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Abstract

Learning curves plot the expected error of a learning algorithm as a function of the number of labeled
samples it receives from a target distribution. They are widely used as a measure of an algorithm’s
performance, but classic PAC learning theory cannot explain their behavior.

As observed by Antos and Lugosi (1996, 1998), the classic ‘No Free Lunch’ lower bounds only
trace the upper envelope above all learning curves of specific target distributions. For a concept
class with VC dimension d the classic bound decays like d/n, yet it is possible that the learning
curve for every specific distribution decays exponentially. In this case, for each n there exists a
different ‘hard’ distribution requiring d/n samples. Antos and Lugosi asked which concept classes
admit a ‘strong minimax lower bound’ – a lower bound of d′/n that holds for a fixed distribution for
infinitely many n.

We solve this problem in a principled manner, by introducing a combinatorial dimension called VCL
that characterizes the best d′ for which d′/n is a strong minimax lower bound. Conceptually, the
VCL dimension determines the asymptotic rate of decay of the minimax learning curve, which we
call the ‘distribution-free trail’ of the class. Our characterization strengthens the lower bounds of
Bousquet, Hanneke, Moran, van Handel, and Yehudayoff (2021), and it refines their analysis of
learning curves, by showing that for classes with finite VCL the learning rate can be decomposed
into a linear component that depends only on the hypothesis class and a faster (e.g., exponential)
component that depends also on the target distribution. As a corollary, we recover the lower bound
of Antos and Lugosi (1996, 1998) for half-spaces in Rd.

Finally, to provide another viewpoint on our work and how it compares to traditional PAC learning
bounds, we also present an alternative formulation of our results in a language that is closer to the
PAC setting.
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1. Introduction

The most fundamental question in learning theory is arguably “what can be learned, and what
amount of resources (such as data and computation) is necessary for learning when learning is
possible?” The classic and definitive mathematical treatment of this question for supervised learning
has traditionally been provided by the PAC framework, due to Vapnik and Chervonenkis (1968) and
Valiant (1984). However, it has become increasingly clear that the PAC model does not accurately
capture the reality of learning; VC bounds are overly pessimistic, and modern machine learning
algorithms routinely outperform them. This is partially because the PAC model constitutes a worst-
case analysis over all distributions. In contrast, machine learning practitioners are typically faced
with one (or a few) target distributions, they are interested in optimizing performance only with
respect to these specific distributions, and therefore they can vastly outdo the worst-case analysis.

Indeed, Antos and Lugosi (1996, 1998) observed that while the classic PAC bounds decay like
Ω(d/n) for a class of VC dimension d, there exist hypothesis classes with arbitrarily large VC
dimension that are learnable such that for every realizable distribution the expected loss decays
exponentially fast.

They wrote:

“[I]n some sense, these [VC] lower bounds are not satisfactory. They do not tell
us anything about the way the error decreases as the sample size is increased for a
given classification problem. These bounds, for each n, give information about the
maximal error within the class, but not about the behavior of the error for a single fixed
[distribution] as the sample size n increases. In other words, the ‘bad’ [distribution],
causing the largest error for a learning rule, may be different for each n.”1

This lead them to study the following question:

Question 1 (Strong Minimax Lower Bound) For a VC class, what is the largest d′ ≥ 0
such that for every learning algorithm there exists a realizable distribution for which the
expected 0-1 loss is at least d′/n infinitely often?

They were able to answer this question for a number of specific hypothesis classes. Furthermore,
they showed that “it is neither the VC dimension, nor the rate of increase of the shatter coefficients
of the class” that determine the answer. The general case, however, has remained open.

In this paper we solve Question 1. We do so in a principled manner, by contributing to the nascent
study of distribution-dependent learning curves. We build upon the recent results of Bousquet,
Hanneke, Moran, van Handel, and Yehudayoff (2021), who offered a characterization of these curves.

For each instance, consisting of a hypothesis class and a target distribution, the distribution-dependent
learning curve is the expected 0-1 loss of a learning algorithm as a function of the number of i.i.d.
samples from the distribution (see Appendix A for formal definitions).

1. From Antos and Lugosi (1996), edited for clarity.
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Figure 1: Illustration of the difference between distribution-dependent and PAC rates. Each red curve
shows exponential decay of the error Opt = ES∼Dn [L0-1

D (ĥS)] for a different data distributionD; but
the PAC rate only captures the pointwise supremum of these curves (the blue curve) which decays
linearly at best.

Source: Bousquet et al. (2021), adapted with permission.

The lay of the land when viewed from the perspective of distribution-dependent learning curves is
remarkably structured, and remarkably different from that of the PAC model, as captured by the
following crisp trichotomy.

Theorem 2 (Bousquet et al. (2021), Theorem 1.6) For every concept class H with |H| ≥ 3, ex-
actly one of the following holds:

• H is learnable with optimal rate e−n.

• H is learnable with optimal rate 1
n .

• H requires arbitrarily slow rates.

This differs markedly from PAC learning bounds because, for example, it is possible for a classH
to have infinite VC dimension but still be learnable with an exponential rate; and ERM algorithms,
which are optimal in the PAC setting, can perform arbitrarily worse than the best learning algorithm
in the distribution-dependent setting (see Example 2.3 and Example 2.6 respectively in Bousquet
et al., 2021). Bousquet et al. (2021) also provide a combinatorial characterization (via infinite trees)
that determines for each hypothesis classH which of the three prongs of the trichotomy it belongs to.

While the trichotomy of Theorem 2 is an important characterization, it is far from constituting a
complete distribution-dependent theory of supervised learning. To see this, we recall the definition
of learning at rate R(n) for some function R : N→ [0, 1], as used in the trichotomy. Roughly (see
Definition 25 below), a classH is learnable at rate R if there exists a learning algorithm such that for
any realizable distribution there exist parameters C, c ≥ 0 (that depend on the distribution) such that
the 0-1 loss of the algorithm after seeing n i.i.d. samples from the distribution is at most C ·R(c · n).
In other words, each instance, consisting of a hypothesis class and a distribution, determines a pair of
parameters C, c ≥ 0 which together specify the shape of the learning curve.

The characterization of Theorem 2 explains the general shape of the learning curve (exponential,
linear, or arbitrarily slow decay), but it is silent with regard to the parameters C, c that specify its
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precise shape. In particular, it is not clear in what manner the class and the distribution ‘interact’ to
produce these parameters. This is where the present paper comes in.

1.1. Main Results

Our main contributions are:

1. We solve the main question left open by Antos and Lugosi (1998, 1996). We define a new
combinatorial dimension that we call the Vapnik–Chervonenkis–Littlestone dimension, or VCL
(see Definition 24), and show that it characterizes the magnitude of the strong minimax lower
bound up to universal constants, as follows.

There exist universal constants α, β > 0 such that for any VC class H, the dimension d =
VCL(H) ≤ VC(H), and the number d′ defined in Question 1 satisfies α · d ≤ d′ ≤ β · d.

2. Conceptually, we introduce a notion of distribution-free tail, and prove a characterization of the
optimal rate of decay for distribution-free tails via the VCL dimension (see Definition 4 and
Theorem 5).

3. Technically, we present a fine-grained analysis of distribution-dependent learning curves. For
any class H, if the dimension d = VCL(H) ≥ 0 is finite, then the optimal expected loss Opt
can be bounded by

Ω(d)

n
≤ Opt ≤ O(d)

n
+ λ(n), (1)

where n ∈ N is the number of i.i.d. samples used, λ(n) ∈ o(1/n), and the inequalities hold as
follows: for any learning algorithm there exists a distribution such that the lower bound holds
for infinitely many values of n; the upper bound holds for a learning algorithm that we present,
for all distributions and all n ∈ N; the Ω(·) and O(·) notations hide universal multiplicative
constants that are independent of H and of the distribution; the function λ(n) depends on H
and on the distribution. Specifically, we use λ(n) = C · e−c·n where the parameters C, c ≥ 0
depend onH and on the distribution, but other choices of λ are possible (see Remark 3).

This bound captures both linear rates (when d > 0) and exponential rates (when d = 0). We
call this type of bound the fine-grained rate ofH, to distinguish it from the notion of coarse rate
used in Theorem 2. See Definition 26 and Lemma 6 for a formal statement of this result.

4. Furthermore, for the hard distribution that satisfies the lower bound in Equation (1), the marginal
on the domain X depends only on the classH. In particular, in contrast to the lower bounds of
Bousquet et al. (2021), the marginal on the domain does not depend on the learning algorithm.
This means that in the distribution-dependent learning curve setting, access to unlabeled data is
not helpful for learning classes with finite VCL dimension. Namely, semi-supervised learning
and supervised learning require the same number of labeled samples.

We note that this is a non-trivial result, employing a sophisticated application of Fatou’s lemma
which enables reversing the order of quantifiers, as well as an argument from Ramsey theory.

5. For any class H, if VCL(H) = ∞ and H does not shatter an infinite strong VCL tree (see
Definitions 22 and 23 below), thenH has a strongly distribution-dependent linear rate. Namely,
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for every c ≥ 0 there exists a distribution such that Opt ≥ c/n for infinitely many n ∈ N (see
Definition 28 and Lemma 6).2

6. We offer an equivalent formulation of our results in a language that is closer to the traditional
PAC framework. This provides another viewpoint on our work and how it compares to traditional
PAC bounds. See Theorem 10.

7. As a special case, we recover the lower bound of Antos and Lugosi (1998) for half-spaces.
We do so by introducing a technique for proving strong lower bounds via a ‘fractal’ argument,
which may be useful for other classes as well. (See Theorem 8 and Appendix C.)

1.2. Benefits of the New Characterization

Our upper bound in Equation (1) offers a refinement and reinterpretation of Theorem 2:

• Upper bound refinement. For the case of linear rates, Bousquet et al. (2021) showed an
upper bound of c

n , where c ≥ 0 depends both on the class and on the distribution. In contrast,
our expression in the upper bound constitutes a decomposition of the error rate into a linear
component that depends only on the class, and a faster (e.g., exponential) component that
depends on the class and on the distribution. We view this as a step towards a complete
characterization of the optimal distribution-dependent learning rate for supervised learning.

• Upper bound reinterpretation. Whereas Theorem 2 depicts exponential rates and linear rates
as being two entirely different beasts, Equation (1) presents them in a more unified light, with
exponential rates constituting the special case of d/n where d = 0.

Our lower bound in Equation (1) offers meaningful improvements over both the previous distribution-
dependent lower bound and over the classic ‘no free lunch’ lower bounds from PAC learning, and
also constitutes a partial unification of these two results.

• Quantitative strengthening of distribution-dependent lower bounds. For classes with linear
learning rates, the best previously known distribution-dependent lower bound that applies to
general classes was Ω(1/n) (Bousquet et al., 2021). This applies equally to all classes that have
linear rates, and does not distinguish between different degrees of hardness within that broad set
of classes. In contrast, we are able to prove a lower bound of Opt ≥ Ω(d/n), for d that depends
only on the class and is tight up to a universal multiplicative constant (independent of the class
and of the distribution).

• Qualitative strengthening of distribution-dependent lower bounds. Classic PAC lower
bounds (discussed further in the next bullet) have the following formulation:

There exists a distribution DX ∈ ∆(X ) such that for any learning algorithm A there
exists a hard distribution D ∈ ∆(X × {0, 1}) such that the marginal distribution of
D on X equals DX , and the loss of A on distribution D is large.3 (⋆)

In contrast, the linear lower bound of Bousquet et al. (2021) offered a weaker statement:

2. In the remaining case where VCL(H) = ∞ and H has an infinite strong VCL tree, H requires arbitrarily slow rates,
as shown by Bousquet et al. (2021).

3. The marginal distribution DX is simply a uniform distribution over a subset of the domain of cardinality VC(H) that
is shattered by H in the VC sense.
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For any learning algorithm A there exists a hard distribution D ∈ ∆(X × {0, 1})
such that the loss of A on distribution D is large.

In particular, this weaker formulation left open the possibility that an algorithm that has access
to unlabeled samples (as in the semi-supervised learning setting) could beat the lower bound.
We show that that is not the case. We strengthen the lower bound of Bousquet et al. (2021),
obtaining the stronger formulation as in (⋆).

• Qualitative strengthening of PAC lower bounds. Classic PAC learning theory features ‘no
free lunch’ lower bounds (e.g., Shalev-Shwartz and Ben-David, 2014, Theorem 5.1), which
imply the VC lower bound appearing in the fundamental theorem of PAC learning (e.g., Shalev-
Shwartz and Ben-David, 2014, Theorem 6.8, Item 3). These lower bounds leave something to
be desired.

To see this, fix a hypothesis class of VC dimension d. The VC bound states that for every ε > 0
there exists a hard (worst-case) distribution Dε such that achieving loss at most ε with high
probability requires at least Ω(d/ε) i.i.d. samples from Dε. Namely, for a fixed hypothesis class
and a sequence of positive values ε1, ε2, . . . there exists a sequence of distinct hard distributions
D1,D2, . . . such that each Di is a hard distribution for achieving loss εi — but it is typically
not a hard distribution for other values of ε.

Clearly, the type of lower bound studied in VC bounds is strictly weaker than the distribution-
dependent lower bounds studied in this paper, where there exists a specific hard distribution such
that the lower bound holds for infinitely many values of ε. And as we argued above, instance
specific lower bounds are a better match to the reality of most machine learning practitioners,
who typically face a specific (fixed) unknown distribution, and would like to calculate how
many samples are necessary for obtaining loss ε1, or loss ε2, or loss ε3, etc. — all with respect
to the same fixed unknown distribution.

Thus, an interesting open question is “for which VC classes is it possible to obtain distribution-
dependent linear lower bounds of Ω(d/n)?” (where d = VC(H) and the bound holds for a
single distribution for infinitely many n ∈ N). This question, which was studied by Antos and
Lugosi (1996, 1998), is answered by our characterization as follows. LetH be a VC class with
0 ≤ d′ = VCL(H) ≤ VC(H) = d. If d′ > 0 thenH has a distribution-dependent linear lower
bound of Ω(d′/n). Otherwise, if d′ = 0 then H does not have a distribution-dependent linear
lower bound; rather, each learning curve decays exponentially and the upper envelope of all the
learning curves decays linearly as Θ(d/n). In this sense, our results offer a unified perspective
of PAC and distribution-dependent lower bounds.

Remark 3 (On the exponential term in the decomposition) The upper bound in Equation (1)
decomposes into O(d/n) + λ(n), where λ is a function that decays quickly, at a rate that depends
on the distribution. Taking λ(n) = C · e−c·n to be an exponential function, as we do in this paper,
is a somewhat arbitrary choice. For classes with positive VCL dimension, the same results (e.g.,
Theorem 5 and Lemma 6) would hold also, say, for a double-exponential function λ(n) = C · e−c·en ,
albeit with different constants C, c and β in those results. The essential insight expressed by these
decompositions is captured by the notion of a distribution-free tail (Definition 4), discussed below.
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1.3. Related Works

Universal Learning. Our work explores the distribution-dependent setting, also called the universal
learning setting, which was recently formalized by Bousquet, Hanneke, Moran, van Handel, and
Yehudayoff (2021). However, it is worthwhile to note that this framework has been studied by earlier
works as well.

Schuurmans (1997) revealed the distinction between exponential and linear rates in the universal
setting. In more detail, Schuurmans (1997) characterized the optimal learning rate for classes H
that are concept chains, meaning that every h, h′ ∈ H have either h ≤ h′ everywhere or h′ ≤ h
everywhere.

van Handel (2013) studied the uniform convergence property via the universal lens. He characterizes
those hypothesis classesH satisfying that the empirical losses of all hypotheses in the class simultane-
ously and uniformly converge to the corresponding population losses as the number of examples tends
to infinity. The difference with the (more common) distribution-free uniform convergence is that in
the universal variant, the rate of the uniform convergence can depend on the source distribution.

An extreme notion of universal learnability is universal consistency: a learning rule is universally
consistent if its expected loss converges to the Bayes optimal risk for every target distribution. In
other words, such algorithms learn every distribution (but at a distribution-dependent rate). The first
proof that such learning is possible was provided by Stone (1977) who established the universal
consistency of several algorithms such as k-nearest neighbor predictors, kernel rules, and histogram
rules; see Devroye, Györfi, and Lugosi (1996) for a thorough discussion of such results.

No Free Lunch. One of the technical contributions in this work is the identification of the VCL
dimension as the combinatorial parameter which characterizes when a strong form of the ‘no free
lunch’ theorem holds. That is, for which classes is it the case that there exists a single fixed
distribution which witnesses the strongest lower bound on the error rate for infinitely many sample
sizes n.

The work by Antos and Lugosi (1998) explored this question for VC classes; that is, they asked for
which VC classes such a strong ‘no free lunch’ theorem holds. Antos and Lugosi (1998) showed that
d-dimensional half-spaces satisfy such a strong ‘no free lunch’ theorem by proving a lower bound
of d/n on the learning rate. (Schuurmans 1997 also established such a bound in the 1-dimensional
case.) However, a characterization of VC classes with this property remained open; in fact, Antos and
Lugosi (1998) explicitly concluded that it is “neither the VC dimension nor the rate of increase of
shatter coefficients that determine the asymptotic behavior of the concept class”. Our work resolves
this question by showing that the VCL dimension determines this behavior.

Strong Minimax. A recent work by Ben-David and Blais (2020) studies a similar type of lower
bounds for the task of computing boolean functions up to error ε. They introduce a new type of
minimax theorem which provides a single hard distribution for arbitrarily small ε.

2. Technical Overview

This section provides an overview of our results. All technical details are deferred to the appendices.
We start with the following definition.
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Definition 4 LetX be a set, letH ⊆ {0, 1}X be a hypothesis class, and let f : N→ R be a function.
We say that f is a distribution-free tail for H if limn→∞ f(n) = 0 and there exists a (possibly
randomized) learning algorithm h such that for any realizable distribution D ∈ Realizable(H), the
inequality

ES∼Dn

[
L0-1
D (hS)

]
≤ f(n)

holds for all n large enough. We say thatH admits a distribution-free tail if there exists a function
that is a distribution-free tail forH.

In other words, a vanishing f is not a distribution-free tail forH if for every learning algorithm there
exists a realizable distribution such that the expected loss is strictly greater than f infinitely often.

IfH is a class with VC(H) = d <∞, then O(d/n) is distribution-free tail forH, by the VC theorem.
However, some class with VC dimension d might admit distribution-free tails that decay much faster
than d/n.

Our first result characterizes the optimal rate of decay for distribution-free tails via the VCL dimen-
sion, as follows.

Theorem 5 There exist constants α, β > 0 as follows. Let X be a set and let H ⊆ {0, 1}X be a
hypothesis class.

1. If VCL(H) =∞ thenH does not admit a distribution-free tail.

2. If VCL(H) = d ∈ (0,∞) then for any η > 0, f(n) = β · d/n + η is a distribution-free tail
for H. Furthermore, α · d/n is not a distribution-free tail for H, so the above choice of f is
tight up to a multiplicative factor.

3. If VCL(H) = 0, then any function f(n) such that f(n) = ω(C · e−c·n) for all C, c > 0 is a
distribution-free tail forH. Furthermore, any function f(n) = C · e−c·n for fixed C, c > 0 is
not a distribution-free tail forH.

Proof Idea for Theorem 5 Items 1 and 2 and the first part of Item 3 follow from Lemma 6. The
‘furthermore’ part of Item 3 follows from a simple modification of the proof of Proposition 2 in
Schuurmans (1997).4

Theorem 5 is a corollary of Lemma 6, which provides a more complete picture.

Lemma 6 (Main Technical Lemma) There exist constants α, β > 0 as follows. Let X be a set, let
H ⊆ {0, 1}X be a hypothesis class, and let d = VCL(H).

1. If d < ∞ then H is learnable with optimal fine-grained rate d/n with gap factor γ = β/α;
furthermore, the marginal of the hard distribution on X depends only on H. Namely, there
exists DX ∈ ∆(X ) such that for any (possibly randomized) learning algorithm ĥ there exists
D ∈ Realizable(H) such that the marginal distribution of D on X is DX , and the inequality

α · d
n
≤ ES∼Dn

[
L0-1
D

(
ĥS

)]
4. See also Lemma 4.2 in Bousquet et al. (2021)
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holds for infinitely many n ∈ N; and there exists a learning algorithm h∗ such that for any
D ∈ Realizable(H) there exist parameters C, c > 0 such that

∀n ∈ N : ES∼Dn

[
L0-1
D (h∗S)

]
≤ β · d

n
+ C · e−c·n.

2. Otherwise, ifH does not shatter an infinite strong VCL tree, thenH is learnable with a strongly
distribution-dependent linear rate. Namely, for any (possibly randomized) learning algorithm ĥ
and any c > 0 there exists D ∈ Realizable(H) such that the inequality

c

n
≤ ES∼Dn

[
L0-1
D

(
ĥS

)]
holds for infinitely many n ∈ N; and there exists a learning algorithm h∗ such that for any
D ∈ Realizable(H) there exists c > 0 such that

∀n ∈ N : ES∼Dn

[
L0-1
D (h∗S)

]
≤ c

n
.

3. Otherwise,H requires arbitrarily slow rates.

Remark 7 Our proofs use α = 1/100, β = 8, and γ = 800.

All proofs appear in Appendices B and C. Additionally, we provide a brief overview of the main
ideas in each proof.

The proof of Lemma 6 is similar to the proof of Theorem 2 from Bousquet et al. (2021). One of the
main differences is that we use d-VCL trees for the characterization. Our d-VCL trees (introduced in
this paper, see Definition 19 and Figure 2(b)), are an intermediary refinement that lies between the
1-VCL trees and the strong VCL trees that were used in their proof. Identifying that this particular
combinatorial structure characterizes the fine-grained rate is a non-trivial contribution of this paper.

Proving the lower bound of Lemma 6 requires some technical improvements upon the technique
of Bousquet et al. (2021). For each learning algorithm, they constructed a hard distribution that is
concentrated on an infinite ‘target’ branch chosen at random in the d-VCL tree, and argued that if a
test point is deeper in the tree than all points in the training set, then the leaner will make an incorrect
prediction on that test point with probability 1/2. That approach is not suitable for constructing
a single marginal distribution DX ∈ ∆(X ) that is hard for all learning algorithms (because for
every target branch there exists an algorithm that returns a hypothesis with low loss on that branch).
Instead, we choose a marginal DX that is distributed roughly evenly over all branches in the tree, and
construct a distribution D ∈ Realizable(H) that has marginal DX , and has labels corresponding to
an infinite target branch in the tree.

In a general d-VCL tree, our approach would be problematic, because even if a test point is deeper
in the tree than all the points in the training set, the labels for points in the training set that do not
belong to the target branch could provide information about the target branch.5 We overcome this
problem as described in the following proof idea.

5. Consider the case where for some x ∈ X there exist infinite branches y(0) and y(1) in the tree, both of which do not
contain x, such that for all b ∈ {0, 1}, it holds that all h ∈ H that are consistent with y(b) satisfy h(x) = b. Then
knowing the label for x allows the learner to eliminate one of the branches.
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for one branch in each tree, shown in red.

Source: Bousquet et al. (2021), adapted with permission.
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Proof Idea for Lemma 6 For the upper bound, we show that the nonexistence of d-VCL trees is
equivalent to the existence of a winning strategy for the learner in an infinite two-player game called
the ‘forbidden pattern game’. The equivalence is established via an intermediary online-learning
game that is easier to analyze because it is a Gale-Stewart game (whereas the forbidden pattern
game is not). A winning strategy for the learner in the forbidden pattern game can be converted into
a learning algorithm for the distribution-dependent learning setting, by way of the one-inclusion
algorithm of Haussler, Littlestone, and Warmuth (1994). The resulting algorithm has the desired rate
of at most d/n.

For the lower bound, we use an elementary lemma from Ramsey theory to show that ifH shatters
an infinite d-VCL tree, then it also shattered an infinite d-VCL tree that satisfies an additional
indifference property that we define. This property implies that for any infinite branch in the d-VCL
tree, labels for points that do not belong to the branch provide no information about the labels for
points that appear lower down in the tree along the branch. Therefore, when the target branch is
chosen randomly, we can argue that if the test point appears on the target branch and is lower than all
the training samples, then the learner will make an incorrect prediction with probability 1/2. The
lower bound also involves a specific choice of parameters for the hard marginal distribution that
enables a delicate application of Fatou’s lemma.

As a corollary of our characterization, we recover the lower bound of Antos and Lugosi (1998) for
half-spaces in Rd, up to a constants factor.

Theorem 8 (Antos and Lugosi 1998, Corollary 1) There exists a constant α > 0 as follows. Let
d ∈ N and X = Rd. Let Hd ⊆ {0, 1}X be the set of closed half-spaces in Rd. For any learning
algorithm ĥ there exists a distribution D ∈ Realizable(Hd) such that the inequality

ES∼Dn

[
L0-1
D

(
ĥS

)]
≥ α · d

n

holds for infinitely many values n ∈ N.

Proof Idea It suffices to show that VCL(Hd) = d. We consider the dual class forHd, and show via
a neat ‘fractal’ argument that one can construct an infinite d-VCL tree forHd.

We believe that the ‘fractal’ argument from this proof could be used to construct d-VCL trees for
other classes as well.

Finally, we present another, mostly equivalent viewpoint on our results. Stated in a language that
is closer to standard PAC learning, it enables a comparison between PAC bounds and distribution-
dependent bounds.

Definition 9 Let X be a set and let H ⊆ {0, 1}X be a hypothesis class. Let m : (0, 1)2 → N
and k : Realizable(H) → N be functions. We say that H is eventually PAC learnable with sam-
ple complexity m and kick-in time k if there exist an algorithm ĥ such that for any distribution
D ∈ Realizable(H) and for any ε, δ ∈ (0, 1) the inequality

PS∼Dn

[
L0-1
D

(
ĥS

)
≤ ε
]
≥ 1− δ

holds for all n ≥ max{m(ε, δ), k(D)}.

11
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Theorem 10 There exist constants α, β > 0 as follows. Let X be a set, let H ⊆ {0, 1}X be a
hypothesis class, and let d ∈ N.

1. If d = VCL(H) < ∞ then H is eventually PAC learnable with sample complexity m(ε, δ) ≤
αd log(1/δ)/ε.

2. IfH is eventually PAC learnable with sample complexity

m(ε, δ) = d log(1/δ)/ε,

then VCL(H) ≤ βd.

Proof Idea This follows from Lemma 6, together with a standard amplification argument for
converting an algorithm with bounded expected error to a PAC learner.

3. Directions for Future Work

We have shown a characterization of fine-grained learning rates in the instance specific setting.
Directions for future work include characterizing the precise parameters C, c ≥ 0 in Equation (1),
and obtaining an optimal gap factor (or equivalently, optimal parameters α, β ≥ 0 in Lemma 6).

Like the results of Bousquet et al. (2021), our results describe the asymptotic rate at which learning
curves decay – but the results are silent as to the properties of learning curves for any finite number
of samples. Devising a theory of learning curves that explains both asymptotic and non-asymptotic
behavior in a unified way would be valuable.

Our result on semi-supervised learning (Item 4 in Section 1.1, Main Results) suggests that unlabeled
data is not helpful in the setting of distribution-dependent learning curves. However, there are good
reasons to believe that unlabeled data is helpful for learning in some real-world scenarios. We wonder
how this tension could be resolved.
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Appendix A. Preliminaries

Notation 11 N = {1, 2, 3, . . . }, i.e., 0 /∈ N. For any n ∈ N, we denote [n] = {1, 2, 3, . . . , n}.
Notation 12 Let X be a set. We write X ∗ = ∪∞t=0X t to denote the set of all finite strings or finite
vectors with elements from X . X ∗ includes the empty string, which we denote by λ.

Notation 13 For a set X , we write ∆(X ) to denote the set of all distribution with support contained
in X (with respect to some fixed σ-algebra).

Notation 14 For a (finite or infinite) vector x = (x1, x2, . . . ), we write x≤t to denote the finite
prefix (x1, x2, . . . , xt);

(
(xt,yt)

)
t∈N denotes an infinite sequence of pairs of vectors, where for each

t, (xt,yt) is a pair of vectors; for a (finite or infinite) sequence of pairs of vectors, we denote a finite
prefix of the sequence by (x,y)≤t =

(
(x1,y1), (x2,y2) . . . , (xt,yt)

)
.

A.1. Traditional Learning Theory

Definition 15 Let X be a set, and let H ⊆ {0, 1}X be a set of functions. Let k ∈ N, X =
{x1, x2, . . . , xk} ⊆ X . We say that H shatters X if for any y1, y2, . . . , yk ∈ {0, 1} there exists
h ∈ H such that h(xi) = yi for all i ∈ [k]. The Vapnik–Chervonenkis (VC) dimension ofH, denoted
VC(H), is the largest d ∈ N for which there exist a set X ⊆ X of cardinality d that is shattered by
H. IfH shatters sets of cardinality arbitrarily large, we say that VC(H) =∞.

Definition 16 Let X be a set. A learning algorithm for functions X → {0, 1} is an algorithm ĥ that
takes a sample S ∈ (X × {0, 1})∗ and outputs a function ĥS : X → {0, 1}. The mapping S 7→ ĥS
may be randomized.

Definition 17 Let X be a set, let D ∈ ∆(X × {0, 1}), and let h : X → {0, 1} be a function. The
0-1 loss ofH with respect to D is L0-1

D (H) = P(x,y)∼D[h(x) ̸= y].
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Definition 18 Let X be a set, and let H ⊆ {0, 1}X be a class of functions. The set of realizable
distributions forH is

Realizable(H) =
{
D ∈ ∆(X × {0, 1}) : inf

h∈H
L0-1
D (h) = 0

}
.

A.2. The VCL Dimension

Definition 19 Let X be a set, let d ∈ N and ℓ ∈ N ∪ {0,∞}. A d-VCL tree of depth ℓ with respect
to X is a set

T =
{
xu ∈ X d : u ∈ {0, 1}ds, s ∈ N ∪ {0}, s ≤ ℓ

}
. (2)

We say that T is infinite if it has depth ℓ =∞.

Note that a d-VCL tree of depth 0 is not empty, rather it contains a single node xλ where λ denotes
the empty string.

Definition 20 Let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let d ∈ N. For each s ∈ N,
let xs = (x1s, . . . , x

d
s) ∈ X d and ys = (y1s , . . . , y

d
s ) ∈ {0, 1}d. Let h ∈ H. For any t ∈ N, we say

that the finite sequence (x,y)≤t =
(
(xs,ys)

)t
s=1

is consistent with h if

∀s ∈ [t] ∀i ∈ [d] : h(xis) = yis. (3)

We say that the infinite sequence
(
(xs,ys)

)
s∈N is consistent with H if for any t ∈ N there exists

h ∈ H such that (x,y)≤t is consistent with h.

Definition 21 Let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let T be a d-VCL tree as
in Equation (2). We say that H shatters T if for every t ∈ N, t ≤ ℓ, and every y ∈ {0, 1}dt there
exists a hypothesis h ∈ H that is consistent with

(
(xy≤s−1

,ys)
)t
s=1

in the sense that

∀s ∈ [t] ∀j ∈ [d] : h(xjy≤s−1
) = yjs, (4)

where we use the notation

y≤s =
((

y11, . . . , y
d
1

)
, . . . ,

(
y1s , . . . , y

d
s

))
∈ {0, 1}ds

to denote a prefix of y, and

xy≤s
=
(
x1y≤s

, . . . , xdy≤s

)
∈ {0, 1}d

to denote the members of xy≤s
.

The d-VCL trees used in this paper are a variant of the trees used in Bousquet et al. (2021). To
distinguish the two, we call their construction strong VCL trees.

Definition 22 Let X be a set, let d ∈ N. An infinite strong VCL tree with respect to X is a set

T =
{
xu ∈ X s+1 : s ∈ N ∪ {0} ∧ u ∈ {0, 1}1 × {0, 1}2 × · · · × {0, 1}s

}
.
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Definition 23 Let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let T be an infinite
strong VCL tree as in Definition 22. We say that H shatters T if for every t ∈ N, and every
y ∈ {0, 1}1 × {0, 1}2 × · · · × {0, 1}t there exists a hypothesis h ∈ H that is consistent with(
(xy≤s−1

,ys)
)t
s=1

in the sense that

∀s ∈ [t] ∀j ∈ [s] : h(xjy≤s−1
) = yjs, (5)

where we use the notation

y≤s =
((

y11
)
,
(
y12, y

2
2

)
,
(
y13, y

2
3, y

3
3

)
, . . . ,

(
y1s , . . . , y

s
s

))
∈ {0, 1}(

∑s
k=1 k)

to denote a prefix of y, and

xy≤s
=
(
x1y≤s

, . . . , xs+1
y≤s

)
∈ {0, 1}s+1

to denote the members of xy≤s
.

Definition 24 Let X be a set and letH ⊆ {0, 1}X . The Vapnik–Chervonenkis–Littlestone dimen-
sion ofH, denoted VCL(H), is the largest integer d ≥ 0 such thatH shatters an infinite d-VCL tree.
IfH does not shatter any infinite 1-VCL tree, we say that VCL(H) = 0. IfH shatters infinite d-VCL
trees for d arbitrarily large, we say that VCL(H) =∞.

A.3. Learning Rates

Bousquet et al. (2021) used the following definition of distribution-dependent learning rates.

Definition 25 (Bousquet et al. 2021, Definition 1.4.) Let H be a concept class, and let R : N →
[0, 1] with R(n)→ 0 be a rate function.

• H is learnable at rate R if there exists a learning algorithm ĥ such that for every D ∈
Realizable(H), there exist C, c ≥ 0 such that ES∼Dn

[
L0-1
D

(
ĥS

)]
≤ C ·R(c · n) for all n ∈ N.

• H is learnable with rate no faster than R if for every learning algorithm ĥ, there exists a

D ∈ Realizable(H) and C, c > 0 for which ES∼Dn

[
L0-1
D

(
ĥS

)]
≥ C · R(c · n) for infinitely

many n ∈ N.

• H is learnable with optimal rate R if H is learnable at rate R and H is not learnable faster
than R.

• H requires arbitrarily slow rates if, for every R(n)→ 0,H is learnable at rate no faster than R.

In this paper we refine the notion of learning rates, introducing the following more nuanced expres-
sions for linear rates, as follows. Note that our definitions are strictly special cases in the sense that if
a class is learnable at rate (learnable at rate no faster than) d/n according to our definition, then it is
learnable at rate (learnable at rate no faster than) d/n according to Definition 25 as well.

Definition 26 Let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let d ≥ 0 and γ ≥ 1. We
say that:
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• H is learnable with fine-grained rate d/n if there exists a learning algorithm ĥ such that for any
distribution D ∈ Realizable(H) there exist real numbers C, c ≥ 0 such that for all n ∈ N:

ES∼Dn

[
L0-1
D

(
ĥS

)]
≤ d

n
+ C · exp(−cn).

• H is learnable with fine-grained rate no faster than d/n if for any learning algorithm ĥ there
exists a distribution D ∈ Realizable(H) such that the inequality

ES∼Dn

[
L0-1
D

(
ĥS

)]
≥ d

n

holds for infinitely many n ∈ N.

• H is learnable with optimal fine-grained rate d/n with gap factor γ ifH is learnable with rate
no faster than d/n, and is learnable with rate d′/n, where d′ ≤ γd.

To distinguish the two notions of rate, we will refer to the rates of Definition 25 as coarse rates.

Remark 27 Ideally, we would like to obtain a gap factor γ that is as close as possible to 1, so
that d = d′ (see Definition 26). The extent to which this is possible is a topic for further research.
Throughout this paper we use γ = 800.

Definition 28 Let X be a set, let H ⊆ {0, 1}X be a hypothesis class. We say that H is learnable
with a strongly distribution-dependent linear rate if for any (possibly randomized) learning algorithm
ĥ and any c ≥ 0 there exists D ∈ Realizable(H) such that the inequality

c

n
≤ ES∼Dn

[
L0-1
D

(
ĥS

)]
(6)

holds for infinitely many n ∈ N.

Remark 29 There are various technical issues related to measure theory that arise in the distribution-
dependent learning setting and are germane to our results. We use the same assumptions as Bousquet
et al. (2021), and refer the interested reader to their work for an in-depth discussion (e.g., Section
3.3 and Appendices B and C).

A.4. Gale–Stewart Games

We will use some basic concepts and results concerning infinite games. We refer the reader to
Appendix A.1 of Bousquet et al. (2021) for additional references and discussion. Briefly, we consider
infinite full information two-player games, in which there exists a set Ω and a subset W ⊆ ΩN, and at
each time t = 1, 2, 3, . . . , Player 1 selects an item xt ∈ Ω, and then Player 2 selects an item yt ∈ Ω.
Player 1 wins if and only if the resulting infinite sequence z = (x1, y1, x2, y2, . . . ) satisfies z ∈W ;
otherwise, Player 2 wins.

We say that Player i has a winning strategy if there exists a function f : Ω∗ → Ω such that if in every
time t ∈ N, Player i selects item f(z′) where z′ is the finite sequence of all items selected so far (by
both players), then Player i wins the game (regardless of the selections made by the other player).

A game is called determined if precisely one of the players has a winning strategy. An infinite game
is called Gale–Stewart (or finitely-decidable) if for every w ∈W there exists t ∈ N such that for any
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infinite suffix s ∈ ΩN, w≤t ◦ s ∈W , where ‘◦’ denotes concatenation. Namely, every member of W
has a finite prefix that certifies its membership in W . We will use the following result.

Theorem 30 (Gale and Stewart 1953) Every Gale–Stewart game is determined.

Appendix B. Proof of the Fine-Grained Characterization

B.1. Upper Bound

Throughout this section, let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let d ∈ N.

Definition 31 The online learning game for H of size d, denoted Gonline
d (H), is an infinite full

information game played between two players, a learner and an adversary. At each time step
t = 1, 2, 3, . . . :

1. The adversary chooses xt = (x1t , . . . , x
d
t ) ∈ X d.

2. The learner chooses yt = (y1t , . . . , y
d
t ) ∈ {0, 1}d.

For each t ∈ N, the version space is defined by

Ht = Hx1,y1,...,xt,yt =
{
h ∈ H :

(
∀s ∈ [t] ∀i ∈ [d] : h(xis) = yis

)}
.

If there exists a time step t ∈ N such that Ht = ∅ then the learner wins the game. Otherwise, the
adversary wins the game.

Definition 32 The forbidden pattern game for H of size d, denoted Gforbidden
H (d), is an infinite

full information game played between two players, a learner and an adversary. At each time step
t = 1, 2, 3, . . . :

1. The adversary chooses xt ∈ X d.

2. The learner chooses ŷt ∈ {0, 1}d.

3. The adversary chooses yt ∈ {0, 1}d.

The adversary wins the game if the adversary’s infinite sequence
(
(xt,yt)

)
t∈N is consistent withH

and ŷt = yt for infinitely many t ∈ N. Otherwise, the learner wins the game.

In other words, the learner wins the forbidden pattern game if ŷt is eventually a ‘forbidden pattern’
that is not consistent withH.

We show that the existence of d-VCL trees characterizes the winner in the forbidden pattern game.
Note that while the online game is a Gale-Stewart game, the forbidden pattern game is not. This
makes the online game a convenient stepping stone towards this characterization, as in the following
claim.

Lemma 33 The following conditions are equivalent:

1. There does not exist an infinite d-VCL tree with respect to X that is shattered byH.

2. There exists a winning strategy for the leaner in the online game Gonline
d (H).

3. There exists a winning strategy for the leaner in the forbidden pattern game Gforbidden
d (H).

18



FINE-GRAINED DISTRIBUTION-DEPENDENT LEARNING CURVES

The proof of Lemma 33 is divided between Theorems 34 to 37.

Claim 34 There exists an infinite d-VCL tree with respect to X that is shattered byH if and only if
there exists a winning strategy for the adversary in Gonline

d (H).
Proof Assume that there exists an infinite d-VCL tree

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗ }
(7)

that is shattered byH. This implies the existence of a winning strategy for the adversary as following.
At each time step t ∈ N, the adversary selects xt = xy≤t−1

. For any choice yt ∈ {0, 1}d made by
the learner the version space remains not empty, i.e.,Ht ̸= ∅. This holds becauseH shatters T , and
so in particular there exists a hypothesis h ∈ H that is consistent with

(
(xy≤s−1

,ys)
)
s∈[t]. Hence,

the adversary wins the game when playing according to this strategy.

Conversely, assume that there exists a winning strategy for the adversary defined by a function
f : {0, 1}∗ → X d such that at any time step t ∈ N, the adversary chooses xt = f(y≤t−1), where
y≤t−1 is the sequence of choices the learner has made so far. The function f defines an infinite
d-VCL tree T as in Equation (7) given by xu = f(u). Seeing as this is a winning strategy for the
adversary,Ht ̸= ∅ for all t ∈ N and all possible choices of y≤t, and this implies that the tree T is
shattered byH.

Claim 35 In the context of Lemma 33, Item 1 ⇐⇒ Item 2.

Proof

(Item 1) ⇐⇒
(
∄ winning strategy for the adversary in Gonline

d (H)
)

⇐⇒ (Item 2) ,

where the first equivalence is by Theorem 34, and the second equivalence states that the online
learning game is determined, which is true by Theorem 30 because it is a Gale–Stewart game.

Claim 36 In the context of Lemma 33, Item 2 =⇒ Item 3.

Proof Idea Use Algorithm 1. A winning strategy for the learner in the online game empties the
version space. So eventually, for any xt chosen by the adversary, the learner can choose a yt such
that (x,y)≤t is not consistent withH.

Proof Let f :
(⋃∞

s=1X ds
)
→ {0, 1}d be a function that defines a winning strategy for the learner

in the online game Gonline
H (d). Namely, in the online game, if in each time step t ∈ N the adversary

chooses xt and the learner chooses yt = f(x1, . . . ,xt), then after a finite number of stepsHt = ∅.

Given such a function f , Algorithm 1 defines a winning strategy for the learner in the forbidden
pattern game. To see this, assume for contradiction that the strategy of Algorithm 1 is not a winning
strategy for the learner, namely, assume that there exists a sequence

(
(xt,yt)

)
t∈N that is consistent

with H and also ŷt = yt for infinitely many t when ŷ is chosen by the learner according to
Algorithm 1. This implies that the sequences ξ and η defined by the algorithm are infinite.
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Assumption: f :
(⋃∞

s=1X ds
)
→ {0, 1}d is a function that defines a winning strategy for

the learner in the online game Gonline
H (d).

FORBIDDENPATTERNLEARNER:
ξ ← empty sequence
η ← empty sequence
for t← 1, 2, . . . :

Receive xt from the adversary
Choose ŷt ← f(ξ ◦ xt)
Receive yt from the adversary
if ŷt = yt:

ξ ← ξ ◦ xt

η ← η ◦ yt

Algorithm 1: A reduction from a winning strategy for the forbidden pattern game to a winning
strategy for the online game.

We show that if the adversary in the online game plays this infinite sequence ξ and the learner plays
according to the strategy f , then the adversary wins the game, in contradiction to the assumption that
f defines a winning strategy for the learner in the online game.

Let ξ = ξ1, ξ2, . . . and η = η1, η2, . . . where ξt ∈ X d and ηt ∈ {0, 1}d for all t ∈ N. By
construction,

(
(ξt, ηt)

)
t∈N is consistent with H because it is a subsequence of

(
(xt,yt)

)
t∈N. In

particular, for any finite prefix (ξ, η)≤t there exists a hypothesis h ∈ H that is consistent with
(ξ, η)≤t. This implies that for any t ∈ N, the version space Ht = Hξ1,η1,...,ξt,ηt is not empty.
However, the sequence

(
(ξt, ηt)

)
t∈N is constructed by playing according to the strategy f , namely

ηt = f(ξ1, . . . , ξt) for all t ∈ N. We conclude that when the adversary in the online game plays ξ
and the learner plays according to f , thenHt ̸= ∅ for all t ∈ N, yielding the desired contradiction to
the choice of f .

Claim 37 In the context of Lemma 33, Item 3 =⇒ Item 1.

Proof We show the contrapositive, namely, if there exists an infinite d-VCL tree shattered byH then
there does not exist a winning strategy for the leaner in the forbidden pattern game Gforbidden

d (H)
(this is similar to one of the directions in Theorem 34). Indeed, let T be an infinite shattered tree
as in Equation (7). Then there exists a winning strategy for the adversary: at each time step t ∈ N,
the adversary chooses xt = xy≤t−1

, and chooses yt ∈ {0, 1}d to be any value such that yt ̸= ŷt.
Because the tree is shattered, for every t ∈ N and every possible yt ∈ {0, 1}d there exists h ∈ H
that is consistent with (x,y)≤t. Hence, the resulting sequence

(
(xt,yt)

)
t∈N is consistent with H

while also satisfying yt ̸= ŷt for all t ∈ N, and therefore the adversary wins the game.

Notation 38 Fix a function f as in Algorithm 1, and consider an execution of that algorithm using
f in which the adversary plays the sequence

(
(xt,yt)

)
t∈N. For each t ∈ N let ξ(t) denote the value
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of ξ at the beginning of time step t. We write

ŷt : X d → {0, 1}d

to denote the function given by

ŷt(x) = ŷ(x,y)≤t−1
(x) = f(ξ(t) ◦ x)

that determines the learner’s choice at time t, such that ŷt = ŷt(xt) for all t ∈ N.

Definition 39 Let D ∈ ∆(X d × {0, 1}d) be a distribution, and let g : X d → {0, 1}d be a function.
The forbidden pattern loss of g with respect to D is

Lforbidden
D (g) = P(X,Y )∼D[g(X) = Y ] = 1− L0-1

D (g).

The forbidden pattern loss simply captures the learners objective in the forbidden pattern game,
which is to avoid having ŷt = yt.

Claim 40 Assume VCL(H) < ∞. Let D ∈ Realizable(H) be a distribution, and let S =(
(X1, Y1), (X2, Y2), . . .

)
be an infinite sequence of i.i.d. samples from D. Consider an instance

of the forbidden pattern game where the adversary plays the sequence S, and the learner plays
according to the function ŷt = ŷS≤t−1

as in Theorem 38. Then the forbidden pattern loss satisfies

lim
t→∞

P
S∼DN

[
Lforbidden
D (ŷt) > 0

]
= 0.

Proof By the proof of Lemma 33 and the assumption that VCL(H) <∞, the strategy ŷt is a winning
strategy for the learner in the forbidden pattern game.

First, assume that S is consistent withH. Then there exists a random variable T ∈ N that depends
on S, such that

P[∀t ≥ T : ŷt(Xt) ̸= Yt] = 1. (8)

This is true because ŷt is a winning strategy for the learner. Furthermore, by construction of the
strategy ŷ, the function ŷt(x) only changes if the learner made a mistake, namely

P
[
∀t, t′ ≥ T ∀x ∈ X : ŷt(x) = ŷt′(x)

]
= 1. (9)

Hence,

lim
t→∞

P
S∼DN

[
Lforbidden
D (ŷt) = 0

]
= lim

t→∞
P

[(
lim

K→∞

1

K

K∑
k=1

1 (ŷt(Xt+k) = Yt+k)

)
= 0

]

≥ lim
t→∞

P

[(
lim

K→∞

1

K

K∑
k=1

1 (ŷt(Xt+k)) = Yt+k

)
= 0 ∧ t ≥ T

]

= lim
t→∞

P

[(
lim

K→∞

1

K

K∑
k=1

1 (ŷt+k(Xt+k)) = Yt+k

)
= 0 ∧ t ≥ T

]
(By Equation (9))

= lim
t→∞

P[t ≥ T ] = 1. (By Equation (8))
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So
lim
t→∞

P
S∼DN

[
Lforbidden
D (ŷt) > 0

]
= 1− lim

t→∞
P

S∼DN

[
Lforbidden
D (ŷt) = 0

]
= 0

as desired.

It remains to show that P[S is consistent withH] = 1. This is a consequence of the Borel–Cantelli
lemma. Seeing as D ∈ Realizable(H), there exists a sequence h1, h2, . . . ∈ H such that L0-1

D (hk) ≤
2−k for all k ∈ N. For every t, k ∈ N let Gt,k = {∀i ∈ [t] : hk(Xi) = Yi} be the event in which
S≤t is consistent with hk. Then for every t ∈ N,∑

k∈N
PS∼DN [¬Gt,k] ≤

∑
k∈N

t · L0-1
D (hk) ≤ t <∞.

By Borel–Cantelli, this implies that

∀t ∈ N : PS∼DN [∃k ∈ N : Gt,k] = 1.

In words, for every t ∈ N, with probability 1 over the choice of S, there exists k ∈ N such that hk is
consistent with S≤t. Finally,

PS∼DN [S is consistent withH] ≥ PS∼DN

[⋂
t∈N
{∃k ∈ N : Gt,k}

]
= 1,

because a countable intersection of probability 1 events has probability 1.

Definition 41 In the context of Theorem 40, let

t∗ = t∗(D) = inf

({
t ∈ N : P

S∼DN

[
Lforbidden
D (ŷt) > 0

]
≤ 1

8

}
∪ {∞}

)
.

The set of good sample sizes for D is

T good
D =

{
t ∈ [t∗] : P

S∼DN

[
Lforbidden
D (ŷt) > 0

]
≤ 1

4

}
.

Claim 42 There exists a function t̂ : (X ×{0, 1})∗ → N as follows. LetD ∈ Realizable(H). There
exist parameters C, c ≥ 0 such that for any n ∈ N,

PS∼Dn

[
t̂(S) ∈ T good

D

]
≥ 1− Ce−cn.

Proof Fix D ∈ Realizable(H). We show that Algorithm 2 satisfies the requirements of the claim.
By Theorem 40, t∗ = t∗(D) is finite and T good

D ̸= ∅.

For each t ∈ N let et = PS∼DN
[
Lforbidden
D (ŷt) > 0

]
. Hoeffding’s inequality implies that there exist

Ct, ct ≥ 0 such that P[|êt − et| > 1/16] ≤ Ct · e−ct·n. By a union bound,

P
S∼DN

[∃t ∈ [t∗] : |êt − et| > 1/16] ≤
∑
t∈[t∗]

Ct · e−ct·n ≤ C ′ · e−c′·n, (10)
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Assumption:
• S =

(
(X1, Y1), . . . , (Xn, Yn)

)
∼ Dn is a labeled training set.

• ŷt = ŷS≤t−1
is as in Theorem 38.

• m = ⌊n/2⌋.

SAMPLESIZEESTIMATOR:
Strain, Stest ← independent disjoint subsets of S of size m
for t ∈ [m]:

k ← ⌊m/t⌋
Strain
1 , . . . , Strain

k ← independent disjoint subsets of Strain of size t
for i ∈ [k]:

êt,i ← 1
(
∃(X,Y ) ∈ Stest : ŷStrain

i
(X) = Y

)
êt ← 1

k

∑
i∈[k] êt,i

t̂← inf ({t ∈ [m] : êt ≤ 3/16} ∪ {∞})
output t̂

Algorithm 2: An algorithm for finding t̂ such that with high probability, t̂ ∈ T good
D .

for some suitable C ′, c′ ≥ 0.

Assume that m ≥ t∗ and ∀t ∈ [t∗] : |êt − et| ≤ 1/16. Then in particular, êt∗ ≤ et∗ + 1/16 ≤
1/8 + 1/16 = 3/16, and therefore the output t̂ selected by Algorithm 2 satisfies t̂ ≤ t∗. Additionally,
the selected output satisfies et̂ ≤ êt̂ + 1/16 ≤ 3/16 + 1/16 = 1/4.

Combining the last paragraph with Equation (10), we conclude that there exist C, c ≥ 0 such that
with probability at least 1− Ce−cn, t̂ satisfies t̂ ≤ t∗ and et∗ ≤ et̂ ≤ 1/4, so in particular t̂ ∈ T good

D ,
as desired.

Theorem 43 (Haussler, Littlestone, and Warmuth 1994, Theorem 2.3) Let F ⊆ {0, 1}X be a
hypothesis class. There exists a function

A : (X × {0, 1})∗ ×X → {0, 1}

such that for any target function f ∈ F , any n ∈ N, and any (x1, . . . , xn) ∈ X n, A satisfies

1

|Sn|
∑
σ∈Sn

Lσ,f (A) ≤ VC(F)
n

,

where Sn is the set of all permutation functions [n] → [n], and Lσ,f (A) is the 0-1 loss of A with
respect to f and the permutation σ, namely,

Lσ,f (A) = 1
(
A
(
xσ(1), f(xσ(1)), . . . , xσ(n−1), f(xσ(n−1)), xσ(n))

)
̸= f(xσ(n))

)
.
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Claim 44 For any pattern avoidance function g : X d → {0, 1}d there exists a function Ag given by

Ag : (X × {0, 1})∗ → {0, 1}X

such that for any distribution D ∈ ∆
(
X d × {0, 1}d

)
for which Lforbidden

D (g) = 0 and for any n ∈ N,

ES∼Dn

[
L0-1
D (Ag(S))

]
≤ d

n
.

Proof This follows from Theorem 43, along with an appropriate definition of a VC class from g.

Let
F =

{
f ∈ {0, 1}X :

(
∀x ∈ X d :

(
f(x1), . . . , f(xd)

)
̸= g(x)

)}
be the set of all functions that avoid the pattern g(x) for all x ∈ X d. Note that VC(F) ≤ d because
there does not exist a shattered subset of X of cardinality d. Let Ag be the function A corresponding
to F whose existence is guaranteed by Theorem 43. Then

ES∼Dn

[
L0-1
D (Ag(S))

]
= ES∼Dn,(X,Y )∼D[1 ((Ag(S))(X) ̸= Y )]

= E(
(X1,Y1),...,(Xn+1,Yn+1)

)
∼Dn+1,σ∼U(Sn+1)

[Lσ,f (Ag)] (11)

= E(
(X1,Y1),...,(Xn+1,Yn+1)

)
∼Dn+1

 1

|Sn+1|
∑

σ∈Sn+1

Lσ,f (Ag)


≤ VC(F)

n+ 1
≤ d

n+ 1
. (By Theorem 43)

In Equation (11), f a function in F that is consistent with (X1, Y1), . . . , (Xn+1, Yn+1). f is
chosen deterministically as a function of (X1, Y1), . . . , (Xn+1, Yn+1). Such an f exists because
Lforbidden
D (g) = 0, and F contains all functions that avoid g. In Equation (11), we have used the fact

that (
S, (X,Y )

) d
=
(
(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1))

)
.

Lemma 45 If there exists a winning strategy for the leaner in the forbidden pattern game Gforbidden
d (H),

thenH is learnable with rate d/n.

Proof of Lemma 45 Let D ∈ Realizable(H). We need to show that there exist C, c ≥ 0 as follows.
For any n ∈ N, let ĥS = OPTIMALRATELEARNER(S) with S ∼ Dn. Then

ES∼Dn

[
L0-1
D

(
ĥS

)]
≤ d/n + Ce−cn.

This is established via the following analysis of Algorithm 3. By Theorem 42, there exist C0, c0 ≥ 0
such that

PS∼Dn

[
t̂ ∈ T good

D

]
≥ 1− C0 · e−c0·n. (12)
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Assumptions:
• n ∈ N, m =

⌊
n
2

⌋
.

• D ∈ Realizable(H).
• S =

(
(X1, Y1), . . . , (Xn, Yn)

)
∼ Dn is a labeled training set.

• x is the input that needs to be labeled.
• t̂ is a function as in Theorem 42.
• For any sequence z ∈

(
X d × {0, 1}d

)∗, ŷz : X d → {0, 1}d is a pattern avoidance
function as in Theorem 38.

• Ag is a learning algorithm that uses pattern avoidance function g, as in Theorem 44.

OPTIMALRATELEARNER(S):
t̂← t̂(S)
k ← ⌊m/̂t⌋
Sg, Sa ← partition of S into two disjoint sets of size at least m
S1, . . . , Sk ← partition of Sg into k disjoint sets of size at least t̂
for i ∈ [k]:

gi ← ŷSi

ai ← Agi(Sa)

ĥ←
(
x 7→ Majority(a1(x), . . . , ak(x))

)
▷ Defining a function ĥ : X → {0, 1}

output ĥ

Algorithm 3: An algorithm that achieves the optimal learning rate for any class with finite VCL
dimension.

From the definition of T good
D , if t̂ ∈ T good

D then for every i ∈ [k],

P
S∼Dn

[
Lforbidden
D (gi) > 0

]
≤ 1

4
.

By Hoeffding’s inequality, there exist C1, c1 ≥ 0 such that

P
S∼Dn

[∣∣{i ∈ [k] : Lforbidden
D (gi) > 0

}∣∣
k

≥ 3

8

∣∣∣ t̂ ∈ T good
D

]
≤ C1 · e−c1·n, (13)

where we have used the fact that if t̂ ∈ T good
D then k = Ω(n). Applying the inequality P[E] ≤

P[E|F ] + P[¬F ] to Equations (12) and (13) implies that there exist C, c ≥ 0 such that

P
S∼Dn

[∣∣{i ∈ [k] : Lforbidden
D (gi) > 0

}∣∣
k

≥ 3

8

]
≤ Ce−cn, (14)

From Theorem 44, for any i ∈ [k], if Lforbidden
D (gi) = 0 then

ES∼Dn

[
L0-1
D (Agi(S))

]
≤ d

n
. (15)
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Let B be the bad event whose probability is bounded by Equation (14). Then

ES∼Dn

[
L0-1
D

(
ĥS

)]
= ES∼Dn

[
L0-1
D

(
ĥS

)
· 1(B)

]
+ ES∼Dn

[
L0-1
D

(
ĥS

)
· 1(¬B)

]
≤ PS∼Dn [B] + ES∼Dn

[
L0-1
D

(
ĥS

)
· 1(¬B)

]
≤ Ce−cn + ES∼Dn

[
L0-1
D

(
ĥS

)
· 1(¬B)

]
, (16)

where the final inequality follows by Equation (14).

The expectation in the previous line can be bounded by

ES∼Dn

[
L0-1
D

(
ĥS

)
· 1(¬B)

]
= ES∼Dn,(X,Y )∼D[1 (Majority(a1(X), . . . , ak(X)) ̸= Y )1(¬B)]

≤ PS∼Dn,(X,Y )∼D[Majority(a1(X), . . . , ak(X)) ̸= Y ∧ ¬B]

≤ P
[( |{i : ai(X) ̸= Y }|

k
≥ 1

2

)
∧
( |{i : Lforbidden

D (gi) = 0}|
k

≥ 5

8

)]
≤ P

[( |{i : (ai(X) ̸= Y ) ∧ (Lforbidden
D (gi) = 0)}|

k
≥ 1

8

)]
≤ 8

k
· E
[
|{i : (ai(X) ̸= Y ) ∧ (Lforbidden

D (gi) = 0)}|
]

(Markov’s inequality)

=
8

k
·
∑
i∈[k]

P
[
(ai(X) ̸= Y ) ∧ (Lforbidden

D (gi) = 0)
]

≤ 8

k
·
∑
i∈[k]

d

n
=

8d

n
, (17)

where the last inequality follows from Equation (15).

Finally, plugging the bound of Equation (Markov’s inequality) into Equation (16) yields

ES∼Dn

[
L0-1
D

(
ĥS

)]
≤ Ce−cn +

8d

n
,

as desired.

B.2. Lower Bound

Lemma 46 For any set X and any hypothesis class H ⊆ {0, 1}X satisfying d = VCL(H) with
1 ≤ d <∞, there exists a distributionDX ∈ ∆(X ) such that for any (possibly randomized) learning
algorithm ĥ there exists D ∈ Realizable(H) such that the marginal distribution of D on X is DX ,
and the inequality

ES∼Dn

[
L0-1
D

(
ĥS

)]
≥ d

100 · n (18)

holds for infinitely many n ∈ N.
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B.2.1. INGREDIENTS

The proof employs a claim about indifferent d-VCL trees, which is proved using a simple lemma
from Ramsey theory.

Notation 47 For any u ∈
(
{0, 1}d

)∗, let index(u) ∈ N denote the index of u in the lexicographical
ordering of

(
{0, 1}d

)∗.

Definition 48 Let d ∈ N, let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
be an infinite d-VCL tree that is shattered byH. Recall that this implies the existence of a collection

HT =
{
hu ∈ H : u ∈

(
{0, 1}d

)∗}
of consistent functions, namely, for each u ∈

(
{0, 1}d

)∗, hu is consistent with the path from the root
to node u, as in the definition of shattering a VCL tree (Definition 21).

We say that such a collection HT is indifferent if for every v,u,w ∈
(
{0, 1}d

)∗, if index(v) <

index(u), and w is a descendant of u in the tree T , then hu(x
j
v) = hw(x

j
v) for every j ∈ [d]. In

words, the functions for all the descendants of a node that appears after v agree on v.

We say that T is indifferent if it has a setHT of consistent functions that are indifferent.

Intuitively, if T is indifferent, then the labels for a node v provide no information on the labels of a
node u that appears after v in the lexicographical order.

The claim about indifferent d-VCL trees is as follows.

Claim 49 Let d ∈ N, let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let T be an infinite
d-VCL tree that is shattered byH. Then there exists an infinite d-VCL tree T ′ that is shattered byH
that is indifferent.

Following is the lemma from Ramsey theory used for proving Theorem 49, and a generalized notion
of a trees and subtrees used in that lemma.

Definition 50 Let (X,⪯) be a partial order relation. For a, b ∈ X , we say that b is a child of a
if a ⪯ b and there does not exist c ∈ X such that a ⪯ c ⪯ b. For k ∈ N, we say that (X,⪯) is
an infinite k-ary tree if every a ∈ X has precisely k distinct children. We say that a partial order
(X ′,⪯′) is a subtree of (X,⪯) if X ′ ⊆ X , and ∀a, b ∈ X ′ : a ⪯′ b ⇐⇒ a ⪯ b.

Lemma 51 Let T = (X,⪯) be an infinite k-ary tree, and let g : X → {0, 1} be a two-coloring of
T . Then T has a monochromatic infinite k-ary subtree T ′ = (X ′,⪯′), namely there exists T ′ such
that T ′ is a subtree of T , T ′ is an infinite k-ary tree, and |g(X ′)| = |{g(a) : a ∈ X ′}| = 1.

Proof of Lemma 51 If there exists a ∈ X such that the set X ′ consisting of a and all its descendants
satisfies g(X ′) = {1}, then we are done (take T ′ to be the subtree consisting of a and all its
descendants). Otherwise, every a ∈ X has a descendant b ∈ X such that g(b) = 0. This implies that
one can construct an infinite k-ary subtree that is 0-monochromatic using the following recursive
procedure. Let r be any member of X such that g(r) = 0. Let T ′ be an empty tree, and add r to T ′.
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Subsequently, for each node n added to T ′ (including r), for each child a of n, add to T ′ an arbitrary
descendant b of a such that g(b) = 0.

Proof of Claim 49 First, observe that if T =
{
xu : u ∈

(
{0, 1}d

)∗} is an infinite d-VCL tree that

is shattered by H with a collection {hu : u ∈
(
{0, 1}d

)∗} of consistent functions, then for any
x ∈ X there exists an infinite d-VCL tree that is shattered by H that is a subtree of T and has a
collection of consistent functions that agree on x. Indeed, this follows from Lemma 51 by choosing
a two-coloring g :

(
{0, 1}d

)∗ → {0, 1} of T given by g(u) = hu(x).

Second, we use the above observation to construct an infinite d-VCL tree T ′ =
{
x′u : u ∈

(
{0, 1}d

)∗}
that is shattered byH and is indifferent. The construction works by starting with T ′ := T and then
repeatedly modifying T ′, as specified in Algorithm 4. Each modification step replaces a subtree T ′

u of
T ′ with one of its own infinite d-VCL subtrees, which is obtained by invoking the above observation
on T ′

u and x = xj
v for some j ∈ [d] and some v that precedes u. In each step, the set of nodes of

T ′ decreases (is replaced by one of its subsets), and the collection of consistent functions can be
decreased in a corresponding manner (be replaced by a subset of itself that corresponds to the new
set of nodes).

T ′ ← T
for u ∈

(
{0, 1}d

)∗ in lexicographic order:
for v ∈

(
{0, 1}d

)∗ such that index(v) < index(u):
for j ∈ [d]:

replace T ′
u with an infinite 2d-ary subtree of T ′

u that has
a collection of consistent functions that agree on xj

v

Algorithm 4: Construction of an indifferent d-VCL tree. (T ′
u denotes the infinite 2d-ary subtree of T ′

rooted at node u.)

Algorithm 4 never terminates, but it defines an infinite d-VCL tree T ′. T ′ is well-defined because
for every r ∈

(
{0, 1}d

)∗, the value of x′
r never changes after the outer loop advances past r (i.e.,

index(u) > index(r)), and so x′
r is eventually fixed. T ′ is an infinite 2d-ary subtree of T (each

replacement maintains that T ′ is an infinite 2d-ary subtree of T , so the resulting tree defined by
this process is also an infinite 2d-ary subtree of T ). This implies that it is a d-VCL tree that is
shattered byH. T ′ is indifferent by construction, because for each q, r, s ∈

(
{0, 1}d

)∗ and k ∈ [d],
if index(q) < index(r), and s is a descendant of r, then during the iteration of the innermost loop in
which u = r, v = q, and j = k, the subtree T ′

r was replaced with a subtree that has a collection of
consistent functions that agree on (x′

q)
k. In particular this implies that hr((x′

q)
k) = hs((x

′
q)

k). This
agreement continues to hold from that point onwards, because the collection of consistent functions
for descendants of hr can only decrease at each step.

When a tree is indifferent, it admits a notion of branch functions, as follows.

Notation 52 Y =
(
{0, 1}d

)N.
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Definition 53 Let d ∈ N, let X be a set, letH ⊆ {0, 1}X be a hypothesis class, and let

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
be an infinite d-VCL tree that is shattered byH with a collection

HT =
{
hu ∈ H : u ∈

(
{0, 1}d

)∗}
of consistent functions that are indifferent. Let

XT = {xi
u : u ∈

(
{0, 1}d

)∗
∧ i ∈ [d]}.

For every y ∈ Y , the branch function for y is the unique function fy : XT → {0, 1} such that for
each v ∈

(
{0, 1}d

)∗ and j ∈ [d],
fy(x

j
v) = hu(x

j
v)

for a node u such that y≤|u| = u and index(u) > index(v). In words, fy(x
j
v) is the value

assigned to xj
v by the consistent function of any node on the infinite branch y that appears after v in

lexicographic order. (Due to the indifference property, hu(x
j
v) is the same for any such node u.)

We note some consequences of the definitions of indifference and branch functions.

Claim 54 Let T be an indifferent infinite d-VCL tree with a collection of branch functions {fy}y∈Y .
Then:

1. Every branch function fy is finitely realizable, meaning that for any finite set {x1, . . . xm} ⊆ XT ,
there exists a function h ∈ H such that for all i ∈ [m], fy(xi) = h(xi).

2. Each element in T is unique. Namely, for every u,v ∈
(
{0, 1}d

)∗ and every i, j ∈ [d], if u ̸= v

or i ̸= j then xi
u ̸= xj

v.

3. Let v,u ∈
(
{0, 1}d

)∗. If index(u) > index(v) then there exists b ∈ {0, 1}d such that for
any y ∈ Y , if u = y≤|u| then fy(x

j
v) = bj for all j ∈ [d]. In words, if v precedes u in

lexicographical order, then all the branch functions for branches that pass through node u agree
on node v.

We think of Item 3 as an indifference property for branch functions. Intuitively, it means that knowing
the labels for v does not provide any information on which of the branch functions for branches that
pass through u is more likely to be the correct labeling function. The branch functions that pass
through u are indifferent to the labels of v.

Proof of Claim 54 Item 1 is immediate from the definition of fy. For Item 2, clearly if u = v then
xi
u ̸= xj

v, since otherwise node u could not have 2d children, in contradiction to T being a d-VCL
tree. Assume for contradiction that index(v) < index(u) and xi

u = xj
v. Then all consistent functions

for the children of u must agree on xj
v, but that implies that they agree on xi

u as well, which is again
a contradiction to u having 2d children. Finally, Item 3 is immediate from the definition of fy and
from the indifference of T .

The proof of the lower bound also employs the reverse Fatou’s lemma.
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Lemma 55 (Reverse Fatou; e.g., Browder 1996, Theorem 10.176) Let (Ω,F , µ) be a measure
space. Let g : Ω → R be a non-negative measurable function such that

∫
Ω g dµ < ∞. For each

n ∈ N let fn : Ω→ R be a measurable function such that ∀ω ∈ Ω : fn(ω) ≤ g(ω). Then∫
Ω
lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
Ω
fn dµ.

B.2.2. PROOF OF LOWER BOUND

Proof of Lemma 46 We will define a set of distributions

{Py}y∈Y ⊆ Realizable(H)

that depends onH such that all the distributions in the set have the same marginal distribution over X .
The proof uses the probabilistic method to show that for every learning algorithm ĥ forH there exists
y∗ ∈ Y (that depends on ĥ) such that Py∗ is a hard distribution for ĥ, namely, that Equation (18)
holds for D = Py∗ for infinitely many values of n.

The set {Py}y∈Y is defined as follows. By Theorem 49 and the assumption that VCL(H) = d, there
exist an indifferent infinite d-VCL tree

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
with a corresponding collection of branch functions

F =
{
fy ∈ {0, 1}XT : y ∈ Y

}
.

Fix such a pair (T,F). For each y ∈ Y let

Py

(
(x, y)

)
=

∑
u∈({0,1}d)

∗

(d− 1)d−index(u)−1
d∑

i=1

1
(
x = xi

u ∧ y = fy
(
xi
u

))
.

In words, Py corresponds to the following sampling procedure:

1. Sample an index k ∈ N such that ∀s ∈ N : P[k = s] = (d− 1)d−s.7

2. Let u ∈
(
{0, 1}d

)∗ be the k-th string in the lexicographical ordering of
(
{0, 1}d

)∗.

3. Sample j ∈ [d] independently and uniformly at random.

4. Output
(
xj
u, fy

(
xj
u

))
.

Note that the marginal distribution of Py on X (the distribution of xi
u) is the same for all y ∈ Y ; this

is the marginal distribution DX mentioned in the statement.

To see that Py is realizable, note that for every ε > 0 there exists kε ∈ N such that in Step 1 of the
sampling procedure, P[k > kε] ≤ ε. fy is finitely-realizable by H (Item 1 in Theorem 54), so in

6. See also “Reverse Fatou’s Lemma” in ProofWiki (2022).
7. Recall that for a geometric series,

∑∞
s=1 d

−s = 1
d−1

when d > 1, and therefore
∑∞

s=1 P[k = s] =
∑∞

s=1(d −
1)d−s = 1.
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particular there exists hε ∈ H that is consistent with Zε =
{
(xj

u, fy(x
j
u)) : index(u) ≤ kε ∧ j ∈

[d]
}

. Hence, L0-1
Py

(hε) ≤ P(x,y)∼Py
[(x, y) /∈ Zε] ≤ P[k > kε] ≤ ε.

For a fixed algorithm ĥ and for each n ∈ N, consider the following experiment:

• A value y ∈ Y is sampled from the uniform distribution U(Y), namely each bit in y is chosen
independently and uniformly at random.

• An i.i.d. training set S =
(
(X1, Y1,K1), (X2, Y2,K2), . . . , (Xn, Yn,Kn)

)
∼ Pn

y is generated
according to the sampling procedure of Steps 1 to 4, where for each i ∈ [n], Ki ∈ N is the
index selected at Step 1, and (Xi, Yi) is the output at Step 4.

• An additional test sample (X,Y,K) ∼ Py is generated in the same manner.

• A randomness value ρ is sampled for the algorithm ĥ, and then ĥ is executed with training set S
and randomness ρ and produces a hypothesis ĥS .

• ĥS is used to predict a label ĥS(X) for X .

This experiment defines a joint distribution

(y, S,X, Y,K, ρ) (19)

that is used throughout the remainder of the proof.

For any κ ∈ N, let G(κ) denote the event in which the following conditions hold:

• K = κ ≥ max{K1, . . . ,Kn}.
• |{i ∈ [n] : Ki = κ}| < d/2.

• X /∈ {Xi : i ∈ [n]}.
We make two observations concerning G(κ). The first observation is that

P[G(κ)] ≥ (d− 1)d−κ/4 (20)

when n = nκ =
⌊

dκ+1

8(d−1)

⌋
. To see this, let

C=κ = |{i ∈ [nκ] : Ki = κ}| , C>κ = |{i ∈ [nκ] : Ki > κ}| .

Then

E[C=κ] = nκ · (d− 1)d−κ ≤ dκ+1

8(d− 1)
· (d− 1)d−κ =

d

8
,

and

E[C>κ] = nκ ·
∞∑

s=κ+1

(d− 1)d−s

≤ dκ+1

8(d− 1)
· 2(d− 1)d−κ−1 =

1

4
.
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By Markov’s inequality,

P
[
C=κ ≥

d

2

]
≤ 1

4
, and P[C>κ ≥ 1] ≤ 1

4
.

By a union bound,

P
[
C=κ <

d

2
∧ C>κ = 0

]
≥ 1

2
. (21)

Hence, for any η ∈ Y ,

Py,S,X,Y,K [G(κ) | y = η]

= P[K = κ | y = η] · P
[
C=κ <

d

2
∧ C>κ = 0 | y = η

]
· P
[
X /∈ {Xi : i ∈ [nκ]}

∣∣∣ C=κ <
d

2
∧ C>κ = 0 ∧ K = κ ∧ y = η

]
≥ (d− 1)d−κ · 1

2

· P
[
X /∈ {Xi : i ∈ [nκ]}

∣∣∣ C=κ <
d

2
∧ C>κ = 0 ∧ K = κ ∧ y = η

]
(By Equation (21), (C=κ, C>κ)⊥y)

≥ (d− 1)d−κ · 1
2
· 1
2
.

For the last inequality, recall that the elements in T are unique (Item 2 in Theorem 54). Consequently,
for every i ∈ [nκ], if Ki < κ = K then Xi ̸= X . The conditions C=κ < d/2 and K = κ, and
the sampling of j ∼ U([d]) in Step 3 imply that with probability at least 1/2, X /∈ {Xi : i ∈
[nκ] ∧ Ki = κ}. This establishes Equation (20), which is our first observation about G(κ).

Our second observation is that for any κ corresponding to a node on the branch y, if G(κ) occurs
then ĥ makes an incorrect prediction with probability 1/2.

Formally, for any t ∈ N, let κy,t = index(y<t), where y = (y1,y2, . . . ) and y<t = (y1,y2, . . . ,yt−1).
In words, κy,t is the index in the lexicographic ordering of ({0, 1}d)∗ corresponding to the t-th node
in the branch y. Let ny,t = nκy,t . The second observation states that for any t ∈ N,

Ey∼U(Y)

[
P
S∼P

ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y | G(κy,t)

]]
= P

y∼U(Y),S∼P
ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y | G(κy,t)

]
=

1

2
. (22)

This probability pertains to the special case of the experiment of Equation (19) in which the number n
of samples in S depends on y, satisfying n = ny,t. It is a conditional probability given that G(κy,t)
occurred, where G(κy,t) is an event involving (y, X,X1, . . . , Xn,K,K1, . . . ,Kn). To establish
Equation (22), it suffices to show that for any t ∈ N,

P
y∼U(Y),S∼P

ny,t
y ,(X,Y,K)∼Py,ρ

[
Y = 1 | X, {Xi, Yi}i∈[ny,t], G(κy,t)

]
=

1

2
, (23)
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because the prediction ĥS(X) depends only on (X, {Xi, Yi}i∈[ny,t], ρ). Roughly, Equation (23)
follows from the indifference of {fy}y∈Y (Item 3 in Theorem 54), which states that if X is a member
of the K-th node in the tree T , then for any Xi with Ki < K there exists a bit b ∈ {0, 1} such that
for all branches y ∈ Y that contain node K, fy(Xi) = b. In particular, Y = fy(X) is a uniformly
random bit independent of {Xi, Yi = fy(Xi)}i∈[ny,t] ∪ {X} given G(κy,t).

To flesh out the argument for Equation (23) in further detail, fix κ ∈ N, (κ1, . . . , κnκ) ∈ Nnκ ,
(ξ, ξ1, . . . , ξnκ) ∈ X nκ+1, and (η1, . . . , ηnκ) ∈ {0, 1}nκ . Consider the following conditional proba-
bility of Y for a fixed t ∈ N, assuming the event being conditioned upon has a positive probability.

P

Y = 1

∣∣∣∣∣
κy,t = κ

∀i ∈ [ny,t] : Xi = ξi ∧ Yi = ηi ∧ Ki = κi
K = κy,t ≥ max{Ki : i ∈ [ny,t]}

X = ξ /∈ {Xi : i ∈ [ny,t]}



= P

fy(X) = 1

∣∣∣∣∣
κy,t = κ

∀i ∈ [ny,t] : Xi = ξi ∧ fy(Xi) = ηi ∧ Ki = κi
K = κy,t ≥ max{Ki : i ∈ [ny,t]}

X = ξ /∈ {Xi : i ∈ [ny,t]}


(Choice of Y and Yi)

= P

fy(X) = 1

∣∣∣∣∣
κy,t = κ

∀i ∈ [ny,t] : Xi = ξi ∧ Ki = κi
K = κy,t ≥ max{Ki : i ∈ [ny,t]}

X = ξ /∈ {Xi : i ∈ [ny,t]}


(Indifference of {fy}y∈Y – Item 3 in Theorem 54)

= P

yj
t = 1

∣∣∣∣∣
κy,t = κ

∀i ∈ [ny,t] : Xi = ξi ∧ Ki = κi
K = κy,t ≥ max{Ki : i ∈ [ny,t]}

X = ξ /∈ {Xi : i ∈ [ny,t]}

 =
1

2
,

where j is the index of X in the K-th node in the tree. In the last line we have used the fact that
K = κy,t implies that X is on the branch corresponding to y, and the final equality holds because yt

is a vector of uniformly random bits chosen independently of {Xi,Ki}i∈[ny,t] ∪ {X,K, κy,t} (note
that κy,t and ny,t are fully determined by t and y<t). This establishes Equation (22), our second
observation.
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The first observation is used as follows. For every y ∈ Y ,

lim sup
n→∞

n · Eρ,S∼Pn
y

[
L0-1
Py

(
ĥS

)]
≥ lim sup

t→∞
ny,t · Eρ,S∼P

ny,t
y

[
L0-1
Py

(
ĥS

)]
(If bj is a subsequence of aj then lim sup aj ≥ lim sup bj)

= lim sup
t→∞

ny,t · Pρ,S∼P
ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y

]
≥ lim sup

t→∞
ny,t · Pρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[(
ĥS(X) ̸= Y

)
∧ G(κy,t)

]
= lim sup

t→∞
ny,t · P[G(κy,t)] · P

[
ĥS(X) ̸= Y | G(κy,t)

]
≥ lim sup

t→∞

dκy,t+1

9(d− 1)
· (d− 1)d−κy,t

4
· P
[
ĥS(X) ̸= Y | G(κy,t)

]
(By Equation (20) and choice of ny,t)

= lim sup
t→∞

d

36
· P

ρ,S∼P
ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]
. (24)

To complete the proof we use our second observation and Fatou’s lemma as follows.

Ey∼U(Y)

[
lim sup
n→∞

n · Eρ,S∼Pn
y

[
L0-1
Py

(
ĥS

)]]
≥ d

36
· Ey∼U(Y)

[
lim sup
t→∞

P
ρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]]
(By Equation (24))

≥ d

36
· lim sup

t→∞
Ey∼U(Y)

[
P
ρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]]
(Fatou’s lemma (Lemma 55), P[·] ≤ 1)

=
d

36
· 1
2
=

d

72
. (By Equation (22))

This implies that there exists y ∈ Y such that

lim sup
n→∞

n · ES∼Pn
y

[
L0-1
Py

(
ĥS

)]
≥ d

72
.

By the definition of lim sup, the inequality

ES∼Pn
y

[
L0-1
Py

(
ĥS

)]
≥ d

73 · n
holds for infinitely many values of n ∈ N, as desired.

Appendix C. Result for Half-Spaces

Notation 56 Let d ∈ N. We write Sd−1 = {x ∈ Rd : ∥x∥2 = 1} to denote the unit sphere in Rd.
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Definition 57 Let d ∈ N. For any w ∈ Sd−1, let hw : Rd → {0, 1} be the half-space given by
hw(x) = 1 (⟨w,x⟩ > 0). The class of homogeneous half-spaces in Rd isHd =

{
hw : w ∈ Sd−1

}
.

Definition 58 Let d ∈ N, let H ⊆ Sd−1 be a set. We say that a set of points {x1, . . . , xm} ⊆ Rd

is openly shattered by H if for every vector y = (y1, . . . , ym) ∈ {0, 1}m, there exists an open set
Wy ⊆ H such that

∀w ∈Wy ∀i ∈ [m] : hw(xi) = yi. (25)

Lemma 59 Let d ∈ N, and let H ⊆ Sd−1 be an open set. Then there exists a set X ⊆ Sd−1 such
that |X| = d− 1 and X is openly shattered by H .

Proof Fix a point x0 in the interior of the H . Let x1, . . . , xd−1 ∈ Sd−1 be points such that
x0, x1, . . . , xd−1 is an orthonormal basis of Rd.

For each y = (y1, . . . , yd−1) ∈ {0, 1}d−1, let

w′
y = x0 + ε ·

∑
i∈[d−1]

sign(yi − 1/2) · xi

be a point with ε > 0 small enough such that wy is in the interior of H , where wy is the projection
of w′

y onto Sd−1. From the orthogonality of {x0, . . . , xd−1},

∀i ∈ [d− 1] : hwy(xi) = yi.

For each i ∈ [d− 1] and y ∈ {0, 1}, let Qi,y ⊆ Sd−1 be the set of w such that hw(xi) = y. Because
we use open half-spaces, Qi,y is open. Observe that for each y ∈ {0, 1}d−1,

Wy = H ∩
⋂

i∈[d−1]

Qi,yi

is open (as a finite intersection of open sets), and is non-empty because it contains wy.

Lemma 60 Let d ∈ N. Then VCL(Hd) ≥ d− 1.

Proof We recursively construct an infinite (d− 1)-VCL tree that is shattered byHd. Let Hλ = Sd−1.
For every s ∈ 0, 1, 2, ... do the following. For every u ∈ {0, 1}ds, note that Hu ⊆ Sd−1 is open.
Therefore, by Lemma 59, there exists xu = (x1u, . . . , x

d−1
u ) ⊆ Sd−1 of cardinality d − 1 that is

openly shattered by Hu. Namely, for each y ∈ {0, 1}d there exists an open set Wy ⊆ Hu such that
Equation (25) holds (for xi = xiu and m = d). For each y ∈ {0, 1}d, define Hu◦y = Wy.

We claim that T = {xu : u ∈
(
{0, 1}d

)∗} is a (d− 1)-VCL tree that is shattered byHd. Indeed, fix
t ∈ N and y ∈ {0, 1}td. Let w ∈ Hu. Then the choice of xu and Hu implies that

∀s ∈ [t] ∀j ∈ [d] : hw(x
j
y≤s−1

) = yjs,

as desired.
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