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We present a fast, differentially private algorithm for high-dimensional covariance-aware mean
estimation with nearly optimal sample complexity.1 Only exponential-time estimators were previ-
ously known to achieve this guarantee. Given n samples from a (sub-)Gaussian distribution with
unknown mean µ and covariance Σ, our (ε, δ)-differentially private estimator produces µ̃ such that

∥µ − µ̃∥Σ ≤ α with high probability as long as n ≳ d
α2 +

d
√

log 1/δ

αε + d log 1/δ
ε . The Mahalanobis

error metric ∥µ− µ̂∥Σ measures the distance between µ̂ and µ relative to Σ; it characterizes the error
of the sample mean. This sample complexity is close to optimal, nearly matching the known lower
bound of n ≳ d

α2 +
d
αε +

log 1/δ
ε . Our algorithm runs in time Õ(ndω−1 + nd/ε), where ω < 2.38 is

the matrix multiplication exponent. For modest privacy parameters, the running time is dominated
by the time to compute the covariance of the data.

Adapting an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthi-
nou (2021), our work introduces a pair of efficient and stable subroutines for nonprivate mean and
covariance estimation. Two key technical innovations underlie their analysis. First, we use new
notions of “outlier-free subsets” which admit efficient greedy algorithms. Second, we introduce a
technique that finds a family of outlier-free subsets across a range of outlier thresholds. Through
an elementary but subtle argument, we prove strong relationships between the families of subsets
found on any two adjacent data sets.

Our stable covariance estimator can be turned to private covariance estimation for unrestricted
subgaussian distributions. With n ≳ d3/2 samples, our estimate is accurate in spectral norm. This
is the first such algorithm using n = o(d2) samples, answering an open question posed by Alabi
et al. (2023). With n ≳ d2 samples, our estimate is accurate in Frobenius norm. This leads to a fast,
nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance

Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently.
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