Open problem: $\log n$ factor in "Local Glivenko-Cantelli"

 Doron Cohen
 DORONV@POST.BGU.AC.IL
 and
 Aryeh Kontorovich
 KARYEH@CS.BGU.AC.IL

 Department of Computer Science
 Ben-Gurion University of the Negev
 KARYEH@CS.BGU.AC.IL

Beer-Sheva, Israel

Editors: Gergely Neu and Lorenzo Rosasco

Abstract

Can the log(n) factor in the upper bound of Cohen and Kontorovich (COLT, 2023) be removed?

Introduction. Cohen and Kontorovich (2023) considered the following problem. Let Y_j , $j \in \mathbb{N}$ be a sequence of independent $\text{Binomial}(n, p_j)$ random variables, where $n \in \mathbb{N}$ and $p_j \downarrow 0$ as $j \to \infty$. Since $\mathbb{E} Y_j = np_j$, let us consider the centered, normalized process $\overline{Y}_j := n^{-1}Y_j - p_j$. Finally, we define Δ_n to be the expected uniform absolute deviation:

$$\Delta_n := \mathbb{E} \sup_{j \in \mathbb{N}} |\bar{Y}_j|.$$
(1)

Cohen and Kontorovich gave an exact characterization of the $p \in [0, \frac{1}{2}]_{\downarrow 0}^{\mathbb{N}}$ (that is, $p \in [0, \frac{1}{2}]^{\mathbb{N}}$ with $p_j \downarrow 0$) for which $\Delta_n \to 0$ as $n \to \infty$. Namely, they defined the functional

$$T(p) := \sup_{j \in \mathbb{N}} \frac{\log(j+1)}{\log(1/p_j)}$$

and showed that $\Delta_n \to 0$ iff $T(p) < \infty$. They also gave the finite-sample bound

$$\Delta_n \leq c \left(\sqrt{\frac{S(p)}{n}} + \frac{T(p)\log n}{n} \right), \qquad n \geq e^3, \tag{2}$$

where c > 0 is an absolute constant and

$$S(p) := \sup_{j \in \mathbb{N}} p_j \log(j+1).$$

We conjecture that the $\log n$ factor in (2) is superfluous. This conjecture is motivated by the asymptotic lower bounds

$$\liminf_{n \to \infty} \sqrt{n} \Delta_n \geq c \sqrt{S(p)},\tag{3}$$

$$\liminf_{n \to \infty} n\Delta_n \ge cT(p), \tag{4}$$

where c > 0 is a universal constant. This shows that beyond the conjecturally removable $\log n$ factor, (2) is tight up to constants.

© 2023 D. Cohen & A. Kontorovich.

Open problem. Is the $\log n$ factor in (2) necessary, or can it be removed?

Background and motivation. The open problem posed above is a concise version of the following natural mean estimation problem. Estimating the mean of a random variable $X \in \mathbb{R}^d$ from a sample of independent draws X_i is among the most basic problems of statistics. Much of the theory has focused on obtaining efficient estimators \hat{m}_n of the true mean m and analyzing the decay of $\|\hat{m}_n - m\|_2$ as a function of sample size n, dimension d, and various moment assumptions on X(Devroye et al., 2016; Lugosi and Mendelson, 2019a,b; Cherapanamjeri et al., 2019, 2020; Lugosi and Mendelson, 2021). Inspired by Thomas (2018), Cohen and Kontorovich (2023) considered a distribution μ on $\{0,1\}^d$ with mean $p \in [0,1]^d$. Given n iid draws of $X_i \sim \mu$, they denote by $\hat{p}_n = n^{-1} \sum_{i=1}^n X_i$ the empirical mean. The central quantity of interest studied by Cohen and Kontorovich is the uniform absolute deviation

$$\Delta_n(\mu) := \mathbb{E} \left\| \hat{p}_n - p \right\|_{\infty} = \mathbb{E} \max_{j \in [d]} \left| \hat{p}_n(j) - p(j) \right|.$$
(5)

The ℓ_{∞} norm in (5) is in some sense the most interesting of the ℓ_r norms; indeed, for $r < \infty$, $\Delta_n^{(r)} := \mathbb{E} \|\hat{p}_n - p\|_r^r$ decomposes into a sum of expectations and the condition $\Delta_n^{(r)} \to 0$ reduces to one of convergence of the appropriate series.

Cohen and Kontorovich (2023) obtained an almost complete understanding of the behavior of $\Delta_n(\mu)$ in the case of product measures (i.e., where the X_i are independent) — modulo the troublesome $\log n$ factor in the Open Problem. Indeed, the $\hat{p}_n - p$ in (5) is exactly the \bar{Y}_j in (1).

Our restriction of $p \in [0,1]^{\mathbb{N}}$ to the range $[0,\frac{1}{2}]$ and requirement that $p(j) \downarrow 0$ incur no loss of generality. Indeed, the range restriction is justified since |u-v| = |(1-u)-(1-v)|. Furthermore, if $p(j) \not\rightarrow 0$ as $j \rightarrow \infty$ then certainly $T(p) = \infty$ and hence (4) implies that $\Delta_n \not\rightarrow 0$ as $n \rightarrow \infty$. Now whenever $p(j) \rightarrow 0$, there is a non-increasing permutation p^{\downarrow} , and since $\Delta_n(p) = \Delta_n(p^{\downarrow})$, there is indeed no loss of generality in assuming that the decay is monotone.

References

- Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean estimation with sub-gaussian rates. In Alina Beygelzimer and Daniel Hsu, editors, *Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA*, volume 99 of *Proceedings of Machine Learning Research*, pages 786–806. PMLR, 2019. URL http://proceedings.mlr. press/v99/cherapanamjeri19b.html.
- Yeshwanth Cherapanamjeri, Nilesh Tripuraneni, Peter L. Bartlett, and Michael I. Jordan. Optimal mean estimation without a variance. *CoRR*, abs/2011.12433, 2020. URL https://arxiv.org/abs/2011.12433.
- Doron Cohen and Aryeh Kontorovich. Local Glivenko-Cantelli. In *Conference on Learning Theory*, Proceedings of Machine Learning Research, 2023.
- Luc Devroye, Matthieu Lerasle, Gabor Lugosi, and Roberto I. Oliveira. Sub-Gaussian mean estimators. *The Annals of Statistics*, 44(6):2695 – 2725, 2016. doi: 10.1214/16-AOS1440. URL https://doi.org/10.1214/16-AOS1440.

- Gábor Lugosi and Shahar Mendelson. Sub-Gaussian estimators of the mean of a random vector. *The Annals of Statistics*, 47(2):783 794, 2019a. doi: 10.1214/17-AOS1639. URL https://doi.org/10.1214/17-AOS1639.
- Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed distributions: A survey. *Found. Comput. Math.*, 19(5):1145–1190, 2019b. doi: 10.1007/ s10208-019-09427-x. URL https://doi.org/10.1007/s10208-019-09427-x.
- Gábor Lugosi and Shahar Mendelson. Robust multivariate mean estimation: The optimality of trimmed mean. *The Annals of Statistics*, 49(1):393 410, 2021. doi: 10.1214/20-AOS1961. URL https://doi.org/10.1214/20-AOS1961.
- Thomas. Is uniform convergence faster for low-entropy distributions? Theoretical Computer Science Stack Exchange, 2018. URL https://cstheory.stackexchange.com/q/42009. URL:https://cstheory.stackexchange.com/q/42009 (version: 2018-12-10).