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Abstract
We study the setting of multiclass boosting with a possibly large number of classes. A recent
work by Brukhim, Hazan, Moran, and Schapire, 2021, proved a hardness result for a large class of
natural boosting algorithms we call proper. These algorithms output predictors that correspond to
a plurality-vote aggregation of weak hypotheses. In particular, they showed that proper boosting
algorithms must incur a large cost that scales with the number of classes.

In this work we propose an efficient improper multiclass boosting algorithm that circumvents
this hardness result. A key component of our algorithm is based on the technique of list learning. In
list learning, instead of predicting a single outcome for a given unseen input, the goal is to provide
a short menu of predictions. The resulting boosting algorithm has sample and oracle complexity
bounds that are entirely independent of the number of classes.

A corollary of the above is that plurality-vote over a learnable class is also learnable. We
complement this result by showing that other simple aggregations over hypotheses from a learnable
class do not preserve learnability, unlike in the binary setting.
Keywords: Multiclass boosting, Compression Schemes, List learning

1. Introduction

Boosting is a fundamental methodology in machine learning that is used to boost the accuracy of
weak learning rules into a strong one. Boosting was first studied in the context of binary PAC learning
in a line of seminal works which include the celebrated Adaboost algorithm, as well an many other
algorithms with various applications (see e.g. Kearns (1988); Schapire (1990); Freund (1990); Freund
and Schapire (1997)). The classic weak learning assumption is that when given training examples,
the learner outputs a predictor from some H a class of hypothesis mapping inputs to binary labels,
such that its classification error is bounded away below 1/2. That is, it performs strictly better than
random guessing.

The weak learning assumption can be thought of as a primal condition for boosting, and is known
to be equivalent to a dual condition: the data can be approximately represented by a large-margin
weighted majority-vote over hypotheses from the class H. This equivalence can be shown via a
minimax argument (Schapire and Freund, 2012). Albeit being equivalent, the dual assumption is
perhaps less intuitive to consider. Indeed, in the context of binary boosting it is often the primal
condition that is being used.

There have been various extensions of binary boosting theory to the multiclass setting. Most
of these approaches have attempted extending the primal condition. However, it turns out that the
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original intuition of assuming the learner performs slightly better than random guessing, does not
naturally extend to the multiclass case (see Mukherjee and Schapire (2011); Schapire and Freund
(2012) and references therein for a detailed discussion).

Though it is still unclear whether one can find a simple condition capturing this notion of ”a
bit better than random”, previous works have proposed a condition that is in some sense optimal.
Specifically, Mukherjee and Schapire (2011) have formulated a weak learning assumption, with
respect to a carefully tailored loss function, which they prove to be both necessary and sufficient for
boosting. Interestingly, this condition is exactly equivalent to the immediate generalization of the
dual condition mentioned above, to the multiclass case. That is, it corresponds to the assumption that
the data can be approximated by a large-margin weighted plurality-vote over hypotheses from H.

Recently, Brukhim et al. (2021) followed a similar formulation for multiclass boosting, and
proved a hardness result for large label spaces Y . They show that a broad family of boosting
algorithms must incur a cost which scales polynomially with |Y|. Concretely, this result holds for
all boosting algorithms that are proper, i.e., they output a predictor that is also a plurality-vote over
hypotheses from H. Indeed, most boosting algorithms in the literature output a majority-vote in the
binary case, and a plurality-vote in the multiclass case.

Importantly, the hardness result holds even for target functions that can be learned efficiently
by other standard methods, such as empirical risk minimization. Although such methods may only
utilize constant running time and samples, it turns out that any proper boosting algorithm will require
running time that scales with |Y|, which could possibly be infinite. Thus, the task of multiclass
learning via proper boosting is inherently hard. Our main overarching question in this work is,

Question. Within the framework studied by Mukherjee and Schapire (2011); Brukhim et al.
(2021), can multiclass boosting be made efficient when the label space Y is large?

We deduce a strong affirmative answer to this question, by giving the first efficient improper
multiclass boosting algorithm that has sample and oracle-call complexity that are independent of |Y|.
Moreover, it has overall running time that is polynomial in the size of its input.

A key component of our improper boosting approach, is the technique of list learning (Brukhim
et al., 2022; Charikar and Pabbaraju, 2022). In list learning, instead of predicting a single outcome
for a given unseen input, the goal is to provide a short list of predictions. Here we use this technique
as an intermediate goal of the algorithm, by which effectively reducing the size of the label space.
The generalization analysis relies on sample compression arguments which result in efficient bounds
on the sample and oracle complexities. Taken together, these techniques yield an efficient multiclass
boosting algorithm.

Lastly, we discuss the closure properties of learnability over aggregations of weak hypotheses. In
the binary case, VC classes preserve learnability over various complex aggregations of hypotheses
from a base class (Alon et al., 2021). A corollary of our main result is that a plurality-vote over a
learnable class is also learnable. We then complement it by showing that other simple aggregations
over hypotheses from a learnable class do not preserve learnability.

1.1. Main results

Our main result is that there is an efficient multiclass boosting algorithm, as stated in the Theorem 1.
Our boosting algorithm is given in Section 4 (Algorithm 2).
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In this work we follow the boosting framework of Brukhim et al. (2021) which is based on
that of Mukherjee and Schapire (2011). It is a natural formulation in which the weak hypotheses
are assumed to belong to an “easy-to-learn” base class H ⊆ YX , for which the weak learner is
an agnostic PAC learner. That is, it can approximate the best hypothesis in H. The goal of the
overall boosting algorithm is to learn target concepts outside the class H, that can be represented as a
large-margin plurality-votes over hypotheses from H.

The class H consists of simple hypotheses, in line with the common supposition that weak
hypotheses are rules of thumb from an “easy-to-learn” class (Schapire and Freund, 2012; Shalev-
Shwartz and Ben-David, 2014). Thus, the weakness of the weak learner is manifested in the simplicity
of the hypotheses in the base class. The simplicity of the base class is measured via its DS dimension,
an extension of the VC-dimension to the non-binary setting (Brukhim et al., 2022). We also consider
a more general setting in which the class H is possibly a partial class, in which the concepts may
not necessarily be defined over the entire domain X . This is based on the formulation introduced by
Alon et al. (2022) for binary classification.

Theorem 1 Let ϵ, δ > 0, and H ⊆ YX a hypotheses class with DS dimension d. Let W be an
agnostic PAC learner for H. There exists a multiclass boosting algorithm B such that the following
holds. For any distribution D that is realizable by a γ-margin plurality-vote over hypotheses from H,
given access to W and a training set S ∼ Dm with

m = Õ

(
d3/2 + ln(1/δ)

γ4ϵ2

)
,

with probability 1 − δ over the sample S, applying B with T = Õ
(
ln(m)
γ2

)
calls to W , outputs a

predictor h̄ such that,

P(x,y)∼D

[
h̄(x) ̸= y

]
≤ ϵ.

1.2. Related work

Boosting was first studied in the context of binary PAC learning in a line of seminal works which
include the celebrated Adaboost algorithm (see e.g. Kearns (1988); Schapire (1990); Freund (1990);
Freund and Schapire (1997)). The boosting methodology was later adapted and applied to a wide
range of machine learning applications; such as regression tasks (Mason et al., 2000), recommenda-
tion systems (Freund et al., 2003), online learning (Beygelzimer et al., 2015; Brukhim and Hazan,
2021; Brukhim et al., 2020) etc.

In particular, there have been various extensions of boosting to the multiclass setting. These works
emphasize practical aspects and provide evidence of improved performance in different applications
(Zhai et al., 2014; Kuznetsov et al., 2014; Kégl, 2014; Appel and Perona, 2017; Beijbom et al., 2014;
Saberian and Vasconcelos, 2011).

As discussed above, our model is derived within the theoretical framework for multiclass boosting
studied by Mukherjee and Schapire (2011), and Brukhim et al. (2021). Our approach circumvents the
hardness result given by Brukhim et al. (2021) resulting in an efficient, improper, multiclass boosting
algorithm.
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2. Background

We study boosting algorithms that aim to learn a combination of hypotheses from a fixed base class
H ⊆ YX , where X is the data domain, and Y is the set of labels. In particular, we consider boosting
as the task of learning a target concept that can be presented as a plurality-vote of hypotheses from
H with margin bounded away from 0. A plurality-vote over the hypotheses class is characterized by
a distribution λ over H, and the corresponding classifier h̄ = h̄(λ) is defined by

h̄(x) := argmax
ℓ∈Y

Ph∼λ[h(x) = ℓ]. (1)

We will overload notation and also use h̄(x, ℓ) = Ph∼λ[h(x) = ℓ].

Weak learning. The boosting algorithm is given oracle access to W , a weak learner that is an
agnostic PAC learner for H. The weakness of W is manifested in the simplicity of H. Concretely, W
is defined as follows; for every distribution D over X × Y , and ϵw, δw > 0, when given a sample of
mw(ϵw, δw) examples drawn i.i.d from D, W outputs h : X → Y such that with probability 1− δw,

P(x,y)∼D[h(x) = y] ≥ sup
h∗∈H

P(x,y)∼D[h
∗(x) = y]− ϵw. (2)

The weak learner W considered in this work is defined with respect to the standard classification
loss, rather than more complex formulations given in previous work on multiclass boosting.

The assumption made by Mukherjee and Schapire (2011) corresponds to the existence of a
γ-margin plurality vote that correctly classifies the fixed training set. Later Brukhim et al. (2021)
extended this to the notion of a γ-realizable distribution. We follow the same formulation here.

Definition 2 (γ-realizable sample/distribution) Let γ ∈ (0, 1), H ⊆ YX a hypotheses class. A
sample S ⊆ X × Y is γ-realizable with respect to H if there exists a distribution λ over H
(corresponding to a plurality-vote) such that for every (x, y) ∈ S and ℓ ̸= y, it holds that,

Eh∼λ

[
σh(x, y, ℓ)

]
≥ γ,

where σh(x, y, ℓ) = 1[h(x) = y]− 1[h(x) = ℓ]. A distribution D over X × Y is γ-realizable with
respect to H if an independent sample from it is γ-realizable with probability 1.1

Overall, the end goal of the boosting algorithm is to approximate a target γ-realizable distribution
D with respect to classification loss. The booster is provided with oracle access to a learner for
the base class H, as well as ϵB, δB > 0 and m(ϵB, δB) examples drawn i.i.d. from D. The booster
makes T iterative calls to the learner and outputs a predictor h̄T such that with probability 1− δB ,

P(x,y)∼D[h̄T (x) ̸= y] ≤ ϵB. (3)

1. Our results remain valid for a relaxed definition of a γ-realizable distribution for which a γ-realizable samples are only
drawn with high probability. However, we consider the above for simplicity of presentation.
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2.1. Partial Class

We follow the formulation presented by Alon et al. (2022), extending it from binary-classification
to the multiclass setting. The idea is as follows: rather than learning a class of concepts H ⊆ YX ,
where each concept c ∈ H is a total function c : X → Y , we consider partial concept classes
H ⊆

(
Y
⋃
{⋆}
)X , where each concept c is a partial function; specifically, if x is such that c(x) = ⋆

then c is undefined at x. The support of a partial concept c : X →
(
Y
⋃
{⋆}
)

is the set supp(c) :=
c−1(Y) = {x ∈ X : c(x) ̸= ⋆}.

We next present a characterization of the PAC learnable partial concept classes. But first, we
should clarify the definition of PAC learning in this context. Let us begin with the noiseless and
realizable setting: intuitively, we want realizability to express the premise that the data drawn from
the source distribution satisfy the data-dependent assumptions captured by the partial concept class
H. This gives rise to the following definition: a distribution D on X ×Y is realizable by H if almost
surely (i.e., with probability 1), a sample S = ((xi, yi))

n
i=1 ∼ Dn (for any n) is realizable by some

partial concept h ∈ H: that is, {xi}ni=1 ⊆ supp(h), and h(xi) = yi for all i ≤ n.

Definition 3 (PAC Learnability) A partial concept class H is PAC learnable if, for every ϵ, δ ∈
(0, 1), there exists a finite m := m(ϵ, δ) ∈ N and a learning algorithm A such that, for every
distribution D on X × Y realizable w.r.t. H, for S ∼ Dm, with probability at least 1− δ,

P(x,y)∼D[A(S)(x) ̸= y] ≤ ϵ.

Note that prediction loss of a partial concept h with respect to a distribution D on X × Y , is
measured via classification error. To be clear, this means we always count the case h(x) = ⋆ as a
prediction mistake.

Lastly, we remark that throughout this work we consider the general case of partial concept
classes. That is, our weak learning assumption, given in Equation (2), as well as the distributional
assumption on γ-realizability, are assumed to hold with respect to partial concept classes. Thus, our
main results of a boosting algorithm and generalization guarantees hold in this general setting.

2.2. List PAC Learning

A key component of our Boosting algorithm is based on the concept of List PAC learning Brukhim
et al. (2022). It is easily explained as an analogy to standard PAC learning. In the PAC setting, the
goal is to provide a single prediction on an unseen data point.

In the list learning setting, the goal is instead to provide a short list of predictions. We extend the
formulation given by Brukhim et al. (2022), which applied to total classes, to the partial classes as
well. The goal of list PAC learning is to return good lists that will generalize to unseen data. We
formally define it next.

Definition 4 (p-list) A list of size p ∈ N is a function µ : X → {Y ⊆ Y : |Y | ≤ p}.

We will abuse notation and denote µ(x) at index ℓ ∈ Y by µ(x, ℓ). List PAC learning is the following
natural version of standard PAC learning.

Definition 5 (List PAC Learner) An algorithm A with sample size n and list size p is a list PAC
learner for ϵ, δ > 0 and a partial concept class H ⊆

(
Y
⋃
{⋆}
)X if for every H-realizable distribution
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D over X × Y , it holds that

PS∼Dn

[
P(x,y)∼D

[
y /∈ µS(x)

]
> ϵ
]
≤ δ,

where µS = A(S) is always a p-list.

We define the notion of list realizability, which will be useful in our analysis of the main result, given
in Section 5.

Definition 6 (List Realizability) A sample S ∈ (X × Y)n is realizable by the list µ if y ∈ µ(x) for
every (x, y) in S. A distribution D over X × Y is realizable by µ if for every m ∈ N, a random
sample S ∼ Dm is realizable by µ with probability 1.

This definition captures the ideal scenario that we have a list that completely captures the entire
unknown distribution D. This idealization is a useful sub-goal that we will tackle in the next section.

3. Weak Learner to List Learner

The starting point of our improper boosting algorithm, is a list learning procedure. In the standard
PAC setting, the goal is to provide a single prediction on an unseen data point. In list PAC learning,
the goal is to provide a short list of predictions. In the following section, we describe a simple
reduction of list learning to weak learning.

The following lemma describes a simple guarantee satisfied by the a weak learner, that is later
used to obtain a list learner.

Lemma 7 Let D denote a γ-realizable distribution with respect to H ⊆ YX . Then,

sup
h∗∈H

P(x,y)∼D[h
∗(x) = y] ≥ γ.

Note that by the weak learning guarantee, we then get the following guarantee. When given
mw(γ/2, δ) i.i.d samples from a γ-realizable distribution D, the learner W outputs h ∈ H such that
with probability at least 1− δ,

P(x,y)∼D[h(x) = y] ≥ sup
h∗∈H

P(x,y)∼D[h
∗(x) = y]− γ/2 ≥ γ/2, (4)

where the last inequality follows from Lemma 7. Since this gives rise to a guarantee which resembles
the standard weak learning condition, it is tempting to try to improve the error by directly applying
boosting. But standard boosting turns out to be useless in this context.

The traditional assumption for boosting in the binary setting requires error below 1
2 . The above

guarantee is too weak and does not meet the minimal requirements for classical boosting.
However, this guarantee is in fact sufficient for list learning, as we prove next. Denote by H̄γ the

(possibly partial) concept class of all γ-margin plurality votes. The following Lemma shows that a
weak learner for H is also a list learner for H̄γ .

Lemma 8 (Weak Learning implies List Learning) Let W be an agnostic PAC learner for H ⊆
YX , and δ > 0. Then, when given S a γ-realizable sample of size n ≥ mw(γ2 ,

δγ
log(2n)), and given

oracle access to W , Algorithm 1 outputs a list µS of size p = ⌈log(2n)/γ⌉, such that with probability
at least 1− δ, for all (x, y) ∈ S it holds that y ∈ µS(x).
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Algorithm 1 List learner A for H̄γ

Input: Data S ∈ (X × Y)n, oracle access to W learner for H.
Output: A p-list µS .

1: Set S1 := S.
2: for i = 1, ..., p do
3: Let Ui denote the uniform distribution over Si.
4: Let hi denote the hypothesis output of W on input sample S′

i ∼ Umw
i .

5: Set Si+1 to be all the points in Si which hi predicts incorrectly.
6: end for
7: Return the list defined by

µS(x) =
{
h1(x), . . . , hp(x)

}
.

Proof Observe that in every round i ∈ [p], Algorithm 1 calls W with a γ-realizable sample. Recall
that by definition, there is a plurality-vote h̄ ∈ H̄γ such that for each (x, y) ∈ Si ⊆ S, and ℓ ̸= y, it
holds that h̄(x, y) ≥ h̄(x, ℓ) + γ. Thus, Ui is a γ-realizable distribution. We get that for all i ∈ [p]
simultaneously, with probability at least 1− δw · p = 1− δ,

P(x,y)∼Ui
[hi(x) = y] ≥ γ/2, (5)

where this follows from Lemma 7 and Equation 4. Specifically, this implies that |Sp| ≤ (1− γ)pn <
e−γpn < 1. Hence, with probability 1− δ the output of Algorithm 1 has zero error over S.

4. Multiclass Boosting

The high-level idea of our boosting technique is to use the p-list to reduce the unbounded Y label-set
to a label-set of size p. The algorithm follows similarly to previous multiclass boosting techniques,
by repeated calls to the weak learner with modified weights over the training data, based on the
empirical error of the previous weak hypothesis. However, here this is all done on a converted label
space, mapping labels from Y to [p]. The output of the boosting algorithm is both a plurality-vote, as
well as the list mapping.

The following lemma is the first step in the analysis of the performance of Algorithm 2. It
determines that with sufficiently many samples and oracle calls, it will return a classifier that
correctly fits with the training data with high probability.

Lemma 9 If a training set S is γ-realizable with respect to H, then by applying Algorithm 2 with
mw ≥ mw(γp ,

δ
T ) in each round t ≤ T , with T = 8(log(m·p))

γ2 and p as in Algorithm 1, we get that
with probability at least 1− δ, it outputs h̄ that is consistent with S.

7



BRUKHIM HANNEKE MORAN

Algorithm 2 Multiclass Adaboost

Input: Data S ∈ (X × Y)m, Oracle access to W learner for H.
Output: A predictor h̄ : X 7→ Y .

1: Run Algorithm 1 over sample S to obtain p-list µ.
2: Initialize: D̃1(i, ℓ) =

1
m(p−1) if µ(xi, ℓ) ̸= yi, else set to 0, for all i ∈ [m], ℓ ∈ [p].

3: for t = 1, . . . , T do
4: Decompose D̃t into ut ∈ ∆m, v

1
t , ..., v

m
t ∈ ∆p, such that for all i ∈ [m], ℓ ∈ [p],

D̃t(i, ℓ) = ut(i)v
i
t(ℓ).

5: Define a distribution Dt ∈ ∆m×p,

Dt(i, ℓ) =

{
ut(i) · 2

p , if µ(xi, ℓ) = yi,

ut(i) · 1−vit(ℓ)
p , otherwise.

6: Draw a sample set from Dmw
t , converting each pair (i, ℓ) to

(
xi, µ(xi, ℓ)

)
.

7: Let ht denote the hypothesis output of W on the converted sample.
8: Denote yµi := ℓ for µ(xi, ℓ) = yi, and ht(xi)µ similarly, or set to ⋆ if ht(xi) /∈ µ(xi).
9: Compute the empirical edge,

γt :=
∑
i∈[m]

ht(xi)µ ̸=⋆

ut(i)
(
1
[
ht(xi)

µ = yµi
]
− Pℓ∼vit

[
ht(xi)

µ = ℓ
])
.

10: Set αt =
1
2 ln

(
1+γt
1−γt

)
. Update, for all i ∈ [m], ℓ ∈ [p]:

D̃t+1(i, ℓ) =
D̃t(i, ℓ)

Zt
×


e−αt , if ht(xi)µ = yµi ,

eαt , if ht(xi)µ = ℓ,

1, otherwise.

=
D̃t(i, ℓ) exp(−αt · σhµ

t
(xi, y

µ
i , ℓ))

Zt
,

where Zt is a normalization factor (chosen so that D̃t+1 will be a distribution).
11: end for
12: Return the weighted plurality-vote, restricted to the list output:

h̄(x) := µ
(
x , argmax

ℓ∈[p]

T∑
t=1

αt · 1[hµt (x) = ℓ]
)
.
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4.1. Adaptivity

We briefly discuss the adaptivity properties of Algorithm 2. Boosting algorithms typically do not
assume knowing the value of the margin γ and are adapted to it on the fly, as in the well-known
Adaboost algorithm Schapire and Freund (2012).

Our boosting framework requires feeding the approximate weak learner (specified in Equation
(2)) with mw := mw(ϵw, δw) examples, where parameters ϵw, δw are functions of γ. If mw is being
given as a parameter, then Algorithm 2 is indeed adaptive, and does not require knowing the true
γ. Otherwise, a value of γ needs to be estimated in order to set mw. This can be resolved by a
simple procedure which only increases the overall runtime by a logarithmic factor of O(ln(1/γ)).
For details see Appendix B.2.

5. Generalization bound

In this section we give our main result, formally stated in Theorem 1, which bounds the generalization
error of the boosting algorithm, given in Algorithm 2.

The overall bound on the sample complexity of the boosting algorithm can be stated as a function
of the following terms: error parameters ϵ, δ, margin value γ, and the sample complexity of the weak
learner mw, defined in Equation (2). Alternatively, we can bound mw via a complexity measure of
the class H, called the DS dimension.

The DS dimension was originally introduced by Daniely and Shalev-Shwartz (2014). Here
we follow the formulation given in Brukhim et al. (2022), and so we first introduce the notion of
pseudo-cubes.

Definition 10 (Pseudo-cube) A class H ⊆ Yd is called a pseudo-cube of dimension d if it is non-
empty, finite and for every h ∈ H and i ∈ [d], there is an i-neighbor g ∈ H of h (i.e., g(i) ̸= h(i)
and g(j) = h(j) for all j ̸= i).

When Y = {0, 1}, the two notions “Boolean cube” and “pseudo-cube” coincide: The Boolean
cube {0, 1}d is of course a pseudo-cube. Conversely, every pseudo-cube H ⊆ {0, 1}d is the entire
Boolean cube H = {0, 1}d. When |Y| > 2, the two notions do not longer coincide. Every copy
of the Boolean cube is a pseudo-cube, but there are pseudo-cubes that are not Boolean cubes (see
Brukhim et al. (2022) for further details). We are now ready to define the DS dimension.

Definition 11 (DS dimension) We say that S ∈ X n is DS-shattered by H ⊆ YX if H|S contains
an n-dimensional pseudo-cube. The DS dimension dDS(H) is the maximum size of a DS-shattered
sequence.

The DS dimension of a hypothesis class, dDS(H), characterizes the sample complexity required for
PAC-learning the class H. Specifically, by Brukhim et al. (2022) in order to agnostically-PAC learn
H it is sufficient to use a sample complexity of size at most,

mH(ϵ, δ) = Õ

(
dDS(H)3/2 + ln(1/δ)

ϵ2

)
. (6)

We note that although Brukhim et al. (2022) do not define the DS dimension for a partial class H, the
definition and their results are directly applicable for the more general setting as well.

We can now give a formal statement of our generalization result for Algorithm 2. This is restating
the result given in Theorem 1.
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Theorem 12 (Boosting generalizes) Let ϵ, δ > 0, D a distribution that is γ-realizable by a class
H ⊆ YX , and W a learner for H. Let S ∼ Dm be a training set for

m = Õ

(
mw

γ2ϵ2
+

ln(1/δ)

ϵ2

)
= Õ

(
d3/2 + ln(1/δ)

γ4ϵ2

)
,

where mw = O
(
mw( γ2

ln(m) ,
δγ3

ln(m)2
)
)

, and d = dDS(H). Then, with probability 1 − δ over the

sample S, applying Algorithm 2 with T = Õ
(
ln(m)
γ2

)
, outputs a predictor h̄ such that,

P(x,y)∼D

[
h̄(x) ̸= y

]
≤ ϵ.

The proof of Theorem 12 will occupy the remainder of this section.

5.1. Plurality-vote dimension

We start by upper bounding the complexity of classes of plurality votes. Specifically, here we are
interested in a complexity measures called the Natarajan dimension. The following result, which
bounds this quantity, is used in the analysis of the overall generalization bound, given in Theorem 12.

The Natarajan dimension was defined by Natarajan (1989), as follows.

Definition 13 (Natarajan dimension) Let H ⊆ YX a hypothesis class and let S ⊆ X . We say that
H N-shatters S if ∃ π1, π2 : S → Y such that ∀x ∈ S, π1(x) ̸= π2(x), and for every S′ ⊆ S there
is h ∈ H such that,

∀x ∈ S′, h(x) = π1(x), and ∀x ∈ S \ S′, h(x) = π2(x).

The Natarajan dimension dN (H), is the maximal cardinality of a set that is N-shattered by H.

The Natarajan dimension coincides with the VC-dimension for |Y| = 2. The Natarajan dimension
of a hypothesis class, dN (H), characterizes the sample complexity required for PAC-learning the
class H, up to a multiplicative factor of O(log(|Y|)). Specifically, by Ben-David et al. (1995);
Daniely et al. (2015) in order to agnostically-PAC learn H it is sufficient to use a sample complexity
of size at most,

mH(ϵ, δ) = O

(
dN (H) log(|Y|) + ln(1/δ)

ϵ2

)
. (7)

The plurality-vote class of interest is defined in the following lemma.

Lemma 14 (Natarajan of plurality-votes) Fix T, p > 0, a set of hypotheses h1, ..., hT ∈ H, and
µ a p-list. Set hµt (x) = ℓ such that µ(x, ℓ) = ht(x), or set to 0 if ht(x) /∈ µ(x). For any α ∈ RT ,
define,

fα(x) = argmax
ℓ∈[p]

T∑
t=1

αt · 1[hµt (x) = ℓ], (8)

and let F = {fα : α ∈ RT }. Then, it holds that dN (F) ≤ T .
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5.2. Hybrid compression scheme

The Boosting algorithm given in this work is best thought of as a sample compression scheme (Lit-
tlestone and Warmuth, 1986). A sample compression scheme (Definition 15) is an abstraction of a
common property to many learning algorithms. It can be viewed as a two-party protocol between a
compresser and a reconstructor. Both players know the underlying concept class H. The compresser
gets as input an H-realizable sample S. The compresser picks a small subsample S′ of S and sends
it to the reconstructor. The reconstructor outputs an hypothesis h. The correctness criteria is that h
needs to correctly classify all examples in the input sample S. We formally define it next.

Definition 15 (Sample Compression Scheme (Littlestone and Warmuth, 1986)) Let H ⊆ YX

and let r ≤ n be integers. An n → r sample compression scheme consists of a reconstruction
function

ρ : (X × Y)r → YX

such that for every H-realizable S ∈ (X × Y)n, there exists S′ ⊆ S of size r, such that for all
(x, y) ∈ S we have h(x) = y, where h = ρ(S′).

The main goal of this section is to establish that the output of the improper boosting technique
given in Algorithm 2 is a compression scheme. Classical sample compression algorithms typically
boil down to a simple one-shot encoding scheme, as given Definition 15. However, our compression
scheme is more involved and is comprised of three main components: (1) a ”list”-compression, (2)
standard compression, and (3) a ”hybrid” compression, which relies both on a standard compression
argument along with classic generalization theory via the Natarajan dimension. To accommodate this
mechanism, we first give the following variant of a sample compression scheme, for a list function
Brukhim et al. (2022).

Definition 16 (List Sample Compression Scheme) An n → r list sample compression scheme
with menu size p consists of a reconstruction function

ρ : (X × Y)r → {Y ⊆ Y : |Y | ≤ p}X

such that for every H-realizable S ∈ (X × Y)n, there exists S′ ⊆ S of size r, such that for all
(x, y) ∈ S we have y ∈ µ(x), where µ = ρ(S′).

Next, we will require the use of a hybrid sample compression scheme (see (Schapire and Freund,
2012), section 4.2.2), generalized to the multiclass setting, as given in the next Theorem.

Theorem 17 (Hybrid Compression Scheme) Let r, δ > 0. Assume there is a mapping ψ such that
for any set S′ ⊂ (X × Y)r, it outputs a class of hypotheses ψ(S′) = F ⊆ YX with Natarajan
dimension d. Let D be a distribution over X ×Y and S ∼ Dm for m ≥ r+ d. Then, for any S′ ⊊ S
of size r, and the corresponding class F = ψ(S′), with probability at least 1− δ, any f ∈ F that is
consistent with S satisfies,

P(x,y)∼D[f(x) ̸= y] ≤ O

(√
d ln(|Y|) + ln(mr/δ)

m− r

)
. (9)

We are now ready to prove the main result, given in Theorem 12. The next paragraph highlights the
assumptions that were made, followed by the proof of the theorem.

11
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Assumptions Note that in Algorithm 2, boosting by resampling is employed. In other words, we
assume on each round t that the weak learner is trained on an unweighted sample selected at random
by resampling with replacement from the entire training set according to the current distribution
Dt. We further assume for simplicity that the learning algorithm W does not employ randomization,
so that it can be regarded as a fixed, deterministic mapping from a sequence of mw unweighted
examples to a hypothesis h. Under this assumption, any hypothesis produced by the learner W can
be represented rather trivially by the very sequence of mw examples on which it was trained. We
note that our results remain valid for a randomized learner as well, yet we assume the above for
simplicity.

Proof [Proof of Theorem 12] The proof is given via a sample compression scheme, demonstrating
that the final predictor h̄ can be represented using a small number of training examples. Specifically,
we construct the sample compression scheme in 3 steps: (1) a ”list” sample compression (as in
Definition 16), which corresponds to the construction of µ, (2) a standard sample compression
scheme, which corresponds to the choice of h1, ..., hT , and (3) a hybrid sample compression, to
account for the weights α1, ..., αT generated by Algorithm 2.

First, recall the assumption that W is a deterministic mapping from examples to hypotheses.
Therefore, any weak hypothesis produced by the weak learner can be represented simply by the
sequence of mw examples on which it was trained.

Then, observe that step (1) can be shown by Lemma 8. In particular, it implies that for any
sample S, there exists a subset S′ ⊊ S of size at most r1 = mw

1 · p, where mw
1 = mw(γ2 ,

δ
2pT ) and

p = ⌈log(2m)/γ⌉ such that the following holds: There are h′1, ..., h
′
p ∈ H, that comprise the list µ,

where each h′i can be represented by mw
1 examples in S′. Moreover, for all (x, y) ∈ S, it holds that

y ∈ µ(x).
Next, for step (2) notice that the T weak hypotheses h1, ..., hT generated in Algorithm 2 can be

represented by a sequence of r2 = Tmw
2 training examples, where mw

2 = mw( γ
2p ,

δ
2pT ).

Lastly, we obtain (3) by combining Theorem 17, with Lemma 14, and Lemma 9. Specifically,
consider the class F defined in Equation (8), for the fixed hypotheses h1, ..., hT and for µ, produced
by Algorithm 2. By the above steps (1)+(2), we have that the class F is determined by at most
r = r1 + r2 examples. Moreover, by Lemma 9, since T = Õ

(
ln(m)
γ2

)
, with probability at least

1− δ/2 Algorithm 2 outputs h̄ that is consistent with the entire sample S.
Observe that h̄ corresponds to f ∈ F that is consistent with a converted sample. Specifically,

for any sample U of elements in X × Y , we define Uµ a converted sample, containing elements
in X × [p+ 1], as follows: any (x, y) ∈ U , corresponds to (x, ℓ) ∈ Uµ such that µ(x, ℓ) = y, and
otherwise (x, p + 1) ∈ Uµ. We similarly denote Dµ as the converted variant of a distribution D.
Then,

P(x,y)∼D[h̄(x) ̸= y] ≤ P(x,ℓ)∼Dµ [f(x) ̸= ℓ] ≤ O

(√
T ln(p) + ln(mr/δ)

m− r

)
, (10)

where the first inequality follows from the definition of h̄ in Algorithm 2, and last inequality follows
from Theorem 17 (with respect to class F and distribution Dµ), and using the bound on the Natarajan
dimension given in Lemma 14. To bound the sample complexity of the weak learner mw in terms of
the DS dimension of H, we plug-in Equation (7) to class H for which W is an agnostic PAC learner,
with the corresponding parameters to mw, i.e., ϵw = γ/(2p) and δw = δ/(2pT ).
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6. Closure Properties

In this section we discuss the closure properties of learnability over aggregations of weak hypotheses.
In the binary case, VC classes preserve learnability over various complex aggregations of hypotheses
from a H ⊆ {±1}X (Alon et al., 2021). The finiteness of the DS dimension characterizes learnability
of classes H ⊆ YX in the multiclass setting (see Section 5 and Brukhim et al. (2022)). Therefore,
we essentially ask - what type of aggregations over hypotheses h ∈ H can we construct such that if
H has a finite DS dimension, the resulting class of aggregation must have a finite DS dimension as
well? The first answer is a corollary of our main result, and pertains to plurality vote aggregations.

Corollary 18 Let H ⊆ YX be a hypotheses class with d = dDS(H) <∞. Let γ > 0, and denote
by H̄γ the (possibly partial) class of all γ-margin plurality votes over concepts from H. Then, it
holds that dDS(H̄γ) <∞.

The corollary above is a direct implication of our main result given in Theorem 1. We complement
it by showing that other simple aggregations over hypotheses from a learnable class do not preserve
learnability, unlike in the binary setting. Specifically, we show this is not the case for an aggregation
of dot products over two hypotheses from the base class.

Proposition 19 Let Y ⊆ {0, 1}N. There is a class H ⊆ YX with d = dDS(H) <∞ such that for

H+ =
{
h+ : x 7→ h0(x) · h1(x)

∣∣ h0, h1 ∈ H
}
,

the class of dot products over two hypotheses from H, it holds that dDS(H+) = ∞.

We note that it can be similarly shown that other simple aggregations over hypotheses from a
base class H such as sums, as well as for the dual class. Interestingly, as demonstrated by Corollary
18, this is not the case for plurality-vote aggregations.
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Appendix A. Missing proofs of Section 2.2

Proof [Proof of Lemma 7] By the assumption, there exists a distribution λ ∈ ∆H such that for any
(x, y) ∈ X × Y in the support of D, and any other label ℓ ̸= y,

Eh∼λ

[
1[h(x) = y]− 1[h(x) = ℓ]

]
= Eh∼λ

[
σh(x, y, ℓ)

]
≥ γ. (11)

Thus, for all such (x, y) we have,

Eh∼λ

[
1[h(x) = y]

]
≥ γ. (12)

By taking expectation with respect to D, and changing order of summations we get,

Eh∼λ

[
P(x,y)∼D

[
h(x) = y

]]
≥ γ. (13)

This implies that there exists a particular h ∈ H such that,

P(x,y)∼D
[
h(x) = y

]
≥ γ, (14)

which concludes the proof.
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Appendix B. Missing proofs of Section 4

Lemma 20 If a training set S is γ-realizable with respect to H, then by applying Algorithm 2 with
mw = mw(γ/p, δ/T ) in each round t, we get that with probability at least 1− δ, it yields a sequence
of empirical edges γ1, ..., γT such that for all t ≤ T , it holds that γt ≥ γ/2.

Proof Observe that for any h ∈ H,

PDt [h(x) = y] =
m∑
i=1

ut(i)

(
2

p
1[h(xi) = yi] +

∑
ℓ̸=yi

1− vit(ℓ)

p
1[h(xi) = ℓ]

)
(15)

=
2

p
PD̃t

[h(x) = y] +
1

p
(1− PD̃t

[h(x) = y])− 1

p

m∑
i=1

∑
ℓ̸=yi

D̃t(i, ℓ)1[h(xi) = ℓ]

(16)

=
1

p
PD̃t

[h(x) = y] +
1

p
− 1

p

m∑
i=1

∑
ℓ̸=yi

D̃t(i, ℓ)1[h(xi) = ℓ] (17)

=
1

p
+

1

p

(
PD̃t

[h(x) = y]−
m∑
i=1

∑
ℓ̸=yi

D̃t(i, ℓ)1[h(xi) = ℓ]

)
. (18)

Then, since for each round t, the empirical distribution Dt is a γ-realizable distribution, by the
weak learning guarantee we have with probability of at least 1− δw · T = 1− δ simultaneously for
all t,

PDt [ht(x) = y] ≥ max
h∗∈H

PDt [h
∗(x) = y]− ϵw. (19)

Then, combining with Equation (18) we get,

1

p
+
γt
p

=
1

p
+

1

p

(
PD̃t

[ht(x) = y]−
m∑
i=1

∑
ℓ̸=yi

D̃t(i, ℓ)1[h(xi) = ℓ]

)
(definition of γt)

= PDt [ht(x) = y] (Equation (18))

≥ max
h∗∈H

PDt [h
∗(x) = y]− ϵw (agnostic learning guarantee)

=
1

p
+

1

p
max
h∗∈H

(
PD̃t

[h∗(x) = y]−
m∑
i=1

∑
ℓ̸=yi

D̃t(i, ℓ)1[h
∗(xi) = ℓ]

)
− ϵw

(Equation (18))

≥ 1

p
+
γ

p
− ϵw. (γ-realizability)

Thus, by re-arranging terms and setting ϵw = γ
2p we get γt ≥ γ/2.
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B.1. Proof of Lemma 9

Proof Throughout the proof, we only consider the high-probability event in which Lemma 20 holds.
Let p be as chosen in Algorithm 1. For any x ∈ X , ℓ ∈ [p], we define:

F (x, ℓ) =
T∑
t=1

αt · 1[ht(x) = ℓ]. (20)

Unraveling the recurrence in Algorithm 2 that defines D̃t+1 in terms of D̃t gives,

D̃T+1(i, ℓ) = D̃1(i, ℓ)×
e−α1·σh1

(xi,y
µ
i ,ℓ)

Z1
× ...× e

−αT ·σ
h
µ
T
(xi,y

µ
i ,ℓ)

ZT

= D̃1(i, ℓ)×
e
−

∑T
t=1 αt·σh

µ
t
(xi,y

µ
i ,ℓ)∏T

t=1 Zt

= D̃1(i, ℓ)×
e−

∑T
t=1 αt·

(
1[ht(xi)

µ=yµi ]−1[ht(xi)
µ=ℓ]

)
∏T

t=1 Zt

= D̃1(i, ℓ)×
e−F (xi,y

µ
i )+F (xi,ℓ)∏T

t=1 Zt

.

(21)

Next, note that h̄(x) = µ
(
x , argmaxℓ∈[p]F (x, ℓ)

)
. Therefore, for any i ∈ [m] and ℓ ̸= yµi , we get

that if h̄(xi)µ = ℓ, then F (xi, ℓ) ≥ F (xi, y
µ
i ). This implies that eF (xi,ℓ)−F (xi,y

µ
i ) ≥ 1. Hence, we

have, 1[h̄(xi)µ = ℓ] ≤ eF (xi,ℓ)−F (xi,y
µ
i ). We can now bound the label-weighted error:

m∑
i=1

∑
ℓ̸=yµi

D̃1(i, ℓ) · 1[h̄(xi)µ = ℓ] ≤
m∑
i=1

∑
ℓ ̸=yµi

D̃1(i, ℓ) · eF (xi,ℓ)−F (xi,y
µ
i ) (22)

=

m∑
i=1

∑
ℓ ̸=yµi

D̃T+1(i, ℓ)

T∏
t=1

Zt (23)

=
T∏
t=1

Zt, (24)

where equation (23) uses equation (21), and equation (24) uses the fact that D̃T+1 is a distribution
which sums to 1 (over all examples and their incorrect labels). Denote,

qt =
∑
i∈[m]

ht(xi)µ ̸=⋆

∑
ℓ̸=yµi

D̃t(i, ℓ) · 1[ht(xi)µ = ℓ],

and observe that,
γt =

∑
i∈[m]

∑
ℓ̸=yµi

D̃t(i, ℓ) · 1[ht(xi)µ = yµi ]− qt.
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Then, bounding the normalization factor,

Zt =

m∑
i=1

∑
ℓ ̸=yµi

D̃t(i, ℓ) · e
−αt·σh

µ
t
(xi,y

µ
i ,ℓ) (25)

=
m∑
i=1

∑
ℓ ̸=yµi

D̃t(i, ℓ) ·
(
1[ht(xi)

µ = yµi ] · e
−αt + 1[ht(xi)

µ = ℓ] · eαt + 1[ht(xi)
µ /∈ {yµi , ℓ, ⋆}]

)
(26)

= (qt + γt) · e−αt + qt · eαt + (1− 2qt − γt), (27)

where equation (27) simply follows by the definition of qt and γt (step 5 of Algorithm 2). Observe
that by plugging our choice of αt in to equation (27) and re-arranging terms we get,

Zt = 2qt

( 1√
1− γ2t

− 1
)
+ 1− γt + γt

√
1− γt
1 + γt

. (28)

Note that the coefficient of qt is a positive term for any γt ∈ (0, 1). Therefore, since (1− 2qt −
γt) ≥ 0, and so qt ≤ 1

2 − γt
2 , we get,

Zt ≤
(
1− γt

)( 1√
1− γ2t

− 1
)
+ 1− γt + γt

√
1− γt
1 + γt

(29)

=

√
1− γt
1 + γt

+ γt

√
1− γt
1 + γt

(30)

= (1 + γt)

√
1− γt
1 + γt

(31)

=
√

1− γ2t . (32)

Lastly, plugging into equation (24) gives,

m∑
i=1

∑
ℓ̸=yµi

D̃1(i, ℓ) · 1[h̄(xi)µ = ℓ] ≤
T∏
t=1

√
1− γ2t (33)

≤ e−1/2·
∑T

t=1 γ
2
t (34)

≤ e−Tγ2/8 (35)

≤ 1

m · p
, (36)

where equation (34) follows by applying the approximation 1 + r ≤ er for all real r, equation (35)
follows by Lemma 20. Equation (36) follows by plugging T . Since D̃1 is uniform over all examples
and incorrect labels, then if the label-weighted training error of the combined classifier h̄, which is
always an integer multiple of 1/m(p− 1), is at most 1/(m · p), then the training error must in fact
be zero.
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B.2. Adaptivity

We continue the discussion on the adaptivity properties of Algorithm 2, from Section B.2. Our
boosting framework requires feeding the approximate weak learner (specified in Equation (2)) with
mw := mw(ϵw, δw) examples, where parameters ϵw, δw are functions of γ. If mw is being given as a
parameter, then Algorithm 2 is indeed adaptive, and does not require knowing the true γ. Otherwise,
a value of γ needs to be estimated in order to set mw. This issue has two occurrences: the first is in
Line 4 of Algorithm 1, where the weak learner is used to produce a list, and the second is in Line 6
of Algorithm 2, where the weak learner is used for boosting. In particular, if these occurrences of
mw are parameterized by an estimation of γ that is too large, the algorithm may fail.

This can be resolved by a simple preliminary binary-search-type procedure, in which we guess
gamma, and possible halve it based on the observed outcome. Specifically, for Algorithm 1, we can
estimate γ by making an initial guess of γ̃, and run Algorithm 1 with the parameters specified in
Lemma 8, replacing γ with γ̃. If after p = ⌈log(2m)/γ̃⌉, the training data is not realizable by the
output list, halve γ̃ and return the process. With high probability, after at most O(log(1/γ)) such
rounds, the procedure is guaranteed to succeed. Note that this does not affect the sample complexity,
or the size of the list, and only increases the overall runtime by a logarithmic factor.

The same idea can be applied to Algorithm 2. For each round t, the indication that γ̃ should
be halved is if the value γt defined in Line 9 is not strictly positive. After a positive γt has been
observed we should halve γ̃, and denote the hypothesis returned as ht (and discard previously
returned hypothesis at round t). Then, ht is guaranteed to have an empirical edge that is at least half
of the true edge of the class H for the distribution Dt. As in the previous case, this does not affect the
sample complexity, and only increases the overall runtime by a logarithmic factor of O(ln(1/γ)).

Appendix C. Missing proofs of Section 5

C.1. Proof of Theorem 17

Proof Let ϵ be equal to the quantity on the right-hand side of Equation (9). First, we fix indices
i1, ..., ir ∈ [m]. Then, given the random training set S, we denote S′ = {(xi1 , yi1), ..., (xir , yir)}.
Note that this also defines the class F . Moreover, because the training examples in S are assumed to
be independent, the training points not in S′, i.e., S′′ = S \ S′, are also independent of the class F .

Next, we apply the Fundamental Theorem of Learning Theory for the multiclass case (see
Theorem 29.3, Shalev-Shwartz and Ben-David (2014), part 1), regarding F as the hypothesis space
and S′′ as a training set of size at leastm−r and where we replace δ by δ/mr. Then, with probability
at least 1− δ/mr, this result implies that,

P(x,y)∼D[f(x) ̸= y] ≤ PS′′ [f(x) ̸= y] + ϵ = ϵ,

for every f ∈ F that is consistent with S′′, and in particular for every f ∈ F that is consistent with
the entire sample S.

Thus we have argued that for any fixed choice of indices i1, ..., ir ∈ [m], with probability
1 − δ/mr, we have P(x,y)∼D[f(x) ̸= y] ≤ ϵ for every consistent f ∈ F . Therefore, by the union
bound, since there are mr choices for these indices, this holds for all sequences of indices with
probability at least 1− δ, which concludes the proof.
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C.2. Proof of Lemma 14

Proof First we show that dN (F) ≤ dN (F ′), where F ′ is defined as follows,

F ′ =

{
f ′ : A ∈ Rp×T 7→ argmax

ℓ∈[p]
Aα

∣∣∣∣∣ α ∈ RT

}
. (37)

By definition of dN there exists a set S ⊆ X of d := dN (F) points that is N-shattered by F . Let
π1, π2 : S → Y be the corresponding functions that indicate it.

We will show that there is a set U of elements in Rp×T that is of size |S| and is N-shattered
by F ′. For each x ∈ S, define Ax ∈ Rp×T such that Ax

ℓ,t = 1[hµt (x) = ℓ]. We now show
ψ1, ψ2 : U → [p] that witness the shattering of U . For any Ax ∈ U , set ψ1(A

x) := π1(x), and
similarly set ψ2(A

x) = π2(x).
To see why U is shattered, consider any S′ ⊆ S and a corresponding f ∈ F , such that for all

x ∈ S′, f(x) = π1(x), and for all x ∈ S \ S′, f(x) = π2(x). Note that f is parameterized by some
α ∈ RT .

Then, let U ′ ⊆ U such that it contains the elements corresponding to x ∈ S′, i.e., U ′ = {Ax :
x ∈ S′}. Observe that for all A ∈ U ′, we have that argmax

ℓ∈[p]
Aα = ψ1(A), and for all A ∈ U \ U ′,

we have that argmax
ℓ∈[p]

Aα = ψ2(A). Thus, we get that dN (F) ≤ dN (F ′).

Lastly, we apply a result given in Shalev-Shwartz and Ben-David (2014), Theorem 29.7, which
states that dN (F ′) ≤ T . This concludes the proof.

Proof [Proof of Proposition 19] Let Y = {s | ∃n ∈ N. s ∈ {0, 1}n}. For X = N, let H such that for
every n ∈ N, and every n-bit binary string s ∈ {0, 1}n, there is h(s)0 ∈ H such that for all i ≤ n, it is
defined to be h(s)0 (i) = s(i) ◦ s ◦ 0, where ◦ denotes concatenation. Similarly, define h(s)1 ∈ H such
that h(s)1 (i) = s(i) ◦ ¬ s ◦ 1. That is, we have that for n-bit binary strings s, and i ≤ n, it holds that
h
(s)
0 (i) · h(s)1 (i) = s(i).

Observe that the class H is easily learnable, since for any realizable sample of constant size,
we can take any point (x, y) in the sample, remove the first and last bit and construct h(s)j by its
identifying string s in the label, and by the last bit of the label j.

However, we get that H+ ⊆ {0, 1}X is a binary class so that for every integer n ∈ N there is a
sequence of examples x1, ..., xn ∈ X that are shattered by some function in H+. Therefore, the VC
dimension of H+ is infinite. Since for binary classification the VC and DS dimension coincide, the
claim follows.
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