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Open problem: log n factor in “Local Glivenko-Cantelli”
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Abstract
Can the log(n) factor in the upper bound of Cohen and Kontorovich (COLT, 2023) be removed?

Introduction. Cohen and Kontorovich (2023) considered the following problem. Let Yj , j ∈ N
be a sequence of independent Binomial(n, pj) random variables, where n ∈ N and pj ↓ 0 as
j → ∞. Since EYj = npj , let us consider the centered, normalized process Ȳj := n−1Yj − pj .
Finally, we define ∆n to be the expected uniform absolute deviation:

∆n := E sup
j∈N

|Ȳj |. (1)

Cohen and Kontorovich gave an exact characterization of the p ∈ [0, 12 ]
N
↓0 (that is, p ∈ [0, 12 ]

N

with pj ↓ 0) for which ∆n → 0 as n → ∞. Namely, they defined the functional

T (p) := sup
j∈N

log(j + 1)

log(1/pj)

and showed that ∆n → 0 iff T (p) < ∞. They also gave the finite-sample bound

∆n ≤ c

(√
S(p)

n
+

T (p) log n

n

)
, n ≥ e3, (2)

where c > 0 is an absolute constant and

S(p) := sup
j∈N

pj log(j + 1).

We conjecture that the log n factor in (2) is superfluous. This conjecture is motivated by the asymp-
totic lower bounds

lim inf
n→∞

√
n∆n ≥ c

√
S(p),

(3)

lim inf
n→∞

n∆n ≥ cT (p), (4)

where c > 0 is a universal constant. This shows that beyond the conjecturally removable log n
factor, (2) is tight up to constants.
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Open problem. Is the log n factor in (2) necessary, or can it be removed?

Background and motivation. The open problem posed above is a concise version of the follow-
ing natural mean estimation problem. Estimating the mean of a random variable X ∈ Rd from a
sample of independent draws Xi is among the most basic problems of statistics. Much of the theory
has focused on obtaining efficient estimators m̂n of the true mean m and analyzing the decay of
∥m̂n −m∥2 as a function of sample size n, dimension d, and various moment assumptions on X
(Devroye et al., 2016; Lugosi and Mendelson, 2019a,b; Cherapanamjeri et al., 2019, 2020; Lugosi
and Mendelson, 2021). Inspired by Thomas (2018), Cohen and Kontorovich (2023) considered a
distribution µ on {0, 1}d with mean p ∈ [0, 1]d. Given n iid draws of Xi ∼ µ, they denote by
p̂n = n−1

∑n
i=1Xi the empirical mean. The central quantity of interest studied by Cohen and

Kontorovich is the uniform absolute deviation

∆n(µ) := E ∥p̂n − p∥∞ = Emax
j∈[d]

|p̂n(j)− p(j)|. (5)

The ℓ∞ norm in (5) is in some sense the most interesting of the ℓr norms; indeed, for r < ∞,
∆

(r)
n := E ∥p̂n − p∥rr decomposes into a sum of expectations and the condition ∆

(r)
n → 0 reduces

to one of convergence of the appropriate series.
Cohen and Kontorovich (2023) obtained an almost complete understanding of the behavior

of ∆n(µ) in the case of product measures (i.e., where the Xi are independent) — modulo the
troublesome log n factor in the Open Problem. Indeed, the p̂n − p in (5) is exactly the Ȳj in (1).

Our restriction of p ∈ [0, 1]N to the range [0, 12 ] and requirement that p(j) ↓ 0 incur no loss of
generality. Indeed, the range restriction is justified since |u−v| = |(1−u)− (1−v)|. Furthermore,
if p(j) ̸→ 0 as j → ∞ then certainly T (p) = ∞ and hence (4) implies that ∆n ̸→ 0 as n → ∞.
Now whenever p(j) → 0, there is a non-increasing permutation p↓, and since ∆n(p) = ∆n(p

↓),
there is indeed no loss of generality in assuming that the decay is monotone.

References

Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean estimation with
sub-gaussian rates. In Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning
Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Ma-
chine Learning Research, pages 786–806. PMLR, 2019. URL http://proceedings.mlr.
press/v99/cherapanamjeri19b.html.

Yeshwanth Cherapanamjeri, Nilesh Tripuraneni, Peter L. Bartlett, and Michael I. Jordan. Optimal
mean estimation without a variance. CoRR, abs/2011.12433, 2020. URL https://arxiv.
org/abs/2011.12433.

Doron Cohen and Aryeh Kontorovich. Local Glivenko-Cantelli. In Conference on Learning Theory,
Proceedings of Machine Learning Research, 2023.

Luc Devroye, Matthieu Lerasle, Gabor Lugosi, and Roberto I. Oliveira. Sub-Gaussian mean esti-
mators. The Annals of Statistics, 44(6):2695 – 2725, 2016. doi: 10.1214/16-AOS1440. URL
https://doi.org/10.1214/16-AOS1440.

2

http://proceedings.mlr.press/v99/cherapanamjeri19b.html
http://proceedings.mlr.press/v99/cherapanamjeri19b.html
https://arxiv.org/abs/2011.12433
https://arxiv.org/abs/2011.12433
https://doi.org/10.1214/16-AOS1440


LOCAL GLIVENKO-CANTELLI
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