
ρ21,lα

2
l−1 + ρ22,l.

Now, we consider the following two feature mappings for an input vector x(0):

F(x(0)) = x(l), G(x(0)) = γ(l), (9)

where x(l) and γ(l) are given in (4) and (8), respectively.
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4.1. Revisiting Universality of a Single Layer

The proof of universality of deep random features is a specific application of a universality theorem
for a single layer, which we derive in this section. This result is more general than the previous stud-
ies such as Hu and Lu (2022). In the subsequent section, we shall demonstrate how the universality
of deep random features follows from these results.

Let ϕj : Rd×Ωj → R for j = 1, 2, . . . , p be a random feature map, where Ωj is a sample space
equipped with an arbitrary probability measure, such that ϕj(·, ω) for any ω ∈ Ωj is a particular
realization of the feature map. Let Ω = Ω1 × Ω2 × · · ·Ωp be a product space equipped with the
product measure, and let ϕ : Rd × Ω → Rp represent the vector of random features, such that
ϕ(x,ω) = (ϕj(x, ωj))j , where ω = (ωj) ∈ Ω is a realization.

Next we consider am×pmatrix D with columns dj ∈ Rm, which we call a synthesis dictionary.
We define the re-represented random feature vectors f : Rd × Ω → Rm given by

f(x,ω) :=

p∑
j=1

djϕj(x, ωj) = Dϕ(x, ω). (10)

We note that if m = p we can choose D = Ip and retain the original set of random features.
However, re-representing the features is necessary for the proof of the deep random features case.
We will drop the argument ω when there is no risk of confusion, and denote ϕ(x), f(x) as the
random features and their re-representation. Similarly let ϕk = ϕ(xk) and fk = f(xk) for k =
1, . . . , nwhich are random vectors. Finally, let Φ and F be the matrices with (ϕk), (fk) as columns.
We assume that the random features are centered:

Eω[ϕ(xk,ω)] = 0 k = 1, 2, . . . , n. (11)

We further define the data kernel matrices Kj = (Kj,kl)kl where Kj is the covariance matrix of the
jth row of Φ, given by

Kj,kl = Eωj [ϕ(xk, ωj)ϕ(xl, ωj)]. (12)

Next, we introduce a p × n Gaussian matrix Γ with independent rows, and where the jth row
is distributed by N (0,K ′

j). We note that if Kj = K ′
j that Φ and Γ have the same first and second

moments amongst their elements. We then define G = DΓ and let gk be the kth column of G.
Before stating the main theorem for this section we state the conditions on the dataset and

matrices Kj and D that must hold. We shall show in the next section that these conditions are
satisfied in the case of deep random features. We remind the reader of the definition of a sub-
Gaussian vector:

Definition 4 We say that a random vector u = (uk) ∈ Rn is τ−sub-Gaussian if for any unit vector

a = (ak) ∈ Rn the variable A = aTu is sub-Gaussian with parameter τ , i.e. E
[
eλA
]
≤ e

τ2λ2

2 for
all λ ∈ R.

We state the following requisite conditions:

B1 There exists a positive constant C such that for all j, it holds that ∥Kj∥op ≤ C and the jth
random feature vector ϕj = {ϕ(xk, ωj)}k is C-sub-Gaussian

B2 There exists a positive constant C such that ∥D∥op ≤ C.
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These assumptions must hold for all values of n, d, p,m and must continue to hold when they
grow asymptotically. Subject to these conditions we state the following theorem that demonstrates
universality.

Theorem 5 Suppose that assumptions A1, A2, B1 and B2 hold, and that n ∼ p ∼ m. Then,

1. For any real function ψ with bounded first, second, and third derivatives, there exists a con-
stant c <∞ such that

|Eψ(Etrain(F ))− Eψ(Etrain(G))| ≤ c

n

p∑
j=1

∥∥Kj −K ′
j

∥∥
op

+
c√
n
. (13)

2. Let θ̂F and θ̂G be the optimal points for the optimization (2) for F and G respectively. Take
any bounded function h : Rm → R with bounded ∇h(0), second and third derivatives (in
tensor norm), where the bounds are constant in n, p,m. There exists a constant c < ∞ such
that ∣∣∣Eh(θ̂F)− Eh

(
θ̂G

)∣∣∣ ≤ c

n

p∑
j=1

∥∥Kj −K ′
j

∥∥
op

+
c√
n
. (14)

4.1.1. PROOF SKETCH

The proof is based on an application of Lindeberg’s argument with respect to the random features
f in a dual space. We consider the optimization problem given in (2) for some generic map Z and
note that by means of a splitting argument it may be expressed as

Etrain(Z) = min
θ∈Rp

1

n

n∑
k=1

ℓ(zTk θ, yk) +R(θ)

= min
θ∈Rp,α∈Rn

max
d∈Rn

1

n

(
n∑

k=1

ℓ(αk, yk) + dk(αk − zTk θ)

)
+R(θ)

= − min
d∈Rn

1

n

n∑
k=1

ℓ∗(−dk, yk) +R∗
(
1

n
Zd

)
(15)

where ℓ∗ and R∗ are the Legendre transforms of ℓ and R respectively. We note that by assumption
A1 that R∗ is 1

M− strongly convex and 1
µ -smooth. We then proceed in defining a series of Zr such

that Z0 = Φ and Zp = Γ. We show that the difference of the optimal value in the dual space
between ψ(Etrain(Zr)) and ψ(Etrain(Zr+1)) is bounded by the sum of a O( 1

n3/2 ) term and the
difference in operator norm between c

n ∥Kr −K ′
r∥op, which allows us to bound the total difference

as in the given result.
For part two, we note thatRϵ(θ) = R(θ)±ϵh(θ) remains strongly convex for sufficiently small

values of ϵ > 0. As such, part 1 of the theorem holds for these cases. By bounding the difference in
the values of Etrain at ϵ > 0 and at ϵ = 0 the bound on h(θ) may be obtained. The proof is given in
full in appendix B.
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4.2. Multiple Layers

In this section, we apply the results of the previous section to prove universality for DRF. We shall
consider the deep random features as given in eq (9). The proof of the equivalence relies on fixing
all layers, except a single one, and demonstrating that the individual layer may be replaced by
their Gaussian equivalent. This relies on an intermediate result, given in the following theorem,
stating that the regularity of a dataset, as defined in definition 3 is preserved under random feature
mappings.

Theorem 6 Suppose that the set {xi ∈ Rd}ni=1 is regular and assumption 3 holds. Then define
zi = σ(Wxi) where W is a p× d matrix and has independent rows distributed by N (0, 1dI). Then
with probability higher than 1− n−10 the set {zi}ni=1 is regular1.

The main consequence of this theorem is that for L layers where n ∼ p0 ∼ p1 ∼ · · · ∼ pL, with
a probability converging to 1, all dataset X(l) = {x(l)

i }ni=1 for l = 1, . . . , L are regular2. Now,
we can state the main result of this section, which demonstrates a slightly more generic version of
universality for an l-layered deep random feature model.

Theorem 7 Suppose that n ∼ p0 ∼ · · · ∼ pl and take q = O(n) and let assumption A1-A5 hold.
For a fixed final layer l, define noise appended features x̃(l)

i , γ̃
(l)
i as

x̃
(l)
i =

[
x
(l)
i

v
(l)
i

]
γ̃
(l)
i =

[
γ
(l)
i

v
(l)
i

]
(16)

where v
(l)
i ∈ Rq are independent standard Gaussian vectors. Take a m × (q + pl) dictionary D,

where ∥D∥op < c for some constant c <∞ and define the re-represented features

fi = Dx̃i, gi = Dγ̃i (17)

and let F = [f1 · · · fn] and let G = [g1 · · · gn] be their matrix representations. Then under the
assumption that X is regular,

1. For any real function ψ with bounded first, second, and third derivatives, there exists a con-
stant c <∞ such that

|Eψ(Etrain(F ))− Eψ(Etrain(G))| ≤ polylog n√
n

(18)

2. Let θ̂F and θ̂G be the optimal solution of problem (2) for F and G. Then for any bounded
function h : RpL → R with bounded ∇h(0), second and third derivatives (in tensor norm),
where the bounds are constant in n,m, pi for 0 ≤ i ≤ l. There exists a constant c < ∞ such
that ∣∣∣Eh(θ̂F)− Eh

(
θ̂G

)∣∣∣ ≤ polylog n√
n

(19)

Universality of the DRF problem follows directly from this theorem by choosing the final Lth
layer, q = 0 and, hence adding no additional noise and D = IpL such that no re-representation
appears.

1. The exponent of n is arbitrary and can be replaced by any other number
2. Here we assume that the numbers of layers L is fixed, but it is simple to show that the argument also holds for

L = poly(n)

8
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4.2.1. PROOF SKETCH

The proof proceeds by means of induction. For the case that l = 0, ie a zero layer network the proof
is immediate as x0 = γ(0). Assuming that the induction hypothesis holds for a layer l − 1 we may
consider layer l.

We make use of an intermediate results which may be found in the appendix. In theorem 15
we show that if the data set x(l) is regular then covariance matrices of x(l) and γ(l) are bounded
by cpolylog n√

n
for some constant c. Then, the proof proceeds in two steps: First, we consider an

intermediate vector

γ̄
(l)
i =

[
ρ1,lW

(l)x
(l−1)
i + ρ2,lh

(l)
i

v
(l)
i

]
. (20)

We bound the performance difference (Etrain) between x(l) and γ̄(l) by theorem 7. Second, we
observe that the difference in performance between γ̄(l) and γ(l) depends only on the difference
between x(l−1) and γ(l−1). As such, we may make use of the induction hypothesis to bound this
difference. The full proof is given in appendix C.

5. CGMT Analysis

Thanks to the universality results, we only require to analyze the deep Gaussian features γL. Here,
we present this analysis in one particular case where ℓ is the square loss, and the regularization
function is generic. Additionally, we need to impose a model for the relationship between the labels
y and the input variables x(0), which we specifically assume to be independent standard normal
vectors. For this we make the following definition

yi = x
(L)T
i θ∗ + νi, (21)

where θ∗ ∈ RpL is the ”true” relationship between the data and the parameters, νi ∼ N (0, σ2νI) is
noise, and x(L) is defined in (4). We let ν = (νi)i and let X(L) = [x

(L)
1 x

(L)
2 · · ·x(L)

n ]. Then, we
consider the following optimization problem

P1 = min
θ

1

2n

∥∥∥y −X(L)θ
∥∥∥2
2
+R(θ) = min

e

1

2n

∥∥∥ν −X(L)e
∥∥∥2
2
+R(θ∗ + e), (22)

where e = θ − θ∗ and the optimal solutions are denoted by θ̂1, ê1. We similarly consider the
Gaussian equivalent model defined in eq (8). In this case, the data is generated by

ỹi = γ
(L)T
i θ∗ + νi. (23)

Again, we let X̃(L) = [γ
(L)
1 γ

(L)
2 · · ·γ(L)

n ] and define the Gaussian equivalent optimization problem
as

P2 = min
θ

1

2n

∥∥∥ỹ − X̃(L)θ
∥∥∥2
2
+R(θ) = min

e

1

2n

∥∥∥ν − X̃(L)e
∥∥∥2
2
+R(θ∗ + e) (24)

with corresponding optimal solutions θ̂2, ê2. By applying theorem 7 to θ → e and y → ν, we
establish that the statistics of P1 and P2 become weakly similar in the sense of their distributions.

9
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Furthermore, for this particular choice of the relationship between the data and the labels the gener-
alization error for the problem P1 may be expressed as

Egen(e) = σν2 + eTE[x̃(L)T
new x̃(L)

new]e. (25)

This function satisfies the conditions on the function h(e). As such in this case, the generalization
error is also universal.

For problem P2, as the matrix X̃ is Gaussian, it may be analyzed by the CGMT, (see appendix
theorem 12), which gives an asymptotic equivalence to a second alternative problem is follows:

Theorem 8 Let n ∼ p0 ∼ · · · ∼ pL and let assumptions 1-5 hold true. Consider the following
optimization problem

P3 = max
β>0

min
q
TL + max

ξL>0,χL>0
min

tL>0,kL>0
TL−1 +min

e

a

2pl
∥e∥2 + b

pL
eTg +R(θ + θ∗) +

max
ξL−1>0,χL−1>0

min
tL−1>0,kL−1>0

· · · max
ξ0≥0,χ0≥0

min
t0>0,k0>0

L−2∑
i=1

Tl(e) (26)

Where TL is a function of β, q; TL−1, a, b are functions of β, q, ξL, χL, tL, kL; g ∈ RpL is a standard
normal and Tl are functions of e, β, q, ξi, χi, ti, ki for L ≥ i ≥ l. The exact expressions for the
functions a, b, Ti are complicated and are given in the appendix equation (178).

Then,

1. Then the values of P2 and P3 become close, in sense that if P3 converges to come value c then
P2 will converge to the same value.

2. Let θ̂3 be the optimal point of P3. Then for any bounded function h : RpL → R with bounded
second and third derivatives (in tensor norm), where the bounds are constant in n, pi. for
0 ≤ i ≤ L, then

Pr (|h(ê2)− h(ê3)| > ϵ) → 0 as n, p0, . . . , pL → ∞ (27)

A proof of this theorem may be found in the Appendix Section D. Furthermore, if all layers,
except the input have the same dimension p the CGMT result can be simplified substantially, these
results may be seen in theorem 22. It can be clearly seen that by the triangle inequality and the
results of theorem 7 that P3 and P1 will similarly asymptotically become weakly similar; as will
h(θ̂3) and h(θ̂1).

5.1. Experimental Results

We now demonstrate the validity of our results experimentally. We consider two regularization
functions that satisfy assumption A1: the ℓ22 regularization and elastic net regularization, where
R(θ) = λ1 ∥θ∥1 +

1
2λ2 ∥θ∥

2
2.

We consider standard Gaussian input of dimension d and examine a 2-Layer RF model where
both layers are of dimension p and a 1 layer RF model with hidden layer of dimension p. The ratio
n
d was fixed to 1.5 for all experiments. The activation function was chosen to be tanh.

In figure 1 we show the training and generalization error for ℓ22 regularization for 3 different
regularization values as a function of the ratio p

n . We note that in the 1-Layer case p
n is a measure of

10
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the under or overparameterization of the network. This relationship does not hold in the two layer
case, however as may be seen from the figure this ratio is still useful in comparing the two models.
In figure 1 the solid line represents the 2-layer case and the dashed line represents the 1-layer case.
The triangles are our theoretical predictions for 2-layers, and squares similarly for 1-layer. For the
Elastic net case we fix λ2 to be 10−5 and vary only λ1 these results are similarly shown in figure 2.

We note that in both types of regularization functions, for all values of p
n , the 2-layer deep RF

model has consistently lower generalization error. With respect to training error the two layer case
only outperforms 1-layer at large values of regularization. This suggests that even when training of
the layer is not performed there can be a benefit to a deeper embedding of the input data.
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Figure 1: Comparison of 1-Layer and 2-Layer RFs, with square loss function, ℓ22 regularization
with regularization strength λ. Solid lines represent 2 layer and dashed lines 1-Layer.
Triangles are the CGMT results for 2-layers and squares for 1-layer

5.2. Eigendistribution of the Covariance Matrix

In the CGMT analysis performed above, where the input data is Gaussian, the Gaussian equivalent
features γ(L) are distributed as N (0,R(L)) where R(L) is a covariance matrix defined recursively
as

R(0) = I R(l) = ρ21,lW
(l)R(l−1)W(l)T + ρ22,lIpl , (28)

where each W(l) has rows w(l)
j ∼ N (0, 1

pl−1
Ipl−1

). In the case of ridge regression of linear models,
or any rotationally invariant setup, the optimal value is directly dependent upon the eigenvalues
of the covariance matrix. As the covariance matrix is random we consider its eigendistribution,
the marginal probability distribution over the eigenvalues. We note that what we examine here is
the recursively defined covariance matrix of the Gaussian equivalent features, an analysis of the
recursively defined covariance of the original distribution is considered in Fan and Wang (2020) and
Schröder et al. (2023),

We note that the type of recursion for R(l) is a form of a Lyapanov recursion, which has
been studied in the literature (Vakili, 2011; Emery et al., 2007). We denote the eigendistribu-

11
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Figure 2: Comparison of 1-Layer and 2-Layer RFs, with square loss function and ℓ1 + ℓ22 regular-
ization with regularization strength λ for the ℓ1 term and fixed ℓ2 regularization strength.
Solid lines represent 2 layer and dashed lines are 1-Layer. Triangles are the CGMT result
for 2-layers and squares for 1-layer

tion of the matrix R(l) as fR(l)(λ) for eigenvalues λ. In the case of l = 1, the matrix R(1) is a
scaled Wishart matrix plus an identity, whose eigendistribution is given by a shifted version of the
Marchenko–Pastur distribution. In figure 5.2 we consider the empirical eigendistribution of R(2),
corresponding to the two layer case studied above. We choose p0 = 1000 and p2 = 1500 fixing
the input and output dimensions of the layers, and vary the size of the hidden layer p1. We note as
the size of the hidden layer grows the more concentrated the eigendistribution become around zero,
while decreasing it results in a more flat structure. In the case of ridge regression, the decreased in
the support of the eigenvalues could represent in an increase in model uncertainty at large sizes of
the hidden layers.

We also examine the eigendistribution analytically. We make use of the Stieltjes transform
SR(l)(z) of the distribution fR(l) . This transform and its inverse are give by

SR(l)(z) =

∫
fR(l)(λ)

λ− z
dλ fR(l)(λ) =

1

π
lim

ω→0+
Im[S(λ+ iω)] (29)

where i is the imaginary unit, and z is complex. We can demonstrate that the Stieltjes transform of
the matrices R(l) follows the following recursion.

Theorem 9 Let βl =
pl

pl−1
, then the Stieltjes transform Sl(z) of R(l) in (28) is given recursively by

Sl+1(z) =
1

ρ21,l+1

Ωl

(
z − ρ22,l+1

ρ21,l+1

)
(30)

Ωl(z) =
1

1− β − βzΩl(z)
Sl

(
z

1− β − βzΩl(z)

)
(31)

12



PRECISE ASYMPTOTIC ANALYSIS OF DEEP RANDOM FEATURE MODELS

Where Ω0 is the Stieltjes transform of a Wishart matrix, given by

Ω0 =
1− β1 − z +

√
z2 − 2(β1 + 1)z + (β1 − 1)2

2β1z
(32)

Proof The proof is given in appendix E.

The recursive definitions given are difficult to compute empirically, as such we will leave visualizing
these results to future work. However the recursive structure suggests that there exists a limiting
distribution over the eigenvalues in the limit of infinite depth characterized by the different ratio in
size between the various layers.
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Figure 3: Empirical Eigendistribution of R(l) for various sizes p1 of the 1st hidden layer

6. Conclusion

In this paper, we prove an asymptotic equivalence between deep random feature models and linear
Gaussian models with respect to the training and generalization error. As a result of this univer-
sality, we can study a Gaussian equivalent model to the DRF model, in the asymptotic limit. We
use this fact to provide an exact asymptotic analysis by means of the convex Gaussian min max
theorem for an L-layer deep random feature model with Gaussian inputs. We further demonstrate
that depth has an effect on training and generalization error both experimentally and by studying the
eigendistribution of the Gaussian equivalent model’s Covariance matrix.
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Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. arxiv:1906.11300, 2020b.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.
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Appendix A. Technical Lemmas and Theorem

In this section we give a number of Lemmas and Theorems that will be used in the proofs below.
In the following lemma we demonstrate that passing the input through an activation function

with Gaussian weights result in a subgaussian random variable under mild assumptions.

Lemma 10 Consider X = [x1 x2 · · · xn], where xi ∈ Rd and define r = ∥X∥op. Suppose that
the derivative σ′ of the activation function σ is bounded, i.e. ∥σ′∥∞ ≤ τ . Let w ∼ N (0, 1dI). Then,
the random vector (σ(xT

kw))k is τr√
d
−sub-Gaussian

Proof Take a unit vector a = (aj) ∈ Rn. We show that A(w) :=
∑n

k=1 akσ(w
Txk) is sub-

Gaussian with parameter τr/
√
d. For this, we show that the function A(w) is τr−Lipschitz con-

tinuous, which implies the desired result (see (Boucheron et al., 2013)). For this, observe that

∇A =
n∑

k=1

xkσ
′(wTxk)ak = Xσ, (33)
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where σ = (σ′(wTxk)ak)k and hence by assumption ∥σ∥ ≤ τ . We conclude that

∥∇A∥ ≤ ∥X∥op ∥σ∥ ≤ τr. (34)

This concludes the proof.

Here we give a lemma that gives a high probability bound on the norm of a random matrix.

Lemma 11 Consider a p×n random matrix S where each row is independent and τ -sub-Gaussian.
Moreover, the covariance of each row is bounded by τ in operator norm. Then, there exists constants
c0, κ only depending on τ such that for any c > c0 the following holds:

Pr
[
∥S∥ > c(

√
p+

√
n)
]
≤ e−κcn. (35)

Proof The proof is based on the standard ϵ−net argument. Hence we do not give it here. See, for
example, (Baraniuk et al., 2008) for a similar proof.

Next for completeness we state the Convex Gaussian Min Max Theorem (Gordon, 1985, 1988;
Thrampoulidis et al., 2014). We make heavy use of this theorem in the proof of theorem 8.

Theorem 12 (Convex Gaussin Min Max Theorem (CGMT)) Let G ∈ Rn×m,g ∈ Rm, and h ∈
Rn be independent of each other and have entries distributed according to N (0, 1). Let S1 ⊂ Rn

and S2 ⊂ Rm be non empty compact sets. Let f(·, ·) be a continuous function on S1×S2. We define
the primary and alternative optimization problems as follows:

P (G) := minx∈S1 maxy∈S2 x
TGy + f(x,y) (36)

A(g,h) := minx∈S1 maxy∈S2 ∥x∥2 gTy + ∥y∥2 hTx+ f(x,y), (37)

Then for any c1 ∈ R we have that

Pr(P (G) < c1) ≤ 2Pr(A(g,h) ≤ c1). (38)

Under the further assumption that S1 and S2 are convex sets, and f is concave-convex on S1 × S2

then for all c2 ∈ R we have that

Pr(P (G) > c2) ≤ 2Pr(A(g,h) ≥ c2). (39)

We note this theorem demonstrates that if A(g,h) concentrates on a particular value c, ie

Pr(|A(g,h)− c| > ϵ)
P−−−−−→

n,m→∞
0, ∀ϵ > 0 (40)

then P (G) will concentrate on the same limit.
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Appendix B. Proof of Theorem 5

Our proof is based on an application of Lindeberg’s argument to the sequence of features ϕj for
j = 1, . . . , p. We will adopt the following notation for this section. For a matrix A we denote its
ith row by means of superscript ai and its jth column by means of subscript aj .

For simplicity, for any m× n matrix Z with columns (zk) we define

L(z) = min
θ∈Rm

1

n

n∑
k=1

ℓ(zTk θ, yk) +R(θ). (41)

By means of a splitting technique, we may express this as

L(Z) = min
θ∈Rm,α∈Rn

max
d∈Rn

1

n

(
n∑

k=1

ℓ(αk, yk) + dk(αk − zTk θ)

)
+R(θ)

= − min
d∈Rn

1

n

n∑
k=1

ℓ∗(−dk, yk) +R∗(
1

n
Zd)︸ ︷︷ ︸

Λ(d,Z)

(42)

where ℓ∗, R∗ are the Legendre transforms of ℓ and R respectively. We note that L(F ) = Etrain(F )
and L(G) = Etrain(G). Furthermore, we define Zr for r = 0, 1, . . . ,m as

Zr =

r∑
j=1

djγ
j +

p∑
j=r+1

djϕ
j , (43)

where γj ,ϕj are the jth row of Φ and Γ respectively. We note that, djγ
j and djϕ

j are outer
(tensor) products, resulting in matrices. As a result Z0 = F and Zm = G. We have that

|Eψ(L(F ))− Eψ(L(G))| ≤
m∑
r=1

|Eψ(L(Zr))− Eψ(L(Zr−1))| . (44)

Now , for r = 1, 2, . . . ,m for any vector u ∈ Rn, define

Z−r(u) =
r−1∑
j=1

djγ
j + dru

T +

p∑
j=r+1

djϕ
j . (45)

We note that Zr = Z−r(γ
r) and that Zr−1 = Z−r(ϕ

r), as such

Eψ(L(Zr))− Eψ(L(Zr−1)) =

[Eψ(L(Z−r(γ
r)))− Eψ(L(Z−r(0)))]− [Eψ(L(Z−r(ϕ

r)))− Eψ(L(Z−r(0)))] . (46)

We now define d̂r and d̂−r as the minimal solutions of Λ(d,Zr) and Λ(d,Z−r(0)) respectively.
We note that γr,ϕr are τ−sub-Gaussian and independent of Z−r(0). Hence, we examine the
following term:

Eψ(L(Z−r(u)))− Eψ(L(Z−r(0))), (47)
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for a generic τ -sub-Gaussian independent random vector u.
We recall that R is µ-strongly convex and M -smooth, we have that R∗ is 1

M−strongly convex
and 1

µ smooth for any Z, (Kakade et al., 2009)[theorem 6]. The optimal solution d̂ is therefore
uniquely identified by the first order optimiality condition

h(d,Z) := ∇dΛ(d,Z) =
1

n
ζ(d) +

1

n
ZT∇R∗

(
1

n
Zd

)
= 0 (48)

where ζ(d) is the vector of values (ℓ(dk, yk))k with ℓ′ being the partial derivative of ℓ∗ with respect
to the first argument. In particular, h(d̂−r,Z−r(0)) = 0. We can therefore conclude that for every
u = (uk)

n
k=1 that

h(d̂−r,Z−r(u)) =
1

n
udT

r ∇R∗
(
1

n
Z−rd̂−r

)
+

1

n
ZT
−r(u)

(
∇R∗

(
1

n
Z−r(u)d̂−r

)
−∇R∗

(
1

n
Z−r(0)d̂−r

))
. (49)

Where we have used the fact that

Z−r(u) = Z−r(0) + dru
T . (50)

We can further conclude that

1

n
Z−r(u)d̂−r =

1

n
Z−r(0)d̂−r + dr

uT d̂−r

n
. (51)

B.1. Bounding the terms in 49

Now, we introduce a series of bounds and approximations on the terms involved in 49. For ease of
notation, we introduce the following:

Definition 13 We say than an expression including the parameter c holds with high probability
(w.h.p) if there are constants c0, κ such that for any c > c0, the expression holds with probability
higher than 1− κe−κcn. We also denote C := poly(c).

Recall that we have assumed that u is a τ -sub-Gaussian vector. We now note that all the matrices
Zr,Z−r(0) and Z−r(u) can be expressed as Z = DS where each row of S is independent an
associated with either a random feature, a replaced Gaussian feature, or u. Hence, for p ∼ n,
by assumption A1 and lemma 11, we have that ∥S∥2 ≤ C(

√
p +

√
n) ≤ C

√
n holds with high

probability, and by the conditions on D assumed for the theorem the matrices Zr,Z−r(0) and
Z−r(u) are also bounded in operator norm by C

√
n with high probability.

Next we note by assumption A2 that ∥ζ(0)∥ ≤ C
√
n and by assumption A1, that ∇R∗(0) =

O(1). Moreover, as R∗ is 1
M−strongly convex, we obtain that∥∥∥d̂−r

∥∥∥ ≤M ∥h(0,Z−r(0))∥ ≤ C√
n
. (52)

By the 1
µ− smoothness of R∗, we also obtain that:∥∥∥∥∇R∗

(
1

n
Z−r(0)d̂−r

)∥∥∥∥ ≤ 1

µn

∥∥∥Z−r(0)d̂−r

∥∥∥ ≤ C

n
w.h.p (53)
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and∥∥∥∥∇R∗
(
1

n
Z−r(u)d̂−r

)
−∇R∗

(
1

n
Z−r(0d̂−r)

)∥∥∥∥ ≤ 1

µn
∥dr∥

∣∣∣uT d̂−r

∣∣∣ ≤ C

n
√
n

∣∣∣uT d̂−r

∣∣∣ . (54)

Recalling that u is τ -sub-Gaussian, hence:

Pr
[∣∣∣uT d̂−r

∣∣∣ > c
√
n
∥∥∥d̂−r

∥∥∥] ≤ e−kcn, (55)

where κ only depends on τ . From this we conclude that,∥∥∥∥∇R∗
(
1

n
Z−r(u)d̂−r

)
−∇R∗

(
1

n
Z−r(0)d̂−r

)∥∥∥∥ ≤ C

n
√
n

w.h.p. (56)

Finally, applying lemma 11 to S = uT (with p = 1) shows that ∥u∥ ≤ C
√
n with high

probability. As such we can make the following conclusion about (49):∥∥∥∥h(d̂−r,Z−r(u))−
δr
n
u

∥∥∥∥ ≤ C

n3/2
w.h.p (57)

where δr = dT
r ∇R∗

(
1
nZ−r(0)d̂−r

)
. Hence, |δr| ≤ C w.h.p and∥∥∥h(d̂r,Z−r(u))

∥∥∥ ≤ C√
n

w.h.p. (58)

B.2. Approximating L(Z−r(u))

We now denote Jr =
∂h
∂d(d̂−r,Z−r(0)) and introduce the following point:

d̂+r(u) = d̂−r −
δr
n
J−1
r u. (59)

We note that δr
n u+ Jr(d̂+r(u)− d̂−r) = 0 and by strong convexity that Jr ⪰ 1

ML. Furthermore,
by the assumption on the third derivatives, ∥∥∥h(d̂+r,Z−r(u))

∥∥∥
=

∥∥∥∥d̂+r,Z−r(u)−
δr
n

− Jr

(
d̂+r(u)− d̂−r

)∥∥∥∥
≤
∥∥∥h(d̂+r,Z−r(u))− h(d̂+r,Z−r(u))− Jr

(
d̂+r(u)− d̂−r

)∥∥∥+ C

n3/2

≤ C
∥∥∥d̂+r(u)− d̂−r

∥∥∥2 + C

n3/2
=
Cδ2r
n2

∥∥J−1
r u

∥∥2 + C

n3/2
≤ C

n
w.h.p. (60)

Finally, from strong convexity, we conclude that

0 ≤ Λ(d̂+r(u),Z−r(u)) + L(Z−r(u)) ≤
M

2

∥∥∥h(d̂+r(u),Z−r(u))
∥∥∥2 ≤ C

n2
w.h.p. (61)

On the other hand, we note that

1

n
Z−r(u)d̂+r =

1

n
Z−r(0)d−r +

1

n
dru

Td−r −
δr
n2

Z−r(0)J
−1
r u− δr

n2
dru

TJ−1
r u. (62)
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We now define

Br(u) := ηT
r

[
1

n
dru

Td−r −
δr
n2

uTJ−1
r u

]
+

1

2n2
dT
r Hrdr

(
uTd−r

)2
+

δ2r
2n3

uTJ−1
r ΛrJ

−1
r u, (63)

where ηr and Hr are the gradient and Hessian of R∗ respectively at 1
nZ−r(0)d−r and Λr is the

diagonal matrix of elements (ℓ′′(dk, yk)) where ℓ′′ is the second derivative of ℓ∗ with respect to the
first argument. From the previous bounds we conclude that∣∣∣Λ(d̂+r(u),Z−r(u)) + L(Z−r(0))−Br(u)

∣∣∣ ≤ C

n3/2
w.h.p (64)

from which we find that

|L(Z−r(u))− L(Z−r(0))−Br(u)| ≤
C

n3/2
w.h.p. (65)

Hence, by the bounded derivatives of ψ we have:

|ψ(L(Z−r(u)))− ψ(L(Z−r(0)))−Br(u)| ≤
C

n3/2
w.h.p. (66)

From the mean value theorem, we have that

|ψ(L(Z−r(0))) +Br(u)− ψ(L(Z−r(0)))

−ψ′(L(Z−r(0)))Br(u)−
1

2
ψ′′(L(Z−r(0)))B

2
r (u)

∣∣∣∣ ≤ C |Br(u)|3 (67)

Again, making use of the previous bounds, under the product measure Ω we observe that

∣∣∣∣|Br(u)|2 −
(ηTdr)

2(uTd−r)
2

n2

∣∣∣∣ ≤ C

n3/2
, |Br(u)| ≤

C√
n

w.h.p (68)

and hence

|ψ(L(Z−r(0))) +Br(u)− ψ(L(Z−r(0)))

−ψ′(L(Z−r(0)))Br(u)−
1

2
ψ′′(L(Z−r(0)))

(ηTdr)
2(uTd−r)

2

n2

∣∣∣∣ ≤ C

n3/2
w.h.p. (69)

Combining all of the steps together, we obtain that

|ψ(L(Z−r(u)))− ψ(L(Z−r(0)))

−ψ′(L(Z−r(0)))Br(u)−
1

2
ψ′′(L(Z−r(0)))

(ηTdr)
2(uTd−r)

2

n2

∣∣∣∣ ≤ C

n3/2
w.h.p (70)

B.3. Bounding the Increments of (44) and Final Steps

We now employ the following observation:

Lemma 14 Suppose that A is a non-negative random variable such that A ≤ C w.h.p with
C = poly(c). There exists a universal constant c1 such that E[A] ≤ c1.
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Proof Note that the assumptions imply that there exist universal constants c0, κ such that for c > c0

Pr[A > C] ≤ κe−κnc (71)

Note that C = poly(c) ≤ (αc)β for some constants α, β > 0. Hence for C > C0 := (αc0)
β , we

have

Pr[A > C] ≤ κe−
κ
α
nC

1
β
. (72)

As such, by making use of Tonelli’s theorem we have that

E[A] =
∫ ∞

0
Pr[A > C]dC ≤ C0 + κ

∫ ∞

C0

e−
κ
α
nC

1
β
. (73)

It is simple to check that the right hand side is bounded by a universal constant.

According to lemma 14 we have that

|Eψ(L(Z−r(u)))− Eψ(L(Z−r(0)))

−Eψ′(L(Z−r(0)))Br(u)−
1

2
Eψ′′(L(Z−r(0)))

(ηTdr)
2(uTd−r)

2

n2

∣∣∣∣ ≤ c1

n3/2
, (74)

for some universal constant c1. Now we note that each expectation can be carried out y first con-
ditioning on Z−r(0) and then taking the expectation with respect to it. Accordingly, we denote
Eu := E[·|Z−r(0)] as this expectation is only over u, which is independent of Z−r(0). Further-
more, we repeat the above bound for u = γr and u = ϕr, from which we obtain:∣∣Eψ(L(Zr))− Eψ(L(Zr−1))− Eψ′(L(Z−r(0)))[EuBr(γ

r)− EuBr(ϕ
r)]

−1

2
Eψ′′(L(Z−r(0)))

(ηTdr)
2

n2
[
Eu(d

T
−rϕ

r)2 − Eu(d
T
−rγ

r)2
]∣∣∣∣ ≤ 2c1

n3/2
. (75)

Making use of the bounds on the derivatives of ψ, we obtain:

|Eψ(L(Zr))− Eψ(L(Zr−1))| ≤ cE |EuBr(γ
r)− EuBr(ϕ

r)|+
c

2
E
∣∣∣∣(ηTdr)

2

n2
[Eu(d

T
−rϕ

r)2 − Eu(d
T
−rγ

r)]

∣∣∣∣+ 2c1

n3/2
. (76)

By the previous bounds, it is straightforward to see that

E |EuBr(γ
r)− EuBr(ϕ

r)| ≤ C

n

∥∥Kr −K ′
r

∥∥
op

w.h.p, (77)

and

(ηTdr)
2

n2
[Eu(d

T
−rϕ

r)2 − Eu(d
T
−rγ

r)] ≤ C

n

∥∥Kr −K ′
r

∥∥
op

w.h.p. (78)

Hence by lemma 14 and (44) we conclude that there exists a universal constant c1 such that

|Eψ(L(F ))− Eψ(L(G))| ≤ c1
n

p∑
r=1

∥∥Kr −K ′
r

∥∥
op

+
c1√
n

(79)

This concludes the proof of part 1 of the theorem
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B.4. Proof of part 2

For ϵ ∈ R, we define Rϵ := R + ϵh. Define Lϵ(F ), Lϵ(G) as the optimal values with Rϵ and note
that for all ϵ

ϵh(θ̂F ) ≥ Lϵ(F )− L(F ), (80)

and

ϵh(θ̂G) ≥ Lϵ(G)− L(G). (81)

We then note that for sufficiently (but finitely) small ϵ the conditions of the theorem are satisfied.
Choose ϵ > 0 such that both ϵ and −ϵ statisfy these conditions. Then we have

Lϵ(F )− L(F ) + L−ϵ(G) + L(G)

ϵ
≤ h(θ̂F )− h(θ̂G) ≤

L(F )− L−ϵ(F )− Lϵ(F ) + L(G)

ϵ
. (82)

Taking the expectation, and making use of the results of part 1, with ψ(x) = x we conclude that∣∣∣Eh(θ̂F )− Eh(θ̂G)
∣∣∣ ≤ E

[
2L(F )− L−ϵ(F )− Lϵ(F )

ϵ

]
+

c

nϵ

p∑
r=1

∥∥Kr −K ′
r

∥∥+ c

ϵ
√
n
. (83)

we can now choose ϵ = 1
n1/4 , from this we can see that the latter two terms go to zero in the limit

of large n. For the first term we note that when ϵ grows small that

L(F )− Lϵ(F )

ϵ
+
L(F )− L−ϵ(F )

ϵ
→ 0. (84)

Moreover, −L−ϵ(F )−L(F )
ϵ − Lϵ(F )−L(F )

ϵ is bounded by twice the bound h. Then, we may invoke the
dominated convergence theorem and conclude that

E
[
−Lϵ(G)− L(G)

ϵ
− Lϵ(F )− L(F )

ϵ

]
→ 0. (85)

Which concludes the proof.

Appendix C. Proof of Theorems 6 and 7

The proof of these theorem relies on two intermediate results, we shall prove both of these first.
Firstly consider the following theorem:

Theorem 15 Assume that σ is odd and that assumption A4 holds. Take

µ := sup
i,j

∣∣∣∣xT
i xj

d
− δij

∣∣∣∣ , (86)

and w ∼ N (0, 1dI). Consider the random vector ϕ = (σ(xT
kw))k and denote its covariance matrix

by K. Then, ∥∥∥∥K −
(
ρ21
d
XTX+ ρ22I

)∥∥∥∥
op

≤ c

(
µ3n+ µ+ µ

∥X∥2op
d

)
, (87)

where c is a universal constant.
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Proof Note thatKij = Ew[σ(w
Txi)σ(w

Txj)]. For i ̸= j, we have thatKij = η1

(
∥xi∥2

d ,
∥xj∥2

d ,
xT
i xj

d

)
where η1 and for i = j, we have that Kii = η2

(
∥xi∥2

d

)
. Where η1 and η2 are defined in assumption

A4. Note that by oddness of the activation function

η1(1, 1, 0) = 0, η2(1) = Eσ2(g) (88)

∇η1(1, 1, 0) = (0, 0,E[gσ(g)]2), (89)

where g is a standard normal. We also note that the hessian of η1

Hη1(1, 1, 0) =

 0 0 −E[gσ(g)]2
0 0 0

−E[gσ(g)]2 0 0

 . (90)

Then, by the mean value theorem and assumption A4 we have that

|Kij −K ′
ij | ≤

{
cµ3 i ̸= j

cµ i = j
, (91)

where

K ′
ij =

{
xT
i xj

d [E[gσ(g)]]2
(
1− ∥xi∥2

d

)
i ̸= j

E[σ2(g)] i = j
. (92)

From this we conclude that ∥∥K −K ′∥∥
op

≤ c(µ3n+ µ). (93)

It can also straightforwardly be checked that
∥∥∥K ′ −

(
ρ21
d X

TX+ ρ22I
)∥∥∥

op
≤ cµ

∥X∥2op
d , from which

the desired result can be obtained.

The second intermediate result is shown in the following theorem.

Theorem 16 Suppose that σ is odd with bounded derivatives and assumption A4 holds. Moreover,
the set {xi ∈ Rd}ni=1 satisfies:

sup
i,j

∣∣∣∣xT
i xj

d
− δij

∣∣∣∣ ≤ polylog n√
n

. (94)

Define zi = σ(Wxi) where W ∈ Rp×d has independent row distributed by N (0, 1dI). Then, with
a probability higher than 1− n−10 it holds that3:

sup
i,j

∣∣∣∣zTi zjp − δij

∣∣∣∣ ≤ polylog n√
n

. (95)

3. The exponent is arbitrary and can be replaced by any other number
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Proof We note that

1

p
zTi zj =

1

p

∑
r

σ(wT
r xi)σ(w

T
r xj), (96)

and by the assumptions σ(wT
r xi)σ(w

T
r xj) are i.i.d and sub-exponential. Hence, there exists a

constant c such that for every t = o(
√
n):

Pr

[∣∣∣∣1pzTi zj − Ew[σ(w
Txi)σ(w

Txj)]

∣∣∣∣ > t√
n

]
≤ 2e−ct. (97)

In particular, we may take t = c log n for a sufficiently large c, which by the union bound leads to

sup
i,j

∣∣∣∣1pzTi zj − Ew[σ(w
Txi)σ(w

Txj)]

∣∣∣∣ < c log n√
n

(98)

with the desired probability. On the other hand Ew[σ(w
Txi)σ(w

Txj)] equals either η1
(
∥xi∥2

d ,
∥xj∥2

d ,
xT
i xj

d

)
for i ̸= j or η2

(
∥xi∥2

d

)
for i = j. Then by assumption A4 the result holds.

C.1. Proof of theorem 6

To prove the theorem we need to show two properties hold. Firstly,

max
i,j

∣∣∣∣zTi zjp − δij

∣∣∣∣ ≤ polylog n√
n

. (99)

This has been shown by theorem 16. Next, we need to show that

∥Z∥ ≤ c
√
n. (100)

For this we note that the rows of Z are independent. Moreover, by lemma 10 and the assumptions,
each row is c−sub-Gaussian for a constant c. Finally, by theorem 15, we have that

∥K∥op ≤ polylog n√
n

+

∥∥∥∥ρ21d XXT + ρ22I

∥∥∥∥
op

≤ c. (101)

Then by lemma 11 the result follows.

C.2. Proof of theorem 7

The proof is by induction. For l = 0, the claim is trivially holds. For a given l, note that x(l)
i =

ϕ(x
(l−1)
i ,W(l)). Furthermore, {x(l−1)

i }ni=1 is regular with a probability higher than 1 − n−10 and
hence by lemma 10, each row of X̃(l) = [x̃i x̃2 · · · x̃n] is c−sub-Gaussian. Moreover, by theorem
15, we have

∥K∥op ≤ polylog n√
n

+

∥∥∥∥ρ21d XTX+ ρ22I

∥∥∥∥
op

≤ c (102)
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and hence by assumption the first condition for Theorem 5 holds true with a probability higher than
1− n−10. As a result, defining

g̃
(l)′

i =

[
ρ1W

(l)x
(l−1)
i + ρ2h

(l)
i

v
(l)
i

]
, (103)

then theorem 5 holds for {x̃(l)
i }ni=1 and {g̃(l)′

i }ni=1. Denoting the optimal value and the optimal point
for the latter by L′, θ̂′, we note that

∣∣EW(l) [ψ(L(F ))]− EW(l) [ψ(L′)]
∣∣ ≤ polylog n√

n
(104)

with probability 1− n−10. Note that L(F ) and L′ are bounded, hence:

∣∣E[ψ(L(F ))]− E[ψ(L′)]
∣∣ ≤ polylog n√

n
, (105)

Where E[ψ(L′)] = E[E[ψ(L; )|W(l)]]. On the other hand,

Dg̃
(l)′

i = D

[
ρ1W

(l) ρ2I
0 0 I

]
︸ ︷︷ ︸

D′

x
(l−1)
i

h
(l)
i

v
(l)
i

 . (106)

Now we observe that with probability higher than 1 − e−cn it holds that ∥D′∥ ≤ C and hence
we may invoke the induction hypothesis for layer l− 1 with D′ and v

(l−1)
i = [h

(l)
i v

(l)
i ] to conclude

that ∣∣∣E[ψ(L(G))|W(l)]− E[ψ(L′)|W(l)]
∣∣∣ ≤ polylog n√

n
, (107)

with a probability higher than 1− e−cn. Again using the fact that the optimal value is bounded, we
conclude that ∣∣E[ψ(L(G))]− E[ψ(L′)]

∣∣ ≤ polylog n√
n

. (108)

Which concludes the claim for part 1. Part 2 is proven exactly by the same argument.

Appendix D. Proof of Theorem 8

To prove Theorem 8, our goal is to make use of the CGMT (theorem 12) to obtain an alternative
optimization problem to (24). Upon simplification we note that this problem relies entirely upon
R(L) and note that is can once again be expressed as another CGMT style optimization. Applying
the CGMT again results in a problem dependent upon R(L−1). Repeating the processes iteratively
eventually results in the alternative optimization problem given in (26). We adopt the same process
for a recursive CGMT solution as in (Bosch et al., 2022), and follow the direction of their proof.
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To begin this processes we first recall the definition of problem P2 given in (24). We fix
W(1), . . . ,W(L) and make a change of variables. Recalling the definition of y, given in (23),
we introduce the error vector e = θ − θ∗:

P2 = min
e∈RpL

1

2n

∥∥∥∥ν − 1
√
pL

X̃(L)e

∥∥∥∥2
2

+R(e+ θ∗). (109)

We now recall that the rows x̃
(L)
i of X̃(L) are i.i.d normally distributed with covariance R(L). As

such we can express X̃(L) = U(L)
(
R(L)

)1/2
where U(L) ∈ Rn×pL and has i.i.d normal Gaussian

entries and R(L) is given by

R(0) = I R(l) = ρ21,lW
(l)R(l−1)W(l)T + ρ22,lI 1 ≤ l ≤ L. (110)

For the sake of notational simplicity we will express
(
R(L)

)1/2
as R(L)/2 when there is no chance

of confusion.
Next we make use of the Legendre transform of the 2-norm. We obtain

P2 = min
e∈RpL

max
λ∈Rn

1

n
λTν − 1

n
√
pL

λTU(L)R(L)/2e− 1

2n
∥λ∥22 +R(e+ θ∗). (111)

We note that the problem is now in the correct form to apply the CGMT. However, the CGMT
requires that the optimizations over e and λ are over compact and convex sets. In the subsequent
lemmas we show that we can restrict the problem to compact and convex subsets of RpL and Rn.

Firstly, we show that R(l) for all 0 ≤ l ≤ L can be bounded above by a constant in operator
norm with high probability.

Lemma 17 Let R(l) be defined as in (110), then for each 0 ≤ l ≤ L there exists a constant CR(l)

such that

Pr
(∥∥∥R(l)

∥∥∥
2
< CR(l)

)
≥ 1−

l∑
j=1

2e−cpl . (112)

For some universal constant c > 0. By ∥·∥2 we mean the spectral norm.

Proof The proof is by induction. For R(0) = I it is clear that
∥∥R(0)

∥∥
2
= 1. Now assume that the

following event holds {∥∥∥R(l−1)
∥∥∥
2
≤ CR(l−1)

}
, (113)

then by the definition of R(l) we have that∥∥∥R(l)
∥∥∥
2
=
∥∥∥ρ21,lW(l)R(l−1)W(l)T + ρ22,lI

∥∥∥ ≤ ρ21,l

∥∥∥W(l)
∥∥∥2
2

∥∥∥R(l−1)
∥∥∥
2
+ ρ22,l

≤ ρ21,lCR(l−1)

∥∥∥W(l)
∥∥∥2
2
+ ρ22,l (114)
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Now we recall that the elements of W(l) are i.i.d normally distributed with variance 1
pl−1

. Standard
results from Random matrix theory (see for example (Vershynin, 2018)[corollary 7.3.3]) demon-
strate that

Pr
(∥∥∥W(l)

∥∥∥
2
≥ 1 +

√
pl/pl−1 + t

)
≤ 2ecpl−1t

2
. (115)

We choose t =
√
pl/pl−1 from which we obtain

Pr
(∥∥∥W(l)

∥∥∥
2
≥ 1 + 2

√
pl/pl−1

)
≤ 2ecpl . (116)

As such we can choose

CR(l) = ρ21,lCR(l−1)(1 + 2
√
pl/pl−1)

2 + ρ22,l (117)

Now we note that the probability of the event (113) hols true with probability

Pr
(∥∥∥W(1)

∥∥∥
2
< 1 + 2

√
p1/p0, · · · ,

∥∥∥W(l−1)
∥∥∥
2
< 1 + 2

√
pl−1/pl−2

)
≥ 1−

l−1∑
j

2ecpj (118)

where we have made use of the union bound. As such we can say that with high probability
∥∥R(l)

∥∥
2

is bounded.

Next, we show that the optimizations over e and λ can be restricted to compact sets

Lemma 18 Consider the following two optimization problems, which correspond to the problem
P2 and the alternative problem after applying the CGMT:

P2,1 = min
e∈RpL

max
λ∈Rn

1

n
λTu− 1

n
√
pL

λTU(L)R(L)/2e− 1

2n
∥λ∥22 +R(e+ θ∗), (119)

P2,2 = min
e∈RpL

max
λ∈Rn

1

n
λTu− 1

n
√
pL

∥λ∥2 g
TR(L)/2e− 1

n
√
pL

∥∥∥R(L)/2e
∥∥∥
2
hTλ

− 1

2n
∥λ∥22 +R(e+ θ∗). (120)

where g ∈ RpL ,h ∈ Rn are standard normal vectors. We define ê1 and ê2 to be the optimal
solutions of P2,1 and P2,2 respectively. Furthermore, let λ̂1(e), λ̂2(e) be the optimal solutions of
the inner optimization of P2,1 and P2,2 respectively as functions of e. Let R be µ-strongly convex
and let ∥∇R(θ∗)∥ = O(

√
pL). Then there exist positive constants Ce and Cλ that depend only on

µ such that

• The solutions ê1, ê2 are

lim
pL→∞

Pr (max{∥ê1∥ , ∥ê∥2} ≤ Ce
√
pL) = 1 (121)

• and

lim
n→∞

Pr

(
sup

e:∥e∥≤Ce
√
m

max{
∥∥∥λ̂1

∥∥∥ , ∥∥∥λ̂2

∥∥∥} ≤ Cλ

√
n

)
= 1 (122)
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Proof We recall that R is µ strongly convex, and we let the function B(e) = R(e + θ∗). Solving
for λ in both optimizations, we may expressed the resultant optimization over e as

min
e
Fi(e) i = 1, 2. (123)

Such that Fi(e) is the optimal value over the parameter λ. Next, we note if we set λ = 0, both
optimizations yield Fi(e) ≥ R(e). Then we note that

B(e) ≥ B(0) + dTe+ µ ∥e∥22 , (124)

from the strong convexity of R, where d = ∇B(0) = ∇R(θ∗). We note that by assumption
∥d∥ = O(

√
pL).

For the first optimization P1, we note that

F (0) = B(0) +
1

2n
∥ν∥22 . (125)

From this we note that for the optimal solution ê we have

B(0) +
1

2n
∥ν∥22 = F (0) ≥ F (ê1) ≥ R(0) + dT ê1 + µ ∥ê∥22 , (126)

from which we obtain

µ

∥∥∥∥ê1 + 1

µ
d

∥∥∥∥ ≤ 1

2n
∥ν∥22 +

1

4µ
∥d∥22 . (127)

As such

∥ê1∥2 ≤
∥∥∥∥ 1µd

∥∥∥∥
2

+

√
1

2nµ
∥ν∥22 +

1

µ2
∥d∥22 (128)

We recall that from standard random matrix theory (Papaspiliopoulos, 2020)[Theorem 2.8.1]
we know that ∥ν∥22 ≤ cn for some n with high probability. We may therefore observe that exists a
constant Ce1 such that

lim
pL→∞

Pr(∥ê1∥2 ≥ Ce1

√
pL) = 0. (129)

We can now consider problem (119). We make use of the same strategy in this case. We note
that, when we let β = ∥λ∥, the optimization over λ with fixed norm can be solved to obtain:

F (e) = max
β≥0

β

n

∥∥∥∥ν − 1
√
pL

∥∥∥R(L)/2e
∥∥∥
2
g

∥∥∥∥− β

n
√
m
hTR(L)/2e− β2

2nm
+B(e). (130)

We note that this optimization is constrained to the set β ≥ 0, as such dropping the constraint
can only increase the optimal value. Dropping the constrains results in a quadratic optimizations
which may be solved. We obtain the following inequality

F (e) ≤ B(e) +
1

2n

(∥∥∥∥ν − 1
√
pL

∥∥∥R(L)/2e
∥∥∥
2
g

∥∥∥∥
2

− β√
m
hTR(L)/2e

)2

, (131)
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and in particular

F (0) ≤ B(0) +
1

2n
∥e∥22 . (132)

Now making use of the same inequality as in equation (126) from which we may find that

∥ê2∥2 ≤
∥∥∥∥ 1µd

∥∥∥∥
2

+

√
1

2nµ
∥ν∥22 +

1

µ2
∥d∥22. (133)

As such we can demonstrate that

lim
pL→∞

Pr(∥ê2∥2 ≥ Ce2

√
pL) = 0. (134)

We let Ce = max(Ce1 , Ce2), and we make use of this constant to define Ae = {e ∈ RpL | ∥e∥2 ≤
Ce

√
m}

Making use of the optimality condition of the inner optimization in equation (119), we see that

λ̂1(e) = ν − 1√
m
UR(L)/2e. (135)

As such, for all e ∈ Ae∥∥∥λ̂1(e)
∥∥∥
2
≤ ∥ν∥2 +

∥∥∥∥ 1√
m
UR(L)/2

∥∥∥∥
2

∥e∥2 ≤ ∥ν∥2 +
∥∥∥∥ 1√

m
U

∥∥∥∥
2

∥∥∥R(L)/2
∥∥∥
2
∥e∥2 . (136)

We can then note by lemma 17 that
∥∥R(L)/2

∥∥
2

is bounded. Furthermore, by standard random

matrix theory results we can conclude that
∥∥∥ 1√

m
U
∥∥∥
2
< C for some constant C with high proba-

bility. Then, using the same arguments as above, we can conclude that t here must exist a constant
Cλ1 such that for all e ∈ Ae:

lim
n→∞

Pr

(
sup
e∈Ae

∥∥∥λ̂1(e)
∥∥∥
2
≥ Cλ1

√
n

)
= 0 (137)

Finally, consider the optimality condition over β of problem 120 we see that for all e ∈ Ae that

β̂ =
∥∥∥λ̂2(e)

∥∥∥
2
=

∥∥∥∥ν − 1√
m

∥∥∥R(L)/2e
∥∥∥
2
g

∥∥∥∥
2

− 1√
m
R(L)/2h

≤ ∥ν∥2 +
1√
m

∥g∥2
∥∥∥R(L)/2

∥∥∥
2
∥e∥2 +

1√
m

∥∥∥R(L)/2
∥∥∥
2
∥h∥2 (138)

With high probability we note that ∥ν∥2 < C
√
n, ∥g∥2 < C

√
n and ∥h∥ < C

√
pL. As such we

can find a constant Cλ2 with

lim
n→∞

Pr

(
sup
e∈Ae

∥∥∥λ̂2(e)
∥∥∥
2
≥ Cλ2

√
n

)
= 0. (139)

Choosing Cλ = max(Cλ1 , Cλ2), the proof is complete.

31



BOSCH PANAHI HASSIBI

Making use of this lemma we can define the sets S1 = {e| ∥e∥ ≤ Ce
√
m} and S2 =

{λ| ∥λ∥ ≤ Cλ
√
n} and note that these sets are compact and convex. We can with high proba-

bility restrict ourselves to the problem

P ′
2 = min

e∈S1

max
λ∈S2

1

n
λTν − 1

n
√
pL

λTU(L)R(L)/2e− 1

2n
∥λ∥22 +R(e+ θ∗) (140)

and note that the optimal value of P ′
2 will be close that of P2. We now satisfy the conditions for

applying the CMGT. Applying it we obtain the following problem:

A2 = min
e∈S1

max
λ∈S2

1

n
λTν − 1

n
√
pL

∥λ∥2 g
TR(L)/2e− 1

n
√
pL

∥∥∥R(L)/2e
∥∥∥
2
hTλ

− 1

2n
∥λ∥22 +R(e+ θ∗). (141)

Where g ∈ RpL ,h ∈ Rn have elements that are i.i.d standard normals. By theorem 12 we know
that the optimal values of A2 and P ′

2 will be asymptotically equal if A2 converges to a finite value.
Next we let β = 1√

n
∥λ∥. We note that 0 ≤ β ≤ βmax, where βmax ∈ R is some constant, whose

value can be chosen arbitrarily larger than Cλ. We can now solve the optimization over the vector
λ fixing its length to β. We obtain

A2 = min
e∈S1

max
0≤β≤βmax

β

∥∥∥∥ 1√
n
ν − 1

√
npL

∥∥∥R(L)/2e
∥∥∥h∥∥∥∥

2

− β
√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗). (142)

Now we note that the first term in the 2−norm concentrates as n grows large. We prove this in
the following lemma

Lemma 19 Let A be given by

A(e, β) = β

∥∥∥∥ 1√
n
ν − 1

√
npL

∥∥∥R(L)/2e
∥∥∥h∥∥∥∥− β

√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗). (143)

Let Ã(e, β) be given by

Ã(e, β) = β

√
σ2ν +

1

pL
eTR(L)e− β

√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗). (144)

Then, there exists positive constants C, c such that for any ϵ > 0:

Pr

(
sup

e∈S1,0≤β≤βmax

|A(e, β)− Ã(e, β)| ≥ ϵ

)
≤ Ce−cnϵ (145)

Proof We note that A(e, β) can be expressed as

A = β

√
1

n
∥ν∥22 +

1

npL

∥∥R(L)/2e
∥∥2
2
∥h∥22 −

2

n
√
pL

∥∥R(L)/2e
∥∥
2
νTh

− β
√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗) (146)
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Or equivalently

A = β

[(
1

n
∥ν∥22 − σ2ν

)
+ σ2ν +

1

pL

∥∥∥R(L)/2e
∥∥∥2
2

(
1

n
∥h∥22−

)
+

1

pL

∥∥∥R(L)/2e
∥∥∥2
2

− 2
√
pL

∥∥∥R(L)/2e
∥∥∥
2

νTh

n

]1/2
− β

√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗)

≤ Ā+ β
√
δ ≤ Ā+ βmax

√
δ̄ (147)

where

δ =

(
1

n
∥ν∥22 − σ2ν

)
+

1

pL

∥∥∥R(L)/2e
∥∥∥2
2

(
1

n
∥h∥22−

)
− 2

√
pL

∥∥∥R(L)/2e
∥∥∥
2

νTh

n

≤
(
1

n
∥ν∥22 − σ2ν

)
+ C2

eCR(L)

(
1

n
∥h∥22−

)
− 2
√
CR(L)Ce

∣∣∣∣νTh

n

∣∣∣∣ def= δ̄. (148)

From the lemmas above we note that CR(L) and Ce are universal constants. Furthermore, it can be
readily observed that Pr(|δ̄| ≥ ϵ) ≤ Ce−cnϵ for some constants C, c > 0. As such, we see that

Pr

(
sup

e∈S1,0≤β≤βmax

|A(e, β)− Ā(e, β)| ≥ ϵ

)
≤

Pr

(
sup

e∈S1,0≤β≤βmax

|δβ| ≥ ϵ

)
≤ Pr

(
|βmaxδ̄| ≥ ϵ

)
≤ Ce−cnϵ (149)

For some constants C, c > 0.

By means of this lemma we can, with high probability, consider the following problem

Ā2 = min
e∈S1

max
0≤β≤βmax

β

√
σ2ν +

1

pL
eTR(L)e− β

√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗). (150)

We now note that this optimization problem is convex in e and concave in β. Furthermore, both
optimizations are over convex sets. As such we can interchange the order of min and max

Ā2 = max
0≤β≤βmax

min
e∈S1

β

√
σ2ν +

1

pL
eTR(L)e− β

√
npL

gTR(L)/2e− β2

2
+R(e+ θ∗). (151)

Now we make use of the ”square root trick”, which notes that for any scalar c > 0 we can express√
c = minq>0

q
2 + c

2q . Using this technique we obtain:

Ā2 = max
0≤β≤βmax

min
qmin<q≤qmax

βσ2ν
2q

+
βq

2
− β2

2

+ min
e∈S1

β

2qpL
eTR(L)e− β

√
npL

gTR(L)/2e+R(e+ θ∗). (152)

Where we have interchanged the order of the two minimizations, and have noted that q can be
both upper bounded and lower bounded, by qmin = σν , achieved when e = 0 and qmax >√
σ2ν + C2

eCR(L) .
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We now fix the values of β and q and focus only on the inner optimization over e. We shall
discuss the outer optimizations below. We define

D(L) = D
(L)
2 (β, q) = min

e∈S1

cL
2pL

eTR(L)e− dL
pL

gTR(L)/2e+R(e+ θ∗). (153)

cL =
β

q
dL = β

√
m

n
TL(β, q) =

βσ2ν
2q

+
βq

2
− β2

2
(154)

such that

A2 = max
β

min
q
TL(β, q) +D

(L)
2 (β, q). (155)

We shall focus on D(L) for fixed β, q. We shall now demonstrate that studying D(L) it maybe
expressed as another min max problem. Applying the CGMT recursively to the inner problem and
simplifying results in a new problem.

First we recall the definition of R(L) and further note that for a Gaussian g that

R(l)/2g = g̃ ∼ N (0,R(l)) = N (0,
ρ21,l
pl−1

W(l)R(l−1)/2W(l)T + ρ22,lIpl)

= ρ1,lW
(l)R(l−1)/2g1 + ρ2,lg2 g1 ∼ N (0, Ipl−1

),g2 ∼ N (0, Ipl). (156)

We can now substitute in this definition. We obtain:

min
e∈S(l)

1

cLρ
2
1,L

2pLpL−1
eTW(L)R(L−1)W(L)Te+

dLρ1,L
pL

√
pL−1

gT
1 R

(L−1)/2W(L)Te+
cLρ

2
2,L

2pL
∥e∥2

+
dLρ2,L
pL

gT
2 e+R(e+ θ∗), (157)

Where g1 ∈ RpL−1 ,g2 ∈ RpL are standard normal vectors. We then complete the square over the
vector R(L−1)/2W(L)Te, we obtain

min
e∈S(l)

1

cLρ
2
1,L

2pLpL−1

∥∥∥∥R(L−1)/2W(L)Te+
dL

√
pL

cLρ1,L
gT
1

∥∥∥∥2 − d2L
2cLpL

∥g1∥2

+
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗). (158)

We can then introduce a new variable s ∈ RpL−1 and take the Legendre transform of the 2-norm to
create a min-max problem

min
e∈S(l)

1

max
s

cLρ
2
1,L

pLpL−1
sTR(L−1)/2W(L)Te+

dLρ1,L
pL

√
pL−1

sTg1 −
cLρ

2
1,L

2pLpL−1
∥s∥2 −

d2L
2cLpL

∥g1∥2

+
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗).(159)
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We note that W(L) is a Random Matrix with i.i.d standard normal entries, as such we if we can
restrict the problem over s to a compact and convex set we may make use of the CGMT theorem. We
show that we make this restriction in Lemma 20. As such we can consider the following problem:

min
e∈S(l)

1

max
s∈S(l)

2

cLρ
2
1,L

pLpL−1
sTR(L−1)/2W(L)Te+

dLρ1,L
pL

√
pL−1

sTg1 −
cLρ

2
1,L

2pLpL−1
∥s∥2

−
d2L

2cLpL
∥g1∥2 +

cLρ
2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗), (160)

where the set S(l)
2 = {s ∈ RpL−1 | ∥s∥ ≤ Cs

√
pLpL−1} where Cs is a postive constant. We can

then apply the CGMT to obtain the following problem

min
e∈S(l)

1

max
s∈S(l)

2

cLρ
2
1,L

pLpL−1

∥∥∥R(L−1)s
∥∥∥ eTg3 + cLρ

2
1,L

pLpL−1
∥e∥gT

4 R
(L−1)/2s+

dLρ1,L
pL

√
pL−1

sTg1

−
cLρ

2
1,L

2pLpL−1
∥s∥2 −

d2L
2cLpL

∥g1∥2 +
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗) (161)

where g3 ∈ RpL and g4 ∈ RpL−1 are standard normal vectors. We introduce a new variable
v = R(L−1)/2s and note that v can be restricted to a compact set, due to the bounds on R(L−1)

and s. We can denote this set S(l)
3 = {v ∈ RpL−1 | ∥v∥ ≤ Cv

√
pLpL−1} where Cv is a positive

constant. We then reintroduce this constrain with a Lagrange multiplier ρ21,Lµ/pL−1
√
pL ∈ RL−1.

We obtain

min
e∈S(l)

1 ,µ

max
s∈S(l)

2 ,v∈S(l)
3

cLρ
2
1,L

pLpL−1
∥v∥ eTg3 +

cLρ
2
1,L

pLpL−1
∥e∥gT

4 v +
dLρ1,L
pL

√
pL−1

sTg1

−
cLρ

2
1,L

2pLpL−1
∥s∥2 −

d2L
2cLpL

∥g1∥2 +
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗)

+
ρ21,L

pL−1
√
pL

µTv −
ρ21,L

pL−1
√
pL

µTR(L−1)/2s (162)

We then let ξL =
ρ1,L√
pLpL−1

∥s∥ and χL =
ρ1,L√
pLpL−1

∥v∥ and solve the optimizations over s and v.
We obtain the following problem:

min
e∈S(l)

1 ,µ

max
0≤ξL≤ξL,max,0≤χL≤χL,max

cLρ1,Lχ√
pLpL−1

eTg3 + χ

∥∥∥∥ cLρ1,L√
pLpL−1

∥e∥g4 +
ρ1,l√
pL−1

µ

∥∥∥∥
−cLξ

2

2
+ ξ

∥∥∥∥dLρ1,L√
pL

g1 −
ρ1,L√
pL−1

R(L−1)/2µ

∥∥∥∥
−

d2L
2cLpL

∥g1∥2 +
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗) (163)
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We interchange the order of the min and max terms and then make use of the square root trick
to get rid of the two norms. We introduce two new variables tL and kL:

max
0≤ξL≤ξL,max,0≤χL≤χL,max

min
0≤tl≤tL,min,0≤kL≤kL,max

min
e∈S(l)

1 ,µ

cLρ1,Lχ√
pLpL−1

eTg3 +
χLkL
2

+
χLc

2
Lρ

2
1,L

2kLpLpL−1
∥e∥2 ∥g4∥2 +

χLcLρ
2
1,L

2kLpL−1
√
pL

∥e∥gT
4 µ+

χLρ
2
1,l

2kLpL−1
∥µ∥2

−cLξ
2

2
+
ξLtL
2

+
ξLd

2
Lρ

2
1,L

2tLpL
∥g1∥ −

ξLdLρ
2
1,L√

2tLpLpL−1
g1R

(l−1)/2µ−
ξLρ

2
1,L

2tLpL−1
µTR(L−1)µ

−
d2L

2cLpL
∥g1∥2 +

cLρ
2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗)(164)

Using the same arguments as in lemma 19 it can be seen that the problem concentrates on:

max
0≤ξL≤ξL,max,0≤χL≤χL,max

min
0≤tl≤tL,min,0≤kL≤kL,max

min
e∈S(l)

1 ,µ

cLρ1,Lχ√
pLpL−1

eTg3 +
χLkL
2

+
χLc

2
Lρ

2
1,L

2kLpL
∥e∥2 +

χLcLρ
2
1,L

2kLpL−1
√
pL

∥e∥gT
4 µ+

χLρ
2
1,l

2kLpL−1
∥µ∥2

−cLξ
2

2
+
ξLtL
2

+
ξLd

2
Lρ

2
1,LpL−1

2tLpL
−

ξLdLρ
2
1,L

2tL
√
pLpL−1

g1R
(l−1)/2µ+

ξLρ
2
1,L

2tLpL−1
µTR(L−1)µ

−
d2LpL−1

2cLpL
+
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗) (165)

We now let

TL−1 = −
d2LpL−1

2cLpL
− cLξ

2

2
+
ξLtL
2

+
ξLd

2
Lρ

2
1,LpL−1

2tLpL
+
χLkL
2

(166)

a =
χLc

2
Lρ

2
1,L

kL
+ cLρ

2
2,L b =

√
c2Lρ

2
1,Lχ

2pL

pL−1
+ d2Lρ

2
2,L (167)

cL−1 =
χLρ

2
1,l

kl
dL−1 =

χLcLρ
2
1,L

kL
c̄ =

ξLρ
2
1,L

tL
d̄ =

ξlρ
2
1,L

tL
(168)

as such we can obtain:

max
0≤ξL≤ξL,max,0≤χL≤χL,max

min
0≤tl≤tL,min,0≤kL≤kL,max

TL−1 + min
e∈S(l)

1 ,µ

a

2pL
∥e∥2 + b

pL
eTg1 +

cL−1

2pL−1
∥µ∥2 + dL−1

pL−1

∥e∥
√
pL−1

gT
2 µ+

c̄

2pL−1
µTR(L−1)µ

+
d̄

pL
gT
3 R

(L−1)/2µ+R(e+ θ∗) (169)

Where g1 ∈ RpL ,g2,g3 ∈ RpL−1 are standard normal vectors. We now fix all parameters of the
optimization except for µ and focus specifically on the last four terms terms. We shall note that this
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can once again be expressed as a min-max optimization amenable to the CGMT. However at this
point we enter a recursive structure. We demonstrate in Lemma 21 that a problem of the form

max
µ

γ1
2pl−1

∥µ∥2 + γ2
pl−1

gT
2 µ+

γ3
2pl−1

µTR(l−1)µ+
γ4
pl
gT
3 R

(l−1)/2µ (170)

With generic constants γi (i = 1, . . . 4) can be expressed by means of the CGMT as:

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

Tl

+min
µ

γ̄1
2pl

∥µ∥2 + γ̄2
pl
gT
2 µ+

γ̄3
2pl

µTR(l−1)µ+
γ̄4
pl
gT
3 R

(l)/2µ (171)

Where

Tl =
χlkl
2

−
γ3ξ

2
l

2
+
ξltl
2

+
ξlγ

2
4pl−1

2tlpl
− γ24pl−1

2γ3pl

−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)
(172)

γ̄1 =
ξlρ

2
1,l

kl
−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1
γ23ρ

4
1,lξ

2
l

2k2l
(173)

γ̄2 = −

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2
γ3ρ

2
1,lχl

2kl
(174)

γ̄3 =
ξlρ

2
1,l

tl
γ̄4 =

ξlγ4ρ1,l
√
pl

2tl
√
pl − 1

(175)

We can also note that the termination of the recursion is given by the optimization problem
where R(0) = I, in this case

min
µ

γ̄1
2pl

∥µ∥2 + γ̄2
pl
gT
2 µ+

γ̄3
2pl

µTµ+
γ̄4
pl
gT
3 µ

= − γ̄
2
2 + γ̄24
γ̄1 + γ̄3

def
= F0 (176)

As such we can express the final result for the L−layer deep RF model as being given by

max
β>0

min
q
TL + max

ξL>0,χL>0
min

tL>0,kL>0
TL−1 +min

e

a

2pl
∥e∥+ b

pL
eTg1 ++R(θ + θ∗) +

max
ξL−1>0,χL−1>0

min
tL−1>0,kL−1>0

· · · max
ξ0≥0,χ0≥0

min
t0>0,k0>0

L−2∑
i=1

Tl(e) (177)
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Where

TL =
βq

2
+
βσν2

2q
− β2

2
(178)

TL−1 = −
d2LpL−1

2cLpL
− cLξ

2

2
+
ξLtL
2

+
ξLd

2
Lρ

2
1,LpL−1

2tLpL
+
χLkL
2

(179)

Tl =
χlkl
2

−
γ3ξ

2
l

2
+
ξltl
2

+
ξlγ

2
4pl−1

2tlpl
− γ24pl−1

2γ3pl

−

(
γ1 +

c2l ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
d2l ρ

2
2,l +

c2l ρ
2
1,lχ

2
l pl

pl−1
+ d̄

)
1 ≤ l ≤ L− 2 (180)

T0 =
d20 + d̄20
c0 + c̄0

(181)

a =
χLc

2
Lρ

2
1,L

kL
+ cLρ

2
2,L b =

√
c2Lρ

2
1,Lχ

2pL

pL−1
+ d2Lρ

2
2,L (182)

and the constants ci, di, c̄i, d̄i are given by

cL =
β

q
dβ

√
pL
n
cL−1 =

χLρ
2
1,l

kl
dL−1 =

χLcLρ
2
1,L

kL

∥e∥
√
pl−1

(183)

c̄L =
ξLρ

2
1,L

tL
d̄L =

ξlρ
2
1,L

tL
(184)

cl =
ξlρ

2
1,l

kl
−

(
cl+1 +

c̄2l+1ρ
2
1,lχl

kl
+ c̄l+1ρ

2
2,l

)−1
c̄2l ρ

4
1,lξ

2
l

2k2l
(185)

dl = −

(
cl+1 +

c̄2l+1ρ
2
1,lχl

kl
+ c̄l+1ρ

2
2,l

)−1(
d̄2l+1ρ

2
2,l +

c̄2l+1ρ
2
1,lχ

2
l pl

pl−1
+ dl+1

)1/2
c̄l+1ρ

2
1,lχl

2kl
(186)

c̄l =
ξlρ

2
1,l

tl
d̄l =

ξld̄l+1ρ1,l
√
pl

2tl
√
pl−1

(187)

For the final step of the proof we note that for each successive application of the CGMT we
froze all previous values of β, q as well as ξl, χl, tl, kl for l ≤ L. By the properties of the CGMT we
know that for these fixed values we have pointwise convergence. However, we wish to demonstrate
uniform convergence for the properties that we are interested in. This however is simple to see in
this case.

There are two problems we need to consider. We need to show that Eq (169) converges uni-
formly to (159) For each value of β, q and that for each problem (171) converges uniformly to
(170). We can see that all optimization variablse β, q, ξl, χl, tl, kl exist in bounded regions. For ex-
ample β ∈ [0, βmax]. Our goal is to show that each problem is Lipschitz continuous on these regions
with some Lipschitz constant K. As each problem is strongly convex it has a unique solution, and
all are continuously differentiable on the existing region. As such to show Lipschitz continuity one
has to show that each of the partial derivatives is bounded, calculation is tedious but can be com-
pleted readily. By bounding the derivatives we can show that all problems are Lipschitz. Uniform
convergence can then be demonstrated by means of a simple ϵ-net argument. For an application of
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this to a recursive CGMT problem, see Bosch et al. (2022)[Appendix B]. This completes the proof
of part 1 of the theorem.

D.1. Proof of Part 2 of the Theorem

The proof of part 2 is the same as the proof of part 2 of theorem 5 given in Appendix B. A Reg-
ularization function Rϵ(e + θ∗) = R(e + θ∗) ± ϵh(e + θ∗) with ϵ chosen sufficiently small for
Rϵ to remain strongly convex. As such the first part of the theorem holds. Then by bounding the
difference and making use of the bounds on h(e) the proof can be obtained.

D.2. Auxiliary Lemmas

Lemma 20 Consider the following two problems given in equations (159), (161) that correspond
to a problem and the alternative problem given by the CGMT

P1 = min
e∈S(l)

1

max
s∈S(l)

2

cLρ
2
1,L

pLpL−1
sTR(L−1)/2W(L)Te+

dLρ1,L
pL

√
pL−1

sTg1 −
cLρ

2
1,L

2pLpL−1
∥s∥2

−
d2L

2cLpL
∥g1∥2 +

cLρ
2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗)(188)

P2 = min
e∈S(l)

1

max
s∈S(l)

2

cLρ
2
1,L

pLpL−1

∥∥∥R(L−1)s
∥∥∥ eTg3 + cLρ

2
1,L

pLpL−1
∥e∥gT

4 R
(L−1)/2s+

dLρ1,L
pL

√
pL−1

sTg1

−
cLρ

2
1,L

2pLpL−1
∥s∥2 −

d2L
2cLpL

∥g1∥2 +
cLρ

2
2,L

2pL
∥e∥2 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗)(189)

Where gi are standard normal vectors. Denote ê1 and ê2 as the optimal points of the two problems
and let ŝ1(e) and ŝ2(e) be the optimal points of the inner optimizations as functions of a fixed
e. Recall that R is µ−strongly convex and that ∥∇R(0)∥ = O(

√
pL). Then there exists positive

constants Ce and Cs depending only on µ such that

lim
pL→∞

Pr
(
∥êi∥2 ≤ Ce

√
m
)
= 1 i = 1, 2 (190)

and

lim
pL→∞

Pr

(
sup

e|∥e∥≤Ce
√
m

∥ŝi(e)∥ ≤ Cs
√
pLpL−1

)
= 1 i = 1, 2 (191)

Proof We note that e in problem P1 is already bounded to a compact set. For both optimizations,
we solve the inner optimization over s and denote this solution as

min
e
Fi(e) i = 1, 2 (192)

Such that Fi is the optimal value over s. When we set s = 0 in both optimizations we see that

F (e) ≥ T (e)
def
= −

d2L
2cLpL−1

∥g1∥22 +
cLρ

2
2,L

2pL
∥e∥22 +

dLρ2,L
pL

gT
2 e+R(e+ θ∗) (193)
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We can note readily that T (e) is ν-strongly convex, for some constant ν with respect to e. We see
that

T (e) ≥ T (0) + dTe+
ν

2
∥e∥22 (194)

where d = ∇T (0). By assumption we note that d = O(
√
pL). For problem p2 we now note the

following:

F2(e) = max
s

cLρ
2
1,L

plpL−1

∥∥∥R(L−1)/2s
∥∥∥gT

3 e+
cLρ

2
1,L

pLpL−1
∥e∥2 g

T
4 R

(L−1)/2s+
dLρ1,L
pL

√
pL−1

sTg1

−
cLρ1,L2

2pLpL−1
∥s∥22 + T (e)

≤ max
s

cLρ
2
1,L

plpL−1

∥∥∥R(L−1)/2
∥∥∥ ∥s∥gT

3 e+
cLρ

2
1,L

pLpL−1
∥e∥2 g

T
4 R

(L−1)/2s+
dLρ1,L
pL

√
pL−1

sTg1

−
cLρ1,L2

2pLpL−1
∥s∥22 + T (e) (195)

Then letting ξ = ∥s∥ the optimization over s may be solved to find that

F2(e) ≤ max
ξ>0

cLρ
2
1,Lξ

plpL−1

∥∥∥R(L−1)/2
∥∥∥gT

3 e+ ξ

∥∥∥∥∥ cLρ21,LpLpL−1
∥e∥2R

(L−1)/2g4 +
dLρ1,L
pL

√
pL−1

g1

∥∥∥∥∥
−
cLρ1,L2ξ2

2pLpL−1
+ T (e) (196)

We now note that this value will only be increased if the constraint over ξ is dropped, as such

F2(e) ≤ max
ξ

cLρ
2
1,Lξ

plpL−1

∥∥∥R(L−1)/2
∥∥∥gT

3 e+ ξ

∥∥∥∥∥ cLρ21,LpLpL−1
∥e∥2R

(L−1)/2g4 +
dLρ1,L
pL

√
pL−1

g1

∥∥∥∥∥
−
cLρ1,L2ξ2

2pLpL−1
+ T (e) (197)

solving this optimization we see that

F2(0) ≤
d2L
cLpL

∥∥g2
1

∥∥2 + T (0) (198)

As such we can see that

d2L
cLpL

∥∥g2
1

∥∥2 + T (0) ≥ F (0) ≥ F (ê) ≥ T (0) + dTe+
ν

2
∥e∥ (199)

Hence,

ν

2

∥∥∥∥e+ 1

ν
d

∥∥∥∥2 ≤ 1

ν
∥d∥22 +

d2L
cLpL

∥∥g2
1

∥∥2 (200)
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and as such

∥e∥2 ≤
1

ν
∥d∥2 +

√
2

ν
∥d∥22 +

d2L
cLpL

∥∥g2
1

∥∥2 (201)

We recall that with high probability
∥∥g2

1

∥∥ < C
√
pL−1. Recalling the assumptions on d and that all

contants p0 · · · , pL grow at constant ratios we see that there must exist a constant Ce such that

Pr(∥ê∥ > Ce

√
m) → 0 (202)

We now consider the bounds on s. For problem P1 we can note from the optimality condition
over s that

ŝ1(e) = R(L−1)/2W(l)Te+
dl
√
pL−1

c1ρ1,l
g (203)

As such for all e ∈ S
(l)
1 we can see that

∥ŝ(e)∥2 ≤
∥∥∥R(L−1)/2

∥∥∥
2
∥W∥ ∥e∥2 +

dl
√
pl−1

c1ρ1,L
∥g∥ (204)

From Standard results we know that
∥∥W(l)

∥∥
2
< C

√
pL−1 and that ∥g∥2 ≤ C

√
pL−1. Using the

bounds on e and R(l) we and recalling that pL ∼ pL−1 we note that there exists a constant Cs1

exists.
Now noting that ξ̂ is an upper bound for ∥ŝ2∥ in problem for problem P2 we can note from its

optimality condition that

∥ŝ2(e)∥ ≤ ξ̂ =
∥∥∥R(L−1)/2

∥∥∥gT
3 e+

∥∥∥∥∥e∥R(L−1)/2g4 +
dL

√
pL−1

ρ1,lcL
g1

∥∥∥∥
2

≤
∥∥∥R(L−1)/2

∥∥∥ ∥g3∥ ∥e∥+ ∥e∥
∥∥∥R(L−1)/2

∥∥∥ ∥g4∥+ dL
√
pL−1

ρ1,lcL
∥g1∥ (205)

Which making use of the bounds used above we can once again determine that there exists a constant
Cs2 . Choosing Cs to be the maximum of Cs1 , Cs2 we can then construct the set S(l)

2 = {s ∈
RpL−1 | ∥s∥ ≤ Cs

√
pL−1pL}

Lemma 21 Consider the following optimization problem given in (170)

min
µ

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3
2pl

µTR(l−1)µ+
γ4
pl
gT
3 R

(l)/2µ (206)

This problem is asymptotically equivalent to the following problem

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

Tl

+min
η

γ̄1
2pl

∥µ∥2 + γ̄2
pl
gT
2 µ+

γ̄3
2pl

µTR(l−1)µ+
γ̄4
pl
gT
3 R

(l)/2µ (207)
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Where

Tl =
χlkl
2

−
γ3ξ

2
l

2
+
ξltl
2

+
ξlγ

2
4pl−1

2tlpl
− γ24pl−1

2γ3pl

−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)
(208)

γ̄1 =
ξlρ

2
1,l

kl
−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1
γ23ρ

4
1,lξ

2
l

2k2l
(209)

γ̄2 = −

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2
γ3ρ

2
1,lχl

2kl
(210)

γ̄3 =
ξlρ

2
1,l

tl
γ̄4 =

ξlγ4ρ1,l
√
pl

2tl
√
pl−1

(211)

Proof We first substitute in the value of R(l). From this we obtain

min
µ

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
1,l

2plpl−1
µTW(l)R(l−1)W(l)µ+

γ3ρ
2
2,l

2pl
∥µ∥2

+
γ4ρ1,l
pl
√
pl
gT
2 R

(l)/2µ+
γ4ρ2, l

pl
gT
3 µ. (212)

We then complete the square over the vector R(l−1)/2W(l)Tµ from which we obtain

min
µ

γ3ρ
2
1,l

2plpl−1

∥∥∥∥R(l−1)/2W(l)Tµ+
γ4
√
pl−1

γ3ρ1,l
g2

∥∥∥∥2 − γ24
2γ3pl

∥g2∥

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ. (213)

We then take the Legendre transform of the 2-norm and introduce a new variable s

min
µ

max
s

γ3ρ
2
1,l

plpl−1
sTR(l−1)/2W(l)Tµ+

γ4ρ1,l
pl
√
pl−1

sTg2 −
γ3ρ

2
1,l

2plpl−1
∥s∥2 − γ24

2γ3pl
∥g2∥

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ (214)

Using the same argument as lemmas 18 and 20 we can show that these problems can be bounded to
compact sets S(l)

1 ,S
(l)
2 . As such we can consider the problem

min
µ∈S(l)

1

max
s∈S(l)

2

γ3ρ
2
1,l

plpl−1
sTR(l−1)/2W(l)Tµ+

γ4ρ1,l
pl
√
pl−1

sTg2 −
γ3ρ

2
1,l

2plpl−1
∥s∥2 − γ24

2γ3pl
∥g2∥

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ. (215)
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We can now apply the CGMT obtaining:

min
µ∈S(l)

1

max
s∈S(l)

2

γ3ρ
2
1,l

plpl−1
∥µ∥ sTR(l−1)/2g4 +

γ3ρ
2
1,l

plpl−1

∥∥∥R(l−1)s
∥∥∥µTg5 +

γ4ρ1,l
pl
√
pl−1

sTg2

−
γ3ρ

2
1,l

2plpl−1
∥s∥2 − γ24

2γ3pl
∥g2∥

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ. (216)

We introduce a new variable v = R(l−1)/2s and note that it can be restricted to compact and
convex set by means of the bounds on s and R(l−1). We reintroduce the constraint with a Lagrange
multiplier ρ1,l√

plpl−1
η

min
µ∈S(l)

1

max
s∈S(l)

2 ,v∈S(l)
3

γ3ρ
2
1,l

plpl−1
∥µ∥vTg4 +

γ3ρ
2
1,l

plpl−1
∥v∥µTg5 +

γ4ρ1,l
pl
√
pl−1

sTg2

−
γ3ρ

2
1,l

2plpl−1
∥s∥2 − γ24

2γ3pl
∥g2∥+

γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ

+
ρ1,l√
plpl−1

ηTv −
ρ1,l√
plpl−1

ηTR(l−1)/2s. (217)

We then let ξl = ρ1,l ∥s∥ /
√
plpl−1 and let χl = ρ1,l ∥v∥ /

√
plpl−1 and solve the optimizations over

s and v, from which we obtain:

min
µ∈S(l)

1

max
0≤ξl≤ξl,max,0≤χl≤χl,max

γ3ρ1,lχl√
plpl−1

gT
5 µ+ χl

∥∥∥∥ γ3ρ1,l√
plpl−1

∥µ∥g4 +
ρ1,l√
pl−1

η

∥∥∥∥
−γ3ξ

2

2
+ ξl

∥∥∥∥ γ4√
pl
g2 −

ρ1,l√
pl−1

R(l−1)/2η

∥∥∥∥
− γ24
2γ3pl

∥g2∥+
γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ. (218)

We interchange the order of the min and max and then make use of the square root trick twice
introducing new variables tl, kl. We obtain

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

min
µ∈S(l)

1 ,η

γ3ρ1,lχl√
plpl−1

gT
5 µ+

χlkl
2

+
γ23ρ

2
1,lχl

2klplpl−1
∥µ∥2 ∥g4∥2 +

γ3ρ
2
1,lχl

2klpl−1
√
pl

∥µ∥gT
4 η +

χlρ
2
1,l

2klpl−1
∥η∥2

−γ3ξ
2

2
+
ξltl
2

+
ξlγ

2
4

2tlpl
∥g2∥2 −

ξlγ4ρ1,l
2tl

√
plpl−1

gT
2 R

(l−1)/2η +
ξlρ

2
1,l

2tlpl−1
ηTR(l−1)η

− γ24
2γ3pl

∥g2∥+
γ1
2pl

∥µ∥2 + γ2
pl
gT
2 µ+

γ3ρ
2
2,l

2pl
∥µ∥2 +

γ4ρ2,l
pl

gT
3 µ. (219)
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Now let α = ∥µ∥ /√pl and solve over µ, from this we obtain

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

min
α≤αmax,η

χlkl
2

+
γ23ρ

2
1,lχlα

2

2klpl−1
∥g4∥2 +

γ3ρ
2
1,lχlα

2klpl−1
gT
4 η +

χlρ
2
1,l

2klpl−1
∥η∥2

−γ3ξ
2

2
+
ξltl
2

+
ξlγ

2
4

2tlpl
∥g2∥2 −

ξlγ4ρ1,l
2tl

√
plpl−1

gT
2 R

(l−1)/2η +
ξlρ

2
1,l

2tlpl−1
ηTR(l−1)η

− γ24
2γ3pl

∥g2∥+
γ1α

2

2
+ +

γ3ρ
2
2,lα

2

2
+ α

∥∥∥∥γ4ρ2,l√
pl

g3 +
γ3ρ1,lχl√
pl−1

g5 +
γ2√
pl
g2

∥∥∥∥ . (220)

This now using the same arguments as lemma 19 this problem concentrates on:

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

min
α≤αmax,η

χlkl
2

+
γ23ρ

2
1,lχlα

2

2kl
+
γ3ρ

2
1,lχlα

2klpl−1
gT
4 η +

χlρ
2
1,l

2klpl−1
∥η∥2

−γ3ξ
2

2
+
ξltl
2

+
ξlγ

2
4pl−1

2tlpl
−

ξlγ4ρ1,l
2tl

√
plpl−1

gT
2 R

(l−1)/2η +
ξlρ

2
1,l

2tlpl−1
ηTR(l−1)η

−γ
2
4pl−1

2γ3pl
+
γ1α

2

2
+
γ3ρ

2
2,lα

2

2
+ α

(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2

. (221)

Examining just the optimization over α we see that this may be solved explicitly:

min
α

(
γ1
2

+
γ23ρ

2
1,lχl

2kl
+
γ3ρ

2
2,l

2

)
α2 +

(γ24ρ22,l + γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2

+
γ3ρ

2
1,lχl

2klpl−1
gT
4 η

α(222)

Which has optimal value

−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

+

(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2
γ3ρ

2
1,lχl

2klpl−1
gT
4 η +

γ23ρ
4
1,lξ

2
l

4k2l 2pl−1
∥η∥2

 (223)

As such we can collect all of the terms together. Making the following definitions:
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Tl =
χlkl
2

−
γ3ξ

2
l

2
+
ξltl
2

+
ξlγ

2
4pl−1

2tlpl
− γ24pl−1

2γ3pl

−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)
(224)

γ̄1 =
ξlρ

2
1,l

kl
−

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1
γ23ρ

4
1,lξ

2
l

2k2l
(225)

γ̄2 = −

(
γ1 +

γ23ρ
2
1,lχl

kl
+ γ3ρ

2
2,l

)−1(
γ24ρ

2
2,l +

γ23ρ
2
1,lχ

2
l pl

pl−1
+ γ2

)1/2
γ3ρ

2
1,lχl

2kl
(226)

γ̄3 =
ξlρ

2
1,l

tl
γ̄4 =

ξlγ4ρ1,l
√
pl

2tl
√
pl−1

. (227)

As such we find that the optimization is equal to

max
0≤ξl≤ξl,max,0≤χl≤χl,max

min
0≤tl≤tl,max,0≤kl≤kl,max

Tl

+min
η

γ̄1
2pl

∥µ∥2 + γ̄2
pl
gT
2 µ+

γ̄3
2pl

µTR(l−1)µ+
γ̄4
pl
gT
3 R

(l)/2µ. (228)

D.3. All Layers of Same Size

Consider the case that the input dimension is d and all subsequent hidden layers are of dimension
p. In this case we note that R(l) ∈ Rp×p for all l > 1. In this case the recursive application of the
CGMT analysis simplifies considerably. The recursion is given in the following lemma.

Theorem 22 Consider the problem P2 given in (24) and assume that the layers p1 = p2 =
· · · pL = p, ie all layers are of the same size. Let the input dimension be of size p0 which is
not necessarily the same as p. In this case the alternative optimization problem may be given by:

max
β>0

min
q>0

max
ξ1>0

min
t1>0

· · ·max
ξL>0

min
tL>0

M p
C

R(·+θ∗)

(
−D
C
g

)
+ TL (229)

Where

c0 =
β

q
d0 = β

√
n

p
T0 =

βq

2
+
βσ2ν
2q

− β2

q
(230)

cl+1 =
ξlc

2
l ρ

2
1,l

tl
dl+1 = c2l ξ

2
l ρ

2
1,l

pL−l−1

pL−l
(231)

C = cL +
∑

l=0L−1

ρ22,L−lcL D =

√√√√d2L +

L−1∑
l=0

ρ22,L−ldl

Tl+1 = Tl +
d2l ρ

2
1,lξl

2tl

pL−l−1

pL−l
−
clξ

2
l

2
+
ξltl
2

−
d2l
2cl

pL−l−1

pL−l
(232)
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Note that as p1 = p2 = · · · pL = p the value of pL−l−1

pL−l
= 1 except in the case of p0 = d.

Proof The proof is the same as the one given for the CGMT analysis for layers of different sizes.
We therefore do not give it here in full.

Appendix E. Lyapunov Recursions

Let A be a n×mmatrix with random entries. Consider the function fA(λ) with gives the probability
distribution, or eigendistribution, of the eigenvalues of the matrix A, defined to be

fA(λ) =
1

n

n∑
i=1

δλi
(233)

where λi is the ith eigenvalue of A and δ is the dirac measure .
To analyze this distribution, we may instead consider the Stieltjes transform of the distribution

fA, this transform is defined by

SA(z) = E
[

1

λ− z

]
=

∫
fA(λ)

λ− z
dλ. (234)

Here z is a complex number. The original distribution may be recovered by means of the inverse
transform

fA(λ) = lim
ω→0+

1

π
Im [SA(λ+ iω)] (235)

where i is the imaginary unit. The Stieltjes transform can also be compute directly from the random
matrix A instead of using equation (234). We give the following lemma

Lemma 23 The Stieltjes transform of the expected eigendistribution of a Hermitian random n× n
matrix A may be expressed as

SA(z) =
1

n
E Tr(A− zI)−1 (236)

Proof For a proof see Vakili (2011) [lemma 2.3.1]

Another transform that we will make use of in our analysis of the recursively defined matrix R
is the S-transform may be expressed in terms of the Stieltjes transform by means of

ΣA(z) =
z + 1

z

(
−1

z
SA

(
1

z

)
− 1

){−1}
=
z + 1

z

( ∞∑
i=1

miz
i

){−1}

(237)

Here {−1} denotes the functional inverse, and mi is the ith moment of the distribution fA. The
S-transform has two properties that are instrumental for our analysis. Firstly, the S-transform and
the Stieltjes transform satisfy the following relation:

ΣA = −1

z
SA

(
1 + z

zΣA(z)

)
(238)

The second key property of the S-transform relates it how it behaves with respect to matrix
product. For this we introduce the following lemma
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Lemma 24 Let A,B be two non negative unitarily invariant matrices, and let C = AB, then the
S transform of the eigendistribution of C satisfies

ΣC(z) = ΣA(z)ΣB(z) (239)

Proof The S-transform is multiplicative for matrix product that are asymptotically free Emery et al.
(2007). To see that unitarily invariant matrices are free see Voiculescu (1991).

Finally, we note that if H is a m×n matrix with element distributed as N (0, 1), then the matrix
A = 1

nHHT is a Wishart matrix. We note that the Stieltjes transform of a Wishart matrix is given
by the Marcenko-Pastur Law

SA(z) =
1− m

n − z +
√
z2 − 2

(
m
n + 1

)
z +

(
m
n − 1

)2
2m
n z

(240)

and the S−transform of a Wishart is given by

ΣA(z) =
1

1 + m
n z

(241)

E.1. Analysis of the Covariance Matrix R

In this section we adopt an approach for studying Stieltjes transforms of Lyapanov Recursions of
Random matrices discussed by Vakili (2011)[Section 3].

We recall that R(l) is given by

R(l) =
ρ21,l
pl−1

W(l)R(l−1)W(l)T + (ρ2,l)
2 I. (242)

where we recall that R(0) = I and that the rows of W(l), w(l)
i are distributed as N (0, I). We can

note that W(l)TW(l)/pl−1 is a Wishart matrix. We now wish to compute the Stieltjes transform of
R(l). The Stieltjes transform is given by

SR(l)(z) =
1

pl
ETr

(
ρ21,l
pl−1

W(l)R(l−1)W(l)T + (ρ22,l − z)I

)−1

(243)

We now let the matrix A(l) = W(l)TR(l−1)W(l)T /pl−1. We can then note that

SR(l)(z) =
1

pl
ETr

(
ρ21,lA

(l) + (ρ22,l − z)I
)−1

=
1

ρ21,l

1

pl
ETr

(
A(l) +

(ρ22,l − z)

ρ21,l
I

)−1

=
1

ρ21,l
SA(l)

(
z − ρ22,l
ρ21,l

)
(244)

Our goal is to now find an expression for the Stieltjes transform of A(l). We note that W(l)TR(l−1)W(l)T /pl−1

has the same eigenvalues as W(l)TW(l)T /pl−1R
(l−1). we recall that W(l)TW(l)T /pl−1 is Wishart
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and unitarily Invariant, and similarly is R(l−1). As such we can make use of the properties of
S−transforms to note that:

ΣA(l)(z) = ΣW(l)TW(l)T /pl
(z)ΣR(l−1)(z). (245)

We can then make use of equation (238) to obtain

SA(l)

(
1 + z

zΣA(l)

(z)

)
= ΣW(l)TW(l)T /pl−

(z)SR(l−1)

(
1 + z

zΣR(l−1)(z)

)
= ΣW(l)TW(l)T /pl−1

(z)SR(l−1)

(
1 + z

zΣA(l)(z)
ΣW(l)TW(l)T /pl−1

(z)

)
(246)

We now let

x =
1 + z

zΣA(l)(z)
, (247)

and then note that

xΣA(l)(z) =
1 + z

z
⇒ x

(
−1

z

)
SA(l)(x) =

1 + z

z

⇒ z = −1− xSA(l)(x) (248)

By substituting in this expression we obtain

SA(l)(x) = ΣW(l)TW(l)T /pl−1
(−1− xSA(l)(x))SR(l−1)

(
xΣW(l)TW(l)T /pl−1

(−1− xSA(l)(x))
)
(249)

Finally, we recall equation (241). Letting βl =
pl

pl−1
we use this property to simplify the relation to:

SA(l)(x) =
1

1− βl − βlxSA(l)(x)
SR(l−1)

(
x

1− βl − βlxSA(l)(x)

)
(250)

Finally, letting Ωl−1(·) = SA(l)(·). We can conclude that

SR(l+1)(z) =
1

ρ21,l
Ωl

(
z − ρ22,l
ρ21,l

)
(251)

Ωl(z) =
1

1− βl − zβlΩl(z)
SR(l)

(
z

1− βl − βlzΩl(z)

)
(252)

Which concludes the proof.
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