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Abstract
We study the query complexity of geodesically convex (g-convex) optimization on a manifold.
To isolate the effect of that manifold’s curvature, we primarily focus on hyperbolic spaces. In a
variety of settings (smooth or not; strongly g-convex or not; high- or low-dimensional), known
upper bounds worsen with curvature. It is natural to ask whether this is warranted, or an artifact.

For many such settings, we propose a first set of lower bounds which indeed confirm that
(negative) curvature is detrimental to complexity. To do so, we build on recent lower bounds
(Hamilton and Moitra, 2021; Criscitiello and Boumal, 2022a) for the particular case of smooth,
strongly g-convex optimization. Using a number of techniques, we also secure lower bounds which
capture dependence on condition number and optimality gap, which was not previously the case.

We suspect these bounds are not optimal. We conjecture optimal ones, and support them with
a matching lower bound for a class of algorithms which includes subgradient descent, and a lower
bound for a related game. Lastly, to pinpoint the difficulty of proving lower bounds, we study how
negative curvature influences (and sometimes obstructs) interpolation with g-convex functions.
Keywords: geodesic convexity; Riemannian optimization; curvature; lower bounds; hyperbolic

1 Introduction and contributions

Let M be a d-dimensional Riemannian manifold. We consider optimization problems of the form

min
x∈M

f(x), knowing that f attains its minimum in B(xref , r) = {x : dist(x, xref) ≤ r}. (P)

Here, f : M → R is geodesically convex (g-convex) and dist denotes Riemannian distance. When
M is a Euclidean space, problem (P) amounts to convex optimization. Motivated by applications
in statistics, machine learning and computer science (see below), it is natural to study algorithms
for (P) (upper bounds), and to ask whether they are optimal (lower bounds).

Both in smooth and nonsmooth g-convex optimization, known upper bounds worsen with the
curvature of M (Zhang and Sra, 2016; Bento et al., 2017). Is this effect of curvature warranted?

To address this question, we focus on Hadamard manifolds, which have nonpositive curvature,
because they are the most natural setting for geodesic convexity. Non-Hadamard manifolds, even
simple ones, often do not globally carry interesting g-convex functions.1 Accordingly, most ap-
plications of geodesic convexity are in Hadamard manifolds. To isolate the effect of curvature,
we further focus on the case where M has constant negative curvature, i.e., M is a hyperbolic

1. For example, on compact manifolds, global g-convex functions are constant. Moreover, if a complete Riemannian
manifold admits a smooth strongly g-convex function, then it must be diffeomorphic to Rd (Sakai, 1996, Prop. 5.10).
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space of curvature K < 0.2 We prove lower bounds for algorithms with access to first-order in-
formation (function values and subgradients). Dependence on curvature is captured by the quantity
ζ = ζr

√
−K := r

√
−K

tanh(r
√
−K)

, as it appears in known upper bounds.3

Lower bounds in the Euclidean case are well understood. For curved spaces, the only known
result is due to Hamilton and Moitra (2021) and Criscitiello and Boumal (2022a), who prove the
lower bound4 Ω̃(ζ) for smooth strongly g-convex optimization, showing that in this setting the effect
of curvature is unavoidable. However, this known lower bound has two major limitations:

(a) It only holds for smooth, strongly g-convex optimization (as opposed to other settings);

(b) It does not depend on the condition number κ of the strongly g-convex function.

These are real limitations. Many g-convex problems in applications fail to be smooth or strongly
g-convex, e.g., Fréchet medians (Fletcher et al., 2009) or operator scaling (Allen-Zhu et al., 2018).
Moreover, most problems that are smooth and strongly g-convex have condition number κ which is
much greater than ζ (e.g., robust covariance estimation (Franks and Moitra, 2020)), so the complex-
ity of the problem is determined by κ rather than ζ. (We note however that the problem of Fréchet
means (Karcher, 1977) is strongly g-convex with condition number that naturally scales as Θ(ζ).)

In this paper, we address these two limitations. We provide four main contributions. First,
to address limitation (a), in Section 3 we extend the Ω̃(ζ) lower bound to the Lipschitz and the
smooth (nonstrongly) g-convex settings. This shows that “full” acceleration O( 1√

ϵ
) (independent

of curvature) for smooth g-convex optimization is impossible, and also justifies the presence of
curvature terms in the upper bounds for subgradient descent proven by Zhang and Sra (2016).

Second, to address limitation (b), in Sections 4 and 5 we provide new techniques for proving
lower bounds which depend on the problem class parameters (e.g., κ or ϵ). In addition, in Ap-
pendix D we show how upper and lower bounds from Euclidean space carry over to the Riemannian
setting when r is very small. In the first four rows of Table 1, we present these lower bounds, along
with the best known upper bounds. See Section 1.1 for the precise function classes and complexity
measures. For any fixed ζ, the scalings of these lower bounds match those found in Euclidean space.

Our lower bounds do not match the best known upper bounds in Table 1, and we strongly suspect
the lower bounds can be improved. Our third contribution is to provide a roadmap for improving
on our lower bounds. We conjecture that the “multiplicative” upper bounds in the second, third and
fourth rows of the table are optimal, and that the optimal upper bound for the first row is Θ(ζd).5

We do not know if those are the correct bounds, but we believe they are reasonable targets.
We provide two pieces of evidence for this conjecture. First, in Section 6 we prove the multi-

plicative lower bound Ω( ζ
ϵ2
) for a class of (intuitively reasonable) algorithms which includes sub-

gradient descent (with Polyak step size). In particular, this shows that the analysis of subgradient
descent cannot be improved. Second, in Section 7 we prove the Ω̃(ζd) lower bound for a “cutting-
planes game” which serves as a proxy for low-dimensional Lipschitz g-convex optimization, and
also provides a lower bound for g-convex “cutting-planes schemes” (Nesterov, 2004, Sec. 3.2.6).6

2. We expect our results extend to the manifold of positive definite matrices with affine-invariant metric, because it
contains a large totally geodesic submanifold isometric to hyperbolic space (Criscitiello and Boumal, 2022a, App. J).

3. If r
√
−K ≪ 1, then ζ ≈ 1 and bounds match those from Euclidean space. If r

√
−K ≫ 1, then ζ ∼ r

√
−K is large.

4. We write Ω̃(·), Õ(·) or Θ̃(·) when we omit logarithmic terms.
5. The lower bounds we prove depend additively in terms of ζ and the other parameters (Ω̃(ζ +

√
κ) for the strongly g-

convex case). On the other hand, the best known upper bounds depend multiplicatively on the parameters (O(
√
ζκ)).

6. Nesterov (2004, Sec. 3.2.5) considers the analogous game as a proxy for Lipschitz convex optimization.
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To build lower bounds for a function class (e.g., g-convex functions), one (implicitly or ex-
plicitly) interpolates a collection of function values and gradients with a function from that class.
The recent focus on necessary and sufficient interpolation conditions for convex functions (Taylor
et al., 2016), has led to a number of insights into the complexity of convex optimization (Taylor
et al., 2017; Dragomir et al., 2021; Taylor and Drori, 2022). Our fourth contribution is a study of
interpolation by g-convex functions in Section 8. We show that (unlike in the convex case), the
naive necessary conditions for interpolation by g-convex functions are not sufficient. This geomet-
ric obstruction partly explains the difficulties of showing lower bounds for g-convex optimization.

Complexity of g-convex optimization

g-convex setting
Function
class

Lower
bound

Upper
bound

Algorithm Result

Lipschitz, low-
dimensional, P1 Fd

r,M,0,∞ Ω̃(ζ + d) O(ζd2)
center of gravity
(Rusciano, 2019)

Thm. 7,
Rmk. 9

Lipschitz, P2 Fr,M,0,∞ Ω̃(ζ + 1
ζ2ϵ2

) O( ζ
ϵ2
)

subgradient de-
scent (Zhang and
Sra, 2016)

Thm. 7, 8

smooth, P3 Fr,∞,0,L Ω̃(ζ+ 1
ζ
√
ϵ
) Õ

(√
ζ
ϵ

)
a RNAG-C (Kim and

Yang, 2022)
Thm. 7, 11

smooth, strongly
g-convex, P4 Fr,∞,µ,L Ω̃(ζ +

√
κ) O(

√
ζκ) b RNAG-SC (Kim

and Yang, 2022)
Cor. 12

cutting-planes
game, Sec. 7

N/A Ω̃(ζd) O(ζd2)
center of gravity
(Rusciano, 2019)

Thm. 15

Table 1: M is a hyperbolic space of curvature K < 0, and ζ = ζr
√
−K = r

√
−K

tanh(r
√
−K)

. All
entries in the column “Lower bound” are novel, except for the term ζ in the fourth row.

a. The upper bounds for smooth g-convex and smooth strongly g-convex minimization have an important caveat.
Those upper bounds come from Kim and Yang (2022) who assume the iterates produced by their algorithm
stay in the optimization domain B(xref , r). Recent work by Martı́nez-Rubio and Pokutta (2022) shows how to

remove this assumption at the expense of somewhat worse complexity guarantees: Õ(ζ
√

1
ϵ
) and Õ(ζ

√
κ).

b. Kim and Yang (2022) report the bounds O(ζ
√

1
ϵ
) and O(ζ

√
κ). We observe that the rate O(ζ

√
κ) can be

improved to O(
√
ζκ) by choosing the step size in their algorithm as Θ( 1

L
) instead of Θ( 1

ζL
). More precisely,

using that κ ≥ ζ and the step size Θ( 1
L
), one can check that their analysis (see Corollary F.1 in their paper)

follows through unchanged. Moreover, the rate Õ(
√

ζ
ϵ
) can be achieved by a reduction from the O(

√
ζκ)

strongly g-convex algorithm (see Proposition 57), using that ϵ ≤ 8
ζ

(see Proposition 13).

1.1 Problem classes and algorithms

Let Hd denote a d-dimensional hyperbolic space. Without loss of generality, we can assume Hd has
curvature K = −1, and so we do this from now on.7 We usually denote the underlying manifold

7. Let M1 = (M, g) be a hyperbolic space of curvature K1 < 0, and scale the metric g on M to get a hyperbolic
space M2 = (M, K1

K2
g) of curvature K2. Then it is easy to see that the function classes Fxref

r1,M,µ,L(M1) and
Fxref

r2,M,µ,L(M2) are identical provided r1
√
−K1 = r2

√
−K2. Stated differently: what matters is r

√
−K, not r and

K separately. We thus fix K = −1.

3



CRISCITIELLO BOUMAL

by M (i.e., M = Hd), and its tangent bundle by TM (see Section 2). For each d ≥ 2, fix a
point xdref ∈ Hd. Throughout we usually drop the superscript on xdref and write xref . For a function
f : M → R, we always denote f∗ = minx∈M f(x).

For r > 0, M ≥ 0, and L ≥ µ ≥ 0, let Fd
r,M,µ,L be the class of functions f : Hd → R which (a)

are globally M -Lipschitz, (b) are globally µ-strongly g-convex, (c) are L-smooth (globally if µ = 0,
or in the ball B(xref , r) if µ > 0),8 and (d) have a global minimizer x∗ which is in B(xref , r). Lastly,
define Fr,M,µ,L =

⋃∞
d=2Fd

r,M,µ,L.
A deterministic first-order algorithm A on M is a sequence of functions (Ak : (R× TM)k →

M)k≥0; in particular, A0 returns an initial point x0. Such an algorithm has access to an oracle
Of : M → R×TM which for each query x ∈ M returns the function value f(x) and a subgradient
g ∈ ∂f(x). Running A with an oracle Of produces iterates x0, x1, . . . as follows.9 Let H0 = ∅.
After already making k ≥ 0 queries x0, . . . , xk−1, the algorithm uses the known information Hk

to compute the next query xk = Ak(Hk). The oracle Of gives the algorithm Fk = f(xk) and
gk ∈ ∂f(xk), and we update the known information Hk+1 = (Fℓ, xℓ, gℓ)

k
ℓ=0.

Given a tolerance δ > 0, we define Tδ(A, f) to be the first k for which f(xk)− f∗ ≤ δ, where
(xk)k≥0 is the sequence produced by running A on f . Given a function class F , the complexity of
optimization on that function class is defined by infimizing over deterministic first-order algorithms:

Tδ(F) = inf
A

sup
f∈F

Tδ(A, f).

We focus on four function classes. In the following, M > 0, L > 0, d ≥ 2.

P1 (low-dimensional Lipschitz) For 0 < ϵ < 1 , define δ = ϵ ·Mr, and Tϵ,r,d = Tδ(Fd
r,M,0,∞).10

P2 (high-dimensional Lipschitz) For 0 < ϵ < 1 , define δ = ϵ ·Mr, and Tϵ,r = Tδ(Fr,M,0,∞).

P3 (high-dimensional smooth) For 0 < ϵ < min{1, 8
ζr
}, define δ = ϵ·12Lr

2, Tϵ,r = Tδ(Fr,∞,0,L).11

P4 (high-dimensional smooth strongly g-convex) For 0 < ϵ < min{1, 8
ζr
}, µ > 0, L ≥ µζr,

define δ = ϵ · 1
2Lr

2, κ = L
µ , and Tϵ,r,κ = Tδ(Fr,∞,µ,L).

We expect complexity of problems P2 and P3 (both denoted by Tϵ,r) to scale polynomially in
ϵ−1. For those, Table 1 reports bounds on Tϵ,r. On the other hand, due to known upper bounds,
we can solve problems P1 and P4 at least at a linear rate, that is, scaling logarithmically in ϵ as
log(ϵ−1). Therefore, it is reasonable to at least initially focus on the factors in front of the log(ϵ−1):
this is the approach we take. Said differently, for problem P1 we expect there exists q > 0 so that
f(xk)− f∗ ≤ Mr · e−k/q after k queries. The quantity q measures the number of queries needed to
reduce the optimality gap by a constant factor. To suppress the dependence on ϵ for P1 and P4, we
define qd,r = supϵ∈(0,1){

Tϵ,r,d

log(ϵ−1)
} and define qκ,r similarly. Table 1 reports bounds on qd,r and qκ,r.

8. For (c): if µ > 0 and we require f to be L-smooth globally, then the function class is empty, see Section 5.1.
9. We often implicitly assume there is an oracle associated to f , and simply say “running A on f produces iterates . . . .”

10. With this choice of δ, by scaling the functions in the class, one can check that Tδ(Fd
r,M,0,∞) is independent of M ,

and only depends on ϵ, r, d. Similar considerations hold for the other function classes.
11. This is the right scaling for ϵ – see Section 5.1. Indeed, in Proposition 13 we prove if f ∈ Fr,∞,0,L then f(xref) −

f∗ ≤ 1
2
Lr2 · 8

ζr
. This is analogous to the observation that κ ≥ ζr , although a different proof is required to show this.
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LOWER BOUNDS FOR GEODESICALLY CONVEX OPTIMIZATION

2 Preliminaries: Hadamard manifolds, hyperbolic spaces and geodesic convexity

Throughout, M denotes a Hadamard manifold which has tangent bundle TM and tangent spaces
TxM. A Hadamard manifold is a complete, simply connected Riemannian manifold with nonpos-
itive curvature, see (Bridson and Haefliger, 1999) and (Lee, 2018, Ch. 12). The Riemannian metric
on M is denoted ⟨·, ·⟩ and ∥v∥ =

√
⟨v, v⟩ for v ∈ TxM. The Riemannian metric gives M a

notion of distance dist, volume Vol, geodesics, and intrinsic curvature. The exponential map on
M at x ∈ M is denoted by expx : TxM → M, and its inverse map by logx : M → TxM. As
M is Hadamard, the exponential map and its inverse are global diffeomorphisms. For x, y ∈ M,
Px→y : TxM → TyM denotes parallel transport along the geodesic connecting x and y. The
boundary of a set D ⊆ M is denoted ∂D, and its interior is intD = D \ ∂D.

We usually take M to be a d-dimensional hyperbolic space of curvature −1, denoted by Hd.
Certain submanifolds of Hd feature prominently in our lower bound constructions. A connected
and complete Riemannian submanifold S ⊆ M is called totally geodesic if a geodesic in S is also
a geodesic in M (see Appendix A.1). Totally geodesic submanifolds are abundant in Hd (but are
rare in general Hadamard manifolds (Chen, 2000, Sec. 11.1)).

A set D ⊆ M is g-convex if for all x, y ∈ D the geodesic segment connecting x, y is contained
in D. Balls B(x, r), r ≥ 0, and totally geodesic submanifolds are g-convex sets. The following
lemma can be proven using the hyperboloid or Beltrami-Klein models of Hd (Appendix A.1).

Lemma 1 Let z ∈ M = Hd, g ∈ TzM, L = expz({v ∈ TzM : ⟨g, v⟩ ≥ 0}), and S =
∂L = expz({v ∈ TzM : ⟨g, v⟩ = 0}). The half-space L is g-convex. Its boundary S = ∂L is a
(d− 1)-dimensional totally geodesic submanifold of Hd.

References on g-convex optimization include (Udrişte, 1994), (Rapcsák, 1997), (Bacák, 2014),
and (Boumal, 2023, Ch. 11). For f : M → R, we denote its Riemannian gradient and Hessian by
∇f and ∇2f , respectively (see, for example, Chapters 3 and 5 of (Boumal, 2023)).

Definition 2 Let M be a Hadamard manifold, and let D ⊆ M be g-convex. A function f : D → R
is µ-strongly g-convex if f(γ(t)) ≤ (1 − t)f(x) + tf(y) − µ

2 t(1 − t)dist(x, y)2 for all x, y ∈ D,
where γ : [0, 1] → R is the geodesic with γ(0) = x, γ(1) = y. If µ = 0, we say that f is g-convex
or “nonstrongly” g-convex if we wish to emphasize µ = 0. If µ > 0, we say f is strongly g-convex.

If f is differentiable, f is µ-strongly g-convex in M if and only if

f(y) ≥ f(x) + ⟨∇f(x), logx(y)⟩+
µ

2
dist(x, y)2 ∀x, y ∈ M.

If f is twice differentiable, f is µ-strongly g-convex in M if and only if ∇2f(x) ⪰ µI ∀x ∈ M.

Definition 3 A vector g ∈ TxM is a subgradient of f : M → R at x if f(y) ≥ f(x)+ ⟨g, logx(y)⟩
for all y ∈ M. The subdifferential ∂f(x) of f at x is the set of all subgradients of f at x.

For a g-convex function, subdifferentials are never empty. A g-convex function is differentiable if
and only if all its subdifferentials contain exactly one vector (the gradient) (Udrişte, 1994, Sec. 3.4).

Definition 4 Let D ⊆ M be connected. A function f : M → R is M -Lipschitz in D if |f(x) −
f(y)| ≤ Mdist(x, y) for all x, y ∈ D. A differentiable function f : M → R is L-smooth in D if
∥∇f(x)− Py→x∇f(y)∥ ≤ Ldist(x, y) for all x, y ∈ D.

5
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If f is C1, then f is M -Lipschitz in M if and only if ∥∇f(x)∥ ≤ M for all x ∈ M. Let D be
g-convex. If f is C1 and L-smooth in D then |f(y)− f(x)− ⟨∇f(x), logx(y)⟩| ≤ L

2 dist(x, y)
2

for all x, y ∈ D. If f is C2, f is L-smooth in D if
∥∥∇2f(x)

∥∥ ≤ L for all x ∈ D (operator norm).
The supremum of g-convex functions is always g-convex (Udrişte, 1994, Cor. 2.7). Distance

functions and squared distance functions to g-convex sets are always g-convex. More precisely, we
have the following (see (Alimisis et al., 2020, Lem. 2 in App. B) or (Jost, 2011, Thm. 5.6.1)).

Lemma 5 Let M have sectional curvatures in the interval [K, 0]. If D is a closed g-convex set,
then x 7→ dist(x,D) is g-convex and 1-Lipschitz globally, and C∞ at points x ̸∈ D.

Fix z ∈ M, and let f(x) = 1
2dist(x, z)

2. Then f is C∞, ∇f(x) = − logx(z) and ∇2f(x) ⪰ I
for all x ∈ M, and

∥∥∇2f(x)
∥∥ ≤ ζr

√
−K ≤ 1 + r

√
−K for all x ∈ B(z, r).

3 Extending the Ω̃(ζ) lower bound: a reduction argument

Building on (Hamilton and Moitra, 2021), Criscitiello and Boumal (2022a) prove the lower bound
Ω̃(ζr) for the strongly g-convex problem P4. We extend this result to the problems P1, P2 and P3.
For simplicity, in this section we only state the results for hyperbolic space. The more general result
for Hadamard manifolds of bounded curvature (Theorem 44) can be found in Appendix F.1.

We have the following simple consequence of Theorem 24 of (Criscitiello and Boumal, 2022a).

Lemma 6 Let d ≥ 2, L > 0, r ≥ 64, and M = Hd. Define ϵ̂ = 1
210r

and µ = 64ϵ̂L = L
24r

.
Let A be a deterministic first-order algorithm. There is a C∞ function f : Hd → R with minimizer
x∗ ∈ B(xref ,

3
4r) such that running A on f yields iterates x0, x1, . . . satisfying f(xk)−f∗ ≥ 2ϵ̂Lr2

for all k = 0, 1, . . . T − 1, where T = ⌊ ζr
50 log(64ζr)

⌋.
Moreover, f is µ-strongly g-convex in M, and µ(12R + 3)-Lipschitz and µ(12R + 9)-smooth

in the ball B(xref ,R), where R = 29r log2(r). For all x ̸∈ B(xref ,R), f(x) = 3µdist(x, xref)
2.

The second paragraph in Lemma 6 is not stated explicitly by Criscitiello and Boumal (2022a) but is
apparent from their proof. The proof of Lemma 6 can be found in Appendix F.1.

Using a reduction, we next prove lower bounds for the function class Fd
r,L/2,0,L. The idea

is that, given a hard function f from Lemma 6, we modify f so that it remains the same inside
B(xref ,R), and outside B(xref ,R) it is not strongly g-convex but is strictly g-convex, L

2 -Lipschitz
and L-smooth. We know that f(x) is proportional to dist(x, xref)

2 outside B(xref ,R). We modify
f there so that it behaves similarly to dist(x, xref) instead. This works because the function x 7→
dist(x, xref) is g-convex and (outside a sufficiently large ball surrounding xref ) that same function
is 1-Lipschitz and 2-smooth on M = Hd (Lee, 2018, Thm. 11.7).

Given any C∞ function f , define the C∞ function f̃R : M → R by

f̃R(x) = uR

(1
2
dist(x, xref)

2
)
f(x), (1)

where uR : R → R is a C∞ function which is 1 on (−∞, 12R
2] and scales as

√
1
2R

2 · t−1 for

t > 1
2R

2 sufficiently large. See Appendix F.2 for the definition of uR . Suppose f is a hard function
from Lemma 6. Since f̃R = f in B(xref ,R), we know f̃R is µ-strongly g-convex, and µ(12R+3)-
Lipschitz and µ(12R+9)-smooth in B(xref ,R). Lemma 6 also guarantees f(x) = 3µdist(x, xref)

2

6
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for all x ̸∈ B(xref ,R). In Appendix F.3, we use this fact to show that f̃R is 12µR-Lipschitz, 24µR-
smooth and strictly g-convex outside of B(xref ,R). Using the definitions of µ,R in Lemma 6 as
well as the bound r ≥ 64, we conclude f̃R is in Fd

r,L̃/2,0,L̃
where L̃ = L · 210 log2(r).

Given the oracle Of of any function f , we can use Of to emulate the oracle Of̃R
using equa-

tion (1) and the formula (25) for ∇f̃R (given in Appendix F.3). To prove a lower bound for an
algorithm Ã designed to minimize g-convex functions, we make Ã interact with the oracle Of̃R

(which we simulate using Of ). This implicitly defines an algorithm A which interacts with Of .
Explicitly, the algorithm A runs Ã as a subroutine as follows. If Ã outputs xk, then A queries
Of at xk, receives (f(xk),∇f(xk)) from Of , and then passes (f̃R(xk),∇f̃R(xk)) to Ã, which it
computes using (f(xk),∇f(xk)) and equations (1), (25).

Applying Lemma 6 to the algorithm A, we know there is a function f with minimizer x∗ so that
f(xk)− f(x∗) ≥ 2ϵ̂Lr2 for all k ≤ T − 1. Since f̃R = f in B(xref ,R) and f̃R is strictly g-convex
on M, we know the minimizer of f̃R is also x∗ and that f̃R(xk) − f̃R(x∗) = f(xk) − f(x∗) if
xk ∈ B(xref ,R). In Appendix F.5, we show that f̃R(xk) − f̃R(x∗) ≥ 2ϵ̂Lr2 if xk ̸∈ B(xref ,R).
Lastly, observe that (by design) if we run Ã on the function f̃R then we get exactly the sequence
x0, x1, . . . , xT−1. We have proven the following theorem.

Theorem 7 Let d ≥ 2, L̃ > 0, r ≥ 64, and M = Hd. Define ϵ̂ = 1
210r

, ϵ = 1
218ζr log

2(ζr)
, ϵ′ =

1
218 log2(ζr)

and L = L̃
210 log2(r)

. Let A be any deterministic first-order algorithm.

There is a C∞ function f̃ ∈ Fd
r,L̃/2,0,L̃

with unique minimizer x∗ such that running A on f̃

yields iterates x0, x1, . . . satisfying

f̃(xk)− f̃(x∗) ≥ 2ϵ̂Lr2 ≥ ϵ′ · L̃
2
r ≥ ϵ · 1

2
L̃r2

for all k = 0, 1, . . . , T − 1 where T = ⌊ ζr
50 log(64ζr)

⌋.

Theorem 7 shows that the Ω̃(ζr) bound holds for problems P1, P2 and P3, provided ϵ is not too
big. Note that ϵ′ = Θ̃(1) and ϵ = Θ̃( 1

ζr
) in Theorem 7 (recall that ϵ ≤ Θ( 1

ζr
) for problem P3).

In Table 1, the best known upper bounds all depend on ζr. Theorem 7 shows that this de-
pendence is unavoidable. We know that a variant of Riemannian gradient descent for the smooth
g-convex problem P3 has complexity O(1ϵ ).

12 Theorem 7 shows that in the regime ϵ = Θ̃( 1
ζr
), this

variant of RGD is optimal (up to log factors). Contrast this with the Euclidean case, where gradient
descent is never optimal and acceleration is used to achieve the optimal complexity of O( 1√

ϵ
).

4 Lower bounds for Lipschitz g-convex optimization: a resisting oracle argument

In this section we prove a lower bound for the Lipschitz g-convex problems P1 and P2. For
Euclidean space Rd, such lower bounds are constructed using a maximum of affine functions
x 7→ maxi=1,...,d{⟨siei, x⟩}, where (ei)

d
i=1 are the standard basis vectors and si ∈ {+1,−1} (Ne-

mirovski, 1994, Sec 7.4). Before the algorithm makes any queries, there are 2d possible minimizers,

12. Zhang and Sra (2016) prove the complexity O( ζr
ϵ
) for RGD for problem P3. This can be improved to O( 1

ϵ
) as

follows. In Appendix D of their paper, Martı́nez-Rubio and Pokutta (2022) provide a variant on RGD for constrained
optimization, which has complexity O(κ) for problem P4. Using the reduction provided in Proposition 57, we find
that a regularized version of that method has complexity O( 1

ϵ
).
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r√
d
(s1, . . . , sd), corresponding to the vertices of a d-dimensional hypercube inscribed in a sphere of

radius r. After each query by the algorithm, the set of possible minimizers is halved.
We use a similar technique here. However, we need a replacement for the affine functions used

in Euclidean space. Affine functions are both g-convex and g-concave. On a Riemannian manifold,
a function is affine if its Hessian vanishes identically. Innami (1982) shows that on most manifolds
(including hyperbolic space), non-constant affine functions do not exist.13 Moreover, the functions
x 7→ ⟨g, logy(x)⟩ do not work because they are not g-convex (see Appendix C).

Our main idea is to replace the linear functions by distance functions to (d − 1)-dimensional
totally geodesic submanifolds, and suitably arrange those totally geodesic submanifolds.

Theorem 8 Let r > 0, M > 0 and T a positive integer. For every deterministic algorithm A, there
exists an M -Lipschitz g-convex function f ∈ Fr,M,0,∞ such that A requires at least T queries to
find a point x ∈ M with f(x)− f∗ ≤ Mr · 1

2ζr
√
T

.

Proof Without loss of generality, we can assume M = 1. Let d = T and (ei)
d
i=1 be an orthonormal

basis of Txref
M. Let a > 0 be such that tanh(a)/ tanh(r) = 1/

√
d, and define δ = a

2T . For
s ∈ {+1,−1} and i = 1, . . . , d define

zsi = expxref
(asei), Hs

i = {v ∈ Tzsi
M : ⟨logzsi (xref), v⟩ = 0}, Ss

i = expzsi (H
s
i )

and define the 1-Lipschitz g-convex functions

hsi (x) = dist(x, Ss
i )− dist(xref , S

s
i ) = dist(x, Ss

i )− a.

These functions are g-convex by Lemmas 1 and 5.
We build the hard function for A iteratively as a max of functions hsi (shifted appropriately

so that the subdifferential at xk always consists of exactly one vector). Let I0 = {1, . . . , d} and
H0 = ∅. For k = 0, . . . , T − 1, inductively define

Hk = ((Fℓ, xℓ, gℓ))
k−1
ℓ=0 , xk = Ak(Hk),

(ik, sk) ∈ argmaxi∈Ik,s∈{+1,−1}h
s
i (xk), Ik+1 = Ik \ {ik},

fk(x) = max
ℓ∈{0,...,k}

{hsℓiℓ (x)− ℓδ}, Fk = fk(xk), gk ∈ ∂fk(xk).

(2)

Let f be the 1-Lipschitz g-convex function fT−1. We claim that running A on f produces
exactly the sequence of iterates x0, . . . , xT−1. It suffices to show fT−1(x) = fk(x) for all k and all
x in B(xk,

δ
2). For all ℓ = k+1, . . . , T−1 we know fk(xk) ≥ hskik (xk)−kδ ≥ hsℓiℓ (xk)−ℓδ+δ, using

the definition of (ik, sk). Therefore, fk(xk) ≥ δ+maxℓ∈{k+1,...,T−1}{hsℓiℓ (xk)− ℓδ}. We conclude
fk(x) ≥ maxℓ∈{k+1,...,T−1}{hsℓiℓ (x) − ℓδ} for all x ∈ B(xk,

δ
2), since fk is 1-Lipschitz. Hence,

fT−1(x) = max
{
fk(x),maxℓ∈{k+1,...,T−1}{hsℓiℓ (x)− ℓδ}

}
= fk(x) for all x ∈ B(xk, δ/2).

It remains to lower bound f(xk) − f∗ for all k. Define x∗ = expxref
( r√

d

∑T−1
k=0 ∇hskik (xref)).

We know that (∇hskik (xref))
T−1
k=0 forms an orthonormal basis of Txref

M, because we defined Ik+1 =

Ik \ {ik}. Therefore, dist(xref , x∗) = r. In Appendix E, we show that x∗ ∈
⋂T−1

k=0 Ssk
ik

using the

13. In fact, more can be said: on a hyperbolic space, if f is a C3 g-convex function whose Hessian vanishes at even just
a single point x then necessarily ∇f(x) = 0, and so f cannot be affine unless it is constant – see Proposition 55.
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hyperbolic law of cosines (Ratcliffe, 2019, Ch. 3.5). From there, we know that dist(x∗, Ssk
ik
) = 0 for

all k, so f(x∗) = maxk∈{0,...,T−1}{−a−kδ} = −a. Also, fT−1(x) ≥ hs0i0 (x) ≥ −a for all x ∈ M.
We conclude that x∗ ∈ B(xref , r) is a global minimizer of f on M with f∗ = f(x∗) = −a.

Next, we lower bound f(xk). For i ∈ {1, . . . , d} and s ∈ {+1,−1}, g-convexity of hsi and
∇hsi (xref) = −sei imply

{x ∈ M : hsi (x) < hsi (xref) = 0} ⊆ expxref
({v ∈ Txref

M : ⟨−sei, v⟩ < 0}).

Since
⋃

s∈{+1,−1}(expxref
({v ∈ Txref

M : ⟨−sei, v⟩ ≥ 0})) = M, we find that
⋃

s∈{+1,−1}{x ∈
M : hsi (x) ≥ 0} = M. Therefore, hskik (xk) ≥ maxs∈{+1,−1} h

s
ik
(xk) ≥ 0 for all k = 0, . . . , T −1.

Therefore, f(xk) = fT−1(xk) ≥ hskik (xk)− kδ ≥ −(T − 1)δ ≥ −a
2 for all k = 0, . . . , T − 1.

Combining this upper bound on f∗ and lower bound on f(xk), we conclude f(xk) − f∗ ≥ −a
2 −

(−a) = a
2 = 1

2r · r
−1 arctanh(tanh(r)/

√
T ) ≥ r 1

2ζr
√
T
.

Remark 9 Theorem 8 says that if ϵ = 1
2ζr

√
d

, then Tϵ,r,d ≥ d = d
log(2ζr

√
d)
log(ϵ−1). The lower

bound in Theorem 8 implies the lower bound qd,r ≥ d
log(2ζr

√
d)

for the low-dimensional problem P1.

5 Lower bounds for smooth g-convex optimization: a Moreau smoothing argument

In this section we prove lower bounds for the smooth g-convex problems P3 and P4. In smooth
convex optimization, the most well-known technique for proving a lower bound is building a so-
called “worst function in the world” (Nesterov, 2004, 2.1.2). However, there is perhaps the less well-
known technique of smoothing convex Lipschitz functions, usually via Moreau envelopes (Guzmán
and Nemirovski, 2015). We adopt the smoothing approach because this technique works far better
than the other on manifolds, and the smoothing technique seems more general. That is, given a lower
bound construction for Lipschitz g-convex optimization which improves over the one we present in
Section 4, smoothing is likely to produce an improved lower bound in the smooth setting.

The (Riemannian) Moreau envelope of a function f : M → R is the function defined as follows:

fλ : M → R, fλ(x) = inf
y∈M

{
f(y) +

1

2λ
dist(x, y)2

}
. (3)

In convex analysis, the Moreau envelope is closely related to Fenchel duality. There is no especially
satisfying theory of Fenchel duality on Hadamard manifolds (but see (Silva Louzeiro et al., 2022;
Hirai, 2022)). However, the Riemannian Moreau envelope can be studied directly without reference
to duality. It satisfies the following properties, proved in (Azagra and Ferrera, 2005, 2015). For
completeness, we provide a brief (simpler) proof in Appendix G.

Lemma 10 Let M be a Hadamard manifold with curvature lower bounded by −1. Let f : M → R
be 1-Lipschitz and g-convex. Then, fλ : M → R with λ > 0 is g-convex, 1-Lipschitz, and 1

tanh(λ) -
smooth. Moreover, f(x) ≥ fλ(x) ≥ f(x) − λ for all x ∈ M, and the value of fλ at x ∈ M is
determined by the values of f in the ball B(x, λ): fλ(x) = miny∈B(x,λ)

{
f(y) + 1

2λdist(x, y)
2
}
.

We now smooth the construction from Section 4, following (Guzmán and Nemirovski, 2015).
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Theorem 11 Let r > 0, L > 0 and T a positive integer. For every deterministic algorithm A,
there exists an L-smooth g-convex function f ∈ Fr,∞,0,L such that A requires at least T queries to
find a point x ∈ M with f(x)− f∗ ≤ 1

2Lr
2 · 1

8ζ2rT
2 .

Proof Define d, ei, a, δ, z
s
i , S

s
i , h

s
i as in the proof of Theorem 8. Define λ = δ

4 , I0 = {1, . . . , d}
and H0 = ∅. For k = 0, . . . , T − 1, inductively define Hk, xk, (ik, sk), Ik+1, fk as in equation (2),
and let Fk = fλ,k(xk), gk = ∇fλ,k(xk) where fλ,k is the Moreau envelope of fk with parameter λ.

Let f equal the 1-Lipschitz g-convex function fλ,T−1. We claim that running A on f produces
exactly the sequence of iterates x0, . . . , xT−1. It suffices to show for each k that fλ,T−1(x) =
fλ,k(x) for all x ∈ B(xk,

δ
4). Lemma 10 implies that the values of fλ,T−1 and fλ,k in B(xk,

δ
4) are

determined, respectively, by the values of fT−1, fk in B(xk, λ+ δ
4) = B(xk, δ/2). However, in the

proof of Theorem 8, we already showed for each k that fT−1(x) = fk(x) for all x ∈ B(xk, δ/2).
We conclude fλ,T−1(x) = fλ,k(x) for all x ∈ B(xk,

δ
4), as desired.

Let us lower bound the suboptimality gap f(xk) − f∗ for each k. Take x∗ ∈ B(xref , r) as
defined in Theorem 8. From the proof of Theorem 8, we know x∗ is a global minimizer of fT−1

with fT−1(x
∗) = −a. It is immediate from equation (3) that x∗ is therefore a global minimizer of

f = fλ,T−1 with f∗ = fλ,T−1(x
∗) = −a. From the proof of Theorem 8, fT−1(xk) ≥ −(T − 1)δ.

So f(xk) ≥ fT−1(xk)− λ ≥ −Tδ ≥ −a
2 by Lemma 10. Hence for all k,

f(xk)− f∗ ≥ a

2
=

1

2

Lr2

T 2

a

Lr2/T 2
=

1

2

Lr2

T 2

T 2

r2
a tanh

( a

8T

)
=

1

2

Lr2

T 2

[
T 2

r2
arctanh

(tanh(r)√
T

)
tanh

( 1

8T
arctanh

(tanh(r)√
T

))]
≥ 1

2

Lr2

T 2

[
1

8ζ2r

]
,

where the smoothness constant of f equals L = 1
tanh(λ) =

1
tanh( a

8T
) , by Lemma 10.

Proposition 57 in Appendix I provides a reduction between the smooth nonstrongly and strongly
g-convex settings (see also (Martı́nez-Rubio, 2021)). Using this proposition, the lower bound in
Theorem 11 extends to an Ω(

√
κ

log(ζrκ)
) lower bound for the smooth strongly g-convex problem P4.

Corollary 12 Let r > 0 and κ > ζr. For ϵ = 2
κ−ζr

, Tϵ,r,κ ≥
√
κ−ζr

8 log(κ[3+ζ2r ])
log(ϵ−1). In particular,

qκ,r = supϵ∈(0,1){
Tϵ,r,κ

log(ϵ−1)
} ≥

√
κ−ζr

8 log(κ[3+ζ2r ])
.

Lastly, we mention that if the optimization is carried out in a very small region, e.g., r ≤ O(
√
ϵ),

then smooth g-convex optimization reduces to Euclidean convex optimization, and in particular
upper and lower bounds from Euclidean space carry over. See Appendix D for details.

5.1 Why assume ϵ ≤ O(ζ−1)?

In problem P3 we assumed ϵ ≤ 8
ζr

. The following proposition explains why this is justified.

Proposition 13 Let f : Hd → R be differentiable, globally g-convex, and L-smooth in B(xref , r).
Suppose ∇f(x∗) = 0 and x∗ ∈ B(xref , r). Then f(xref)− f∗ ≤ 1

2Lr
2 · 8

ζr
.

10
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Proposition 13 follows from the following fact expressed in Proposition 51: if f : Hd → R (not
necessarily g-convex) is L-smooth (in a large enough region) then it is also π

√
5

2 L-Lipschitz.14 We
can also use this fact to prove that κ ≥ Ω(ζr) even holds for a g-convex domain of diameter 2r
which is not a ball, as long as the domain is not too eccentric: see Proposition 53.

6 Lower bound Ω( ζ
ϵ2
) for subgradient descent: a worst-function-in-the-world argument

For problem P2, we showed the lower bound Ω̃(ζr +
1

ζ2r ϵ
2 ) in Section 4. This lower bound does

not match the upper bound O( ζr
ϵ2
). We conjecture that this upper bound is optimal. To support this

conjecture, in Appendix A we prove an Ω( ζr
ϵ2
) lower bound for subgradient descent for problem P2.

For simplicity, we focus on subgradient descent with Polyak step size (see Appendix A.3), although
we expect the proof extends to other similar step size choices, like the one in (Zhang and Sra, 2018).

Corollary 14 Let ϵ ≤ 1
4
√
2

and M > 0. Let T = d = ⌊ 1
32

ζr
ϵ2
⌋. There is a globally g-convex and

M -Lipschitz function f : M = Hd → R so that the following holds: There is an oracle for f so
that running subgradient descent with Polyak step size with that oracle produces iterates x0, x1, . . .
satisfying f(xk)− f∗ ≥ ϵMr for all k = 0, . . . , T − 1.

We actually prove the Ω( ζr
ϵ2
) lower bound for a large class of (intuitively reasonable) algorithms,

not just subgradient descent, see Theorem 29. Corollary 14 is a consequence of this result.
Corollary 14 and Theorem 29 are proven using a novel “worst function in the world”

f(x) = dist(x, x∗) + max
i=0,...,d−2

{ 1

4ϵ
dist(x, Li)

}
,

for an appropriately chosen x∗ ∈ ∂B(xref , r), and a particular choice of (g-convex) half-spaces
Lk = expyk({v ∈ TykM : ⟨Vk, v⟩ ≥ 0}). If an algorithm were simply minimizing the “base
function” x 7→ dist(x, x∗), then one subgradient query would reveal x∗. The max-term in f is
carefully constructed to perform a correction to the subgradients of this base function so that one
query of f reveals little information about x∗.

The key geometric fact leading to the Ω( ζr
ϵ2
) lower bound is the following. Consider a right

hyperbolic triangle with vertices x∗, x0, x1, where the right angle is at x1, and the angle at x0 is
θ ∈ (0, π2 ). Define the sidelengths dist(x0, x

∗) = r0 and dist(x1, x
∗) = r1. Let ϵ = cos(θ).

Then, in hyperbolic space r21 ≈ (1 − ϵ2

ζr0
)r20 for ϵ sufficiently small, whereas in Euclidean space

r21 = (1− ϵ2)r20. The side r1 is significantly longer in hyperbolic space than in Euclidean space.

7 Cutting-planes game: a width-bounded-separators argument

We conjecture that the optimal complexity for the low-dimensional Lipschitz g-convex problem P1
is Θ(ζrd). In this section we consider a “cutting-planes game” which serves as a proxy for prob-
lem P1, and we prove an Ω̃(ζrd) lower bound for this game. We take M = Hd throughout. Let us
motivate the game. Consider an algorithm A minimizing a g-convex 1-Lipschitz function f with a

14. The proof of Proposition 51 is due to Petrunin (2023, pgs. 25, 33). We fill in the details in Appendix H. This fact
closely mirrors the following result: if f is ρ-Hessian-Lipschitz (in a large enough region) then it is 2ρ-Lipschitz and√
8ρ-smooth (Criscitiello and Boumal, 2022b, Remark 3.2).

11



CRISCITIELLO BOUMAL

unique minimizer x∗ in B(xref , r), whose goal is to find a point x with f(x)− f∗ ≤ ϵr, ϵ ∈ (0, 1).
If A queries xk ∈ M, it learns Fk = f(xk) and a subgradient gk ∈ ∂f(xk) satisfying ∥gk∥ ≤ 1.
Since f is g-convex, we know f(x) ≥ Fk + ⟨gk, logxk

(x)⟩ for all x. In particular, taking x = x∗

we find ⟨gk, logxk
(x∗)⟩ ≤ 0. Moreover, 0 ≥ Fk − f∗ + ⟨gk, logxk

(x∗)⟩ ≥ Fk − f∗ − dist(x∗, Sk),
where Sk = expxk

({v ∈ Txk
M : ⟨v, gk⟩ = 0}). The last inequality follows from the g-convexity

of x 7→ dist(x, Sk) and −gk is a subgradient of x 7→ dist(x, Sk). Therefore, the algorithm solves
this g-convex problem if dist(x∗, Sk) ≤ ϵr for some k.

In the cutting-planes game the algorithm is given a ball B(xref , r) which contains a point x∗.
The algorithm has access to the following (weaker) oracle: when the algorithm queries xk ∈ M it
receives a unit vector gk ∈ Txk

M such that ⟨logxk
(x∗), gk⟩ ≤ 0. The algorithm’s goal is to find

xk so that dist(x∗, Sk) ≤ ϵr where Sk = expxk
({v ∈ Txk

M : ⟨v, gk⟩ = 0}). Equivalently, the
algorithm’s goal is to find xk such that the ball B(x∗, ϵr) intersects Sk.

Evidently, an algorithm which can solve the cutting-planes game can also solve the Lipschitz g-
convex optimization problem. Nesterov (2004, §3.2.6) calls such methods “cutting-plane schemes,”
and these include the center of gravity and ellipsoid methods. A cutting-plane scheme “forgets” that
it is minimizing a g-convex function, and simply plays the cutting-planes game. In this sense, our
lower bound below serves as a lower bound for cutting-plane schemes.

Before we proceed, we recall that the complexity of the cutting-planes game is Θ(d) for Eu-
clidean space. For hyperbolic space, the best known upper bound is O(ζrd

2) (Rusciano, 2019), and
the best known lower bound was Ω̃(ζr) (from Section 3). We improve this lower bound to Ω̃(ζrd).

Theorem 15 Let d ≥ 3, r ≥ 1280(d − 1) log(d) and ϵ = 1
320(d−1) . For every algorithm, there

is an x∗ ∈ B(xref , r) and a sequence of oracle responses (gk)k≥0 such that the algorithm needs
at least T = 1

32(d − 1)r queries to find a point xk so that dist(x∗, Sk) ≤ ϵr (or equivalently
Sk ∩B(x∗, ϵr) ̸= ∅), where Sk = expxk

({v ∈ Txk
M : ⟨v, gk⟩ = 0}).

In the Euclidean case, the lower bound is constructed by tesselating space by hypercubes and
choosing oracle hyperplanes which are parallel to the sides of the cube (Nesterov, 2004, §3.2.5).
This construction does not generalize, so we propose a new strategy relying on “width-bounded
separators” which first appeared in complexity theory literature (Fu, 2011), and whose properties
were worked out by Kisfaludi-Bak (2020) for hyperbolic space. We use these to show Theorem 15.

Let us sketch the idea behind the proof of Theorem 15. We start with a packing of B(xref , r)
with eΘ(dr) balls of radii ϵr. The initial set of candidates for x∗, denoted A0, consists of the centers
of these balls. At each iteration k, we maintain a set of possible remaining candidates for x∗, denoted
Ak. When the algorithm queries xk, we show that there exists a unit vector g̃k ∈ Txk

M such that
Sk = expxk

({v ∈ Txk
M : ⟨v, g̃k⟩ = 0}) intersects at most 1

2 |Ak| candidate balls (see Lemma 34).
We then choose gk ∈ {g̃k,−g̃k} so that the next set of candidate minimizers Ak+1 ⊆ Ak satisfies
|Ak+1| ≥ 1

2(|Ak| − 1
2 |Ak|) = 1

4 |Ak|. Hence, after T = Θ(log(|A0|)) = Θ(log(edr)) = Θ(dr)
iterations AT will be nonempty. We take x∗ to be an element of AT . The complete proof of
Theorem 15 can be found in Appendix B.

8 Geodesically convex interpolation: geometric obstructions

To build lower bounds for g-convex optimization, we must choose a collection of function values
and gradients (Fi, xi, gi)

N
i=1, and be able to build g-convex functions which interpolate those func-

tion values and gradients. We say the data (Fi, xi, gi)
N
i=1 is interpolated by a g-convex function

12
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f : M → R if f(xi) = Fi and gi ∈ ∂f(xi) for all i. If the data (Fi, xi, gi)
N
i=1 is interpolated by the

µ-strongly g-convex function f , µ ≥ 0, they must satisfy the “necessary conditions”

Fj ≥ Fi + ⟨gi, logxi
(xj)⟩+

µ

2
dist(xi, xj)

2 ∀i, j ∈ {1, . . . , N}. (4)

If M is a Euclidean space these necessary conditions are sufficient for interpolation by a µ-strongly
convex function. This forms the basis for new insights into the complexity of convex optimiza-
tion (Taylor et al., 2016). Unfortunately, in the g-convex case these conditions are not sufficient
even for just three points.

Proposition 16 Let M = H2. There exists data (Fi, xi, gi)
3
i=1 such that Fj ≥ Fi+

〈
gi, logxi

(xj)
〉

for all i, j ∈ {1, 2, 3}, yet this data cannot be interpolated by any g-convex function.

The geometric fact underlying Proposition 16 is that the altitude of an isoceles hyperbolic triangle is
shorter than the altitude in a corresponding Euclidean triangle (see Proposition 37 in Appendix C).

We do, however, have the following sufficient conditions, whose proof relies on the fact that the
function x 7→ ⟨g, logy(x)⟩ is ∥g∥-smooth on Hd (see Lemma 40 in Appendix C).

Proposition 17 Let M = Hd. Consider the data (Fi, xi, gi)
N
i=1. Assume inequalities (4) hold, and

∥gi∥ ≤ µ
2 for all i. Then (Fi, xi, gi)

N
i=1 is interpolated by a µ

2 -strongly g-convex function.

In Appendix C, we take a more careful look at g-convex interpolation. For example, in Proposi-
tion 38, we give necessary and sufficient conditions for interpolation (but they seem to be of limited
use), and link the difficulty of g-convex interpolation to the fact that g-convexity does not naturally
fall into the framework of abstract convexity (Rubinov, 2010).
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A Proving an Ω( ζ
ϵ2
) lower bound for a class of algorithms including subgradient descent

This section provides a proof of Corollary 14 from Section 6.

A.1 Totally geodesic submanifolds and the hyperboloid model

Let M be a Hadamard manifold and S ⊂ M a Riemannian submanifold. If x ∈ S and v ∈ TxM,
we say v is tangent to S if v ∈ TxS, and v is orthogonal to S if v is orthogonal to TxS, i.e.,
⟨v, w⟩ = 0 for all w ∈ TxS. Below, parallel transport P γ along a curve γ, and the exponential map
expx both denote those operations in the ambient space M.

Definition 18 A Riemannian submanifold S is totally geodesic if it is connected, complete, and all
geodesics in S are geodesics in the ambient manifold M.

We have the following equivalent characterizations, see (Lee, 2018, Prop. 8.12), (O’Neill, 1983,
Ch. 4), (Lang, 1999, Ch. XI, XIV).

Lemma 19 Let S be a complete, connected Riemannian submanifold of a Hadamard manifold M.
The following are equivalent.

• S is totally geodesic.

• The second fundamental form of S vanishes.

• If (x, v) ∈ TS, then expx(tv) ∈ S for all t ∈ R.

• If x, y ∈ S, then the geodesic through x, y is contained in S.

Lemma 20 Let S be a (complete, connected) totally geodesic submanifold of a Hadamard manifold
M. Then:
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• If x, y ∈ S, then logx(y) ∈ TxS.

• Let γ : R → S be a smooth curve in S with γ(0) = x, and v ∈ TxS. Then the parallel
transport of v along γ is the same in S and M.

• Let γ : R → S be a smooth curve in S with γ(0) = x, and let v ∈ TxS and w ∈ TxM
orthogonal to TxS. Then P γ

0→tv ∈ Tγ(t)S, and P γ
0→tw is orthogonal to Tγ(t)S.

Now let us consider M = Hd. To make our lower bound construction as concrete as possible, in
the next section we shall give explicit formulae for certain geometric objects using the hyperboloid
model of hyperbolic space. We introduce the relevant definitions and formulae in this section (see
also (Ratcliffe, 2019, Ch. 3)).

Let e0, . . . , ed denote the standard basis vectors of Rd+1. Let J = diag(−1, 1, . . . , 1) be the
(d+1)× (d+1) diagonal matrix whose diagonal consists of all ones, except its first entry is minus
one. For x, y ∈ Rd+1, let ⟨x, y⟩ = x⊤Jy. Define the submanifold M = {x ∈ Rd+1 : ⟨x, x⟩ =
−1, ⟨x, e0⟩ > 0} ⊂ Rd+1, which has tangent spaces TxM = {v ∈ Rd+1 : ⟨x, v⟩ = 0}. Hyperbolic
space Hd is identified with M endowed with the inner product ⟨u, v⟩ = u⊤Jv on its tangent spaces.

We have dist(x, y) = arccosh(−⟨x, y⟩). For x, y ∈ M and v ∈ TxM,

expx(v) = cosh(∥v∥)x+
sinh(∥v∥)

∥v∥
v, logx(y) =

dist(x, y)

sinh(dist(x, y))
(y − cosh(dist(x, y))x).

If v ∈ TxM, y = expx(v), and u,w ∈ TxM with u orthogonal to v and w parallel to v, then

Px→yw = sinh(∥v∥)x+ cosh(∥v∥)w, Px→yu = u. (5)

Let us consider totally geodesic submanifolds of M = Hd. We have the following classical
characterization in the hyperboloid model.

Lemma 21 With M = Hd:

• If P is a subspace of Rd+1 and M ∩ P is nonempty, then M ∩ P is a totally geodesic
submanifold of M. Moreover, TxS = TxM∩ P for all x ∈ S

• Conversely, if S is a k-dimensional totally geodesic submanifold of M, then there is a unique
k + 1-dimensional subspace P ⊆ Rd+1 such that S = M∩ P .

• If x ∈ M and S is a k-dimensional linear subspace of TxM, then S = expx(S ) =
M∩ span(x,S ) is a k-dimensional totally geodesic submanifold whose tangent space at x
equals S .

• A k-dimensional totally geodesic submanifold of Hd is isometric to Hk.

We define the following analogue of the Euclidean span. This object plays an important role in
assumption A1 in the subsequent section.

Definition 22 For (x1, v1), . . . , (xm, vm) ∈ TM, define

gspan(x1, . . . , xm, v1, . . . , vm) = M∩ span(x1, . . . , xm, v1, . . . , vm).
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If any of the points xi are repeated, then we usually do not repeat them in the gspan. If any of the
vi equal zero, we usually omit them from the gspan.

Proposition 23 Let (x1, v1), . . . , (xm, vm) ∈ TM. Let S = gspan(x1, . . . , xm, v1, . . . , vm).
Then S is the minimal totally geodesic submanifold of M which passes through each xi and is
tangent to each vi, i.e.,

(xi, vi) ∈ TS for all i = 1, . . . ,m. (6)

By “S is minimal,” we mean that for any totally geodesic submanifold S′ satisfying (6), then we
must have S ⊂ S′. This proposition tells us that the gspan is independent of the model we use to
represent hyperbolic space.
Proof [Proof of Proposition 23] S is a totally geodesic submanifold. Moreover, it is clear that S
satisfies (6) because xi ∈ S and vi ∈ TxiM∩ span(x1, . . . , xm, v1, . . . , vm) = TxiS.

Consider any totally geodesic submanifold S′ satisfying (6). We know S′ = M ∩ P ′ for
some subspace P ′ of Rd+1. Moreover, for each i = 1, . . . ,m, there is a curve γi ⊂ S′ ⊂ P ′

with γi(0) = xi, γ
′
i(0) = vi. Therefore xi ∈ P ′ and vi ∈ TxiS

′ = P ′ ∩ TxiM ⊂ P ′. So
span(x1, . . . , xm, v1, . . . , vm) ⊂ P ′. Therefore S ⊂ S′.

A.2 An Ω( ζ
ϵ2
) lower bound for a class of algorithms

In this section, we prove an Ω( ζ
ϵ2
) lower bound for a class of algorithms (satisfying assumptions A1

and A2 below) solving problem P2.
Let ϵ ≤ 1

4
√
2
. Let T = d = ⌊ 1

32
ζr
ϵ2
⌋. Fix θ ∈ (0, π2 ) so that ϵ = 1

4 cos(θ) (and so cos2(θ) ≤ 1
2 ).

Without loss of generality, we consider functions with Lipschitz constant M = 2
cos(θ) . We divide

the proof into two parts: (I) the geometric setup, and (II) the actual lower bound proof.

(I) Geometric setup: We inductively define a series of geometric objects.
Let us first initialize (k = 0). Let y0 = xref and I0 = {y0}. Let S0 = ∂B(y0, r) (S0 is a

hyperbolic sphere of dimension d − 1). S0 is the boundary of the ball B0 = B(y0, r). Let r0
be the radius of S0, i.e., r0 = r. S0 and B0 are contained in the d-dimensional totally geodesic
submanifold H0 = M. Choose an orthonormal basis e1, . . . , ed for Ty0M. Define e

(0)
i = ei for

i = 1, . . . d. Working in the hyperboloid model, we take xref = e0, and let the orthonormal basis for
Ty0M consist of the coordinate basis vectors, also denoted e1, . . . , ed.

Next, for k = 1, . . . , d− 1:

• Define ∆k−1 > 0 and rk > 0 by

cos(θ) =
tanh(∆k−1)

tanh(rk−1)
, sin(θ) =

sinh(rk)

sinh(rk−1)
, cosh(rk−1) = cosh(rk) cosh(∆k−1). (7)

(The third equation is a consequence of the first two equations.)

Lemma 24 The sequence rk > 0 given by r0 = r, sin(θ) = sinh(rk)
sinh(rk−1)

satisfies rk ≥ r
2 for

all k ≤ T = d = ⌊ 1
32

ζr
ϵ2
⌋ = ⌊ ζr

2 cos2(θ)
⌋.
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Proof Indeed, sinh(rk) = sin(θ)k sinh(r) ≥ sinh(r/2) provided

k ≤
log
(
sinh(r/2)
sinh(r)

)
log(sin(θ))

= 2
log
(
sinh(r/2)
sinh(r)

)
log(1− cos2(θ))

.

We know 2
log
(

sinh(r/2)
sinh(r)

)
log(1−x) ≥ ζr

2x for all x ∈ (0, 1/2] and r > 0. Therefore, since k ≤ ζr
2 cos2(θ)

and cos2(θ) ≤ 1/2, we conclude rk ≥ r/2.

• Define g̃k−1 = − 1
cos(θ)e

(k−1)
k . Define yk = expyk−1

(∆k−1e
(k−1)
k ) = expyk−1

(−∆k−1
g̃k−1

∥g̃k−1∥).

Define e
(k)
i = Pyk−1→yke

(k−1)
i for all i = 1, . . . , d.

In the hyperboloid model, observe that e(k)i = ei for all i ≥ k+1, and e
(k)
i ∈ span(e0, . . . , ek)

for all 1 ≤ i ≤ k (both of which can be verified by induction and formula (5)). Moreover,

yk = cosh(∆k−1)yk−1 + sinh(∆k−1)ek, e
(k)
k = sinh(∆k−1)yk−1 + cosh(∆k−1)ek. (8)

In particular, yk ∈ M∩ span(e0, e1, . . . , ek).

• Define the k-dimensional totally geodesic submanifold Ik = gspan(y0, . . . , yk). Note that

Ik = M∩ span(e0, e1, . . . , ek) = gspan(y0, e1, . . . , ek) = gspan(y0, . . . , yk−1, e
(k−1)
k ).

Using Proposition 23 and that e(k)i ∈ span(e0, . . . , ek) for all 1 ≤ i ≤ k, we determine
that TykIk = span(e

(k)
1 , . . . , e

(k)
k ), and Ik = gspan(yk, e

(k)
1 , . . . , e

(k)
k ). Lastly, note that

I0 ⊂ I1 ⊂, . . ..

• Define Hk = {x ∈ M : ⟨x, e(i)i ⟩ = 0, ∀1 ≤ i ≤ k}. As an intersection of M and a
subspace, Hk is a totally geodesic submanifold. Note that H0 ⊃ H1 ⊃ . . ..

Lemma 25 Hk is a d−k-dimensional totally geodesic submanifold which (a) passes through
yk, (b) is orthogonal to e

(k)
i for i = 1, . . . , k, and (c) is tangent to e

(k)
i for i = k + 1, . . . , d.

In particular, Hk = gspan(yk, e
(k)
k+1, . . . , e

(k)
d ) = M∩ span(yk, ek+1, . . . , ed).

Proof We can prove (a) and (b) by induction on k. The base case k = 0 is clear. By the
inductive hypothesis yk−1 ∈ Hk−1 and e

(k−1)
k ∈ Tyk−1

Hk−1, so we have that yk ∈ Hk−1

(Hk−1 is totally geodesic). Equation (8) implies yk ∈ {x ∈ M : ⟨x, e(k)k ⟩ = 0}. Therefore
yk ∈ Hk.

Again by the inductive hypothesis, Hk−1 is orthogonal to e
(k−1)
i for all i ≤ k − 1. Since

yk ∈ Hk−1, Hk−1 is orthogonal to e
(k)
i = Pyk−1→yke

(k−1)
i for all i ≤ k − 1 (Lemma 20). As

Hk ⊂ Hk−1, Hk is orthogonal to e
(k)
i for all i ≤ k − 1. By definition, Hk is orthogonal to

e
(k)
k , and so we conclude Hk is orthogonal to e

(k)
i for all i ≤ k.

For (c): by Lemma 21, we know that

TykHk = {u ∈ Rd+1 : ⟨yk, u⟩ = 0, ⟨e(i)i , u⟩ = 0 ∀1 ≤ i ≤ k}.

20



LOWER BOUNDS FOR GEODESICALLY CONVEX OPTIMIZATION

Since yk ∈ span(e0, . . . , ek) and e
(i)
i ∈ span(e0, . . . , ei), we conclude that ei = e

(k)
i ∈

TykHk for i ≥ k + 1. Using (b), TykHk = span(e
(k)
k+1, . . . , e

(k)
d ), and so Hk has dimension

d − k and Hk = expyk(span(e
(k)
k+1, . . . , e

(k)
d )) = M∩ span(yk, ek+1, . . . , ed) (Lemma 21).

• Let Sk be the set of all points x∗ ∈ Sk−1 such that the angle between e
(k−1)
k and logyk−1

(x∗)
equals θ. Note that S0 ⊃ S1 ⊃ . . ..

Lemma 26 (a) Sk is the hyperbolic sphere of dimension d − k − 1 contained in Hk which
has center yk and radius rk.

(b) If x∗ ∈ Sk, then logyk(x
∗) is orthogonal to Ik. In particular, yk is the closest point in Ik

to x∗.

Proof We can verify (a) by induction using the hyperboloid model. It is clearly true for
k = 0. By the inductive hypothesis, dist(x∗, yk−1) = rk−1 for all x∗ ∈ Sk−1. Therefore,

Sk = {x∗ ∈ Sk−1 : rk−1 cos(θ) = ⟨logyk−1
(x∗), e

(k−1)
k ⟩ = ⟨logyk−1

(x∗), ek⟩}

= {x∗ ∈ Sk−1 : rk−1 cos(θ) =
rk−1

sinh(rk−1)
⟨x∗, ek⟩}.

(9)

So using equation (8) and that cosh(rk−1) = −⟨x∗, yk−1⟩, if x∗ ∈ Sk then

⟨x∗, e(k)k ⟩ = − cosh(rk−1) sinh(∆k−1) + sinh(rk−1) cos(θ) cosh(∆k−1) = 0,

where the last equality follows from equation (7). We conclude that Sk is contained in {x ∈
M : ⟨x, e(k)k ⟩ = 0}. Because Sk ⊂ Sk−1 ⊂ Hk−1, we conclude

Sk ⊂ Hk−1 ∩ {x ∈ M : ⟨x, e(k)k ⟩ = 0} = {x ∈ M : ⟨x, e(i)i ⟩ = 0 ∀i ≤ k} = Hk.

A calculation using equations (7), (8) and (9) shows that dist(yk, x∗) = rk for all x∗ ∈ Sk.
So we have shown Sk is a subset of the sphere of radius rk centered at yk in Hk.

By the inductive hypothesis, Sk−1 is a hyperbolic sphere in Hk−1 with center yk−1 and
radius rk−1. Now let x∗ be a point in Hk with dist(x∗, yk) = rk. By Lemma 25, Hk

contains yk and is orthogonal to e
(k)
k . Since Hk is totally geodesic, logyk(x

∗) is orthogo-

nal to e
(k)
k . Therefore, the hyperbolic triangle x∗, yk, yk−1 has a right angle at yk. Using

dist(x∗, yk) = rk, dist(yk, yk−1) = ∆k−1, equations (7) and hyperbolic trigonometry, we
find that dist(yk−1, x

∗) = rk−1 and the angle between e
(k−1)
k and logyk−1

(x∗) equals θ.
Therefore, x∗ ∈ Sk. We conclude that Sk contains (and so equals) the sphere of radius rk
centered at yk in Hk. We have shown (a).

For (b): we know that yk ∈ Hk by Lemma 25 and x∗ ∈ Sk ⊂ Hk. Since Hk is totally
geodesic, logyk(x

∗) ∈ TykHk. However, Lemma 25 implies logyk(x
∗) ∈ TykHk is orthogo-

nal to span(e
(k)
1 , . . . , e

(k)
k ) = TykIk.
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• Let Bk ⊂ Hk be the d − k-dimensional hyperbolic ball whose boundary is Sk. Since B0 ⊃
B1 ⊃ . . ., we find that yℓ ∈ Bk for all ℓ ≥ k.

For k = 0, . . . , d− 2, consider the following additional geometric objects:

• For each x∗ ∈ Sk+1, define the tangent vector Vk,x∗ and corresponding half-space Lk,x∗ :

Vk,x∗ = −g̃k −
logyk(x

∗)

dist(yk, x∗)
, Lk,x∗ = expyk({v ∈ TykM : ⟨Vk,x∗ , v⟩ ≥ 0}).

• Define Ck =
⋂

x∗∈Sk+1
Lk,x∗ . As an intersection of (g-convex) half-spaces, Ck is also g-

convex.

Lemma 27 We have the following:

• For x∗ ∈ Sk+1, ∂Lk,x∗ is a (d− 1)-dimensional totally geodesic submanifold containing x∗

and Ik.

• For x∗ ∈ Sk+1, yk+1 ∈ Bk+1 ⊂ Ck ⊂ Lk,x∗ for all k ∈ {0, . . . , d− 2}.

• Let x∗ ∈ Sd−1. Then y0, . . . , yd−1 ∈ Ck ⊂ Lk,x∗ for all k ≤ d− 2.

Proof For the first bullet: if x∗ ∈ Sk+1, we know ⟨logyk(x
∗), e

(k)
k+1⟩ = dist(yk, x

∗) cos(θ), and so

⟨ 1

cos(θ)
e
(k)
k+1 −

logyk(x
∗)

dist(yk, x∗)
, logyk(x

∗)⟩ = dist(yk, x
∗)− dist(yk, x

∗)2

dist(yk, x∗)
= 0.

That is, ∂Lk,x∗ contains x∗. Using that e(k)k+1 = ek+1 and yk ∈ Ik = M∩ span(e0, . . . , ek) in the

hyperboloid model, we see that ⟨ 1
cos(θ)e

(k)
k+1 −

logyk
(x∗)

dist(yk,x∗) , logyk(x)⟩ = 0 for all x ∈ Ik. Therefore,
∂Lk,x∗ also contains Ik.

For the second bullet: we know angle between e
(k)
k+1 and logyk(x

∗) equals θ, and so the an-

gle between e
(k)
k+1 and Vk,x∗ equals π

2 − θ (Vk,x∗ is a linear combination of e(k)k+1 and logyk(x
∗)).

Therefore, yk+1 ∈ Lk,x∗ , and since x∗ ∈ Sk+1 was arbitrary we have yk+1 ∈ Ck.
We know Vk,x∗ is orthogonal to ∂Lk,x∗ . Since yk, x

∗ ∈ ∂Lk,x∗ and ∂Lk,x∗ is totally geodesic
(by the first bullet), we know that Pyk→x∗Vk,x∗ is orthogonal to ∂Lk,x∗ (Lemma 20). Therefore,
Lk,x∗ = expx∗({u ∈ Tx∗M : ⟨Pyk→x∗Vk,x∗ , u⟩ ≥ 0}). Using that Hk+1 = expx∗(Tx∗Hk+1)
since Hk+1 is totally geodesic, we find

Hk+1 ∩ Lk,x∗ = expx∗({u ∈ Tx∗Hk+1 : ⟨Pk+1Pyk→x∗Vk,x∗ , u⟩ ≥ 0}), (10)

where Pk+1 denotes orthogonal projection onto Tx∗Hk+1. Therefore, Hk+1 ∩Lk,x∗ is a half-space
in Hk+1. We seek to compute Pk+1Pyk→x∗Vk,x∗ . We can do this using two-dimensional hyperbolic
geometry.

Define the two-dimensional totally geodesic submanifold

H̃ = gspan(yk, yk+1, x
∗) = gspan(yk, e

(k)
k+1, logyk(x

∗)) = gspan(yk+1, e
(k)
k+1, logyk+1

(x∗)).
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By Lemma 25, e(k+1)
k+1 is orthogonal to Hk, and so in particular to logyk+1

(x∗) as well. There-

fore, e(k+1)
k+1 and logyk+1

(x∗) form an orthogonal basis for Tyk+1
H̃ , and so Pyk+1→x∗e

(k+1)
k+1 and

logx∗(yk+1) form an orthogonal basis for Tx∗H̃ (Lemma 20). By its definition, Vk,x∗ is in

span(e
(k)
k+1, logyk(x

∗)) = TykH̃

and is orthogonal to logyk(x
∗). Therefore, Pyk→x∗Vk,x∗ is in

Tx∗H̃ = span(Pyk+1→x∗e
(k+1)
k+1 , logx∗(yk+1))

and is orthogonal to logx∗(yk). Let α ∈ (0, π2 ) be the angle between logx∗(yk) and logx∗(yk+1)
(yk, yk+1, x

∗ is a right triangle). We conclude the angle between Pyk→x∗Vk,x∗ and logx∗(yk) is
π
2 − α, and so we can decompose Pyk→x∗Vk,x∗ in the orthogonal basis for Tx∗H̃:

Pyk→x∗Vk,x∗ = ∥Pyk→x∗Vk,x∗∥
[
sin
(π
2
−α
) Pyk+1→x∗e

(k+1)
k+1

∥Pyk+1→x∗e
(k+1)
k+1 ∥

+cos
(π
2
−α
) logx∗(yk+1)

∥ logx∗(yk+1)∥

]
.

On the other hand, Pyk+1→x∗e
(k+1)
k+1 is orthogonal to Hk+1 and logx∗(yk+1) is tangent to Hk+1,

since Hk+1 is totally geodesic, is orthogonal to e
(k+1)
k+1 , and contains x∗ and yk+1. We conclude that

Pk+1Pyk→x∗Vk,x∗ = ∥Pyk→x∗Vk,x∗∥
[
cos
(π
2
− α

) logx∗(yk+1)

∥ logx∗(yk+1)∥

]
.

Using equation (10), we get

Hk+1 ∩ Lk,x∗ = expx∗({u ∈ Tx∗Hk+1 : ⟨logx∗(yk+1), u⟩ ≥ 0}),

Since Bk+1 ⊂ Hk+1 is g-convex, has center yk+1 and contains x∗ on its boundary (Sk+1), we
conclude that Bk+1 ⊂ Hk+1 ∩ Lk,x∗ ⊂ Lk,x∗ . Since x∗ ∈ Sk+1 was arbitrary, Bk+1 ⊂ Ck.

For the third bullet: for all k = 0, . . . , d − 2 we know that x∗ ∈ Ck by the second bullet, and
Ik ⊂ Ck by the first bullet. In particular, x∗, y0, . . . , yk ∈ Ck for all k = 0, . . . , d − 2. Since
yℓ ∈ Bℓ ⊂ Bk+1 for all ℓ ≥ k + 1, we conclude (using the second bullet) that y0, . . . , yd−1 ∈ Ck

for all k ≤ d− 2.

Lemma 28 Let k ∈ {0, . . . , d − 2}, x∗ ∈ Sk+1 and y ∈ Ik. The g-convex function x 7→
1

cos(θ)dist(x, Lk,x∗) has a subgradient ĝ at y such that −ĝ+
logy(x

∗)

dist(y,x∗) is tangent to Ik+1. If y = yk,

then we can take ĝ such that −ĝ +
logyk

(x∗)

dist(yk,x∗) =
1

cos(θ)e
(k)
k+1 = −g̃k.

Proof First, let us consider the particular case y = yk. The subdifferential of x 7→ 1
cos(θ)dist(x, Lk,x∗)

at yk contains all vectors of the form t
Vk,x∗

∥Vk,x∗∥ with t ∈ [− 1
cos(θ) , 0]. Take ĝ = − tan(θ)

Vk,x∗
∥Vk,x∗∥

=

− tan(θ)
Vk,x∗√

1
cos2(θ)

−1
= −Vk,x∗ = g̃k +

logyk
(x∗)

dist(yk,x∗) .
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Now consider the general case y ∈ Ik. By Lemma 26(b), ∂Lk,x∗ contains y and yk. Therefore,
Pyk→yVk,x∗ is orthogonal to ∂Lk,x∗ (Lemma 20), and the subdifferential of x 7→ 1

cos(θ)dist(x, Lk,x∗)

at y contains all vectors of the form tPyk→y
Vk,x∗

∥Vk,x∗∥
with t ∈ [− 1

cos(θ) , 0].
Let θy ∈ (0, π2 ) be the angle between logy(yk+1) and logy(x

∗). By Lemma 27, yk is the closest
point in Ik to x∗, so dist(y, x∗) ≥ dist(yk, x

∗). Therefore, comparing the two right triangles
yk, yk+1, x

∗ and y, yk+1, x
∗ (the triangles are right by part (b) of Lemma 26), we determine θy ≤ θ.

In particular, ĝ = − sin(θy)
cos(θ) Pyk→y

Vk,x∗
∥Vk,x∗∥

is a subgradient at y.

Consider the two-dimensional totally geodesic submanifold H̃ = gspan(y, yk+1, x
∗). We know

that logyk+1
(x∗) is tangent to H̃ and orthogonal to logyk+1

(y). Therefore, Pyk+1→y logyk+1
(x∗) is

tangent to H̃ and orthogonal to logy(yk+1). That is, Pyk+1→y logyk+1
(x∗) and logy(yk+1) form an

orthogonal basis for TyH̃ . However, logy(x
∗) is contained in TyH̃ , and so we can decompose in

this orthogonal basis:

logy(x
∗)

dist(y, x∗)
= cos(θy)

logy(yk+1)

dist(y, yk+1)
+ sin(θy)

Pyk+1→y logyk+1
(x∗)

∥Pyk+1→y logyk+1
(x∗)∥

. (11)

Taking y = yk and using
logyk

(yk+1)

dist(yk,yk+1)
= e

(k)
k+1,

logyk(x
∗)

dist(yk, x∗)
= cos(θ)e

(k)
k+1 + sin(θ)

Pyk+1→yk logyk+1
(x∗)

∥Pyk+1→yk logyk+1
(x∗)∥

. (12)

Recalling that logyk+1
(x∗) is orthogonal to Ik+1, and using formula (5) and Lemma 20,

Pyk+1→ylogyk+1
(x∗) = Pyk→yPyk+1→yk logyk+1

(x∗). (13)

Combining the definition of Vk,x∗ , equations (12) and (13), and ∥Vk,x∗∥ = tan(θ), we find

ĝ = −sin(θy)

cos(θ)

1

∥Vk,x∗∥
Pyk→yVk,x∗ = −sin(θy)

cos(θ)

1

∥Vk,x∗∥
Pyk→y

[
1

cos(θ)
e
(k)
k+1 −

logyk(x
∗)

dist(yk, x∗)

]
= c1Pyk→ye

(k)
k+1 +

sin(θy)

cos(θ)

1

∥Vk,x∗∥
sin(θ)Pyk→y

Pyk+1→yk logyk+1
(x∗)

∥Pyk+1→yk logyk+1
(x∗)∥

= c1Pyk→ye
(k)
k+1 + sin(θy)Pyk+1→y

logyk+1
(x∗)

∥Pyk+1→yk logyk+1
(x∗)∥

for some constant c1 which we are omitting. Using equation (11), we find

−ĝ +
logy(x

∗)

dist(y, x∗)
= −c1Pyk→ye

(k)
k+1 + cos(θy)

logy(yk+1)

dist(y, yk+1)

which is indeed tangent to Ik+1

(II) The lower bound: We know that Sd−1 is a 0-dimensional hyperbolic sphere of radius rd−1 ≥
r/2 (i.e., a set consisting of two points which are at least 2 · r/2 = r apart). From now on we fix an
x∗ ∈ Sd−1. Consider the following g-convex, M -Lipschitz function:

f(x) = dist(x, x∗) + max
i=0,...,d−2

{
1

cos(θ)
dist(x, Li,x∗)

}
. (14)
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We know x∗ ∈ Sd−1 ⊂ Sk for all k ∈ {0, . . . , d− 1} and Sk+1 ⊂ Lk,x∗ for all k ∈ {0, . . . , d− 2}
(Lemma 27). Therefore, x∗ ∈ Lk,x∗ for all k ∈ {0, . . . , d − 2}, and we conclude f∗ = f(x∗) =
dist(x∗, x∗) + 0 = 0.

Let A be a deterministic first-order algorithm. We make the following mild assumption on A.

A 1 The algorithm A chooses its queries xk in the gspan of past queries and subgradients. That
is, x0 = xref , and xk ∈ gspan(x0, . . . , xk−1, g0, . . . , gk−1) for all k ≥ 1.

The assumption A1 is mild, and can probably be removed using similar techniques as in the Eu-
clidean case (Nemirovskii and Yudin, 1983, Ch. 7). All algorithms we are familiar with and which
use the exponential map exp as the retraction (and parallel transport or the differential of exp as the
transporter) satisfy this assumption.

A 2 When running on the oracle for f defined below, for each k ≤ d− 1 the algorithm A queries
xk ∈ ∩k−1

ℓ=0Lℓ,x∗ .

The assumption A2 is more restrictive, and it is an open question how it can be removed. We verify
it for a reasonable algorithm in the next section.

We know that A initially queries x0 = xref = y0 ∈ I0 by assumption A1, that x0 = y0 ∈ Lℓ,x∗

for all ℓ ∈ {0, . . . , d − 2} (Lemma 27), and f(x0) − f∗ = r0 = r ≥ r/2. We show by induction
that for each k = 1, . . . , d − 1, (a) there is a subgradient gk−1 ∈ ∂f(xk−1) which is tangent to Ik,
(b) the algorithm A produces the next query xk in Ik, (c) xk ∈ Lℓ,x∗ for all ℓ ∈ {0, . . . , d− 2}, and
(d) f(xk)− f∗ = rk ≥ r

2 .
Indeed, given xk−1 ∈ Ik−1, Lemma 28 implies x 7→ 1

cos(θ)dist(x, Lk−1,x∗) has a subgra-

dient ĝk−1 such that gk−1 = ĝk−1 −
logxk−1

(x∗)

dist(xk−1,x∗) is tangent to Ik. By the inductive hypothe-
sis we know xk−1 ∈ Lℓ,x∗ for all ℓ ∈ {0, . . . , d − 2}, and so gk−1 is a subgradient of f at
xk−1 which is tangent to Ik. Giving this subgradient to the algorithm, the next query xk lies in
gspan(x0, . . . , xk−1, g0, . . . , gk−1) = Ik by assumption A1. This shows (a) and (b).

By assumption A2, we know that xk ∈ Lℓ,x∗ for ℓ < k. By Lemma 27, Iℓ ⊂ ∂Lℓ,x∗ for all ℓ,
so in particular xk ∈ Ik ⊂ Iℓ ⊂ Lℓ,x∗ for all ℓ ≥ k. From this, we conclude (c). Since xk ∈ Lℓ,x∗

for all ℓ ∈ {0, . . . , d − 2}, f(xk) = dist(xk, x
∗) ≥ dist(yk, x

∗) = rk ≥ r/2 by Lemmas 24
and 26. This shows (d), and concludes the induction. We showed that for all k = 0, . . . , d − 1,
f(xk)− f∗ ≥ r

2 = 1
4 cos(θ)

2r
cos(θ) = ϵMr. That is, we have proven:

Theorem 29 Let ϵ ≤ 1
4
√
2
. Let T = d = ⌊ 1

32
ζr
ϵ2
⌋. Let f : Hd → R be the globally g-convex

and M -Lipschitz function given by equation (14). For any algorithm A satisfying assumptions A1
and A2, there is an oracle for f so that running A with that oracle produces iterates x0, x1, . . .
satisfying f(xk)− f∗ ≥ ϵMr for all k = 0, . . . , T − 1.

Remark 30 Let us consider the role of assumption A2, and how strong that assumption is.
Observe that if xk ∈ Ik then f(xk) − f∗ ≥ rk ≥ r

2 by Lemma 26. So assumption A2 is not
needed to guarantee that the function gap is large. However, if xk ∈ Ik is not in ∩k−1

ℓ=0Lℓ,x∗ , then it
is possible that there is no subgradient in ∂f(xk) which is tangent to Ik+1. Hence, a subgradient
at xk ̸∈ ∩k−1

ℓ=0Lℓ,x∗ might reveal too much information about x∗. Assumption A2 helps to guarantee
that ∂f(xk) contains a subgradient which is tangent to Ik+1.
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Consider an algorithm satisfying assumptions A1 and A2. Then the algorithm queries x1 in the
geodesic I1 = {expx0

(−tg0) : t ∈ R}. Assumption A2 further restricts that x1 is in {expx0
(−tg0) :

t ≥ 0}, which seems to be a reasonable restriction (it is intuitively unclear what advantage in
general an algorithm could have by querying outside this region). In general, we know that the
algorithm queries xk in Qk := Ik ∩

⋂k−1
ℓ=0 Lk,x∗ which is a (g-convex) subset of

Q̃k := Ik ∩
k−1⋂
ℓ=0

expxℓ
({v ∈ Txℓ

M : ⟨−gℓ, u⟩ ≥ 0}).

Intuitively, Qk seems to occupy most of Q̃k. So the assumption xk ∈ Qk also seems relatively mild.

Remark 31 Under the assumption that xk ∈ ∩k−1
ℓ=0Ck (in place of A2), it is not hard to see that the

following alternative function also works in place of the function f defined in equation (14):

f(x) = dist(x, x∗) + max
i=0,...,d−2

{
1

cos(θ)
dist(x,Ck)

}
This function has the added benefit that it is more symmetric than f from equation (14).

A.3 An Ω( ζ
ϵ2
) lower bound for subgradient descent with Polyak step size

Our goal is to prove Corollary 14. To this end, let us first describe and analyze subgradient descent
with Polyak step size for arbitrary f in Fr,M,0,∞. It takes the form xk+1 = expxk

(−ηkgk) with a
particular choice of ηk depending on r, f(xk) − f∗ and ∥gk∥. To motivate the choice of step size,
we take a geometric approach, which is also useful in the lower bound proof. We initially know
that x∗ ∈ B(xref , r), and define s0 = r and x0 = xref . At iteration k ≥ 0, suppose we know that
x∗ ∈ B(xk, sk). After querying xk, we receive a subgradient gk ∈ ∂f(xk) with ∥gk∥ ≤ M . Since
gk is a subgradient, we know that x∗ ∈ Uk = B(xk, sk)∩{x ∈ M : ⟨gk, logxk

(x)⟩ ≤ f∗−f(xk)}.
We define xk+1 to be the center of the minimal ball containing Uk, and let its radius be sk+1. A

computation using hyperbolic trigonometry (see Appendix A.3.1) shows that xk+1 = expxk
(−ηkgk),

where ηk > 0 and sk+1 satisfy

cos(θk) =
f(xk)− f∗

sk∥gk∥
= tanh(ηk∥gk∥)/ tanh(sk), sin(θk) = sinh(sk+1)/ sinh(sk),

cosh(sk+1) = cosh(sk)

√
1− 1

ζ2sk
· (f(xk)− f∗)2

∥gk∥2
,

(15)

with θk ∈ (0, π2 ) (see the next subsection for the definition of θk).
Defining ∆T = mink=0,...,T−1{f(xk)− f∗}, we have

cosh(sk+1) ≤ cosh(sk)

√
1− 1

ζ2r
· (f(xk)− f∗)2

M2
≤ cosh(sk)

√
1− 1

ζ2r
· ∆

2
T

M2
.

Therefore, 1 ≤ cosh(sT ) ≤ cosh(r)

(√
1− 1

ζ2r
· ∆

2
T

M2

)T

. After taking logs and rearranging,

log(cosh(r)) ≥ −T log

(√
1− 1

ζ2r
· ∆

2
T

M2

)
≥ tanh(r)2 · T

2
· ∆

2
T

r2M2
,
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and we conclude that ∆2
T ≤ 2 log(cosh(r))

tanh(r)2
· r2M2

T ≤ 2ζr
r2M2

T . So subgradient descent with Polyak

step size solves problem P2 in O( ζr
ϵ2
) queries. We argue below that this is tight.

Remark 32 In Euclidean space, the Polyak step size can be derived in an analogous way, and leads
to ηk = f(xk)−f∗

∥gk∥2
and s2k+1 = s2k −

(f(xk)−f∗)2

∥gk∥2
(see (Polyak, 1987, Sec. 5.3.2)).

Proof [Proof of Corollary 14] Consider applying subgradient descent to the function f defined in the
proof of Theorem 29. We show by induction on k that the iterates produced by subgradient descent
with Polyak step size are exactly xk = yk, and sk = rk. This is clearly true for k = 0. Suppose
xk = yk and sk = rk. Then f(xk)− f∗ = f(yk)− f∗ = dist(xk, x

∗) + 0 = rk (Lemma 27), and
so

cos(θk) =
f(xk)− f∗

sk∥gk∥
=

rk
rk∥gk∥

=
1

∥gk∥
= cos(θ)

using equation (15), and that the subgradient at yk returned by the oracle from Theorem 29 equals
gk = g̃k = − 1

cos(θ)e
(k)
k+1 (Lemma 28). We conclude that θk = θ, and so rk+1 = sk+1 and ηk∥gk∥ =

∆k by equations (15) and (7). Therefore, xk+1 = expxk
(−∆k

gk
∥gk∥) = expyk(∆ke

(k)
k+1) = yk+1,

which concludes the induction.
By Lemma 27, y0, . . . , yd−1 ∈ Lk,x∗ for all k, so subgradient descent with Polyak step size

satisfies assumption A2. Also, clearly subgradient descent satisfies A1. We can therefore, apply
Theorem 29.

A.3.1 MINIMAL BALL CONTAINING B(xk, rk) ∩ {x ∈ M : ⟨gk, logxk
(x)⟩ ≤ f∗ − f(xk)}

In this section we derive explicit formulae for the center xk+1 of the minimal ball and its radius
sk+1. By symmetry xk+1 = expxk

(−ηkgk) for some ηk ∈ R.
Take v ∈ Txk

M so that ∥v∥ = sk and ⟨gk, v⟩ = f∗ − f(xk). Let θk ∈ [0, π2 ] denote the
angle between −gk and v. It satisfies cos(θk) = f(xk)−f∗

sk∥gk∥ . Let z be the point on the geodesic
t 7→ expxk

(−tgk) such that the hyperbolic triangle xk, expxk
(v), z has right angle at z. Define

s′k+1 = dist(expxk
(v), z). A computation (details omitted) shows that in fact B(z, s′k+1) contains

B(xk, sk) ∩ {x ∈ M : ⟨gk, logxk
(x)⟩ ≤ f∗ − f(xk)} and is the unique minimal ball, and so we

find that xk+1 = z and sk+1 = s′k+1.
To determine sk+1, hyperbolic trigonometry on the right triangle xk, expxk

(v), z = xk+1 im-
plies f(xk)−f∗

sk∥gk∥ = cos(θk) = tanh(ηk∥gk∥)/ tanh(sk), sin(θk) = sinh(sk+1)/ sinh(sk), and

cosh(sk+1) = cosh(sk)/ cosh(ηk∥gk∥) = cosh(sk)
√

1− tanh(ηk∥gk∥)2

= cosh(sk)

√
1− 1

ζ2sk
· (f(xk)− f∗)2

∥gk∥2
,

where the last equality follows from f(xk)−f∗

sk∥gk∥ = tanh(ηk∥gk∥)/ tanh(sk).

B Lower bound for the cutting-planes game: Proof of Theorem 15

We first need the following bounds on the volume of a hyperbolic ball. Let Vd(r) be the hyperbolic
volume of a ball of radius r in Hd. Let ωd, σd be the volume and surface area of the d-dimensional
ball, sphere, respectively (as a subset of Euclidean space).
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Lemma 33 We have Vd(r) = ωd

∫ r
0 sinhd−1(t)dt ≤ ωd

(d−1)2d−1 e
r(d−1) for all r > 0. If r ≥

4 log(d) then Vd(r) ≥ ωd

4(d−1)2d−1 e
r(d−1).

Proof The formula Vd(r) = ωd

∫ r
0 sinhd−1(t)dt is given by Ratcliffe (2019, Ex. 3.4.6). The upper

bound follows from sinh(t) ≤ et/2 for all t ≥ 0. The lower bound follows from the inequality

sinh(t) ≥ 1

2 · 21/(d−1)
et ∀t ≥ 2 log(d).

Taking a = 2 log(d) and using that r ≥ 2a, we have

Vd(r) ≥ ωd

∫ r

a
sinh(t)d−1dt ≥ ωd

2 · 2d−1

∫ r

a
et(d−1)dt =

ωd

2(d− 1)2d−1
[er(d−1) − ea(d−1)]

≥ ωd

4(d− 1)2d−1
er(d−1).

The following Lemma 34 is due to Kisfaludi-Bak (2020). Following the definitions from (Kisfaludi-
Bak, 2020, Sec. 2), a tiling of M is a collection of interior disjoint compact subsets of M which
cover M. A tiling is called (ρ1, ρ2)-nice if each tile T ∈ T contains a ball of radius ρ1 with cen-
ter denoted cT , and is contained in a ball of radius ρ2. For p ∈ M, we define a “random totally
geodesic submanifold” through p as follows: S = expp({v ∈ TpM : ⟨g, v⟩ = 0}) is the totally
geodesic submanifold whose unit normal vector g ∈ TpM is chosen uniformly at random from the
(d − 1)-dimensional unit sphere. Kisfaludi-Bak (2020) does not work out the dependence on the
dimension d in Lemma 34, so we do this in Appendix J.

Lemma 34 (Kisfaludi-Bak, 2020, Lem. 9) Let d ≥ 3, c0 ∈ (0, 1] and τ ≥ 8c−1
0 log(d). Let T be

a (c0τ/2, τ/2)-nice tiling, and let I be a finite subset of T . Let p ∈ M and S be a random totally

geodesic submanifold through p. Then E[|S|] ≤ 1
2e

5(d−1)τ |I|
d−2
d−1 , where S = {T ∈ I : T ∩S ̸= ∅}.

Proof [Proof of Theorem 15] Define c0 = 1/4, τ = r
40(d−1) . Then τ ≥ 8c−1

0 log(d), and there
exists a (ϵr = c0τ/2, τ/2)-nice tiling T of M, as explained in Appendix J. Let I0 be the set of
tiles in T contained in B(xref , r), and define A0 = {cT : T ∈ I0}. A0 is the set of initial possible
candidates for x∗. We know that the tiles I0 cover B(xref , r/2). Using the bounds on Vd(r) given
by Lemma 33, we have |A0| = |I0| ≥ Vd(r/2)

Vd(τ/2)
≥ 1

4e
1
4
(d−1)r.

For every k = 0, 1, . . . , T − 1, the algorithm makes the query xk, and we show (by induction)
that there is a unit vector gk ∈ Txk

M and a set Ik+1 ⊆ Ik such that |Ik+1| ≥ |Ik|/4, and each
x∗ ∈ Ak+1 = {cT : T ∈ Ik+1} is consistent with the past queries and such that the algorithm has
not won the game, i.e.,

⟨gℓ, logxℓ
(x∗)⟩ ≤ 0, and Sℓ ∩B(x∗, ϵr) = ∅, ∀ ℓ ∈ {0, . . . , k} and ∀ x∗ ∈ Ak+1.

Indeed, fix k ∈ {0, 1, . . . , T − 1}. By Lemma 34 there exists g̃k ∈ Txk
M such that

|{T ∈ Ik : B(cT , ϵr) ∩ Sk ̸= ∅}| ≤ |{T ∈ Ik : T ∩ Sk ̸= ∅}| ≤ 1

2
e5(d−1)τ |I|

d−2
d−1
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where as usual Sk = expxk
({v ∈ Txk

M : ⟨gk, v⟩ = 0}). For s ∈ {+1,−1} = {+,−}, define

Is
k+1 = {T ∈ Ik : s⟨gk, logxk

(y)⟩ ≥ 0, ∀y ∈ B(cT , ϵr)}.

If |I+
k+1| ≥ |I−

k+1|, define gk = g̃k, Ik+1 = I+
k+1. Otherwise, define gk = −g̃k, Ik+1 = I−

k+1. So,

|Ik+1| ≥
1

2

(
|Ik| − |{T ∈ Ik : B(cT , ϵr) ∩ Sk ̸= ∅}|

)
≥ 1

2
|Ik|
(
1− 1

2
e5(d−1)τ |Ik|−1/(d−1)

)
.

By induction, we know that

|Ik| ≥
1

4k
|I0| ≥

1

4T−1
|I0| ≥

1

4T
e

1
4
(d−1)r ≥ 1

e2T
e

1
4
(d−1)r ≥ e

1
8
(d−1)r ≥ e5(d−1)2τ

where the penultimate inequality follows from T = 1
16(d−1)r, and the last inequality follows from

τ = r
40(d−1) . Therefore |Ik|−1/(d−1) ≤ e−5(d−1)τ , and so |Ik+1| ≥ 1

4 |Ik|, finishing the induction.

We know AT is nonempty because |A0| ≥ 1
4e

1
4
(d−1)r and |AT | ≥ 1

4T
|A0| ≥ 1

4T+1 e
1
4
(d−1)r ≥ 1.

So there exists x∗ ∈ AT such that ⟨gℓ, logxℓ
(x∗) ≤ 0 and dist(Sℓ, x

∗) > ϵr for all ℓ = 0, . . . , T .

C Geodesically convex interpolation: a closer look than Section 8

In this section, we initiate a study of interpolation by g-convex functions. We leave a more com-
plete study of interpolation to future work. Let M be a Hadamard manifold. We call a collection
(Fi, xi, gi)

N
i=1 the “data” of an interpolation problem if xi ∈ M, Fi ∈ R and gi ∈ TxiM for all

i = 1, . . . , N . We say the data is interpolated by a g-convex function f : M → R if f(xi) = Fi

and gi ∈ ∂f(xi) for all i. We say a function f : M → R is the minimal (maximal) g-convex func-
tion interpolating the data (Fi, xi, gi)

N
i=1 if for all other g-convex functions f̃ : M → R we have

f̃(x) ≥ f(x) (f̃(x) ≤ f(x)) for all x ∈ M.
Consider an algorithm running on a g-convex function f : M → R querying points x0, x1, . . ..

Given Fk = f(xk) and gk ∈ ∂f(xk), the algorithm learns that f is lower bounded as

f(x) ≥ Fk + ⟨gk, logxk
(x)⟩ ∀x ∈ M. (16)

Since the data (Fℓ, xℓ, gℓ)
k
ℓ=0 is interpolated by the g-convex function f , it must satisfy

Fj ≥ Fi + ⟨gi, logxi
(xj)⟩ ∀i, j ∈ {0, . . . , k}. (17)

Aggregating all the lower bounds (16) from past queries, the algorithm knows that f satisfies

f(x) ≥ fk(x) ∀x ∈ M, where fk(x) = max
ℓ∈{0,...,k}

{Fℓ + ⟨gℓ, logxℓ
(x)⟩}.

Using the conditions (17), one sees that this lower bound fk does interpolate the data (Fℓ, xℓ, gℓ)
k
ℓ=0.

If M is a Euclidean space, the functions x 7→ Fi + ⟨gi, logxi
(x)⟩ are affine, and so the lower

bound fk is convex: fk is the minimal convex function interpolating the data learned, and in par-
ticular the algorithm knows f∗ ≥ minx∈B(xref ,r){fk(x)}. However for general M (e.g., if M is a
hyperbolic space), the functions x 7→ Fi + ⟨gi, logxi

(x)⟩ are not g-convex, and the lower bound fk
is not g-convex. This points to a primary difficulty inherent in proving complexity lower bounds for
g-convex optimization. Perhaps when the algorithm learns that F = f(y) and g ∈ ∂f(y), actually
lower bound f(x) ≥ F + ⟨g, logy(x)⟩ is loose and can be improved? This is not the case.
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Proposition 35 Let M be a Hadamard manifold, F ∈ R, and (y, g) ∈ TM. Let FF,y,g denote the
set of g-convex functions f : M → R with f(y) = F and g ∈ ∂f(y). Then for all x ∈ M

min
f∈FF,y,g

{f(x)} = F + ⟨g, logy(x)⟩.

Proof Fix x ∈ M \ {y}. Define g|| =
⟨g,logy(x)⟩
dist(x,y)2

logy(x) and g⊥ = g − g||. Let S be the geodesic
line {expy(t logy(x)) : t ∈ R}. Note that S is a g-convex set, and so z 7→ dist(z, S) is g-convex.

Define the point x′ as x′ = x if ⟨g, logy(x)⟩ ≤ 0, and x′ = expy(− logy(x)) if ⟨g, logy(x)⟩ > 0.
Define the functions

f||(z) = F−∥g||∥dist(x′, y)+∥g||∥dist(x′, z), f⊥(z) = ∥g⊥∥dist(z, S), f(z) = f||(z)+f⊥(z).

We know that g⊥ is a subgradient of f⊥ at y, since g⊥ is orthogonal to S, and

∇f||(y) = −
∥g||∥

dist(x, y)
logy(x

′) = −
|⟨g, logy(x)⟩|
dist(x, y)2

logy(x
′) =

⟨g, logy(x)⟩
dist(x, y)2

logy(x) = g||.

Therefore, ∇f||(y) + g⊥ = g|| + g⊥ = g is a subgradient of f at y. Also, f(y) = F +
∥g⊥∥dist(y, S) = F , and f is g-convex (as the sum of two g-convex functions). So f ∈ FF,y,g.

Lastly, if ⟨g, logy(x)⟩ ≤ 0, then f(x) = F − ∥g||∥dist(x, y) = F + ⟨logy(x), g⟩, using
dist(x, S) = 0 and x = x′. If ⟨g, logy(x)⟩ > 0, then f(x) = F + ∥g||∥dist(x, y) = F +
⟨logy(x), g⟩, using dist(x, S) = 0 and dist(x, x′) = 2dist(x, y).

Remark 36 Observe that the worst function in the world given by equation (14) is essentially a
maximum of functions from the proof of Proposition 35. This is not a coincidence.

We know that fk is not g-convex. However, perhaps the necessary conditions (17) for interpo-
lation by a g-convex function are also sufficient? The necessary conditions are sufficient if M is a
Euclidean space; they are not sufficient for negatively curved spaces even for just three points.

Proposition 37 (Restatement of Proposition 16) Let M = H2. There exists data (Fi, xi, gi)
3
i=1

such that

Fj ≥ Fi +
〈
gi, logxi

(xj)
〉

∀i, j ∈ {1, 2, 3}, (18)

yet this data cannot be interpolated by any g-convex function.

Proof We denote the geodesic segment {expx(t logx(y)) : t ∈ [0, 1]} between x, y ∈ M by [x, y].
Consider three points x1, x2, x3 ∈ M such that dist(x1, x2) = dist(x1, x3) = 1 and the angle

(at x1) between the geodesic segments [x1, x2] and [x1, x3] equals 2θ. Let h be the length of the
altitude from x1 to the geodesic segment [x2, x3]. Assume the altitude intersects the segment [x2, x3]
at point p. Of course h = dist(x1, p), p is the midpoint of [x2, x3], the altitude bisects the angle at
x1, and the altitude intersects [x2, x3] at a right angle.

Consider the data F1 = 1, F2 = F3 = 0, and let g1 = − 1
cos(θ) ·

logx1 (p)

dist(x1,p)
. Assume, for the

sake of contradiction, that the data can be interpolated by a g-convex function f . Then, f(p) ≤
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max{f1, f2} = 0. Additionally, the function t 7→ f(expx1
(t exp−1

x1
(p))) is convex, so f(p) ≥

f(x1) +
〈
g1, logx1

(p)
〉
= 1− h

cos(θ) .
We have not used the non-Euclidean geometry of M. We do so now. By hyperbolic trigonom-

etry, cos(θ) = tanh(h)
tanh(1) < h (since h < 1). Hence, f(p) ≥ 1− h

cos(θ) > 0. This is a contradiction.
Lastly, it is easy to choose g2 and g3 so that the data (Fi, xi, gi)

3
i=1 satisfies (18). For example,

one may choose g2 = g3 = 0. Alternatively, if we let α be the angle (at x2) between the seg-
ments [x2, x1] and [x2, x3], then we can take g2, g3 to be tangent vectors of length 1

sin(α) which are
perpendicular to the geodesic segment [x2, x3].

Let us take another perspective. The set of convex functions on Rd equals the set of functions
which are each a supremum of affine functions. More generally, abstract convexity (Rubinov, 2010)
considers classes of functions (the “convex” functions) which can be written as supremums of a
base class of functions (the “base” functions). Geodesic convexity does not naturally fit into this
framework. Indeed, it is easy to check that every g-convex function can be written as a supremum
of functions of the form x 7→ F + ⟨g, logy(x)⟩. However, it is not true that every supremum of
functions of this form are g-convex (e.g., consider finite supremums like fk above).

Despite the negative result Proposition 16, we do, however, have the following necessary and
sufficient conditions for interpolation.

Proposition 38 Consider the data (Fi, xi, gi)
N
i=1, let D = (Fi, xi)

N
i=1, and let FD denote the set of

g-convex functions f satisfying f(xi) ≤ Fi for i = 1, . . . , N . Define the function

fD : M → R ∪ {+∞}, fD(x) = sup
f∈FD

{f(x)}.

Then the data (Fi, xi, gi)
N
i=1 can be interpolated by a g-convex function if and only if

fD(x) ≥ Fi + ⟨gi, logxi
(x)⟩, ∀x ∈ M and ∀i = 1, . . . , N. (19)

If (Fi, xi, gi)
N
i=1 can be interpolated by a g-convex function, fD is the maximal such function.

Proof (Condition (19) is sufficient) Assume (19) holds. Taking x = xi, fD(xi) ≥ Fi. But by
definition, fD ≤ Fi. Hence, fD(xi) = Fi, and so condition (19) implies gi is a subgradient of fD at
xi. So fD interpolates the data.

(Condition (19) is necessary) Assume the data is interpolated by a g-convex function f . Then
f(x) ≤ fD(x) for all x ∈ M. Therefore for each i and x, fD(x) ≥ f(x) ≥ Fi + ⟨gi, logxi

(x)⟩. So
condition (19) holds, and the previous paragraph implies fD interpolates the data. Therefore, fD is
the maximal g-convex function interpolating the data.

Remark 39 One can relate fD to a g-convex hull (Lytchak and Petrunin, 2022) in the Hadamard
manifold R×M. For simplicity, we omit the details. One can verify that if M is a hyperbolic space
and x is not in the g-convex hull of {x1, . . . , xN}, then fD(x) = +∞.

If M is a Euclidean space, then fD has the explicit formula

fD(x) = min
λi≥0,

∑N
i=1 λi=1,

∑N
i=1 λixi=x

{ N∑
i=1

λiFi

}
,
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and the set of necessary and sufficient conditions in Proposition 38 can shown to be equivalent to
the conditions (17) (Taylor, 2018, Ch. 3). However, it is unclear that there is an analogous formula
even for hyperbolic space.

Let us conclude this section with a positive result about g-convex interpolation. For simplicity
we focus on hyperbolic spaces. We have the following lemma which may be useful in other contexts.

Lemma 40 Let M = Hd. The function x 7→ ⟨g, logy(x)⟩ is globally ∥g∥-Lipschitz and ∥g∥-
smooth.

Proof For s, ṡ ∈ TyM, let Py,s = Py→expy(s)
, Ty,s = d expy(s) and cy,s,ṡ(t) = expy(s + tṡ).

Given s, ṡ ∈ TyM, let ṡ|| = ⟨s,ṡ⟩
∥s∥2 s and ṡ⊥ = ṡ − ṡ||. Moreover, given s̈ ∈ Texpy(s)

M, let

s̈|| =
⟨Py,ss,s̈⟩
∥s∥2 s and s̈⊥ = s̈ − s̈||. It is well-known (see for example (Criscitiello and Boumal,

2022b, App. B)) that

Ty,sṡ = Py,sṡ|| +
sinh(∥s∥)

∥s∥
Py,sṡ⊥, T−1

y,s s̈ = P−1
y,s s̈|| +

∥s∥
sinh(∥s∥)

P−1
y,s s̈⊥. (20)

Define f(x) = ⟨g, logy(x)⟩, and f̂ = f ◦ expy : TyM → R. Note that f̂(s) = ⟨g, s⟩. Let
x ∈ M, s = logy(x), and s̈ ∈ TxM with ∥s̈∥ = 1. By Lemma 5 of (Agarwal et al., 2020),

∇f(x) = (T−1
y,s )

∗∇f̂(s) = (T−1
y,s )

∗g (21)

and, defining ṡ = T−1
y,s s̈,

⟨s̈,∇2f(x)s̈⟩ = ⟨T−1
y,s s̈,∇2f̂(s)T−1

y,s s̈⟩ − ⟨∇f(x), c′′y,s,ṡ(0)⟩ = −⟨g, T−1
y,s c

′′
y,s,ṡ(0)⟩. (22)

Equations (20) and (21) imply ∥∇f(x)∥ ≤ ∥T−1
y,s ∥ · ∥g∥ ≤ ∥g∥, so f is ∥g∥-Lipschitz.

By equation (73) from (Criscitiello and Boumal, 2022b, App. B), we know that

c′′y,s,ṡ(0) = −sinh(∥s∥) cosh(∥s∥)− ∥s∥
∥s∥3

∥ṡ⊥∥2·Py,ss+2
cosh(∥s∥)∥s∥ − sinh(∥s∥)

∥s∥3
⟨s, ṡ⟩·Py,sṡ⊥.

Therefore, using equation (20) and ṡ = T−1
y,s s̈,

T−1
y,s c

′′
y,s,ṡ(0) =− sinh(∥s∥) cosh(∥s∥)− ∥s∥

∥s∥3
∥ṡ⊥∥2 · s

+ 2
∥s∥

sinh(∥s∥)
· cosh(∥s∥)∥s∥ − sinh(∥s∥)

∥s∥3
⟨s, ṡ⟩ · ṡ⊥

=− sinh(∥s∥) cosh(∥s∥)− ∥s∥
∥s∥3

∥s∥2

sinh2(∥s∥)
∥s̈⊥∥2 · s

+ 2
∥s∥2

sinh2(∥s∥)
· cosh(∥s∥)∥s∥ − sinh(∥s∥)

∥s∥3
⟨Py,ss, s̈⟩ · P−1

y,s s̈⊥.

Using ∥s̈∥ = 1, we find

∥T−1
y,s c

′′
y,s,ṡ(0)∥ ≤sinh(∥s∥) cosh(∥s∥)− ∥s∥

∥s∥3
∥s∥2

sinh2(∥s∥)
∥s∥ ≤ 1.
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By (22), we conclude |⟨s̈,∇2f(x)s̈⟩| ≤ ∥g∥ · ∥T−1
y,s c

′′
y,s,ṡ(0)∥ ≤ ∥g∥.

Using this lemma, we can derive sufficient conditions for g-convex interpolation (Proposi-
tion 41) and extension (Proposition 42).

Proposition 41 (Restatement of Proposition 17) Consider the data (Fi, xi, gi)
N
i=1. Assume that

∥gi∥ ≤ µ
2 for all i = 1, . . . , N , and

Fj ≥ Fi + ⟨gi, logxi
(xj)⟩+

µ

2
dist(xi, xj)

2 ∀i, j ∈ {1, . . . , N}. (23)

Then (Fi, xi, gi)
N
i=1 is interpolated by a µ

2 -strongly g-convex function.

Proof Let f(x) = maxi∈{1,...,N}
{
Fi + ⟨gi, logxi

(x)⟩ + µ
2dist(xi, x)

2
}

. Taking i = j, we know
f(xj) ≥ Fj . Inequality (23) implies f(xj) ≤ Fj , so we conclude f(xj) = Fj , for all j. Moreover,

f(x) ≥ Fi+⟨gi, logxi
(xj)⟩+

µ

2
dist(xi, x)

2 ≥ f(x)+⟨gi, logxi
(xj)⟩, ∀x ∈ M,∀i ∈ {1, . . . , N},

so gi ∈ ∂f(xi). So f interpolates the data.
By Lemma 40, each function x 7→ Fi+⟨gi, logxi

(x)⟩+ µ
2dist(xi, x)

2 is µ−∥gi∥ ≥ µ− µ
2 = µ

2 -
strongly g-convex. Therefore, f is µ

2 -strongly g-convex.

We have the following result (compare with the convex case (Dragomirescu and Ivan, 1992)):

Proposition 42 Let D be an open g-convex subset of M = Hd and let f : D → R be differentiable
and µ-strongly g-convex in D. If ∥∇f(x)∥ ≤ µ for all x ∈ D, then there is a globally g-convex
function f̃ : M → R such that f̃(x) = f(x) for all x ∈ D.

Proof Define
f̃(x) = sup

y∈D

{
f(y) + ⟨∇f(y), logy(x)⟩+

µ

2
dist(x, y)2

}
.

If x ∈ D, then f̃(x) ≥ f(x) (taking y = x). On the other hand, µ-strong g-convexity of f in D
implies f(x) ≥ f(y) + ⟨∇f(y), logy(x)⟩ +

µ
2dist(x, y)

2 for all y ∈ D. Therefore, f(x) ≥ f̃(x).
We conclude f(x) = f̃(x) if x ∈ D.

By Lemma 40, the function x 7→ f(y) + ⟨∇f(y), logy(x)⟩ is ∥∇f(y)∥-smooth. Hence, the
function x 7→ f(y) + ⟨∇f(y), logy(x)⟩ +

µ
2dist(x, y)

2 is µ − ∥∇f(y)∥ ≥ µ − µ = 0-strongly
g-convex, if y ∈ D. Therefore, f̃ is g-convex.

D Carrying over the convex upper and lower bounds when r is very small

It is important to mention that if the optimization is carried out in a very small region then smooth
g-convex optimization reduces to Euclidean convex optimization, and in particular upper and lower
bounds from Euclidean space carry over. However, we shall see that the resulting lower bounds are
worse than those given in Section 5. This technique does, however, allow us to easily construct an
“eventually accelerated” algorithm for smooth strongly g-convex optimization, like the algorithm
of Ahn and Sra (2020). See below.

To state the following proposition, we need properties of the Riemannian curvature tensor R
and its covariant derivative ∇R which are worked out in (Criscitiello and Boumal, 2022b, Sec. 2).
The assumption ∥∇R∥ ≤ F holds with F = 0 for symmetric spaces, including hyperbolic spaces.
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Proposition 43 Let M be a complete Riemannian manifold which has sectional curvatures in the
interval [−K,K] with K ≥ 0 and also satisfies ∥∇R(x)∥ ≤ F for all x ∈ M.

Let xref ∈ M. Let f : M → R be a twice continuously differentiable function which has a
minimizer x∗. Assume f is µ-strongly g-convex and L-smooth in B(xref , r), κ = L

µ , and x∗ is

contained in B(xref , r), where r ∈ (0, 1√
κ
·min{ 1

4
√
K
, K
4F }]. Define the pullback f̂ = f ◦ expxref

.

Then, f̂ is µ
2 -strongly convex and 3

2L-smooth in the Euclidean sense in Bxref
(0, r) ⊆ Txref

M.

Proof Following (Criscitiello and Boumal, 2022b, Sec. 2), if ∥s∥ ≤ min{ 1
4
√
K
, K
4F } then∥∥∥∇2f̂(s)− P ∗

xref ,s
∇2f(y)Pxref ,s

∥∥∥ ≤ 7

9
LK ∥s∥2 + 3

2
K ∥s∥ ∥∇f(y)∥

where y = expxref
(s) and Px,s denotes parallel transport along the curve c(t) = expx(ts) from

t = 0 to t = 1. Using L-smoothness of f and x∗ ∈ B(xref , r),

∥∇f(y)∥ = ∥∇f(y)− Px∗→y∇f(x∗)∥ ≤ Ldist(y, x∗) ≤ 2Lr.

We determine
∥∥∥∇2f̂(s)− P ∗

xref ,s
∇2f(y)Pxref ,s

∥∥∥ ≤ 4LKr2 ≤ µ
2 if ∥s∥ ≤ r, by our choice of r.

By µ-strong g-convexity and L-smoothness of f , we know all eigenvalues of the symmetric
operator P ∗

xref ,s
∇2f(y)Pxref ,s are in [µ,L]. Hence, all eigenvalues of ∇2f̂(s) are in the interval

[µ2 , L+ µ
2 ] for all ∥s∥ ≤ r.

We can use this proposition to prove an Ω(
√
κ) lower bound when minimizing a κ-conditioned

smooth strongly g-convex function in a ball of radius r ≤ O( 1√
κ
). Indeed, any algorithm A querying

points x on M can be converted into an algorithm Ã querying points in a fixed tangent space
Txref

M using the exponential map in the obvious way. The lower bound for Euclidean spaces
provides a hard function f̃ : Txref

M → R for Ã. In turn, the function f = f̃ ◦ logxref
is a hard

function for A. Proposition 43 guarantees f is g-convex on M in a small enough ball of radius r.
Likewise, we can prove an Ω( 1√

ϵ
) lower bound for minimizing smooth g-convex functions in a ball

of radius r ≤ O(
√
ϵ).

However, these lower bounds have two major downsides. First, the functions constructed are not
globally g-convex (or L-smooth) and so do not actually belong to the function classes we defined
in Section 1.1. Second, these lower bounds only hold when r is very small, e.g., r ≤ O(

√
ϵ).

Ignoring the first downside, one can still try extend these bounds to large r; however, this results in
unsatisfactory bounds. For example, for smooth g-convex optimization, roughly we have that Ω( 1√

ϵ
)

queries are required to find a point x such that f(x)−f∗ ≤ ϵ· 12L(
√
ϵ)2 = ϵ2

r2
· 12Lr

2. Letting ϵ′ = ϵ2

r2
,

we find that Ω( 1√
r(ϵ′)1/4

) queries are needed to find a point x such that f(x)− f∗ ≤ ϵ′ · 12Lr
2. This

bound does not even have the correct scaling in ϵ′!
Lastly, we mention that we can use Proposition 43 to construct an “eventually accelerated”

algorithm for smooth strongly g-convex optimization, like the algorithm of Ahn and Sra (2020). Let
M be a complete Riemannian manifold with constants K and F as in Proposition 43. Consider a
function f : M → R with a minimizer x∗. Assume f is globally µ-strongly g-convex and L-smooth
in some g-convex set D containing the ball B(x∗, r) where r = 1√

κ
· min{ 1

4
√
K
, K
4F }. Suppose

x0 ∈ B(x∗, r) and B(x0, r) ⊆ D. Since f̂ has condition number at most 3κ in Bx0(0, r) ⊆ Tx0M,
we can minimize f by simply running a Euclidean algorithm on f̂ = f ◦expx0

in the ball Bx0(0, r).
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For example, running an accelerated algorithm for constrained optimization (like from (Nesterov,
2013, Sec. 5.1)) produces a locally accelerated algorithm for g-convex optimization.

This gives a simple proof that when dist(x0, x
∗) ≤ O( 1√

κ
), there is an accelerated algorithm.

We can combine this algorithm with Riemannian gradient descent (RGD) to get a globally conver-
gent algorithm which performs at least as well as RGD and which is eventually accelerated. Con-
sider running T = Θ̃(κ) steps of the algorithm we just described (with r = 1√

κ
·min{ 1

4
√
K
, K
4F })

in parallel with T steps of projected RGD on f (in D), both initialized at the same point x0 ∈ D.
After these T steps, we set x1 ∈ D to be the last iterate produced by one of the algorithms based
on function value and we repeat starting from x1, etc. By design, this algorithm performs at least
as well as RGD in terms of function value. By our choice of T = Θ̃(κ), once an iterate xk of
the algorithm enters B(x∗, r), then the distance to the minimizer of the subsequent outer iterates
xk+1, xk+2, . . . is decreasing. So once this method is restarted in B(x∗, r), it stays in this ball, and
the NAG sequence in a tangent space provides cost function value decrease at an accelerated rate.
Therefore this algorithm is eventually accelerated. We note that the algorithms of Zhang and Sra
(2018) and Ahn and Sra (2020) do not require a bound on ∥∇R∥ while the algorithm we presented
does.

E Proof of Theorem 8: showing x∗ ∈
⋂T−1

k=0 S
sk
ik

Consider the hyperbolic triangle formed by x∗, xref , z
sk
ik

. Let β ∈ [0, π] be the angle between
logzskik

(x∗) and logzskik
(xref). Let b = dist(x∗, zskik ). The angle between logxref

(x∗) and logxref
(zskik ) =

askeik equals θ = arccos(1/
√
d) for all k = 0, . . . , T−1. The hyperbolic law of cosines (Ratcliffe,

2019, Ch. 3.5) and cos(θ) = 1√
d
= tanh(a)

tanh(r) imply

cosh(b) = cosh(a) cosh(r)− sinh(a) sinh(r) cos(θ)

= cosh(a) cosh(r)− sinh(a) cosh(r) tanh(a)

=
cosh(r)

cosh(a)
[cosh(a)2 − sinh2(a)] =

cosh(r)

cosh(a)
.

One more application of the hyperbolic law of cosines implies

cosh(r) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(β) = cosh(r)− sinh(a) sinh(b) cos(β).

Therefore, cos(β) = 0, i.e., ⟨logzskik
(xref), logzskik

(x∗)⟩ = 0. So, x∗ ∈ Ssk
ik

for each k, as claimed.

F Extending the Ω̃(ζ) lower bound: details from Section 3

F.1 Hadamard manifolds of bounded curvature

In this section, we prove the following generalization of Theorem 7.

Theorem 44 (Generalization of Theorem 7) Let M be a Hadamard manifold of dimension d ≥ 2
whose sectional curvatures are in the interval [Klo,Kup] with Kup < 0. Let L̃ > 0 and r ≥ 64√

−Kup
.

Define

ϵ̂ =
1

210r
√
−Klo

, ϵ =
1

218ζr
√
−Klo

log2(ζr
√
−Klo

)
, ϵ′ =

1

218 log2(ζr
√
−Klo

)
,
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and L = L̃
210 log2(r

√
−Klo)

, M̃ = L̃
2
√
−Klo

. Let A be any deterministic algorithm.

There is a C∞ function f̃ ∈ Fxref

r,M̃,0,L̃
with unique minimizer x∗ such that running A on f̃ yields

iterates x0, x1, x2, . . . satisfying

f̃(xk)− f̃(x∗) ≥ 2ϵ̂Lr2 ≥ ϵ′ · M̃r ≥ ϵ · 1
2
L̃r2

for all k = 0, 1, . . . , T − 1, where T =

⌊
ζr
√

−Kup

50 log
(
64ζr

√
−Klo

)⌋.

Towards this end, we have the following generalization of Lemma 6.

Lemma 45 (Generalization of Lemma 6) Let M be a Hadamard manifold of dimension d ≥ 2
which satisfies the ball-packing property (see A1 in (Criscitiello and Boumal, 2022a)) with constants
r̃, c̃ and point xref ∈ M. Also assume M has sectional curvatures in the interval [Klo, 0] with
Klo < 0. Let L > 0 and r ≥ max

{
r̃, 8√

−Klo
, 4(d+2)

c̃

}
. Define ϵ̂ = 1

210r
√
−Klo

and µ = 64ϵ̂L =
L

24r
√
−Klo

. Let A be any deterministic algorithm.

There is a C∞ function f with minimizer x∗ ∈ B(xref ,
3
4r) such that running A on f yields

iterates x0, x1, x2, . . . satisfying f(xk)− f(x∗) ≥ 2ϵ̂Lr2 for all k = 0, 1, . . . , T − 1, where

T =

⌊
c̃(d+ 2)−1r

log
(
2 · 106 · c̃(d+ 2)−1r(r

√
−Klo)2

)⌋. (24)

Moreover, f is µ-strongly g-convex in M, and µ(12R+ 3√
−Klo

)-Lipschitz and µ(12R
√
−Klo+

9)-smooth in the ball B(xref ,R), where R = 29r log(r
√
−Klo)

2. Outside of the ball B(xref ,R),
f(x) = 3µdist(x, xref)

2 for all x ̸∈ B(xref ,R).

Proof Due to the assumed lower bound on r, we can apply Theorem 24 of (Criscitiello and Boumal,
2022a) to A. After scaling by 6µ,15 that theorem provides a function f which is µ-strongly g-
convex in M, and µ(12R + 3√

−Klo
)-Lipschitz and µ(12R

√
−Klo +9)-smooth in B(xref ,R) with

minimizer x∗ ∈ B(xref ,
3
4r) such that

dist(xk, x
∗) ≥ r

4
∀k ≤ T − 1,

where x0, x1, . . . denote the queries produced by running A on f . Using dist(xk, x
∗) ≥ r

4 ,

2ϵ̂ · Lr2 = 1

32
µr2 ≤ µ

2
dist(xk, x

∗)2 ≤ f(xk)− f(x∗), ∀k ≤ T − 1.

For the last inequality we used the µ-strong g-convexity of f .

Applying the exact same proof given in Section 3 for Theorem 7 to Lemma 45, we conclude the
following theorem (which is also a generalization of Theorem 7).

15. Scaling by 6µ is legitimate by a simple reduction argument: given an algorithm A, we can create an algorithm Â
which internally runs A to query an oracle Of̂ and multiplies the outputs of Of̂ by 6µ before forwarding them to A.
We call upon Theorem 24 of (Criscitiello and Boumal, 2022a) to claim there exists a hard function f̂ for Â. Since A
is effectively interacting with O6µf̂ , we find f = 6µf̂ is a hard function for A.
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Theorem 46 Let M be a Hadamard manifold of dimension d ≥ 2 which satisfies the ball-packing
property with constants r̃, c̃ and point xref ∈ M. Also assume M has sectional curvatures in the
interval [Klo, 0] with Klo < 0. Let L̃ > 0 and r ≥ max

{
r̃, 8√

−Klo
, 4(d+2)

c̃

}
. Define

ϵ̂ =
1

210r
√
−Klo

, ϵ =
1

218ζr
√
−Klo

log2(ζr
√
−Klo

)
, ϵ′ =

1

218 log2(ζr
√
−Klo

)
,

and L = L̃
210 log2(r

√
−Klo)

, M̃ = L̃
2
√
−Klo

. Let A be any deterministic algorithm.

There is a C∞ function f̃ ∈ Fr,M̃,0,L̃ with unique minimizer x∗ such that running A on f̃ yields
iterates x0, x1, x2, . . . satisfying

f̃(xk)− f̃(x∗) ≥ 2ϵ̂Lr2 ≥ ϵ′ · M̃r ≥ ϵ · 1
2
L̃r2

for all k = 0, 1, . . . , T − 1, where T is given by equation (24).

Theorem 44 now follows directly from Theorem 46 by using Lemma 7 of (Criscitiello and
Boumal, 2022a) for the values of r̃ and c̃ in the ball-packing property.

F.2 Defining the function uR : R → R

Define the C∞ function uR : R → R by uR(D) = 1 for all D ≤ 1
2R

2 and uR(D) = 1 −
e−4/

√
2D/R2−1 for all D > 1

2R
2. That uR is C∞ can be verified using the same method used in

the proof of Lemma 2.20 from (Lee, 2012, Ch. 2).

F.3 Verifying f̃R is Lipschitz, smooth and strictly g-convex in M

Let M be Hadamard manifold with sectional curvatures in [Klo, 0]. To complete the proof of
Theorem 7 from Section 3 (or its generalization Theorem 46), we show that given f with f(x) =
3µdist(x, xref)

2 for x ̸∈ B(xref ,R), the function f̃R defined by (1) is strictly g-convex, 12µR-
Lipschitz, and 24µR

√
−Klo-smooth outside of the ball B(xref ,R).

Let γ(t) be a geodesic with γ(0) = x, γ′(0) = v and ∥v∥ = 1. For the moment, define
D(x) = 1

2dist(x, xref)
2. For the gradient, we have〈

∇f̃R(x), v
〉
=

d

dt
[f̃(γ(t))]t=0 =

d

dt
[uR(D(γ(t)))f(γ(t))]t=0

=uR(D(x))
d

dt
[f(γ(t))]t=0 +

d

dt
[uR(D(γ(t)))]t=0f(x)

=uR(D(x)) ⟨∇f(x), v⟩+ f(x)u′R(D(x))
d

dt
[D(γ(t))]t=0

=uR(D(x)) ⟨∇f(x), v⟩ − f(x)u′R(D(x)) ⟨logx(xref), v⟩

which gives us the formula

∇f̃R(x) =


∇f(x) if dist(x, xref) ≤ R;

uR

(
D(x)

)
∇f(x)

−f(x)u′R
(
D(x)

)
exp−1

x (xref) otherwise.

(25)
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By Lemma 50, we also see that ∥∇f̃R(x)∥ ≤ 12µR if D(x) > 1
2R

2.
For the Hessian we have:〈

v,∇2f̃R(x)v
〉
=

d2

dt2
[f̃R(γ(t))]t=0 =

d2

dt2
[uR(D(γ(t)))f(γ(t))]t=0

=
d2

dt2
[uR(D(γ(t)))]t=0f(x) + uR(D(x))

d2

dt2
[f(γ(t))]t=0

+ 2
d

dt
[uR(D(γ(t)))]t=0

d

dt
[f(γ(t))]t=0

=f(x)u′′R(D(x))
( d

dt
[D(γ(t))]t=0

)2
+ f(x)u′R(D(x))

d2

dt2
[D(γ(t)))]t=0

+ uR(D(x))
d2

dt2
[f(γ(t))]t=0 + 2

d

dt
[uR(D(γ(t)))]t=0

d

dt
[f(γ(t))]t=0.

Therefore,〈
v,∇2f̃R(x)v

〉
=f(x)u′′R(D(x)) ⟨logx(xref), v⟩

2 + f(x)u′R(D(x))
〈
v,∇2D(x)v

〉
+ uR(D(x))

d2

dt2
[f(γ(t))]t=0 − 2 ⟨logx(xref), v⟩ ⟨∇f(x), v⟩

=6µ

(
[uR(D(x)) + D(x)u′R(D(x))]

〈
v,∇2D(x)v

〉
+ [2u′R(D(x)) + D(x)u′′R(D(x))] ⟨logx(xref), v⟩

2

)
.

Lemmas 47 and 48 from Appendix F.4 shows that uR(D) + Du′R(D) ≥ 0 and 2u′R(D) +

Du′′R(D) ≤ 0 for all D > 1
2R

2. Therefore,
〈
v,∇2f̃R(x)v

〉
is at least

6µ

(
[uR(D(x)) + D(x)u′R(D(x))] + [2u′R(D(x)) + D(x)u′′R(D(x))]2D

)
.

Lemma 49 shows that this is strictly greater than zero, verifying strict g-convexity.
Likewise, Lemma 50 along with Lemma 5 imply

〈
v,∇2f̃R(x)v

〉
is at most

6µ

(
[uR(D(x)) + D(x)u′R(D(x))]2

√
−Klo

√
2D

)
≤ 24µ

√
−KloR.

F.4 Technical facts about the function uR : R → R

In the following lemmas, we use the change of variables

τ = 1/

√
2D

R2
− 1 ⇐⇒ D = R2 1 + τ2

2τ2
.

for D ∈ (12R
2,∞) and τ ∈ (0,∞).
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Lemma 47 uR(D) + Du′R(D) ≥ 0, ∀D ∈ (12R
2,∞).

Proof Computing we find:

uR(D) + Du′R(D) = 1− e−4τ (1 + 2τ + 2τ3).

On the other hand, we know 1 + 4τ + 8τ2 + 32
3 τ

3 ≥ 1 + 2τ + 2τ3 for all τ ≥ 0 (which can be
verified with Mathematica), so

e4τ =
∞∑
j=0

1

j!
(4τ)j ≥

3∑
j=0

1

j!
(4τ)j = 1 + 4τ + 8τ2 +

32

3
τ3 ≥ 1 + 2τ + 2τ3, ∀τ ≥ 0,

which allows us to conclude.

Lemma 48 2u′R(D) + Du′′R(D) ≤ 0, ∀D ∈ (12R
2,∞).

Proof Computing we find:

2u′R(D) + Du′′R(D) = 2R−2e−4ττ3(−1− 4τ + 3τ2 − 4τ3)

and one can check that −1− 4τ + 3τ2 − 4τ3 ≤ 0 for all τ ≥ 0.

Lemma 49 [uR(D) + Du′R(D)] + [2u′R(D) + Du′′R(D)]2D > 0, ∀D ∈ (12R
2,∞).

Proof Computing we find:

[uR(D)+Du′R(D)]+[2u′R(D)+Du′′R(D)]2D = 1−e−4τ (1+4τ+8τ2−2τ3+16τ4−6τ5+8τ6).

On the other hand, we know
∑7

j=0
1
j!(4τ)

j > 1+4τ +8τ2− 2τ3+16τ4− 6τ5+8τ6 for all τ > 0
(which can be verified with Mathematica), which allows us to conclude.

Lemma 50 (uR(D) + Du′R(D))2
√
2D ≤ 4R, ∀D ∈ (12R

2,∞).

Proof This follows from a calculation similar to the proof of Lemma 47.

F.5 Technical fact from Section 3: xk ̸∈ B(xref ,R) implies f̃R(xk)− f̃R(x∗) ≥ 2ϵ̂Lr2

Recall Lemma 6 provides a µ = 64ϵ̂L-strongly g-convex function f , with minimizer x∗, satisfying
f(xk)− f(x∗) ≥ 2ϵ̂Lr2 for all k ≤ T − 1.

If xk ̸∈ B(xref ,R), then consider the geodesic segment γx∗→xk
: [0, 1] → M given by γx∗→xk

(t) =
expx∗(t logx∗(xk)). Continuity of t 7→ dist(γx∗→xk

(t), xref) implies there exists a t ∈ (0, 1) so that
R = dist(γx∗→xk

(t), xref). Let y = γ(t). Geodesic convexity of f̃R implies

f̃R(y) ≤ (1− t)f̃R(x∗) + tf̃R(xk) ≤ (1− t)f̃R(y) + tf̃R(xk),

which implies f̃R(y) ≤ f̃R(xk). On the other hand, we know f̃R = f in B(xref ,R). Therefore f̃R

is µ-strongly g-convex in B(xref ,R), so

f̃R(xk)− f̃R(x∗) ≥ f̃R(y)− f̃R(x∗) ≥ µ

2
dist(y, x∗)2 ≥ µ

2
(R − r)2 ≥ 32ϵ̂L(211r)2 ≥ 2ϵ̂Lr2.
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G Properties of the Moreau envelope: Proof of Lemma 10

Azagra and Ferrera (2005, Cor. 4.5) shows that fλ is g-convex and C1. The function y 7→ f(y) +
1
2λdist(x, y)

2 is strongly g-convex and so has a unique minimizer which we denote

yλ(x) = arg min
y∈M

{f(y) + 1

2λ
dist(x, y)2}.

First-order optimality conditions imply ∇f(yλ(x)) = 1
λ logyλ(x)(x). Since, f is 1-Lipschitz,

this implies dist(x, yλ(x)) = ∥ logyλ(x)(x)∥ ≤ λ. This proves fλ(x) = miny∈B(x,λ){f(y) +
1
2λdist(x, y)

2}. Next, using the g-convexity and 1-Lipschitzness of f , we have

f(x) ≥ fλ(x) ≥ f(yλ(x)) ≥ f(x) + ⟨∇f(x), logx(yλ(x))⟩ ≥ f(x)− dist(x, yλ(x)) ≥ f(x)− λ.

To compute the Lipschitz constant of ∇fλ, we follow (but slightly simplify) the proof of (Azagra
and Ferrera, 2015, Prop. 7.1). Let δ > 0. By Theorem 1.5 of (Azagra and Ferrera, 2015) (which
provides a useful characterization of Lipschitz gradient), it suffices to show that for each x0 ∈ M the
function x 7→ fλ(x)− ζλ+2δ

2λ dist(x, x0)
2 is g-concave when restricted to B(x0, δ). For x ∈ B(x0, δ),

fλ(x)−
ζλ+2δ

2λ
dist(x, x0)

2 = min
y∈B(x,λ)

{f(y) + 1

2λ
dist(x, y)2} − ζλ+2δ

2λ
dist(x, x0)

2

= min
y∈B(x0,δ+λ)

{f(y) + 1

2λ
dist(x, y)2 − ζλ+2δ

2λ
dist(x, x0)

2}.

As the minimum of g-concave functions is g-concave, it suffices to show that for each y ∈ B(x0, δ+

λ), the function d̃(x) = 1
2dist(x, y)

2 − ζλ+2δ

2 dist(x, x0)
2 is g-concave when restricted to B(x0, δ).

This is easy to see by looking at the maximum eigenvalue of its Hessian. For x ∈ B(x0, δ),

λmax(∇2 ˜dist(x)) ≤ ζdist(x,y) − ζλ+2δ ≤ 0

using that dist(x, y) ≤ δ + δ + λ = 2δ + λ. This concludes the proof of Lipschitz gradient.
Finally, to see that fλ is 1-Lipschitz, note that ∇fλ(x) = − 1

λ logx(yλ(x)) for all x ∈ M
(Azagra and Ferrera, 2005, Prop. 3.7), so ∥∇fλ(x)∥ = 1

λdist(x, yλ(x)) ≤ 1.

H The relation between ζ , ϵ and κ: proofs from Section 5.1

The following proposition states if f is gradient-Lipschitz then it is Lipschitz. The proof is due
to (Petrunin, 2023). We just fill in the details.

Proposition 51 Let p ∈ M = Hd, and assume f : M → R is differentiable and L-smooth in
B(p, 2). Then ∥∇f(p)∥ ≤ π

√
5L
2 ≤ 4L.

Remark 52 It is necessary that we assume f is L-smooth in a region which is not too small, because
we can construct functions with small Hessian and arbitrarily large gradient in a sufficiently small
region by pushing forward functions defined in a tangent space via the exponential map, as in
Appendix D.
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Proof [Proof of Proposition 51] Take a 2-dimensional totally geodesic submanifold S which passes
through p and is tangent to ∇f(p), i.e., ∇f(p) ∈ TpS. Let f̂ be the restriction of f to S. Note that
f̂ is L-smooth in S∩B(p, 2).16 Consider a circle C ⊆ S∩B(p, 2) of radius R = arccosh(3/2) < 1
containing p. Let c : [0, T ] → C, T = 2π sinh(R), be an arc-length parameterization of C with
c(0) = c(T ) = p, and let P c

t→s denote parallel transport (in S) along c from c(t) to c(s).
For the moment, assume that f is twice differentiable. Observe that

d

dt
[P c

t→0∇f̂(c(t))] = P c
t→0Dt∇f̂(c(t)) = P c

t→0∇2f̂(c(t))c′(t),

where Dt is the covariant derivative along γ. Therefore,

∥P c
T→0∇f̂(p)−∇f̂(p)∥ = ∥

∫ T

0
P c
t→0∇2f̂(c(t))c′(t)dt∥ ≤ LT. (26)

On the other hand, P c
T→0∇f̂(p) is a rotation of ∇f̂(p) by some angle θ, and the Gauss-Bonnet

Formula (Lee, 2018, Ch. 9) states that θ =
∫
KdA = 2π −

∫
C kg = −2π(cosh(R) − 1),

where
∫
KdA is the integral of the curvature K = −1 over the interior of C (a disk), and kg =

coth(R) is the geodesic curvature of C. Since R = arccosh(3/2), we know θ = −π, and
∥P c

T→0∇f̂(p) − ∇f̂(p)∥ = 2∥∇f̂(p)∥. We conclude that ∥∇f(p)∥ = ∥∇f̂(p)∥ ≤ LT/2 =
Lπ sinh(R) = Lπ

√
5/2 ≤ 4L.

If f is not twice differentiable, we can still conclude the result in a similar way. Place N
equally spaced points around C, pn = c(tn), tn = nT

N for n = 0, . . . , N . Let α = π
N . Let γn

denote the geodesic segment between pn, pn+1. Let ΓN denote the geodesic polygon formed by the
segments γn. Let PΓ

n→m,m ≤ n, denote parallel transport (in S) from pn to pm along the geodesic
segments γn, γn−1, . . . , γm. Note that PΓ

n→0 = PΓ
n−1→0P

Γ
n→n−1. The L-smoothness of f̂ implies,

for n = 0, . . . , N ,

∥PΓ
n→0∇f̂(pn)−∇f̂(p)∥

= ∥PΓ
n−1→0P

Γ
n→n−1∇f̂(pn)− PΓ

n−1→0∇f̂(pn−1) + PΓ
n−1→0∇f̂(pn−1)−∇f̂(p)∥

≤ ∥PΓ
n→n−1∇f̂(pn)−∇f̂(pn−1)∥+ ∥PΓ

n−1→0∇f̂(pn−1)−∇f̂(p)∥
≤ Ldist(pn, pn−1) + ∥PΓ

n−1→0∇f̂(pn−1)−∇f̂(p)∥.

Therefore, ∥PΓ
n→0∇f̂(pn)−∇f̂(p)∥ ≤

∑n−1
n=0 Ldist(pn, pn−1) ≤ LT , and so for all N ,

∥PΓ
N→0∇f̂(p)−∇f̂(p)∥ ≤ LT.

On the other hand, PΓ
N→0∇f̂(p) is a rotation of ∇f̂(p) by some angle θN , and the Gauss-Bonnet

Formula (Lee, 2018, Ch. 9) states that θN =
∫
KdA, where

∫
KdA is the integral of the curvature

K = −1 over the interior of the polygon Γ. The area of that polygon equals 2N = 2
πα times the

area of a right hyperbolic triangle with angle α and hypotenuse R. Let β ∈ (0, π2 ) be the other angle
in this triangle which is not a right angle. Using hyperbolic trigonometry, we find

β = arcsin

(
1

sinh(R)
sinh

(
arctanh(tanh(R) cos(α))

))
.

16. This follows from: if Px denotes orthogonal projection from TxM to TxS, one can check that PyPx→y = Px→yPx.
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The area of this triangle equals π − π
2 − α− β, and so we find that

| − π − θN | = | − π −K · 2π
α

· (π − π

2
− α− β)| ≤ 5π

4
α2, ∀α ∈ (0,

π

2
].

Hence, taking N large enough (i.e., α small enough), ∥PΓ
N→0∇f̂(p) − ∇f̂(p)∥ is arbitrarily close

to 2∥∇f̂(p)∥. Yet, ∥PΓ
N→0∇f̂(p)−∇f̂(p)∥ ≤ LT , and we conclude as in the case where f is twice

differentiable.

Proof [Proof of Proposition 13] Assume r > 2. By Proposition 51, ∥∇f(p)∥ ≤ π
√
5L
2 for all

p ∈ B(xref , r − 2). If dist(x∗, xref) ≤ r − 2, then we know that f(xref) − f∗ ≤ π
√
5L
2 (r − 2).

Otherwise, define x′ = expxref

(
r−2

dist(x∗,xref)
logxref

(x∗)
)
. Then f(xref)− f(x′) ≤ π

√
5L
2 (r− 2) and

∥∇f(x′)∥ ≤ π
√
5L
2 . So by L-smoothness of f ,

f∗ = f(x∗) ≥ f(x′) + ⟨∇f(x′), logx′(x∗)⟩ −
L

2
dist(x′, x∗)2 ≥ f(x′)− π

√
5L

2
· 2− L

2
· 4

and so, if r > 2,

f(xref)− f∗ ≤ f(xref)− f(x′) + f(x′)− f∗ ≤ π
√
5L

2
(r − 2) + π

√
5L+ 2L ≤ π

√
5L

2
r + 2L.

We conclude, for all r > 0, f(xref)− f∗ ≤ min
{

π
√
5L
2 r + 2L, 12Lr

2
}
≤ 8

ζr
· 1
2Lr

2.

To prove the bound κ ≥ ζr Martı́nez-Rubio (2021) and Hamilton and Moitra (2021) use that the
domain is a ball. We can use Proposition 51 to prove κ ≥ Ω(ζr) if the domain is not too eccentric.

Proposition 53 Let f : Hd → R be differentiable, µ-strongly g-convex globally, and suppose
∇f(x∗) = 0. Let r > 2, and consider a g-convex subset D containing x∗ such that

1. there exists D̃ ⊆ D such that B(x, 2) ⊆ D for all x ∈ D̃, and

2. there is a x̃ ∈ D̃ so that dist(x̃, x∗) ≥ r − 2.

(For example, D = B(x∗, r) satisfies these assumptions.)
Let L be the Lipschitz constant of ∇f in D. Then κ = L

µ ≥ 1
10ζr.

Proof [Proof of Proposition 53] We know that ∥∇f(x)∥ ≤ π
√
5

2 L for all x ∈ D̃, and so

π
√
5

2
Ldist(x, x∗) ≥ f(x)− f∗ ≥ µ

2
dist(x, x∗)2

for all x ∈ D̃. Using dist(x̃, x∗) ≥ r − 2, L
µ ≥ max{1, r−2

π
√
5
} ≥ 1

10ζr.

Remark 54 From the results in this section, the most natural scalings for smooth g-convex opti-
mization on hyperbolic spaces are arguably not the ones given in P3 and P4. Instead, for P3 one
should ask for x such that f(x) − f∗ ≤ ϵ · 1

2ζr
Lr2, and for P4 one should define a new condition

number κ′ = L
µζr

. We do not do this here in order to maintain consistency with previous literature.
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Proposition 55 If f is a C3 g-convex function on a hyperbolic space whose Hessian vanishes at a
point x then necessarily ∇f(x) = 0.

Proof Let ∇3f(x) : TxM×TxM×TxM → R denote the third derivative of f at x (see (Boumal,
2023, Ex. 10.78) for a definition). As observed in (Criscitiello and Boumal, 2022b, Remark 3.2),
the Ricci identity applied to ∇f implies

∥∇f(x)∥ ≤ 2∥∇3f(x)∥,

since hyperbolic space has constant sectional curvature −1.
Let x ∈ M, u, v ∈ TxM and γ(t) = expx(tv). Define the parallel vector field U along γ as

U(t) = Px→γ(t)u. By the definition of ∇3f (see (Boumal, 2023, Ex. 10.78)),

∇3f(u, u, v) =
d

dt

[
⟨U(t),∇2f(γ(t))U(t)⟩

]
t=0

.

Since f is g-convex, we know that ⟨U(t),∇2f(γ(t))U(t)⟩ ≥ 0 for all t. Since ⟨U(0),∇2f(γ(0))U(0)⟩ =
0, we know d

dt

[
⟨U(t),∇2f(γ(t))U(t)⟩

]
t=0

= 0. We conclude that ∇3f(u, u, v) = 0 for all

u, v ∈ TxM. By symmetry of the first two arguments of ∇3f , we conclude ∇3f(x) = 0. Hence,
∥∇f(x)∥ ≤ 0.

Remark 56 The assumption that f is three times differentiable in Proposition 55 is necessary.
Indeed, let y ∈ M, g ∈ TyM with ∥g∥ = 1, and consider the function

f(x) = ⟨g, logy(x)⟩+
τ

6
dist(x, y)3.

If τ is large enough (e.g., τ = 2), then one can check, like in the proof of Proposition 40, that this
function is globally g-convex. However, ∇2f(x) = 0 and ∇f(x) = g.

I Reduction between strongly and nonstrongly g-convex settings

Proposition 57 Fix ϵ ∈ (0, 1), L > 0 and r > 0. Define

δ = ϵ · 1
2
Lr2, δ̃ =

1

2
r2, σ =

ϵL

2
.

Let A be a first-order deterministic algorithm. There is a first-order deterministic algorithm A′ such
that: for all f ∈ Fr,∞,0,L, if we define

f̃(x) =
1

σ
f(x) +

1

2
dist(x, xref)

2,

then Tδ(A′, f) ≤ Tδ̃(A, f̃) (recall Section 1.1).
In particular, if r′ ≥ 2r and κ = L

σ + ζr′ =
2
ϵ + ζr′ , then Tϵ,r ≤ Tϵ′,r′,κ where ϵ′ = r2

κ(r′)2 .
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Proof Let f ∈ Fr,∞,0,L be an L-smooth g-convex function with minimizer x∗ ∈ B(xref , r) satis-
fying ∇f(x∗) = 0. The function f̃ is 1-strongly g-convex in M. Thus, it has a unique minimizer
x̃∗ ∈ M satisfying ∇f̃(x̃∗) = 0 and dist(x̃∗, xref) ≤ 2dist(x∗, xref) ≤ 2r because

σ(dist(x̃∗, xref)− dist(x∗, xref)) ≤ σdist(x∗, x̃∗) ≤
∥∥∥∇f̃(x∗)

∥∥∥
=
∥∥−σ exp−1

x∗ (xref)
∥∥ = σdist(x∗, xref).

We conclude that x̃∗ ∈ B(xref , 2r).
Let A′ be the algorithm which runs A on the function f̃ (and so outputs the same queries as A).

Let T = Tδ̃(A, f̃) (we can assume T is finite otherwise there is nothing to prove). By assumption,
algorithm A uses at most T queries to find a point x ∈ M with σ(f̃(x)−f̃∗) ≤ σδ̃ = σ 1

2r
2 = ϵ

4Lr
2,

where f̃∗ = f̃(x̃∗). Let us show that in fact f(x)− f∗ ≤ ϵ · 1
2Lr

2. Since

σf̃∗ ≤ σf̃(x∗) = f∗ +
ϵL

4
dist(x∗, xref)

2 ≤ f∗ +
ϵL

4
r2

we have
f(x)− f∗ − ϵL

4
r2 ≤ f(x)− σf̃∗ ≤ σ(f̃(x)− f̃∗) ≤ ϵ

4
Lr2,

that is, f(x)− f∗ ≤ ϵ · 1
2Lr

2 = δ. Hence, Tδ(A′, f) ≤ T = Tδ̃(A, f̃), as claimed.
Given r′ ≥ 2r, we know that x̃∗ ∈ B(xref , r

′) and f̃ is L
σ + ζr′ = κ-smooth in B(xref , r

′) by
Lemma 5. Hence, f̃ ∈ Fr′,∞,1,κ, and Tδ(A′, f) ≤ Tδ̃(A, f̃) ≤ supf ′∈Fr′,∞,1,κ

Tδ̃(A, f ′). Recall
that this holds for all f ∈ Fr,∞,0,L, so supf∈Fr,∞,0,L

Tδ(A′, f) ≤ supf ′∈Fr′,∞,1,κ
Tδ̃(A, f ′), so

Tϵ,r = inf
Ã

sup
f∈Fr,∞,0,L

Tδ(Ã, f) ≤ sup
f ′∈Fr′,∞,1,κ

Tδ̃(A, f ′)

where the infimum is over all algorithms Ã. This holds for all algorithms A, so we conclude

Tϵ,r = inf
Ã

sup
f∈Fr,∞,0,L

Tδ(Ã, f) ≤ inf
A

sup
f ′∈Fr′,∞,1,κ

Tδ̃(A, f ′) = Tϵ′,r′,κ

using that δ̃ = 1
2r

2 = r2

κ(r′)2 · 1
2κ(r

′)2 = ϵ′ · 1
2κ(r

′)2.

We then have the following proof of Theorem 12.
Proof [Proof of Theorem 12] We have two cases:

Case I: r′ ≥ 2. Taking r = 1 and ϵ = 2
κ−ζr′

, Proposition 57 and Theorem 11 imply

qκ,r′ ≥
Tϵ′,r′,κ

log(1/ϵ′)
≥ Tϵ,r

log(1/ϵ′)
≥ 1

log(κ(r′)2)
√
8ζ2r ϵ

=

√
κ− ζr′

4ζr log(κ(r′)2)
≥

√
κ− ζr′

8 log(κ(r′)2)
.

Case II: r′ < 2. Taking r = r′/2 and ϵ = 2
κ−ζr′

, Proposition 57 and Theorem 11 imply

qκ,r′ ≥
Tϵ′,r′,κ

log(1/ϵ′)
≥ Tϵ,r

log(1/ϵ′)
≥ 1

log(4κ)
√
8ζ2r ϵ

=

√
κ− ζr′

4ζr log(4κ)
≥

√
κ− ζr′

8 log(4κ)
.
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J Width-bounded separators: Working out dependence on d in Lemma 34

Kisfaludi-Bak (2020, Lemma 9 (ii)), shows that E[S] ≤
∑J

j=1 P[T ∩H ̸= ∅|T ∈ Lj ]|Lj | where

• Lj = {T ∈ T : dist(p, T ) ∈ [(j − 1)τ, jτ)}. In particular, using that c0τ/2 ≥ 4 log(d) and
Lemma 33,

|Lj | ≤ Vd((j + 1)τ)/Vd(c0τ/2) ≤ 4e(d−1)τ(j+1−c0/2).

• J ≥ 2 is such that the number of tiles T which intersect the interior of B(p, (J − 1)τ) is at
most |I|. In particular, this implies that Vd((J − 1)τ)/Vd(τ/2) ≥ |I|. Using 33, we know
that

Vd((J − 1)τ)/Vd(τ/2) ≥ e(d−1)(J−1)τe−τ(d−1)/2−2

and so (J − 1)τ ≤ 1
d−1(log(|I|) + τ(d− 1)/2 + 2).

Kisfaludi-Bak (2020, Lemma 8), also shows that

P[T ∩H ̸= ∅|T ∈ Lj ] ≤ 4
sinh(2τ)

sinh(jτ)
· σd−2

σd−1
≤ 4

√
d

2π
· sinh(2τ)
sinh(jτ)

≤ 8
√
d

2π
e−τ(j−2).

Plugging in these bounds and using τ ≥ 2
3(d−1) log(

64e2√
2π

√
d) for the last inequality below, we find

E[S] ≤ 32
√
d√

2π
e(d−1)τ(3−c0/2)

J∑
j=1

e(d−2)τ(j−2)

=
32
√
d√

2π
e(d−1)τ(3−c0/2)[−e−(d−2)τ +

e(d−2)τ(J−1) − 1

e(d−2)τ − 1
]

≤ 64
√
d√

2π
e(d−1)τ(3)e(d−2)τ(J−1)

≤ 64
√
d√

2π
e3(d−1)τe

d−2
d−1

(τ(d−1)/2+2)|I|
d−2
d−1 ≤ 1

2
e5(d−1)τ |I|

d−2
d−1 .

Next, we need to workout c0. Kisfaludi-Bak (2020, Lemma 5(ii)), shows there exists a (c0τ/2, τ/2)-
nice tiling if c0 ≤ τ−1 log

(
1 + 2

d(cosh(τ/2) − 1)
)
. Using that cosh(τ/2) − 1 ≥ eτ/2/4 if τ ≥ 3

and 1
2de

τ/2 ≥ eτ/4 if τ ≥ 8 log(d), we find that

τ−1 log
(
1 +

2

d
(cosh(τ/2)− 1)

)
≥ τ−1 log

( 1

2d
eτ/2

)
≥ 1

4
.

Hence, we can take c0 = 1/4.
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