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Abstract
Can we effectively train a generative adversarial network (GAN) (or equivalently, optimize a mini-
max problem), similar to how we successfully learn a classification neural network (or equivalently,
minimize a function) by gradient methods? The answer to this question at the moment is “No”. De-
spite extensive studies over the past ten years, training GANs still remains challenging. As a result,
diffusion-based generative models are largely replacing GANs. When training GANs, we not only
struggle with finding stationary points, but also, from a practical view, suffer from the so-called
mode-collapse phenomenon, generating samples that lack diversity compared to the training data.
Due to the nature of GAN, the mode-collapse is likely to occur when we accidentally find an opti-
mal point for the maximin problem, rather than the original minimax problem (Goodfellow, 2016).

This consequently suggests that addressing a long-standing open question of whether there ex-
ists a first-order method that only converges to (local) optimum of minimax problems can resolve
the aforementioned shortcomings. Apparently, none of the existing methods possess such a prop-
erty, neither theoretically nor practically. This is in contrast to the fact that a standard gradient
descent method successfully finds (local) minima (Lee et al., 2016). Surprisingly, in nonconvex-
nonconcave minimax optimization, Jin et al. (2020) are the first to suggest an appropriate notion
of local optimality, especially taking account of the order of minimization and maximization. Jin
et al. (2020) also presented a partial answer to the above open question, by demonstrating that a
two-timescale gradient descent ascent only converges to a strict local minimax optimum, under a
certain condition. However, the convergence to general local minimax optimum was left mostly
unexplored, even though such a non-strict local minimax optimum is prevalent in practice. Our
recent findings in (Chae et al., 2023) illustrate that it is indeed possible to find some non-strict local
minimax optimum by a two-timescale variant of extragradient method.

This positive result brings new attention to the aforementioned open question. In this paper,
we detail it in regard to our recent findings. Furthermore, we are writing to revive discussion on the
appropriate notion of local minimax optimum. This was initially discussed by Jin et al. (2020), but
not much thereafter, which we believe is an important piece of answering the open question.

1. Introduction

Minimax optimization, minxmaxy f(x,y), has become an important part in the machine learning
community, especially since the appearance of GANs (Goodfellow et al., 2014). However, optimiz-
ing a minimax problem yet remains challenging, and this drawback has been critical for GANs to
incrementally lose its role in the field of generative models by its strong contender, diffusion-based
generative models (Song et al., 2021; Dhariwal and Nichol, 2021). In particular, training GANs
is known to require extensive handcrafted tuning of hyperparameters and regularizers. Most of
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the time, it fails to find stationary points, and more importantly, suffers from the so-called mode-
collapse phenomenon, not sufficiently capturing the diversity in the training data. Regarding the
former, there has been an increased recent interest in developing first-order methods that find station-
ary points of certain nonconvex-nonconcave problems, see e.g., (Diakonikolas et al., 2021; Pethick
et al., 2022). This, however, does not resolve the more important mode-collapse issue, which is
known to happen when we accidentally find an optimal (stationary) point for the maximin problem,
rather than the original minimax problem (Goodfellow, 2016). This consequently has asked for
years whether there exists a first-order method that only converges to a local minimax optimum.
However, no existing methods possess such a property, and we are writing to renew the interest on
the aforementioned open question in regard to our recent findings in (Chae et al., 2023). The rest
of this section reviews the local minimax points defined in (Jin et al., 2020), and Section 2 presents
the latest work on this open question in (Jin et al., 2020), new findings in (Chae et al., 2023), and
remaining challenges in answering the open question.

1.1. Preliminaries: Local minimax optimum

Considering the sequential nature of nonconvex-nonconcave problems, Jin et al. (2020) proposed
the following local version of the Stackelberg equilibrium (von Stackelberg, 2011), rather than the
Nash equilibrium for simultaneous games. Evtushenko (1974) originally proposed a concept of
local Stackelberg equilibrium, but Jin et al. (2020, Proposition 37) showed that it is not a truly local
notion. Fiez et al. (2020) have also recognized the importance of the sequential nature, but their
notion, which is exactly equivalent to strict local minimax points defined below, is more restrictive
as it implicitly assumes that the Hessian for the maximization player is nondegenerate.

Definition 1 (Jin et al. (2020)) A point (x∗,y∗) is said to be a local minimax point if there exists
δ0 > 0 and a function h satisfying h(δ) → 0 as δ → 0 such that, for any δ ∈ (0, δ0] and any (x,y)
satisfying ∥x− x∗∥ ≤ δ and ∥y − y∗∥ ≤ δ, we have

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′ : ∥y′−y∗∥≤h(δ)

f(x,y′).

This definition especially introduces a function h(δ) to allow taking the radii of neighborhoods for
minimization and maximization differently. Jin et al. (2020, Remark 14) showed that the defini-
tion remains equivalent even when we further assume that h(δ) is monotonic or continuous. Still,
whether imposing only such weak restrictions on h(δ), or even further, introducing h(δ), is plausi-
ble or not, has not been carefully discussed anywhere. Later in this paper we comment on possible
limitations of Definition 1 regarding the choice of the neighborhood, and suggest some alternatives.

Local minimax points are (first-order) stationary points, and can be further characterized by the
following second-order conditions (Jin et al., 2020).

• (Second-order necessary condition) Any local minimax (x∗,y∗) satisfies ∇2
yyf(x

∗,y∗) ⪯ 0.
In addition, if ∇2

yyf(x
∗,y∗) ≺ 0, then [∇2

xxf −∇2
xyf(∇2

yyf)
−1∇2

yxf ](x
∗,y∗) ⪰ 0.

• (Second-order sufficient condition) Any stationary point (x∗,y∗) satisfying
[∇2

xxf −∇2
xyf(∇2

yyf)
−1∇2

yxf ](x
∗,y∗) ≻ 0 and ∇2

yyf(x
∗,y∗) ≺ 0 is local minimax.

A possible approach to the solution of the open question would be to construct a first-order method
that only converges to second-order stationary points, i.e., points satisfying the second-order neces-
sary condition. However, this condition is loose unless ∇2

yyf(x
∗,y∗) ≺ 0, which impeded further
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studies. A more feasible answer to the open question was to consider strict local minimax points,
the points satisfying the second-order sufficient condition. To the best of our knowledge, all existing
studies on local minimax points have focused on methods finding strict local minimax points.

2. Existing works and remaining challenges

2.1. First-order methods in minimax optimization

Why is it so challenging to find first-order methods that converge to local optima in minimax prob-
lems? One possible explanation is the lack of interest in analyzing first-order methods in terms of
non-strict local minimax points. This section focuses what is known so far about first-order meth-
ods, from this point of view. For simplicity, let F := (∇xf,−∇yf) denote the saddle gradient of
f , and z := (x,y). We assume that f ∈ C2, and there exists L > 0 such that ||DF || ≤ L.

2.1.1. FIRST-ORDER METHOD THAT ONLY CONVERGES TO STRICT LOCAL MINIMAX POINTS

In view of the sequential nature of minimax problems, the two-timescale gradient descent ascent
(GDA) method, zk+1 = zk − ηΛτF (zk) with Λτ := diag{1/τI, I}, which puts more emphasis on
the maximization when τ ≥ 1, has been studied and widely used in practice (Heusel et al., 2017). In
the theoretical perspective, Jin et al. (2020) showed that the two-timescale GDA converges to strict
local minimax points for τ ≫ 1, and Fiez and Ratliff (2021) established exactly how large should
τ be in order to ensure such convergence.

2.1.2. FIRST-ORDER METHODS AND NONSTRICT LOCAL MINIMAX POINTS

Despite the success of timescale separation on GDA, not much further progress has been made until
recently, and thus nothing was known about first-order methods in finding non-strict local minimax
points. One major hurdle in studying non-strict local minimax points was that a tight yet simple
second-order characterization of a local minimax point was not known.

By restricting the choice of h(δ) in Definition 1, Chae et al. (2023) proposed a refined second-
order necessary condition, which is simply written in terms of the restricted Schur complement1

Sres of DF . This yielded a simple2 notion of second-order stationary points of local minimax
points, and lead us to come up with a method that only converges to second-order stationary points
under some mild condition.

Proposition 2 (Refined second-order necessary condition (Chae et al., 2023)) Let f ∈ C2, then
any local minimax point z∗ satisfies ∇2

yyf(z
∗) ⪯ 0. In addition, if the function h(δ) in Definition 1

satisfies limsupδ→0+
h(δ)/δ < ∞, then Sres(DF (z∗)) ⪰ 0.

Chae et al. (2023) also showed that the two-timescale extragradient (EG) method, zk+1 =
zk − ηΛτF (zk − ηΛτF (zk)), with sufficiently large τ converges to the second-order stationary
points of local minimax points under some mild condition. This supersedes the two-timescale GDA,
but is not powerful enough to completely solve the open problem, which we detail below. The

1. The precise definition of the restricted Schur complement Sres(DF ) can be found in (Chae et al., 2023), which
reduces to a standard Schur complement ∇2

xxf −∇2
xyf(∇2

yyf)
−1∇2

yxf when ∇2
yyf is nondegenerate.

2. (Zhang et al., 2022) also refined the second-order necessary condition for the case when ∇2
yyf(z

∗) is nonsingular,
but it is more complicated than ours.
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following is the first convergence result to second-order stationary points. The value s0 represents
a certain property of the local minimax points, whose precise definition is given in the cited work.

Theorem 3 (Informal version of Theorem 6.8 (Chae et al., 2023)) A stationary point z∗ satisfies
Sres(DF (z∗)) ⪰ 0, ∇2

yyf(z
∗) ⪯ 0, and s0(z

∗) < 1/2L if and only if there exists 0 < η⋆ < 1/L
such that two-timescale EG with sufficiently large τ locally converges to z∗ for any η ∈ (η⋆, 1/L).

This is an important finding, but it rules out the points with s0 ≥ 1/2L, and depends on the choice
of η. We thus considered removing both, but then we ended up identifying a gap between sufficient
and necessary conditions. For further details, see (Chae et al., 2023). Although the two-timescale
EG showed potential for closing the open problem, our attempts were not enough to remove the
gap between its limit points and local minimax optima. We thus invite everyone to resolve this last
remaining piece, possibly coming up with a new method or a new notion of local minimax optimum.

2.2. Local optimality in minimax problems

It is also true that not much discussion has been made on the “correct” notion of local optimality for
minimax problems. In this section, we make further discussions on the definition given by Jin et al.
(2020), and appeal the necessity of such a discussion by suggesting an alternative which could still
be a plausible local optimum, while being more suitable for first-order methods.

2.2.1. ANOTHER CANDIDATE DEFINITION OF LOCAL MINIMAX OPTIMUM

The choice of the neighborhood which maximization is taken over has not yet reached an agreement.
So, one may consider choosing, for example, {y′ ∈ y∗ +R(∇2

yyf(x
∗,y∗)) : ∥y′ − y∗∥ ≤ h(δ)}

rather than {y′ : ∥y′ − y∗∥ ≤ h(δ)} in the original definition. We call the resulting notion of
local optimum the local restricted minimax point, as we restricted the neighborhood in the range
of the Hessian of the maximization player. This new notion is comparable to the original local
minimax point in several aspects. First of all, the second-order necessary condition reduces to using
a generalized Schur complement S(DF ) := ∇2

xxf−∇2
xyf(∇2

yyf)
†∇2

yxf , without any restriction
on h(δ) as in Definition 1 (see Appendix A). Also, other necessary and sufficient conditions remain
equivalent to those of local minimax points (see Appendix B).

2.2.2. WHAT IS REALLY AN APPROPRIATE NOTION OF LOCAL MINIMAX OPTIMUM?

There also is an arguable local minimax point, which we would like to share for discussion. Al-
though a global3 minimax point (global Stackelberg equilibrium) might not be locally optimal (Jin
et al., 2020, Proposition 21), we believe it is reasonable to expect a quadratic function without a
global minimax point to not have any local minimax point. However, this fails for the following
concave-linear quadratic function having a (possibly undesirable) non-strict local minimax point
(with h(δ) satisfying limsupδ→0+

h(δ)/δ < ∞).

Example 1 A function f(x, y) = −a
2x

2 + cxy with constants a > 0 and c ̸= 0 does not have a
global minimax point in general, but has a local minimax point (0, 0) for any a < 0. On the other
hand, the unique stationary point (0, 0) is not a local restricted minimax point. (See Appendix C.)

This again questions the validity of Definition 1, and we encourage active discussion on the proper
notion of local minimax optimality, possibly considering the practical mode-collapse issue.

3. (x∗,y∗) is a global minimax point, if for any (x,y) in X×Y we have f(x∗,y) ≤ f(x∗,y∗) ≤ maxy′∈Y f(x,y′).
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Appendix A. Second-order necessary condition of local restricted minimax point

Proposition 4 (Second-order necessary condition) Any local restricted minimax point z∗ satis-
fies S(DF (z∗)) ⪰ 0 and ∇2

yyf(z
∗) ⪯ 0.

Proof Let A := ∇2
xxf(x

∗,y∗), B := ∇2
yyf(x

∗,y∗), and C := ∇2
xyf(x

∗,y∗). Since y∗ is a local
maximum of f(x∗, ·) in the range of B, we have B ⪯ 0.

Since (x∗,y∗) is a local restricted minimax point, there exists a function h such that

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′−y∗∈R(∇2

yyf(x
∗,y∗))

∥y′−y∗∥≤h(δ)

f(x,y′).

holds. Denote h̃(δ) = 2∥B†C⊤∥δ. Using the first-order necessary condition (Proposition 5),
we have

f(x∗ + δx,y
∗ + δy) = f(x∗,y∗) +

1

2
δ⊤xAδx + δ⊤xCδy +

1

2
δ⊤y Bδy + o(∥δx∥2 + ∥δy∥2)

For any δx and δy ∈ R(B), we have

(C⊤δx)
⊤δy = (PR(B)[C

⊤δx])
⊤δy = (BB†C⊤δx)

⊤δy,

where PR(B) is a projection onto R(B). By (local) concavity of f(x∗ + δx,y
∗ + ·) within R(B),

if some δy ∈ R(B) satisfies ∇δyf(x
∗ + δx,y

∗ + δy) = 0 within ||δy|| ≤ max{h(δ), h̃(δ)}, then
it will be a local maximizer of f(x∗ + δx,y

∗ + ·) within R(B) and ||δy|| ≤ max{h(δ), h̃(δ)}. As
δy is restricted to R(B), it is not hard to verify that

∃ δy = −B†C⊤δx + o(∥δx∥) s.t. ∇δyf(x
∗ + δx,y

∗ + δy) = 0.

Since (x∗,y∗) is a local restricted minimax point, we have

0 ≤ max
δy∈R(B):
∥δy∥≤h(δ)

f(x∗ + δx,y
∗ + δy)− f(x∗,y∗) ≤ max

δy∈R(B):

∥δy∥≤max{h(δ),h̃(δ)}

f(x∗ + δx,y
∗ + δy)− f(x∗,y∗)

=
1

2
δ⊤x (A−CB†C⊤)δx + o(∥δx∥2)

for any δx, which concludes the proof.
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Appendix B. Additional properties of local restricted minimax point

Proposition 5 (First-order necessary condition) For f ∈ C1, any local restricted minimax point
(x∗,y∗) satisfies ∇xf(x

∗,y∗) = 0 and ∇yf(x
∗,y∗) = 0.

Proof Since y∗ is a local maximum of f(x∗, ·) we have ∇yf(x
∗,y∗) = 0. Let δ′y(δx) :=

argmax δy∈R(B)
||δy ||≤h(δ)

f(x∗ + δx,y
∗ + δy). By definition we have ∥δ′y(δx)∥ ≤ h(δ) → 0 as δ → 0.

We then have

0 ≤ f(x∗ + δx,y
∗ + δ′y(δx))− f(x∗,y∗)

= f(x∗ + δx,y
∗ + δ′y(δx))− f(x∗,y∗ + δ′y(δx)) + f(x∗,y∗ + δ′y(δx))− f(x∗,y∗)

≤ f(x∗ + δx,y
∗ + δ′y(δx))− f(x∗,y∗ + δ′y(δx))

= ∇xf(x
∗,y∗ + δ′y(δx))

⊤δx + o(∥δx∥)
= ∇xf(x

∗,y∗)⊤δx + o(∥δx∥),

where the second inequality uses the fact that y∗ is a local maximum of f(x∗, ·). This inequality
holds for any small δx, which implies ∇xf(x

∗,y∗) = 0.

Proposition 6 (Second-order sufficient condition) For f ∈ C2, any stationary point (x∗,y∗) sat-
isfying [∇2

xxf −∇2
xyf(∇2

yyf)
−1∇2

yxf ](x
∗,y∗) ≻ 0 and ∇2

yyf(x
∗,y∗) ≺ 0 is a local restricted

minimax point.

Proof Let A := ∇2
xxf(x

∗,y∗), B := ∇2
yyf(x

∗,y∗), and C := ∇2
xyf(x

∗,y∗). Since (x∗,y∗) is
a stationary point, and B ≺ 0, y∗ is a local maximum of f(x∗, ·). Let h(δ) = ∥B−1C⊤∥δ, and
choose δ′y = −B−1C⊤δx that satisfies ∥δ′y∥ ≤ h(δ) whenever ||δx|| ≤ δ. Then, we have

max
δy∈R(B)
||δy ||≤h(δ)

f(x∗ + δx,y
∗ + δy)− f(x∗,y∗) ≥ f(x∗ + δx,y

∗ + δ′y)− f(x∗,y∗)

=
1

2
δ⊤x (A−CB−1C⊤)δx + o(∥δx∥2) > 0,

which concludes the proof.

Appendix C. Proof of Example 1

Take h(δ) = a
2|c|δ, then because f is linear on y, for any |x| ≤ δ and |y| ≤ δ we have

max
y′ : |y′|≤ a

2|c| δ
−a

2
x2 + cxy′ = −a

2
x2 + |cx| a

2|c|
δ =

a|x|
2

(δ − |x|) ≥ f(0, 0) = 0 = f(0, y).

Hence, by definition, the point (0, 0) is a local minimax point for any a > 0. However, in general,
the point (0, 0) is not a global minimax point. For example, if we let Y = {y : |y| ≤ 1} and X to
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contain a point x such that |x| > 2|c|
a , the point (0, 0) is not a global minimax point for any a < 0,

since for any |x| > 2|c|
a we have

max
y′∈Y

−a

2
x2 + cxy′ = −a

2
x2 + |cx| = a|x|

2

(
2|c|
a

− |x|
)

< 0 = f(0, 0).

Meanwhile, since ∇2
yyf(0, 0) = 0, for any nonzero x and positive a it holds that

max
y′∈0+R(∇2

yyf(0,0)):

|y′−0|≤h(δ)

f(x, y′) = f(x, 0) = −a

2
x2 < 0 = f(0, 0).

So, by definition, (0, 0) is not a local restricted minimax point for any a > 0.
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