
Proceedings of Machine Learning Research vol 195:1–32, 2023 36th Annual Conference on Learning Theory

Fast Algorithms for a New Relaxation of Optimal Transport

Moses Charikar MOSES@CS.STANFORD.EDU
Stanford University

Beidi Chen BEIDIC@ANDREW.CMU.EDU
Carnegie Mellow University

Christopher Ré CHRISMRE@CS.STANFORD.EDU
Stanford University

Erik Waingarten EWAINGAR@CIS.UPENN.EDU

University of Pennsylvania

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We introduce a new class of objectives for optimal transport computations of datasets in high-
dimensional Euclidean spaces. The new objectives are parametrized by ρ ≥ 1, and provide a
metric space Rρ(·, ·) for discrete probability distributions in Rd. As ρ approaches 1, the metric
approaches the Earth Mover’s distance, but for ρ larger than (but close to) 1, admits significantly
faster algorithms. Namely, for distributions µ and ν supported on n and m vectors in Rd of norm
at most r and any ε > 0, we give an algorithm which outputs an additive εr-approximation to
Rρ(µ, ν) in time (n+m) · poly((nm)(ρ−1)/ρ · 2ρ/(ρ−1)/ε).
Keywords: Optimal transport, Earth Mover’s distance, Sinkhorn distance

1. Introduction

This paper is about algorithms for optimal transport problems in high dimensional Euclidean spaces.
At a very high level, optimal transport problems provide a convenient metric space between prob-
ability distributions supported on vectors in geometric spaces. The most classical such problem is
the Earth Mover’s Distance (EMD). Let µ and ν be two distributions supported on vectors in Rd.
The Earth Mover’s Distance between µ and ν, also known as the Wasserstein-1 distance, is given
by minimizing the average distance between pairs of points sampled from a coupling γ of µ and ν:

EMD(µ, ν) = min

{
E

(x,y)∼γ
[∥x− y∥2] : γ is a coupling of µ and ν1

}
. (1)

Importantly, the Earth Mover’s distance is a metric on the space of probability distributions sup-
ported on Rd, which takes a “ground metric” (in this case, the Euclidean distances) and defines a
metric over the space of distributions supported on the ground metric. The resulting notion of simi-
larity or dissimilarity is then used to formulate problems on approximating or learning a distribution
supported in Rd.

1. If the distributions µ and ν are supported on the set of points x1, . . . , xn and y1, . . . , ym, respectively, then we can
think of γ as being specified by an n×m matrix of non-negative real numbers. The constraint “γ is a coupling of µ
and ν” means that the i-th row of the n×m matrix γ sums to µi and the j-th column of the n ×m matrix sums to
νj .

© 2023 M. Charikar, B. Chen, C. Ré & E. Waingarten.

CHARIKAR CHEN RÉ WAINGARTEN

It is no surprise that the optimal transport has become ubiquitous in machine learning. We
refer the reader to the monograph Peyré and Cuturi (2019) for a comprehensive overview, but a
few notable examples include Kusner et al. (2015); Courty et al. (2016); Arjovsky et al. (2017).
As argued in Peyré and Cuturi (2019), the most recent progress on optimal transport for machine
learning has been due to new formulations and approximation algorithms which can scale to larger
problem instances. Specifically, there has been a focus on the so-called entropy-regularized optimal
transport, also known as “Sinkhorn distances,” and (accurate) approximation algorithms which run
in quadratic time (in the original representation for Euclidean inputs) Cuturi (2013). The goal of
this work is to further explore such optimal transport questions from the computational perspective,
where we will seek much faster sub-quadratic algorithms for computing optimal transport distances.

As we explain next, the algorithmic landscape for optimal transport remains very much un-
known. On the one hand, the algorithms community has devoted a significant effort (Charikar
(2002); Indyk and Thaper (2003); Indyk (2004); Andoni et al. (2008, 2009); Sharathkumar and
Agarwal (2012); Agarwal and Sharathkumar (2014); Andoni et al. (2014); Bačkurs and Indyk
(2014); Andoni et al. (2015); Khesin et al. (2019); Backurs et al. (2020); Chen et al. (2022b);
Agarwal et al. (2022)) to developing fast algorithms for approximating EMD. We expand on these
shortly, but, at a high level, all approaches rely on efficient spanner constructions or approximate
nearest neighbor data structures. These algorithm are fast (approaching linear time), but they run
into a serious approximation bottleneck. For high-dimensional Euclidean spaces, almost-linear time
algorithms incur large constant-factor approximations, making these approaches undesirable.2 In-
stantiating these techniques for accurate, (1 ± ε)-approximations degrades the algorithmic perfor-
mance to essentially quadratic time.3

On the other hand, algorithms for the entropy-regularized optimal transport do achieve accurate
additive ±εr approximations for datasets of diameter r, but have running times which are quadratic
in the original representation of the input. In particular, the input distributions are specified by the
vectors in their support and the probabilities with which they are sampled. However, the first step of
the algorithm involves explicitly materializing the distance matrix encoding all pairwise distances
between the vectors. As the support of these distributions grows, this first step is already a major
hurdle. While there have been approaches to avoid materializing the entire matrix Bonneel et al.
(2015); Altschuler et al. (2019); Paty and Cuturi (2019), these methods consider a projection of the
points onto a low-dimensional space and the resulting optimization costs (of the low-dimensional
EMD or Sinkhorn distances) cannot be related back to the original distribution without a significant
loss in approximation.

This work seeks to explore the best of both worlds from the algorithmic perspective. We will
give a new class of objectives for optimal transport problems which also provide metric spaces
for probability distributions of high-dimensional Euclidean spaces (like the Earth Mover’s distance
and Sinkhorn distances). The main benefit is that (i) these metrics smoothly perturb the Earth
Mover’s distance, (ii) admit efficient algorithms with running times which are significantly sub-
quadratic (like the Earth Mover’s distance), and (iii) give accurate ±εr-approximations for distri-

2. For example, a 2-approximation which is already oftentimes too big, incur a polynomial overhead of (n+m)1/7 An-
doni and Razenshteyn (2015).

3. An algorithm for EMD(µ, ν) (or any problem whose output is a positive real number) which achieves approximation
factor c > 1 is an algorithm which outputs a number which is larger than EMD(µ, ν) and is at most c · EMD(µ, ν)
with high probability. These are multiplicative approximations, and we will also refer to additive εr-approximations
which outputs a quantity which is up to ±εr from a desired quantity.

2

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

butions whose supports have diameter at most r (like the Sinkhorn distances). The key will be to
never explicitly compute the quadratic-size distance matrix. Instead, we show how one may imple-
ment a Sinkhorn-like update procedure using recent algorithms for the problem of kernel density
estimation.

1.1. Related Work: The Spanner Approach for EMD

The Earth Mover’s Distance can be naturally cast as an uncapacitated minimum cost flow problem.
The reduction is straight-forward. One may consider the (weighted) complete bipartite graph G =
(U, V,E = U ×V,w) where each vertex of U is a vector in the support of µ and each vertex in V is
a vector in the support of ν and the weights (or cost) w of an edge e = (i, j) is w(e) = ∥xi − yj∥2.
The distributions may then be written as vectors µ ∈ Rn and ν ∈ Rm which encode the “supply”
and “demand”, and the Earth Mover’s Distance is the minimum cost flow on G according to the
supply/demands µ and ν with costs w (there is no need for capacities in this reduction). Over the
years, graph algorithms have become incredibly efficient, so applying graph-based min-cost flow
solvers with the reduction above gives exact algorithms for EMD running in time (nm)1+o(1).4

The above approach paves the way for faster approximation algorithms by using graph spanners.
For any c > 1, one seeks a graph H with substantially fewer edges on the vertex set U and V . The
desired property is that for any i ∈ U and j ∈ V , the total length of the shortest path between i ∈ U
and j ∈ V along edges of H should be a factor of c-approximation to the distance between the
underlying vectors xi and yj . Running the min-cost flow algorithms on H is faster (since there are
fewer edges), and give a c-approximation for EMD. While sparse spanners for Euclidean distances
do exist, as the approximation c approaches 1 + ε, the size of these spanners become mn.

Instead, the focus has been on obtaining sparse spanners for (large) constant factor approxima-
tions. For example, for any c > 1, Har-Peled et al. (2013) gives c-spanners of size (n +m)1+1/c2

for Euclidean spaces (ℓ2) in time Õ((n +m)1+1/c2) (which is fast when we allow a large c). The
other approach, taken in Agarwal and Sharathkumar (2014), does not explicitly use a spanner, but
uses an approximate nearest neighbor search data structure. The resulting time and approximation
depends on the time and approximation for nearest neighbor search, but similarly to before, the
approximation is large when the algorithms are fast.

1.2. Related Work: Sinkhorn Distances

The algorithm which is widely used for computing an optimal transport is the Sinkhorn algorithm
for entropy-regularized optimal transport Cuturi (2013); Altschuler et al. (2017) (see also, the recent
work Kiem et al. (2020); Le et al. (2021)). Given two distributions µ and ν supported on vectors in
Rd, the entropy-regularized optimal transport introduces an entropic regularization term to the the
Earth Mover’s distance. Specifically, for any η ≥ 0, it optimizes

SNKη(µ, ν) = min

{
E

(x,y)∼γ
[∥x− y∥2]− ηH(γ) : γ is a coupling of µ and ν

}
.

4. The relevant citation for a fast min-cost flow algorithm is the recent breakthrough of Chen et al. (2022a). These give
exact algorithms for graphs whose time in almost-linear in the number of edges, nm of the graph. The other relevant
citation is Sherman (2017), giving algorithms for 1 + ε-approximation to uncapacitated min-cost flow in the same
amount of time, which suffices for EMD.

3

CHARIKAR CHEN RÉ WAINGARTEN

The main benefit is that the algorithm for optimizing SNKη(µ, ν) performs extremely well. The
algorithm used is iterative, and uses poly(1/(ηε)) iterations to output a solution which is an additive
±εr-approximation (where r is the maximum distance between any pair of points in the support of
µ and ν). Oftentimes, the maximum distance r is not too large (for example, it is at most 2 on the
unit sphere), making the algorithm very desirable in practice. However, the main downside is that
the algorithm explicitly computes the nm-distance matrix of pairwise distances of vectors in the
support of µ and ν. Indeed, the algorithm does not use the fact that distances are Euclidean and
generalizes to non-Euclidean metrics. The main downside is that, for distributions on Euclidean
spaces, the description of the input (of size O(d(n + m))) is blown up to a quadratic nm-size
distance matrix, which can be a major bottleneck in the computation if n and m are very large.
Finally, it is important to note that, we currently do not know whether the original Earth Mover’s
distance admits a similar εr-approximation for bounded datasets in time substantially smaller than
nm.

1.3. Our Contributions

This paper addresses the following questions:

1. Do there exists optimal transport metrics which do admit good approximations in significantly
sub-quadratic time? In particular, can we match the approximation guarantees from Sinkhorn
distances with the algorithmic techniques from the Earth Mover’s distance?

2. Can one combine techniques, like locality-sensitive hashing (LSH) and embeddings, with the
alternating updates procedure in Sinkhorn’s algorithm even though approximations incurred
from using LSH and embeddings tend to incur large constant factors?

Our main contribution is introducing a class of objective functions for optimal transport compu-
tations. The new objectives Rρ(µ, ν) are parametrized by ρ ≥ 1 and provide metric spaces over
discrete distributions in Rd. As ρ approaches 1, Rρ(µ, ν) approaches EMD(µ, ν), but enjoys fa-
vorable computational properties. In particular, we will show that Rρ(µ, ν) may be approximated
up to additive εr-error for datasets of diameter at most r in time which is near-linear (for small ρ
close to 1). We view ρ as introducing a new “knob” for the Earth Mover’s distance: as ρ → 1,
the metrics Rρ(·, ·) approach EMD(·, ·); however, for ρ close to (but not too close to) 1, very fast
algorithms with accurate approximations are possible. Thus, our new algorithm gives a positive
answer to Question 1. Namely, if one is willing to change the problem slightly, one can achieve
the approximation guarantees of Sinkhorn distances with the running times like the Earth Mover’s
distance.

While Question 2 is inherently vague, such techniques are known in a related algorithmic con-
text. One of our main conceptual contributions is drawing a connection to kernel density estimation
Charikar and Siminelakis (2017); Backurs et al. (2018); Siminelakis et al. (2019); Charikar et al.
(2020); Backurs et al. (2021); Bakshi et al. (2022). The algorithms developed in that context use
locality-sensitive hashing and embeddings, but are still able to output (1 ± ε)-approximations. In
particular, a key feature of those works is that the distortion incurred by locality-sensitive hashing
and embeddings factors into the running time of the algorithm and not the final approximation. In
summary, our main conceptual contributions may be summarized as follows:

• There exists a class of optimal transport metrics parametrized by ρ which smoothly perturb
the Earth Mover’s distance (approaching EMD as ρ→ 1).

4

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

• For a small setting of ρ > 1, these problems can be optimized in significantly sub-quadratic
time to arbitrarily accurate additive approximations for bounded datasets.

We believe the new problem formulation and the ideas behind the algorithm will lead to improve-
ments in practical algorithms for optimal transport metrics. We emphasize that there are no algorith-
mic approaches that achieve (1± ε)-approximations or εr-additive approximations for either EMD
nor SNK in time n1.99. In addition, there is some reason to believe that this may be impossible for
EMD Rohatgi (2019). By changing the problem and allowing a small additive error, we avoid the
large constant factors. We also suggest looking at Section 4 of Backurs et al. (2020), who group
algorithms by their running times; the new techniques achieve the accurate approximations of the
“quadratic time” algorithms, even though they run much faster (at least in theory).

Outline. The next section gives the new objective Rρ(µ, ν) and states our main Theorem 1. We
will overview the components of the proof in the next section. Then, we give a description of the
main algorithm while assuming algorithms for estimating the gradients and the penalty term.

2. The Definition of ℓρ-Optimal Transports

For any dimension d ∈ N, let µ and ν denote two discrete distributions supported on n and m
point masses in Rd, respectively. More specifically, µ is specified by n points x1, . . . , xn ∈ Rd

and corresponding weights µ1, . . . , µn ∈ R>0 where
∑n

i=1 µi = 1, and ν is specified by m points
y1, . . . , ym ∈ Rd with the corresponding weights ν1, . . . , νm ∈ R>0 with

∑m
i=1 νi = 1 (note that

we can always assume that µi and νj are strictly positive by a linear-time scan which can remove
points of weight-0). One ought to think of d = ω(log n), so we seek algorithms which overcome
the “curse of dimensionality” and do not have running times which scale exponentially in d.

For any parameter ρ > 1, we seek to optimize the following objective, which will specify a
metric space over probability distributions which relax the optimal transport problem (Lemma 5 in
Appendix A):

Rρ(µ, ν) = min


 E

i∼µ
j∼ν

[(
γij
µiνj

· ∥xi − yj∥2
)ρ]1/ρ

: γ is a coupling of µ and ν

 . (2)

In words, for any coupling γ between the distributions µ and ν, one may associate an nm-dimensional
vector encoding the costs associated with each point-mass. Each point xi from µ and yj from ν, the
coupling γ transports γij “mass” from xi to yj and pays a function of the distance between xi and
yi times γij/(µiνj). In Rρ(µ, ν), we optimize the normalized ℓρ-norm of the cost vector. Notice
that, when ρ = 1, Rρ(µ, ν) is the Earth Mover’s distance distance between µ and ν. As we vary
ρ ≥ 1, one may relate the ℓρ- and ℓ1-norm, implying

EMD(µ, ν) ≤ Rρ(µ, ν) ≤ sup
i,j

∣∣∣∣ 1

µiνj

∣∣∣∣(ρ−1)/ρ

EMD(µ, ν).

When ρ > 1, we will obtain a sequence of (as we will see) computationally easier metric spaces
which approach EMD(µ, ν). The key is that performing this modification will allow for significantly
faster algorithms in terms of n andm (the number of points), while having a dependence on ρwhich
will be 2O(ρ/(ρ−1)).

5

CHARIKAR CHEN RÉ WAINGARTEN

We view ρ > 1 as a desired computational “knob,” which allows one to tradeoff the running
time of an algorithm and the metric’s relation to EMD. Note that, in a c-approximation algorithm
for EMD, c also trades-off faster/slower running times for looser/tighter relations to EMD. The dif-
ference, however, is that for any ρ > 1, Rρ(·, ·) is still a metric space over probability distributions
(and the same cannot be said of a 3-approximation to EMD). The specific choice of metric space
(EMD, Wasserstein-p, or SNKη) is oftentimes flexible, so long as it captures the desired notion of
similarity/dissimilarity of distributions. The hope is that for moderate values of ρ, Rρ(µ, ν) suffices
for downstream applications, and captures the desired properties of an optimal-transport γ.

From a more technical perspective, (2) encourages couplings γ whose contribution to the cost
vector is “spread”, so that the ℓρ-norm will be small. The main advantage is that, using a connection
to recent work on kernel density estimation in high-dimensions Backurs et al. (2018) and scaling
approaches to entropy regularized optimal transport Cuturi (2013); Altschuler et al. (2017), we give
very efficient (and simple) algorithms for approximating Rρ(µ, ν).

Notation for Running Time Bounds. We will use the following notation in order to describe the
running time bounds. The focus is on improving on the dependence on n and m when estimating
optimal transports, so we use the notation poly∗(f) to denote a fixed polynomial function of f ,
and which hides poly-logarithmic factors n,m, δ (the failure probability), ε (the accuracy) and r
(the radius of the dataset). In addition, since we will incur a polynomial dependence on ε, we will
automatically apply the Johnson-Lindenstrauss lemma and assume that d = O(log(nm)/ε2).

Theorem 1 There exists a randomized algorithm with the following guarantees. The algorithm
receives as input

• Two sets of points {x1, . . . , xn} and {y1, . . . , ym} in Rd where the maximum pairwise dis-
tance between points supi,j ∥xi − yj∥2 ≤ r.

• Two vectors µ ∈ Rn
≥0 and ν ∈ Rm

≥0 whose coordinates sum to 1 and encode the distributions
over {x1, . . . , xn} and {y1, . . . , yn}, respectively.

• An accuracy parameter ε > 0, a failure probability δ > 0, and a parameter ρ ∈ [1, 2].

The algorithm runs in time (n + m) · poly∗((nm)(ρ−1)/ρ · 2ρ/(ρ−1)/ε), and outputs an estimate
η̂ > 0 which satisfies

|η̂ −Rρ(µ, ν)| ≤ ε · r

with probability at least 1− δ.

The main advantage of Theorem 1 is that it does not pay the quadratic nm-factor in the running
time and at the same time obtains accurate approximations. In particular, suppose we consider a
setting of ρ which is ρ = 1 + 1/

√
log(nm), then the corresponding running time of Theorem 1 to

approximate Rρ(µ, ν) up to an additive ±εr becomes

(n+m)1+o(1) · poly(1/ε).

Generally, as ρ becomes close to 1, the metric Rρ(·, ·) approaches EMD(·, ·) and the dependence
on n and m becomes better, since (n +m) · (nm)O((ρ−1)/ρ). However, one does not want to set ρ
to be too close to 1, since the factor of 2O(ρ/(ρ−1)) may begin to dominate.

6

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Remark 2 (Challenges when ρ→ 1) In order to use Rρ(·, ·) to approximate EMD(·, ·) up to (1+
ε)-factor, one would need to set ρ to roughly 1 +O(ε/ log(nm)); however, this approach runs into
a technical challenge. There is a concrete sense in which the parameter ρ ≥ 1 adds a certain
“smoothness” which is not present in EMD. At a very high level, we show that an additive approxi-
mation of Rρ reduces to queries for “smooth” kernel density evaluation Backurs et al. (2018) which
suffer an exponential dependence on ρ/(ρ − 1). With ρ = 1 + O(ε/ log(nm)), this dependence
would become (nm)O(1/ε)—worse than the (nm)1+o(1) time required from prior work.

2.1. Proof of Theorem 1 Overview

We overview the major components of the proof of Theorem 1. While (relatively minor) technical
challenges arise when fleshing out the details, the structure and algorithm proceed with the following
plan.

The Duals of EMD(µ, ν) and Rρ(µ, ν)
ρ. The challenge in optimizing Rρ(µ, ν)

ρ (which also
appears in EMD(µ, ν)) is that an algorithm cannot even write down the explicit description of the
optimization, nor can it explicitly maintain a coupling γ, since this requires Ω(nm) values. On the
other hand, both EMD(µ, ν) and Rρ(µ, ν)

ρ only have n +m equality constraints, so the duals are
maximization problems over n + m variables (one for each constraint). The approach will be to
show that, using data structures for kernel density estimation, we can implicitly maximize the dual
of Rρ(µ, ν)

ρ while only maintaining the n+m dual variables.
To see the connection, we first write down the dual for EMD(µ, ν), which has n+m variables

α1, . . . , αn and β1, . . . , βm and asks to maximize

EMD(µ, ν) = max
α∈Rn

β∈Rm


n∑

i=1

µiαi −
m∑
j=1

νjβj : ∀(i, j) ∈ [n]× [m], αi − βj ≤ ∥xi − yj∥2

 . (3)

For ρ > 1, the Hölder conjugate s > 1, is the number satisfying 1/ρ + 1/s = 1. The dual for
Rρ(µ, ν)

ρ is the following unconstrained maximization problem on n + m variables α1, . . . , αn

and β1, . . . , βm,

Rρ(µ, ν)
ρ = max

α∈Rn

β∈Rm


n∑

i=1

µiαi −
m∑
j=1

νjβj −
1

s

(
1− 1

s

)s−1 n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s
 ,

(4)

where we consider 0
0 = 0, and (αi−βj)+ is αi−βj if positive and 0 otherwise. Note the difference:

in (3), there are nm hard constraints which enforce (αi − βj)
+/∥xi − yj∥2 ≤ 1 for every i ̸= j. In

(4), the nm constraints are relaxed. The optimization is allowed to set αi−βj larger than ∥xi−yj∥2,
but pays a penalty in the objective proportional to ((αi − βj)

+/∥xi − yj∥2)s. As ρ gets closer to 1,
the Hölder conjugate s becomes larger, and the penalty becomes more pronounced. For simplicity
in the notation, we will write

g(α, β)
def
=

n∑
i=1

µiαi −
m∑
j=1

νjβj −
1

s

(
1− 1

s

)s−1 n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

.

7

CHARIKAR CHEN RÉ WAINGARTEN

Partial Derivatives via Kernel Density Estimation Since (4) is a concave maximization prob-
lem, a simple approach is to simulate a gradient ascent algorithm on the dual variables α1, . . . , αn

and β1, . . . , βm, where we update in the direction of the partial derivatives. The partial derivatives
with respect to αi and βj are given by

∂g

∂αi
= µi

1−
(
1− 1

s

)s−1 m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

 (5)

∂g

∂βj
= −νj

(
1−

(
1− 1

s

)s−1 n∑
i=1

µi ·
((αi − βj)

+)s−1

∥xi − yj∥s2

)
. (6)

Importantly, the partial derivatives depend on µi and νj and a weighted sum of 1/∥xi − yj∥s2. First,
note that we receive µ and ν as input, so µi and νj are n+m constants throughout the execution. The
weighted sums are the more challenging parts, and for these we use the kernel density estimation
data structures. We interpret K(xi, yj) = 1/∥xi−yj∥s2 as a “smooth” kernel, similar to the Student-
t Kernel studied in Backurs et al. (2018). These smooth kernels decay polynomially as a function
of the distance ∥ · ∥2 and admit very efficient data structures. Specializing the results of Backurs
et al. (2018) for K, they give data structures which preprocess a set of points P and can support
(1 ± ε)-approximate kernel evaluation queries of the form

∑
x∈P K(x, y) for any y ∈ Rd. The

query complexity is poly∗(2s/ε) and s becomes ρ/(ρ − 1). In order to use these for Theorem 1,
we incorporate the weights ((αi − βj)

+)s−1 by augmenting those data structures in Section C (we
overview the augmentations shortly). Once this is done, the algorithm can initialize α ∈ Rn and
β ∈ Rm to 0 and effectively update α and β in the directions of the partial derivatives in order to
increase the objective function.

The only remaining challenge is setting the step size of the update, and ensuring that the function
is smooth enough. Note that because of the non-linear penalty term, there is no global Lipschitz
constant, but we will argue that our optimization always remains within a smooth enough region if
the step size is set appropriately. We do this final argument by applying a simple preprocessing step.
The preprocessing will guarantee that the distance between any xi and yj is always between εr and
r (which changes Rρ(µ, ν) by at most εr), and that every non-zero element of the support of µ and
ν is sampled with at least some probability. This means that an update which changes some α or β
does not change the penalty term significantly (because the fact that the distance ∥xi − yj∥2 in the
denominator is at least εr ensures the penalty does not blow up).

Augmenting Kernel Density Estimates to Incorporate Weights For s > 1, we want to maintain
a set of points P = {x1, . . . , xn} in Rd, where each point is associated with a weight α1, . . . , αn ∈
R and a parameter µ1, . . . , µi which are between 1/poly(n) and 1. A query is specified by another
vector y ∈ Rd and its weight β, and the task is to output

n∑
i=1

µi · ((αi − β)+)s−1 · K(xi, y), (7)

where K(xi, y) = 1/∥xi − y∥s2. We will augment the data structures from Backurs et al. (2018)
as follows. First, partition P into O(log n/ε) ranges which partition [1/poly(n), 1] according to
powers of 1 + ε so as to assume that µj is the same within each range. Note that we know the
weights µ1, . . . , µn during the preprocessing, so that we may perform this partition; however, since

8

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

we do not know β during the preprocessing, we cannot similarly partition according to the value of
(αi − β)s.

Instead, we will proceed with the following. For each range j, the resulting set Pj is stored
sorted in a binary tree according to the weights α, and let αmax be the largest weight. Each internal
node holds a data structure of Backurs et al. (2018) maintaining points in its subtree. When a query
(y, β) ∈ Rd × R comes, one may perform the following:

1. Let ξ be uniformly drawn from the interval [0, (αmax − β)s−1].

2. Find the value β+ξ1/(s−1) in the binary tree, and we consider the k = O(log n) nodes which
partition the interval [β + ξ1/(s−1), αmax].

3. Query all k kernel evaluation data structures stored at those nodes. If η̂1, . . . , η̂k are the
estimates output by the k data structures with y, output (αmax − β)s−1

∑k
ℓ=1 η̂ℓ.

The main observation is that the sampling automatically incorporates weights. For example, sup-
pose the data structures of Backurs et al. (2018) were exact, then our estimate is an unbiased esti-
mator of (7):

E
ξ

[
(αmax − β)s−1

k∑
ℓ=1

η̂ℓ

]
=

m∑
i=1

(αmax − β)s−1 ·Pr
ξ

[
αi ≥ β + ξ1/(s−1)

]
· K(xi, y),

and the probability that αi ≥ β+ ξ1/(s−1) is exactly ((αi−β)+)s−1/(αmax−β)s−1. The variance
of the above estimation is too large (which occurs because αmax ≫ β), so we make the follow-
ing minor modification. We partition the interval [β, αmax] into poly-logarithmic, geometrically
increasing groups, and perform the above process for each group. This is then enough to bound the
variance.

3. A Gradient Ascent Algorithm

3.1. A Simple Preprocessing

Before we give the description of the algorithm, we will run a simple preprocessing step which sim-
plifies our input. We will think of µ and ν as the distribution over {x1, . . . , xn} and {y1, . . . , ym},
respectively. For small parameters σ, σµ, σν > 0, we will define the distributions µ′ and ν ′ in the
following way:

• First, we consider the points x′1, . . . , x
′
n and y′1, . . . , y

′
m in Rd+1 where we append a coordi-

nate and we let x′i = (xi, σr) and y′j = (yj , 0). This way, we guarantee that for every i ∈ [n]

and j ∈ [m], we satisfy σr ≤ ∥x′i − y′j∥2 ≤ r
√
1 + σ2 (where the upper bound follows from

the fact ∥xi − yj∥2 ≤ r).

• We define the sets Lµ ⊂ [n] and Lν ⊂ [m] for the indices of µ and ν which have low
probability, i.e., Lµ = {i ∈ [n] : µi < σµ/n} and Lν = {j ∈ [m] : νj < σν/m}. We denote
ζµ =

∑
i∈Lµ

µi ≤ σµ and ζν =
∑

j∈Lν
νj ≤ σν . The distribution µ′ is supported on the

points x′1, . . . , x
′
n, and ν ′ is supported on the points y′1, . . . , y

′
n given by

µ′i =

{
0 i ∈ Lµ

µi/(1− ζµ) i ∈ [n] \ Lµ
and ν ′j =

{
0 j ∈ Lν

νj/(1− ζν) j ∈ [m] \ Lν
.

9

CHARIKAR CHEN RÉ WAINGARTEN

The above transformations has the benefit that we now have a lower bound on the minimum
distance between any point from the support of µ′ and any point from the support of ν ′, while only
increasing the maximum distance by at most a factor of

√
1 + σ2. Furthermore, the distributions

µ′ and ν ′ have all elements of their support with probability at least σµ/n and σν/m, respectively,
since we have removed the low-probability items. Thus, the algorithm below will apply the above
perturbation, and we may assume throughout the execution the corresponding properties of µ and
ν. Note that as long as we ensure the parameter(

nρ−1 · σ

σρ−1
µ

+ σµ

)1/ρ

≤ ε and σ1/ρν ≤ ε,

then by the triangle inequality, we will have Rρ(µ
′, ν ′) is up to an additive 2εr, the same as

Rρ(µ, ν). In particular, we can let σν be ερ and σµ = ερ/n and σ = ερ.

3.2. Description of the Algorithm

We will assume hence-forth that our input distributions µ and ν, whose support is {x1, . . . , xn} and
{y1, . . . , yn} satisfy:

• Every i ∈ [n] and j ∈ [m], the distance ∥xi − yj∥2 is always between σr and r (for a small
parameter σ > 0, we have r

√
1 + σ2 ≤ 2r so, in order to simplify the notation, one may

think of σ as being decreased by a factor of 2).

• The distributions µ and ν have a “granularity” property, so that every i ∈ [n] for which µi is
non-zero is at least σµ/n, and every j ∈ [m] for which νj is non-zero is at least σν/m. This
will allow us to upper bound 1/(µiνj) ≤ mn/(σµσν).

The algorithm will maintain a setting of the dual variables (αt, βt) ∈ Rn+m which it will update
in each iteration, and it will seek to maximize

g(α, β) =
n∑

i=1

µiαi −
m∑
j=1

νjβj − Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

.

In the description of the algorithm below, we will assume access to three sub-routines Est-Alpha,
Est-Beta, and Est-Penalty which we specify later (see Subsection B.1 for a description of
the guarantees). At a high level, the sub-routines Est-Alpha will help us get an approximation
of the gradient ∇g(αt, βt) along directions in α, and Est-Beta will help us get an approximation
of the gradient ∇g(αt, βt) along directions in β. The sub-routine Est-Penalty will come in at
the end, since we will need to estimate the “penalty” term in order to output an approximation to
g(αt, βt). We will instantiate the algorithm with the following parameters:

• Accuracy of Terminating Condition: we denote this parameter ε2 > 0, which will be set to
c0 · ε · (σµσν/(mn))(ρ−1)/ρ for a small enough constant c0 > 0. This parameter will dictate
when our algorithm has found a dual solution which is close enough to the optimal one.

• Accuracy for Estimation: There are two parameters which specify the accuracy needed in
the estimations Est-Alpha and Est-Beta. We let ε1 > 0 denote the multiplicative error
bound which we will tolerate, set to c1ε2/s for a small enough constant c1, and τ which will

10

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

be an additive error bound will may be interpreted as a granularity condition on the weights
α, β. It will suffice to set τ = c2ε2, but the final dependence on τ will be poly-logarithmic in
1/τ , the notation poly∗(·) will suppress it.

• Step Size of Gradient Ascent: The parameter λ ≥ 0 will denote the step size of our gradient
ascent algorithm. We set λ = c3ε2 · (σ/s)2 · rρ, for a small constant c3 > 0.

We will also consider a small enough parameter δ > 0 which will denote the failure probabili-
ties of our estimation algorithms. The final dependence on δ is only poly-logarithmic, so it will
suffice to set δ to be a small enough polynomial factor of all parameters of the algorithm (i.e.,
n,m, 1/ε, 1/σ, s) such that all executions of Est-Alpha, Est-Beta, and Est-Penalty suc-
ceed with high probability. For simplicity in the notation, we will drop δ from the notation, and
assume that all executions of our (randomized) sub-routines succeed.

3.3. Analysis of the Algorithm

We now show that the algorithm presented at the top of Subsection 3.2 finds an approximately opti-
mal maximizer of g, assuming the lemmas on the guarantees of the subroutines of Subsection B.1.
In particular, this section shows two lemmas. The first lemma shows that if the algorithm does not
perform an update, then the value (αt, βt) that the algorithm holds is an approximate maximizer of
g, this will then imply, from Lemma 12 that we can output an estimate of g(αt, βt). The second
lemma says that if the algorithm performs an update, then the value of the objective function g in-
creases by Ω(ε2 · λ). In particular, since the objective function is a maximization problem which is
always at most rρ, this implies that the algorithm performs at most O(rρ/(ε2 · λ)) updates before
it must terminate. In addition, when it terminates, Lemma 7 implies that the quantity ω output by
Est-Penalty is at most O(rρ). This means that in the final estimate, for ω, it suffices to set τ to
εrρ.

Lemma 3 (Termination Condition) Suppose (αt, βt) ∈ Rn+m satisfies g(αt, βt) ≥ 0 and the al-
gorithms Est-Alpha and Est-Beta produce a sequence of quantities η1, . . . ,ηn and ξ1, . . . , ξm
which satisfy the guarantees of Lemma 10 and Lemma 11, and

n∑
i=1

µi |ηi − 1| ≤ ε2 and
m∑
j=1

νj
∣∣ξj − 1

∣∣ ≤ ε2.

Then, letting (α∗, β∗) be the maximizer of g(α∗, β∗), we have

g(α∗, β∗)− g(αt, βt) ≤ O(1) ·
(
nm

σµσν

)(ρ−1)/ρ

· rρ ·
(
ε2 + τ +

ε1s

σ

)
Lemma 4 (Updates Increase Objective) Suppose (αt, βt) ∈ Rn+m satisfies g(αt, βt) ≥ 0 and
(αt+1, βt) ∈ Rn+m is a vector, for which the algorithms Est-Alpha produce the sequence of
outputs η1, . . . ,ηn which satisfy the guarantees of Lemma 10 and

n∑
i=1

µi |ηi − 1| ≥ ε2.

Then, g(αt+1, βt)− g(αt, βt) ≥ Ω(λ · ε2).

11

CHARIKAR CHEN RÉ WAINGARTEN

Main Algorithm for Computing Rρ(µ, ν)
ρ (after preprocessing from Subsection 3.1).

Input: Two vectors µ ∈ Rn and ν ∈ Rm which encode two distributions supported on the
points {x1, . . . , xn} and {y1, . . . , ym} in Rd, and an accuracy parameter ε > 0.
Assumptions: Every i ∈ [n] and j ∈ [m] satisfies σr ≤ ∥xi − yj∥2 ≤ r. Every i ∈ [n] has
µi ≥ σµ/n and every j ∈ [m] has νj ≥ σν/m. We refer to parameters ε1, ε2, τ and λ specified
above (as a function of ε), and access to sub-routines Est-Alpha, Est-Beta, and
Est-Penalty.

We initialize (α0, β0) = (0, 0) ∈ Rn+m and iteratively perform the following updates for
t ≥ 1:

• Run Estimates: We execute Est-Alpha(αt, βt, ε1, τ) which produces as output a
sequence of n numbers η1, . . . ,ηn, and we execute Est-Beta(αt, βt, ε1, τ) which
returns a sequence of m numbers ξ1, . . . , ξm.

• Update α’s: If
∑n

i=1 µi|1− ηi| ≥ ε2, we will update the α’s by letting

αt+1 = αt + λ · sign(1− η),

where sign(1− η) is the vector in {−1, 1}n where the i-th entry is sign(1− ηi). We
also update βt+1 = βt and increment t, beginning a new iteration.

• Update β’s: If
∑m

j=1 νj |ξi − 1| ≥ ε2, then we will update the β’s by letting

βt+1 = βt − λ · sign(ξ − 1).

We update αt+1 = αt and increment t, beginning a new iteration.

• Termination: Otherwise, if no updates where performed, then (αt, βt) satisfies both∑n
i=1 µi|ηi − 1| ≤ ε2 and

∑m
j=1 νj |ξj − 1| ≤ ε2. In this case, we execute

Est-Penalty(αt, βt, ε1, εr
ρ, δ) which outputs a number ω ∈ R≥0, and we output

n∑
i=1

µi(αt)i −
m∑
j=1

νj(βt)j − ω.

Figure 1: Main Algorithm for Estimating Rρ(µ, ν)
ρ.

12

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

3.4. Proof of Theorem 1

Consider the algorithm which first runs the preprocessing step of Subsection 3.1 and then executes
the main iterative sub-routine of Figure 1 in order to estimate Rρ(µ, ν)

ρ. When the algorithm from
Figure 1 outputs, we output  n∑

i=1

µi(αt)i −
m∑
j=1

νj(βt)j − ω

1/ρ

.

First, we note the running time of the algorithm is as specified. In particular, the preprocessing step
takes O(n +m) time. Notice that each iteration of Figure 1 takes O(n +m) · poly∗(2s/ε1) time,
which is O(n+m) · poly∗(2ρ/(ρ−1)(mn)(ρ−1)/ρ/ε) by setting of ε1, s, and σµ, σν and σ. Further-
more, since g(α0, β0) = 0 and g(αt, βt) ≤ rρ, Lemma 4 will imply that the number of iterations
is at most O(rρ/(λε2)), and by the setting of ε2 and λ, this is at most poly∗((mn)(ρ−1)/ρ/ε). The
total running time then follows.

In order to show correctness, note that the setting of ε2, ε1, when the algorithm terminates, we
have

Rρ(µ, ν)
ρ −

n∑
i=1

µi(αt)i −
m∑
j=1

νj(βt)j − Cs

n∑
i=1

m∑
j=1

µiνj

(
((αt)i − (βt)j)

+

∥xi − yj∥2

)s

≤ ε · rρ,

and we are guaranteed by Lemma 12 and Lemma 7 and the setting of τ for Est-Penalty that∣∣∣∣∣∣ω − Cs

n∑
i=1

m∑
j=1

µiνj

(
((αt)i − (βt)j)

+

∥xi − yj∥2

)s
∣∣∣∣∣∣ ≤ O(ε · rρ).

Therefore, our output (using the fact Rρ(µ, ν)
ρ ≤ rρ), will satisfy∣∣∣∣∣∣∣

 n∑
i=1

µi(αt)i −
m∑
j=1

νj(βt)j − ω

1/ρ

−Rρ(µ, ν)

∣∣∣∣∣∣∣ ≤ O(ε · r).

4. Open Problems

We hope that our approach, of slightly changing the problem, will prove useful for other Euclidean
problems for which we do not have fast algorithms with (1 + ε)-approximations. We mention two
immediate open problems:

• Multiplicative (1 + ε)-approximations for Rρ(µ, ν). Our algorithms achieved additive εr-
approximations for datasets bounded within distance r, but a more accurate multiplicative
(1 + ε)-approximation would be desired when the dataset may not necessarily be bounded.
Does there exists an algorithm which is just as fast as Theorem 1 and outputs a number η̂
which is between Rρ(µ, ν) and (1 + ε)Rρ(µ, ν) with high probability?

• Accurate Approximations for EMD. It is still possible that for any ε > 0, there exists an algo-
rithm which can estimate the cost of EMD(µ, ν) up to a multiplicative (1 + ε)-factor in time

13

CHARIKAR CHEN RÉ WAINGARTEN

n · poly(d log n/ε). Does there exist such an algorithm, or is there compelling complexity-
theoretic reasons why this may not be possible? We note that Rohatgi (2019) shows that, in
the case µ and ν are uniform on a support of size n, such an algorithm should not be able to
output a (1 + ε)-approximate matching between points of µ and ν (assuming the Hitting Set
conjecture). However, no such evidence against near-linear time algorithms for the cost of
EMD exists.

Acknowledgments

Part of this work was done while Erik Waingarten was a postdoc at Stanford University, supported
by an NSF postdoctoral fellowship and by Moses Charikar’s Simons Investigator Award.

References

Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching with
metric and geometric costs. In Proceedings of the 46th ACM Symposium on the Theory of Com-
puting (STOC ’2014), pages 555–564, 2014.

Pankaj K. Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao. Deterministic, near-
linear ε-approximation algorithm for geometric bipartite matching. In Proceedings of the 54th
ACM Symposium on the Theory of Computing (STOC ’2022), 2022.

Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algorithms
for optimal transport via sinkhorn iteration. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS ’2017), 2017.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. Massively scalable
sinkhorn distances via the nyström method. In Proceedings of Advances in Neural Information
Processing Systems 32 (NeurIPS ’2019), 2019.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the 47th ACM Symposium on the Theory of Computing
(STOC ’2015), pages 793–801, 2015. Available as arXiv:1501.01062.

Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’2008), pages 343–352, 2008.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for earth-
mover distance, with applications. In Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS ’2009), 2009.

Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel algo-
rithms for geometric graph problems. In Proceedings of the 46th ACM Symposium on the Theory
of Computing (STOC ’2014), 2014.

Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and embedding are equiv-
alent for norms. In Proceedings of the 47th ACM Symposium on the Theory of Computing
(STOC ’2015), pages 479–488, 2015. Available as arXiv:1411.2577.

14

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML ’2017), 2017.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for
smooth kernels. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’2018), 2018.

Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Scalable nearest neigh-
bor search for optimal transport. In Proceedings of the 37th International Conference on Machine
Learning (ICML ’2020), 2020.

Arturs Backurs, Piotr Indyk, Cameron Musco, and Tal Wagner. Faster kernel matrix algebra via
density estimation. In Proceedings of the 38th International Conference on Machine Learning
(ICML ’2021), 2021.

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Sub-quadratic
algorithms for kernel matrices via kernel density estimation. In arXiv preprint arXiv:2212.00642,
2022.

Arturs Bačkurs and Piotr Indyk. Better embeddings for planar earth-mover distance over sparse sets.
In Proceedings of the 41st International Colloquium on Automata, Languages and Programming
(ICALP ’2014), 2014.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51, 2015.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
34th ACM Symposium on the Theory of Computing (STOC ’2002), pages 380–388, 2002.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’2017), 2017.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estima-
tion through density constrained near neighbor search. In Proceedings of the 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’2020), 2020.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of the
63rd Annual IEEE Symposium on Foudnations of Computer Science (FOCS ’2022), 2022a.

Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. New streaming algorithms for high di-
mensional emd and mst. In Proceedings of the 54th ACM Symposium on the Theory of Computing
(STOC ’2022), 2022b.

Nicolas Courty, Rémy Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for
domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):
1853 – 1865, 2016.

15

CHARIKAR CHEN RÉ WAINGARTEN

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Proceedings of
Advances in Neural Information Processing Systems (NIPS ’2013), 2013.

Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high dimensions.
In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2013), 2013.

Piotr Indyk. Approximate nearest neighbor under edit distance via product metrics. In Proceedings
of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2004), pages 646–650, 2004.

Piotr Indyk and Nitin Thaper. Fast color image retrieval via embeddings. In Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for the geo-
metric transportation problem. In Proceedings of the 35th International Symposium on Compu-
tational Geometry (SoCG ’2019), 2019.

Pham Kiem, Khang Le, Nhat Ho, Tung Pham, and Hung Bui. On unbalanced optimal transport:
An analysis of sinkhorn algorithm. In Proceedings of the International Conference on Machine
Learning (ICML ’2020), 2020.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to doc-
ument distances. In Proceedings of the 32nd International Conference on Machine Learning
(ICML ’2015), 2015.

Khang Le, Huy Nguyen, Quang M Nguyen, Tung Pham, Hung Bui, and Nhat Ho. On robust optimal
transport: computational complexity and barycenter computation. In Proceedings of Advances in
Neural Information Processing Systems 34 (NeurIPS ’2021), 2021.

François-Pierre Paty and Marco Cuturi. Subspace robust wasserstein distances. In Proceedings of
the 36th International Conference on Machine Learning (ICML ’2019), 2019.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learning, 11(5–6):355–607, 2019.

Dhruv Rohatgi. Conditional hardness of earth movers distance. In Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques, 2019.

R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for bipartite
geometric matching. In Proceedings of the 44th ACM Symposium on the Theory of Computing
(STOC ’2012), 2012.

Jonah Sherman. Generalized preconditioning and undirected minimum cost flow. In Proceedings
of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA ’2017), 2017.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
evaluation in high dimensions. In Proceedings of the 36th International Conference on Machine
Learning (ICML ’2019), 2019.

16

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Appendix A. Basic Properties of Rρ(µ, ν)

The main property of Rρ(µ, ν) aligning with the Earth Mover’s Distance is that Rρ(µ, ν) defines
a metric space over the space of distributions. As is the case with the Earth Mover’s distance, the
metric takes into account the underlying geometry of the space. The advantage to these formula-
tions, as opposed to, say the total variation distance, is that the total variation distance between a
distribution µ and that same distribution µ′ after a tiny perturbation of the points is 1; whereas the
Earth Mover’s Distance and Rρ(µ, µ

′) will remain small.

A.1. Rρ(µ, ν) Defines a Metric Space

The one non-trivial aspect of showing Rρ(·, ·) is a metric over distributions in Rd is establishing the
triangle inequality. Indeed, the definition Rρ(µ, ν) = Rρ(ν, µ) by symmetry in the definition, and
it is clear that Rρ(µ, ν) ≥ 0 and equal to zero whenever µ and ν are equal.

Lemma 5 (Triangle Inequality) Suppose µ, ν and ξ are discrete distributions supported on vec-
tors in Rd. Then, for any ρ ≥ 1,

Rρ(µ, ξ) ≤ Rρ(µ, ν) +Rρ(ν, ξ).

Proof Let {x1, . . . , xn} denote the set of points in the supports on µ, ν and ξ. We will then use
µ, ν, ξ as vectors in Rn

≥0 whose coordinates sum to 1 and specify with which probability to sample
the point xi. Suppose that γ(1), γ(2) ∈ Rn×n

≥0 are the couplings which minimize Rρ(µ, ν) and
Rρ(ν, ξ), respectively. Then, consider setting

γij =
n∑

ℓ=1

γ
(1)
iℓ · γ(2)ℓj

νℓ
.

First, one can easily verify that γ satisfies the constraints of Rρ(µ, ξ), so that it is a coupling of µ
and ξ. The triangle inequality then comes from using the triangle inequality in the ground metric
(ℓ2), and then the triangle inequality for the ℓρ-norm encoding the cost. Specifically,

Rρ(µ, ξ) ≤

 n∑
i=1

n∑
j=1

µiξj

(
γij
µiξj

∥xi − xj∥2
)ρ
1/ρ

≤

 n∑
i=1

n∑
j=1

µiξj

(
1

µiξjνℓ

n∑
ℓ=1

γ
(1)
iℓ γ

(2)
ℓj ∥xi − xℓ∥2

)ρ
1/ρ

(8)

+

 n∑
i=1

n∑
j=1

µiξj

(
1

µiξjνℓ

n∑
ℓ=1

γ
(1)
iℓ γ

(2)
ℓj ∥xℓ − xj∥2

)ρ
1/ρ

. (9)

We work on each term individually. In particular, for each j ∈ [n], we use Jensen’s inequality,
applied to the distribution γ̃(2)j which is supported on [n] and samples ℓ = ℓwith probability γ(2)ℓj /ξj

17

CHARIKAR CHEN RÉ WAINGARTEN

can write

n∑
j=1

ξj

(
1

µiξjνℓ

n∑
ℓ=1

γ
(1)
iℓ γ

(2)
ℓj · ∥xi − xℓ∥2

)ρ

=

n∑
j=1

ξj

 E
ℓ∼γ̃

(2)
j

[
γ
(1)
iℓ

µiνℓ
· ∥xi − xℓ∥2

]ρ

≤
n∑

j=1

ξj

n∑
ℓ=1

γ
(2)
ℓj

ξj
·

(
γ
(1)
iℓ

µiνℓ
· ∥xi − xℓ∥2

)ρ

=
n∑

ℓ=1

νℓ

(
γ
(1)
iℓ

µiνℓ
· ∥xi − xℓ∥2

)ρ

.

Applied to each i ∈ [n], we have that (8) is at most Rρ(µ, ν). Similarly, we have (9) is at most
Rρ(ν, ξ).

A.2. Dual of Rρ(µ, ν)
ρ

As discussed, the advantage of Rρ(µ, ν) is its computational properties, since we will give an
algorithm to additively approximate Rρ(µ, ν) efficiently (for small ρ). The algorithm will proceed
by optimizing over the dual formulation of Rρ(µ, ν)

ρ. In this subsection, we specify what the
dual of Rρ(µ, ν)

ρ looks like, as well as a few important properties of the dual which we will use
throughout the execution of the algorithm. In the next lemma, it will be important that the support
of the distributions µ and ν are disjoint (so that we never divide by zero); in our algorithm, we will
apply a preprocessing step so as to assume without loss of generality, that the supports of µ and ν
are disjoint.

Lemma 6 Let µ ∈ Rn
>0 encode a distribution supported on {x1, . . . , xn} ⊂ Rd and ν ∈ Rm

>0

encode a distribution supported on {y1, . . . , ym} ⊂ Rd. Whenever {x1, . . . , xn} and {y1, . . . , ym}
are disjoint, the following is true for any ρ > 1. Let s ≥ 1 denote its Hölder conjugate, 1/ρ+1/s =
1, and Cs = (1/s)(1− 1/s)s−1. Then,

Rρ(µ, ν)
ρ = max

α∈Rn

β∈Rm

n∑
i=1

µiαi −
m∑
j=1

νjβj − Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

. (10)

Proof We compute the dual of Rρ(µ, ν)
ρ by introducing Lagrangian multipliers.

Rρ(µ, ν)
ρ = max

α∈Rn

β∈Rm

min
γ∈Rn×m

≥0

n∑
i=1

m∑
j=1

µiνj

(
γij
µiνj

)ρ

∥xi − yj∥ρ2

+
n∑

i=1

αi

µi − m∑
j=1

γij

−
m∑
j=1

βj

(
νj −

n∑
i=1

γij

)
,

and we re-write this, by minimax duality

min
γ

max
α,β

n∑
i=1

µiαi +

m∑
j=1

νjβj +

n∑
i=1

m∑
j=1

(
(µiνj)

1−ργρij∥xi − yj∥ρ2 − (αi − βj)γij

)
.

18

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Since the right-most term is the only one to depend on γ, once we fix α, β, we can compute the min-
imizing value γij ≥ 0 for each term i, j. The expression for a (generic) term i, j considers a positive
value a > 0 (the fact the term is positive is by disjointness of {x1, . . . , xn} and {y1, . . . , ym}) and
some term b ∈ R, and we want to determine

min
γij≥0

γρija− γijb.

Note that if b is negative, then the minimizing value occurs at 0 with γij = 0. On the other hand,
if b is positive, then we want to set γij such that the derivative with respect to γij is zero, since this
corresponds to the (positive) value of γij where we get a negative value of the optimum above:

ργρ−1
ij a− b = 0 =⇒ γij =

(
b

ρa

)1/(ρ−1)

=⇒ γρija− γijb =
bρ/(ρ−1)

a1/(ρ−1)
·
(

1

ρρ/(ρ−1)
− 1

ρ1/(ρ−1)

)
In order to simplify the notation, let s ≥ 1 denote the Hölder conjugate of ρ. So that

1

ρ
+

1

s
= 1

ρ

ρ− 1
= s

1

ρ− 1
= s− 1,

and the above expression becomes:

−
(
b

a

)s

· a · 1
s

(
1− 1

s

)s−1

.

Plugging this in to each term, and letting Cs = (1/s)(1− 1/s)s−1, each term becomes

Cs

((
1

µiνj

)(1−ρ) (αi − βj)
+

∥xi − yj∥ρ2

)s

(µiνj)
1−ρ∥xi − yj∥ρ2 = Cs · µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

.

which means the dual becomes

max
α,β∈Rn

n∑
i=1

µiαi −
n∑

j=1

νjβj − Cs

n∑
i=1

n∑
j=1

µiνj

(
(αi − βj)

+

∥xi − xj∥2

)s

,

and for any α, β ∈ Rn, the minimizing value of γ is

γij = sCs · µiνj ·
((αi − βj)

+)s−1

∥xi − xj∥s2
.

We intuitively think of the dual of Rρ(µ, ν)
ρ in (10) as consisting of two parts. The linear term,

the first two summands in (10), and a non-linear “penalty” term given byCs
∑n

i=1

∑m
j=1 µiνj((αi−

βj)
+/∥xi − yj∥2)s. It is useful to compare the dual of Rρ(µ, ν)

ρ to the dual of the Earth Mover’s
distance, which would essentially only consider the two linear terms and always enforce that αi −
βj ≤ ∥xi− yj∥2. In (10), the nm constraints of the Earth Mover’s distance instead become a single
“penalty” which encode how much larger αi − βj is, in comparison to ∥xi − yj∥2. The following
two lemmas will become important in the analysis of the algorithm, since they will say that the
non-linear “penalty” term does not become too large throughout the optimization. Intuitively, this
will mean that as we perform a gradient ascent algorithm, the function which we optimize remains
smooth.

19

CHARIKAR CHEN RÉ WAINGARTEN

Lemma 7 Let s ≥ 2 and g : Rn × Rm → R≥0 denote the objective function which we seek to
optimize, i.e., that which is the dual of Rρ(µ, ν)

ρ,

g(α, β) =
n∑

i=1

µiαi −
m∑
j=1

νjβj − Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

.

Then, if (α, β) ∈ Rn+m is any point where g(α, β) ≥ 0, then

Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

≤ 4 · Rρ(µ, ν)
ρ.

In addition, there exists an input (α′, β′) ∈ Rn+m with g(α′, β′) ≥ g(α, β) which satisfies

∥(α′, β′)∥∞ ≤ 41/s

2
· sup

i,j

(
1

µiνj

)(ρ−1)/ρ

· rρ.

Proof Let ψ denote the quantity

ψ = Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

which we wish to upper bound. Then, by the fact g(α, β) ≥ 0, we must have that

ζ =
n∑

i=1

µiαi −
m∑
j=1

νjβj ≥ ψ.

If we consider the point (α′, β′) ∈ Rn+m given by (α, β)/2, we have g(α′, β′) = ζ/2− ψ/2s, and
since the dual of Rρ(µ, ν)

ρ is a maximization problem, we must have

ψ

(
1

2
− 1

2s

)
≤ ζ

2
− ψ

2s
= g(α′, β′) ≤ Rρ(µ, ν)

ρ.

When s ≥ 2, we may then obtain the desired upper bound. For the second part of the claim,
we note that given (α, β), we can let (α′, β′) be the vector where α′

i = max{αi,minj βj} and
β′j = min{βj ,maxi α

′
i}. This means that g(α′, β′) cannot be smaller than g(α, β), since we have

not increased the penalty ψ, while potentially increasing ζ. This means that every entry of α′

and β′ lies between the smallest entry of β′ and the largest entry of α′. However, we note that
maxi α

′
i −minj β

′
j can be at most

41/s · rρ · sup
i∈[n],j∈[m]

(
1

µiνj

)1/s

,

before the penalty term ψ exceeds 4 · Rρ(µ, ν)
ρ ≤ 4rρ. Thus, we can translate every entry of α′

by subtracting c and every entry of β′ by adding c without changing the objective function, and
ensuring the bound on the ℓ∞-norm of α′ and β′.

20

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Lemma 8 Let ρ ∈ (1, 2) and s > 2 be the Hölder conjugate, and g as in Lemma 7. Then, if
(α, β) ∈ Rn+m where g(α, β) ≥ 0, then if rmin = mini,j ∥xi − yj∥2 and maxi,j ∥xi − yj∥2 ≤ r,
we have

Cs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−1

∥xi − yj∥s2
≤ 4 · r
rmin

and Cs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−2

∥xi − yj∥s2
≤ 4 · r
rmin

Proof Both upper bounds follow from Jensen’s inequality and Lemma 7. Namely, we use the fact
that the function (·)s/(s−1) is convex, and that ρ = s/(s− 1),

Cs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−1

∥xi − yj∥s2
≤ Cs

rmin

 n∑
i=1

m∑
j=1

µiνj ·
(
(αi − βj)

+

∥xi − yj∥2

)s
1/ρ

≤ Cs

rmin

(
4 · rρ

Cs

)1/ρ

≤ 4 · r
rmin

.

Similarly, (·)s/(s−2) is convex, and ρ(s− 2)/s = 2− ρ,

Cs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−2

∥xi − yj∥s2
≤ Cs

r2min

 n∑
i=1

m∑
j=1

µiνj ·
(
(αi − βj)

+

∥xi − yj∥2

)s
(s−2)/s

≤ Cs

r2min

(
4 · rρ

Cs

)(s−2)/s

≤ 4 · r2−ρ

r2min

.

Appendix B. Lemmas and Proofs of Section 3

Lemma 9 For any ρ ≥ 1 as well as parameters σ, σµ, σν ≥ 0, the distributions µ′ and ν ′ satisfy:

• Every point in the support of µ′ and every point in the support of ν ′ has distance between σr
and r

√
1 + σ2.

• Every element of the support of µ′ is sampled with probability at least σµ/n, and every ele-
ment of ν ′ is sampled with probability at least σν/m.

• Both µ′ and ν ′ are minor perturbations of µ and ν, i.e.,

Rρ(µ, µ
′) ≤

(
nρ−1 · σ

σρ−1
µ

+ σµ

)1/ρ

· r and Rρ(ν, ν
′) ≤ σ1/ρν · r.

Proof Consider the coupling γ(1) ∈ Rn×n between µ and µ′ given by

γ
(1)
ij =


µi i = j and i ∈ [n] \ Lµ

µiµj/(1− ζµ) i ∈ Lµ and j ∈ [n] \ Lµ

0 j ∈ Lµ

.

21

CHARIKAR CHEN RÉ WAINGARTEN

It is simple to verify, using the fact
∑

i∈Lµ
µi = ζµ that the above is indeed a coupling, and we now

upper bound the cost:

Rρ(µ, µ
′)ρ ≤

∑
i∈[n]\Lµ

µ2i
1− ζµ

·
(
µi(1− ζµ)

µ2i
· σr

)ρ

+
∑
i∈Lµ

∑
j∈[n]\Lµ

µiµj
1− ζµ

· rρ

≤
∑

i∈[n]\Lµ

µi · (1/µi)ρ−1 · (σr)ρ + ζµ · rρ ≤

(
nρ−1 · σ

σρ−1
µ

+ σµ

)
· rρ.

Similarly, we may write the coupling γ(2) ∈ Rm×m between ν and ν ′ given by

γ
(2)
ij =


νi i = j and i ∈ [m] \ Lν

νiνj/(1− ζν) i ∈ Lν and j ∈ [m] \ Lν

0 j ∈ Lν

,

which allows us to upper bound Rρ(ν, ν
′) by

Rρ(ν, ν
′)ρ ≤

∑
i∈Lν

∑
j∈[m]\Lν

νiνj
1− ζν

· rρ ≤ σν · rρ

B.1. Additional Details from Section 3.2

Three Sub-routines Before stating the main lemma which we will prove for the guarantees on
the above algorithm, we give the three lemmas which encapsulate the performance guarantees on
Est-Alpha, Est-Beta, and Est-Penalty. Assuming these lemmas, we will then prove the
main lemma, and show how that implies Theorem 1. We will defer the proof the three lemmas until
after the analysis of the algorithm, as they rely on the data structures from Appendix C. Thus, the
proofs of Lemma 10 and Lemma 11 appear in Appendix C.2, and the proof of Lemma 12 appears
in Appendix C.3.

Lemma 10 (Guarantees on Est-Alpha) Fix a parameter s ≥ 1 and a small parameter τ > 0,
we also fix two distributions µ, ν supported on points {x1, . . . , xn} and {y1, . . . , ym} whose pair-
wise distance is between σr and r. For any (α, β) ∈ Rn+m and any ε > 0, there is a randomized
algorithm Est-Alpha with the following guarantees:

• The algorithm receives as input the vector (α, β) ∈ Rn+m, the accuracy parameters ε > 0
and τ > 0, and failure probability δ ∈ (0, 1). The algorithm produces as output a sequence
of n numbers η1, . . . ,ηn ∈ R≥0.

• The algorithm runs in time (n +m) · poly∗(2s/ε) and with probability at least 1 − δ, every
i ∈ [n] satisfiessCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

− τ ≤ ηi ≤ (1 + ε)

sCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

 .

22

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Lemma 11 (Guarantees on Est-Beta) Fix a parameter s ≥ 1 and a small parameter τ > 0, we
also fix two distributions µ, ν supported on points {x1, . . . , xn} and {y1, . . . , ym} whose pairwise
distance is between σr and r. For any (α, β) ∈ Rn+m and any ε > 0, there is a randomized
algorithm Est-Beta with the following guarantees:

• The algorithm receives as input the vector (α, β) ∈ Rn+m, the accuracy parameters ε > 0
and τ > 0, and failure probability δ ∈ (0, 1). The algorithm produces as output a sequence
of n numbers ξ1, . . . , ξm ∈ R≥0.

• The algorithm runs in time (n +m) · poly∗(2s/ε) and with probability at least 1 − δ, every
j ∈ [m] satisfies(

sCs

n∑
i=1

µi ·
((αi − βj)

+)s−1

∥xi − yj∥s2

)
− τ ≤ ξj ≤ (1 + ε)

(
sCs

n∑
i=1

µi ·
((αi − βj)

+)s−1

∥xi − yj∥s2

)
.

Lemma 12 (Guarantees on Est-Penalty) Fix a parameter s ≥ 1 and a small parameter
τ > 0, we also fix two distributions µ, ν supported on points {x1, . . . , xn} and {y1, . . . , ym}
whose pairwise distance is between σr and r. For any (α, β) ∈ Rn+m and any ε > 0, there is
a randomized algorithm Est-Penalty with the following guarantees:

• The algorithm receives as input the vector (α, β) ∈ Rn+m, the accuracy parameters ε > 0
and τ > 0, and failure probability δ ∈ (0, 1). The algorithm produces as output a number
ω ∈ R≥0.

• The algorithm runs in time (n+m) · poly∗(2s/ε) and satisfies that with high probability,Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s
−τ ≤ ω ≤ (1+ε)

Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s
 .

B.2. Proofs from the Analysis of the Algorithm

Proof [Proof of the Termination Condition] First, we note that we can apply the translation so as to
assume that (αt, βt) and (α∗, β∗) satisfies

∥αt∥∞, ∥βt∥∞, ∥α∗∥∞, ∥β∗∥∞ ≤ O(1) ·
(
nm

σµσν

)(ρ−1)/ρ

· rρ.

Let η1, . . . , ηn and ξ1, . . . , ξm denote the quantities

ηi = sCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2
and ξj = sCs

n∑
i=1

µi ·
((αi − βj)

+)s−1

∥xi − yj∥s2
,

and consider the function

g̃(α, β) =

n∑
i=1

µiηiαi −
m∑
j=1

νjξjβj − Cs

n∑
i=1

m∑
j=1

µiνj

(
(αi − βj)

+

∥xi − yj∥2

)s

.

23

CHARIKAR CHEN RÉ WAINGARTEN

Notice that g̃ is a concave function, and the partial derivatives at (αt, βt) are all zero, so that g̃ is
maximized at (αt, βt). Thus,

g(αt, βt) = g̃(αt, βt) +

n∑
i=1

µi(1− ηi)αi −
m∑
j=1

νj(1− ξj)βj

≥ g̃(α∗, β∗) +
n∑

i=1

µi(1− ηi)αi −
m∑
j=1

νj(1− ξj)βj

= g(α∗, β∗) +
n∑

i=1

µi(1− ηi)(αi − α∗
i)−

m∑
j=1

νj(1− ξj)(βj − β∗j).

This implies that

g(α∗, β∗)− g(αt, βt) ≤ (∥αt∥∞ + ∥α∗∥∞)

n∑
i=1

µi|1− ηi|+ (∥βt∥∞ + ∥β∗∥∞)

m∑
j=1

νj |1− ξj |.

By correctness of the algorithms Est-Alpha and Est-Beta, ηi is a good approximation to ηi
and ξj is a good approximation to ξj , which allows us to upper bound the above expression by

(∥αt∥∞ + ∥α∗∥∞ + ∥βt∥∞ + ∥β∗∥∞)

ε2 + τ + ε1 · sCs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

 ,

which by Lemma 8 is at most

O(1) ·
(
nm

σµσν

)(ρ−1)/ρ

· rρ ·
(
ε2 + τ +

ε1s

σ

)
,

since r/rmin ≤ σ.

Proof [Proof that Updates Increase Objective (Lemma 4)] In order to simplify the notation, we will
let β = βt = βt+1, and also denote α̃ = αt+1 and α = αt. Then, we have

g(α̃, β)− g(α, β) =
n∑

i=1

µi(α̃i − αi) + Cs

n∑
i=1

m∑
j=1

µiνj
∥xi − yj∥s2

·
(
((αi − βj)

+)s − ((α̃i − βj)
+)s
)
.

We now use the following simple consequence of convexity of ((t)+)s and ((t)+)s−1:

((αi − βj)
+)s − ((α̃i − βj)

+)s

≥ s(αi − α̃i) · ((αi − βj)
+)s−1 − s(s− 1)(αi − α̃i)

2((αi − βj)
+)s−2.

In particular, we may lower bound g(α̃, β)− g(α, β) by

n∑
i=1

(α̃i − αi) · µi ·

1− sCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

 (11)

− s(s− 1)Cs

n∑
i=1

(α̃i − αi)
2

m∑
j=1

µiνj ·
((αi − βj)

+)s−2

∥xi − yj∥s2
. (12)

24

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

We will lower bound the first term (11) and upper bound the second term (12). In particular, recall
that due to our approximation guarantee on ηi, every i ∈ [n] satisfies∣∣∣∣∣∣ηi − sCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2

∣∣∣∣∣∣ ≤ τ + ε1sCs

m∑
j=1

νj ·
((αi − βj)

+)s−1

∥xi − yj∥s2
,

and by our definition of the update, we may lower bound (11), using Lemma 8, by

λ
n∑

i=1

µi|1− ηi| − λτ − λε1 · sCs

n∑
i=1

m∑
j=1

µiνj ·
((αi − βj)

+)s−1

∥xi − yj∥s2
≥ λ

(
ε2 − τ − 4ε1 · s

σ

)
.

Then, we may upper bound (12) by (α̃i − αi)
2 ≤ λ2 for every i ∈ [n], which implies, also by

Lemma 8 that (12) is at most

O(1) · s(s− 1) · λ2

σ2 · rρ
.

In particular, since λ is a small constant factor of ε2·rρ·σ2/s2, and both τ and ε1s/σ are substantially
smaller than ε2, we may lower bound

g(α̃, β)− g(α, β) ≥ Ω(λ · ε2).

Appendix C. Augmenting Kernel Density Estimation Data Structures

This section gives the algorithms for Est-Alpha, Est-Beta, and Est-Penalty giving the
proofs of Lemma 10, Lemma 11, and Lemma 12. We first draw the connection to kernel density
estimation and define the modified data structure problem that we will need. Then, Lemma 10,
Lemma 11 and Lemma 12 will follow from different instantiations of one data structure.

Definition 13 (Kernel Density Estimation) Let K : Rd × Rd → R≥0 be a function, Φ > 1 an
aspect ratio bound, ε > 0 a multiplicative error parameter, and δ > 0 a failure probability.
KDE(K,Φ, ε, δ) is the following data structure problem:

• Preprocessing: The data structure receives a set of points X = {x1, . . . , xn} ⊂ Rd.

• Query: A query is specified by a point y ∈ Rd, and we will have the promise that maxi ∥xi−
y∥2/mini ∥xi − y∥2 is at most Φ. The data structure should output an estimate ξ̂ ∈ R≥0.

The guarantee is that for any dataset and any query y ∈ Rd, with probability at least 1− δ over the
randomness in constructing the data structure,

(1− ε)
n∑

i=1

K(xi, y) ≤ ξ̂ ≤ (1 + ε)
n∑

i=1

K(xi, y).

25

CHARIKAR CHEN RÉ WAINGARTEN

In using data structures for kernel density estimation, we will instantiate the data structure for
sets of vectors which will be subsets of the support of the distributions µ and ν. In addition, the
aspect ratio bound will be Φ = 1/σ (since we consider inputs whose distance is at most r and the
minimum distance is at least σr). For a small parameter ε0 > 0, we will be interested in kernel
functions K : Rd × Rd → R≥0 of the form:

K(xi, y) =
1

ε0 · (σr)s + ∥xi − y∥s2
. (13)

The kernel (13) is a scaled Student-t Kernel, and falls within the kernels explored in Backurs et al.
(2018). The results of Backurs et al. (2018) hold more generally for classes of “smooth” kernels,
where they formally define (L, t)-smooth kernels (see Definition 1 in Backurs et al. (2018)). We
note that K in (13) is a (1, s)-smooth kernel, so that their results will apply with L = 1 and t = s.
For this setting, we have every i ∈ [n] and y ∈ Rd within distance between σr and r from xi,

1− ε0
∥xi − y∥s2

≤ K(xi, y) ≤
1

∥xi − y∥s2
.

Theorem 14 (Main Theorem of Backurs et al. (2018), instantiated to K in (13)) For any Φ >
1, and ε, δ > 0, there exists two randomized algorithms Preprocess, and Query for solving
KDE(K,Φ, ε, δ), with the following guarantees:

• Preprocess(X) receives as a dataset X = {x1, . . . , xn} ⊂ Rd, and outputs a pointer v
to a data structure for KDE(K,Φ, ε, δ).

• Query(v, y) receives as input a pointer to a data structure v for KDE(K,Φ, ε, δ) and returns
the query at y for KDE(K,Φ, ε, δ).

We are guaranteed that Query takes time poly∗(2s/ε), and the algorithm Preprocess takes
time O(n) · poly∗(2s/ε).

We now introduce the augmented data structure problem which we need in order to solve
Est-Alpha, Est-Beta, and Est-Penalty. The goal is to incorporate the fact that points
have some associated real values α, β.

Definition 15 (Augmented Kernel Density Estimation) Let s2 ≥ 1 be a parameter, Φ > 1 is an
aspect ratio bound, ε > 0 be a multiplicative error parameter, and δ > 0 be a desired failure
probability. Augmented-KDE(K, s2,Φ, ε, δ) is the following data structure problem.

• Preprocessing: We receive a set of points X = {x1, . . . , xn} ∈ Rd. In addition, each
point has an associated weight αi ∈ R with |αi| ≤ r · poly(dnΦ2s/ε) and a parameter
µi ∈ [1/poly(n), 1], for a parameter r ≥ 0 which will be the maximum distance considered.

• Query: A query is specified by a point y ∈ Rd and weight β ∈ R. We are promised that:

– The point y ∈ Rd satisfies maxi∈[n] ∥xi − y∥2 ≤ r and that mini ∥xi − y∥2 is at least
σr.

– In addition, for every i, |αi−β| ∈ {0}∪ [σr/poly(dnΦ2s/ε), r ·poly(dnΦ2s/ε)], and
the data structure outputs a quantity η̂ ∈ R≥0.

26

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

The guarantee is that for any fixed query, with probability at least 1− δ over the randomness in the
construction of the data structure,

(1− ε)
n∑

i=1

µi · ((αi − β)+)s2 · K(xi, y) ≤ ξ̂ ≤ (1 + ε)
n∑

i=1

µi · ((αi − β)+)s2 · K(xi, y).

Theorem 16 For any s2 ≥ 1, Φ > 1, and ε, δ > 0, there exists three randomized algorithms
PreprocessA and QueryA for solving Augmented-KDE(K, s2,Φ, ε, δ), with the following
guarantees:

• PreprocessA(X,α) receives as input a dataset X of at most n points, and a vector α
indicating a weight for each point and the vector µ. The algorithm outputs a pointer v to a
data structure for Augmented-KDE(K, s2,Φ, ε, δ).

• QueryA(v, y, β) receives as input a pointer to a data structure for Augmented-KDE(K, s2,Φ, ε, δ),
a point y ∈ Rd, and a weight β ∈ R such that |αi − β| ∈ {0} ∪ {σr/poly(dnΦ2s/ε), r ·
poly(dnΦ2s/ε)]. The algorithm outputs query at y with weight β for Augmented-KDE(K, s2,Φ, ε, δ).

We are guaranteed that QueryA takes time poly∗(2s+s2/ε), and PreprocessA takes timeO(n) ·
poly∗(2s+s2/ε).

C.1. Proof of Theorem 16

Since we are promised that every index µ1, . . . , µn is a number between µmin = 1/poly(n) and 1,
and we can output a multiplicative 1± ε-approximation to the final sum, we will partition the set of
points into O(log n/ε) many parts, according to the range for which µi ∈ [µmin(1 + ε)j , µmin(1 +
ε)j+1]. Then, it suffices to output, for each of the O(log n/ε) many ranges j, a 1± ε-approximation
to the quantity ∑

i∈Pj

((αi − β)+)s2 · K(xi, y).

For the remainder of the discussion we will assume that we have performed this partition (to drop µ
from the notation), and assume henceforth that all of the weights specified by µ are equal.

We refer to Figure 2 for the description of the data structure, which maintains a binary tree
over the points in X sorted according to α, where each internal node of the tree additionally holds
a pointer to a KDE(K,Φ, ε, δ) data structure. From the description of Figure 2, the algorithms
PreprocessA is straight-forward, and we will mostly give and analyze QueryA.

Lemma 17 An execution of QueryA(v, y, β) takes time poly∗(2s+s2/ε).

Proof The above claim on the running time of QueryA(v, y, β) follows from inspection of Fig-
ure 3. Indeed, Step 1 takes O(1) time and in Steps 2 to 3, there are poly∗(2s2/ε) many calls to
Query, where each takes time poly∗(2s/ε), by Theorem 14.

Definition 18 Consider a construction of the data structure for Augmented-KDE(K, s2,Φ, ε, δ),
and suppose we fix the randomness and let V be the set of all nodes in the tree rooted at v. For
y ∈ Rd, we consider the collection {ζ̂u,t(y) : u ∈ V}, where ζ̂u(y) is the output of Query(u.ds, y)
(since we assumed Query(u.ds, y), is deterministic, we don’t require adding the additional param-
eters t ∈ [T] in case it is called multiple times).

27

CHARIKAR CHEN RÉ WAINGARTEN

Data Structure for Augmented-KDE(K, s2,Φ, ε, δ)

Preprocessing: The data structure preprocesses a set X = {x1, . . . , xn} ⊂ Rd, where each
point has its associated weight α1, . . . , αn ∈ R and a weight µ1, . . . , µn (which after a
partitioning step, we will assume are equal – see Subsection C.1).
Pointer: v will be the pointer to the root of a binary tree.

• The data structure is organized into a balanced binary tree of depth O(log n), where the
n leaves correspond to the points of X stored in sorted order according to their weights
α1, . . . , αn.

• Each node v of the binary tree maintains the following information:

– A set v.S ⊂ X in the subtree of v.

– A pointer v.ds to a data structure for KDE(K,Φ, ε, δε2/(O(n) · 2O(s2)) storing v.S,

– Three numbers v.min, v.max ∈ R such that

v.min = min {αi : xi ∈ v.S} ,
v.max = max {αi : xi ∈ v.S} ,
v.med = median {αi : xi ∈ v.S}

– If v.S contains more than one point, it has two children v.LeftChild and
v.RightChild. The left child v.LeftChild stores the points xi ∈ v.S where
αi ≤ v.med and the right child v.RightChild stores the points xi ∈ v.S where
αi > v.med.

• The algorithms PreprocessA(X,α) works by first building the balanced tree, and in
the sorted order of α. Furthermore, for every internal node v we consider the dataset v.S
and execute Preprocess(v.S) and store the data structure in v.ds.

Figure 2: Data Structure for Augmented-KDE.

28

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Algorithm QueryA(v, y, β)

Input: A pointer to a data structure v for Augmented-KDE(K, s2,Φ, ε, δ), a point y ∈ Rd,
and a weight β ∈ R.
Output: An estimate ξ̂ ∈ R≥0.

1. We first check whether v.max ≤ β. If so, then every weight αi − β ≤ 0 and hence
(αi − β)+ = 0, so output ξ̂ = 0.

2. Otherwise, let k =
⌈
log2

(
(v.max−β)

ε0σr
· poly(ndΦ2s/ε)

)⌉
(which will become “hidden”

in the notation poly∗(·)), and consider the k + 2 indices σ0, . . . , σk ∈ [0, v.max−β]
where

σℓ =


0 ℓ = 0(

ε0σr
poly(ndΦ2s/ε)

)
· 2ℓ−1 ℓ > 0

v.max−β ℓ = k + 1

,

and let I0, . . . , Ik be the disjoint and consecutive intervals Iℓ = (β + σℓ, β + σℓ+1]
which partition (β, v.max].

3. For each ℓ ∈ {1, . . . , k}, and t ∈ [T], for T = 2O(s2)/ε2, we perform the following:

• Sample wℓ,t ∼ [σs2ℓ , σ
s2
ℓ+1] uniformly at random.

• Let Vℓ be the set of all nodes u where [u.min, u.max] ⊂ Iℓ, and let
Vℓ(wℓ,t) = {v(1), . . . ,v(h)} be the minimal subset of Vℓ which satisfies

(v(1).S,v(2).S, . . . ,v(h).S) partition
{
xi ∈ Ω : αi ∈ Iℓ and αi ≥ β +w

1/s2
ℓ,t

}
,

and note that h = O(log n), and we may identify these nodes in O(log n) time.

• For each l ∈ [h], we execute Query(v(l).ds, y) and let ζ̂ℓ,t,l be its output, and let

ξ̂ℓ,t =

h∑
l=1

ζ̂ℓ,t,l.

4. We output

ξ̂ =
1

T

k∑
ℓ=1

T∑
t=1

(σs2ℓ+1 − σs2ℓ) · ξ̂ℓ,t.

Figure 3: Description for QueryA Algorithm.

29

CHARIKAR CHEN RÉ WAINGARTEN

Lemma 19 With probability at least 1 − δ/2 over the construction of the data structures for
KDE(K,Φ, ε, δ), every node u ∈ V satisfies

(1− ε)
∑
x∈u.S

K(x, y) ≤ ζ̂u(y) ≤ (1 + ε)
∑
x∈u.S

K(x, y).

Proof We apply Theorem 14, and the fact that, in Figure 2, we’ve instantiated the data structures
with failure probability δε2/(O(n) · 2O(s2)), such that we can union bound over all nodes in V .

The remainder of the argument proceeds by computing the expectation ξ̂ over the randomness in
{ξℓ,t : ℓ ∈ [h], t ∈ [T]} as well as the variance. Specifically, we show that E[ξ̂] satisfies the output
guarantees, and that Var[ξ̂] ≤ εE[ξ̂]2, such that we can apply Chebyshev’s inequality. Establishing
the correctness of the estimate with high probability follows from a standard repetition argument.

Lemma 20 Consider a fixed construction of the data structure, and suppose that the conclusion of
Claim 19 holds (which occurs with probability at least 1− δ/2). Then, for any fixed query y ∈ Rd

with weight β, the expectation of ξ̂ over the randomness in QueryA(v, y, β),

(1− ε)
n∑

i=1

((αi − β)+)s2 · K(xi, y) ≤ E
[
ξ̂
]
≤ (1 + ε)

n∑
i=1

((αi − β)+)s2 · K(xi, y).

Proof We have that for any ℓ ∈ {1, . . . , k} and t ∈ [T],

ξ̂ℓ,t =
∑
u∈Vℓ

1{u ∈ Vℓ(wℓ,t)} · ζ̂u(y) ≤ (1 + ε)
∑
u∈Vℓ

∑
x∈u.S

1{u ∈ Vℓ(wℓ,t)} · K(x, y)

= (1 + ε)
∑
x∈X

1{∃u ∈ Vℓ(wℓ,t), x ∈ u.S} · K(x, y), (14)

where in the second line, we used that every x ∈ X which appears in some u ∈ Vℓ(wℓ,t) appears
at most once. Similarly,

ξ̂ℓ,t ≥ (1− ε)
∑
x∈X

1{∃u ∈ Vℓ(wℓ,t), x ∈ u.S} · K(x, y). (15)

Then, for every xi ∈ X with weight αi,

Pr
wℓ,t∼[σ

s2
ℓ ,σ

s2
ℓ+1]

[∃u ∈ Vℓ(wℓ,t), xi ∈ u.S] = Pr
wℓ,t

[
β +w

1/s2
ℓ,t ≤ αi ≤ β + σℓ+1

]
= 1{αi ∈ Iℓ} ·

((αi − β)+)s2

σs2ℓ+1 − σs2ℓ
. (16)

In particular, we may upper and lower bound the expectation of ξ̂ over the randomness in drawing
wℓ,t by plugging (16) into (14) and (15). Namely, we first note that for a fixed ℓ ∈ {1, . . . , k}, all
the draws from t ∈ [T] of wℓ,t are identically distributed, so we may simplify

E
[
ξ̂
]
=

k∑
ℓ=1

(
σs2ℓ+1 − σs2ℓ

)
E
wℓ,t

[
ξ̂ℓ,t

]
.

30

FAST ALGORITHMS FOR A NEW RELAXATION OF OPTIMAL TRANSPORT

Then, we have that (16) and (14) implies

(
σs2ℓ+1 − σs2ℓ

)
E
wℓ,t

[
ξ̂ℓ,t

]
≤ (1 + ε)

n∑
i=1

1{αi ∈ Iℓ} · ((αi − β)+)s2 · K(xi, y).

The lower bound proceeds similarly, expect we plug (16) into (15). In particular, since there is no
i ∈ [n] where αi ∈ I0, once ℓ ∈ {1, . . . , k}, we cover the entire interval (β, v.max].

Lemma 21 Consider a fixed construction of the data structure, and suppose that the conclusion of
Claim 19 holds (which occurs with probability at least 1− δ/2). Then, for any fixed query y ∈ Rd

with weight β, the variance of x̂ over the randomness in QueryA(v, y, β) satisfies

Var
[
ξ̂
]
≤ ε

(
E
[
ξ̂
])2

.

Proof For various settings of ℓ ∈ {1, . . . , k} and t ∈ [T], the draws of wℓ,t are independent, so that
we may write

Var
[
ξ̂
]
=

k∑
ℓ=1

1

T
·Var

[
ξ̂ℓ,t

]
,

and it suffices to upper bound that. We note that using the same upper bound in (14),

Var[ξ̂ℓ,t] ≤ E[ξ̂
2

ℓ,t]

≤ (1 + ε)2
n∑

i=1

n∑
j=1

1{αi, αj ∈ Iℓ} · K(xi, y) · K(xj , y) · Pr
wℓ,t

[
β +w

1/s2
ℓ,t ≤ min{αi, αj}

]
.

(17)

Suppose first that ℓ > 0. Then if αi, αj ∈ Iℓ, then (max{αi, αj} − β)s2 ≥ σs2ℓ ,

Pr
wℓ,t

[
β +w

1/s2
ℓ,t ≤ min{αi, αj}

]
≤ ((min{αi, αj} − βj)

+)s2

σs2ℓ+1 − σs2ℓ
· ((max{αi, αj} − β)+)s2

σs2ℓ

≤

(
((αi − β)+)s2

σs2ℓ+1 − σs2ℓ
· ((αi − β)+)s2

σs2ℓ+1 − σs2ℓ

)
·
(
σs2ℓ+1 − σs2ℓ

σs2ℓ

)
≤ 2s2 · Pr

wℓ,t

[
β +w

1/s2
ℓ,t ≤ αi

]
Pr
wℓ,t

[
β +w

1/s2
ℓ,t ≤ αj

]
. (18)

Plugging (18) into (17), we have that every ℓ ∈ {1, . . . , k} satisfies

Var
[
ξ̂ℓ,t

]
≤ (1 + ε)2 · 2s2

(
E[ξ̂ℓ,t]

)2
.

By the setting of T , we obtain the desired bound.

31

CHARIKAR CHEN RÉ WAINGARTEN

C.2. Proof of Lemma 10 and Lemma 11

We briefly describe Est-Beta (the case of Est-Alpha is a symmetric argument, by replacing
α’s and β’s, as well as changing the signs). The intuition is the following: we initialize a data
structure for Augmented-KDE with the kernel K in (13) and the parameter s2 = s − 1. This is
done so that for every i ∈ [n] and j ∈ [m],

fij(αi, βj) =

(
1− 1

s

)s−1

· µi
(
(αi − βj)

+
)s2 · K(xi, yj).

Thus, we preprocess the data structure with the dataset {x1, . . . , xn} and weights α ∈ Rn and
µ ∈ Rn. Then, we will iterate through each j ∈ [m], and we query the data structure with yj and βj
to obtain ξj .

C.3. Proof of Lemma 12

The algorithm Est-Penalty also uses Theorem 16. We initialize the kernel function K : Rd ×
Rd → R≥0 as in (13), but with s2 = s. Since ρ = s/(s− 1), we’ve set things up so

(1− ε0) (fij(αi, βj) · ∥xi − yj∥2)ρ ≤
(
1− 1

s

)s2

· ((αi − βj)
+)s · K(xi, yj)

≤ (fij(αi, βj) · ∥xi − yj∥2)ρ ,

and thus Est-Penalty(α, β, ε, δ) needs to approximate

n∑
i=1

m∑
j=1

µiνj · ((αi − βj)
+)s2 · K(xi, yj).

This is a simple application of Theorem 16. We preprocess a data structure v for Augmented-KDE(K, s,Φ, ε/2, δ)
with the dataset {x1, . . . , xn} and weights α, and we query it for each y1, . . . , ym with the weights
β ∈ Rm. If each estimate is ξ̂j , the desired output estimate is given by

∑m
j=1 ξ̂j .

32

	Introduction
	Related Work: The Spanner Approach for EMD
	Related Work: Sinkhorn Distances
	Our Contributions

	The Definition of -Optimal Transports
	Proof of Theorem 1 Overview

	A Gradient Ascent Algorithm
	A Simple Preprocessing
	Description of the Algorithm
	Analysis of the Algorithm
	Proof of Theorem 1

	Open Problems
	Basic Properties of R(,)
	R(,) Defines a Metric Space
	Dual of R(,)

	Lemmas and Proofs of Section 3
	Additional Details from Section 3.2
	Proofs from the Analysis of the Algorithm

	Augmenting Kernel Density Estimation Data Structures
	Proof of Theorem 16
	Proof of Lemma 10 and Lemma 11
	Proof of Lemma 12

