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Abstract
We study repeated bilateral trade where an adaptive σ-smooth adversary generates the valuations
of sellers and buyers. We provide a complete characterization of the regret regimes for fixed-price
mechanisms under different feedback models in the two cases where the learner can post either the
same or different prices to buyers and sellers. We begin by showing that the minimax regret after
T rounds is of order

√
T in the full-feedback scenario. Under partial feedback, any algorithm that

has to post the same price to buyers and sellers suffers worst-case linear regret. However, when the
learner can post two different prices at each round, we design an algorithm enjoying regret of order
T 3/4 ignoring log factors. We prove that this rate is optimal by presenting a surprising T 3/4 lower
bound, which is the main technical contribution of the paper.
Keywords: two-sided markets, online learning, regret minimization, smoothed analysis

1. Introduction

In the bilateral trade problem, two strategic agents—a seller and a buyer—wish to trade some good.
They both privately hold a personal valuation for it and strive to maximize their respective quasi-linear
utility. The solution to the problem consists in designing a mechanism that intermediates between
the two parties to make the trade happen. In general, an ideal mechanism for the bilateral trade
problem would optimize the efficiency, i.e., the gain in social welfare resulting from trading the
item from seller to buyer, while enforcing incentive compatibility (IC) and individual rationality
(IR). The assumption that makes a two-sided mechanism design more complex than its one-sided
counterpart is budget balance (BB): the mechanism cannot subsidize the market. Unfortunately,
as Vickrey (1961) observed in his seminal work, the optimal incentive compatible mechanism
maximizing social welfare for bilateral trade may not be budget balanced. A more general result
due to Myerson and Satterthwaite (1983) shows that there are some problem instances where a fully
efficient mechanism for bilateral trade that satisfies IC, IR, and BB does not exist. This impossibility
result holds even if prior information on the buyer and seller’s valuations is available and the truthful
notion is relaxed to Bayesian incentive compatibility. To circumvent this obstacle, the subsequent
vast body of work primarily considers the Bayesian version of the problem, where agents’ valuations
are drawn from some distribution and the efficiency is evaluated in expectation with respect to the
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valuations’ randomness. There are many incentive compatible mechanisms that give a constant
approximation to the social welfare—see, e.g., Blumrosen and Dobzinski (2014); Dütting et al.
(2021), and more recently to the harder problem of approximating the gain from trade (Deng et al.,
2022). Although in some sense necessary—without any information on the priors there is no way
to extract any meaningful approximation to the social welfare (Dütting et al., 2021)—the Bayesian
assumption of perfect knowledge of the valuations’ underlying distributions is unrealistic.

Following recent work (Cesa-Bianchi et al., 2021; Azar et al., 2022; Cesa-Bianchi et al., 2023), we
study this fundamental mechanism design problem in an online learning setting where at each time t,
a new seller/buyer pair arrives. The seller has a private valuation st ∈ [0, 1] representing the smallest
price they are willing to accept in order to trade. Similarly, the buyer has a private value bt ∈ [0, 1]
representing the highest price they will pay for the item. We assume both valuations are generated by
an adversary. Independently, the learner posts two (possibly randomized) prices: pt ∈ [0, 1] to the
seller and qt ∈ [0, 1] to the buyer. We require budget balance: it must hold that pt ≤ qt for all t or,
equivalently, that the pair (pt, qt) belongs to the upper triangle U :=

{
(x, y) ∈ [0, 1]2 | x ≤ y

}
. A

trade happens if and only if both agents agree to trade, i.e., when st ≤ pt and qt ≤ bt. When this is
the case, the learner observes some feedback zt and is awarded the gain from trade at time t:

GFTt(p, q) :=
(
(bt − q) + (p− st)

)
· I{st ≤ p ≤ q ≤ bt}*.

When the two prices p and q are equal, we omit one of the arguments to simplify the notation. When
we want to stress the dependence on the valuations, we use the notation GFT(p, q, st, bt) instead of
GFTt(p, q). We consider the following learning protocol (the definition of σ-smoothness is recalled
below).

Learning protocol for sequential bilateral trade against a σ-smooth adversary
for time t = 1, 2, . . . do

The adversary privately chooses the σ-smooth distribution of a r.v. (St, Bt) on [0, 1]2

Seller and buyer valuations (st, bt) are drawn from (St, Bt)
The learner posts prices (pt, qt) ∈ U
The learner receives a (hidden) reward GFTt(pt, qt) ∈ [0, 1]
Feedback zt is revealed to the learner

The regret of a learning algorithm A against an adversary S generating the sequence of random
pairs (St, Bt) is defined by:

RT (A,S) := max
(p,q)∈U

E

[
T∑
t=1

GFTt(p, q)−
T∑
t=1

GFTt(Pt, Qt)

]
.

We use Pt, Qt to stress that the prices are possibly randomized, with the convention that uppercase
letters refer to random variables and the corresponding lowercase letters to their realizations. The
expectation in the previous formula is then with respect to the internal randomization of the learning
algorithm and of the adversary. The regret RT (A) of a learning algorithm A is defined as its
performance against the hardest adversary, i.e., as the supremum over all adversaries S (in a certain

*Other works considered the similar definition (bt − st) · I{st ≤ p ≤ q ≤ bt}. All our results translate with minimal
effort to this definition as well.
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class we define in the next paragraph) of RT (A,S). Our goal is to study the minimax regret R⋆T ,
which measures the performance of the best algorithm against the worst possible adversary, i.e.,
the infimum over all algorithms A of RT (A). The set of learning algorithms we allow varies with
the different settings we consider, i.e., with how many prices are posted and what feedback is
available—see below.

Smoothed analysis of algorithms, originally introduced by Spielman and Teng (2004) and later
formalized for online learning by Rakhlin et al. (2011) and Haghtalab et al. (2020), is an approach to
the analysis of algorithms in which the instances at every round are generated from a distribution
that is not too concentrated. Recent works on the smoothed analysis of online learning algorithms
include Haghtalab et al. (2020), Haghtalab et al. (2022), and Block et al. (2022)—see Section 1.3 for
additional related works.

In this work, we consider a (stochastic) smoothed valuation-generating model that, in the
limit, recovers the adversarial regime. This is a natural choice for the bilateral trade problem,
where algorithms with sublinear regret only exist for the stochastic i.i.d. setting (with additional
assumptions), and where the adversarial model is known to be intractable (Cesa-Bianchi et al., 2023).
At each time step t, a pair of valuations (st, bt) is sampled according to the random variable (St, Bt),
whose distribution is chosen by the adversary. Our adversary is adaptive because the distribution of
(St, Bt) may depend on the past realizations of the valuations and the past internal randomization of
the algorithm. We focus on σ-smoothed adversaries, where the distributions of (St, Bt) are not too
concentrated, according to the following notion.

Definition 1 (Haghtalab et al. (2021)) Let X be a domain supporting a uniform distribution ν. A
measure µ on X is said to be σ-smooth if for all measurable subsets A ⊆ X , we have µ(A) ≤ ν(A)

σ .

We say that a random variable is σ-smooth if its distribution is σ-smooth. We consider two families
of learning algorithms, corresponding to two ways of being budget balanced:

• Single-price mechanisms. If we want to enforce a stricter notion of budget balance, namely strong
budget balance, the mechanism is neither allowed to subsidize nor extract revenue from the system.
This is modeled by imposing pt = qt, for all t.

• Two-price mechanisms. If we require that the mechanism enforces (weak) budget balance, then
two different prices can be posted, pt to the seller and qt to the buyer, as long as pt ≤ qt at each
time step. Namely, we only require that trades are never subsidized; i.e., the mechanism can still
make a profit.

Observation 1 The only reason for a budget-balanced algorithm to post two different prices is to
obtain more information. A direct verification shows that the expected gain from trade can always be
maximized by posting the same price to both the seller and the buyer.

We consider three natural types of feedback models, in increasing order of difficulty for the learner.
The last two are partial feedback models that enjoy the desirable property of requiring only a minimal
amount of information from the agents:

• Full feedback. zt = (st, bt): The learner observes both seller and buyer valuations. This model
corresponds to a direct revelation mechanism. (By Observation 1, in this model, there is no reason
to post two distinct prices, as all the relevant information is revealed anyway.)

• Two-bit feedback. zt =
(
I{st ≤ pt}, I{qt ≤ bt}

)
: The learner observes separately if the two

agents accept the prices offered to each of them.
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Full Feedback Two-bit Feedback One-bit Feedback

Single Price Õ
(√
T
)

Theorem 2 Ω(T ) Ω(T )

Two Prices Ω
(√
T
)

Ω(T 3/4) Theorem 4 Õ
(
T 3/4

)
Theorem 6

Table 1: Overview of the regret regimes against a σ-smooth adversary. The lower bound for the full feedback model is
from Cesa-Bianchi et al. (2023, Thm. 3.3), the one for single price with two-bit feedback is from Theorem 5 in the same
paper. Our classification identifies three minimax regret regimes:

√
T (green), T 3/4 (orange), and T (red).

• One-bit feedback. zt = I{st ≤ pt ≤ qt ≤ bt}: The learner only observes whether or not the trade
occurs. This is arguably the minimal feedback the learner could get.

1.1. Overview of results

We characterize (up to logarithmic factors) the dependence in the time horizon of the minimax regret
regimes for the online learning version of the bilateral trade problem against an adaptive σ-smooth
adversary for various feedback models and notions of budget balance, as outlined in Table 1. We
prove the following results:

• For the full feedback model, we design the Price-Hedge algorithm, posting a single price at each
time step and enjoying a O(

√
T lnT ) bound on the regret (Theorem 2). By Cesa-Bianchi et al.

(2023, Theorem 3.3), this rate is optimal up to logarithmic factors.

• For the one-bit feedback model, we design the Blind-Exp3 algorithm, posting two prices at each
time step and enjoying a Õ(T 3/4) bound on the regret (Theorem 6). The same rate was already
obtained by the Scouting Blindits algorithm in Cesa-Bianchi et al. (2023), but only under the
additional assumption that the adversary chooses the seller/buyer valuations according to an i.i.d.
process. In this work, we drop this assumption and show that smoothness alone is the crucial
property enabling sublinear regret.

• We prove that, surprisingly, the T 3/4 rate is optimal up to logarithmic terms (Theorem 4), even if
the adversary is forced to choose valuations according an i.i.d. process and the learner has access
to the more informative two-bit feedback. Notably, our lower bound closes an open problem in
(Cesa-Bianchi et al., 2023, Section 7).

• We prove that no algorithm can achieve worst-case sublinear regret when the platform is allowed
to post a single price but receives partial feedback (one or two bits), even in the case where
the seller/buyer evaluations are σ-smooth, independent of each other, and form an independent
sequence (Theorem 3). This complements a result in Cesa-Bianchi et al. (2023, Theorem 5), where
the same lower bound was proven for an i.i.d. smoothed adversary.

We highlight three salient qualitative features of our results. First, we construct a (surprising) lower
bound of order T 3/4 for the minimax regret of the problem with partial feedback where the learner is
allowed to post two prices. This lower bound, which is also our main technical contribution, is strictly
worse that the T 2/3 rate that can be obtained with access to bandit feedback,† and substantially departs

†Although our decision space is two-dimensional, one can see that, in a bandit feedback with a smooth adversary, a
regret of order T 2/3 can be obtained by running an optimal bandit algorithm (e.g., MOSS Audibert and Bubeck 2009,
whose upper bound on the regret is of order

√
KT ) on a discretization of K = Θ(T 1/3) equispaced prices on the diagonal

{(p, q) ∈ U | p = q}. Similar results appeared, e.g., in Kleinberg (2004); Auer et al. (2007).
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from the rates
√
T , T 2/3, T that can be found in the two most closely related partial feedback models

in the literature: online learning with feedback graphs (Alon et al., 2017) and partial monitoring
(Bartók et al., 2014). Second, we introduce the first sublinear-regret learning algorithm for the partial
feedback version of the bilateral trade problem beyond the (strict) stochastic i.i.d. assumption on the
valuations. Finally, our results imply that, from the online learning perspective, there is no difference
between receiving one or two bits of feedback when two prices can be posted. This is in agreement,
and extends beyond the i.i.d. case, what was already noted in Cesa-Bianchi et al. (2023, Section 8)
for the smoothed i.i.d. case, and it is in stark contrast with what happens in the stochastic case when
only one price can be posted.

1.2. Technical challenges and our techniques

The repeated bilateral trade problem is characterized by two key features that set it apart from the
standard model of online learning with full or bandit feedback: the nature of the action space and the
partial feedback structure. Both these features need to be taken into account to construct the T 3/4

lower bound, which is the main technical endeavor of this work.
The action space of the bilateral trade problem is continuous (the prices live in a subset of [0, 1]2),

while the gain from trade is discontinuous. This entails that, without any smoothness assumptions on
the distributions, the problem turns out to be utterly intractable in the standard adversarial setting—
see the “needle in a haystack” phenomenon in Cesa-Bianchi et al. (2023, Theorem 6) and Azar et al.
(2022, Theorem 3). We show that the σ-smoothness induces regularity on the expected gain from
trade (Lemma 7, in Appendix A). This in turn allows us to prove a key discretization result (Claim 1).

The main peculiarity of the bilateral trade problem lies in the partial feedback models that are
naturally associated with it. Receiving only information about the relative ordering of the prices
posted and the realized valuations does not allow the learner to directly reconstruct the gain from
trade received at each time step. For instance, if the learner posts the same price 0.5 to both agents
and they both accept, there is no way of assessing whether its gain from trade is constant (e.g.,
(s, b) = (0, 1)) or arbitrarily small (e.g., s = 0.5− ε and b = 0.5 + ε). Conversely, if one of the two
agents rejects the price posted, the learner can only infer loose bounds on the lost trade opportunity.
The key technical tool to address this challenge is given by a one-bit estimation technique that
exploits the possibility of posting two prices to estimate the gain from trade it would have achieved
by posting one single price to both agents (Cesa-Bianchi et al., 2023; Azar et al., 2022). This tool,
together with our discretization result (Lemma 1) are behind our Blind-Exp3 algorithm achieving a
T 3/4 regret.

Our T 3/4 lower bound. At a (very) high level, we show that bilateral trade with partial feedback
contains instances that are closely related to instances of online learning with feedback graphs (Alon
et al., 2015). The corresponding feedback graph GK is over 2K actions: K of them are “exploring”
and the others are “exploiting”, see Figure 2, left. Exploring actions are costly and reveal feedback
on the corresponding exploiting actions. One of the exploiting actions is optimal, but none of them
returns any feedback. We then build “hard” instances so that any algorithm is forced to spend a long
time playing each one of the many exploring actions. By selecting optimally the number of arms in
the reduction and the difference in reward between exploiting actions, we obtain the T 3/4 rate. This
proof sketch hides many technical challenges: we need to carefully design σ-smooth distributions of
the adversary that we can map into instances of online learning with feedback graphs that achieve
their lower bound. This presents two problems: on the one hand, the gains from trade achievable
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at different prices are related (while in usual lower bound constructions for online learning with
feedback graphs, the rewards can be chosen independently, Alon et al. 2015); on the other hand,
the embedding needs to preserve the feedback structure, which is significantly different from the
standard bandit or expert feedback and requires novel and subtle arguments. To address the second
challenge, we prove a general information-theoretic result (Theorem 10, in Appendix E.1) that may
be of independent interest for further lower-bounds constructions in related problems.

1.3. Additional related works

Further applications of smoothed analysis to online learning problems include the works by Block and
Simchowitz (2022) and Block et al. (2023). Sachs et al. (2022) study a related stochastic adversary in
the more general online convex optimization setting; however, they do not insist on the smoothness
of the distributions.

In online learning settings with partial feedback, like the one we study here, smoothed analysis
has been primarily applied to linear contextual bandits (Kannan et al., 2018; Raghavan et al., 2020;
Sivakumar et al., 2020, 2022), where contexts are drawn from smooth distributions. However, the
focus of those works has been on improving regret bounds specifically for the greedy algorithm,
whose worst-case regret is linear. Although the smoothed adversary causes the expected gain from
trade to be Lipschitz, the best possible regret rates for the partial feedback models considered here are
provably worse than those achievable with bandit feedback. To the best of our knowledge, bilateral
trade with a smoothed adversary was previously studied only by Cesa-Bianchi et al. (2023) in the
two-bit feedback model. Another line of work considers regret bounds parameterized by variations
of losses across time and other related measures of smoothness (Hazan and Kale, 2010; Chiang et al.,
2012; Steinhardt and Liang, 2014). See also Chen et al. (2021) for recent results in this area.

The minimax regret of online learning with partial feedback is rather well understood when the
learner selects actions from a finite set—see, e.g., the vast literature on feedback graphs and the
recent work by Lattimore (2022) on partial monitoring. General analyses of settings with infinitely
many actions sets are mostly limited to bandit feedback (Kleinberg et al., 2019)

2. Warm-up: one-price setting

In this section, we present our discretization error result (sharpening by constant factors the bound in
Cesa-Bianchi et al. 2023) and present our results in the single-price setting.

Regret due to discretization. Our first theoretical result concerns the study of how discretization
impacts the regret against σ-smooth adversaries. Although the gain from trade is, in general,
discontinuous, its expectation is 1/σ-Lipschitz (see Lemma 7 in Appendix A), thus opening the way
to discretization methods, as formalized by the following result.

Claim 1 (Discretization error) Let G be any finite grid of prices in [0, 1] and let δ(G) be the
largest distance of a point in [0, 1] to G, i.e., δ(G) := maxp∈[0,1]ming∈G |p − g|, then for any
sequence of σ-smooth distributions S = (S1, B1), . . . , (ST , BT ), we have the following:

max
p∈[0,1]

E

[
T∑
t=1

GFTt(p)

]
−max

g∈G
E

[
T∑
t=1

GFTt(g)

]
≤ δ(G)

σ
T .
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Learning algorithm with full feedback : Price-Hedge

Input: time horizon T , Hedge algorithm A, grid of prices G, with |G| = K
Initialization: Initialize A on time horizon T with K actions, one for each p ∈ G
for time t = 1, 2, . . . do

Receive from A the price pt ∼ Pt ∈ G
Post price pt to the agents and receive feedback zt = (st, bt)
Feed to A the rewards GFTt(p) = (bt − st)I{st ≤ p ≤ bt}, for all p ∈ G

Posting a single price in full information. In the full feedback model, the learner observes a
realization zt := (st, bt) of (St, Bt) at the end of each round t. Thus, they are able to reconstruct the
gain from trade of any other pair of prices. By Claim 1, we can therefore run our favorite learning
algorithm for (non-oblivious adversarial) online learning with expert advice on a discrete set of
prices. For example, using Hedge (Freund and Schapire, 1997) we obtain the Price-Hedge algorithm,
whose regret is controlled by the following theorem (for a proof, see Appendix B).

Theorem 2 Consider the problem of repeated bilateral trade against a σ-smooth adversary in
the full feedback model, for any σ ∈ (0, 1]. Then the regret of Price-Hedge, run using the uniform
K-grid G on [0, 1], for K ≥ 2, satisfies:

RT (Price-Hedge) ≤ 2
√
T lnK +

T

σK
.

In particular, if T ≥ 4, tuning K =
⌊√

T
⌋
, the bound becomes: RT (Price-Hedge) ≤ 4

σ ·
√
T lnT .

We note here that the upper bound we achieved in Theorem 2 is tight in the time horizon, up to
logarithmic factors. This follows from the fact that the distribution used in the Ω(

√
T ) lower bound

in (Cesa-Bianchi et al., 2023, Theorem 3.3) is σ-smooth, for σ ≤ 1/4.

Posting a single price in partial information. Cesa-Bianchi et al. (2023) proved that sublinear
regret is achievable with one price and partial information in the stochastic i.i.d. case, when seller
and buyer distributions are smooth and independent of each other. They also showed that removing
either the smoothness assumption or the independence of S and B leads to linear lower bounds.
They did not, however, investigate whether the i.i.d. assumption could be lifted in a setting other than
the classic adversarial one while still achieving sublinear regret. In contrast to the full information
scenario above (and the one with two prices and partial feedback that we discuss later), we give a
negative answer to this question. The proof of the following result is deferred to Appendix C.

Theorem 3 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

64 . Then any learning algorithm that posts a single price per
time step suffers at least T

24 regret, even if
(
St, Bt

)
t≥1

is an independent family of random variables,
and St is independent of Bt for each t.

3. A T 3/4 lower bound: two bits and two prices

In this section, we present the main contribution of this paper: an unexpected lower bound of order
T 3/4. This result has two notable implications. First, it provides a formalization to the intuition
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Θ(ε)

Θ(ε)

Θ(1)

Figure 1: Left/center: The six squares Q1, . . . , Q6 (in green) are the support of the base density f , and the four
rectangles R1

v,ε, . . . , R
4
v,ε (in red and blue) inside Q6 are the regions where the density is perturbed with gv,ε. Right: The

corresponding qualitative plots of p 7→ E[GFT(p, S,B)] (black, dotted) and p 7→ Ev,ε[GFT(p, S,B)] (red, solid).

that partial feedback (both one- and two-bit models) is strictly less informative than the bandit
feedback, being the regret of the latter of order at most T 2/3. Second, noting that the hard instances
constructed in the proof of Theorem 4 are i.i.d., we solve an open problem in Cesa-Bianchi et al.
(2023), disproving their conjecture that the correct minimax rate is T 2/3.

Theorem 4 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

9 . If T ≥ 8008, then any learning algorithm A posting two
prices per time step suffers at least a regret of

RT (A) ≥
1

503
T 3/4 .

The rest of the section is devoted to sketching the proof of the theorem (for a full proof, see
Appendix F). The sketch is divided into three steps: first, we construct a hard instance of the repeated
bilateral trade problem; then, we present a related problem on a discrete set of actions that preserves
the relevant features of the original problem while allowing for an easier analysis of the regret; finally,
we show how the minimax regret of the second problem leads to a T 3/4 regret for bilateral trade.

3.1. The construction of a hard family of adversaries

Here, we construct the family of σ-smooth adversaries for the repeated bilateral trade learning
problem that we use to prove the lower bound. We consider i.i.d. adversaries: i.e., the valuations
(St, Bt) are drawn i.i.d. according to a fixed distribution, obliviously of the actions of the learner.‡

We build this family of distributions by suitable perturbations over a base distribution, whose
support is given by the union of the six squares Q1, . . . , Q6 (see Figure 1, left). The squares are
obtained by translating [0, 1/6]2, respectively, by (0, 13), (0,

1
2), (0,

5
6), (

5
6 ,

5
6), (

5
6 , 0), (

1
2 ,

2
3). Letting

a := 2 ln(27/16), the probability density function f of the base distribution is

f(x, y) :=
36

1 + 8a
·
(
5− 6(y + x)

6(y − x)
IQ1(x, y) + aIQ2(x, y) + 2aIQ3∪Q4∪Q5(x, y) + IQ6(x, y)

)
.

The perturbations to this base distribution are parametrized by two terms: a translation v ∈
(
1
3 ,

1
2

)
‡This assumption makes our result even stronger: restricting the adversary can never make the lower bound bigger.
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and a scale ε ∈
(
0, 1

12

)
such that 1

3 + ε ≤ v ≤ 1
2 − ε. We denote the set of these parameters by Ξ.

Each perturbed distribution has density fv,ε := f + gv,ε, where gv,ε is defined as follows:

gv,ε(x, y) :=
36

1 + 8a
·
(
IR1

v,ε∪R4
v,ε
(x, y)− IR2

v,ε∪R3
v,ε
(x, y)

)
,

and the rectangles Riv,ε (see Figure 1, left/center) have the following analytic expression: R1
v,ε =

[v − ε, v)×
[
3
4 ,

5
6

]
,R2

v,ε = [v − ε, v)×
[
2
3 ,

3
4

)
,R3

v,ε = [v, v + ε]×
[
3
4 ,

5
6

]
,R4

v,ε = [v, v + ε]×
[
2
3 ,

3
4

)
.

Note that the rectangles Riv,ε are included in Q6 for all i ∈ [4] and (v, ε) ∈ Ξ.
Let P (resp., Pv,ε, for all (v, ε) ∈ Ξ) be a probability measure such that the sequence of

seller/buyer evaluations (S,B), (S1, B1), (S2, B2), . . . is i.i.d. and the distribution of (S,B) has
probability density function f (resp., fv,ε). We denote the expectation with respect to P (resp.,
Pv,ε) by E (resp., Ev,ε). Note that the distribution of (S,B) with respect to P (resp., Pv,ε), for
all (v, ε) ∈ Ξ) is σ-smooth, for all σ ≤ 1/9. Given the explicit form for the base distribution, we
can compute the corresponding expected value of the gain from trade E

[
GFT(p, S,B)

]
obtained

by posting price p ∈ [0, 1] to both agents, when (S,B) is drawn from the base distribution. The
analytic expression of E

[
GFT(p, S,B)

]
can be found in Appendix F (Equation (8)), and a plot is

reported in Figure 1 (right, dotted black). What is relevant to our argument is that the function
p 7→ E

[
GFT(p, S,B)

]
is continuous, maximized at every point of the plateau region

[
1
6 ,

1
2

]
, and its

value at 2
3 is bounded away from the maximum. We can explicitly compute the expected gain from

trade Ev,ε
[
GFT(p, S,B)

]
obtainable by posting any price p ∈ [0, 1] to both agents, when (S,B) is

drawn from the distribution with perturbation parameters v and ε. We have the following:

Ev,ε
[
GFT(p, S,B)

]
= E

[
GFT(p, S,B)

]
+

1

864(1 + 8a)

(
ε · Λv,ε(p) + 12ε2 · Λ 3

4
, 1
12
(p)
)

where Λu,r is the tent map centered at u with radius r defined as Λu,r(x) = (1− |x− u|/r)+ . Thus,
for each (v, ε) ∈ Ξ, the plot of Ev,ε

[
GFT(v, S,B)

]
coincides with that of E

[
GFT(v, S,B)

]
up to

two small deviations (around v and 3/4), and it is maximized at v (see Figure 1, right).
We now focus our attention on the feedback received by a learner that posts prices (p, q), when

the underlying distribution corresponds to perturbations parameters (v, ε) ∈ Ξ.

Claim 2 Fix any (v, ε) ∈ Ξ, (p, q) ∈ U \
⋃
i∈[4]R

i
v,ε, and let Z :=

(
I{S ≤ p}, I{q ≤ B}

)
. Then

Z follows the same distribution under both P and Pv,ε.

Proof Here we consider only the event
{
Z = (0, 0)

}
; for a full proof, see Claim 4 in Appendix F.

Pv,ε
[
Z = (0, 0)

]
= P0

[
Z = (0, 0)

]
+

∫
(p,1]×[0,q)

gv,ε(x, y)dxdy .

If (p, q) is not in Rv,ε, by symmetry, the integral term is 0.

Claim 2 implies that if the learner wants to locate v ∈
[
1
3 + ε, 12 − ε

]
observing samples of the

two-bit feedback Z drawn according to the distribution Pv,ε, they have to post prices in the region
Q6. However, in doing so, they suffer constant instantaneous regret. Indeed, a direct verification
shows that for any (v, ε) ∈ Ξ and all (p, q) ∈ Q6,

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ E

[
GFT

(
1
2 , S,B

)
− GFT

(
2
3 , S,B

)]
= Θ(1) .

9



CESA-BIANCHI CESARI COLOMBONI FUSCO LEONARDI

1 2 3 4

5 6 7 8

0 1
0

1

1234

5678

Figure 2: Left: The feedback graph of multi-apple tasting for K = 4. Right: The map ι.

So far, we built a family of i.i.d. adversaries for our bilateral trade problem such that the optimal pair
of prices belongs to Dopt :=

{
(p, q) ∈ U | p = q ∈ [1/3, 1/2]

}
, but, when the underlying distribution

is determined by one of the probability measures Pv,ε, in order not to suffer regret Ω(εT ), the learner
has to detect an ε-spike inside Dopt. As observed in Claim 2, this can only be accomplished by
posting prices in Q6, which, as shown above, has an instantaneous regret of order Ω(1). The missing
piece is now to quantify how long the learner can be forced to spend time posting prices in Q6. To
this end, we build a reduction from a simplified online learning with feedback graph problem on
2K arms that highlights the underlying structure of our problem. Our goal is to show that for any
algorithm A for the repeated bilateral trade problem there exists an algorithm Ã for the new problem
such that the regret suffered by the latter is a lower bound on the regret suffered by the former.

3.2. The multi-apple tasting problem

In this section, we introduce an auxiliary online learning problem on a discrete set of actions that we
call multi-apple tasting: it will be easier to analyze than our original bilateral trade problem while
still capturing its difficulties. The multi-apple tasting problem has the following form: there are
2K actions, the first K are called the exploration arms, while the others are the exploitation arms.
Playing an exploitation arm yields no feedback, while an exploration arm i gives information about
the performance of the corresponding exploitation arm i+K. The reader familiar with the notion of
online learning with directed feedback graphs (Alon et al., 2015) will recognize that the feedback
model described here corresponds to the simple (weakly observable) feedback graph in Figure 2
(left).

The rewards. We now describe the random rewards of K + 1 instances of the multi-apple tasting
problem associated to K + 1 probability measures P0, . . . ,PK . Set cprob to be 7/(2a) and consider
the i.i.d. sequence of random vectors Y, Y1, Y2, . . . , YT such that Y ∈ {0, 1}2K and, for each
k ∈ {0, . . . ,K} and i ∈ [K], it holds that Y (i+K) = Y1(i+K) = · · · = YT (i+K) = 0 and

Pk
[
Y (i) = 1

]
=

{
1
2 if i ∈ [K]\{k}
1
2 + cprob · ε if i = k

The random vectors Y1, Y2, . . . , YT control the rewards the learner gets in this new problem. Formally,
a learner playing action i ∈ [2K] at time t gets reward ρt(i) := ρ(i, Yt) where

ρ(i, y) :=

{
0 if j ∈ [K]

cplat +
cspike
cprob

·
(
y(j −K)− 1

2

)
otherwise

10
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cplat :=
a

2(1+8a) , cspike := 1
6(1+8a) ·

1
144 , and, for any i ∈ [K], we denoted i-th component of y by

y(i). Observe that for all k ∈ {0, . . . ,K} and i ∈ {K + 1, . . . , 2K}, we have

Ek
[
ρ(i, Y )

]
=

{
cplat if k ̸= i−K
cplat + cspike · ε otherwise

The feedback. The learner in multi-apple tasting receives two types of feedback. If they play action
i ≥ K + 1 (an exploitation arm) at time t, then they receive no feedback (modeled by Yt(i) = 0). If
instead, they play action i ≤ K (an exploration arm), they receive feedback Yt(i). This feedback
structure describes an instance of online learning with feedback graphs, where the underlying graph
is the one in Figure 2 (left). The rewards incurred by the exploring arms are fixed and known
irregardless of the action played, while the only way to learn the expected value of ρt(i) for i > K is
to play the corresponding exploring action i−K.

The minimax regret. Leveraging a standard information-theoretic argument, it can be proved
that any algorithm for the multi-apple tasting problem has to suffer a regret of order at least
Ω
(
min(K

ε2
, εT )

)
on at least one of the instances induced by P0, . . . ,PK . Intuitively, in order

to prevent losing εT , the learner has to play each one of the K exploring arms at least Ω(1/ε2) times.

3.3. Relating the two problems

We have described multi-apple tasting, andK+1 distributions to generate the sequence of rewards for
it. We now show how to simulate any distribution of the feedback in instances Pvk,

ε
6 of the bilateral

trade problem using the random variables Y (and some extra random seeds). Let K =
⌈
T 1/4

⌉
and

ε = 1
2K , and consider the baseline instance and the K perturbed instances of the repeated bilateral

trade problem above, each corresponding to (vk,
ε
6) for vk = 1

3 + (2k − 1) ε6 and k ∈ [K]. For each
one of these instances, we construct an instance of multi-apple tasting that can be used to simulate it.

As a first step, we explain how to associate each pair of prices in the upper triangle (i.e., the set
of actions in the bilateral trade problem) to one of the 2K actions in the feedback graph problem.
We partition the upper triangle U of the unit square [0, 1]2 into 2K subsets, each corresponding to
areas of “similar” behavior:

• Jk := [vk − ε
6 , vk +

ε
6)× [23 ,

5
6 ], ∀k ∈ [K − 1], and JK := [vK − ε

6 , vK + ε
6 ]× [23 ,

5
6 ].

• Jk+K := {(p, q) ∈ U | vk− ε
6 ≤ p < vk+

ε
6 and q < 2

3}, ∀k ∈ [K−1], and J2K := U\
⋃2K−1
k=1 Jk.

Given the partition, we can introduce the map ι which associates each (p, q) ∈ U with the unique
i ∈ [2K] such that (p, q) ∈ Ji (see Figure 2, right, for a pictorial representation of ι). Then, we
introduce an i.i.d. sequence V, V1, V2, . . . , VT of uniform random variables in [0, 1], independent of
the sequence of Y s. Both the Y and the V sequences are independent of the sequence of valuations
(S1, B1), (S2, B2), . . . , (ST , BT ).

The next claim is the core of our reduction: it can be proved by applying our novel information-
theoretic result (Theorem 10, Appendix E). To do it, one can verify that, for all k ∈ [K], the
Radon-Nikodym derivative of the distribution of the feedback

(
I(S ≤ p), I{q ≤ B}

)
under Pvk,

ε
6

with respect to its distribution under P is bounded from above (resp., below) by the maximum (resp.,
minimum) of the Radon-Nikodym derivative of the distribution of Y (ι(p, q)) under Pk with respect
to its distribution under P0. For a proof, see Claim 5 in Appendix F.
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Estimation procedure of GFT using two prices and one-bit feedback
Input: price p Environment: fixed pair of seller and buyer valuations (s, b)
Toss a biased coin with probability p of Heads
if Heads then draw U uniformly at random in [0, p] and set p̂← U , q̂ ← p
else draw V uniformly at random in [p, 1] and set p̂← p, q̂ ← V
Post price p̂ to the seller and q̂ to the buyer and observe the one-bit feedback I{s ≤ p̂ ≤ q̂ ≤ b}
Return ĜFT(p)← I{s ≤ p̂ ≤ q̂ ≤ b} ▷ Unbiased estimator of GFT(p)

Claim 3 For any (p, q) ∈ U there exists a function φp,q : {0, 1} × [0, 1]→ {0, 1}2 such that, for
all k ∈ [K], the distribution of φp,q(Y (ι(p, q)), V ) under P0 (resp., Pk, for all k ∈ [K]) is the same
as that of

(
I(S ≤ p), I{q ≤ B}

)
under P (resp., Pvk,

ε
6 ).

We now proceed as follows. Let A be any algorithm for the original bilateral trade problem. We
show how to simulate its behavior over the instances P and Pvk,

ε
6 , for k ∈ [K], using an algorithm

Ã for multi-apple tasting (together with the sequence of random seeds V1, V2, . . . , VT ) over the
distributions P0 and Pk, for k ∈ [K]. When algorithm A chooses prices (pt, qt) ∈ U at time t,
then Ã plays the action ι(pt, qt) ∈ [2K], receives reward ρt(ι(pt, qt)) and observes the feedback
Yt(ι(pt, qt)). Algorithm A is then fed the feedback φpt,qt

(
Yt(ι(pt, qt)), Vt

)
∈ {0, 1}2 which it

uses to select its new action (pt+1, qt+1). Crucially, leveraging Claim 3 and the structure of the
rewards in two problems, one can prove that the regret R0

T (A) (resp., RkT (A), for any k ∈ [K]) that
algorithm A suffers under probability P (resp., Pvk,

ε
6 ) in the repeated bilateral trade problem is at

least the regret R̃0
T (Ã) (resp., R̃kT (Ã)) that algorithm Ã suffers under probability P0 (resp., Pk) in

the multi-apple tasting problem. Finally, the proof can be concluded by putting together the lower
bound Ω

(
min(K

ε2
, εT )

)
for the multi-apple tasting problem with our choices of K and ε to obtain

that the minimax regret for the bilateral trade problem is at least of order Ω(T 3/4).

4. A T 3/4 upper bound: one bit and two prices

In this section, we introduce our algorithm, Blind-Exp3, for the one-bit feedback setting against a
σ-smooth adaptive adversary that achieves a bound on the regret of order T 3/4, up to logarithmic
terms. A key technique that we use is a Monte Carlo estimation procedure ĜFT (see pseudocode for
details) that allows us to estimate the expected gain from trade E

[
GFT(p, St, Bt)

]
of a price p, by

posting two different prices (p̂, q̂) and receiving one bit of feedback.

Lemma 5 (Lemma 1 of Azar et al. (2022)) Fix any agents’ valuations (s, b) ∈ [0, 1]2. For any
price p ∈ [0, 1], it holds that ĜFT(p) is an unbiased estimator of GFT(p), i.e., E

[
ĜFT(p)

]
=

GFT(p), where the expectation is with respect to the randomness of the estimation procedure.

Once we have this procedure, we can present our algorithm. At high level, the algorithm mimics
the behavior of Exp3 on a fixed discretization of K prices, but the estimation procedure is used to
perform the uniform exploration step. Our algorithm is “blind” because—unlike what happens in
the bandit case—posting a price does not reveal the corresponding gain from trade. With a careful
analysis, in Appendix D we show that the uniform exploration term is indeed enough to achieve the
tight regret bound of order Õ(T 3/4). (We recall that the σ-smoothness of the valuation distributions

12
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Learning algorithm with 1-bit feedback and two prices: Blind-Exp3

input: Learning rate η > 0, exploration rate γ ∈ (0, 1), grid of prices G, with |G| = K
initialization: Set w1(i) to 1 for all i ∈ [K] and W1 := K
for time t = 1, 2, . . . do

Let πt(i) :=
wt(i)
Wt

for all i ∈ [K]
Toss a biased coin with probability γ of Heads
if Tails then ▷ Exploitation step

Post price pt drawn according to distribution πt and set r̂t(i) := 0 for all i ∈ [K]
else ▷ Exploration step

Draw a price gIt uniformly at random in G
Use the estimation procedure on price gIt and receive ĜFTt(gIt)
Set r̂t(It) := K

γ · ĜFTt(gIt) and r̂t(j) := 0 for all j ̸= It.

Let wt+1(i) := wt(i) · exp
(
ηr̂t(i)

)
for all i ∈ [K] ▷ Exponential weight update

Let Wt+1 :=
∑

pi∈Gwt+1(i)

is crucial to ensure that the performance of the best fixed price in hindsight on a grid is “close enough”
to the performance of the best fixed price overall.)

Theorem 6 Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary
in the one-bit feedback model, for any σ ∈ (0, 1]. If we run Blind-Exp3 with exploration rate
γ ∈ (0, 1), learning rate η > 0, and the uniform K-grid G such that 2ηK

γ ≤ 1, then, for each time
horizon T ∈ N, we have that

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T.

In particular, if T ≥ 16, tuning the number of grid points K =
⌊
T 1/4

⌋
, the exploration rate γ =

(lnT )1/3

T 1/4 , and the learning rate η = 1
2
(lnT )2/3

T 3/4 , then RT (Blind-Exp3) ≤ 2
(
1
σ + (lnT )1/3

)
· T 3/4 .

5. Conclusions and open problems

In this paper, we initiated the study of σ-smooth adversaries in online learning for pricing problems.
Focusing on the repeated bilateral trade problem, we proved that a single bit of feedback is sufficient
to achieve sublinear regret, pushing the boundary of learnability beyond the i.i.d. setting. We hope
that the smoothed adversarial approach will find more applications to learning pricing strategies that
cannot otherwise be efficiently learned in the adversarial model under partial feedback.

The surprising minimax regret regime of T 3/4 surpasses the
√
T vs. T 2/3 dichotomy observed

in other partial feedback models (e.g., partial monitoring and feedback graph), and motivates the
intriguing question of whether techniques based on the generalized information ratio (Lattimore and
Szepesvári, 2019) could be used to define a unified algorithmic tool in our framework and, more
generally, to analyze online problems in digital markets.
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Appendix A. Missing proofs from Section 2: Lipschitzess and discretization

Lemma 7 (Lipschitzness) Let (S,B) be a σ-smooth random variable on [0, 1]2, then the induced
expected gain from trade GFT is 1/σ-Lipschitz:

|E [GFT(y)− GFT(x)] | ≤ 1

σ
|y − x|, ∀x, y ∈ [0, 1] (1)

Proof Let x > y be any two prices in [0, 1], we have the following:

|E [GFT(y)− GFT(x)] | = |E [(B − S)(I{S ≤ y ≤ B} − I{S ≤ x ≤ B})] |
= |E [(B − S)(I{S ≤ y ≤ B ≤ x} − I{y ≤ S ≤ x ≤ B})] |
≤ P (S ≤ y ≤ B ≤ x) + P (y ≤ S ≤ x ≤ B)

= P ((S,B) ∈ [0, y]× [y, x]) + P ((S,B) ∈ [y, x]× [x, 1])

≤ 1

σ
P ((U, V ) ∈ [0, y]× [y, x]) +

1

σ
P ((U, V ) ∈ [y, x]× [x, 1])

=
1

σ
[y · (x− y) + (1− x)(x− y)] ≤ 1

σ
(x− y)

Note that in the second to last inequality we used the assumption on the smoothness of (S,B) and
we introduced U and V , two independent uniform random variables in [0, 1].

Claim 1 (Discretization error) Let G be any finite grid of prices in [0, 1] and let δ(G) be the
largest distance of a point in [0, 1] to G, i.e., δ(G) := maxp∈[0,1]ming∈G |p − g|, then for any
sequence of σ-smooth distributions S = (S1, B1), . . . , (ST , BT ), we have the following:

max
p∈[0,1]

E

[
T∑
t=1

GFTt(p)

]
−max

g∈G
E

[
T∑
t=1

GFTt(g)

]
≤ δ(G)

σ
T .

Proof Let p∗ be the best fixed price in hindsight in [0, 1] with respect to the sequence S; if p∗ ∈ Q,
then there is nothing to prove. If this is not the case, then there exist pG ∈ G, is such that
|p∗ − pG| ≤ δ(G). We have the following:

E

[
T∑
t=1

GFTt(p∗)

]
−max

p∈G
E

[
T∑
t=1

GFTt(p)

]

≤ E

[
T∑
t=1

GFTt(p∗)

]
− E

[
T∑
t=1

GFTt(pG)

]

≤
|p∗ − pQ|

σ
T ≤ δ(G)

σ
T,

where, in the second to last inequality, we used the Lipschitz property of the expected gain from
trade as in Lemma 7.
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Figure 3: The squares Q1, . . . , Q6 appearing in the proof of Theorem 3.

Appendix B. Missing proofs from Section 2: Full feedback

Theorem 2 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
full feedback model, for any σ ∈ (0, 1]. Then the regret of Price-Hedge, run using the uniform
K-grid G on [0, 1], for K ≥ 2, satisfies:

RT (Price-Hedge) ≤ 2
√
T lnK +

T

σK
.

In particular, if T ≥ 4, tuning K =
⌊√

T
⌋
, the bound becomes: RT (Price-Hedge) ≤ 4

σ ·
√
T lnT .

Proof We show how running Price-Hedge for the right choices grid of prices G yields the desired
result. As A, we choose the Hedge algorithm for full information feedback (Freund and Schapire,
1997), while for any fixed K ≥ 2, we consider the uniform grid G on [0, 1] of the positive integer
multiples of 1

K : G =
{

1
K ,

2
K , . . . , 1

}
. For any σ-smooth adversary S, we have the following:

RT (Price-Hedge,S) = max
p∈[0,1]

E

[
T∑
t=1

GFTt(p)−
T∑
t=1

GFTt(Pt)

]
±max

p∈G
E

[
T∑
t=1

GFTt(p)

]

≤ max
p∈G

E

[
T∑
t=1

GFTt(p)−
T∑
t=1

GFTt(Pt)

]
+

T

σK

≤ 2
√
T lnK +

T

σK
.

Note that, in the first inequality we used Claim 1, which holds for any (possibly adaptive) sequence
of σ-smooth random variables, while in the second inequality, we used the well-known bound on the
regret of Hedge—see, e.g., Arora et al. (2012, Theorem 2.5) with η = 1√

T
. We remark that the last

bound holds for any (possibly adversarial) realizations of the agents’ valuations, in expectation with
respect to the internal randomness of the algorithm.

Appendix C. Missing proofs from Section 2: Linear lower bound

Theorem 3 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

64 . Then any learning algorithm that posts a single price per
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time step suffers at least T
24 regret, even if

(
St, Bt

)
t≥1

is an independent family of random variables,
and St is independent of Bt for each t.

Proof Consider the following six squares, depicted in Figure 3:

Q1 :=

[
0,

1

8

]
×
[
3

8
,
1

2

]
, Q2 :=

[
1

4
,
3

8

]
×
[
7

8
, 1

]
, Q3 :=

[
1

2
,
5

8

]
×
[
5

8
,
3

4

]
,

Q4 :=

[
1

2
,
5

8

]
×
[
7

8
, 1

]
, Q5 :=

[
0,

1

8

]
×
[
5

8
,
3

4

]
, Q6 :=

[
1

4
,
3

8

] [
3

8
,
1

2

]
,

To each squareQi, we associate a uniform probability distribution over it: we say that the random
valuations (S,B) are distributed uniformly over Qi under Pi and Ei, for each i = 1, . . . , 6. Starting
from these distributions, we construct two other distributions: the “red” one and the “blue” one.
When (S,B) is sampled from the blue one, it is sampled u.a.r. from the union of the blue squares:
(Q1, Q2 and Q3). In formula, the probability measure Pblue is just a uniform mixture of P1, P2 and
P3. The same can be done for the red distribution over the red squares (Q4, Q5 and Q6). Note that
both the red and the blue distributions are 1

64 smooth.
From Cesa-Bianchi et al. (2023, Theorem 4.3), we know that any learning algorithm A that

can only post one price Pt suffers linear regret against at least one of the following i.i.d. instance:
the adversary chooses at the beginning of time either the red or the blue distribution and extracts
valuations from it i.i.d. over the rounds. In formula:

max
color∈{blue,red}

(
max
p∈[0,1]

T∑
t=1

Ecolor[GFTt(p)− GFTt(Pt)
])
≥ 1

24
T. (2)

We cannot use directly this construction for our result, as seller and buyer valuations are not
independent in the blue and red distributions. However, we can exploit the non i.i.d. structure of the
smooth adversary, to generate an equivalent random sequence of smooth distributions such that each
one of them has independent seller and buyer valuations.

Consider the following family F of 1/64-smooth oblivious adversaries: each S of them is
characterized by a color red or blue, and a sequence {it} of T indices, where red adversaries have
it ∈ {4, 5, 6} and blue adversaries have it ∈ {1, 2, 3}. We denote with F red the set of all such
adversaries and with F blue the blue ones. Any S in the sequence generates the valuations as follows:
(St, Bt) is drawn independently and uniformly at random from Qit . Note that any S ∈ F enjoys
the property that the distribution chosen at each time step has independent seller and buyer. We
argue that any learning algorithm A suffers linear regret against at least one of these adversaries. In
formula:

RT (A) ≥ max
S∈F

[
max
p∈[0,1]

(
T∑
t=1

Eit [GFTt(p)− GFTt(Pt)]

)]

= max
color∈{red,blue}

max
S∈F color

[
max
p∈[0,1]

(
T∑
t=1

Eit [GFTt(p)− GFTt(Pt)]

)]

≥ max
color∈{red,blue}

[
max
p∈[0,1]

(
T∑
t=1

Ecolor [GFTt(p)− GFTt(Pt)]

)]
(3)
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Note that the it are the indices induced by S. The previous inequality, combined with Equation (2)
concludes the proof. The only delicate step we need to clarify is the last inequality in Equation (3).
To this end, fix any color, let’s say red (same argument holds for blue). The regret of A against the
worst sequence in F red is at least the expected regret of A against a randomized adversary that is
obtained by drawing u.a.r. S from F red (note that the adversaries in F red are oblivious). Now, the
crucial argument is that the sequence of valuations (St, Bt) obtained by choosing u.a.r. an adversary
S from F red follows the exact same distribution as drawing (St, Bt) i.i.d. from the red distribution.
In fact, the valuations at different steps are independent and every square has the same probability of
being chosen at each time step.

Appendix D. Missing proofs from Section 4

Theorem 6 Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary
in the one-bit feedback model, for any σ ∈ (0, 1]. If we run Blind-Exp3 with exploration rate
γ ∈ (0, 1), learning rate η > 0, and the uniform K-grid G such that 2ηK

γ ≤ 1, then, for each time
horizon T ∈ N, we have that

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T.

In particular, if T ≥ 16, tuning the number of grid points K =
⌊
T 1/4

⌋
, the exploration rate γ =

(lnT )1/3

T 1/4 , and the learning rate η = 1
2
(lnT )2/3

T 3/4 , then RT (Blind-Exp3) ≤ 2
(
1
σ + (lnT )1/3

)
· T 3/4 .

Proof The analysis of Blind-Exp3 needs to carefully take into account many sources of randomness:
the internal randomness of the algorithm, of the estimation procedures and of the σ-smooth distri-
butions of the adversary. Note, moreover, that the adversary is non-oblivious, so the choice of the
distribution (St, Bt) depends on all the realizations of the past randomization. Fix any exploration
rate γ ∈ (0, 1), learning rate η > 0 and number of grid points K ∈ N such that 2ηK

γ ≤ 1. Fix
also any time horizon T ∈ N. In the following, we use the random variables (Pt, Qt) to denote the
randomized prices posted by the algorithm at time t.

Fix any history of the algorithm (i.e. realization of all the randomness involved). We have the
following:

ln

(
WT+1

W1

)
= ln

(
T∏
t=1

Wt+1

Wt

)
=

T∑
t=1

ln

(
Wt+1

Wt

)
=

T∑
t=1

ln

∑
i∈[K]

πt(i) exp (ηr̂t(i))


≤

T∑
t=1

ln

1 + η
∑
i∈[K]

πt(i)r̂t(i) + η2
∑
i∈[K]

πt(i)
(
r̂t(i)

)2
≤ η

T∑
t=1

∑
i∈[K]

πt(i)r̂t(i) + η2
T∑
t=1

∑
i∈[K]

πt(i)
(
r̂t(i)

)2 (using r̂t(i) ≤ K
γ )

≤ η
T∑
t=1

∑
i∈[K]

πt(i)r̂t(i)

[
1 + η

K

γ

]
. (4)
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Crucially, we can use the standard exponential and logarithmic inequalities exp(x) ≤ 1 + x+ x2

(valid whenever x ≤ 1), and ln(1 + x) ≤ x (valid whenever x > −1) only because the particular
choice of the parameters (2ηKγ ≤ 1) implies that ηr̂t(i) ≤ 1 and

η
∑
i∈[K]

πt(i)r̂t(i) + η2
∑
i∈[K]

πt(i)
(
r̂t(i)

)2 ≤ 2η
∑
i∈[K]

πt(i)r̂t(i) ≤
K

γ
.

Inequality 4 is the pivot of our analysis, as we construct upper and lower bounds to its two
extremes. We start from its first term, take the expectation with respect to the whole randomness of
the process and consider any price gi in the grid G:

E
[
ln

(
WT+1

W1

)]
= E [ln (WT+1)]− lnK ≥ E [ln (wT+1(i))]− lnK

= η

T∑
t=1

E [r̂t(i)]− lnK = η

T∑
t=1

E [GFTt(gi)]− lnK. (5)

The only delicate passage of the previous formula is the last equality, where we used that E [r̂t(i)] =
E [GFTt(gi)]. To see why the latter holds, consider the filtration {Ft}t relative to the story of the
process: Ft is the σ-algebra generated by all the random variables involved in the process up to time
t (excluded). Moreover, let E it be the event that at round t the coin toss results in Heads and the price
selected u.a.r. for exploration is gi. We have the following:

E [r̂t(i) | Ft] = E
[
I
{
E it
}
r̂t(i) | Ft

]
r̂t(i) = I

{
E it
}
r̂t(i)

= E
[
I
{
E it
}
E
[
r̂t(i) | Ft, E it

]
| Ft

]
Law of total exp.

=
K

γ
E
[
I
{
E it
}
E
[
ĜFTt(gi) | Ft, E it

]
| Ft

]
Def. of r̂t(i)

=
K

γ
P[E it | Ft]E [GFTt(gi) | Ft] Lemma 5 and (St, Bt) indep. of E it

= E [GFTt(gi) | Ft]

For the final step, note that, conditioned on Ft, the event E it has probability γ
K : the random coin gives

Tails with probability γ and price gi is chosen (independently) u.a.r. as the one to be actually explored
with probability 1/K. Taking the expectation with respect to Ft gives that E [r̂t(i)] = E [GFTt(gi)].

Let’s go back to Equation (4) and focus on the last term. Conditioning with respect to Ft:

E [πt(i)r̂t(i) | Ft] = πt(i)E [r̂t(i) | Ft] = πt(i)E [GFTt(gi) | Ft] .

Taking the expectation with respect to Ft and summing over all the gi ∈ G, we have the following:

E [GFTt(Pt, Qt)] ≥ (1− γ)
∑
i∈[K]

E [πt(i)GFTt(gi)] = (1− γ)
∑
i∈[K]

E [πt(i)r̂t(i)] , (6)

where the first inequality follows from the fact that with probability 1 − γ the learner at time t
chooses exploitation and thus posts a price in the grid G according to distribution πt. We can plug
Equation (5) and Equation (6) into Equation (4) to obtain the following:

η

T∑
t=1

E [GFTt(gi)]− lnK ≤ η

1− γ

(
1 + η

K

γ

) T∑
t=1

E [GFTt(Pt, Qt)]
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Multiplying everything by 1−γ
η , rearranging, and using that the gain from trade is always upper

bounded by 1, we get:

T∑
t=1

E [GFTt(gi)]−
T∑
t=1

E [GFTt(Pt, Qt)] ≤
lnK

η
+

(
γ + η

K

γ

)
T

The argument so far holds for any adaptive adversary S and any choice of price on the grid gi. This,
together with the discretization result Claim 1 gives the desired bound:

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T

Appendix E. One-bit/two-scenarios inverse-transformation representability

We recall that given two probability measures P and Q on a measurable space (Ω,F), we say that Q
is absolutely continuous with respect to P and we write Q≪ P if for all E ∈ F such that P[E] = 0,
it holds that Q[E] = 0. Moreover, if Q≪ P, the Radon-Nikodym theorem states that there exists a
density (called Radon-Nikodym derivative of Q with respect to P and denoted by) dQ

dP : Ω→ [0,∞)
such that, for all E ∈ F , it holds that

Q[E] =

∫
E

dQ
dP

(ω) dP(ω) .

For a reference of the previous result, see (Bass, 2013, Theorem 13.4).
Moreover, if (Ω,F ,P) is a probability space, (X ,FX ) is a measurable space, and X is a random

variable from (Ω,F) to (X ,FX ), we denote by PX the push-forward measure of P by X , i.e., the
probability measure defined on FX by PX [F ] := P[X ∈ F ], for all F ∈ FX .

If (Ω,F) and (Ω′,F ′) are two measurable spaces, we denote by F ⊗F ′ the σ-algebra of subsets
of Ω × Ω′ generated by the collection of subsets of the form F × F ′, where F ∈ F and F ′ ∈ F ′.
If (Ω,F ,P) and (Ω′,F ′,P′) are two probability spaces, we denote the product measure of P and
P′ by P ⊗ P′, i.e., P ⊗ P′ is the unique probability measure defined on F ⊗ F ′ which satisfies
(P⊗ P′)[F × F ′] = P[F ]P′[F ′], for all E ∈ F and E′ ∈ F ′.

If (Ω,F ,P) is a probability space, (X ,FX ) and (Y,FY) are measurable spaces, X is a random
variable from (Ω,F) to (X ,FX ), and Y is a random variable from (Ω,F) to (Y,FY), we denote the
conditional probability of X given Y by PX|Y , i.e., PX|Y [E] = P[X ∈ E | Y ], for each E ∈ FX .
In this case, for each E ∈ FX , we recall that PX|Y [E] is a σ(Y )-measurable random variable.
Furthermore, if X ′ is another random variable from (Ω,F) to some measurable space (X ′,FX ′), f
and g are two real-valued bounded measurable functions (respectively from (X ⊗ Y,FX ⊗FY) to
the reals and from (X ′⊗Y,FX ′⊗FY) to the reals), and both (X ,FX ) and (X ,FX ′) are measurable
spaces that arise from considering the Borel subsets of separable and complete metric space (X , d)
and (X ′, d′) respectively, it holds that

E
[
f(X,Y )g(X ′, Y ) | Y

]
= E

[
f(X,Y ) | Y

]
· E
[
g(X ′, Y ) | Y

]
whenever

P(X,X′)|Y = PX|Y ⊗ PX′|Y .
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(Ω,F)
(
{0, 1} × [0, 1], 2{0,1} ⊗ B}

)

(Y,FY)

φ

(X,U)

Y

Figure 4: Pictorial representation of Theorem 10. The way to interpret it is not event by event but in probability: the
probability of a measurable set in FY can be computed in Ω equivalently via the pullback of Y , or of φ ◦ (X,U).

E.1. Our inverse-transformation result

In this section, we present a theorem that extends, in spirit, the classic inverse transformation method.
This result that can be of independent interest for replacing a type of feedback with another of better
quality in lower-bound constructions based on reductions to simpler games.

Definition 8 (Inverse-transformation representability) Let (Ω,F ,P) be a probability space and
B be the Borel σ-algebra of [0, 1]. We say that P is inverse-transformation-representable if there
exists a measurable function ψ from

(
[0, 1],B

)
to (Ω,F) such that§ P = Lψ.

The following theorem is a simple consequence of (Masamichi, 1979, Corollary A.11), and
shows “inverse-transformation representability in separable and complete metric spaces”.

Theorem 9 Suppose that (Y, d) is a separable and complete metric space, with FY as the Borel
σ-algebra of (Y, d). Then any probability measure defined on FY is inverse-transformation-
representable.

We are now ready to state the main theorem of this section. When we are uncertain about
the underlying probability according to which some samples are drawn, and the uncertainty is
between two probability measure P and Q, the theorem provides a characterization under which
we can simulate a random variable Y using some independent random seed U and having access
to a 1-bit random variable X . This theorem can be of independent interest as a tool for lower
bound reductions in online learning problems, as we used for example in Theorem 4. It establishes
“One-bit/two-scenarios inverse-transformation representability in separable and complete metric
spaces”.

Theorem 10 Suppose that (Y, d) is a separable and complete metric space with FY as the Borel
σ-algebra of (Y, d). Let (Ω,F) be a measurable space, X a random variable from (Ω,F) to(
{0, 1}, 2{0,1}

)
, Y a random variable from (Ω,F) to (Y,FY), and U random variable from (Ω,F)

to
(
[0, 1],B

)
, where B is the Borel σ-algebra of [0, 1]. Suppose that P,Q are probability measures

defined on F , and p ∈ (0, 1), q ∈ [0, 1] are such that:

• P[X = 1] = p and Q[X = 1] = q.

• U is a uniform random variable on [0, 1] both under P and Q, i.e., we have that PU = L = QU .

• U is independent of X both under P and Q, i.e., P(X,U) = PX ⊗ PU and Q(X,U) = QX ⊗QU .

§We recall that L is the Lebesgue measure on B.
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Then, the following are equivalent:

1. There exists a measurable function φ from
(
{0, 1} × [0, 1], 2{0,1} ⊗ B

)
to (Y,FY) such that

PY = Pφ(X,U) and QY = Qφ(X,U) .

2. QY ≪ PY , and PY -almost-surely it holds that

min
dQX

dPX
≤ dQY

dPY
≤ max

dQX

dPX
.

Proof We divide the proof in two parts, depending on whether or not p = q.
Assume first that p ̸= q. In this case, we will prove the chain of equivalencies

Item 1 ⇔ Item a ⇔ Item b ⇔ Item c ⇔ Item 2 ,

where Item a, Item b, and Item c are the following propositions:

a) There exists two probability measures µ0 and µ1 over FY such that

PY = (1− p)µ0 + pµ1 and QY = (1− q)µ0 + qµ1 .

b) q
q−pPY −

p
q−pQY ≥ 0 and 1−p

q−pPY −
1−q
q−pQY ≥ 0 .

c) QY ≪ PY and min
( q
p ,

1−q
1−p
)
≤ QY [A]

PY [A] ≤ max
( q
p ,

1−q
1−p
)

for all A ∈ FY such that PY [A] > 0.

We begin by proving that Item 1 is equivalent to Item a. Assume Item 1. Define µ0 := Pφ(0,U)

and µ1 := Pφ(1,U). Since U is uniform under both under P and Q, it also holds that µ0 = Qφ(0,U)

and µ1 = Qφ(1,U). Thus

PY = Pφ(X,U) = (1− p)Pφ(0,U) + pPφ(1,U) = (1− p)µ0 + pµ1

QY = Qφ(X,U) = (1− q)Qφ(0,U) + qQφ(1,U) = (1− q)µ0 + qµ1 ,

where we used that fact that X and U are independent both under P and Q and that P[X = 1] = p,
Q[X = 1] = q. This proves Item a.

Vice versa, assume Item a. By Theorem 9, we can find two measurable functions ψ0, ψ1 from(
[0, 1],B

)
to (Y,FY) such that µ0 = Lψ0 and µ1 = Lψ1 and define

φ(x, u) :=

{
ψ0(u) if x = 0

ψ1(u) if x = 1

for all x ∈ {0, 1} and u ∈ [0, 1]. Then φ is a measurable function from
(
{0, 1} × [0, 1], 2{0,1} ⊗ B

)
to (Y,FY), and since X is independent of U and U is uniform on [0, 1] both under P and Q, we have

Pφ(X,U) = (1− p)Pφ(0,U) + pPφ(1,U) = (1− p)Pψ0(U) + pPψ1(U)

= (1− p)Lψ0 + pLψ1 = (1− p)µ0 + pµ1 = PY
Qφ(X,U) = (1− q)Qφ(0,U) + qQφ(1,U) = (1− q)Qψ0(U) + qQψ1(U)

= (1− q)Lψ0 + qLψ1 = (1− q)µ0 + qµ1 = QY
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This proves Item 1 and in turn yields that Item 1 is equivalent to Item a.
We now prove that Item a is equivalent to Item b. Assume Item a. Then, for each A ∈ FY we

have that the pair
(
µ0[A], µ1[A]

)
is the (only) solution of the linear system{
(1− p)x0 + px1 = PY [A]
(1− q)x0 + qx1 = QY [A]

in the two variables (x0, x1), which implies

µ0[A] =
q

q − p
PY [A]−

p

q − p
QY [A] and µ1[A] =

1− p
q − p

QY [A]−
1− q
q − p

PY [A] .

Since µ0 and µ1 are (non-negative) measures, this implies Item b.
Vice versa, assume Item b. Define

µ0 :=
q

q − p
PY −

p

q − p
QY and µ1 :=

1− p
q − p

QY −
1− q
q − p

PY .

Since µ0 and µ1 are a linear combination of measures, they are signed measures and, by Item b,
actually, they are (non-negative) measures. The fact that they are also probability measures follows
trivially from PY [Y] = 1 = QY [Y]. Now, a direct verification shows that PY = (1 − p)µ0 + pµ1
and QY = (1− q)µ0 + qµ1, i.e., that Item a holds. We have then proved that Item a is equivalent to
Item b.

We now prove that Item b is equivalent to Item c. Firstly, note that by elementary linear-algebra
(dividing by p̃ and solving by q̃/p̃ the linear system of inequalities), for each q̃ ∈ [0, 1] and p̃ ∈ (0, 1],
the following equivalence holds

q

q − p
p̃− p

q − p
q̃ ≥ 0

1− p
q − p

q̃ − 1− q
q − p

p̃ ≥ 0
⇐⇒ min

(
q

p
,
1− q
1− p

)
≤ q̃

p̃
≤ max

(
q

p
,
1− q
1− p

)
(7)

Assume Item b. Note that if p < q (resp., q < p), then if A ∈ FY is such that PY [A] = 0, the
first (resp., second) inequality in Item b implies that also QY [A] = 0, which in turn yields QY ≪ PY .
Furthermore, for each A ∈ FY such that PY [A] ̸= 0, the equivalence in (7) with p̃ := PY [A] and
q̃ := QY [A] implies that

min

(
q

p
,
1− q
1− p

)
≤ QY [A]

PY [A]
≤ max

(
q

p
,
1− q
1− p

)
which yields Item c.

Vice versa, assume Item c. Note that Item b holds

• For all A ∈ FY such that PY [A] = 0, because in this case also QY [A] = 0

• For all A ∈ FY such that PY [A] ̸= 0, by the equivalence in (7) with p̃ := PY [A] and q̃ := QY [A]

This proves that Item b and Item c are equivalent.
We now prove that Item c is equivalent to Item 2. Assume Item c. Assume by contradiction that

Item 2 does not hold. Then, there exists A ∈ FY such that PY [A] > 0 such that either for all y ∈ A
it holds that max

(
dQX
dPX

)
< dQY

dPY
(y) or it holds that min

(
dQX
dPX

)
> dQY

dPY
(y). In the first case

max

(
dQX

dPX

)
= max

(
q

p
,
1− q
1− p

)
≥ QY [A]

PY [A]
=

1

PY [A]

∫
A

dQY

dPY
dPY > max

(
dQX

dPX

)
,
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yielding the contradiction we were seeking. The second case yields a contradiction in an analogous
manner.

Vice versa, assume Item 2. Then, if A ∈ FY is such that PY [A] > 0, notice that

min

(
q

p
,
1− q
1− p

)
= min

(
dQX

dPX

)
≤ 1

PY [A]

∫
A

dQY

dPY
dPY ≤ max

(
dQX

dPX

)
= max

(
q

p
,
1− q
1− p

)
which together with

QY [A]

PY [A]
=

1

PY [A]

∫
A

dQY

dPY
dPY

(since QY ≪ PY ), implies Item c. This proves that Item c and Item 2 are equivalent and shows in
turn that Item 1 is equivalent to Item 2 whenever p ̸= q.

Assume now that p = q. Assume Item 1. Since X is independent of U and U is uniform on
[0, 1] both under P and Q, we get

PY = Pφ(X,U) = (1− p)Pφ(0,U) + pPφ(1,U) = (1− q)Qφ(0,U) + qQφ(1,U) = Qφ(X,U) = QY .

Hence, in particular QY ≪ PY and dQY
dPY

= 1 PY -almost-surely, which, together with the fact

min

(
dQX

dPX

)
≤ 1 ≤ max

(
dQX

dPX

)
implies Item 2.

Vice versa, assume Item 2. Fix a measurable function ψ from
(
[0, 1],B

)
to (Y,FY) such that

PY = Lψ (whose existence is guaranteed by Theorem 9). Let φ(x, u) := ψ(u) for all x ∈ {0, 1} and
u ∈ [0, 1]. Being U uniform both under P and Q, we get that Pφ(X,U) = Pψ(U) = Lψ = Qψ(U) =

Qφ(X,U). Moreover, since p = q, we have that min dQX
dPX

= 1 = max dQX
dPX

, which, together with
Item 2, yields that, for any A ∈ FY ,

QY [A] =

∫
A

dQY

dPY
dPY =

∫
A
1 dPY = PY [A] ,

thus PY = QY . Putting everything together, since we proved that all distributions Pφ(X,U), PY ,
Qφ(X,U), QY are equal to each other, we obtain Item 1, concluding the proof.

Appendix F. Missing proofs from Section 3

This section is devoted to proving the main result of the paper: under the two-bit feedback model,
every learner suffers at least Ω(T 3/4) regret, even if it is allowed to post two different prices, one to
the seller and one (larger) to the buyer.

Theorem 4 Consider the problem of repeated bilateral trade against a σ-smooth adversary in the
two-bit feedback model, for any σ ≤ 1

9 . If T ≥ 8008, then any learning algorithm A posting two
prices per time step suffers at least a regret of

RT (A) ≥
1

503
T 3/4 .

Proof We prove this result in several steps: we begin by constructing a hard instance of the learning
problem, then we present a related (easier) learning problem and, finally, we show that the minimax
regret of the latter (and therefore, the former) is at least Ω(T 3/4).
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The construction of a hard family of adversaries

Fix any σ ∈ (0, 1/9] and T ≥ 8008. Since the regret against an i.i.d. adversary is entirely characterized
by the distribution the adversary uses to draw seller/buyer valuations, we will (and it is equivalent to)
model the adversary’s behavior with probability measures rather than strategies S . More precisely, we
will model the adversary with a single sequence of seller/buyer valuations (S,B), (S1, B1), . . . whose
distribution we can change by changing the underlying probability measure. For any strategyA of the
learner, we will find an underlying probability measure such that the process (S,B), (S1, B1), . . . is
σ-smooth, i.i.d., independent of the player’s randomization, and it satisfies

max
p∈[0,1]

TE
[
GFT(p, p, S,B)

]
− E

[
T∑
t=1

GFT(Pt, Qt, St, Bt)

]
≥ 1

503
T 3/4 .

Let a := 2 · ln(27/16). Define the six disjoint squares (Figure 1, left)

Q1 :=
[
0, 16
]
×
[
1
3 ,

1
2

)
, Q2 :=

[
0, 16
]
×
[
1
2 ,

2
3

]
, Q3 :=

[
0, 16
]
×
[
5
6 , 1
]
,

Q4 :=
[
5
6 , 1
]
×
[
5
6 , 1
]
, Q5 :=

[
5
6 , 1
]
×
[
0, 16
]
, Q6 :=

[
1
3 ,

1
2

]
×
[
2
3 ,

5
6

]
.

Fix the base probability density function f : [0, 1]2 → [0,∞) defined for all (x, y) ∈ [0, 1]2 by

f(x, y) :=
36

1 + 8a
·
(
5− 6(y + x)

6(y − x)
IQ1(x, y) + aIQ2(x, y) + 2aIQ3∪Q4∪Q5(x, y) + IQ6(x, y)

)
.

We define a set of perturbations of f parameterized by the elements of

Ξ :=
{
(v, ε) ∈

(
1
3 ,

1
2

)
×
(
0, 1

12

)
| 13 + ε ≤ v ≤ 1

2 − ε
}
.

For all (v, ε) ∈ Ξ, define the four disjoint rectangles (Figure 1, left)

R1
v,ε := [v − ε, v)×

[
3
4 ,

5
6

]
, R2

v,ε := [v − ε, v)×
[
2
3 ,

3
4

)
,

R3
v,ε := [v, v + ε]×

[
3
4 ,

5
6

]
, R4

v,ε := [v, v + ε]×
[
2
3 ,

3
4

)
.

and the corresponding perturbation gv,ε : [0, 1]2 → R defined for all (x, y) ∈ [0, 1]2 by

gv,ε(x, y) :=
36

1 + 8a
·
(
IR1

v,ε∪R4
v,ε
(x, y)− IR2

v,ε∪R3
v,ε
(x, y)

)
.

Note that the rectangles Riv,ε are included in Q6 for all i ∈ [4] and (v, ε) ∈ Ξ. We define perturbed
density functions by summing together the base probability density function f and one of the
perturbations above. Formally, for all (v, ε) ∈ Ξ, we let

fv,ε := f + gv,ε .

Let P (resp., Pv,ε, for all (v, ε) ∈ Ξ) be a probability measure such that the sequence of seller/buyer
evaluations (S,B), (S1, B1), (S2, B2), . . . is i.i.d. and the distribution of (S,B) has density f (resp.,
fv,ε) with respect to the Lebesgue measure. We denote the expectation with respect to P (resp., Pv,ε,
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for all (v, ε) ∈ Ξ) by E (resp., Ev,ε). Note that P(S,B) (resp., Pv,ε(S,B), for all (v, ε) ∈ Ξ) is 1/9-smooth
(hence, it is σ-smooth). Note also that, for each (v, ε) ∈ Ξ, and p ∈ [0, 1],

Ev,ε
[
GFT(p, p, S,B)

]
= E

[
GFT(p, p, S,B)

]
+

∫
[0,p]×[p,1]

(y − x)gv,ε(x, y) dxdy

= E
[
GFT(p, p, S,B)

]
+

1

6(1 + 8a)
· ε

144
· Λv,ε(p) +

1

6(1 + 8a)
· ε

2

12
· Λ 3

4
, 1
12
(p) ,

where, for each u ∈ R and each r > 0, Λu,r is the tent map centered at u with radius r defined as

Λu,r : R→ R , x 7→
(
1− |x− u|

r

)+

.

A direct computation shows that, for each p ∈ [0, 1]

E
[
GFT(p, p, S,B)

]
=

1

6(1 + 8a)
·



3p
(
5 + 29a− 6(1 + 3a)p

)
if p ∈

[
0, 16
]

2 + 13a if p ∈
(
1
6 ,

1
2

]
−18ap2 + 3ap+ 2(1 + 8a) if p ∈

(
1
2 ,

2
3

]
−18p2 + 15p+ 10a if p ∈

(
2
3 ,

5
6

]
72ap(1− p) if p ∈

(
5
6 , 1
]

(8)

from which it can be seen that the function p 7→ E
[
GFT(p, p, S,B)

]
is continuous and maximized

at every point of the plateau region
[
1
6 ,

1
2

]
(Figure 1, right). Putting everything together, we see

that, for each (v, ε) ∈ Ξ, the point v is the unique maximizer of the perturbed function p 7→
Ev,ε

[
GFT(p, p, S,B)

]
, which is increasing on

[
0, 16
]
, constant on

[
1
6 , v − ε

]
, has a symmetric spike

on [v−ε, v+ε], becomes constant again on
[
v+ε, 12

]
, and decreases on

[
1
2 , 1
]
. Given that, regardless

which is the underlying distribution, the expected gain from trade is maximized on the diagonal
{(p, q) ∈ [0, 1]2 | p = q}, it follows that for each (v, ε) ∈ Ξ,

max
(p,q)∈U

Ev,ε
[
GFT(p, q, S,B)

]
= Ev,ε

[
GFT(v, v, S,B)

]
,

where we recall that U is the upper triangle.
Now, we show that the distribution of the 2-bit feedback

(
I
{
S ≤ p

}
, I
{
q ≤ B

})
is the same

regardless of the underlying perturbed probability measure unless the learner selects a pair of prices
(p, q) in one of the four rectangles where the perturbations occur.

Claim 4 For all (v, ε) ∈ Ξ, (p, q) ∈ U \
⋃
k∈[4]R

k
v,ε, and (i, j) ∈ {0, 1}2, it holds

Pv,ε
[(
I{S ≤ p}, I{q ≤ B}

)
= (i, j)

]
= P

[(
I{S ≤ p}, I{q ≤ B}

)
= (i, j)

]
.
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Proof For each (v, ε) ∈ Ξ, and each (p, q) ∈ U , the distribution under Pv,ε of the 2-bit feedback(
I{S ≤ p}, I{q ≤ B}

)
is given, for all (i, j) ∈ {0, 1}2, by

Pv,ε
[(
I{S ≤ p}, I{q ≤ B}

)
= (i, j)

]
=


Pv,ε

[
S > p ∩B < q

]
if (i, j) = (0, 0)

Pv,ε
[
S > p ∩B ≥ q

]
if (i, j) = (0, 1)

Pv,ε
[
S ≤ p ∩B < q

]
if (i, j) = (1, 0)

Pv,ε
[
S ≤ p ∩B ≥ q

]
if (i, j) = (1, 1)

=



∫
(p,1]×[0,q) f(x, y)dxdy +

∫
(p,1]×[0,q) gv,ε(x, y)dxdy if (i, j) = (0, 0)∫

(p,1]×[q,1] f(x, y)dxdy +
∫
(p,1]×[q,1] gv,ε(x, y)dxdy if (i, j) = (0, 1)∫

[0,p]×[0,q) f(x, y)dxdy +
∫
[0,p]×[0,q) gv,ε(x, y)dxdy if (i, j) = (1, 0)∫

[0,p]×[q,1] f(x, y)dxdy +
∫
[0,p]×[q,1] gv,ε(x, y)dxdy if (i, j) = (1, 1)

and noting that, by symmetry, all integrals of gv,ε in the previous formula vanish if (p, q) does not
belong to one of the four rectangles R1

v,ε, R
2
v,ε, R

3
v,ε, R

4
v,ε, we get that (p, q) /∈ R1

v,ε ∪R2
v,ε ∪R3

v,ε ∪
R4
v,ε implies

Pv,ε
[(
I{S ≤ p}, I{q ≤ B}

)
= (i, j)

]
= P

[(
I{S ≤ p}, I{q ≤ B}

)
= (i, j)

]
.

It follows that, for any fixed ε ∈
(
0, 1

12

)
, if the learner wants to locate v ∈

[
1
3 + ε, 12 − ε

]
observing

samples of the 2-bit feedback drawn according to the distribution Pv,ε, since R1
v,ε ∪R2

v,ε ∪R3
v,ε ∪

R4
v,ε ⊂ Q6, they have to post prices in the region Q6. However, note that for each (v, ε) ∈ Ξ and

(p, q) ∈ Q6

Ev,ε
[
GFT(p, q, S,B)

]
≤ Ev,ε

[
GFT

(
1

2
,
2

3
, S,B

)]
≤ Ev,ε

[
GFT

(
2

3
,
2

3
, S,B

)]
while posting prices (p′, p′) for p′ belonging to the potentially optimal region

[
1
3 ,

1
2

]
would return

Ev,ε
[
GFT(p′, p′, S,B)

]
≥ Ev,ε

[
GFT

(
1

2
,
1

2
, S,B

)]
.

Hence, for each (v, ε) ∈ Ξ, each p′ ∈
[
1
3 ,

1
2

]
and each (p, q) ∈ Q6, we have

Ev,ε
[
GFT(p′, p′, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ Ev,ε

[
GFT

(
1

2
,
1

2
, S,B

)]
−Ev,ε

[
GFT

(
2

3
,
2

3
, S,B

)]
=

a

2(1 + 8a)
∈ [0.05, 0.06] = Θ(1)

which means that the learner suffers an instantaneous regret of order Θ(1) when trying to locate
where the perturbation occurs.

Define K :=
⌈
T 1/4

⌉
and ε := 1

2K . For each k ∈ {0, . . . ,K}, define vk := 1
3 + (2k − 1) ε6 . For

the sake of convenience, for each k ∈ [K] denote Pvk,
ε
6 by Pk and the corresponding expectation by

Ek, and similarly, denote P by P0 and the corresponding expectation by E0.
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Interlude

Before proceeding further, let’s recap what we have obtained so far and where we plan to go. At
a high level, we built a problem in which we know in advance the region where the optimal pair
of prices belongs (i.e., the diagonal {(p, q) ∈ [0, 1]2 | p = q ∈ [13 ,

1
2 ]}), but, when the underlying

scenario is determined by the probability measure Pk for some k ∈ [K], in order not to suffer regret
Ω(εT ), the learner has to detect inside this potentially optimal region where a spike of height (and
base) Θ(ε) in the reward occurs. This last task can be accomplished only by locating where the
perturbation in the base probability measure occurs, which, given the feedback structure, can only
be done by playing in the costly region Q6, suffering instantaneous regret of order Ω(1) whenever
doing so. However, the region Q6 can be further partitioned into Θ(1ε ) disjoint rectangles where
these perturbations can occur, and again, given the feedback structure, this implies that each of
these rectangles deserves its own dedicated exploration. To better highlight this underlying structure,
we will show that the bilateral trade problem is no easier than a simplified problem (that we call
multi-apple tasting) where the learner can play 2K actions, which we may identify with the set [2K],
and where the instances we consider are determined by the probability measures P0,P1, . . . ,PK .
Each (exploring) action i ∈ [K] gives zero reward (and corresponds to one of the Θ(1ε ) rectangles
inside the region Q6), but, if played at time t ∈ N, it reveals the realization of a Bernoulli random
variable Yt(i) which is, up to a rescaling and a shifting, the reward of the corresponding (exploiting)
action i+K at time t. (The reader familiar with the notion of online learning with directed feedback
graphs Alon et al. 2015 can see that the feedback model described here corresponds to the weakly
observable feedback graph in Figure 2, left). The biases of these Bernoullis depend on which is
the underlying probability measure among P0,P1, . . . ,PK . Specifically, for each i ∈ [K], each
k ∈ {0, . . . ,K}, and each t ∈ N, the bias of Yt(i) under Pk is 1

2 if i ̸= k, while it is 1
2 + Θ(ε) if

i = k. This way, the exploiting actions K + 1, . . . , 2K (which correspond to the regions where the
spike in the expected gain from trade can occur) have an expected reward of order Ω(1) regardless of
the underlying probability measure, so that the potentially optimal arm is among them. The catch
is that no informative feedback is revealed by these K exploiting actions, and only one of them is
optimal when the underlying probability measure is one among P1, . . . ,PK . Specifically, the arm
i+K is the only optimal action when the underlying probability measure is Pi, having an expected
reward that is Θ(ε) higher that the other potentially optimal actions. Therefore, since spotting the
Bernoulli random variable with bias 1

2 +Θ(ε) among the other K − 1 unbiased Bernoullis requires
playing the K exploring actions Θ

(
1
ε2

)
times each, any algorithm for this new problem (and hence,

for the bilateral trade problem) should suffer a regret of order Ω
(
min

(
K
ε2
, εT

))
= Ω(T 3/4) in at least

one scenario among P0,P1, . . . ,PK , given our choices of K and ε. We will now formalize this idea.

The multi-apple tasting problem

We now described the multi-apple tasting problem on 2K arms.

Pick a sequence of {0, 1}2K-valued random variables Y, Y1, . . . , YT and a sequence of [0, 1]-
valued random variables U,U1, . . . , UT , V, V1, . . . , VT such that:

• For each k ∈ {0, . . . ,K} the sequence Y, Y1, . . . , YT is Pk-i.i.d.
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• Letting cprob := 7
2a , for each k ∈ {0, . . . ,K} and each i ∈ [K] we have that Y (i + K) =

Y1(i+K) = · · · = YT (i+K) = 0 and

Pk[Y (i) = 1] =

{
1
2 if i ∈ [K]\{k}
1
2 + cprob · ε if i = k

• For each k ∈ {0, . . . ,K} the sequence V, V1, . . . , VT is Pk-i.i.d. and PkV = L.

• For each k ∈ {0, . . . ,K}, we have

Pk(
((S,B),(S1,B1),...,(ST ,BT )),(U,U1,...UT ),(Y,Y1,...YT ),(V,V1,...VT )

)
= Pk((S,B),(S1,B1),...,(ST ,BT )) ⊗ Pk(U,U1,...UT ) ⊗ Pk(Y,Y1,...YT ) ⊗ Pk(V,V1,...VT )

The multi-apple tasting problem proceeds as follows. At each time t ∈ [T ], the player can play any
action i in the set [2K], receiving no feedback if i ≥ K + 1 (modeled by Y (i) = Y1(i) = · · · =
YT (i) = 0) and feedback Yt(i) if i ∈ [K], obtaining in any case (but not observing) a reward ρ(i, Yt),
where letting cplat := a

2(1+8a) and cspike := 1
6(1+8a) ·

1
144 ,

ρ : [2K]× {0, 1}2K → R , (j, y) 7→

{
0 if j ∈ [K]

cplat +
cspike
cprob

·
(
y(j −K)− 1

2

)
otherwise

Observe that for all k ∈ {0, . . . ,K} and i ∈ {K + 1, . . . , 2K}, we have

Ek
[
ρ(i, Y )

]
=

{
cplat if k ̸= i−K
cplat + cspike · ε otherwise

Relating the two problems

To map the bilateral trade problem into the multi-apple tasting problem, we first partition the upper
triangle U in the following 2K disjoint regions:

• ∀k ∈ [K − 1], Jk := [vk − ε
6 , vk +

ε
6)× [23 ,

5
6 ]

• JK := [vK − ε
6 , vK + ε

6 ]× [23 ,
5
6 ]

• ∀k ∈ [K − 1], Jk+K := {(p, q) ∈ U | vk − ε
6 ≤ p < vk +

ε
6 and q < 2

3}

• J2K := U\
⋃2K−1
k=1 Jk

Define ι : U → [2K] as the map that associates to each (p, q) ∈ U the unique i ∈ [2K] such that
(p, q) ∈ Ji (Figure 2, right).

Claim 5 For any (p, q) ∈ U there exists a function φp,q : {0, 1} × [0, 1]→ {0, 1}2 such that, for
all k ∈ {0, . . . ,K}, the distributions under Pk of φp,q(Y (ι(p, q)), V ) and

(
I(S ≤ p), I{q ≤ B}

)
coincide.

Proof A direct verification shows that, for all (p, q) ∈ Q6 and k ∈ [K], it holds that

min

(
dPkY (k)

dP0
Y (k)

)
= 1− 2cprob · ε ≤

dPk(I(S≤p),I{q≤B})

dP0
(I(S≤p),I{q≤B})

≤ 1 + 2cprob · ε = max

(
dPkY (k)

dP0
Y (k)

)
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and Pk(I(S≤p),I{q≤B}) ≪ P0
(I(S≤p),I{q≤B}). For each (p, q) ∈ Q6, by Theorem 10, there exists (and

we fix)

φp,q : {0, 1} × [0, 1]→ {0, 1}2

such that

Pι(p,q)φp,q(Y (ι(p,q)),V ) = Pι(p,q)(I(S≤p),I{q≤B}) and P0
φp,q(Y (ι(p,q)),V ) = P0

(I(S≤p),I{q≤B}) .

Since for all (p, q) ∈ Q6 and all k ∈ [K] \
{
ι(p, q)

}
, we have Pk(I(S≤p),I{q≤B}) = P0

(I(S≤p),I{q≤B})
(by Claim 4) and Pkφp,q(Y (ι(p,q)),V ) = P0

φp,q(Y (ι(p,q)),V ), then, for all (p, q) ∈ Q6 and all k ∈
{0, . . . ,K}, it holds that

Pkφp,q(Y (ι(p,q)),V ) = Pk(I(S≤p),I{q≤B}) .

Moreover, since for all (p, q) ∈ U \Q6 and for all k ∈ {0, . . . ,K}, it holds that Pk(I(S≤p),I{q≤B}) =

P0
(I(S≤p),I{q≤B}) (by Claim 4), then, by Theorem 9, there exists (and we fix)

φ̃p,q : [0, 1]→ {0, 1}2

such that, for all k ∈ {0, . . . ,K}, it holds that

Pkφ̃p,q(V ) = Pk(I(S≤p),I{q≤B}) .

Defining for all (p, q) ∈ U \ Q6 and (y, v) ∈ {0, 1} × [0, 1], φp,q(y, v) := φ̃p,q(v), we obtain the
result.

For all (p, q) ∈ U , fix a φp,q as in Claim 5. Now, fix an arbitrary weakly-budget-balanced
algorithmA for the bilateral trade problem with two-bit feedback. If needed,A has sequential access
to the seeds U1, U2, . . . for randomization purposes. Let (P1, Q1), (P2, Q2), . . . be the sequence of
prices posted by the algorithmA observing the two-bit feedback

(
I{St ≤ Pt}, I{Qt ≤ Bt

)
} at round

t. We now construct an algorithm Ã (based on A and the sequence of random seeds V1, V2, . . . ) to
solve this new problem in the following way:

• For each time t ∈ [T ], we use the algorithm A to select a pair (P̃t, Q̃t) ∈ U , then play the action
Ĩt := ι(P̃t, Q̃t) ∈ [2K].

• For each time t ∈ [T ], whenever the algorithm A requests some feedback in {0, 1}2, we feed A
with the feedback φ

P̃t,Q̃t

(
Yt(Ĩt), Vt

)
∈ {0, 1}2.

By induction on t, Claim 5 implies that for all k ∈ {0, . . . ,K} and t ∈ [T ], we have

Pk
(P̃t,Q̃t)

= Pk(Pt,Qt)
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which, together with the fact that Pk
(P̃t,Q̃t,Yt)

= Pk
(P̃t,Q̃t)

⊗ PkYt for all k ∈ {0, . . . ,K} and t ∈ [T ],
yields

RkT (A) := TEk
[
GFT(vk, vk, S,B)

]
−

T∑
t=1

Ek
[
GFT(Pt, Qt, St, Bt)

]
≥ TEk

[
ρ(k +K,Y )

]
−

T∑
t=1

Ek
[
ρ
(
ι(Pt, Qt), Yt

)]
= TEk

[
ρ(k +K,Y )

]
−

T∑
t=1

Ek
[
ρ
(
ι(P̃t, Q̃t), Yt

)]
= TEk

[
ρ(k +K,Y )

]
−

T∑
t=1

Ek
[
ρ(Ĩt, Yt)

]
=: R̃kT (Ã) ,

where RkT (A) (resp., R̃kT (Ã)) is the regret suffered by the algorithm A (resp., Ã) after T rounds of
the bilateral trade problem with two-bit feedback (resp., the related problem on 2K actions) in the
scenario Pk. Summing over k ∈ [K] and dividing by K, this implies

1

K

∑
k∈[K]

RkT (A) ≥
1

K

∑
k∈[K]

R̃kT (Ã) ≥ inf
Ā∈Rand

1

K

∑
k∈[K]

R̃kT (Ā) = inf
Ā∈Det

1

K

∑
k∈[K]

R̃kT (Ā) ,

where the first (resp., second) infimum is over the set Rand (resp., Det) all randomized (resp.,
deterministic) algorithms Ā for the related problem on 2K actions, and the last standard equality is a
straightforward consequence of the stochastic i.i.d. setting.

We now show that for any deterministic algorithm Ā for the related problem on 2K actions,
it either holds that 1

K

∑
k∈[K] R̃

k
T (Ā) ≥

1
503
T 3/4 or that R̃0

T (Ā) ≥
1

503
T 3/4. This, together with

the inequalities above will imply that there exists an k ∈ {0, . . . ,K} such that RkT (A) ≥
1

503
T 3/4,

concluding the proof. For any deterministic algorithm Ā for the related problem on 2K actions, let
IĀ1 , I

Ā
2 , . . . be the actions played by Ā on the basis of the sequential feedback ZĀ

1 , Z
Ā
2 , . . . and

N Ā
t :=

∑
i∈[K]

N Ā
t (i) , M Ā

t :=
∑
i∈[K]

M Ā
t (i) ,

where N Ā
t (i) :=

t∑
s=1

I{IĀs = i} , M Ā
t (i) :=

t∑
s=1

I{IĀs = i+K} .

Fix an arbitrary deterministic algorithm Ā for the related problem on 2K actions. Then

1

K

∑
k∈[K]

R̃kT (Ā) =
1

K

∑
k∈[K]

(
cspike · ε · Ek

[
T −M Ā

T (k)−N Ā
T

]
+ (cplat + cspike · ε) · Ek[N Ā

T ]
)

≥ cspike · ε

T − 1

K

∑
k∈[K]

Ek
[
M Ā
T (k)

] =: (◦)
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Now, since for any t ∈ [T ] the action IĀt = Āt(ZĀ
1 , . . . , Z

Ā
t−1) selected by Ā at round t is a

deterministic function of ZĀ
1 , . . . , Z

Ā
t−1, for each k ∈ [K], we have

Ek
[
M Ā
T (k)

]
− E0

[
M Ā
T (k)

]
=

T∑
t=2

(
Pk
[
Āt(ZĀ

1 , . . . , Z
Ā
t−1) = k +K

]
− P0

[
Āt(ZĀ

1 , . . . , Z
Ā
t−1) = k +K

])
=

T∑
t=2

(
Pk
(ZĀ

1 ,...,Z
Ā
t−1)

[
Ā−1
t (k +K)

]
− P0

(ZĀ
1 ,...,Z

Ā
t−1)

[
Ā−1
t (k +K)

])
≤

T∑
t=2

∥∥Pk
(ZĀ

1 ,...,Z
Ā
t−1)
− P0

(ZĀ
1 ,...,Z

Ā
t−1)

∥∥
∞ ≤

T∑
t=2

∥∥Pk
(ZĀ

1 ,...,Z
Ā
t−1)
− P0

(ZĀ
1 ,...,Z

Ā
t−1)

∥∥
TV

=: (⋆)

were we ∥·∥TV denotes the total variation norm. We will now prove that, for each k ∈ [K] and
t ∈ [T ], it holds that

∥∥∥P0
(ZĀ

1 ,...,Z
Ā
t )
− Pk

(ZĀ
1 ,...,Z

Ā
t )

∥∥∥
TV
≤ cprob · ε ·

√
2E[N Ā

t (k)] (9)

By Pinsker’s inequality and the chain rule for KL-divergence DKL, for each k ∈ [K] and t ∈ [T ], we
have

∥∥∥P0
(ZĀ

1 ,...,Z
Ā
t )
− Pk

(ZĀ
1 ,...,Z

Ā
t )

∥∥∥
TV
≤
√

1

2
DKL

(
P0
(ZĀ

1 ,...,Z
Ā
t )
, Pk

(ZĀ
1 ,...,Z

Ā
t )

)
≤

√√√√1

2

(
DKL

(
P0
ZĀ
1

, Pk
ZĀ
1

)
+

t∑
s=2

E
[
DKL

(
P0
ZĀ
s |ZĀ

1 ,...,Z
Ā
s−1

, Pk
ZĀ
s |ZĀ

1 ,...,Z
Ā
s−1

)])
=: (@)

To upper bound (@), note first that, since T ≥ 8008,

1

2

(
ln

1/2
1/2− cprob · ε

+ ln
1/2

1/2 + cprob · ε

)
≤ 4 · c2prob · ε2

Then, since Ā is a deterministic algorithm, IĀ1 is a fixed element of [2K], which implies that, for all
k ∈ [K],

DKL

(
P0
ZĀ
1

, Pk
ZĀ
1

)
=

(
ln

(
P0[Y1(k) = 0]

Pk[Y1(k) = 0]

)
P0[Y1(k) = 0] + ln

(
P0[Y1(k) = 1]

Pk[Y1(k) = 1]

)
P0[Y1(k) = 1]

)
I
{
IĀ1 = k

}
=

1

2

(
ln

1/2
1/2− cprob · ε

+ ln
1/2

1/2 + cprob · ε

)
· I{IĀ1 = k} ≤ 4 · c2prob · ε2 · P0[IĀ1 = k]
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Similarly, since Ā is a deterministic algorithm, for all s ≥ 2, the action IĀs = Ās(ZĀ
1 , . . . , Z

Ā
s−1)

selected by Ā at time t a function of ZĀ
1 , . . . , Z

Ā
s−1 only, which implies, for all k ∈ [K],

DKL

(
P0
ZĀ
s |ZĀ

1 ,...,Z
Ā
s−1

, Pk
ZĀ
s |ZĀ

1 ,...,Z
Ā
s−1

)
= E0

[
ln

(
P0[ZĀ

s = 0 | ZĀ
1 , . . . , Z

Ā
s−1]

Pk[ZĀ
s = 0 | ZĀ

1 , . . . , Z
Ā
s−1]

)
P0[ZĀ

s = 0 | ZĀ
1 , . . . , Z

Ā
s−1]

+ ln

(
P0[ZĀ

s = 1 | ZĀ
1 , . . . , Z

Ā
s−1]

Pk[ZĀ
s = 1 | ZĀ

1 , . . . , Z
Ā
s−1]

)
P0[ZĀ

s = 1 | ZĀ
1 , . . . , Z

Ā
s−1]

]

= E0

[(
ln

(
P0[Ys(k) = 0]

Pk[Ys(k) = 0]

)
P0[Ys(k) = 0] + ln

(
P0[Ys(k) = 1]

Pk[Ys(k) = 1]

)
P0[Ys(k) = 1]

)
× I
{
Ās(ZĀ

1 , . . . , Z
Ā
s−1) = k

}]
=

1

2

(
ln

1/2
1/2− cprob · ε

+ ln
1/2

1/2 + cprob · ε

)
P0
[
Ās(ZĀ

1 , . . . , Z
Ā
s−1) = k

]
≤ 4 · c2prob · ε2 · P0[IĀs = k] .

Plugging the two bounds in (@), we get, for all k ∈ [K] and t ∈ [T ],

(@) ≤

√√√√2 · c2prob · ε2 ·
t∑

s=1

P0[IĀs = k] ≤ cprob · ε ·
√

2E0[N Ā
t (k)]

which prove claim (9). Therefore, we have, for any k ∈ [K],

Ek
[
M Ā
T (k)

]
−E0

[
M Ā
T (k)

]
≤ (⋆) ≤

T∑
t=2

cprob ·ε ·
√
2E0[N Ā

t−1(k)] ≤ cprob ·ε ·T ·
√
2E0[N Ā

T (k)] .

Rearranging, averaging, applying Jensen’s inequality, and recalling that 1
K = 1

⌈T 1/4⌉ ≤
1
10 , we

obtain

1

K

∑
k∈[K]

Ek[M Ā
T (k)] ≤ 1

K

∑
k∈[K]

E0[M Ā
T (k)] + cprob · ε · T ·

√√√√√2E0

 1

K

∑
k∈[K]

N Ā
T (k)


=

1

K
E0[M Ā

T ] + cprob · ε · T ·
√

2

K
E0[N Ā

T ] ≤

(
1

10
+ cprob · ε ·

√
2

K
E0[N Ā

T ]

)
· T .

Substituting this inequality in (◦), we obtain

(◦) ≥ cspike · ε ·

(
9

10
− cprob · ε ·

√
2

K
E0[N Ā

T ]

)
· T ≥ cspike · ε ·

(
9

10
−
cprob
2

√
τĀ

)
· T ,

where τĀ :=
E0[NĀ

T ]
εT .
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Now, if τĀ ≤ 1
10 , then, the previous inequality yields

1

K

∑
k∈[K]

R̃kT (Ā) ≥ cspike · ε ·
(

9

10
−
cprob
2

√
τĀ

)
· T ≥ 1

503
T 3/4 .

If, on the other hand, it holds that τĀ > 1
10 , then

R̃0
T (Ā) ≥ cplatE0[N Ā

T ] = cplatτĀεT >
1

503
T 3/4 .
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