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Abstract
We consider mixtures of k ≥ 2 Gaussian components with unknown means and unknown covari-
ance (identical for all components) that are well-separated, i.e., distinct components have statistical
overlap at most k−C for a large enough constant C ≥ 1.

Previous statistical-query Diakonikolas et al. (2017) and lattice-based Bruna et al. (2021);
Gupte et al. (2022) lower bounds give formal evidence that, even for the special case of colinear
means, distinguishing such mixtures from (pure) Gaussians may be exponentially hard (in k).

We show that, surprisingly, this kind of hardness can only appear if mixing weights are allowed
to be exponentially small. For polynomially lower bounded mixing weights, we show how to
achieve non-trivial statistical guarantees in quasi-polynomial time.

Concretely, we develop an algorithm based on the sum-of-squares method with running time
quasi-polynomial in the minimum mixing weight. The algorithm can reliably distinguish between
a mixture of k ≥ 2 well-separated Gaussian components and a (pure) Gaussian distribution. As
a certificate, the algorithm computes a bipartition of the input sample that separates some pairs of
mixture components, i.e., both sides of the bipartition contain most of the sample points of at least
one component.

For the special case of colinear means, our algorithm outputs a k-clustering of the input sample
that is approximately consistent with all components of the underlying mixture. We obtain similar
clustering guarantees also for the case that the overlap between any two mixture components is
lower bounded quasi-polynomially in k (in addition to being upper bounded polynomially in k).

A significant challenge for our results is that they appear to be inherently sensitive to small
fractions of adversarial outliers unlike most previous algorithmic results for Gaussian mixtures.
The reason is that such outliers can simulate exponentially small mixing weights even for mixtures
with polynomially lower bounded mixing weights.

A key technical ingredient of our algorithms is a characterization of separating directions for
well-separated Gaussian components in terms of ratios of polynomials that correspond to moments
of two carefully chosen orders logarithmic in the minimum mixing weight.

1. Introduction

Gaussian mixture models (GMMs) are among the most extensively studied statistical models in a
wide range of scientific disciplines Pearson (1894); Dasgupta (1999); Ashtiani et al. (2020). Over
the course of the last two decades, a major body of research explored what kinds of algorithmic
guarantees are feasible for GMMs Dasgupta (1999); Vempala and Wang (2002); Kalai et al. (2010);
Moitra and Valiant (2010); Hsu and Kakade (2013).

Recent years have seen significant algorithmic advances along two dimensions.
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The first kinds of advances concern mixtures of a large number of spherical Gaussians, i.e.,
Gaussians with identity Id as covariance.1 Several works showed how to cluster such mixtures in
time quasi-polynomial in the number k of components under a minimum mean-separation require-
ment of O(

√
log k), which up to a constant factor matches the minimum separation that guaran-

tees clusterability of the mixture Hopkins and Li (2018); Diakonikolas et al. (2018); Kothari et al.
(2018). In a recent breakthrough, the running time has been improved to polynomial assuming a
slightly larger minimum separation of O(log1/2+c k) for any c > 0 Liu and Li (2022). Even without
any separation requirement, it is possible to compute quasi-polynomially sized covers of the set of
means Diakonikolas and Kane (2020).

The second kinds of advances concern mixtures of a small number of Gaussian components
with unknown covariances. These advances extended previous algorithmic guarantees to the robust
setting, i.e., in the presence of a small constant fraction of adversarially chosen outliers. Concretely,
it is now possible to estimate the parameters of an arbitrary mixture of Gaussian components in the
presence of such outliers Bakshi et al. (2020a); Liu and Moitra (2021); Bakshi et al. (2020b). The
running time is polynomial in the ambient dimension but (at least) exponential in the number of
components.

One of the most outstanding challenges remaining in this area is to clarify what kinds of algo-
rithmic guarantees are possible when the number of components is large and their covariances are
unknown. So far, mixtures of a large number of Gaussian components with unknown covariances
have defied comparable algorithmic progress.2 Indeed, there is formal evidence, in the form of
statistical-query Diakonikolas et al. (2017) and lattice-based Bruna et al. (2021); Gupte et al. (2022)
lower bounds, to suggest that this setting is computationally inherently harder than the spherical set-
ting. Specifically, these results suggest that even for k components with tiny statistical overlaps, say
at most 2−k, approximately clustering the components may require time exponential in k despite
the sample complexity being polynomial in d and k. Underlying this evidence is the well-known
parallel pancakes construction: Orthogonal to a randomly chosen direction u, all components of
this mixture distribution agree with a (pure) standard Gaussian distribution, and along direction u,
the components are well-separated but their mixture matches the first k moments of a (univariate)
standard Gaussian distribution.3

In this work, we show that, surprisingly, this kind of hardness can appear only in the case
that mixing weights are allowed to be exponentially small. Indeed, we develop algorithms with
substantial statistical guarantees that run in quasi-polynomial time whenever the mixing weights
are bounded from below by a polynomial. Before our work, the best known running times to
achieve these kinds of guarantees were (at least) exponential in k. We hope that our work opens up

1. Many known algorithms for mixtures of Gaussians with covariance Id also extend to somewhat more general settings,
e.g., the case that the covariances are different multiples of Id or diagonal matrices (axis-aligned case) or that case
that the covariance is upper bounded in the Loewner order by Id. For our discussion, we focus on the simplest case
(all covariances identity) because, to the best of our knowledge, these kinds of generalizations are orthogonal to the
kind of generalization we aim for in this work.

2. A notable exception is a particular smoothed model for such mixtures when the ambient dimension is large enough
Ge et al. (2015).

3. As a consequence of this construction, all means are colinear with u. We also emphasize that these means are
well-separated relative to the variance of each component in direction u. However, since this variance is very small
(about k−O(1)), the standard Euclidean distance between the components is tiny. We remark that parallel pancakes
constructions have been discussed in the literature already before Diakonikolas et al. (2017). The influential work
Brubaker and Vempala (2008) provided an efficient algorithm for the case k = 2.
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a new direction of research on efficient algorithms for mixtures of well-separated Gaussians with
polynomially lower bounded mixing weights.

Within this new direction of research, we identify the following appealing open question:

Consider a mixture of k ≥ 2 Gaussian components with unknown means
µ1, . . . , µk ∈ Rd and unknown covariance Σ ∈ Rd×d (identical for all com-
ponents) 4 and with minimum mixing weight pmin > 0. Suppose the compo-
nents are well-separated in the sense that any two distinct components have
statistical overlap at most pCmin for a large enough constant C ≥ 1.

Given a sample of size n ≥ dO(log(1/pmin)), can we compute in time poly-
nomial in n a k-clustering of the sample that is consistent with the mixture
components on all but at most a p10min fraction of the sample?

We conjecture that such an algorithm does exist. Indeed, we confirm the conjecture for the
special case that the means are colinear (Theorem 2) and under a diameter bound (Theorem 3).
In the general case, our algorithm provides a somewhat weaker guarantee and computes only a
bipartition of the sample that separates at least one pair of mixture components (Theorem 1).5

We identify an interesting challenge in the context of establishing the above conjecture that our
techniques can partially overcome: Any hypothetical algorithm establishing the above conjecture
or our (non-hypothetical) algorithms inherently cannot be robust to even a tiny fraction of outliers
(assuming the hardness of the parallel-pancakes constructions in Diakonikolas et al. (2017); Bruna
et al. (2021); Gupte et al. (2022)). The reason is that a tiny 1/k100 fraction of outliers are enough
to simulate these hard instances by adding components with appropriately decaying mixing weights
and spaced means. At the same time, many recent algorithmic approaches in the context of GMMs
are inherently tied to robustness. For example, certain kinds of identifiability proofs used in the
analysis of sum-of-squares based algorithms automatically imply robust algorithms. Also many
kinds of iteration schemes inherently require robustness for their subroutines in order to guarantee
that the next iteration can successfully deal with the errors introduced by previous iterations.

1.1. Results

Separating bipartition Suppose we are given a quasi-polynomial size sample of a mixture of k
Gaussian components with unknown means µ1, . . . , µk ∈ Rd and unknown covariance Σ ∈ Rd×d

and with minimum mixing weight at least 1/k100 such that there exists a pair of mixture components
a ̸= b with ∥Σ−1/2(µa − µb)∥ ≫

√
log k. Then, as Theorem 1 shows, it is possible to compute in

quasi-polynomial time a bipartition of the samples such that, for each side of the bipartition, there
exists a component with 0.99 of its samples assigned to it.

Theorem 1 Given a sample of size n ≥ (kd)O(log k) from a mixture of k Gaussian components
N(µ1,Σ),. . .,N(µk,Σ) with minimum mixing weight at least 1/k100 such that maxa̸=b∥Σ−1/2(µa−

4. The hard instances in all lower bounds cited above are mixtures with identical covariances. A natural motivation
to consider identical covariances is affine invariance. Algorithms for the spherical case assume that the input data
is presented in a favorable affine transformation. However, a natural property desired for algorithms operating on
geometric data is to be invariant under affine transformations Brubaker and Vempala (2008).

5. The algorithm for the general case also computes such a bipartition under the weaker assumption that there exists
a pair of mixture components that has small overlap (as opposed to all pairs having small overlap). Under this
assumption full clustering is impossible and a partial clustering seems the appropriate guarantee to aim for.
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µb)∥ ≫
√
log k, there exists an algorithm that runs in time n · dO(log k) and returns with probability

0.99 a partition of [n] into two sets C1 and C2 such that, if the true clustering of the samples is
S1, ..., Sk, then

max
i

|C1 ∩ Si|
|Si|

≥ 0.99 and max
i

|C2 ∩ Si|
|Si|

≥ 0.99 .

For general mixing weights, the same result holds with k replaced by 1/pmin in all guarantees.
See Theorem 11 for the full result.

Colinear means Suppose, in addition, that the mixture of Guassians is well-separated, i.e., the
minimum mean separation satisfies mina̸=b∥Σ−1/2(µa − µb)∥ ≫

√
log k, and that the unknown

means µ1, ..., µk are colinear. Given a quasi-polynomial number of samples from the mixture,
Theorem 2 shows that it is possible to compute in quasi-polynomial time a partition of the samples
into k clusters such that the fraction of samples assigned to incorrect clusters is polynomially small
in k.

For simplicity, in the theorem statement below we assume that all eigenvalues of Σ and all
eigenvalues of the covariance matrix of the mixture are polynomially lower and upper bounded in k
and d.

Theorem 2 Given a sample of size n ≥ (kd)O(log k) from a mixture of k Gaussian components
N(µ1,Σ), . . . , N(µk,Σ) with minimum mixing weight at least 1/k100 such that mina̸=b∥Σ−1/2(µa−
µb)∥ ≫

√
log k and µ1, ..., µk colinear, there exists an algorithm that runs in time nO(log k) and re-

turns with high probability a partition of [n] into k sets C1, ..., Ck such that, if the true clustering of
the samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤ k−O(1) .

For general mixing weights, the same result holds with k replaced by 1/pmin in all guarantees.
See Theorem 39 for the full result.

Given such a clustering, we can also recover the means and the covariance of the components
using robust Gaussian estimation algorithms Diakonikolas et al. (2019) or robust moment estimation
algorithms Kothari et al. (2018). For example, via Kothari et al. (2018), we obtain a multiplicative
approximation to the covariance (1 − k−O(1))Σ ⪯ Σ̂ ⪯ (1 + k−O(1))Σ and a ”covariance-aware”
approximation to the means ∥Σ−1/2(µ̂i − µi)∥ ≤ k−O(1).

Small radius If instead of colinear means we have bounded means ∥Σ−1/2µi∥ ≤ R with R =
polylog(k), Theorem 3 shows that it is again possible to cluster the samples with a quasi-polynomial
number of samples and quasi-polynomial time.

Theorem 3 Given a sample of size n ≥ (kd)O(R2+log k) from a mixture of k Gaussian components
N(µ1,Σ), . . . , N(µk,Σ) with minimum mixing weight at least 1/k100 such that mina̸=b∥Σ−1/2(µa−
µb)∥ ≫

√
log k and ∥Σ−1/2µi∥ ≤ R, there exists an algorithm that runs in time nO(R2+log k) and

returns with high probability a partition of [n] into k sets C1, ..., Ck such that, if the true clustering
of the samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤ k−O(1) .
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For general mixing weights, the same result holds with k replaced by 1/pmin in all guarantees.
See Theorem 47 for the full result.

As in the case of colinear means, given such a a clustering, we can recover the means and the
covariance of the components.

Unlike our results for separating bipartitions and colinear means, this result follows from a direct
reduction to a previous algorithm for spherical components Hopkins and Li (2018). Concretely, we
observe that this algorithm requires only a rough multiplicative approximation (in the SOS sense)
of a polynomial of the form q(v) = ∥Σ1/2v∥t for some t polylogarithmic in k. As we show, the
empirical moment tensor of the mixture readily provides such an approximation.

1.2. Related works

Comparision to recent algorithms based on lattice basis reduction Two independent works
(also independent and concurrent with our work) obtain polynomial-time algorithms for learning
parallel-pancakes mixtures for the case that the component variance is zero along the hidden di-
rection (infinitesimally flat pancakes)6 Zadik et al. (2022); Diakonikolas and Kane (2022). These
algorithms are based on the LLL lattice basis reduction algorithm Lenstra et al. (1982) and have a
completely different flavor than our algorithms and previous algorithms for Gaussian mixture mod-
els. However, these lattice basis reduction techniques are expected to be brittle and limited to the
case that the variance in the hidden direction is tiny.

Comparision to previous algorithms for mixtures with few components and unknown covari-
ances Like our algorithms, many recent algorithms for learning GMMs make use of the sum-of-
squares semidefinite programming hierarchy. While these algorithms and analyses have not been
designed for our setting, we find it still instructive to discuss the differences and similarities to our
algorithms.

Many of these algorithms also have in common that they employ the proof-to-algorithm paradigm,
which has become the predominant way to analyze algorithms based on sum-of-squares for sta-
tistical estimation problems. (For expositions of this paradigm, see Barak and Steurer (2014);
Raghavendra et al. (2018); Fleming et al. (2019).) This paradigm allows us to derive efficient esti-
mation algorithms in a black-box way from identifiability proofs formalized in the sum-of-squares
proof system.

As mentioned earlier, several recent algorithms consider mixtures of few well-separated Gaus-
sian components with unknown covariances in the presence of adversarial outliers Bakshi et al.
(2020a); Bakshi and Kothari (2020); Diakonikolas et al. (2020). While these algorithms have run-
ning times (at least) exponential in the number of components, their separation requirements are
also exponentially stronger than ours. Even in the case that all covariances are the same (Σ) and
the well-separatedness stems purely from the means µ1, . . . , µk, their identifiability proof requires
separation ∥Σ−1/2(µa − µb)∥2 ≥ kO(1) (e.g., (Bakshi and Kothari, 2020, Lemma 4.16)). In con-
strast, our separation condition is logarithmic in k, which is the weakest separation condition, up to
constant factors, that guarantees clusterability.

In order to deal with the kind of mild separation considered in this work, one could use one
of the (robust) algorithms for parameter learning or density estimation of general k-component
GMMs Moitra and Valiant (2010); Belkin and Sinha (2010); Bakshi et al. (2020b); Liu and Moitra

6. These works also crucially assume a mild bound on the bit complexity of the unknown means.
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(2021). While some of these works use separation between components in order to compute a rough
partial clustering of far-away components as a pre-processing step, there doesn’t appear to be a way
to further exploit milder kinds of separation. For example, Moitra and Valiant (2010) learns the
means of the mixture up to small error after projecting along a randomly chosen direction. This
kind of projection cannot be expected to preserve any kind of separation of the high-dimensional
mixture and even the sample complexity for recovering the means of this 1-dimensional mixture
may be exponential in k (as shown in Moitra and Valiant (2010)). Both of the more recent works
Bakshi et al. (2020b); Liu and Moitra (2021) end up enumerating subspaces related to the unknown
parameters of the mixture. To the best of our knowledge, their approaches cannot avoid this step
even for the kind of mildly-separated mixtures with lower bounded mixing weights considered in
our work.

2. Techniques

We consider uniform7 mixtures of k ≥ 2 well-separated Gaussian components N(µ1,Σ), . . .,
N(µk,Σ) with unknown means µ1, . . . , µk ∈ Rd and unknown covariance Σ ∈ Rd×d (identical
for all components). Here, we say components are well-separated8 if the maximum affinity9 (also
called overlap) between two distinct components is bounded by 1/kC for a large enough constant
C ≥ 1. For Gaussian components, this notion of well-separatedness means

min
a̸=b

∥∥∥Σ−1/2(µa − µb)
∥∥∥≫

√
log k . (1)

Distinguishing well-separated mixtures from (pure) Gaussians Our algorithms are informed
by investigating the parallel pancakes construction underlying Statistical Query lower bounds for
such mixtures. This construction provides a mixture of k well-separated Gaussian components that
appears to be exponentially hard to distinguish from the standard Gaussian distribution N(0, Id). In
particular, this mixture matches the first Ω(k) moments of N(0, 1).

The starting point of our algorithms is the following observation: In order for a mixture with
k ≥ 2 well-separated Gaussian components to match the first t moments of N(0, Id), the minimum
mixing weight is necessarily smaller than 2−Ω(t). In particular, if the mixture has uniform mixing
weights 1

k , then always one of its first O(log k) moments distinguishes it from a standard Gaussian.
Underlying this observation is the following simple fact: A distribution uniform over k real

values can match no more than O(log k) moments of N(0, 1). To verify this fact, let A be a ran-
dom variable uniformly distributed over k (not necessarily distinct) real values. Then, for all even
integers s ≤ t, the ratio of the normalized order-s and order-t moments of A is sandwiched in the
following way,

k−1/s ≤ (EAs)1/s

(EAt)1/t
≤ 1 . (2)

(This ratio is maximized if A is constant and minimized if P {A ̸= 0} = 1/k.) In particular for
s = log2 k, this ratio is lower bounded by 1/2. On the other hand, for B ∼ N(0, 1), the normalized

7. In this section we restrict ourselves for ease of explanation to uniform mixtures. Our technical sections state all
results for non-uniform mixtures.

8. The term ”clusterable mixture” is sometimes used in the literature to refer to mixtures with well-separated compo-
nents.

9. The affinity of two probability measures is defined to be 1 minus their statistical distance Pollard (2002).
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moments satisfy (EBr)1/r = Θ(r)1/2 and thus the ratio of normalized order-s and order-t moments
is Θ(s/t)1/2. In particular, for some choice t = Θ(s), this ratio is smaller than 1/2. It follows that
for this choice of s and t, the ratios of normalized moments differ for A and for B, which means
that either their order-s or their order-t moments differ.10

This observation about uniform mixtures of k ≥ 2 well-separated Gaussian components raises
two questions: (1) do the first O(log k) moments also allow us to identify parameters of the mixture
that are useful for clustering (in addition to allowing us to distinguish the mixture from N(0, 1)),
and (2) can we make make these results computationally efficient?

At a high level, we address question (1) by investigating ratios akin to Equation 2 between
multivariate polynomials of degree Θ(log k) derived from moments of the underlying mixture. To
address question (2), we employ the proofs-to-algorithms paradigm (cf. Barak and Steurer (2014);
Raghavendra et al. (2018)) and translate our arguments to syntactic proofs captured by the sum-of-
squares proof system. These proofs then allow us to derive efficient algorithms (with running time
(kd)O(log k) or (kd)(log k)

O(1)
) in a black-box way.

From decision to search: separating directions and ratios of moments In order to address
question (1), we consider the goal of finding a direction v ∈ Rd that may be useful for clustering
in the sense that along direction v, two of the components are significantly further apart than their
standard deviation in this direction. More formally, we say that v is a separating direction for a
mixture of k Gaussian components with unknown means µ1, . . . , µk ∈ Rd and unknown covariance
Σ ∈ Rd×d if there exist two means µa and µb such that

|⟨µa − µb, v⟩| ≫
√
log k · ∥Σ1/2v∥ . (3)

We note that this direction v witnesses that the overlap of the components N(µa,Σ) and N(µb,Σ)
is k−ω(1). Conversely, whenever the overlap of two components is that small, there exists a vector
v as above.

We aim to identify separating directions as solutions to inequalities between the following kind
of moment polynomials: For r ∈ N, we denote the degree-2r moment polynomial p2r ∈ R2r[v] by

p2r(v) := E⟨y − y′, v⟩2r , (4)

where y,y′ are two independent random vectors identically distributed according to a uniform mix-
ture of k Gaussian components N(µ1,Σ), . . . , N(µk,Σ).

Using the fact that y − y′ can be expressed as a sum of two independent random vectors,
one distributed uniformly over {µa − µb}a,b∈[k] and one distributed according to N(0, 2Σ), these
polynomials turn out to admit the following kind of approximation,

p2r(v) =
(
k−2/r · ∥Mv∥22r +Θ(r) · ∥Av∥22

)r
. (5)

Here, A =
√
2 · Σ1/2, M ∈ Rk2×d consists of the differences of means (µa − µb)a,b∈[k] ⊆

Rd as rows and Θ(r) hides a nonnegative function upper bounded O(r) and lower bounded by
Ω(r/k2/r). (Since we will only consider r ≥ log k, we have k−2/r ≥ Ω(1).) Note that the first

10. This proof shows that in order to distinguish a uniform distribution over k values from N(0, 1), it is enough to
compare two moments of order logarithmic in k where the choice of orders depends only on k but not on the particular
distribution.
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term k−2 · ∥Mv∥2r2r in (the binomial expansion of) Equation 5 corresponds to the order-r moment
of the uniform distribution over {µa − µb}a,b∈[k] and the last term Θ(r)r · ⟨v, 2Σv⟩r to the order-r
moment of N(0, 2Σ).

We claim that for an appropriate choice s ≤ t with s = Θ(t) = Θ(log k), a direction v is
separating in the sense of Equation 3 if and only p2s(v)

1/s ≳ p2t(v)
1/t. (Note that by convexity,

p2s(v)
1/s ≤ p2t(v)

1/t holds for all directions v.) Underlying this claim is the familiar fact that
for all r ≥ log k, the norm ∥Mv∥2r equals up to constant factors the maximum entry of Mv, i.e.,
maxa̸=b|⟨µa − µb, v⟩|.

Indeed, suppose that v is a separating direction. Then, p2s(v) satisfies the lower bound,

p2s(v)
1/s ≥ k−2/s ·max

a̸=b
⟨µa − µb, v⟩2 . (6)

Since s = Θ(log k), we have p2s(v)
1/s ≳ maxa̸=b⟨µa − µb, v⟩2. At the same time, p2t(v) satisfies

the upper bound,
p2t(v)

1/t ≤ max
a̸=b

⟨µa − µb, v⟩2 +O(t) · ∥Av∥22 . (7)

Since v is a separating direction and t = Θ(log k), the upper bound is dominated by the first term
maxa̸=b⟨µa − µb, v⟩2. Taking together both bounds, it follows that p2s(v)1/s ≳ p2t(v)

1/t for every
separating direction v.

Conversely, suppose that p2s(v)1/s ≳ p2t(v)
1/t and our goal is to show that v is a separating

direction. We lower bound p2t(v) using the last term in the approximation Equation 5 and apply the
upper bound from Equation 7 to p2s(v). In this way, we obtain the inequality

Ω(t) · ∥Av∥22 ≤ max
a̸=b

⟨µa − µb, v⟩2 +O(s) · ∥Av∥22 . (8)

By choosing t to be a large enough constant multiplied by s, we can ensure that the second term on
the right-hand side is negligible. In this case, v satisfies maxa̸=b⟨µa − µb, v⟩2 ≥ Ω(t) · ∥Av∥22 for
t = Θ(log k), which means that v is a separating direction.

Challenges toward efficient algorithms for clustering Disregarding computational efficiency,
the above characterization of separating directions in terms of ratios of moment polynomials sug-
gests the following simple strategy for clustering uniform mixtures of Gaussian components N(µ1,Σ),
. . ., N(µk,Σ): we find an ϵ-cover of all separating directions by brute-force searching for an ϵ-cover
of all solutions to an explicit polynomial system of the form

{
p2s(v) = 1, p2t(v) ≤ O(1)t

}
. Each

separating direction gives us some information about what pairs of sample points belong to differ-
ent components. For large enough mean separation mina̸=b∥Σ−1/2(µa − µb)∥ ≫

√
log k , we can

hope that by considering all such directions, we collect enough information to be able to extract a
clustering of the sample that is approximately consistent with the components of the mixture.

This naive approach would require access only to moments of order O(log k) (which could be
accurately estimated from a sample of size dO(log k)) but the running time is exponentially large (due
to brute-force searching for solutions to a polynomial system).

A natural strategy to make this approach computationally efficient is the sum-of-squares hier-
archy of semidefinite programming relaxations for systems of polynomial inequalities. Indeed, we
can show that the above characterization of separating directions is faithfully captured by the sum-
of-squares proof system underlying the sum-of-squares hierarchy. Unfortunately, it appears to be
challenging to carry out the rounding step in full generality, i.e., extracting from the sum-of-squares
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hierarchy enough separating directions to separate all pairs of components and obtain a complete
clustering of the sample.11

However, we can show that using the sum-of-squares hierarchy, it is possible to separate at least
some pairs of components of the mixture by what we call a separating polynomial. Furthermore,
for the special case of well-separated components with colinear means, we provide a more careful
analysis and show that in this case the sum-of-squares hierarchy does offer enough information to
extract a complete clustering.

Efficiently computing a separating polynomial As discussed above, we consider the goal of
separating some pairs of components of a mixture (as opposed to the stronger goal of separating all
pairs of components as would be required for a complete clustering). One way to achieve this goal is
by finding a separating direction in the sense of Equation 3. In light of our previous characterization
of separating directions, a natural starting point is a sum-of-squares relaxation for a polynomial
system A of the form

{
p2s(v) = 1, p2t(v) ≤ O(1)t

}
for appropriate s ≤ t satisfying s = Θ(t) =

Θ(log k).
Unfortunately, the structure of the set of separating directions does not appear to be amenable

to the usual kind of rounding techniques for sum-of-squares relaxations, and it appears to be chal-
lenging to extract a single separating direction. To overcome this obstacle, we allow our rounding
procedure to output a more general object, called a separating polynomial, that still allows us to
separate some pairs of mixture components.

Recall that a solution to a sum-of-squares relaxation for a polynomial system A can be inter-
preted as pseudo-distribution D that behaves in certain ways like a distribution supported on vectors
satisfying A. More concretely, the pseudo-distribution D satsifies (in expectation) all polynomial
inequalities that can be derived syntactically from A by a low-degree sum-of-squares proof (see
Section A, especially Definition 4). The previously discussed characterization of separating direc-
tions in terms of the polynomial system A turns out to be captured by low-degree sum-of-squares
proofs. Concretely, we can derive from A via low-degree sum-of-squares proof the polynomial
inequality12 ∥Mv∥2s2s ≥ (C log k)s · ∥Av∥2s2 (corresponding to Equation 3). Here, C ≥ 1 is an
absolute constant that we can choose as large as we like. Consequently, the pseudo-distribution D
satisfies this inequality in expectation, ẼD(v)∥Mv∥2s2s ≥ (C log k)s · ẼD(v)∥Av∥2s2 . By linearity of
(pseudo-)expectation, there exist distinct components a ̸= b such that

Ẽ
D(v)

⟨µa − µb, v⟩2s ≥ k−2 Ẽ
D(v)

∥Mv∥2s2s ≥ (k−2/s · C log k)s · Ẽ
D(v)

∥Av∥2s2 . (9)

We extract the following polynomial from this pseudo-distribution,

q(u) := Ẽ
D(v)

⟨u, v⟩2s . (10)

11. In the context of estimation problems, rounding procedures for sum-of-squares hierarchies tend to work well if there
is a unique target solution (e.g., a planted sparse vector in a random subspace) or if there is a small number of target
solutions (e.g., the components of a low-rank tensor). One could try to simplify the structure of the set of separating
directions, e.g., by focusing on ”extreme” separating directions of the form v = Σ−1(µa−µb). Unfortunately, we do
not know the same kind of characterization in terms of polynomial inequalities for such a simplified set of separating
directions.

12. Here, we reuse the notation introduced in the context of Equation 5.

9
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By construction, q(µa − µb) equals the left-hand side of Equation 9. At the same time, letting
y,y′ ∼ N(µc,Σ) and w ∼ N(0, Id), we have

E q(y − y′) = E q(Aw)

= Ẽ
D(v)

E⟨v,Aw⟩2s

= (2s− 1)!! · Ẽ
D(v)

∥Aw∥2s2

Consequently, since s = Θ(log k) and (2s− 1)!! ≤ O(s)s,

q(µa − µb)

E q(Aw)
≥ (k−2/s · C log k)s

(2s− 1)!!
≥ Ω(C)s . (11)

For an appropriate choice of C ≥ 1, the right-hand side above is at least 10s. Since by convexity
E q(µa − µb +Aw) ≥ q(µa − µb), we obtain the following inequality,

E q(µa − µb +Aw)

E q(Aw)
≥ 10s . (12)

This inequality shows that the polynomial q(u) separates the components N(µa,Σ) and N(µb,Σ)
in the following sense: The numerator of Equation 12 is the typical value of q(y − y′) for y ∼
N(µa,Σ) and y′ ∼ N(µb,Σ). The denominator of Equation 12 is the typical value of q(y−y′) for
y,y′ ∼ N(µc,Σ) and all c ∈ [k]. Equation 12 asserts that the gap between these values is at least
10s.

The polynomial q(u) can be used to compute a bipartition of the sample that separates at least
one pair of components. Note that q(u)1/2s = (ẼD(v)⟨u, v⟩2s)1/2s satisfies the triangle inequality
(see Lemma 4.5 in Barak and Steurer (2014)). Then we can define the distance function dq(x, y) =
q(x− y)1/2s and use it in a greedy algorithm in order to obtain the bipartition.

Efficiently computing a clustering for colinear means For the case that the means are colinear,
we consider a strengthening of our previous approach. Instead of trying to solve a polynomial sys-
tem of the form

{
p2s(v) = 1, p2t(v) ≤ O(1)t

}
, we aim to solve the following related optimization

problem:

minimize
p2t(v)

1/t

p2s(v)1/s
subject to v ∈ Rd. (13)

Algorithmically, we again employ an appropriate sum-of-squares formulation.
To simplify some of our arguments, it is useful to preprocess the mixture and bring y − y′

in isotropic position so that 1
k2
∑k

a,b=1(µa − µb)(µa − µb)
T + 2Σ = Id. (Here, y,y′ are two

independent random vectors distributed according to the mixture.) For every vector v, we denote
by v∥ its orthogonal projection into the span of {µa − µb}a,b∈[k] and by v⊥ = v − v∥ its projection
into the orthogonal complement.

Every optimizer v of Equation 13 necessarily satisfies,

p2t(v)
1/t

p2s(v)1/s
≤ p2t(v

∥)1/t

p2s(v∥)1/s
≤ O(1) . (14)

10



QUASI-POLYNOMIAL TIME GUARANTEES FOR NON-SPHERICAL GAUSSIAN MIXTURES

Here, the upper bound O(1) hides an absolute constant whenever we have well-separated compo-
nents and log k ≤ s ≤ t. The argument for this upper bound is similar to our discussion for the
characterization of separating directions.

We can also use the decomposition v = v∥ + v⊥ for our previous approximation Equation 5 of
moment polynomials,

p2r(v) =

(
k−2/r ·

∥∥∥Mv∥
∥∥∥2
2r

+Θ(r) ·
(∥∥∥Av∥∥∥∥2

2
+
∥∥∥v⊥∥∥∥2

2

))r

. (15)

Here, we use that after bringing y − y′ in isotropic position, the covariance Σ acts as identity
orthogonal to the span of {µa − µb}a,b∈[k]. In particular, Av = Av∥ + v⊥ and ∥Av∥22 = ∥Av∥∥22 +
∥v⊥∥22.

An immediate consequence of Equation 15 is the following representation of the ratio we seek
to minimize,

p2t(v)
1/t

p2s(v)1/s
=

p2t(v
∥)1/t +Θ(t) · ∥v⊥∥22 ±Θ(t) · ∥Av∥∥22

p2s(v∥)1/s +Θ(s) · ∥v⊥∥22 ±Θ(s) · ∥Av∥∥22
. (16)

We claim that for an appropriate choice of s and t Equation 16 and Equation 14 together imply that
∥v⊥∥ ≲ ∥Av∥∥. Indeed, for the sake of a contradiction, suppose ∥v⊥∥ ≫ ∥Av∥∥ so that the terms
involving ∥Av∥∥ in Equation 16 are negligible. But then, if we choose t as s times a sufficiently

larger constant factor, the remaining ratio p2t(v∥)1/t+Θ(t)·∥v⊥∥22
p2s(v∥)1/s+Θ(s)·∥v⊥∥22

is strictly bigger than p2t(v∥)1/t

p2s(v∥)1/s
,

which contradicts our optimality condition Equation 14. (For this argument, we are also using the
previous upper bound p2t(v∥)1/t

p2s(v∥)1/s
≤ O(1) from Equation 14.)

It turns out that in order to compute a clustering for colinear means, it suffices to find a vector
satisfying ∥v⊥∥ ≲ ∥Av∥∥.

We note that the algorithm we present in Section C and Section D to find such a direction v fol-
lows a somewhat different strategy and minimizes ratios of the form ∥v∥22/p2s(v)1/s or p2t(v)1/t/∥v∥22
via appropriate sum-of-squares formulations.
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Appendix A. Preliminaries

In this section we introduce sum-of-squares proofs and their duals, pseudo-distributions and pseudo-
expectations.

Sum-of-squares proofs.

Definition 4 (Sum-of-squares proofs) Let p(x) and q1(x), ..., qm(x) be polynomials over x ∈ Rn

and let A = {q1(x) ≥ 0, ..., qm(x) ≥ 0} be a system of polynomial inequalities. A sum-of-squares
proof of degree t that p(x) ≥ 0 under A is an identity of the form

p(x) =
∑

S⊆[m]

(
mS∑
i=1

rS,i(x)
2

)∏
j∈S

qj(x) (17)

for polynomials rS,i(x), such that maxS,i deg(rS,i(x)
2
∏

j∈S qj(x)) ≤ t.

If there exists a sum-of-squares proof of degree t that p(x) ≥ 0 under A, we write A t
x
p(x) ≥

0. We also use the notation A t
x
p(x) ≥ q(x) if A t

x
p(x) − q(x) ≥ 0 and A t

x
p(x) ≤ q(x) if

A t
x
q(x)− p(x) ≥ 0. If A = ∅, we omit it altogether and write t

x
p(x) ≥ 0. We also sometimes

omit A if it is clear from context what axioms are assumed. We note that if A t
x
p(x) ≥ q(x) and

A t
s
q(x) ≥ r(x), then A t

x
p(x) ≥ r(x), which allows writing chains of inequalities of the form

A t
x
p(x) ≥ s(x) ≥ r(x).

Pseudo-distributions and pseudo-expectations. We begin by defining pseudo-distributions and
pseudo-expectations.

Definition 5 (Pseudo-distributions) A pseudo-distribution D of degree t is a function from Rn to
R with finite support such that

∑
x∈supp(D)D(x) = 1 and

∑
x∈supp(D)D(x)p(x)2 ≥ 0 for all

polynomials p(x) with deg(p(x)2) ≤ t.

Definition 6 (Pseudo-expectations) Given a pseudo-distribution D of degree t, the associated
pseudo-expectation ẼD(x) is defined by ẼD(x)f(x) =

∑
x∈supp(D)D(x)f(x) for a function f(x).

We now define the notion of a pseudo-distribution that satisfies a set of polynomial inequalities.

14
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Definition 7 (Constrained pseudo-distributions) A pseudo-distribution D of degree t satisfies the
set of polynomial inequalities A = {q1(x) ≥ 0, ..., qm(x) ≥ 0} if, for all S ⊆ [m], it holds that
ẼD(x)r(x)

2
∏

j∈S qj(x) ≥ 0 for all polynomials r(x) such that deg(r(x)2
∏

j∈S qj(x)) ≤ t.
D approximately satisfies A up to error η if, under the same conditions as in the previous case,

ẼD(x)r(x)
2
∏

j∈S qj(x) ≥ −η∥r(x)2∥2
∏

j∈S ∥qj(x)∥2, where ∥p(x)∥2 denotes the 2-norm of the
vector of coefficients of the polynomial p(x).

The connection between pseudo-distributions and sum-of-squares proofs is made in Fact 8,
which shows that if a pseudo-distribution satisfies a set of polynomial inequalities, then it also
satisfies any other polynomial inequalities derived from this set through sum-of-squares proofs.

Fact 8 If D is a pseudo-distribution of degree t that satisfies A and if A s
x

p(x) ≥ 0, then
ẼD(x)r(x)

2p(x) ≥ 0 for all polynomials r(x) such that deg(r(x)2p(x)) ≤ t. If D approximately
satisfies A up to error η, then, under the same conditions as in the previous case, ẼD(x)r(x)

2p(x) ≥
−η∥r(x)2∥2∥p(x)∥2.

Finally, Fact 9 shows that there exists an algorithm with time complexity (n+m)O(t) to compute
a pseudo-distribution of degree t that approximately satisfies A up to error 2−nΘ(t)

.

Fact 9 For x ∈ Rn, if A = {q1(x) ≥ 0, ..., qm(x) ≥ 0} is feasible and explicitly bounded 13 ,
then there exists an algorithm that runs in time (n+m)O(t) and computes a pseudo-distribution of
degree t that approximately satisfies A up to error 2−nΘ(t) 14.

Appendix B. Separating polynomial

Setting. We consider a mixture of k Gaussian distributions N(µi,Σ) with mixing weights pi for
i = 1, ..., k, where µi ∈ Rd, Σ ∈ Rd×d is positive definite, and pi ≥ 0 and

∑k
i=1 pi = 1. Let

pmin = mini pi.
The distribution satisfies mean separation for at least one pair of means: for some Csep > 0,

there exist a, b ∈ [k] such that ∥∥∥Σ−1/2(µa − µb)
∥∥∥2 ≥ Csep log p

−1
min.

Theorem 10 (Separating polynomial algorithm) Consider the Gaussian mixture model defined
above, with Csep larger than some universal constant. Let n0 = (p−1

mind)
O(log p−1

min). Given a sample
of size n ≥ n0 from the mixture, there exists an algorithm that computes in time n · dO(log p−1

min) a
d-variate degree-O(log p−1

min) polynomial q such that with high probability the following two prop-
erties hold. Let s = ⌈log p−1

min⌉. Then:

• There exist distinct a, b ∈ [k] such that the independent random vectors y ∼ N(µa,Σ)
and y′ ∼ N(µb,Σ) satisfy

P
{
q(y − y′) ≥ 1

20s

}
≥ 0.99999.

13. Explicit boundedness means that A contains a constraint of the form x2
1 + ... + x2

n ≤ B. In our applications it is
possible to add such a constraint with B large enough such that the constraint is always satisfied by the intended
solution.

14. In our applications this error is negligible.
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• For all a ∈ [k], the independent random vectors y,y′ ∼ N(µa,Σ) satisfy

P
{
q(y − y′) ≤ 1

200s

}
≥ 0.99999.

Theorem 11 (Separating bipartition algorithm) Consider the Gaussian mixture model defined
above, with Csep larger than some universal constant. Let n0 = (p−1

mind)
O(log p−1

min). Given a sample
of size n ≥ n0 from the mixture, there exists an algorithm that runs in time n · dO(log p−1

min) and
returns with probability 0.99 a partition of [n] into two sets C1 and C2 such that, if true clustering
of the samples is S1, ..., Sk, then

max
i

|C1 ∩ Si|
|Si|

≥ 0.99 and max
i

|C2 ∩ Si|
|Si|

≥ 0.99.

We introduce some further notation for this section. Let the random variable z ∈ Rd be dis-
tributed according to the difference of two independent samples from the mixture. Then z is dis-
tributed according to a mixture of Gaussians N(µi − µj , 2Σ) with mixing weights pipj for all
i, j ∈ [k]. Let Σz = 2Σ, let µz be µi − µj with probability pipj , and let wz ∼ N(0,Σz). Then we
also have that z = µz +wz , with µz and wz independent of each other.

B.1. Exact moment results

The main ingredient of the algorithm is Lemma 12, stated below. This lemma shows that, given a
pseudo-expectation that satisfies the moment lower bound E⟨z, v⟩2s ≥ cs and the moment upper
bound E⟨z, v⟩2t ≤ Ct for s ≪ t, it is possible to construct a separating polynomial. Note that
the constraints that the pseudo-expectation satisfies are expressed in terms of exact moments of the
distribution, to which we do not have access. Finite sample considerations are discussed starting
with Section B.2.

Lemma 12 (Separating polynomial from pseudo-expectation) Let c > 0 and C ≥ 0. Let s ≥ 1
and t ≥ 50000Cs/c integers. Given a pseudo-expectation Ẽ of degree at least 2t over a variable
v ∈ Rd that satisfies {E⟨z, v⟩2s ≥ cs,E⟨z, v⟩2t ≤ Ct}, let q(u) = ⟨Ẽv⊗2s, u⊗2s⟩. Then:

• There exist distinct a, b ∈ [k] such that the independent random vectors y ∼ N(µa,Σ)
and y′ ∼ N(µb,Σ) satisfy

P
{
q(y − y′) ≥ 1

2

( c

16

)s}
≥ 0.99999 .

• For all a ∈ [k], the independent random vectors y,y′ ∼ N(µa,Σ) satisfy

P
{
q(y − y′) ≤ 320

(
4Cs

t

)s}
≥ 0.99999 .

In what follows, we prove a number of supporting lemmas, after which we prove Lemma 12.
Then, we state and prove Lemma 17, which shows that there exists a vector v ∈ Rd which satisfies
the constraints required by Lemma 12.

We proceed with the supporting lemmas. Lemma 13 and Lemma 14 give sum-of-squares bounds
on the moments of the mixture.
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Lemma 13 (Moment upper bound) For t ≥ 1 integer,

2t
v E⟨z, v⟩2t ≤ 22t−1E⟨µz, v⟩2t + 22t−1(v⊤Σzv)

ttt.

Proof

2t
v E⟨z, v⟩2t = E(⟨µz, v⟩+ ⟨wz, v⟩)2t

(1)

≤ 22t−1E⟨µz, v⟩2t + 22t−1E⟨wz, v⟩2t

(2)

≤ 22t−1E⟨µz, v⟩2t + 22t−1(v⊤Σzv)
ttt

where in (1) we used Lemma 52 and in (2) we used that E⟨wz, v⟩2t = (v⊤Σzv)
t(2t − 1)!! ≤

(v⊤Σzv)
ttt.

Lemma 14 (Moment lower bound) For t ≥ 1 integer,

2t
v E⟨z, v⟩2t ≥ E⟨µz, v⟩2t + (v⊤Σzv)

t t
t

2t
.

Proof

2t
v E⟨z, v⟩2t = E(⟨µz, v⟩+ ⟨wz, v⟩)2t =

2t∑
j=0

(
2t

j

)
E⟨µz, v⟩j⟨wz, v⟩2t−j

(1)
=

2t∑
j=0

(
2t

j

)
E⟨µz, v⟩jE⟨wz, v⟩2t−j (2)

=

t∑
s=0

(
2t

2s

)
E⟨µz, v⟩2sE⟨wz, v⟩2t−2s

≥ E⟨µz, v⟩2t + E⟨wz, v⟩2t
(3)

≥ E⟨µz, v⟩2t + (v⊤Σzv)
t t

t

2t

where in (1) we used that µz and wz are independent, in (2) we used that E⟨wz, v⟩2t−j = 0 for
2t− j odd, and in (3) we used that E⟨wz, v⟩2t = (v⊤Σzv)

t(2t− 1)!! ≥ (v⊤Σzv)
t tt

2t .

Going forward, Lemma 15 proves that, if the moments of z are small in direction v, then the
variance of the components of the mixture is also small in direction v. Given in addition an upper
bound on the moments of z in direction v for a sufficiently large moment, Lemma 16 proves that
the contribution of the means in direction v is large.

Lemma 15 Let C ≥ 0. For t ≥ 1 integer,{
E⟨z, v⟩2t ≤ Ct

}
2t
v
{
v⊤Σzv ≤ 2C

t

}
.

Proof Substitute the lower bound of Lemma 14 into the axiom:

2t
v E⟨µz, v⟩2t + (v⊤Σzv)

ttt/2t ≤ Ct.

Use that 2t
v E⟨µz, v⟩2t ≥ 0 to drop the first term and then divide by tt/2t. This proves that

2t
v

(v⊤Σzv)
t ≤ 2tCt/tt. Finally, by Lemma 56, this implies that 2t

v
v⊤Σzv ≤ 2C/t.
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Lemma 16 Let c > 0 and C ≥ 0. For s ≥ 1 and t ≥ 16Cs/c integers,{
E⟨z, v⟩2s ≥ cs,E⟨z, v⟩2t ≤ Ct

}
2t
v
{
E⟨µz, v⟩2s ≥

( c
4

)s}
.

Proof Substitute the upper bound of Lemma 13 into the first axiom:

2s
v

22s−1E⟨µz, v⟩2s + 22s−1(v⊤Σzv)
sss ≥ cs.

Use, by Lemma 15 and Lemma 55, that 2t
v

(v⊤Σzv)
s ≤ (2C/t)s:

2s
v

22s−1E⟨µz, v⟩2s + (8Cs/t)s ≥ cs.

Then use that t ≥ 16Cs/c to obtain that 2s
v

22s−1E⟨µz, v⟩2s ≥ cs/2. Finally, divide by 22s−1 to
obtain that 2s

v E⟨µz, v⟩2s ≥ (c/4)s.

Now we prove Lemma 12.
Proof of Lemma 12 Let w ∼ N(0, Id). Note that, for y ∼ N(µa,Σ) and y′ ∼ N(µb,Σ) we have
that y−y′ ∼ µa−µb+Σ

1/2
z w, so q(y−y′) = q(µa−µb+Σ

1/2
z w). Similarly, for y,y′ ∼ N(µa,Σ)

we have that y−y′ ∼ Σ
1/2
z w, so q(y−y′) = q(Σ

1/2
z w). Therefore, we want to show (1) that there

exist distinct a, b ∈ [k] such that q(µa − µb +Σ
1/2
z w) is large and (2) that q(Σ1/2

z w) is small.
By Lemma 16, we have ẼE⟨µz, v⟩2s ≥ (c/4)s. By linearity, we also have EẼ⟨µz, v⟩2s ≥

(c/4)s, so Eq(µz) ≥ (c/4)s. Therefore there exists some µz in the support of µz such that q(µz) ≥
(c/4)s. Therefore, there exist a, b ∈ [k] such that q(µa − µb) ≥ (c/4)s. Furthermore, a and b are
distinct, because otherwise q(µa − µb) = 0.

We attempt to lower bound q(µa − µb +Σ
1/2
z w):

q(µa − µb +Σ1/2
z w) = ⟨Ẽv⊗2s, (µa − µb +Σ1/2

z w)⊗2s⟩
= Ẽ⟨v, µa − µb +Σ1/2

z w⟩2s

≥ 1

22s−1
Ẽ⟨v, µa − µb⟩2s − Ẽ⟨v,Σ1/2

z w⟩2s

=
1

22s−1
q(µa − µb)− q(Σ1/2

z w)

≥ (c/16)s − q(Σ1/2
z w).

We want to show that q(Σ1/2
z w) is small with high probability. We start by analyzing the mean

and second moment of q(Σ1/2
z w). For ℓ ∈ {1, 2}, we have

Eq(Σ1/2
z w)ℓ = E

(
⟨Ẽv⊗2s, (Σ1/2

z w)⊗2s⟩
)ℓ

= E
(
Ẽ⟨v,Σ1/2

z w⟩2s
)ℓ

(1)

≤ EẼ⟨v,Σ1/2
z w⟩2sℓ = ẼE⟨v,Σ1/2

z w⟩2sℓ

= ẼE⟨Σ1/2
z v,w⟩2sℓ ≤ (sℓ)sℓẼ(v⊤Σzv)

sℓ

(2)

≤ (2CSℓ/t)sℓ ,

18
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where in (1) for ℓ = 2 we used Lemma 61 and in (2) we used that, by Lemma 15 and Lemma 55,
Ẽ(v⊤Σzv)

sℓ ≤ O (2C/t)sℓ. Then Eq(Σz1/2w) ≤ (2Cs/t)s and Eq(Σ1/2
z w)2 ≤ (4Cs/t)2s.

Therefore, by Chebyshev’s inequality, with probability 0.99999,

q(Σ1/2
z w) ≤ (2Cs/t)s +

√
100000 (4Cs/t)s ≤ 320 (4Cs/t)s .

In this case, we also have

q(µa − µb +Σ1/2
z w) ≥ (c/16)s − 320 (4Cs/t)s ≥ (c/16)s /2,

where in the last inequality we used that t ≥ 50000Cs/c. This concludes the proof.

Lemma 17 (Existence of vector that satisfies moment contraints) Let s, t ≥ ⌈log p−1
min⌉ inte-

gers. If t ≤ maxi,j ∥Σ−1/2
z (µi − µj)∥2, there exists some v ∈ Rd that satisfies E⟨z, v⟩2s = 1

and E⟨z, v⟩2t ≤ 30t. Furthermore, ∥ cov(z)1/2v∥2 ≤ 8.

Proof Let (a, b) = argmax(i,j) ∥Σ
−1/2
z (µi−µj)∥ and let v = Σ−1

z (µa−µb). The vector for which
we will guarantee the stated properties is v∗ = v

(E⟨z,v⟩2s)1/2s .

We begin by proving that maxi,j⟨µi − µj , v⟩2 = ⟨µa − µb, v⟩2, which will be used later. We
have

max
i,j

⟨µi − µj , v⟩2 = max
i,j

⟨µi − µj ,Σ
−1
z (µa − µb)⟩2

= max
i,j

⟨Σ−1/2
z (µi − µj),Σ

−1/2
z (µa − µb)⟩2

≤ ∥Σ−1/2
z (µi − µj)∥2 · ∥Σ−1/2

z (µa − µb)∥2

≤ ∥Σ−1/2
z (µa − µb)∥4

= ⟨µa − µb, v⟩2.

We also have for the variance in direction v that

(v⊤Σzv)
t = ((µa − µb)

⊤Σ−1
z (µa − µb))

t = ∥Σ−1/2
z (µa − µb)∥2t.

We now derive upper bounds for the 2t moments of ⟨z, v⟩ in direction v and lower bounds for
the 2s moments in direction v. Recall that we assume t ≤ maxi,j ∥Σ−1/2

z (µi−µj)∥2. For the upper
bound, using Lemma 13 we have

E⟨z, v⟩2t ≤ 22t−1E⟨µz, v⟩2t + 22t−1(v⊤Σzv)
ttt

≤ 22t−1max
i,j

⟨µi − µj , v⟩2t + 22t−1∥Σ−1/2
z (µa − µb)∥2ttt

= 22t−1∥Σ−1/2
z (µa − µb)∥4t + 22t−1∥Σ−1/2

z (µa − µb)∥2ttt

≤ 22t−1∥Σ−1/2
z (µa − µb)∥4t + 22t−1∥Σ−1/2

z (µa − µb)∥4t

≤ 22t∥Σ−1/2
z (µa − µb)∥4t.
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For the lower bound, using Lemma 14 we have

E⟨z, v⟩2s ≥ E⟨µz, v⟩2s + (v⊤Σzv)
s s

s

2s

≥ p2minmax
i,j

⟨µi − µj , v⟩2s + ∥Σ−1/2
z (µa − µb)∥2s

ss

2s

= p2min∥Σ−1/2
z (µa − µb)∥4s + ∥Σ−1/2

z (µa − µb)∥2s
ss

2s

≥ p2min∥Σ−1/2
z (µa − µb)∥4s.

Recall that v∗ = v
(E⟨z,v⟩2s)1/2s . Clearly, E⟨z, v∗⟩2s = 1. Furthermore,

E⟨z, v∗⟩2t = E⟨z, v⟩2t

(E⟨z, v⟩2s)t/s
≤ 22t∥Σ−1/2

z (µa − µb)∥4t

p
2t/s
min ∥Σ

−1/2
z (µa − µb)∥4t

=

(
4

p
2/s
min

)t

≤
(
4e2
)t ≤ 30t

where in the last inequality we used that p1/smin ≥ e−1. Therefore v∗ satisfies the desired moment
constraints.

Finally, we prove that ∥ cov(z)1/2v∗∥2 ≤ 8. Note that cov(z) = cov(µz) + Σz . We have then

∥ cov(z)1/2v∗∥2 = (v∗)⊤ cov(z)v∗

= (v∗)⊤ cov(µz)v
∗ + (v∗)⊤Σzv

∗

(1)

≤ max
i,j

⟨µi − µj , v
∗⟩2 + ∥Σ1/2

z v∗∥2

=
∥Σ−1/2

z (µa − µb)∥4

(E⟨z, v⟩2s)1/s
+

∥Σ1/2
z Σ−1

z (µa − µb)∥2

(E⟨z, v⟩2s)1/s

(2)

≤ ∥Σ−1/2
z (µa − µb)∥4

p
2/s
min∥Σ

−1/2
z (µa − µb)∥4

+
∥Σ1/2

z Σ−1
z (µa − µb)∥2

p
2/s
min∥Σ

−1/2
z (µa − µb)∥4

(3)

≤ e2 + e2
1

∥Σ−1/2
z (µa − µb)∥2

(4)
= e2 + o(1) ≤ 8,

where in (1) we used that (v∗)⊤ cov(µz)v
∗ = (v∗)⊤Eµzµ

⊤
z v

∗ ≤ maxµz(v
∗)⊤µzµ

⊤
z v

∗ for µz in
the support of µz , in (2) we used the lower bound that we derived above on E⟨z, v⟩2s, in (3) we
used that p1/smin ≥ e−1, and in (4) we used mean separation.

B.2. Finite sample bounds

Recall that, to apply Lemma 12, we need to find a pseudo-expectation that satisfies the moment
lower bound E⟨z, v⟩2s ≥ cs and the moment upper bound E⟨z, v⟩2t ≤ Ct for s ≪ t. Lemma 18
shows that it suffices to find a pseudo-expectation that satisfies ∥ĉov(z)1/2v∥2 ≲ 8, Ê⟨z, v⟩2s ≿ cs,
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and Ê⟨z, v⟩2t ≲ Ct. Without the bound on the norm of ĉov(z)1/2v the errors may be arbitrarily
large.

The result is supported by Lemma 19, which shows that quadratics in the empirical covari-
ance matrix are close to quadratics in the population covariance matrix of the components, and by
Lemma 20, which shows that the empirical moments are close to the population moments. The
proofs of these two lemmas are deferred to the appendix.

Lemma 18 (Moment constraints from empirical moment constraints) Let η < 0.001. Let c, C
≥ 0 and let t ≥ 1 integer. For n ≥ (p−1

mind)
O(t)η−2ϵ−1, with probability 1− ϵ,{

∥ĉov(z)1/2v∥2 ≤ (1 + η) · 8, Ê⟨z, v⟩2s ≥ cs + η, Ê⟨z, v⟩2t ≤ Ct − η
}

2t
v {E⟨z, v⟩2s ≥ cs,E⟨z, v⟩2t ≤ Ct

}
.

Furthermore, with probability 1− ϵ, the axiom is satisfied with s, t, and v as in Lemma 17 and with
c = (1− η)1/s and C = (30t + η)1/t.

Proof By Lemma 19, 2
v ∥ cov(z)1/2v∥2 ≤ (1+η)2·8 ≤ 9. Then, by Lemma 20, 2s

v E⟨z, v⟩2s ≥ cs

and 2t
v E⟨z, v⟩2t ≤ Ct. With n as given, this holds with probability at least 1− ϵ.

For the second claim of the lemma, we have by Lemma 17 that there exists some v with
E⟨z, v⟩2s = 1, E⟨z, v⟩2t ≤ 30t, and ∥ cov(z)1/2v∥2 ≤ 8. By Lemma 19, we also have that
∥ĉov(z)1/2v∥2 ≤ (1 + η)2 · 8 ≤ 9, and then by Lemma 20, we also have that Ê⟨z, v⟩2s ≥ 1 − η
and Ê⟨z, v⟩2t ≤ 30t + η. Again, with n as given, this holds with probability at least 1− ϵ.

Lemma 19 Let C ≥ 0. For n ≥ kd2 log2(d/ϵ)O(η−2), with probability 1− ϵ,

{∥ĉov(z)1/2v∥2 ≤ C} 2
v {∥ cov(z)1/2v∥2 ≤ (1 + η)C},

{∥ cov(z)1/2v∥2 ≤ C} 2
v {∥ĉov(z)1/2v∥2 ≤ (1 + η)C}.

Proof See Section F.5.

Lemma 20 Let C ≥ 0 and let t ≥ 1 integer. For n ≥ (Cp−1
mind)

O(t)η−2ϵ−1, with probability 1− ϵ,

{∥ cov(z)1/2v∥2 ≤ C}
O(t)

v {Ê⟨z, v⟩2t ≤ E⟨z, v⟩2t + η},

{∥ cov(z)1/2v∥2 ≤ C}
O(t)

v {Ê⟨z, v⟩2t ≥ E⟨z, v⟩2t − η}.

Proof See Section F.5.
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B.3. Proof of Theorem 10

Proof Let s = ⌈log p−1
min⌉ and t = 10000000s. The algorithm is:

1. Compute a pseudo-expectation Ẽ of degree 2t over v ∈ Rd such that ∥ĉov(z)1/2v∥2 ≤
1.01 · 8, Ê⟨y, v⟩2s ≥ 1− 0.005, and Ê⟨y, v⟩2t ≤ 30t + 0.005}.

2. Construct a separating polynomial q based on Ẽ as in Lemma 12.

3. Return q.

We now analyze the algorithm. First, we argue that there exists a pseudo-expectation Ẽ that
satisfies the given constraints. Note that t ≤ maxi,j ∥Σ−1/2

z (µi − µj)∥2 if Csep is a large enough
constant. Therefore, the conditions of Lemma 17 for s and t are satisfied. Then, by Lemma 18, for
n ≥ n0, there exists a vector v ∈ Rd that satisfies the given constraints. Then, there also exists a
pseudo-expectation that satisfies the constraints.

Second, we argue that q has the desired properties. By Lemma 18, Ẽ also sastisfies with high
probability that Ê⟨y, v⟩2s ≥ 1 − 0.01 ≥ 0.99s and Ê⟨y, v⟩2t ≤ 30t + 0.01 ≤ 31t. Then the
conditions of Lemma 12 are satisfied with c = 0.99 and C = 31. Then, we are guaranteed to return
a separating polynomial q with the following properties:

• For independent random vectors y and y′ sampled from different components, we have
with probability at least 0.99999 that

q(y − y′) ≥ 1

2

( c

16

)s
≥ 1

2

(
0.99

16

)s

≥ 1

20s
.

• For independent random vectors y and y′ sampled from the same component, we have
with probability at least 0.99999 that

q(y − y′) ≤ 320

(
4Cs

t

)s

≤ 320

(
4 · 31 · s

t

)s

≤ 1

200s
.

The time complexity is dominated by the time to compute the pseudo-expectation. The pseudo-
expectation is of degree O(log p−1

min) over d variables, and each constraint requires summing over
the n samples. Therefore, the time to compute the pseudo-expectation is n · dO(log p−1

min).

B.4. Proof of Theorem 11

We start by stating and proving Lemma 21, which shows how to obtain a bipartition of the samples
given a suitable distance function. We then prove Theorem 11.

Lemma 21 (Bipartition from distance function) Assume access to a distance function dq : Rd×
Rd → R such that:

• There exist distinct a, b ∈ [k] such that the independent random vectors y ∼ N(µa,Σ)
and y′ ∼ N(µb,Σ) satisfy

P
{
dq(y,y

′) ≥ 1√
20

}
≥ 0.99999.
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• For all a ∈ [k], the independent random vectors y,y′ ∼ N(µa,Σ) satisfy

P
{
dq(y,y

′) ≤ 1√
200

}
≥ 0.99999.

Given a sample of size n = Ω(p−1
min) from the mixture, there exists a polynomial-time algorithm that

returns with probability 0.99 a partition of [n] into two sets C1 and C2 such that, if true clustering
of the samples is S1, ..., Sk, then

max
i

|C1 ∩ Si|
|Si|

≥ 0.99 and max
i

|C2 ∩ Si|
|Si|

≥ 0.99.

Proof The algorithm is:

1. Choose i ∈ [n] uniformly at random.

2. Let S = {j ∈ [n] : dq(yi, yj) ≤ 1√
200

}.

3. Return S and [n] \ S.

We now analyze the algorithm.
First, we prove that, with probability at least 0.995, a 0.99-fraction of the samples from the same

component as i are included in S. With high probability, a 0.99998-fraction of the pairs of samples
(y, y′) with y and y′ from the same component as i satisfy dq(y, y

′) ≤ 1√
200

. Then, the fraction of

samples from this component that are farther than 1√
200

from more than a 0.01-fraction of the other

samples in the component is at most 1−0.99998
0.01 = 0.002. Then, overall, with probability at least

0.995, i is closer than 1√
200

to at least a 0.99-fraction of the other samples in the component. In this
case, S includes a 0.99-fraction of the samples from the same component as i.

Second, we prove that, with probability at least 0.995, at least a 0.99-fraction of the samples
from one of the components are not included in S. Let a, b ∈ [k] be the two components for
which the large-distance guarantee holds. With high probability, a 0.99998-fraction of the pairs
of samples (y, y′) with y from a and y′ from b satisfy dq(y, y

′) ≥ 1√
20

. We have dq(y, y
′) ≤

dq(y, yi) + dq(y
′, yi), so if dq(y, y′) ≥ 1√

20
, then at least one of dq(y, yi) or dq(y′, yi) is at least

1
2
√
20

> 1√
200

. Then, for such pairs, it is impossible for both y and y′ to be in S. Suppose that a
pa-fraction of the samples from a are in S and that a pb-fraction of the samples from b are in S. We
need then that 1 − papb ≥ 0.99998, so min(pa, pb) ≤

√
1− 0.9998 ≤ 0.01. Therefore, [n] \ S

contains at least a 0.99-fraction of the samples from one of a or b.
Therefore, with probability at least 0.99, the conclusion of the lemma holds.

Proof of Theorem 11 The algorithm is:

1. Run the algorithm from Theorem 10 to obtain a polynomial q.

2. Run the algorithm from Lemma 21 with the distance function dq(x, y) = q(x− y)1/2s.

3. Return the resulting bipartition.
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We now analyze the algorithm. Recall that q(u) = Ẽ⟨u, v⟩2s, so q(u)1/2s = (Ẽ⟨u, v⟩2s)1/2s. Then,
we have byLemma 62 that q1/2s satisfies the triangle inequality. It follows that dq(x, y) = q(x −
y)1/2s is a distance function. Then, by the guarantees of Theorem 10, dq satisfies the requirements
of Lemma 21, so the stated guarantees follow.

The time complexity is dominated by the time complexity of the algorithm from Theorem 10.

Appendix C. Parallel pancakes

The model studied in this section is a well-separated mixture of Gaussians with colinear means
that is in isotropic position. As shown in Section C.1, the isotropic position property makes this
model similar to the parallel pancakes construction, in the sense that the only direction in which the
components of the mixture have variance different from 1 is the direction of the means. In Section D
we study the same model without the isotropic position assumption.

Setting. We consider a mixture of k Gaussian distributions N(µi,Σ) with mixing weights pi for
i = 1, ..., k, where µi ∈ Rd, Σ ∈ Rd×d is positive definite, and pi ≥ 0 and

∑k
i=1 pi = 1. Let

pmin = mini pi.
The distribution is in isotropic position: for y distributed according to the mixture, we have

Ey = 0 and cov(y) = Id.
The distribution also satisfies mean separation and mean colinearity:

• Mean separation: for some Csep > 0 and for all i ̸= j,∥∥∥Σ−1/2(µi − µj)
∥∥∥2 ≥ Csep log p

−1
min.

• Mean colinearity: for some unit vector u ∈ Rd and for all i,

µi = ⟨µi, u⟩u.

Also define σ2 = u⊤Σu, which is the variance of the components in the direction of the means.

Theorem 22 (Parallel pancakes algorithm) Consider the Gaussian mixture model defined above,
with Csep larger than some universal constant. Let

n0 =

(
1

σ2

)O(1)

· (p−1
mind)

O(log p−1
min).

Given a sample of size n ≥ n0 from the mixture, there exists an algorithm that runs in time
nO(log p−1

min) and returns with high probability a partition of [n] into k sets C1, ..., Ck such that,
if the true clustering of the samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤
(pmin

k

)O(1)
.

We introduce some further notation for this section. Let y be distributed according to the
mixture. We specify the model as y = µ + w, where µ takes value µi with probability pi and
w ∼ N(0,Σ), with µ and w independent of each other.
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C.1. Isotropic position properties

In this section we prove some consequences of the fact that y is in isotropic position. Lemma 23
shows that Σ = Id − (1 − σ2)uu⊤ with 0 < σ2 ≤ 1. This means that Σ can have at most one
eigenvalue less than 1 and that the eigenvectors corresponding to this eigenvalue are parallel to the
direction of the means u. Then Lemma 24 uses this form of Σ to quantify the separation of the
means along direction u in terms of σ2.

Lemma 23 (Isotropic position component covariance matrix) We have that:

1. σ2 = 1−
∑k

i=1 pi⟨µi, u⟩2,

2. Σ = Id − (1− σ2)uu⊤, and (3) 0 < σ2 ≤ 1.

Proof We have that Ey = Eµ+ Ew = Eµ. Because the distribution is in isotropoic position, we
also have that Ey = 0, so the equation above implies that Eµ = 0. Then cov(µ) =

∑k
i=1 piµiµ

⊤
i .

Furthermore, since µ and w are independent, we have that cov(y) = cov(µ) + cov(w) =∑k
i=1 piµiµ

⊤
i +Σ. Because the distribution is in isotropic position, we also have that cov(y) = Id,

so the equation above implies Σ = Id −
∑k

i=1 piµiµ
⊤
i . Plugging in µi = ⟨µi, u⟩u, we have

Σ = Id −
(∑k

i=1 pi⟨µi, u⟩2
)
uu⊤.

Then, it follows that σ2 = u⊤Σu = 1 −
∑k

i=1 pi⟨µi, u⟩2. This proves (1). The fact that
1− σ2 =

∑k
i=1 pi⟨µi, u⟩2 also proves (2). For (3), σ2 > 0 follows by the definition using that Σ is

positive definite and σ2 ≤ 1 follows by (1).

Lemma 24 (Isotropic position mean separation) For all i ̸= j,

⟨µi − µj , u⟩2 ≥ Csepσ
2 log p−1

min.

Proof By Lemma 23, Σ = Id− (1−σ2)uu⊤. This implies that Σ−1/2 = Id+
(
1/
√
σ2 − 1

)
uu⊤.

Then, using that µi = ⟨µi, u⟩u, we have that

Σ−1/2(µi − µj) =

(
Id +

(
1√
σ2

− 1

)
uu⊤

)
(⟨µi − µj , u⟩u) =

1√
σ2

⟨µi − µj , u⟩u.

Therefore, the separation condition
∥∥Σ−1/2(µi − µj)

∥∥2 ≥ Csep log p
−1
min is equivalent to 1

σ2 ⟨µi −
µj , u⟩2 ≥ Csep log p

−1
min. The conclusion follows by multiplying both sides by σ2.

C.2. Exact moment direction recovery

In this section we discuss how to recover a direction close to the direction of the means u, assuming
oracle access to moments Ey⊗t for any positive integer t. Access to these moments allows us to
calculate exactly directional moments of the form E⟨y, v⟩t, which simplifies the analysis. Finite
sample considerations are discussed starting with Section C.3.

Theorem 25 shows that there exists an algorithm that computes a unit vector û with correlation
1−O(min(σ2, 1k )) with the direction of the means u. We remark that it is necessary for û to have a
correlation of at least 1− O(σ2) with u in order for the components of the mixture to be separated
along direction û.
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Theorem 25 (Direction recovery with exact moments) Assume oracle access to Ey⊗t for any
positive integer t. Then there exists an algorithm with time complexity

(
log 1

σ2

)
· dO(log p−1

min) that
outputs a unit vector û ∈ Rd such that ⟨u, û⟩2 ≥ 1− 320min(σ2, 1k ).

The two main ingredients for Theorem 25 are Theorem 26, which gives an algorithm to compute
pseudo-expectations over unit vectors correlated with u, and Theorem 27, which gives an algorithm
to sample from such pseudo-expectations. We note that Theorem 26 can be interpreted as a collec-
tion of sum-of-squares identifiability proofs for the direction of the means u.

We state these two supporting theorems and then prove Theorem 25. After that, we work toward
proving the supporting theorems.

Theorem 26 (Direction sum-of-squares identifiability) Assume oracle access to Ey⊗t for any
positive integer t. Then there exists an algorithm with time complexity

(
log 1

σ2

)
· dO(log p−1

min) that
computes two peseudo-expectations ẼU and ẼL of degree O(log p−1

min) over a variable v ∈ Rd such
that the following holds. Let s = ⌈log p−1

min⌉, let t = 5000s, and let τ = 800e
Csepk2

. Then ẼU∥v∥2 = 1,

ẼL∥v∥2 = 1, and:

• If σ2 ≥ τ , then ẼU ⟨u, v⟩2s ≥ (1− τ)s.
• If σ2 < τ and E⟨µ, u⟩2s ≥ (4es)s, then ẼU ⟨u, v⟩2s ≥ (1− σ2)s.
• If σ2 < 0.001 and E⟨µ, u⟩2s ≤ (100s)s, then ẼL⟨u, v⟩2t ≥ (1− 20σ2)t.

Theorem 27 (Direction sum-of-squares sampling) Let t ∈ N and ϵ ∈ R such that t ≥ 1 and
0 ≤ ϵ ≤ 1/(3t2). Let u ∈ Rd be a unit vector. Given a pseudo-expectation Ẽ of degree 2t over a
variable v ∈ Rd that satisfies Ẽ∥v∥2 = 1 and Ẽ⟨u, v⟩2t ≥ (1 − ϵ)t, there exists an algorithm with
time complexity dO(t) that returns a unit vector û ∈ Rd such that ⟨u, û⟩2 ≥ 1− 16ϵ.

Proof of Theorem 25 Let τ = 800e
Csepk2

. The algorithm is:

1. Run the algorithm from Theorem 26 to obtain pseudo-expectations ẼU and ẼL.
2. Run the algorithm from Theorem 27 for pseudo-expectations ẼU and ẼL to obtain unit

vectors ûU ∈ Rd and ûL ∈ Rd, respectively.
3. If σ2 ≥ τ , return ûU . Else, for s = ⌈log p−1

min⌉, if E⟨y, ûU ⟩2s ≥ (50s)s, return ûU . Else,
return ûL.

We now analyze the algorithm. We consider the three possible cases in step (3) of the algorithm:

• Suppose σ2 ≥ τ . Then Theorem 26 guarantees that ẼU ⟨u, v⟩2s ≥ (1 − τ)s, so by
Theorem 27 we have ⟨u, ûU ⟩2 ≥ 1− 16τ ≥ 1− 16min(σ2, τ).

• Suppose σ2 < τ and (E⟨y, ûU ⟩2s)1/s ≥ 50s. By Lemma 29, (E⟨y, ûU ⟩2s)1/s ≤
(E⟨µ, u⟩2s)1/s + es, so it must be the case that (E⟨µ, u⟩2s)1/s ≥ (50 − e)s ≥ 4es.
Then Theorem 26 guarantees that ẼU ⟨u, v⟩2s ≥ (1 − σ2)s, so by Theorem 27 we have
⟨u, ûU ⟩2 ≥ 1− 16σ2 ≥ 1− 16min(σ2, τ).

• Suppose σ2 < τ and E⟨y, ûU ⟩2s < (50s)s. We have by Lemma 30 that (E⟨y, ûU ⟩2s)1/s
≥ (E⟨µ, u⟩2s)1/s, so it must be the case that (E⟨µ, u⟩2s)1/s < 50s ≤ 100s. Then
Theorem 26 guarantees that ẼL⟨u, v⟩2t ≥ (1 − 20σ2)t, so by Theorem 27 we have
⟨u, ûL⟩2 ≥ 1− 16 · 20σ2 ≥ 1− 320min(σ2, τ).
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Let û be the unit vector returned by step (3) of the algorithm. Then we are guaranteed that in all
cases ⟨u, û⟩2 ≥ 1 − 320min(σ2, τ) ≥ 1 − 320min(σ2, 1k ), where we used the loose upper bound
τ ≤ 1

k .
The time complexity of the algorithm is dominated by the time to run the algorithm from Theo-

rem 26.

C.2.1. SUM-OF-SQUARES IDENTIFIABILITY (PROOF OF THEOREM 26)

We prove a number of supporting lemmas and then prove Theorem 26. The most important com-
ponents are Lemma 32 and Lemma 33, which give sum-of-squares proofs that, for suitably chosen
s, t = O(log p−1

min), either the maximizer of E⟨y, v⟩2s or the minimizer of E⟨y, v⟩2t over unit vec-
tors v must be close to u.

We start with Lemma 28, Lemma 29 and Lemma 30, which give sum-of-squares bounds on the
moments of the mixture. Informally, for t = Ω(log p−1

min), these bounds correspond to the following
decomposition of the directional 2t moments:

(E⟨y, v⟩2t)1/t = ⟨u, v⟩2
(
E⟨µ, u⟩2t

)1/t
+Θ(1) · t(v⊤Σv). (18)

Lemma 28 (Moment equality) For t ≥ 1 integer,

2t
v E⟨y, v⟩2t =

t∑
s=0

(
2t

2s

)
⟨u, v⟩2sE⟨µ, u⟩2s(v⊤Σv)t−s(2t− 2s− 1)!!.

Proof

2t
v E⟨y, v⟩2t = E(⟨µ, v⟩+ ⟨w, v⟩)2t =

2t∑
j=0

(
2t

j

)
E⟨µ, v⟩j⟨w, v⟩2t−j

(1)
=

2t∑
j=0

(
2t

j

)
E⟨µ, v⟩jE⟨w, v⟩2t−j (2)

=
t∑

s=0

(
2t

2s

)
E⟨µ, v⟩2sE⟨w, v⟩2t−2s

(3)
=

t∑
s=0

(
2t

2s

)
⟨u, v⟩2sE⟨µ, u⟩2s(v⊤Σv)t−s(2t− 2s− 1)!!

where in (1) we used that µ and w are independent, in (2) we used that E⟨w, v⟩2t−j = 0 for 2t− j
odd, and in (3) we used that µ = ⟨µ, u⟩u and that E⟨w, v⟩2t−2s = (v⊤Σv)t−s(2t− 2s− 1)!!.

Lemma 29 (Moment upper bound) For t ≥ 1 integer,

2t
v E⟨y, v⟩2t ≤

(
⟨u, v⟩2

(
E⟨µ, u⟩2t

)1/t
+ et(v⊤Σv)

)t
.
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Proof Starting with the result in Lemma 28,

2t
v E⟨y, v⟩2t =

t∑
s=0

(
2t

2s

)
⟨u, v⟩2sE⟨µ, u⟩2s(v⊤Σv)t−s(2t− 2s− 1)!!

(1)

≤
t∑

s=0

(
2t

2s

)
⟨u, v⟩2s

(
E⟨µ, u⟩2t

)s/t
(v⊤Σv)t−s(2t− 2s− 1)!!

(2)

≤
t∑

s=0

(
t

s

)
⟨u, v⟩2s

(
E⟨µ, u⟩2t

)s/t
(v⊤Σv)t−s(et)t−s

=
(
⟨u, v⟩2

(
E⟨µ, u⟩2t

)1/t
+ et(v⊤Σv)

)t
.

In (1) we used that s ≤ t and Jensen’s inequality as follows:

E⟨µ, u⟩2s = E⟨µ, u⟩2t(s/t) ≤
(
E⟨µ, u⟩2t

)s/t
.

In (2) we used that
(
2t
2s

)
(2t− 2s− 1)!! ≤

(
t
s

)
(et)t−s for 0 ≤ s ≤ t integers, which is proved in

Lemma 75.

Lemma 30 (Moment lower bound) For t ≥ 1 integer,

2t
v E⟨y, v⟩2t ≥

(
⟨u, v⟩2

(
E⟨µ, u⟩2t

)1/t
+ p

1/t
mint/2(v

⊤Σv)
)t

.

Proof Starting with the result in Lemma 28,

2t
v E⟨y, v⟩2t =

t∑
s=0

(
2t

2s

)
⟨u, v⟩2sE⟨µ, u⟩2s(v⊤Σv)t−s(2t− 2s− 1)!!

(1)

≥
t∑

s=0

(
2t

2s

)
⟨u, v⟩2s

(
E⟨µ, u⟩2t

)s/t (
p
1/t
min

)t−s
(v⊤Σv)t−s(2t− 2s− 1)!!

(2)

≥
t∑

s=0

(
t

s

)
⟨u, v⟩2s

(
E⟨µ, u⟩2t

)s/t (
p
1/t
min

)t−s
(v⊤Σv)t−s(t/2)t−s

=
(
⟨u, v⟩2

(
E⟨µ, u⟩2t

)1/t
+ p

1/t
mint/2(v

⊤Σv)
)t

.

In (1) we used that s ≤ t and the fact that the s-norm is greater than or equal to the t-norm as
follows:

E⟨µ, u⟩2s =
k∑

i=1

pi⟨µi, u⟩2s =
k∑

i=1

(p
1/s
i ⟨µi, u⟩2)s

≥

(
k∑

i=1

(p
1/s
i ⟨µi, u⟩2)t

)s/t

=

(
k∑

i=1

p
t/s
i ⟨µi, u⟩2t

)s/t

≥

(
p
t/s−1
min

k∑
i=1

pi⟨µi, u⟩2t
)s/t

= p
1−s/t
min

(
E⟨µ, u⟩2t

)s/t
.
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In (2) we used that
(
2t
2s

)
(2t − 2s − 1)!! ≥

(
t
s

)
(t/2)t−s for 0 ≤ s ≤ t integers, which is proved

in Lemma 75.

Lemma 31 shows that the contribution of the means to the Ω(log p−1
min) moments in direction u

is lower bounded by Ω(k2σ2 log p−1
min). This result is used in some of the later proofs to argue that

if the mean contribution is small, then σ2 is small, and conversely, that if σ2 is large, then the mean
contribution is large.

Lemma 31 For 2s ≥ ⌈log p−1
min⌉ integer,

(E⟨µ, u⟩2s)1/s ≥ Csep

100
k2σ2 log p−1

min.

Proof By Lemma 24, for all i ̸= j, |⟨µi − µj , u⟩| ≥
√

Csepσ2 log p−1
min. Then there exist a, b ∈

[k] such that |⟨µa − µb, u⟩| ≥ (k − 1)
√

Csepσ2 log p−1
min. Hence, there exists a ∈ [k] such that

|⟨µa, u⟩| ≥ k−1
2

√
Csepσ2 log p−1

min. Then

(E⟨µ, u⟩2s)1/s ≥ p
1/s
minmax

i
⟨µi, u⟩2 ≥ p

1/s
min

(
k − 1

2

)2

Csepσ
2 log p−1

min ≥ Csep

100
k2σ2 log p−1

min,

where we used that p1/smin ≥ e−2.

We now state and prove the sum-of-squares identifiability proofs of Lemma 32 and Lemma 33.
Let s, t = O(log p−1

min) with s ≪ t. Lemma 32 proves that, in the case (E⟨µ, u⟩2s)1/s ≥ Θ(s), if
E⟨y, v⟩2s is close to its maximum value over unit vectors v, then ⟨u, v⟩2s is close to 1. Lemma 33
proves that, in the opposite case (E⟨µ, u⟩2s)1/s ≤ Θ(s), if E⟨y, v⟩2t is close to its minimum value
over unit vectors v, then ⟨u, v⟩2t is close to 1.

Lemma 32 (Direction sum-of-squares identifiability from moment maximization) Let M ≥ 2.
Let s be an integer such that 2s ≥ ⌈log p−1

min⌉. Suppose that E⟨µ, u⟩2s ≥ (Mes)s. Then, for
ϵ ≤ σ2/M ,{

∥v∥2 = 1,E⟨y, v⟩2s ≥ (1− ϵ)
(
E⟨µ, u⟩2s − ϵ

)}
2s
v {⟨u, v⟩2s ≥ (1− 4σ2/M)s

}
.

Furthermore, v = u satisfies the axiom with ϵ = 0.

Proof Substitute the upper bound of Lemma 3 into the axiom:

2s
v
(
⟨u, v⟩2

(
E⟨µ, u⟩2s

)1/s
+ es(v⊤Σv)

)s
≥ (1− ϵ)

(
E⟨µ, u⟩2s − ϵ

)
.

Divide by E⟨µ, u⟩2s:

2s
v

(
⟨u, v⟩2 + (v⊤Σv)

es

(E⟨µ, u⟩2s)1/s

)s

≥ (1− ϵ)

(
1− ϵ

E⟨µ, u⟩2s

)
.
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Recall that
(
E⟨µ, u⟩2s

)1/s ≥ Mes, and substitute the lower bound on both sides:

2s
v
(
⟨u, v⟩2 + 1

M
(v⊤Σv)

)s

≥ (1− ϵ)

(
1− ϵ

(Mes)s

)
Use that v⊤Σv = 1− (1− σ2)⟨u, v⟩2:

2t
v
(
⟨u, v⟩2 + 1

M
(1− (1− σ2)⟨u, v⟩2)

)s

≥ (1− ϵ)

(
1− ϵ

(Mes)s

)
.

We simplify now the right-hand side. Use the loose bound 1− ϵ/(Mes)s ≥ 1− ϵ ≥ (1− ϵ)s−1

to obtain

2s
v
(
⟨u, v⟩2 + 1

M
(1− (1− σ2)⟨u, v⟩2)

)s

≥ (1− ϵ)s.

Finally, apply Lemma 65 with x = ⟨u, v⟩ and γ = 1
1−ϵ to obtain that

2s
v ⟨u, v⟩2s ≥

(
M − 1

1−ϵ
1

1−ϵ

1

M − 1 + σ2

)s

=

(
M − 1−Mϵ

M − 1 + σ2

)s

≥
(
M − 1− σ2

M − 1 + σ2

)s

≥
(
1− 4σ2/M

)s
.

To show that v = u satisfies the axiom, simply note that Lemma 33 implies that E⟨y, u⟩2s ≥
E⟨µ, u⟩2s.

Lemma 33 (Direction sum-of-squares identifiability from moment minimization) Suppose σ2

< 0.001. Let s be an integer such that 2s ≥ ⌈log p−1
min⌉. Suppose that E⟨µ, u⟩2s ≤ (100s)s. Let t

be an integer such that t ≥ 5000s. Then, for ϵ ≤ σ2/100,{
∥v∥2 = 1,E⟨y, v⟩2t ≤ (1 + ϵ)

(((
E⟨µ, u⟩2t

)1/t
+ etσ2

)t
+ ϵ

)}
2t
v {⟨u, v⟩2t ≥ (1− 20σ2)t

}
.

Furthemore, v = u satisfies the axiom with ϵ = 0.

Proof We start by proving that, for t ≥ s, E⟨µ, u⟩2t ≤ (100e2s)t. We have that

pmin ·max
i

⟨µi, u⟩2s ≤ E⟨µ, u⟩2s ≤ (100s)s.

Taking the s-th root and using that p−1/s
min ≤ e2, we obtain that maxi⟨µi, u⟩2 ≤ 100e2s. Therefore,

E⟨µ, u⟩2t ≤ maxi⟨µi, u⟩2t = (100e2s)t.
We now proceed with the main claim. Substitute the lower bound of Lemma 4 into the axiom:

2t
v
(
⟨u, v⟩2

(
E⟨µ, u⟩2t

)1/t
+ p

1/t
mint/2(v

⊤Σv)
)t

≤ (1 + ϵ)

(((
E⟨µ, u⟩2t

)1/t
+ σ2et

)t
+ ϵ

)
.
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Divide by E⟨µ, u⟩2t:

2t
v

(
⟨u, v⟩2 + (v⊤Σv)

p
1/t
mint/2

(E⟨µ, u⟩2t)1/t

)t

≤ (1 + ϵ)

((
1 + σ2 et

(E⟨µ, u⟩2t)1/t

)t

+
ϵ

E⟨µ, u⟩2t

)
.

Let ∆ =
p
1/t
mint/2

(E⟨µ,u⟩2t)1/t
. Then

2t
v
(
⟨u, v⟩2 +∆(v⊤Σv)

)t
≤ (1 + ϵ)

((
1 + σ2 2e

p
1/t
min

∆

)t

+
ϵ

E⟨µ, u⟩2t

)
.

Note that
(
E⟨µ, u⟩2t

)1/t ≤ 100e2s and p
1/t
min = e−s/t ≥ e−1. Then ∆ ≥ e−1t/2

100e2s
. For t ≥ 5000s

we have then ∆ ≥ 10 and p
−1/t
min ≤ 1.4. Then 2e

p
1/t
min

∆ ≤ 8∆. Then:

2t
v
(
⟨u, v⟩2 +∆(v⊤Σv)

)t
≤ (1 + ϵ)

((
1 + 8∆σ2

)t
+

ϵ

E⟨µ, u⟩2t

)
.

Divide by
(
1 + 8∆σ2

)t:
2t
v
(
⟨u, v⟩2 +∆(v⊤Σv)

1 + 8∆σ2

)t

≤ (1 + ϵ)

(
1 +

ϵ

E⟨µ, u⟩2t (1 + 8∆σ2)t

)
.

Use that v⊤Σv = 1− (1− σ2)⟨u, v⟩2:

2t
v
(
⟨u, v⟩2 +∆(1− (1− σ2)⟨u, v⟩2)

1 + 8∆σ2

)t

≤ (1 + ϵ)

(
1 +

ϵ

E⟨µ, u⟩2t (1 + 8∆σ2)t

)
.

We simplify now the term involving ϵ. Note that, by Jensen’s inequality, E⟨µ, u⟩2t ≥ (E⟨µ, u⟩2)t
= (1−σ2)t. Also note that (1−σ2)(1+8∆σ2) ≥ 1 for σ2 ≤ 1/2 and ∆ ≥ 10. Then use the loose
bound

1 +
ϵ

E⟨µ, u⟩2t (1 + 8∆σ2)t
≤ 1 +

ϵ

((1− σ2)(1 + 8∆σ2))t
≤ 1 + ϵ ≤ (1 + ϵ)t−1

to obtain

2t
v
(
⟨u, v⟩2 +∆(1− (1− σ2)⟨u, v⟩2)

1 + 8∆σ2

)t

≤ (1 + ϵ)t.

Finally, apply Lemma 66 with x = ⟨u, v⟩ and γ = 1
1+ϵ to obtain that

2t
v ⟨u, v⟩2t ≥

(
1

1+ϵ∆− 1
1

1+ϵ(∆− 1)
(1− 10σ2)

)t

=

((
1− ϵ

∆− 1

)
(1− 10σ2)

)t

=
(
(1− σ2/100)(1− 10σ2)

)t ≥ (1− 20σ2
)t
.

To show that v = u satisfies the axiom, simply note that Lemma 32 implies that E⟨y, u⟩2t ≤((
E⟨µ, u⟩2t

)1/t
+ etσ2

)t
.

We now prove Theorem 26.
Proof of Theorem 26 Let s = ⌈log p−1

min⌉, t = 5000s, and τ = 800e/(Csepk
2). The algorithm is:
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1. If σ2 ≥ τ , then let M = Csepk
2σ2/(200e). Else, let M = 4.

2. Binary search up to resolution σ2/(100M) the largest TU in the interval [0, (p−1
min)

s] such
that there exists a degree-2s pseudo-expectation that satisfies {∥v∥2 = 1,E⟨y, v⟩2s ≥
TU}. Let ẼU be the resulting pseudo-expectation for this TU .

3. Binary search up to resolution σ2/10000 the smallest TL in the interval [0, (p−1
min + et)t]

such that there exists a degree-2t pseudo-expectation that satisfies {∥v∥2 = 1, E⟨y, v⟩2t
≤ TL}. Let ẼL be the resulting pseudo-expectation for this TL.

4. Return ẼU and ẼL.

We now analyze the algorithm. To begin with, suppose that the TU found is at least the maximum
value of E⟨y, v⟩2s and that the TL found is at most the minimum value of E⟨y, v⟩2t. In this case ẼU

and ẼL satisfy the axioms of Lemma 32 and Lemma 33, respectively. Then our algorithm achieves
the stated guarantees:

• Suppose σ2 ≥ τ . Note that, in this case, M = Csepk
2σ2/(200e) ≥ 2. By Lemma 31,

we have that

(E⟨µ, u⟩2s)1/s ≥ Csep

100
k2σ2 log p−1

min = 2eM log p−1
min ≥ Mes.

Then the conditions of Lemma 32 are satisfied, and ẼU satisfies ⟨u, v⟩2s ≥ (1−4σ2/M)s

= (1− τ)s.

• Suppose σ2 < τ and E⟨µ, u⟩2s ≥ (4es)s. Note that, in this case, M = 4. Then the
conditions of Lemma 32 are satisfied, and ẼU satisfies ⟨u, v⟩2s ≥ (1 − 4σ2/M)s =
(1− σ2)s.

• Suppose σ2 < 0.001 and E⟨µ, u⟩2s ≤ (100s)s. Then the condition of Lemma 33 are
satisfied, and ẼL satisfies ⟨u, v⟩2s ≥ (1− 20σ2)s.

We argue now that TU is large enough and that TL is small enough in order for the pseudo-
expectations to satisfy the axioms of the lemmas. For that, we need

TU ≥ (1− σ2/M)
(
E⟨µ, u⟩2s − σ2/M

)
,

TL ≤ (1 + σ2/100)

(((
E⟨µ, u⟩2t

)1/t
+ σ2et

)t
+ σ2/100

)
.

We prove that the intervals in which we perform the binary search TU and TL contain E⟨µ, u⟩2s
and ((E⟨µ, u⟩2t)1/t + σ2et)t, respectively. Then, binary search with the proposed resolutions is
guaranteed to find TU and TL that satisfy the bounds stated above.

Using that E⟨µ, u⟩2 = 1− σ2, we have that

E⟨µ, u⟩2t =
k∑

i=1

pi⟨µi, u⟩2t =
k∑

i=1

(p
1/t
i ⟨µi, u⟩2)t ≤

(
k∑

i=1

p
1/t
i ⟨µi, u⟩2

)t

≤

(
p
1/t−1
min

k∑
i=1

pi⟨µi, u⟩2
)t

= p
−(t−1)
min E⟨µ, u⟩2 = p

−(t−1)
min (1− σ2)

≤ p−t
min
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and

E⟨µ, u⟩2t ≥ (E⟨µ, u⟩2)t = (1− σ2)t.

Therefore,
E⟨µ, u⟩2s ∈ [(1− σ2)s, (p−1

min)
s],((

E⟨µ, u⟩2t
)1/t

+ σ2et
)t

∈ [(1− σ2)t, (p−1
min + et)t].

Then the intervals in which we binary search are wide enough and binary search is guaranteed to
succeed.

The time complexity of the algorithm is given by the number of steps in the binary search
multiplied by the time to compute each of the pseudo-expectations. The number of steps in the
binary search is

O

(
max

{
log((p−1

min)
sk2), log

(p−1
min)

s

σ2
, log

(p−1
min + et)t

σ2

})
= O

(
log

1

σ2
+ log2 p−1

min

)
.

For each step, we compute a pseudo-expectation of degree O(log p−1
min) over d variables, which

requires time dO(log p−1
min). Therefore the time complexity is

O

(
log

1

σ2
+ log2 p−1

min

)
· dO(log p−1

min) =

(
log

1

σ2

)
· dO(log p−1

min).

C.2.2. SUM-OF-SQUARES SAMPLING (PROOF OF THEOREM 27)

We state and prove Lemma 34, which is used in the proof of Theorem 27. This lemma shows that,
given a symmetric postivie definite matrix M correlated with a rank-1 matrix uu⊤ for a unit vector
u, there exists an algorithm to recover a unit vector correlated with u. After that, we proceed to
prove the theorem.

Lemma 34 (Matrix rank-1 approximation) Let 0 ≤ ϵ < 1
8 . Let u ∈ Rd be a unit vector. Given a

symmetric positive semi-definite matrix M ∈ Rd×d with ∥M∥F ≤ 1 such that ⟨uu⊤,M⟩F ≥ 1− ϵ,
there exists a polynomial-time algorithm that finds a unit vector û ∈ Rd such that ⟨u, û⟩2 ≥ 1− 8ϵ.

Proof The algorithm is to compute vv⊤ as the best rank-1 approximation of M and return v
∥v∥ ,

which is uniquely defined up to a sign flip.
We now analyze the accuracy of the algorithm. We have that ⟨uu⊤,M⟩F ≥ 1 − ϵ, so ∥uu⊤ −

M∥2F ≤ 2− 2⟨uu⊤,M⟩F ≤ 2ϵ. For vv⊤ the best rank-1 approximation of M , we have then that

∥uu⊤ − vv⊤∥F ≤
∥∥∥uu⊤ −M

∥∥∥
F
+
∥∥∥M − vv⊤

∥∥∥
F
≤ 2

√
2ϵ,
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so ∥uu⊤ − vv⊤∥2F ≤ 8ϵ. Let û = v
∥v∥ . To analyze the error of û, note that

∥uu⊤ − vv⊤∥2F = 1 + ∥v∥4 − 2∥v∥2
〈
uu⊤, ûû⊤

〉
F

≥ 1−
〈
uu⊤, ûû⊤

〉
F

=
1

2

∥∥∥uu⊤ − ûû⊤
∥∥∥2
F
,

where in the inequality we used that 1+x4−2x2y ≥ 1−y for x ∈ R and 0 ≤ y ≤ 1, with x = ∥v∥
and y = ⟨uu⊤, ûû⊤⟩. Then ∥uu⊤ − ûû⊤∥2F ≤ 16ϵ. Therefore,

⟨u, û⟩2 = ⟨uu⊤, ûû⊤⟩F = 1− 1

2
∥uu⊤ − ûû⊤∥2F ≥ 1− 8ϵ.

Proof of Theorem 27 The algorithm is to compute M = Ẽvv⊤, apply the algorithm from
Lemma 34 to M in order to obtain a unit vector û, and return û.

We now analyze the algorithm. We start by analyzing the properties of Ẽ in more detail. Our
first goal is to obtain the lower bound Ẽ⟨u, v⟩2 ≥ 1 − 2ϵ. We start by proving the much weaker
lower bound Ẽ⟨u, v⟩2 ≥ 1−tϵ. Then, we use this lower bound to prove an upper bound Ẽ⟨u, v⟩2t ≤
1−t(1−Ẽ⟨u, v⟩2)/2. Comparing this result with the given lower bound Ẽ⟨u, v⟩2t ≥ (1−ϵ)t ≥ 1−tϵ
leads to the conclusion that Ẽ⟨u, v⟩2 ≥ 1− 2ϵ.

We proceed with the detailed proof of this fact. Recall that Ẽ satisfies ∥v∥2 = 1 and ⟨u, v⟩2t ≥
(1− ϵ)t. We have that {∥v∥2 = 1} 2

v {0 ≤ ⟨u, v⟩2 ≤ 1}, where the lower bound is trivial and the
upper bound is by Lemma 57. Therefore, Ẽ also satisfies 0 ≤ ⟨u, v⟩2 ≤ 1.

By Lemma 58 and using that (1− ϵ)t ≥ 1− tϵ, we have that

{0 ≤ ⟨u, v⟩2 ≤ 1, ⟨u, v⟩2t ≥ (1− ϵ)t} 2t
v {⟨u, v⟩2 ≥ 1− tϵ}.

By Lemma 59 applied to 1− ⟨u, v⟩2 with C = 1
t2ϵ

, we also have that

{1− tϵ ≤ ⟨u, v⟩2 ≤ 1} 2t
v {⟨u, v⟩2t ≤ 1− t(1− ⟨u, v⟩2)/2

}
.

Then
1− tϵ ≤ Ẽ⟨u, v⟩2t ≤ 1− t(1− Ẽ⟨u, v⟩2)/2,

so by rearranging, Ẽ⟨u, v⟩2 ≥ 1− 2ϵ.
Then M = Ẽvv⊤ satisfies

⟨uu⊤,M⟩F = u⊤Mu = Ẽ⟨u, v⟩2 ≥ 1− 2ϵ.

In addition, M is symmetric positive-definite and

∥M∥F ≤ Tr(M) = ẼTr(vv⊤) = Ẽ∥v∥2 = 1.

Therefore, M satisfies the conditions of Lemma 34, and we are guaranteed that û satisfies ⟨u, û⟩2 ≥
1− 16ϵ.

The given pseudo-expectation is of degree O(t) over d variables, so representing it requires
dO(t) space. Then we simply bound the time complexity by dO(t), which dominates the other steps
of the algorithm.
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C.3. Finite sample bounds

In Section C.2 we assumed oracle access to Ey⊗t. However, our algorithm only has access to
empirical moments. Lemma 35 gives a sum-of-squares proof that that the empirical moments are in
fact close to the population moments. We defer the proof of the lemma to the appendix.

Lemma 35 (Closeness of moments) For n ≥ (p−1
mind)

O(t)η−2ϵ−1, with probability 1− ϵ,{
∥v∥2 = 1

}
O(t)

v
{
Ê⟨y, v⟩2t ≤ E⟨y, v⟩2t + η

}
,

{
∥v∥2 = 1

}
O(t)

v
{
Ê⟨y, v⟩2t ≥ E⟨y, v⟩2t − η

}
.

Proof See Section F.6.

C.4. Proof of Theorem 22

In the setting of Theorem 22 we only have access to empirical moments. Theorem 36 and Theo-
rem 37 adapt Theorem 26 and Theorem 25 to this setting, respectively. Also recall that the goal of
Theorem 22 is to return a clustering, not only a unit vector close to u. Toward that goal, Theorem 38
shows that there exists an algorithm that, given a unit vector close to u, computes such a clustering.
We state and prove all of these theorems and then combine them to prove Theorem 22.

Theorem 36 (Finite sample equivalent of Theorem 26) Let

n0 =

(
1

σ2

)O(1)

· (p−1
mind)

O(log p−1
min).

Given a sample of size n ≥ n0 from the mixture, there exists an algorithm that runs in time
(
log 1

σ2

)
·

n · dO(log p−1
min) that computes with high probability two peseudo-expectations ẼU and ẼL of degree

O(log p−1
min) over a variable v ∈ Rd such that the following holds. Let s = ⌈log p−1

min⌉, let t =
5000s, and let τ = 800e

Csepk2
. Then ẼU∥v∥2 = 1, ẼL∥v∥2 = 1, and:

• If σ2 ≥ τ , then ẼU ⟨u, v⟩2s ≥ (1− τ)s.
• If σ2 < τ and E⟨µ, u⟩2s ≥ (4es)s, then ẼU ⟨u, v⟩2s ≥ (1− σ2)s.
• If σ2 < 0.001 and E⟨µ, u⟩2s ≤ (100s)s, then ẼL⟨u, v⟩2t ≥ (1− 20σ2)t.

Proof The algorithm is the same as that in the proof of Theorem 26, except that in step (2) and
step (3) of the algorithm the constraints that the pseudo-expectations are required to satisfy are
{∥v∥2 = 1, Ê⟨y, v⟩2s ≥ TU} and {∥v∥2 = 1, Ê⟨y, v⟩2t ≤ TL}, respectively.

By Lemma 35, for n ≥ n0, we have that with high probability

{∥v∥2 = 1, Ê⟨y, v⟩2s ≥ TU} 2s
v {Ê⟨y, v⟩2s ≥ TU − σ2/(100M)},

{∥v∥2 = 1, Ê⟨y, v⟩2t ≤ TL} 2s
v {Ê⟨y, v⟩2t ≤ TL + σ2/10000}.

These errors, combined with the errors from the binary search resolution, are still within the
amount tolerated by Lemma 32 and Lemma 33, respectively, so the same guarantees hold.
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The number of steps required by the binary search is the same as in Theorem 26. For each
step of the binary search, we compute a pseudo-expectation of degree O(log p−1

min) over d variables,
and each constraint requires summing over the n samples, so the time required is n · dO(log p−1

min).
Therefore the time complexity is

O

(
log

1

σ2
+ log2 p−1

min

)
· n · dO(log p−1

min) =

(
log

1

σ2

)
· n · dO(log p−1

min).

Theorem 37 (Finite sample equivalent of Theorem 25) Let

n0 =

(
1

σ2

)O(1)

· (p−1
mind)

O(log p−1
min).

Given a sample of size n ≥ n0 from the mixture, there exists an algorithm with time complexity(
log 1

σ2

)
·n ·dO(log p−1

min) that outputs with high probability a unit vector û ∈ Rd such that ⟨u, û⟩2 =
1− 320min(σ2, 1k ).

Proof The algorithm is the same as that in the proof of Theorem 25, with two exceptions:

• In step (1) of the algorithm, we run the algorithm from Theorem 36 instead of the algo-
rithm from Theorem 26. The pseudo-expectations ẼL and ẼU satisfy the same guaran-
tees.

• In step (3) of the algorithm, we check if Ê⟨y, ûU ⟩2s ≥ (50s)s instead of E⟨y, ûU ⟩2s ≥
(50s)s. By Lemma 35, for n ≥ n0, with high probability the difference between the
two moments is less than 1. Then, if Ê⟨y, ûU ⟩2s ≥ (50s)s, we also have E⟨y, ûU ⟩2s ≥
(50s)s − 1, and if Ê⟨y, ûU ⟩2s < (50s)s, we also have E⟨y, ûU ⟩2s < (50s)s + 1. It is
easy to verify that the analysis in Theorem 25 is still correct with these slightly weaker
bounds.

Therefore, the same guarantees hold as in Theorem 25. The time complexity of the algorithm is
dominated by the time to run the algorithm from Theorem 36.

Theorem 38 (Clustering algorithm) For some C > 0, suppose that a unit vector û ∈ Rd is known
such that ⟨u, û⟩2 ≥ 1−Cmin(σ2, 1k ). Suppose that Csep/C is larger than some universal constant.
Then, given a sample of size n ≥ (p−1

min)
O(1) from the mixture, there exists an algorithm that runs in

time nO(log p−1
min) and returns with high probability a partition of [n] into k sets C1, ..., Ck such that,

if the true clustering of the samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤
(pmin

k

)O(1)
.
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Proof Our algorithm runs the algorithm from Theorem 5.1 of Hopkins and Li (2018) with some t =
O(log p−1

min) large enough on input samples ⟨y1, û⟩/(
√

2(C + 1)σ2), ..., ⟨yn, û⟩/(
√

2(C + 1)σ2),
and returns the clustering that this algorithm computes as an intermediate step.

We now analyze the algorithm. Note that ⟨y, û⟩/
√

2(C + 1)σ2 is distributed according to a
one-dimensional mixture of Gaussians in which all the components have the same variance, namely
û⊤Σû/(2(C + 1)σ2). We have that

û⊤Σû = 1− (1− σ2)⟨u, û⟩2 = 1− ⟨u, û⟩2 + σ2⟨u, û⟩2 ≤ Cσ2 + σ2 = (C + 1)σ2.

Therefore, the variance û⊤Σû/(2(C + 1)σ2) is upper bounded by 1/2. For the guarantees of the
algorithm from Hopkins and Li (2018) to hold, we further need to show that the mixture has large
separation between the means of the components. Note that the mean corresponding to µi in the
original mixture becomes ⟨µi, û⟩/

√
2(C + 1)σ2 in the new mixture. For i ̸= j, we have that

(⟨µi − µj , û⟩)2 = ⟨⟨µi, u⟩u− ⟨µj , u⟩u, û⟩2 = ⟨u, û⟩2⟨µi − µj , u⟩2

≥ ⟨u, û⟩2Csep(u
⊤Σu) log p−1

min = ⟨u, û⟩2Csepσ
2 log p−1

min

≥ Csep

2
σ2 log p−1

min

where in the last inequality we used that ⟨u, û⟩2 ≥ 1− C/k ≥ 1/2. Then(
⟨µi − µj , û⟩√
2(C + 1)σ2

)2

≥ Csep

4(C + 1)
log p−1

min.

For Csep/C larger than some universal constant, the separation coefficient Csep/(4(C + 1)) is
large enough for the guarantees of Theorem 5.1 of Hopkins and Li (2018) to hold meaningfully
with t = O(log p−1

min). Then this algorithm computes a clustering with the stated guarantees. The
algorithm requries n ≥ (p−1

min)
O(1) and runs in time nO(log p−1

min).

Proof of Theorem 22 Run the algorithm from Theorem 37 to obtain a unit vector û that satisfies
⟨u, û⟩2 ≥ 1 − 320min(σ2, 1k ). Then run the clustering algorithm from Theorem 38 using this unit
vector û. For Csep/320 larger than some universal constant, this algorithm is guaranteed to return a
clustering with the stated guarantees.

The time complexity from Theorem 37 is
(
log 1

σ2

)
· n · dO(log p−1

min) and the time complexity

from Theorem 39 is nO(log p−1
min). We assume n ≥

(
1
σ2

)O(1) · (p−1
mind)

O(log p−1
min). Therefore, the time

complexity is dominated by the time to run the clustering algorithm from Theorem 39.

Appendix D. Colinear means

In this section we remove the isotropic position assumption from the model in Section C. Our strat-
egy is straightfoward: we first put the mixture in isotropic position and then run the algorithm from
Theorem 22. The technical challenge is that we can only put the mixture in approximate isotropic
position. Then, we show that the guarantees of Theorem 22 continue to hold with approxiamte
isotropic position, albeit with a sample complexity that depends on the condition number of the
covariance matrix of the mixture.
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Setting. We consider a mixture of k Gaussian distributions N(µ0
i ,Σ

0) with mixing weights pi for
i = 1, ..., k, where µ0

i ∈ Rd, Σ0 ∈ Rd×d is positive definite, and pi ≥ 0 and
∑k

i=1 pi = 1. Let
pmin = mini pi.

The distribution also satisfies mean separation and mean colinearity:

• Mean separation: for some Csep > 0 and for all i ̸= j,∥∥∥(Σ0
)−1/2

(µ0
i − µ0

j )
∥∥∥2 ≥ Csep log p

−1
min.

• Mean colinearity: for some vector µ0
base ∈ Rd and some unit vector u0 ∈ Rd and for all

i,
µ0
i = µ0

base + ⟨µ0
i − µ0

base, u
0⟩u0.

Also define, for y0 distributed according to the mixture,

σ2 =
(u0)⊤ cov(y0)−1u0

(u0)⊤(Σ0)−1u0
.

As shown in Lemma 41, σ2 has the same interpretation as in Section C: it is equal to the variance
of the components in the direction of the means after an isotropic position transformation.

Theorem 39 (Colinear means algorithm) Consider the Gaussian mixture model defined above,
with Csep larger than some universal constant. For y0 distributed according to the mixture, let

n0 =

(
1

σ2
· ∥ cov(y0)∥ · ∥ cov(y0)−1∥

)O(1)

· (p−1
mind)

O(log p−1
min).

Given a sample of size n ≥ n0 from the mixture, there exists an algorithm that runs in time
nO(log p−1

min) and returns with high probability a partition of [n] into k sets C1, ..., Ck such that,
if the true clustering of the samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤
(pmin

k

)O(1)
.

We introduce some further notation for this section. Let y0 be distributed according to the
mixture. We specify the model as y0 = µ0 +w0, where µ0 takes value µi with probability pi and
w0 ∼ N(0,Σ0), with µ0 and w0 independent of each other.

D.1. Isotropic position transformation

In this section we argue that, if we put the mixture in exact isotropic position, the conditions of
Theorem 22 are satisfied and we can simply run that algorithm.

Assume acces to Ey0 and to an invertible matrix W ∈ Rd×d such that W cov(y0)W⊤ =
Id. Then, define the random variable y by the affine transformation y = W (y0 − Ey0). The
distribution of y is in isotropic position: it has mean 0 and covariance matrix Id. Furthermore,
Lemma 40 shows that y is a mixture of Gaussians in which the components are affine transformed
versions of the original components, and that the mixture continues to satisfy mean separation and
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mean colinearity. Then, the conditions of Theorem 22 are satisfied. Therefore, if the original
input samples are y01, ..., y

0
n, we can simply run that algorithm on input samples W (y01 − Ey0), ...,

W (y0n − Ey0)15.
We define now some variables used to state Lemma 40. Recall that y = W (y0 − Ey0). Define

µi = W (µ0
i − Ey0), Σ = WΣ0W⊤, and u = Wu0

∥Wu0∥v . Also define random variables µ =

W (µ0 − Ey0) and w = Ww0.

Lemma 40 (Model after isotropic position transformation) The random variable y is distributed
according to a mixture of k Gaussian distributions N(µi,Σ) with mixing weights pi for i = 1, ..., k,
where Σ is positive definite. Alternatively, we specify the model as y = µ + w, with µ and w
independent of each other. Furthermore, for all i ̸= j we have mean separation∥∥∥Σ−1/2(µi − µj)

∥∥∥2 ≥ Csep log p
−1
min

and for all i we have mean colinearity

µi = ⟨µi, u⟩u.

Proof Recall that y0 = µ0 +w0. Then W (y0 − Ey0) = W (µ0 − Ey0) +Ww0, so y = µ+w.
Also note that µ takes value W (µ0

i − Ey0) = µi with probability pi and w ∼ N(0,WΣ0W⊤) =
N(0,Σ). Therefore, y is distributed according to a mixture of k Gaussian distributions N(µi,Σ)
with mixing weights pi.

To show that Σ is positive definite, we note that for any vector v ∈ Rd with v ̸= 0 we have that

v⊤Σv = v⊤WΣ0W⊤v = (W⊤v)⊤Σ0W⊤v > 0,

where we used that W⊤v ̸= 0 because W is invertible, after which we used that Σ0 is positive
definite.

We prove now mean colinearity and mean separation. We start with mean colinearity. Recall
that µ0

i = µ0
base + ⟨µ0

i − µ0
base, u

0⟩u0. Then, using that Ey0 = Eµ0,

Ey0 = µ0
base + ⟨Ey0 − µ0

base, u
0⟩u0,

so
µi = W (µ0

i − Ey0) = W (⟨µ0
i − Ey0, u0⟩u0) = ⟨µ0

i − Ey0, u0⟩Wu0.

Then, using that u = Wu0

∥Wu0∥ ,

⟨µi, u⟩u =

〈
⟨µ0

i − Ey0, u0⟩Wu0,
Wu0

∥Wu0∥

〉
Wu0

∥Wu0∥

= ⟨µ0
i − Ey0, u0⟩

〈
Wu0

∥Wu0∥
,

Wu0

∥Wu0∥

〉
Wu0

= ⟨µ0
i − Ey0, u0⟩Wu0

= µi,

15. It is straightforward that if sample y0
i comes from the i-th component in the original mixture then W (y0

i − Ey0)
continues to come from the i-th component in the affine transformed mixture.
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which proves mean colinearity. For mean separation, we have that∥∥∥Σ−1/2(µi − µj)
∥∥∥2 = ∥∥∥(WΣ0W⊤)−1/2W (µ0

i − µ0
j )
∥∥∥2

= (µ0
i − µ0

j )
⊤W⊤(WΣ0W⊤)−1W (µ0

i − µ0
j )

= (µ0
i − µ0

j )
⊤W⊤(W⊤)−1(Σ0)−1W−1W (µ0

i − µ0
j ))

= (µ0
i − µ0

j )
⊤(Σ0)−1(µ0

i − µ0
j )

=
∥∥∥(Σ0)−1/2(µ0

i − µ0
j )
∥∥∥2

≥ Csep log p
−1
min.

Lemma 41

σ2 =
(u0)⊤ cov(y0)−1u0

(u0)⊤(Σ0)−1u0
= u⊤Σu.

Proof For the purposes of this proof, we define σ2 = u⊤Σu as in Section C.1 and prove that it also
matches the definition in this section.

We have, as in the proof of Lemma 40, that

∥(Σ0)−1/2(µ0
i − µ0

j )∥2 = ∥Σ−1/2(µi − µj)∥2.

For the left-hand side, we have that

∥(Σ0)−1/2(µ0
i − µ0

j )∥2 = ∥(Σ0)−1/2⟨µ0
i − µ0

j , u
0⟩u0∥2

= ∥(Σ0)−1/2u0∥2 · ⟨µ0
i − µ0

j , u
0⟩2.

For the right-hand side, using from Lemma 23 that Σ = Id − (1− σ2)uu⊤, we have that

∥Σ−1/2(µi − µj)∥2 =
∥∥∥∥(Id − (1− σ2)uu⊤

)−1/2
(µi − µj))

∥∥∥∥2
=

∥∥∥∥∥
(
Id − (1− σ2)

(Wu0)(Wu0)⊤

∥Wu0∥2

)−1/2

⟨µ0
i − µ0

j , u
0⟩Wu0

∥∥∥∥∥
2

=

∥∥∥∥(Id + ( 1

σ
− 1

)
(Wu0)(Wu0)⊤

∥Wu0∥2

)
Wu0

∥∥∥∥2 · ⟨µ0
i − µ0

j , u
0⟩2

=
1

σ2
· ∥Wu0∥2 · ⟨µ0

i − µ0
j , u

0⟩2.

Therefore
∥(Σ0)−1/2u0∥2 · ⟨µ0

i − µ0
j , u

0⟩2 = 1

σ2
· ∥Wu0∥2 · ⟨µ0

i − µ0
j , u

0⟩2,
so

σ2 =
∥Wu0∥2

∥(Σ0)−1/2u0∥2
=

(u0)⊤ cov(y0)−1u0

(u0)⊤(Σ0)−1u0
,

where we used that, by Lemma 74, W = Q cov(y0)−1/2 for an orthogonal matrix Q, so ∥Wu0∥ =
∥ cov(y0)−1/2u0∥.
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D.2. Finite sample isotropic position transformation

Without access to Ey0 and to W , we apply the isotropic position transformation with Êy0 and some
matrix Ŵ ∈ Rd×d defined as follows. Let the singular value decomposition of ĉov(y0) be Û Λ̂Û⊤.
Then define Ŵ and W as

Ŵ = (Û⊤ĉov(y0)Û)−1/2Û⊤, W = (Ŵ cov(y0)Ŵ⊤)−1/2Ŵ . (19)

This choice is analogous to that in Appendix C in Hsu and Kakade (2013). By Lemma 72, we have
that Ŵ ĉov(y0)Ŵ⊤ = Id and W cov(y0)W⊤ = Id. Hence, Ŵ corresponds to an isotropic position
transformation for the empirical covariance matrix, and W to one for the population covariance
matrix. In our algorithm, we will apply the approximate isotropic position transformation to input
samples y01, ..., y

0
n as Ŵ (y01 − Êy0), ..., Ŵ (y0n − Êy0).

D.3. Finite sample bounds

Lemma 42 gives a sum-of-squares proof that the empirical moments of the mixture with approx-
imate isotropic position transformation are close to the population moments of the mixture with
exact isotropic position transformation. This lemma is supported by Lemma 43 and Lemma 44,
which prove that the moments do not change much due to the use of Êy0 and Ŵ , respectively.

Additionally, for arbitrary unit vectors v, Lemma 45 proves that ⟨Ŵ (µ0
i − µ0

j ), v⟩ is close to
⟨W (µ0

i −µ0
j ), v⟩ and Lemma 46 proves that v⊤Ŵ (Σ0)1/2 is close to v⊤W (Σ0)1/2. These facts are

used in the proof of Theorem 39 to argue that the clustering algorithm is correct.

Lemma 42 (Closeness of moments) Let η < 0.001. For

n ≥
(
∥ cov(y0)∥ · ∥ cov(y0)−1∥

)O(1) · (p−1
mind)

O(t)η−2ϵ−1,

with probability 1− ϵ,{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Êy0), v⟩2t ≤ (1 + η) · E⟨W (y0 − Ey0), v⟩2t + η

}
,

{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Êy0), v⟩2t ≥ (1− η) · E⟨W (y0 − Ey0), v⟩2t − η

}
.

Proof Select n such that the results of Lemma 43, Lemma 44, and Lemma 35 hold each with
probability 1− ϵ/3. Then, overall, all three results hold with probability 1− ϵ. Then we have with
probability 1− ϵ that

Ê⟨Ŵ (y0 − Êy0), v⟩2t

≤ (1 + η/10)Ê⟨Ŵ (y0 − Ey0), v⟩2t + η/10

≤ (1 + η/10)
(
(1 + η/10)Ê⟨W (y0 − Ey0), v⟩2t + η/10

)
+ η/10

≤ (1 + η/10)
(
(1 + η/10)

(
(1 + η/10)E⟨W (y0 − Ey0), v⟩2t + η/10

)
+ η/10

)
+ η/10

≤ (1 + η)E⟨W (y0 − Ey0), v⟩2t + η.
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and

Ê⟨Ŵ (y0 − Êy0), v⟩2t

≥ (1− η/10)Ê⟨Ŵ (y0 − Ey0), v⟩2t − η/10

≥ (1− η/10)
(
(1− η/10)Ê⟨W (y0 − Ey0), v⟩2t − η/10

)
− η/10

≥ (1− η/10)
(
(1− η/10)

(
(1− η/10)E⟨W (y0 − Ey0), v⟩2t − η/10

)
− η/10

)
− η/10

≥ (1− η)E⟨W (y0 − Ey0), v⟩2t − η.

Lemma 43 Let η < 0.001. For

n ≥ kd log2(d/ϵ) ·
(
t · ∥ cov(y0)∥ · ∥ cov(y0)−1∥

η

)O(1)

,

with probability 1− ϵ,{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Êy0), v⟩2t ≤ (1 + η) · Ê⟨Ŵ (y0 − Ey0), v⟩2t + η

}
,

{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Êy0), v⟩2t ≥ (1− η) · Ê⟨Ŵ (y0 − Ey0), v⟩2t − η

}
.

Proof See Section F.7.

Lemma 44 Let η < 0.001. For

n ≥ kd log2(d)ϵ−1 ·

(
tp−1

mind · ∥ cov(y0)∥ · ∥ cov(y0)−1∥
η

)O(1)

,

with probability 1− ϵ,{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Ey0), v⟩2t ≤ (1 + η) · Ê⟨W (y0 − Ey0), v⟩2t + η

}
,

{
∥v∥2 = 1

}
2t
v
{
Ê⟨Ŵ (y0 − Ey0), v⟩2t ≥ (1− η) · Ê⟨W (y0 − Ey0), v⟩2t − η

}
.

Proof See Section F.7.

Lemma 45 Let η < 0.001. Let v ∈ Rd be a unit vector. For

n ≥ kd log2(d/ϵ) ·
(
∥ cov(y0)∥ · ∥ cov(y0)−1∥

η

)O(1)

,

with probability 1− ϵ, for all i, j ∈ [k],

|⟨W (µ0
i − µ0

j ), v⟩ − ⟨Ŵ (µ0
i − µ0

j ), v⟩| ≤ η.
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Proof See Section F.7.

Lemma 46 Let η < 0.001. Let v ∈ Rd be a unit vector. For

n ≥ kd log2(d/ϵ) ·

(
p−1
min · ∥ cov(y0)∥ · ∥ cov(y0)−1∥

η

)O(1)

,

with probability 1− ϵ,
∥v⊤W (Σ0)1/2 − v⊤Ŵ (Σ0)1/2∥ ≤ η.

Proof See Section F.7.

D.4. Proof of Theorem 39

Proof of Theorem 39 The first step of the algorithm is to apply the approximate istropic position
transformation described in Section D.2 to input samples y01, ..., y

0
n. Then, the new samples are

Ŵ (y01 − Êy0), ..., Ŵ (y0n − Êy0). After that, the algorithm is the same as that of Theorem 22.
We now argue that, for n ≥ n0, the same guarantees as in Theorem 22 hold. Recall that

Theorem 22 is composed of two parts: the algorithm of Theorem 37 which computes a unit vector
û with correlation 1 − 320min(σ2, 1k ) with u, and the clustering algorithm of Theorem 38, which
uses a unit vector û with such correlation in order to cluster the samples.

For the algorithm of Theorem 37, we note that by Lemma 42, for n ≥ n0, we have sum-of-
squares proofs that, for t = O(log p−1

min),

Ê⟨Ŵ (y0 − Êy0), v⟩2t ≤
(
1 +

σ2

10000M

)
E⟨W (y0 − Ey0), v⟩2t + σ2

10000M

and

Ê⟨Ŵ (y0 − Êy0), v⟩2t ≥
(
1− σ2

10000M

)
E⟨W (y0 − Ey0), v⟩2t − σ2

10000M
,

where Ŵ (y0−Êy0) corresponds to the mixture in approximate isotropic position and W (y0−Ey0)
corresponds to the mixture in exact isotropic position. It is easy to verify, similarly to the analysis
of the errors in the proof of Theorem 37, that these errors are tolerated by the algorithm and that it
behaves as if the distribution was in exact isotropic position.

For the clustering algorithm of Theorem 38, the main issue is that the samples are colinear in
direction Ŵu0

∥Ŵu0∥
, but û is guaranteed to have large correlation with Wu0

∥Wu0∥ . We prove, nevertheless,
that the algorithm has the same guarantees. First, we show that the variance of the one-dimensional
components û⊤Ŵ⊤Σ0Ŵ û/(2(C + 1)σ2) is upper bounded by 1, as required by the algorithm of
Hopkins and Li (2018). We have by Lemma 46 that, for n ≥ n0, with high probability

|∥û⊤W (Σ0)1/2∥ − ∥û⊤Ŵ (Σ0)1/2∥| ≤ ∥û⊤W (Σ0)1/2 − û⊤Ŵ (Σ0)1/2∥ ≤ σ/100,

so using that û⊤WΣ0W T û ≥ σ2,

û⊤WΣ0W T û ≥ 1

2
û⊤ŴΣ0Ŵ T û.
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Therefore, using from the proof of Theorem 38 that (û⊤W⊤Σ0Wû)/(2(C + 1)σ2) ≤ 0.5,

û⊤Ŵ⊤Σ0Ŵ û

2(C + 1)σ2
≤ 2

û⊤W⊤Σ0Wû

2(C + 1)σ2
≤ 1.

Second, we show that the one-dimensional means ⟨Ŵ (µ0
i − Êy0), û⟩ have large separation. We

have by the proof of Theorem 38 that, for n ≥ n0, with high probability

⟨W (µ0
i − µ0

j ), û⟩2 ≥
Csep

2
σ2 log p−1

min.

We are interested in a similar bound with W changed into Ŵ . By Lemma 45, for n ≥ n0, we have
with high probability

|⟨W (µ0
i − µ0

j ), û⟩ − ⟨Ŵ (µ0
i − µ0

j ), û⟩| ≤ σ/100,

so using that ⟨W (µ0
i − µ0

j ), û⟩2 ≥ σ2,

⟨Ŵ (µ0
i − µ0

j ), û⟩2 ≥
1

2
⟨W (µ0

i − µ0
j ), û⟩2.

Therefore,

⟨Ŵ (µ0
i − µ0

j ), û⟩2 ≥
Csep

4
σ2 log p−1

min,

so (
⟨Ŵ (µ0

i − µ0
j ), û⟩√

2(C + 1)σ2

)2

≥ Csep

8(C + 1)
log p−1

min.

For Csep/C larger than some universal constant, the separation coefficient Csep/(8(C + 1)) is
large enough for the guarantees of Theorem 5.1 of Hopkins and Li (2018) to hold as before with
t = O(log p−1

min).
Then, overall, the same guarantees as in Theorem 22 hold.

Appendix E. Small radius

Setting. We consider a mixture of k Gaussian distributions N(µi,Σ) with mixing weights pi for
i = 1, ..., k, where µi ∈ Rd, Σ ∈ Rd×d is positive definite, and pi ≥ 0 and

∑k
i=1 pi = 1. Let

pmin = mini pi.
The distribution also satisfies mean separation and a small radius condition:

• Mean separation: for some Csep > 0 and for all i ̸= j,∥∥∥Σ−1/2(µi − µj)
∥∥∥2 ≥ Csep log p

−1
min.

• Small radius: for some R > 0 and for all i,∥∥∥Σ−1/2µi

∥∥∥ ≤ R.
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Theorem 47 (Small radius algorithm) Consider the Gaussian mixture model defined above, with
Csep larger than some universal constant. Let n0 = (p−1

mind)
O(R2+log p−1

min). Given a sample of size
n ≥ n0 from the mixture, there exists an algorithm that runs in time nO(R2+log p−1

min) and returns
with high probability a partition of [n] into k sets C1, ..., Ck such that, if the true clustering of the
samples is S1, ..., Sk, then there exists a permutation π of [k] such that

1− 1

n

k∑
i=1

|Ci ∩ Sπ(i)| ≤
(pmin

k

)O(1)
.

We introduce some further notation for this section. Let y be distributed according to the
mixture. We specify the model as y = µ + w, where µ takes value µi with probability pi and
w ∼ N(0,Σ), with µ and w independent of each other.

E.1. Component covariance estimation

Lemma 49 gives a sum-of-squares proof that, for t = Ω(R4), the directional moment E⟨y, v⟩2t
approximates the t-th power of the variance of the components in direction v. This is the main
ingredient of the algorithm, and it shows that the t-th moment of the distribution identifies within
constant factors the covariance matrix of the components. Lemma 48 is a simple upper bound on
the means of the mixture, used in the proof of Lemma 49.

Lemma 48 (Bounded mean term) For t ≥ 1 integer,

2t
v E⟨µ, v⟩2t ≤ R2t(v⊤Σv)t.

Proof

2t
v E⟨µ, v⟩2t = E⟨Σ1/2Σ−1/2µ, v⟩2t = E⟨Σ−1/2µ,Σ1/2v⟩2t ≤ E∥Σ−1/2µ∥2t∥Σ1/2v∥2t,

where in the inequality we used Lemma 57. The conclusion follows by noting that ∥Σ−1/2µ∥ ≤ R
and ∥Σ1/2v∥2 = v⊤Σv.

Lemma 49 (Small radius component covariance estimation) For t ≥ 4R2 integer,

2t
v 1

4t
(v⊤Σv)t ≤ 1

tt
E⟨y, v⟩2t ≤ 4t(v⊤Σv)t.

Proof For the upper bound, by Lemma 13 and Lemma 48,

2t
v E⟨y, v⟩2t ≤ 22t−1E⟨µ, v⟩2t + 22t−1(v⊤Σv)ttt

≤ 22t−1(R2t + tt)(v⊤Σv)t

≤ 4ttt(v⊤Σv)t.

For the lower bound, by Lemma 14 and Lemma 48,

2t
v E⟨y, v⟩2t ≥ E⟨µ, v⟩2t + (v⊤Σv)t

tt

2t

≥
(
−R2t +

1

2t
tt
)
(v⊤Σv)t

≥ 1

4t
tt(v⊤Σv)t.
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We note that the term 1
ttE⟨y, v⟩

2t can be rewritten as

1

tt
E⟨y, v⟩2t =

〈
v⊗t,

1

tt
E(yy⊤)⊗tv⊗t

〉
=

〈
1

tt
E(yy⊤)⊗t, (vv⊤)⊗t

〉
.

E.2. Finite sample bounds

Lemma 50 gives a sum-of-squares proof that the empirical moments of the distribution are close to
the population moments. We defer the proof to the appendix.

Lemma 50 (Closeness of moments) For n ≥ (p−1
mind)

O(t)η−2ϵ−1, with probability 1− ϵ,

2t
v

(1− η) · E⟨y, v⟩2t ≤ Ê⟨y, v⟩2t ≤ (1 + η) · E⟨y, v⟩2t.

Proof See Section F.8.

E.3. Proof of Theorem 47

If the covariance matrix of the components were known, we could apply an affine transformation to
the samples and change the distribution into a mixture of spherical Gaussians. After that we could
simply apply an algorithm for clustering mixtures of spherical Gaussians.

It might look like the covariance matrix approximation of Lemma 49 could be used to design a
sum-of-squares program that identifies this covariance matrix. However, because Lemma 49 only
gives an approximation in each direction for the t-th power of the variance of the components, and
because it is non-trivial to take t-th roots in sum-of-squares proofs, we found it challenging to obtain
a low-degree sum-of-squares proof of identifiability for the covariance matrix.

Instead, we observe that the sum-of-squares algorithm of Hopkins and Li (2018) for clustering
mixtures of spherical Gaussians only uses as axioms upper bounds on the t-th moments of the
distribution of the components. It is not difficult to adapt this algorithm to work with the t-th power
approximations that we obtain from Lemma 49.
Proof of Theorem 47 The algorithm is:

1. Set t = O(R2 + log p−1
min) large enough.

2. Estimate D = 1
tt Ê(yy

⊤)⊗t.
3. Apply the algorithm from Theorem 5.1 of Hopkins and Li (2018), but with the following

moment constraint in the set of axioms instead of the original moment constraint:

∀v ∈ Rd,
1

αn

n∑
i=1

wi⟨yi − µ, v⟩2t ≤ 4(8t)t⟨v⊗t, Dv⊗t⟩,

where α is a parameter and wi and µ are system variables, as in the original axioms.
4. Return the clustering that this algorithm computes as an intermediate step.
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We now analyze the algorithm. We first discuss the new constraint. The universal quantifier over
v ∈ Rd can be modeled by requiring that there exists a sum-of-squares proof in v of the constraint
(see Fleming et al. (2019)). For the random variable Σ−1/2y, which is distributed according to a
mixture of spherical Gaussians with covariance matrix Id, it follows by standard arguments (see
Hopkins and Li (2018)) that, for our choice of n, with high probability

2t
v 1

αn

n∑
i=1

wi⟨Σ−1/2(yi − µ), v⟩2t ≤ 2(2t)t∥v∥2t

when α is the fraction of samples coming from one of the components, wi is 1 for all samples from
that component and 0 for all other samples, and µ is the mean of that component. Then, by a change
of variables v → Σ1/2v,

2t
v 1

αn

n∑
i=1

wi⟨yi − µ, v⟩2t ≤ 2(2t)t(v⊤Σv)t.

We connect now this to D. By Lemma 50, for our choice of n, with high probability

2t
v 1

2
· E⟨y, v⟩2t ≤ tt⟨v⊗t, Dv⊗t⟩ ≤ 2 · E⟨y, v⟩2t.

By combining this result with Lemma 49,

2t
v 1

2 · 4t
(v⊤Σv)t ≤ ⟨v⊗t, Dv⊗t⟩ ≤ 2 · 4t · (v⊤Σv)t.

Therefore,

2t
v 1

αn

n∑
i=1

wi⟨yi − µ, v⟩2t ≤ 4(8t)t⟨v⊗t, Dv⊗t⟩,

so the constraint is valid.
To study the guarantees of the algorithm, we show that the new constraint implies a constraint

of the form required by the original algorithm, which only includes a term ∥v∥2t on the right-hand
side. We use that 2t

v ⟨v⊗t, Dv⊗t⟩ ≤ 2 · 4t · (v⊤Σv)t in

2t
v 1

αn

n∑
i=1

wi⟨yi − µ, v⟩2t ≤ 4(8t)t⟨v⊗t, Dv⊗t⟩

to obtain

2t
v 1

αn

n∑
i=1

wi⟨yi − µ, v⟩2t ≤ 8(32t)t(v⊤Σv)t.

By a change of variables v → Σ−1/2v,

2t
v 1

αn

n∑
i=1

wi⟨Σ−1/2(yi − µ), v⟩2t ≤ 8(32t)t∥v∥2t.

Finally, by dividing both sides by 4 · 16t we obtain

2t
v 1

αn

n∑
i=1

wi

〈
1

21/t · 4
Σ−1/2(yi − µ), v

〉2t

≤ 2(2t)t∥v∥2t.
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Then the algorithm from Theorem 5.1 of Hopkins and Li (2018) behaves as if we had samples from
1

21/t·4Σ
−1/2y, which is distributed according to a mixture of well-separated spherical Gaussians

with covariance matrix 1
41/t·16Id. It is easy then to verify that we inherit the guarantees of the

algorithm of Hopkins and Li (2018) and, for t = O(R2 + log p−1
min) large enough, we return a

clustering that satisfies the statement of our theorem.
The algorithm of Hopkins and Li (2018) requires n ≥ (p−1

min)
O(1) · dO(t) = (p−1

min)
O(1) ·

dO(R2+log p−1
min), so our choice of n is large enough to satisfy this. The time complexity is dominated

by the algorithm of Hopkins and Li (2018), which has a time complexity of nO(t) = nO(R2+log p−1
min).

Appendix F. Auxiliary results

F.1. Sum-of-squares lemmas

We first prove a number of useful SOS facts.

Lemma 51 (Restatement of Lemma A.1 in Kothari and Steurer (2017))
For variables X1, ..., Xt ∈ R,

t
X

X1 · ... ·Xt ≤
1

t
(Xt

1 + ...+Xt
t ).

Lemma 52 (Restatement of Lemma A.2 in Kothari and Steurer (2017))
For variables A,B ∈ R and t ≥ 2 even,

t

A,B
(A+B)t ≤ 2t−1At + 2t−1Bt.

Lemma 53 For variables A,B ∈ R and δ > 0 and t ≥ 2 even,

t

A,B
(A+B)t ≤ (1 + δ)t−1At +

(
1 +

1

δ

)t−1

Bt.

Proof

t

A,B
(A+B)t =

t∑
s=0

(
t

s

)
AsBt−s

=
t∑

s=0

(
t

s

)(
δ1−s/tA

)s( 1

δs/t
B

)t−s

(1)

≤
t∑

s=0

(
t

s

)(
s

t

(
δ1−s/tA

)t
+

t− s

s

(
1

δs/t
B

)t
)

=

(
t∑

s=0

(
t

s

)
s

t
δt−s

)
At +

(
t∑

s=0

(
t

s

)
t− s

t

1

δs

)
Bt

(2)
= (1 + δ)t−1At +

(
1 +

1

δ

)t−1

Bt

48



QUASI-POLYNOMIAL TIME GUARANTEES FOR NON-SPHERICAL GAUSSIAN MIXTURES

where in (1) we used Lemma 51 and in (2) we used the identities

t∑
s=0

(
t

s

)
s

t
xt−s =

t−1∑
s=0

(
t− 1

s

)
xt−1−s = (1 + x)t−1

and
t∑

s=0

(
t

s

)
t− s

t
xs =

t−1∑
s=0

(
t− 1

s

)
xs = (1 + x)t−1.

Lemma 54 For variable X ∈ R and t ≥ 0 integer,

{X ≥ 0} t
X {Xt ≥ 0}.

Proof For t even, t
X

Xt ≥ 0 is trivial. For t odd, we have that t
X

Xt = Xt−1X ≥ 0, where we
used that t−1

X
Xt−1 ≥ 0 because t− 1 is even.

Lemma 55 For variable X ∈ R and t ≥ 1 integer,

{0 ≤ X ≤ 1} t
X {Xt ≤ 1}.

Proof We have X
t
1−Xt = (1−X)(1+X+ ...+Xt−1) ≥ 0, where we used that, by Lemma 54,

i
X

Xi ≥ 0 for i ∈ {0, ..., t− 1}.

Lemma 56 (Restatement of Lemma A.3 in Kothari and Steurer (2017))
For variable X ∈ R and t ≥ 2 even,

{Xt ≤ 1} t
X {X ≤ 1}.

Lemma 57 For variables u, v ∈ Rd,

2

u,v
⟨u, v⟩2 ≤ ∥u∥2 · ∥v∥2.

Proof By Lagrange’s identity,

⟨u, v⟩2 = ∥u∥2 · ∥v∥2 +
d−1∑
i=1

d∑
j=i+1

(uivj − ujvj)
2,

so

2

u,v
⟨u, v⟩2 ≤ ∥u∥2 · ∥v∥2.
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Lemma 58 For variable X ∈ R and δ ∈ R and t ≥ 1 integer,

{0 ≤ X ≤ 1, Xt ≥ δ} t
X {X ≥ δ}.

Proof We have t
X

X = (Xt − δ) + (1−X)(1 +X + ...+Xt−1) + δ ≥ δ, where we used that,
by Lemma 54, i

X
Xi ≥ 0 for i ∈ {0, ..., t− 1}.

Lemma 59 For variable X ∈ R and C ≥ 2 and t ≥ 1 integer,{
0 ≤ X ≤ 1

Ct

}
t
X
{
(1−X)t ≤ 1− C − 2

C − 1
tX

}
.

Proof We have that

t
X

(1−X)t = 1− tX +
t∑

i=2

(
t

i

)
(−1)iXi

(1)

≤ 1− tX +
t∑

i=2

(
t

i

)
Xi

(2)

≤ 1− tX +
t∑

i=2

tiXi = 1− tX + tX
t−1∑
i=1

tiXi

(3)

≤ 1− tX + tX
t−1∑
i=1

1

Ci

(4)

≤ 1− tX +
1

C − 1
tX

= 1− C − 2

C − 1
tX.

We use throughout that, by Lemma 54, i
X

Xi ≥ 0 for i ∈ {0, ..., t}. In (1) we used that

i
X −Xi ≤ Xi. In (2) we used that

(
t
i

)
≤ ti. In (3) we used that 1

X
0 ≤ X ≤ 1

Ct implies that

i+1
X

0 ≤ Xi+1 ≤ 1
(Ct)i

X . The upper bound is true because

i+1
X 1

(Ct)i
X −Xi+1 =

(
1

Ct
−X

) i−1∑
j=0

1

(Ct)j
Xi−1−j

X ≥ 0.

In (4) we used that
∑t−1

i=1
1
Ci ≤

∑∞
i=1

1
Ci =

1
1− 1

C

− 1 = 1
C−1 .

Lemma 60 (Restatement of Claim 1.5 in Raghavendra et al. (2018))
If Ẽ is a degree-d pseudo-expectation and if p, q are polynomials of degree at most d

2 , then Ẽ[q(x) ·
p(x)] ≤ 1

2 Ẽ[q(x)
2] + 1

2 Ẽ[p(x)
2].

Lemma 61 If Ẽ is a degree-d pseudo-expectation and if p is a polynomial of degree at most d
2 , then

(Ẽ[p(x)])2 ≤ Ẽ[p(x)2].
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Proof Let Ẽx be the given pseudo-expectation over x, and let Ẽx′ be a copy of the given pseudo-
expectaiton but over x′ instead of x. Then we have

(Ẽx[p(x)])
2 = (Ẽx[p(x)])(Ẽx′ [p(x′)]) = Ẽx,x′ [p(x)p(x′)].

Then, by Lemma 60,

(Ẽx[p(x)])
2 ≤ 1

2
Ẽx,x′ [p(x)2] +

1

2
Ẽx,x′ [p(x′)2] = Ẽx[p(x)

2].

Lemma 62 (Restatement of Lemma 4.5 in Barak and Steurer (2014))
If Ẽ is a degree-d pseudo-expectation over vectors u, v, then(

Ẽ ∥u+ v∥dd
)1/d

≤
(
Ẽ ∥u∥dd

)1/d
+
(
Ẽ ∥v∥dd

)1/d
.

We give now some sum-of-squares proofs that are more specific to our setting. The purpose of
Lemma 63 and Lemma 64 is to aid in transforming some sum-of-squares proofs about polynomials
p(x) and q(x) into sum-of-squares proofs about polynomials p(x)t and q(x)t. Lemma 63 shows
that, under some conditions, if {p(x) ≥ 1} x {q(x) ≥ 1}, then also {p(x)t ≥ 1} x {q(x)t ≥ 1},
while Lemma 64 shows that, again under some conditions, if {p(x) ≤ 1} x {q(x) ≥ 1}, then
also {p(x)t ≤ 1} x {q(x)t ≥ 1}. These are used in Lemma 65 and Lemma 66, which implement
sum-of-squares proofs with some polynomials raised to the t-th power.

Lemma 63 Let p, q : R → R with p(x) ≥ 0 for all x ∈ R. Let γ > 1 be a real number and t ≥ 2
be an even integer. Suppose that, for all x ∈ R, q(x)− 1− γ(p(x)− 1) ≥ 0. Then, for all x ∈ R,

q(x)t − 1− γ(p(x)t − 1) ≥ 0.

Proof We consider two cases. First, suppose that 1 + γ(p(x) − 1) < 0. This implies that p(x) <
1− 1

γ , which implies that 1+γ(p(x)t−1) < 1+γ(p(x)−1) < 0. Therefore q(x)t ≥ 1+γ(p(x)t−1)
is satisfied trivially for t even.

Second, suppose that 1 + γ(p(x) − 1) ≥ 0. Then the given assumption implies that q(x)t ≥
(1 + γ(p(x)− 1))t. Then

q(x)t − 1− γ(p(x)t − 1) ≥ (1 + γ(p(x)− 1))t − 1− γ(p(x)t − 1).

To show that the expression on the right-hand side is non-negative, it suffices to show that

f(x) = (1 + γ(x− 1))t − 1− γ(xt − 1)

is non-negative everywhere. For γ > 1, we have that limx→−∞ f(x) = ∞ and limx→∞ f(x) = ∞.
Then, it suffices to show that f(x) is non-negative at all its critical points. We have

d

dx
f(x) = γt(γ(x− 1) + 1)t−1 − γtxt−1,
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so
d

dx
f(x) = 0 ⇐⇒ γ(x− 1) + 1 = x ⇐⇒ x = 1.

We have f(1) = 0 ≥ 0. Therefore, f(x) ≥ 0 for all x ∈ R.

Lemma 64 Let p, q : R → R for all x ∈ R. Let γ > 0 be a real number and t ≥ 2 be an even
integer. Suppose that, for all x ∈ R, q(x)− 1− γ(1− p(x)) ≥ 0. Then, for all x ∈ R,

q(x)t − 1− γ(1− p(x)t) ≥ 0.

Proof We consider two cases. First, suppose that 1 + γ(1 − p(x)) < 0. This implies that p(x) >
1+ 1

γ , which implies that 1+γ(1−p(x)t) < 1+γ(1−p(x)) < 0. Therefore q(x)t ≥ 1+γ(1−p(x)t)
is satisfied trivially for t even.

Second, suppose that 1 + γ(1 − p(x)) ≥ 0. Then the given assumption implies that q(x)t ≥
(1 + γ(1− p(x)))t. Then

q(x)t − 1− γ(1− p(x)t) ≥ (1 + γ(1− p(x)))t − 1− γ(1− p(x)t).

To show that the expression on the right-hand side, it suffices to show that

f(x) = (1 + γ(1− x))t − 1− γ(1− xt)

is non-negative everywhere. For γ > 0, we have that limx→−∞ f(x) = ∞ and limx→∞ f(x) = ∞.
Then, it suffices to show that f(x) is non-negative at all its critical points. We have

d

dx
f(x) = γtxt−1 − γt(γ(1− x) + 1)t−1,

so
d

dx
f(x) = 0 ⇐⇒ x = γ(1− x) + 1 ⇐⇒ x = 1.

We have f(1) = 0 ≥ 0. Therefore, f(x) ≥ 0 for all x ∈ R.

Lemma 65, which is used in Lemma 32, provides a sum-of-squares proof of the following

statement: if
(
x2 + 1

M (1− (1− σ2)x2)
)t ≥ 1

γt , then x2t ≥
(
M−γ
γ

1
M−1+σ2

)t
.

Lemma 65 For a variable x ∈ R and for 0 ≤ σ2 < 1 and 0 < γ < M and M ≥ 2, we have that{(
γ

(
x2 +

1

M
(1− (1− σ2)x2)

))t

≥ 1

}
2t
x

{(
γ

M − γ
(M − 1 + σ2)x2

)t

≥ 1

}
.

Proof Let

p(x) = γ

(
x2 +

1

M
(1− (1− σ2)x2)

)
= γ

(
M − 1 + σ2

M
x2 +

1

M

)
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and
q(x) = δ(M − 1 + σ2)x2,

for some δ > 0 to be determined later. Note that p(x) ≥ 0 for all x ∈ R.
We check now that, for all x ∈ R,

q(x)− 1− Mδ

γ
(p(x)− 1) ≥ 0,

which corresponds to a sum-of-squares proof that {p(x) ≥ 1} x {q(x) ≥ 1}. We note that the
coefficient Mδ

γ was chosen such that x2 cancels. We have then

q(x)− 1− Mδ

γ
(p(x)− 1) = −1− Mδ

γ

( γ

M
− 1
)
=

Mδ

γ
− 1− δ.

Set δ = γ
M−γ , which makes the term equal to 0. Therefore, for all x ∈ R,

q(x)− 1−
2 γ
M−γ

γ
(p(x)− 1) ≥ 0.

Therefore, by Lemma 63, for all x ∈ R,

f(x) = q(x)t − 1−
2 γ
M−γ

γ
(p(x)t − 1) ≥ 0.

Because f(x) is a univariate polynomial of degree 2t, there also exists a sum-of-squares proof of
degree at most 2t that f(x) ≥ 0. Note that this constitutes a degree-2t sum-of-squares proof that
{p(x)t ≥ 1} x {q(x)t ≥ 1}. This concludes the proof.

Lemma 66, which is used in Lemma 33, provides a sum-of-squares proof of the following

statement: if
(
x2+∆(1−(1−σ2)x2)

1+8∆σ2

)t
≤ 1

γt , then x2t ≥
(

γ∆−1
γ(∆−1)(1− 10σ2)

)t
.

Lemma 66 For a variable x ∈ R and for 0 ≤ σ2 < 0.1 and ∆ ≥ 10 and t even and γ ≥ 0.9, we
have that {(

γ
x2 +∆(1− (1− σ2)x2)

1 + 8∆σ2

)t

≤ 1

}
2t
x

{(
γ(∆− 1)

γ∆− 1

x2

1− 10σ2

)t

≥ 1

}
.

Proof Note that we need σ2 < 0.1 in order to have 1− 10σ2 > 0.
Let

p(x) = γ
x2 +∆(1− (1− σ2)x2)

1 + 8∆σ2
= γ

(
1−∆(1− σ2)

)
x2 +∆

1 + 8∆σ2

and

q(x) = δ
x2

1− 10σ2
,

for some δ > 0 to be determined later.
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We check now that, for all x ∈ R,

q(x)− 1− δ(1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)
(1− p(x)) ≥ 0,

which corresponds to a sum-of-squares proof that {p(x) ≤ 1} x {q(x) ≥ 1}. We note that the

coefficient δ(1+8∆σ2)
γ(∆(1−σ2)−1)(1−10σ2)

was chosen such that x2 cancels. We have then

q(x)− 1− δ(1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)
(1− p(x))

= −1− δ(1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)

(
1− γ∆

1 + 8∆σ2

)
= −1− δ(1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)

1 + 8∆σ2 − γ∆

1 + 8∆σ2

= −1− δ(1 + 8∆σ2 − γ∆)

γ(∆(1− σ2)− 1)(1− 10σ2)

=
−γ(∆(1− σ2)− 1)(1− 10σ2)− δ(1 + 8∆σ2 − γ∆)

γ(∆(1− σ2)− 1)(1− 10σ2)

=
(−10γ∆)σ4 + (11γ∆− 10γ − 8δ∆)σ2 + (γδ∆− γ∆+ γ − δ)

γ(∆(1− σ2)− 1)(1− 10σ2)
.

Note that the denominator is positive. Set δ = γ(∆−1)
γ∆−1 . Then the numerator, viewed as a quadratic

in σ2, has roots at 0 and at 11γ∆2−10γ∆−8∆2−3∆+10
10∆(γ∆−1) . Furthermore, when the second root is positive,

the quadratic is also positive for all σ2 between the two roots. Hence, in order to prove that the
expression is positive for all 0 ≤ σ2 < 0.1, it suffices to show that the second root is at least 0.1 in
our setting. Indeed, for all γ ≥ 0.9 and all ∆ ≥ 10, we have that 11γ∆2−10γ∆−8∆2−3∆+10

10∆(γ∆−1) ≥ 0.1.
Therefore, for all x ∈ R,

f(x) = q(x)− 1−
γ(∆−1)
γ∆−1 (1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)
(1− p(x)) ≥ 0.

Therefore, by Lemma 64, for all x ∈ R,

f(x) = q(x)t − 1−
γ(∆−1)
γ∆−1 (1 + 8∆σ2)

γ(∆(1− σ2)− 1)(1− 10σ2)
(1− p(x)t) ≥ 0.

Because f(x) is a univariate polynomial of degree 2t, there also exists a sum-of-squares proof of
degree at most 2t that f(x) ≥ 0. Note that this constitutes a degree-2t sum-of-squares proof that
{p(x)t ≤ 1} x {q(x)t ≥ 1}. This concludes the proof.
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F.2. Finite sample lemmas

Lemma 67 (Restatement of Theorem 4 in Brubaker and Vempala (2008))
For n ≥ C kd log2(d/δ)

ϵ2
, with probability 1− δ,

∥ cov(y0)−1/2(Êy0 − Ey0)∥ ≤ ϵ

and
∥Id − cov(y0)−1/2ĉov(y0) cov(y0)−1/2∥ ≤ ϵ.

Lemma 68 For n ≥ C kd log2(d/δ)
ϵ2

, with probability 1− δ,

∥Id − ĉov(y0)−1/2 cov(y0)ĉov(y0)−1/2∥ ≤ ϵ.

Proof By Lemma 67,

∥Id − cov(y0)−1/2ĉov(y0) cov(y0)−1/2∥ ≤ 2ϵ.

Then
(1− ϵ)Id ⪯ cov(y0)−1/2ĉov(y0) cov(y0)−1/2 ⪯ (1 + ϵ)Id,

(1− ϵ) cov(y0) ⪯ ĉov(y0) ⪯ (1 + ϵ) cov(y0),

1

1 + ϵ
ĉov(y0) ⪯ cov(y0) ⪯ 1

1− ϵ
ĉov(y0).

Using that 1
1+ϵ ≥ 1− 2ϵ and 1

1−ϵ ≤ 1 + 2ϵ for ϵ ≤ 1/2,

(1− 2ϵ)ĉov(y0) ⪯ cov(y0) ⪯ (1 + 2ϵ)ĉov(y0),

(1− 2ϵ)Id ⪯ ĉov(y0)−1/2 cov(y0)ĉov(y0)−1/2 ⪯ (1 + 2ϵ)Id,

∥Id − ĉov(y0)−1/2 cov(y0)ĉov(y0)−1/2∥ ≤ 2ϵ.

Lemma 69 (Restatement of Lemma 22 in Moitra and Valiant (2010))
Let the random variable y ∈ R be distributed according to an istotropic mixture of k one-dimensional
Gaussian distributions with minimum mixing weight pmin. Let y1, ..., yn ∈ R be generated i.i.d. ac-
cording to the distribution of y. Then, with probability 1− δ,(

1

n

n∑
i=1

yti − Eyt

)2

≤ 1

nδ
p
−O(t)
min .

Lemma 70 Let the random variable y ∈ Rd be distributed according to an istotropic mixture of
k d-dimensional Gaussian distributions with minimum mixing weight pmin. Let y1, ..., yn ∈ Rd be
generated i.i.d. according to the distribution of y. Then, with probability 1− dtδ,∥∥∥∥∥ 1n

n∑
i=1

y⊗t
i − Ey⊗t

∥∥∥∥∥
2

≤ 1

nδ
(p−1

mind)
O(t).
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Proof The proof is similar to the proof of Lemma 22 in Moitra and Valiant (2010).
We denote by y(j) the j-th coordinate of y. Let α ∈ Nd satisfy

∑d
j=1 αj = t. Let zα =∏d

j=1(y
(j))αj . By Chebyshev’s inequality, with probability at least 1− δ,(

1

n

n∑
i=1

zαi − Ezα

)2

≤ 1

δ
E

( 1

n

n∑
i=1

zαi − Ezα

)2
 .

We now bound the right-hand side. Note that E[ 1n
∑n

i=1 z
α
i −Ezα] = 0. Using that for independent

random variables the variance of the sum is equal to the sum of the variances,

E

( 1

n

n∑
i=1

zαi − Ezα

)2
 =

1

n
E
[
(zα − Ezα)2

]
≤ 1

n
E
[
(zα)2

]
≤ 1

n
p
−O(t)
min .

The last inequality follows by using that E(y(j))t ≤ p
−O(t)
min for all j and that, for random varaibles

x1, ...,xt ∈ R, |E[x1 · ... · xt]| ≤ (Ext
1 · ... · Ext

t)
1/t. Then, by a union bound, with probability at

least 1− dtδ, ∥∥∥∥∥ 1n
n∑

i=1

y⊗t
i − Ey⊗t

∥∥∥∥∥
2

≤ 1

nδ
dtp

−O(t)
min .

Lemma 71 Let the random variable y ∈ Rd be distributed according to an istotropic mixture of
k d-dimensional Gaussian distributions with minimum mixing weight pmin. Let y1, ..., yn ∈ Rd be
generated i.i.d. according to the distribution of y. Then, for n ≥ 1

δ , with probability 1− dδ,

1

n

n∑
i=1

∥yi∥2t ≤ (p−1
mind)

O(t).

Proof Denote by y(j) the j-th coordinate of y. We have

1

n

n∑
i=1

∥yi∥2t =
1

n

n∑
i=1

 d∑
j=1

(y
(j)
i )2

t

≤ 1

n

n∑
i=1

dt−1
d∑

j=1

(y
(j)
i )2t = dt−1

d∑
j=1

1

n

n∑
i=1

(y
(j)
i )2t.

Note that, for each j, y(j) is distributed according to an isotropic mixture of k one-dimensional
Gaussian distributions. By a union bound, with probability 1− dδ the result in Lemma 69 holds for
each coordinate y(j). Then

1

n

n∑
i=1

∥yi∥2t ≤ dt−1
d∑

j=1

(
E(y(j))2t +

1√
nδ

p
−O(t)
min

)
.

We have that E(y(j))2t ≤ p
−O(t)
min . Using that nδ ≥ 1, we get then

1

n

n∑
i=1

∥yi∥2t ≤ dt · p−O(t)
min ≤ (p−1

mind)
O(t).
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F.3. Isotropic position transformation lemmas

The setting for the following two lemmas is that of Section D.3.

Lemma 72 (See Lemma 10 in Hsu and Kakade (2013)) We have

• Ŵ ̂cov(y0)Ŵ⊤ = Id,
• Ŵ cov(y0)Ŵ⊤ ≻ 0,
• W cov(y0)W⊤ = Id.

Proof The results are immediate by substitution.

Lemma 73 (See Lemma 10 in Hsu and Kakade (2013)) Suppose that

∥Id − cov(y0)−1/2ĉov(y0) cov(y0)−1/2∥ ≤ ϵ.

Then
∥Id − (Ŵ cov(y0)Ŵ⊤)1/2∥ ≤ O(ϵ) · ∥ cov(y0)∥ · ∥ cov(y0)−1∥.

Proof The given assumption implies that all eigenvalues of cov(y0)−1/2ĉov(y0) cov(y0)−1/2 lie
between 1 − ϵ and 1 + ϵ. Hence all eigenvalues of the inverse of this matrix lie between 1

1+ϵ =

1 +O(ϵ) and 1
1−ϵ = 1−O(ϵ). Then

∥Id − cov(y0)1/2ĉov(y0)−1 cov(y0)1/2∥ ≤ O(ϵ),

(1−O(ϵ)) · cov(y0)−1 ⪯ ĉov(y0)−1 ⪯ (1 +O(ϵ)) · cov(y0)−1.

Then

∥Ŵ∥ = ∥(Û⊤ĉov(y0)Û)−1/2Û⊤∥ ≤ ∥(Û⊤ĉov(y0)Û)−1/2∥ = ∥ĉov(y0)−1/2∥
= ∥ĉov(y0)−1∥1/2 ≤ ((1 +O(ϵ)) · ∥ cov(y0)−1∥)1/2.

The given assumption also implies that

−ϵ · cov(y0) ⪯ ĉov(y0)− cov(y0) ⪯ ϵ · cov(y0).

Hence

∥ĉov(y0)− cov(y0)∥ ≤ ϵ · ∥ cov(y0)∥.

Using these bounds on ∥Ŵ∥ and ∥ĉov(y0)−cov(y0)∥, together with the fact that Ŵ ĉov(y0)Ŵ⊤ =
Id, we get that

∥Id − Ŵ cov(y0)Ŵ⊤∥ = ∥Ŵ (ĉov(y0)− cov(y0))Ŵ⊤∥
≤ ∥Ŵ∥2 · ∥ĉov(y0)− cov(y0)∥
≤ ϵ · (1 +O(ϵ)) · ∥ cov(y0)∥ · ∥ cov(y0)−1∥
≤ O(ϵ) · ∥ cov(y0)∥ · ∥ cov(y0)−1∥.

Then all eigenvalues of Ŵ cov(y0)Ŵ⊤ lie between 1 − δ and 1 + δ, for δ = O(ϵ) · ∥ cov(y0)∥ ·
∥ cov(y0)−1∥. Hence all eigenvalues of the square root of this matrix lie between

√
1− δ = 1 −

O(δ) and
√
1 + δ = 1 +O(δ). Then

∥Id − (Ŵ cov(y0)Ŵ⊤)1/2∥ ≤ O(ϵ) · ∥ cov(y0)∥ · ∥ cov(y0)−1∥.
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F.4. Miscellaneous lemmas

Lemma 74 Let W ∈ Rd×d and Σ ∈ Rd×d with Σ ≻ 0 symmetric. Suppose that WΣW⊤ = Id.
Then W = QΣ−1/2 for some orthogonal matrix Q ∈ Rd×d.

Proof We have

WΣW⊤ = Id ⇐⇒ (WΣ1/2)(WΣ1/2)⊤ = Id ⇐⇒ WΣ1/2 = Q ⇐⇒ W = QΣ−1/2

for some orthogonal matrix Q.

Lemma 75 For integers 0 ≤ s ≤ t,(
2t

2s

)
(2t− 2s− 1)!! ≤

(
t

s

)
(et)t−s,

(
2t

2s

)
(2t− 2s− 1)!! ≥

(
t

s

)
(t/2)t−s.

Proof We use the known fact that (2t− 2s− 1)!! = (2t−2s)!
2t−s(t−s)!

. Then

(
2t
2s

)
(2t− 2s− 1)!!(

t
s

)
tt−s

=

(2t)!
(2s)!(2t−2s)!

(2t−2s)!
2t−s(t−s)!

t!
s!(t−s)! t

t−s
=

(t+ 1)(t+ 2) · · · (2t)
(s+ 1)(s+ 2) · · · (2s)(2t)t−s

.

For the upper bound, we have

(t+ 1)(t+ 2) · · · (2t)
(s+ 1)(s+ 2) · · · (2s)(2t)t−s

=
(t+ 1)(t+ 2) · · · (t+ s)

(s+ 1)(s+ 2) · · · (2s)
(t+ s+ 1)(t+ s+ 2) · · · (2t)

(2t)t−s

≤ (t+ 1)(t+ 2) · · · (t+ s)

(s+ 1)(s+ 2) · · · (2s)

≤
(
t

s

)s

≤ et−s,

where in the last inequality we used that
(
t
s

) s
t−s =

(
1 + t−s

s

) s
t−s ≤ e.

For the lower bound, we have

(t+ 1)(t+ 2) · · · (2t)
(s+ 1)(s+ 2) · · · (2s)(2t)t−s

=
(t+ 1)(t+ 2) · · · (t+ s)

(s+ 1)(s+ 2) · · · (2s)
(t+ s+ 1)(t+ s+ 2) · · · (2t)

(2t)t−s

≥ (t+ s+ 1)(t+ s+ 2) · · · (2t)
(2t)t−s

≥ 1

2t−s
.
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F.5. Proofs deferred from Section B

Proof of Lemma 19 For the first proof, with probability 1− ϵ/100,

2
v
v⊤ cov(z)v = v⊤ĉov(z)1/2ĉov(z)−1/2 cov(z)ĉov(z)−1/2ĉov(z)1/2v

(∗)
≤ ∥ĉov(z)−1/2 cov(z)ĉov(z)−1/2∥ · ∥ĉov(z)1/2v∥2

≤ (1 + η)C,

where in (*) we used Lemma 68.
Similarly, for the second proof, with probability 1− ϵ/100

2
v
v⊤ĉov(z)v = v⊤ cov(z)1/2 cov(z)−1/2ĉov(z) cov(z)−1/2 cov(z)1/2v

(∗)
≤ ∥ cov(z)−1/2ĉov(z) cov(z)−1/2∥ · ∥ cov(z)1/2v∥2

≤ (1 + η)C.

where in (*) we used Lemma 67.

Proof of Lemma 20 We have

2t
v Ê⟨z, v⟩2t = E⟨z, v⟩2t +

(
Ê⟨z, v⟩2t − E⟨z, v⟩2t

)
.

For the second term we have that

4t
v
(
Ê⟨z, v⟩2t − E⟨z, v⟩2t

)2
=
(
Ê⟨cov(z)−1/2z, cov(z)1/2v⟩2t − E⟨cov(z)−1/2z, cov(z)1/2v⟩2t

)2
=
(
Ê⟨(cov(z)−1/2z)⊗2t, (cov(z)1/2v)⊗2t⟩ − E⟨(cov(z)−1/2z)⊗2t, (cov(z)1/2v)⊗2t⟩

)2
= ⟨Ê(cov(z)−1/2z)⊗2t − E(cov(z)−1/2z)⊗2t, (cov(z)1/2v)⊗2t⟩2

≤ ∥Ê(cov(z)−1/2z)⊗2t − E(cov(z)−1/2z)⊗2t∥2 · ∥(cov(z)1/2v)⊗2t∥
≤ ∥Ê(cov(z)−1/2z)⊗2t − E(cov(z)−1/2z)⊗2t∥2 · Ct

Note that Ez = 0. Then cov(z)−1/2z is in isotropic position. By Lemma 70, with probability
1− d2tδ, we have that

∥Ê(cov(z)−1/2z)⊗2t − E(cov(z)−1/2z)⊗2t∥2 ≤ 1

nδ
(p−2

mind)
O(t).

Select n = (Cp−1
mind)

O(t)η−1ϵ−1 large enough the right-hand side is upper boundeed by η2C−t with
probability at least 1− ϵ. Then it follows that

4t
v
(
Ê⟨z, v⟩2t − E⟨z, v⟩2t

)2
≤ η2.

Then, by Lemma 56, we get that

O(t)

v Ê⟨z, v⟩2t − E⟨z, v⟩2t ≤ η,
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O(t)

v −Ê⟨z, v⟩2t + E⟨z, v⟩2t ≤ η.

Rearranging leads to the desired results.

F.6. Proofs deferred from Section C

Proof of Lemma 35 We have

2t
v Ê⟨y, v⟩2t = E⟨y, v⟩2t +

(
Ê⟨y, v⟩2t − E⟨y, v⟩2t

)
.

For the second term we have that

4t
v
(
Ê⟨y, v⟩2t − E⟨y, v⟩2t

)2
=
(
Ê⟨y⊗2t, v⊗2t⟩ − E⟨y⊗2t, v⊗2t⟩

)2
= ⟨Êy⊗2t − Ey⊗2t, v⊗2t⟩2

≤ ∥Êy⊗2t − Ey⊗2t∥2.

By Lemma 70, with probability 1− d2tδ, we have that

∥Êy⊗2t − Ey⊗2t∥2 ≤ 1

nδ
(p−1

mind)
O(t).

For n ≥ (p−1
mind)

O(t)η−2ϵ−1 the right-hand side is η2 with probability at least 1− ϵ. Then it follows
that

4t
v
(
Ê⟨y, v⟩2t − E⟨y, v⟩2t

)2
≤ η2.

Then, by Lemma 56, we get that

O(t)

v Ê⟨y, v⟩2t − E⟨y, v⟩2t ≤ η,

O(t)

v −Ê⟨y, v⟩2t + E⟨y, v⟩2t ≤ η.

Rearranging leads to the desired results.

F.7. Proofs deferred from Section D

Proof of Lemma 43 We have

2t
v Ê⟨Ŵ (y0 − Êy0), v⟩2t = Ê

(
⟨Ŵ (y0 − Ey0), v⟩+ ⟨Ŵ (Ey0 − Êy0), v⟩

)2t
.

Let δ > 0 to be specified later. For the upper bound:

2t
v Ê

(
⟨Ŵ (y0 − Ey0), v⟩+ ⟨Ŵ (Ey0 − Êy0), v⟩

)2t
≤ (1 + δ)2t−1 · Ê⟨Ŵ (y0 − Ey0), v⟩2t +

(
1 +

1

δ

)2t−1

· ⟨Ŵ (Ey0 − Êy0), v⟩2t,
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where in the inequality we used Lemma 53.
For the lower bound:

2t
v Ê

(
⟨Ŵ (y0 − Ey0), v⟩+ ⟨Ŵ (Ey0 − Êy0), v⟩

)2t
(1)

≥
(

1

1 + δ

)2t−1

· Ê⟨Ŵ (y0 − Ey0), v⟩2t −

(
1 + 1

δ

1 + δ

)2t−1

· ⟨Ŵ (Ey0 − Êy0), v⟩2t

(2)

≥
(

1

1 + δ

)2t−1

· Ê⟨Ŵ (y0 − Ey0), v⟩2t −O

(
1 +

1

δ

)2t−1

· ⟨Ŵ (Ey0 − Êy0), v⟩2t,

where in (1) we used that, by Lemma 53, 2t

A,B
A2t ≤ (1 + δ)2t−1(A+B)2t + (1 + 1

δ )
2t−1B2t, so

2t

A,B
(A + B)2t ≥ ( 1

1+δ )
2t−1A2t − (

1+ 1
δ

1+δ )
2t−1B2t. In (2) we assumed that δ = O(1), which will

be the case for our choice.
Now take δ = η

100t . Then (1 + δ)2t−1 ≤ 1 + η and
(

1
1+δ

)2t−1
≥ 1− η for η small.

For the second term in both bounds, we use that

2t
v ⟨Ŵ (Ey0 − Êy0), v⟩2t ≤ ∥Ŵ (Ey0 − Êy0)∥2t

= ∥ŴW−1W (Ey0 − Êy0)∥2t

≤ ∥ŴW−1∥2t · ∥W (Ey0 − Êy0)∥2t

= ∥(Ŵ cov(y0)−1Ŵ⊤)1/2∥2t · ∥W (Ey0 − Êy0)∥2t.

By Lemma 67 and Lemma 73, with probability 1− ϵ,

∥W (Ey0 − Êy0)∥ ≤
(η
t

)O(1)

and
∥(Ŵ cov(y0)−1Ŵ⊤)1/2∥ ≤ 1.

Then the second term in both bounds becomes

2t
v

O

(
1 +

1

δ

)2t−1

· ⟨Ŵ (Ey0 − Êy0), v⟩2t ≤ O

(
100t

η

)2t−1

·
(η
t

)O(t)
≤ η.

Proof of Lemma 44 We have

2t
v Ê⟨Ŵ (y0 − Ey0), v⟩2t = Ê

(〈
W (y0 − Ey0), v

〉
+
〈(

Ŵ −W
)
(y0 − Ey0), v

〉)2t
.

Let δ > 0 to be specified later. For the upper bound:

2t
v Ê

(〈
W (y0 − Ey0), v

〉
+
〈(

Ŵ −W
)
(y0 − Ey0), v

〉)2t
≤ (1 + δ)2t−1 · Ê

〈
W (y0 − Ey0), v

〉2t
+

(
1 +

1

δ

)2t−1

· Ê
〈(

Ŵ −W
)
(y0 − Ey0), v

〉2t
,
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where in the inequality we used Lemma 53.
For the lower bound:

2t
v Ê

(〈
W (y0 − Ey0), v

〉
+
〈(

Ŵ −W
)
(y0 − Ey0), v

〉)2t
(1)

≥
(

1

1 + δ

)2t−1

· Ê
〈
W (y0 − Ey0), v

〉2t −(1 + 1
δ

1 + δ

)2t−1

· Ê
〈(

Ŵ −W
)
(y0 − Ey0), v

〉2t
(2)

≥
(

1

1 + δ

)2t−1

· Ê
〈
W (y0 − Ey0), v

〉2t −O

(
1 +

1

δ

)2t−1

· Ê
〈(

Ŵ −W
)
(y0 − Ey0), v

〉2t
,

where in (1) we used that, by Lemma 53, 2t

A,B
A2t ≤ (1 + δ)2t−1(A+B)2t + (1 + 1

δ )
2t−1B2t, so

2t

A,B
(A + B)2t ≥ ( 1

1+δ )
2t−1A2t − (

1+ 1
δ

1+δ )
2t−1B2t. In (2) we assumed that δ = O(1), which will

be the case for our choice.
Now take δ = η

100t . Then (1 + δ)2t−1 ≤ 1 + η and
(

1
1+δ

)2t−1
≥ 1− η for η small.

For the second term in both bounds, we use that

2t
v Ê

〈(
Ŵ −W

)
(y0 − Ey0), v

〉2t
= Ê

〈(
ŴW−1 − Id

)
W (y0 − Ey0), v

〉2t
≤
∥∥∥Id − ŴW−1

∥∥∥2t · Ê∥∥W (y0 − Ey0)
∥∥2t

=
∥∥∥Id − (Ŵ cov(y0)Ŵ⊤)1/2

∥∥∥2t · Ê∥∥W (y0 − Ey0)
∥∥2t .

By Lemma 67 and Lemma 73, with probability 1− ϵ,∥∥∥Id − (Ŵ cov(y0)Ŵ⊤)1/2
∥∥∥ ≤

(
η

tp−1
mind

)O(1)

.

By Lemma 71, with probability 1− ϵ,

Ê
∥∥W (y0 − Ey0)

∥∥2t ≤ (p−1
mind)

O(t).

Then the second term in both bounds becomes

2t
v

O

(
1 +

1

δ

)2t−1

· Ê
〈(

Ŵ −W
)
(y0 − Ey0), v

〉2t
≤ O

(
100t

η

)2t−1

·

(
η

tp−1
mind

)O(t)

· (p−1
mind)

O(t) ≤ η.

Proof of Lemma 45 We have

|⟨W (µ0
i − µ0

j ), v⟩ − ⟨Ŵ (µ0
i − µ0

j ), v⟩| = |⟨(W − Ŵ )(µ0
i − µ0

j ), v⟩|
= |⟨(Id − ŴW−1)W (µ0

i − µ0
j ), v⟩|

≤ ∥Id − ŴW−1∥ · ∥W (µ0
i − µ0

j )∥

= ∥Id − (Ŵ cov(y0)Ŵ⊤)1/2∥ · ∥W (µ0
i − µ0

j )∥.
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By Lemma 67 and Lemma 73, with probability 1− ϵ,

∥∥∥Id − (Ŵ cov(y0)Ŵ⊤)1/2
∥∥∥ ≤

(
η

p−1
min

)O(1)

.

Note that W (µ0
i − µ0

j ) = µi − µj = ⟨µi − µj , u⟩u, so ∥W (µ0
i − µ0

j )∥ = |⟨µi − µj , u⟩|.
Using that

∑k
i=1 pi⟨µi, u⟩2 ≤ 1, we have that

∑k
i=1⟨µi, u⟩2 ≤ p−1

min, so ⟨µi, u⟩2 ≤ p−1
min, so

|⟨µi − µj , u⟩| ≤ 2
√

p−1
min. Then ∥W (µ0

i − µ0
j )∥ ≤ 2

√
p−1
min.

Therefore,

|⟨W (µ0
i − µ0

j ), v⟩ − ⟨Ŵ (µ0
i − µ0

j ), v⟩| ≤

(
η

p−1
min

)O(1)

· 2
√
p−1
min ≤ η.

Proof of Lemma 45 [Proof of Lemma 46.] We have

∥v⊤W (Σ0)1/2 − v⊤Ŵ (Σ0)1/2∥ = ∥v⊤(W − Ŵ )(Σ0)1/2∥
= ∥v⊤(Id − ŴW−1)W (Σ0)1/2∥
≤ ∥Id − ŴW−1∥ · ∥W (Σ0)1/2∥
= ∥Id − (Ŵ cov(y0)Ŵ⊤)1/2∥ · ∥W (Σ0)1/2∥.

By Lemma 67 and Lemma 73, with probability 1− ϵ,∥∥∥Id − (Ŵ cov(y0)Ŵ⊤)1/2
∥∥∥ ≤ η.

Note that, by Lemma 74, W (Σ0)1/2 = Q(Σ0)−1/2(Σ0)1/2 = Q for an orthogonal matrix Q.
We have ∥Q∥ = 1, so ∥W (Σ0)1/2∥ = 1.

Therefore,

∥v⊤W (Σ0)1/2 − v⊤Ŵ (Σ0)1/2∥ ≤ η.

F.8. Proofs deferred from Section E

Proof of Lemma 50 We have

2t
v Ê⟨y, v⟩2t − E⟨y, v⟩2t = Ê⟨y⊗2t, v⊗2t⟩ − E⟨y⊗2t, v⊗2t⟩

= ⟨Êy⊗2t − Ey⊗2t, v⊗2t⟩
= ⟨Ê(yy⊤)⊗t − E(yy⊤)⊗t, (vv⊤)⊗t⟩.

We now bound Ê(yy⊤)⊗t − E(yy⊤)⊗t. Define

E = Ê(cov(y)−1/2yy⊤ cov(y)−1/2)⊗t − E(cov(y)−1/2yy⊤ cov(y)−1/2)⊗t.
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By Lemma 70, with probability 1− d2tδ, we have that

∥E∥F = ∥Ê(cov(y)−1/2y)⊗2t − E(cov(y)−1/2y)⊗2t∥ ≤ 1√
nδ

(p−1
mind)

O(t).

For n ≥ (p−1
mind)

O(t)η−2ϵ−1 this term is η with probability at least 1 − ϵ. In this case ∥E∥ ≤
∥E∥F ≤ η, so

−η · cov(y)⊗t ⪯ (cov(y)1/2)⊗tE(cov(y)1/2)⊗t ⪯ η · cov(y)⊗t.

We observe the connection between Ê(yy⊤)⊗t − E(yy⊤)⊗t and E:

Ê(yy⊤)⊗t − E(yy⊤)⊗t = (cov(y)1/2)⊗tE(cov(y)1/2)⊗t.

Using this and using that cov(y) ⪯ Eyy⊤, we finally obtain that

−η · E(yy⊤)⊗t ⪯ Ê(yy⊤)⊗t − E(yy⊤)⊗t ⪯ η · E(yy⊤)⊗t.

Then

2t
v Ê⟨y, v⟩2t − E⟨y, v⟩2t = ⟨Ê(yy⊤)⊗t − E(yy⊤)⊗t, (vv⊤)⊗t⟩

≤ η · ⟨E(yy⊤)⊗t, (vv⊤)⊗t⟩
= η · E⟨y, v⟩2t

and

2t
v Ê⟨y, v⟩2t − E⟨y, v⟩2t = ⟨Ê(yy⊤)⊗t − E(yy⊤)⊗t, (vv⊤)⊗t⟩

≥ −η · ⟨E(yy⊤)⊗t, (vv⊤)⊗t⟩
= −η · E⟨y, v⟩2t.

The conclusion follows.
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