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Abstract
Best-of-both-worlds algorithms for online learning which achieve near-optimal regret in both the
adversarial and the stochastic regimes have received growing attention recently. Existing techniques
often require careful adaptation to every new problem setup, including specialised potentials and
careful tuning of algorithm parameters. Yet, in domains such as linear bandits, it is still unknown if
there exists an algorithm that can simultaneously obtain O(log(T )) regret in the stochastic regime
and Õ(

√
T ) regret in the adversarial regime. In this work, we resolve this question positively and

present a general reduction from best of both worlds to a wide family of follow-the-regularized-
leader (FTRL) and online-mirror-descent (OMD) algorithms. We showcase the capability of this
reduction by transforming existing algorithms that are only known to achieve worst-case guarantees
into new algorithms with best-of-both-worlds guarantees in contextual bandits, graph bandits and
tabular Markov decision processes.

1. Introduction

Multi-armed bandits and its various extensions have a long history (Lai et al., 1985; Auer et al.,
2002a;b). Traditionally, the stochastic regime in which all losses/rewards are i.i.d. and the adver-
sarial regime in which an adversary chooses the losses in an arbitrary fashion have been studied
in isolation. However, it is often unclear in practice whether an environment is best modelled by
the stochastic regime, a slightly contaminated regime, or a fully adversarial regime. This is why
the question of automatically adapting to the hardness of the environment, also called achieving
best-of-both-worlds guarantees, has received growing attention (Bubeck and Slivkins, 2012; Seldin
and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Wei and Luo, 2018; Zimmert
and Seldin, 2019; Ito, 2021b; Ito et al., 2022a; Masoudian and Seldin, 2021; Gaillard et al., 2014;
Mourtada and Gaı̈ffas, 2019; Ito, 2021a; Lee et al., 2021; Rouyer et al., 2021; Amir et al., 2022;
Huang et al., 2022; Tsuchiya et al., 2022; Erez and Koren, 2021; Rouyer et al., 2022; Ito et al.,
2022b; Kong et al., 2022; Jin and Luo, 2020; Jin et al., 2021; Chen et al., 2022; Saha and Gaillard,
2022; Masoudian et al., 2022; Honda et al., 2023). One of the most successful approaches has been
to derive carefully tuned FTRL algorithms, which are canonically suited for the adversarial regime,
and then show that these algorithms are also close to optimal in the stochastic regime as well.
This is achieved via proving a crucial self-bounding property, which then translates into stochastic
guarantees. This type of algorithms have been proposed for multi-armed bandits (Wei and Luo,
2018; Zimmert and Seldin, 2019; Ito, 2021b; Ito et al., 2022a), combinatorial semi-bandits (Zim-
mert et al., 2019), bandits with graph feedback (Ito et al., 2022b), tabular MDPs (Jin and Luo, 2020;
Jin et al., 2021) and others. Algorithms with self-bounding properties also automatically adapt to

© 2023 C. Dann, C.-Y. Wei & J. Zimmert.



DANN WEI ZIMMERT

Setting Algorithm Adversarial Stochastic o(C) Rd. 1 Rd. 2

Linear bandit

Lee et al. (2021)
√

dT log(|X |T ) log T d log(|X|T ) log(T )
∆

Theorem 3 d
√
νL⋆ log T

d2ν log T
∆

✓

Corollary 7 d
√
T log T d2 log T

∆
✓ ✓

Corollary 12
√

dT log |X | d log |X| log T
∆

✓ ✓ ✓

Contextual bandit Corollary 13
√

KT log |X | K log |X| log T
∆

✓ ✓ ✓

Graph bandit
Strongly observable

Ito et al. (2022b)
√
αT log T log(KT ) α log2(KT ) log T

∆
✓

Rouyer et al. (2022)
√

α̃T logK α̃ log(KT ) log T
∆

Corollary 15
√

min{α̃, α logK}T logK min{α̃,α logK} logK log T
∆

✓ ✓ ✓

Graph bandit
Weakly observable

Ito et al. (2022b) (δ log(KT ) log T )
1
3 T

2
3

δ log(KT ) log T

∆2 ✓

Corollary 19 (δ logK)
1
3 T

2
3

δ logK log T
∆2 ✓ ✓ ✓

Tabular MDP
Jin et al. (2021)

√
H2S2AT log2 T H6S2A log2 T

∆′ ✓

Theorem 26
√

HS2AL⋆ log4 T H2S2A log3 T
∆

✓ ✓ ✓

Table 1: Overview of regret bounds. The o(C) column specifies whether the algorithm achieves the
optimal dependence on the amount of corruption (

√
C or C

2
3 , depending on the setting). “Rd. 1”

and “Rd. 2” indicate whether the result leverages the first and the second reductions described in
Section 4, respectively. L⋆ is the cumulative loss of the best action or policy. ν in Theorem 3 is the
self-concordance parameter; it holds that ν ≤ O(d) (see Appendix B for details). ∆′ in Jin et al.
(2021) is the gap in the Q⋆ function, which is different from the policy gap ∆ we use; it holds that
∆ ≤ ∆′. α, α̃, δ are complexity measures of feedback graphs defined in Section 5.

intermediate regimes of stochastic losses with adversarial corruptions (Lykouris et al., 2018; Gupta
et al., 2019; Zimmert and Seldin, 2019; Ito, 2021a), which highlights the strong robustness of this
algorithm design. However, every problem variation required careful design of potential functions
and learning rate schedules. For linear bandits, it has been still unknown whether self-bounding is
possible and therefore the state-of-the-art best-of-both-worlds algorithm (Lee et al., 2021) neither
obtains optimal log T stochastic rate, nor canonically adapts to corruptions.

In this work, the make the following contributions: 1) We propose a general reduction from best
of both worlds to typical FTRL/OMD algorithms, sidestepping the need for customized potentials
and learning rates. 2) We derive the first best-of-both-worlds algorithm for linear bandits that obtains
log T regret in the stochastic regime, optimal adversarial worst-case regret and adapts canonically
to corruptions. 3) We derive the first best-of-both-worlds algorithm for linear bandits and tabular
MDPs with first-order guarantees in the adversarial regime. 4) We obtain the first best-of-both-
worlds algorithms for bandits with graph feedback and bandits with expert advice with optimal
log T stochastic regret.

2. Related Work

Our reduction procedure is related to a class of model selection algorithms that uses a meta bandit
algorithm to learn over a set of base bandit algorithms, and the goal is to achieve a comparable
performance as if the best base algorithm is run alone. For the adversarial regime, Agarwal et al.
(2017) introduced the Corral algorithm to learn over adversarial bandits algorithm that satisfies the
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stability condition. This framework is further improved by Foster et al. (2020); Luo et al. (2022).
For the stochastic regime, Arora et al. (2021); Abbasi-Yadkori et al. (2020); Cutkosky et al. (2021)
introduced another set of techniques to achieve similar guarantees, but without explicitly relying
on the stability condition. While most of these results focus on obtaining a

√
T regret, Arora et al.

(2021); Cutkosky et al. (2021); Wei et al. (2022); Pacchiano et al. (2022) made some progress in
obtaining polylog(T ) regret in the stochastic regime. Among them, Wei et al. (2022); Pacchiano
et al. (2022) are most related to us since they also pursue a best-of-both-worlds guarantee across
adversarial and stochastic regimes. However, their regret bounds, when applied to our problems, all
suffer from highly sub-optimal dependence on log(T ) and the amount of corruptions.

3. Preliminaries

We consider sequential decision making problems where the learning interacts with the environment
in T rounds. In each round t, the environment generates a loss vector (ℓt,u)u∈X and the learner
generates a distribution over actions pt and chooses an action At ∼ pt. The learner then suffers
loss ℓt,At and receives some information about (ℓt,u)u∈X depending on the concrete setting. In all
settings but MDPs, we assume ℓt,u ∈ [−1, 1].

In the adversarial regime, (ℓt,u)u∈X is generated arbitrarily subject to the structure of the con-
crete setting (e.g., in linear bandits, E[ℓt,u] = ⟨u, ℓt⟩ for arbitrary ℓt ∈ Rd). In the stochastic regime,
we further assume that there exists an action x⋆ ∈ X and a gap ∆ > 0 such that E[ℓt,x− ℓt,x⋆ ] ≥ ∆
for all x ̸= x⋆. We also consider the corrupted stochastic regime, where the assumption is relaxed
to E[ℓt,x − ℓt,x⋆ ] ≥ ∆ − Ct for some Ct ≥ 0. We define C =

∑T
t=1Ct. The goal of the learner is

to minimize the pseudo-regret, defined as Reg = maxu∈X E
[∑T

t=1(ℓt,At − ℓt,u)
]
.

4. Main Techniques

4.1. The standard global self-bounding condition and a new linear bandit algorithm

To obtain a best-of-both-world regret bound, previous works show the following property for their
algorithm:

Definition 1 (α-global-self-bounding condition, or α-GSB)

∀u ∈ X : E

[
T∑
t=1

(ℓt,At − ℓt,u)

]
≤ min

{
c1−α0 Tα, (c1 log T )

1−αE

[
T∑
t=1

(1− pt,u)

]α}
+ c2 log T

where c0, c1, c2 are problem-dependent constants and pt,u is the probability of the learner choosing
u in round t.

With this condition, one can use the standard self-bounding technique to obtain a best-of-both-world
regret bounds:

Proposition 2 If an algorithm satisfies α-GSB, then its pseudo-regret is bounded
by O

(
c1−α0 Tα + c2 log T

)
in the adversarial regime, and by O

(
c1 log(T )∆

− α
1−α +

(c1 log T )
1−α (C∆−1

)α
+ c2 log(T )

)
in the corrupted stochastic regime.
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For completeness, we provide a proof of Proposition 2 in Appendix D. Previous works have found
algorithms with GSB in various settings, such as multi-armed bandits, semi-bandits, graph-bandits,
and MDPs. Here, we provide one such algorithm (Algorithm 3) for linear bandits based on the
framework of SCRiBLe (Abernethy et al., 2008). The guarantee of Algorithm 3 is stated in the
next theorem under the more general “learning with predictions” setting introduced in Rakhlin and
Sridharan (2013), where in every round t, the learner receives a loss predictor mt before making
decisions.

Theorem 3 In the “learning with predictions” setting, Algorithm 3 achieves a second-order

regret bound of O
(
d
√
ν log(T )

∑T
t=1(ℓt,At −mt,At)

2 + dν log T
)

in the adversarial regime,
where d is the feature dimension, ν ≤ O(d) is the self-concordance parameter of the regu-
larizer, and mt,x = ⟨x,mt⟩ is the loss predictor. This also implies a first-order regret bound

of O
(
d
√
ν log(T )

∑T
t=1 ℓt,u

)
if ℓt,x ≥ 0 and mt = 0; it simultaneously achieves Reg =

O
(
d2ν log T

∆ +
√

d2ν log T
∆ C

)
in the corrupted stochastic regime.

See Appendix B for the algorithm and the proof. We call this algorithm Variance-Reduced SCRiBLe
(VR-SCRiBLe) since it is based on the original SCRiBLe updates, but with some refinement in the
construction of the loss estimator to reduce its variance. A good property of a SCRiBLe-based
algorithm is that it simultaneously achieves data-dependent bounds (i.e., first- and second-order
bounds), similar to the case of multi-armed bandit using FTRL/OMD with log-barrier regularizer
(Wei and Luo, 2018; Ito, 2021b). Like Rakhlin and Sridharan (2013); Bubeck et al. (2019); Ito
(2021b); Ito et al. (2022a), we can also use another procedure to learn mt and obtain path-length or
variance bounds. The details are omitted.

We notice, however, that the the bound in Theorem 3 is sub-optimal in d since the best-known
regret for linear bandits is either d

√
T log T or

√
dT log |X |, depending on whether the number of

actions is larger than T d. These bounds also hint the possibility of getting better dependence on d
in the stochastic regime if we can also establish GSB for these algorithms. Therefore, we ask: can
we achieve best-of-both-world bounds for linear bandits with the optimal d dependence?

An attempt is to try to show GSB for existing algorithms with optimal d dependence, including
the EXP2 algorithm (Bubeck et al., 2012) and the logdet-FTRL algorithm (Zimmert and Lattimore,
2022)1. Based on our attempt, it is unclear how to adapt the analysis of logdet-FTRL to show
GSB. For EXP2, using the learning-rate tuning technique by Ito et al. (2022b), one can make it
satisfy a similar guarantee as GSB, albeit with an additional log(T ) factor, resulting in a bound
d log(|X |T ) log(T )

∆ in the stochastic regime. This gives a sub-optimal rate of O(log2 T ). Therefore, we
further ask: can we achieve O(log T ) regret in the stochastic regime with an optimal d dependence?

Motivated by these questions, we resort to approaches that do not rely on GSB, which appears
for the first time in the best-of-both-world literature. Our approach is in fact a general reduction —
it not only successfully achieves the desired bounds for linear bandits, but also provides a principled
way to convert an algorithm with a worst-case guarantee to one with a best-of-both-world guarantee
for general settings. In the next two subsections, we introduce our reduction techniques.

1. Another potential algorithm is the truncated continuous exponential weight algorithm by Ito et al. (2020), which
obtains optimal regret dependence on d, is computationally efficient, and can achieve first/second-order bounds.
However, the regret bound shown by Ito et al. (2020) has sub-optimal dependence on log T , making it impossible to
obtain a O(log T ) regret bound in the stochastic regime using the analysis framework of Ito et al. (2020).
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Algorithm 1 BOBW via LSB algorithms
Input: LSB algorithm A
T1 ← 0, T0 ← −c2 log(T ).
x̂1 ∼ unif(X ).
t← 1.
for k = 1, 2 . . . , do

Initialize A with candidate x̂k.
Set counters Nk(x) = 0 for all x ∈ X .
for t = Tk + 1, Tk + 2, . . . do

Play action At as suggested by A, and advance A by one step.
Nk(At)← Nk(At) + 1
if t− Tk ≥ 2(Tk − Tk−1) and ∃x ∈ X \ {x̂k} such that Nk(x) ≥ t−Tk

2 then
x̂k+1 ← x.
Tk+1 ← t.
break.

end
end

end

4.2. First reduction: Best of Both Worlds→ Local Self-Bounding

Our reduction approach relies on an algorithm to satisfy a weaker condition than GSB, defined in
the following:

Definition 4 (α-local-self-bounding condition, or α-LSB) We say an algorithm satisfies the α-
local-self-bounding condition if it takes a candidate action x̂ ∈ X as input and satisfies the follow-
ing pseudo-regret guarantee for any stopping time t′ ∈ [1, T ]:

∀u ∈ X :

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤ min

c1−α0 E[t′]α, (c1 log T )
1−αE

[
t′∑
t=1

(1− I{u = x̂}pt,u)
]α+ c2 log T

where c0, c1, c2 are problem dependent constants.

The difference between LSB in Definition 4 and GSB in Definition 1 is that LSB only requires the
self-bounding term

∑
t(1 − pt,u) to appear when u is a particular action x̂ given as an input to the

algorithm; for all other actions, the worst-case bound suffices. A minor additional requirement is
that the pseudo-regret needs to hold for any stopping time (because our reduction may stop this
algorithm during the learning procedure), but this is relatively easy to satisfy — for all algorithms
in this paper, without additional efforts, their regret bounds naturally hold for any stopping time.

For linear bandits, we find that an adaptation of the logdet-FTRL algorithm (Zimmert and Latti-
more, 2022) satisfies 1

2 -LSB, as stated in the following lemma. The proof is provided in Appendix C.

Lemma 5 For d-dimensional linear bandits, by transforming the action set into
{(

x
0

) ∣∣x ∈ X \
{x̂}
}
∪
{(

0
1

)}
⊂ Rd+1, Algorithm 4 satisfies 1

2 -LSB with c0 = O((d + 1)2 log T ) and c1 = c2 =
O((d+ 1)2).
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With the LSB condition defined, we develop a reduction procedure (Algorithm 1) which turns
any algorithm with LSB into a best-of-both-world algorithm that has a similar guarantee as in Propo-
sition 2. The guarantee is formally stated in the next theorem.

Theorem 6 If A satisfies α-LSB, then the regret of Algorithm 1 with A as the base algorithm is
upper bounded byO

(
c1−α0 Tα + c2 log

2 T
)

in the adversarial regime and byO
(
c1 log(T )∆

− α
1−α +

(c1 log T )
1−α (C∆−1

)α
+ c2 log(T ) log(C∆

−1)
)

in the corrupted stochastic regime.

See Appendix E.1 for a proof of Theorem 6. In particular, Theorem 6 together with Lemma 5
directly lead to a better best-of-both-world bound for linear bandits.

Corollary 7 Combining Algorithm 1 and Algorithm 4 results in a linear bandit algorithm with

O
(
d
√
T log T

)
regret in the adversarial regime andO

(
d2 log T

∆ +d
√

C log T
∆

)
regret in the corrupted

stochastic regime simultaneously.

Ideas of the first reduction Algorithm 1 proceeds in epochs. In epoch k, there is an action
x̂k ∈ X being selected as the candidate (x̂1 is randomly drawn from X ). The procedure simply
executes the base algorithmA with input x̂ = x̂k, and monitors the number of draws to each action.
If in epoch k there exists some x ̸= x̂k being drawn more than half of the time, and the length of
epoch k already exceeds two times the length of epoch k− 1, then a new epoch is started with x̂k+1

set to x.
Here, we give a proof sketch for Theorem 6 with α = 1

2 . It is straightforward in the adversarial
regime: Let τk = Tk+1 − Tk be the length of epoch k. In each epoch k, the regret is upper bounded
by O(

√
c0τk) due to the LSB property of the base algorithm. Thus, the over all regret is upper

bounded by O(
∑

k

√
c0τk) = O(

√
c0
∑

k τk) = O(
√
c0T ) because τk ≥ 2τk−1 (except for the last

epoch).
Next, we analyze the regret in the stochastic regime assuming c2 = 0 and C = 0 (see the formal

proof for the general case). Let m = max{k : x̂k ̸= x⋆} be the index of the last epoch in which x̂k
is not x⋆. Below, we show that x̂m ̸= x⋆ is drawn for at least Ω(Tm+1) times. If τm > 2τm−1, then
by the termination condition of epoch m, we know that just one step before epoch m terminates,
x̂m is drawn for at least half of the times in epochm, which is at least τm2 −1 = Ω(τm) = Ω(Tm+1)
times. If τm ≤ 2τm−1, then by the termination condition of epoch m − 1, we know that x̂m must
have been drawn for τm−1

2 = Ω(Tm+1) times in epoch m− 1.
Notice that the regret up to the end of epoch m is upper bounded by O(

√
c1Tm+1 log T ), but

also lower bounded by Ω(Tm+1∆) by the argument above. This implies that Tm+1 = O( c1 log T
∆2 )

and thus the regret up to the end of epoch m is upper bounded by O( c1 log T∆ ). Finally, if epoch m is
not the last epoch, then in the last epoch m + 1, it must be that x̂m+1 = x⋆. By the LSB property,

in the last epoch, the regret is upper bounded by O(
√
c1
∑T

t=Tm+1+1(1− pt,x⋆) log T and lower

bounded by
∑T

t=Tm+1+1(1 − pt,x⋆)∆. This implies that
∑T

t=Tm+1+1(1 − pt,x⋆) = O( c1 log T
∆2 ) and

thus the regret is upper bounded by O( c1 log T∆ ).
Theorem 6 is not sufficient to be considered a black-box reduction approach, since algorithms

with LSB are not common. Therefore, our next step is to present a more general reduction that
makes use of recent advances of Corral algorithms.
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4.3. Second reduction: Local Self-Bounding→ Importance-Weighting Stable

In this subsection, we show that one can achieve LSB using the idea of model selection. Specifically,
we will run a variant of the Corral algorithm (Agarwal et al., 2017) over two instances: one is x̂, and
the other is a importance-weighting-stable algorithm (see Definition 8) over the action set X\{x̂}.
Here, we focus on the case of α = 1

2 , which is the case for most standard settings where the worst-
case regret is

√
T ; examples for α = 2

3 in the graph bandit setting is discussed in Section 5.
First, we introduce the notion of importance-weighting stablility.

Definition 8 (12 -iw-stable) An algorithm is 1
2 -iw-stable (importance-weighting stable), if given an

adaptive sequence of weights q1, q2, · · · ∈ (0, 1] and the assertion that the feedback in round t
is observed with probability qt, it obtains the following pseudo regret guarantee for any stopping
time t′:

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤ E


√√√√c1

t′∑
t=1

1

qt
+

c2
mint≤t′ qt

 .
Definition 8 requires that even if the algorithm only receives the desired feedback with probability
qt in round t, it still achieves a meaningful regret bound that smoothly degrades with

∑
t

1
qt

. In
previous works on Corral and its variants (Agarwal et al., 2017; Foster et al., 2020), a similar notion

of 1
2 -stability is defined as having a regret of

√
c1

(
maxτ≤t′

1
qτ

)
t′, which is a weaker assumption

than our 1
2 -iw-stability. Our stronger notion of stability is crucial to get a best-of-both-world bound,

but it is still very natural and holds for a wide range of algorithms.
Below, we provide two examples of 1

2 -iw-stable algorithms. Their analysis is mostly standard
FTRL analysis (considering extra importance weighting) and can be found in Appendix G.

Lemma 9 For linear bandits, EXP2 with adaptive learning rate (Algorithm 9) is 1
2 -iw-stable with

constants c1 = c2 = O(d log |X |).

Lemma 10 For contextual bandits, EXP4 with adaptive learning rate (Algorithm 10) is 1
2 -iw-stable

with constants c1 = O(K log |X |), c2 = 0.

Our reduction procedure is Algorithm 2, which turns an 1
2 -iw-stable algorithm into one with 1

2 -LSB.
The guarantee is formalized in the next theorem, whose proof is in Appendix F.1.

Theorem 11 If B is a 1
2 -iw-stable algorithm with constants (c1, c2), then Algorithm 2 with B as the

base algorithm satisfies 1
2 -LSB with constants (c′0, c

′
1, c

′
2) where c′0 = c′1 = O(c1) and c′2 = O(c2).

Cascading Theorem 11 and Theorem 6, and combining it with Lemma 9 and Lemma 10, re-
spectively, we get the following corollaries:

Corollary 12 Combining Algorithm 1, Algorithm 2 and Algorithm 9 results in a linear ban-
dit algorithm with O

(√
dT log |X |

)
regret in the adversarial regime and O

(
d log |X | log T

∆ +√
d log |X | log T

∆ C
)

regret in the corrupted stochastic regime simultaneously.

7



DANN WEI ZIMMERT

Algorithm 2 LSB via Corral (for α = 1
2 )

Input: candidate action x̂, 1
2 -iw-stable algorithm B over X\{x̂} with constants c1, c2.

Define: ψt(q) = − 2
ηt

∑2
i=1

√
qi +

1
β

∑2
i=1 ln

1
qi

.
B0 = 0.
for t = 1, 2, . . . do

Let

q̄t = argmin
q∈∆2


〈
q,
t−1∑
τ=1

zτ −

 0

Bt−1

〉+ ψt(q)

 , qt =

(
1− 1

2t2

)
q̄t +

1

4t2
1,

with ηt =
1√

t+ 8
√
c1
, β =

1

8c2
.

Sample it ∼ qt.
if it = 1 then draw At = x̂ and observe ℓt,At ;
else draw At according to base algorithm B and observe ℓt,At ;

Define zt,i =
(ℓt,At+1)I{it=i}

qt,i
− 1 and

Bt =

√√√√c1

t∑
τ=1

1

qτ,2
+

c2
minτ≤t qτ,2

.

end

Corollary 13 Combining Algorithm 1, Algorithm 2 and Algorithm 10 results in a contextual
bandit algorithm with O

(√
KT log |X |

)
regret in the adversarial regime and O

(
K log |X | log T

∆ +√
K log |X | log T

∆ C
)

regret in the corrupted stochastic regime simultaneously, whereK is the number
of arms.

Ideas of the second reduction Algorithm 2 is related to the Corral algorithm (Agarwal et al.,
2017; Foster et al., 2020; Luo et al., 2022). We use a special version which is essentially an FTRL
algorithm (with a hybrid 1

2 -Tsallis entropy and log-barrier regularizer) over two base algorithms:
the candidate x̂, and an algorithm B operating on the reduced action set X\{x̂}. For base algo-
rithm B, the Corral algorithm adds a bonus term that upper bounds the regret of B under importance
weighting (i.e., the quantity Bt defined in Algorithm 6). In the regret analysis, the bonus creates a
negative term as well as a bonus overhead in the learner’s regret. The negative term can be used to
cancel the positive regret of B, and the analysis reduces to bounding the bonus overhead. Showing

that the bonus overhead is upper bounded by the order of
√
c1 log(T )

∑T
t=1(1− pt,x̂) is the key to

establish the LSB property.
Combining Algorithm 2 and Algorithm 1, we have the following general reduction: as long

as we have an 1
2 -iw-stable algorithm over X\{x̂} for any x̂ ∈ X , we have an algorithm with the

best-of-both-world guarantee when the optimal action is unique. Notice that 1
2 -iw-stable algorithms

are quite common – usually it can be just a FTRL/OMD algorithm with adaptive learning rate.

8
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The overall reduction is reminiscent of the G-COBE procedure by Wei et al. (2022), which
also runs model selection over x̂ and a base algorithm for X\{x̂} (similar to Algorithm 2), and
dynamically restarts the procedure with increasing epoch lengths (similar to Algorithm 1). However,
besides being more complicated, G-COBE only guarantees a bound of polylog(T )

∆ +C in the corrupted
stochastic regime (omitting dependencies on c1, c2), which is sub-optimal in both C and T .2

5. Case Study: Graph Bandits

In this section, we show the power of our reduction by improving the state of the art of best-of-both-
worlds algorithms for bandits with graph feedback. In bandits with graph feedback, the learner is
given a directed feedback graph G = (V,E), where the nodes V = [K] correspond to the K-
arms of the bandit. Instead of observing the loss of the played action At, the player observes the
loss ℓt,j iff (At, j) ∈ E. Learnable graphs are divided into strongly observable graphs and weakly
observable graphs. In the first case, every arm i ∈ [K] must either receive its own feedback, i.e.
(i, i) ∈ E, or all other arms do, i.e. ∀j ∈ [K] \ {i} : (j, i) ∈ E. In the weakly observable case,
every arm i ∈ [K] must be observable by at least one arm, i.e. ∃j ∈ [K] : (j, i) ∈ E. The following
graph properties characterize the difficulty of the two regimes. An independence set is any subset
V ′ ⊂ V such that no edge exists between any two distinct nodes in V ′, i.e. ∀i, j ∈ V ′, i ̸= j we
have (i, j) ̸∈ E and (j, i) ̸∈ E. The independence number α is the size of the largest independence
set. A related number is the weakly independence number α̃, which is the independence number of
the subgraph (V,E′) obtained by removing all one-sided edges, i.e. (i, j) ∈ E′ iff (i, j) ∈ E and
(j, i) ∈ E. For undirected graphs, the two notions coincide, but in general α̃ can be larger than α
by up to a factor of K. Finally, a weakly dominating set is a subset D ⊂ V such that every node
in V is observable by some node in D, i.e. ∀j ∈ V ∃i ∈ D : (i, j) ∈ E. The weakly dominating
number δ is the size of the smallest weakly dominating set.

Alon et al. (2015) provides a almost tight characterization of the adversarial regime, providing
upper bounds of O(

√
αT log T logK) and O(

√
α̃T logK) for the strongly observable case and

O((δ logK)
1
3T

2
3 ) for the weakly observable case, as well as matching lower bounds up to all log

factors. Zimmert and Lattimore (2019) have shown that the log(T ) dependency can be avoided and
that hence α is the right notion of difficulty for strongly observable graphs even in the limit T →∞
(though they pay for this with a larger logK dependency).

State-of-the-art best-of-both-worlds guarantees for bandits with graph feedback are derivations
of EXP3 and obtain eitherO( α̃ log2(T )

∆ ) orO(α log(T ) log2(TK)
∆ ) regret for strongly observable graphs

and O( δ log
2(T )

∆2 ) for weakly observable graphs (Rouyer et al., 2022; Ito et al., 2022b)3. Our black-
box reduction leads directly to algorithms with optimal log(T ) regret in the stochastic regime.

5.1. Strongly observable graphs

We begin by providing an examples of 1
2 -iw-stable algorithm for bandits with strongly observable

graph feedback. The algorithm and the proof are in Appendix G.3.

2. However, Wei et al. (2022) handles a more general type of corruption.
3. Rouyer et al. (2022) obtains better bounds when the gaps are not uniform, while Ito et al. (2022b) can handle graphs

that are unions of strongly observable and weakly observable sub-graphs. We do not extend our analysis to the latter
case for the sake of simplicity.

9
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Lemma 14 For bandits with strongly observable graph feedback, (1 − 1/ logK)-Tsallis-
INF with adaptive learning rate (Algorithm 11) is 1

2 -iw-stable with constants c1 =
O(min{α̃, α logK} logK), c2 = 0.

Before we apply the reduction, note that Algorithm 2 requires that the player observes the loss
ℓt,At when playing arm At, which is not necessarily the case for all strongly observable graphs.
However, this can be overcome via defining an observable surrogate loss that is used in Algorithm 2
instead. We explain how this works in detail in Section H and assume from now that this technical
issue does not arise.

Cascading the two reduction steps, we immediately obtain the following.

Corollary 15 Combining Algorithm 1, Algorithm 2 and Algorithm 11 results in a graph
bandit algorithm with O

(√
min{α̃, α logK}T logK

)
regret in the adversarial regime and

O
(
min{α̃,α logK} log T logK

∆ +

√
min{α̃,α logK} log T logK

∆ C
)

regret in the corrupted stochastic regime
simultaneously.

5.2. Weakly observable graphs

Weakly observable graphs motivate our general definition of LSB stable beyond α = 1
2 . We first

need to define the equivalent of 1
2 -iw-stable for this regime.

Definition 16 (23 -iw-stable) An algorithm is 2
3 -iw-stable (importance-weighting stable), if given

an adaptive sequence of weights q1, q2, . . . , qτ and the feedback in any round being observed with
probability qt, it obtains the following pseudo regret guarantee for any stopping time t′:

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤ E

c 1
3
1

(
t′∑
t=1

1
√
qt

) 2
3

+max
t≤t′

c2
qt

 .
An example of such an algorithm is given by the following lemma (see Appendix G.4 for the algo-
rithm and the proof).

Lemma 17 For bandits with weakly observable graph feedback, EXP3 with adaptive learning rate
(Algorithm 12) is 2

3 -iw-stable with constants c1 = c2 = O(δ logK).

Similar to the 1
2 -case, this allows for a general reduction to LSB algorithms.

Theorem 18 If B is a 2
3 -iw-stable algorithm with constants (c1, c2), then Algorithm 5 with B

as the base algorithm satisfies 2
3 -LSB with constants (c′0, c

′
1, c

′
2) where c′0 = c′1 = O(c1) and

c′2 = O(c
1
3
1 + c2).

See Appendix F.2 for the proof. Algorithm 5 works almost the same as Algorithm 2, but we need to
adapt the bonus terms to the definition of 2

3 -iw-stable. The major additional difference is that we do
not necessarily observe the loss of the action played and hence need to play exploratory actions with
probability γt in every round to estimate the performance difference between x̂ and B. A second
point to notice is that the base algorithm B uses the action set X \ {x̂}, but is still allowed to use
x̂ in its internal exploration policy. This is necessary because the sub-graph with one arm removed
might have a larger dominating number, or might even not be learnable at all. By allowing x̂ in the
internal exploration, we guarantee the the regret of the base algorithm is not larger than over the full
action set. Finally, cascading the lemma and the reduction, we obtain

10
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Corollary 19 Combining Algorithm 1, Algorithm 5 and Algorithm 12 results in a graph ban-
dit algorithm with O

(
(δ logK)

1
3T

2
3

)
regret in the adversarial regime and O

(
δ logK log T

∆2 +(
C2δ logK log T

∆2

) 1
3
)

regret in the corrupted stochastic regime simultaneously.

6. More Adaptations

To demonstrate the versatility of our reduction framework, we provide two more adaptations. The
first demonstrates that our reduction can be easily adapted to obtain a data-dependent bound (i.e.,
first- or second-order bound) in the adversarial regime, provided that the base algorithm achieves
a corresponding data-dependent bound. The second tries to eliminate the undesired requirement
by the corral algorithm (Algorithm 2) that the base algorithm needs to operate in X\{x̂} instead
of the more natural X . We show that under a stronger stability assumption, we can indeed just
use a base algorithm that operates in X . This would be helpful for settings where excluding one
single action/policy in the algorithm is not straightforward (e.g., MDP). Finally, we combine the
two techniques to obtain a first-order best-of-both-world bound for tabular MDPs.

6.1. Reduction with first- and second-order bounds

A first-order regret bound refers to a regret bound of order O
(√

c1polylog(T )L⋆ + c2polylog(T )
)
,

where L⋆ = minx∈X E
[∑T

t=1 ℓt,x
]

is the best action’s cumulative loss. This is meaningful under
the assumption that ℓt,x ≥ 0 for all t, x. A second-order regret bound refers to a bound of order

O
(√

c1polylog(T )E
[∑T

t=1(ℓt,At −mt,At)
2
]
+ c2polylog(T )

)
, where mt,x is a loss predictor for

action x that is available to the learner at the beginning of round t. We refer the reader to Wei and
Luo (2018); Ito (2021b) for more discussions on data-dependent bounds.

We first define counterparts of the LSB condition and iw-stability condition with data-dependent
guarantees:

Definition 20 (12 -dd-LSB) We say an algorithm satisfies 1
2 -dd-LSB (data-dependent LSB) if it takes

a candidate action x̂ ∈ X as input and satisfies the following pseudo-regret guarantee for any
stopping time t′ ∈ [1, T ]:

∀u ∈ X :

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤

√√√√(c1 log T )E

[
t′∑
t=1

(∑
x

pt,xξt,x − I{u = x̂}p2t,uξt,u

)]
+ c2 log T

where c1, c2 are some problem dependent constants, ξt,x = (ℓt,x−mt,x)
2 in the second-order bound

case, and ξt,x = ℓt,x in the first-order bound case.

Definition 21 (12 -dd-iw-stable) An algorithm is 1
2 -dd-iw-stable (data-dependent-iw-stable) if

given an adaptive sequence of weights q1, q2, · · · ∈ (0, 1] and the assertion that the feedback in
round t is observed with probability qt, it obtains the following pseudo regret guarantee for any
stopping time t′:

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤

√√√√c1E

[
t′∑
t=1

updt · ξt,At

q2t

]
+ E

[
c2

mint≤t′ qt

]
,

11
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where updt = 1 if feedback is observed in round t and updt = 0 otherwise, and ξt,x is defined in the
same way as in Definition 20.

We can turn a dd-iw-stable algorithm into one with dd-LSB (see Appendix F.3 for the proof):

Theorem 22 If B is 1
2 -dd-iw-stable with constants (c1, c2), then Algorithm 6 with B as the base

algorithm satisfies 1
2 -dd-LSB with constants (c′1, c

′
2) where c′1 = O(c1) and c′2 = O(

√
c1 + c2).

Then we turn an algorithm with dd-LSB into one with data-dependent best-of-both-world guarantee
(see Appendix E.2 for the proof):

Theorem 23 If an algorithm A satisfies 1
2 -dd-LSE, then the regret of Algorithm 1 with A as the

base algorithm is upper bounded by O
(√

c1E
[∑T

t=1 ξt,At

]
log2 T + c2 log

2 T
)

in the adversarial

regime and O
(
c1 log T

∆ +
√

c1 log T
∆ C + c2 log(T ) log(C∆

−1)
)

in the corrupted stochastic regime.

6.2. Achieving LSB without excluding x̂

Our reduction in Section 4.3 requires that the base algorithm B to operate in the action set ofX\{x̂}.
This is sometimes not easy to implement for structural problems where actions share common com-
ponents (e.g., MDPs or combinatorial bandits). To eliminate this requirement so that we can simply
use a base algorithm B that operates in the original action space X , we propose the following
stronger notion of iw-stability that we called strongly-iw-stable:

Definition 24 (12 -strongly-iw-stable) An algorithm is 1
2 -strongly-iw-stable if the following holds:

given an adaptive sequence of weights q1, q2, · · · ∈ (0, 1]X and the assertion that the feedback in
round t is observed with probability qt(x) if the algorithm chooses At = x, it obtains the following
pseudo regret guarantee for any stopping time t′:

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤ E


√√√√c1

t′∑
t=1

1

qt(At)
+

c2
mint≤t′ minx qt(x)

 .
Compared with iw-stability defined in Definition 8, strong-iw-stability requires the bound to have an
additional flexibility: if choosing action x results in a probability qt(x) of observing the feedback,
the regret bound needs to adapts to

∑
t

1
qt(At)

. For the class of FTRL/OMD algorithms, strong-
iw-stability holds if the stability term is bounded by a constant no matter what action is chosen.
Examples include log-barrier-OMD/FTRL for multi-armed bandits, SCRiBLe (Abernethy et al.,
2008) or a truncated version of continuous exponential weights (Ito et al., 2020) for linear ban-
dits. In fact, Upper-Confidence-Bound (UCB) algorithms also satisfy strong-iw-stability, though it
is mainly designed for the pure stochastic setting; however, we will need this property when we
design algorithms for adversarial MDPs, where the transition estimation part is done through UCB
approaches. This will be demonstrated in Section 6.3. With strong-iw-stability, the second reduction
only requires a base algorithm over X :

Theorem 25 If B is a 1
2 -strongly-iw-stable algorithm with constants (c1, c2), then Algorithm 7

with B as the base algorithm satisfies 1
2 -LSB with constants (c′0, c

′
1, c

′
2) where c′0 = c′1 = O(c1) and

c′2 = O(
√
c1 + c2).

The proof is provided in Appendix F.4.
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6.3. Application to MDPs

Finally, we combine the techniques developed in Section 6.1 and Section 6.2 to obtain a best-of-
both-world guarantee for tabular MDPs with a first-order regret bound in the adversarial regime. We
use Algorithm 13 as the base algorithm, which is adapted from the UCB-log-barrier Policy Search
algorithm by Lee et al. (2020) to satisfy both the data-dependent property (Definition 21) and the
strongly iw-stable property (Definition 24). The corral algorithm we use is Algorithm 8, which takes
a base algorithm with the dd-strongly-iw-stable property and turns it into a data-dependent best-of-
both-world algorithm. The details and notations are all provided in Appendix I. The guarantee of
the algorithm is formally stated in the next theorem.

Theorem 26 Combining Algorithm 1, Algorithm 8, and Algorithm 13 results in an MDP algo-

rithm with O
(√

S2AHL⋆ log
2(T )ι2 + S5A2 log2(T )ι2

)
regret in the adversarial regime, and

O
(
H2S2Aι2 log T

∆ +
√

H2S2Aι2 log T
∆ C + S5A2ι2 log(T ) log(C∆−1)

)
in the corrupted stochastic

regime, where S is the number of states, A is the number of actions, H is the horizon, L⋆ is the
cumulative loss of the best policy, and ι = log(SAT ).

7. Conclusion

We provided a general reduction from the best-of-both-worlds problem to a wide range of
FTRL/OMD algorithms, which improves the state of the art in several problem settings. We showed
the versatility of our approach by extending it to preserving data-dependent bounds.

Another potential application of our framework is partial monitoring, where one might improve
the log2(T ) rates of to log(T ) for both the T

1
2 and the T

2
3 regime using our respective reductions.

A weakness of our approach is the uniqueness requirement of the best action. While this as-
sumption is typical in the best-of-both-worlds literature, it is not merely an artifact of the analysis
for us due to the doubling procedure in the first reduction. Additionally, our reduction can only
obtain worst-case ∆ dependent bounds in the stochastic regime, which can be significantly weaker
than more refined notions of complexity.
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A BLACKBOX APPROACH TO BEST OF BOTH WORLDS IN BANDITS AND BEYOND

Appendix A. FTRL Analysis

Lemma 27 The optimistic FTRL algorithm over a convex set Ω:

pt = argmin
p∈Ω

{〈
p,

t−1∑
τ=1

ℓτ

〉
+mt + ψt(p)

}

guarantees the following for any t′:

t′∑
t=1

⟨pt − u, ℓt⟩ ≤ ψ0(u)−min
p∈Ω

ψ0(p)

+

t′∑
t=1

(ψt(u)− ψt−1(u)− ψt(pt) + ψt−1(pt)) +

t′∑
t=1

max
p∈Ω

(⟨pt − p, ℓt −mt⟩ −Dψt(p, pt))︸ ︷︷ ︸
stability

.

Proof Let Lt ≜
∑t

τ=1 ℓτ . Define Ft(p) = ⟨p, Lt−1 +mt⟩ + ψt(p) and Gt(p) = ⟨p, Lt⟩ + ψt(p).
Therefore, pt is the minimizer of Ft over Ω. Let p′t+1 be minimizer of Gt over Ω. Then by the
first-order optimality condition, we have

Ft(pt)−Gt(p′t+1) ≤ Ft(p′t+1)−Gt(p′t+1)−Dψt(p
′
t+1, pt) = −⟨p′t+1, ℓt −mt⟩ −Dψt(p

′
t+1, pt).

(1)

By definition, we also have

Gt(p
′
t+1)− Ft+1(pt+1) ≤ Gt(pt+1)− Ft+1(pt+1) = ψt(pt+1)− ψt+1(pt+1)− ⟨pt+1,mt+1⟩.

(2)

Thus,

t′∑
t=1

⟨pt, ℓt⟩

≤
t′∑
t=1

(
⟨pt, ℓt⟩ − ⟨p′t+1, ℓt −mt⟩ −Dψt(p

′
t+1, pt) +Gt(p

′
t+1)− Ft(pt)

)
(by (1))

=

t′∑
t=1

(
⟨pt, ℓt⟩ − ⟨p′t+1, ℓt −mt⟩ −Dψt(p

′
t+1, pt) +Gt−1(p

′
t)− Ft(pt)

)
+Gt′(p

′
t′+1)−G0(p

′
1)

=
t′∑
t=1

(
⟨pt, ℓt⟩ − ⟨p′t+1, ℓt −mt⟩ −Dψt(p

′
t+1, pt)− ψt(pt) + ψt−1(pt)− ⟨pt,mt⟩

)
+Gt′(p

′
t′+1)−G0(p

′
1)

≤
t′∑
t=1

(
⟨pt − p′t+1, ℓt −mt⟩ −Dψt(p

′
t+1, pt)− ψt(pt) + ψt−1(pt)

)
+Gt′(u)−min

p∈Ω
ψ0(p)

(by (2), using that p′t′+1 is the minimizer of Gt′)

=

t′∑
t=1

(
max
p∈Ω
{⟨pt − p, ℓt −mt⟩ −Dψt(p, pt)} − ψt(pt) + ψt−1(pt)

)
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+

t′∑
t=1

⟨u, ℓt⟩+ ψt′(u)−min
p∈Ω

ψ0(p)

=
t′∑
t=1

(
max
p∈Ω
{⟨pt − p, ℓt −mt⟩ −Dψt(p, pt)} − ψt(pt) + ψt−1(pt)

)

+

t′∑
t=1

⟨u, ℓt⟩+ ψt′(u)−min
p∈Ω

ψ0(p)

=
t′∑
t=1

(
max
p∈Ω
{⟨pt − p, ℓt −mt⟩ −Dψt(p, pt)}+ (ψt(u)− ψt−1(u)− ψt(pt) + ψt−1(pt))

)

+

t′∑
t=1

⟨u, ℓt⟩+ ψ0(u)−min
p∈Ω

ψ0(p)

Re-arranging finishes the proof.

Lemma 28 Consider the optimistic FTRL algorithm with bonus bt ≥ 0:

pt = argmin
p∈Ω

{〈
p,

t−1∑
τ=1

(ℓτ − bτ )

〉
+mt + ψt(p)

}
with ψt(p) = 1

ηt
ψTs(p) + 1

βψ
Lo(p) where ψTs(p) = −1

1−α
∑

i p
α
i for some α ∈ (0, 1), ψLo(p) =∑

i ln
1
pi

, and ηt is non-increasing. We have

t′∑
t=1

⟨pt − u, ℓt⟩

≤ 1

1− α
K1−α

η0
+

1

1− α

t′∑
t=1

(
1

ηt
− 1

ηt−1

)( K∑
i=1

pαt,i − 1

)
+
K ln 1

δ

β
+

1

α

t′∑
t=1

ηt

K∑
i=1

p2−αt,i (ℓTs
t,i − xt)2

+ 2β
t′∑
t=1

K∑
i=1

p2t,i(ℓ
Lo
t,i − wt)2 +

(
1 +

1

α

) t′∑
t=1

⟨pt, bt⟩ −
t′∑
t=1

⟨u, bt⟩+ δ
t′∑
t=1

〈
−u+

1

K
1, ℓt − bt

〉
.

for any δ ∈ (0, 1) and any ℓTs
t , b

Ts
t ∈ RK , ℓLo

t , b
Lo
t ∈ RK , xt, wt ∈ R such that

ℓTs
t + ℓLo

t = ℓt −mt, (3)

bTs
t + bLo

t = bt (4)

ηtp
1−α
t,i (ℓTs

t,i − xt) ≥ −
1

4
, (5)

βpt,i(ℓ
Lo
t,i − wt) ≥ −

1

4
, (6)

0 ≤ ηtp1−αt,i bTs
t,i ≤

1

4
, (7)

0 ≤ βpt,ibLo
t,i ≤

1

4
(8)

for all t, i.
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Proof Let u′ = (1− δ)u+ δ
K1. By Lemma 27, we have

t′∑
t=1

⟨pt − u′, ℓt − bt⟩ ≤
1

1− α
1

η0

K∑
i=1

pα1,i +
1

1− α

t′∑
t=1

(
1

ηt
− 1

ηt−1

) K∑
i=1

(
pαt,i − u′αi

)
+

1

β

K∑
i=1

ln
p1,i
u′i

+
t′∑
t=1

max
p

(
⟨pt − p, ℓt − bt −mt⟩ −

1

ηt
DψTs(p, pt)−

1

β
DψLo(p, pt)

)

≤ 1

1− α
K1−α

η0
+

1

1− α

t′∑
t=1

(
1

ηt
− 1

ηt−1

)( K∑
i=1

pαt,i − 1

)
+
K ln 1

δ

β

+

t′∑
t=1

max
p

(
⟨pt − p, ℓTs − xt1⟩ −

1

2ηt
DψTs(p, pt)

)
︸ ︷︷ ︸

stability-1

+
t′∑
t=1

max
p

(
⟨pt − p,−bTs

t 1⟩ −
1

2ηt
DψTs(p, pt)

)
︸ ︷︷ ︸

stability-2

+

t′∑
t=1

max
p

(
⟨pt − p, ℓLo − wt1⟩ −

1

2β
DψLo(p, pt)

)
︸ ︷︷ ︸

stability-3

+
t′∑
t=1

max
p

(
⟨pt − p,−bLo

t 1⟩ −
1

2β
DψLo(p, pt)

)
︸ ︷︷ ︸

stability-4

where in the last inequality we use ⟨pt − p,1⟩ = 0.

By Problem 1 in Luo (2022), we can bound stability-1 by ηt
α

∑K
i=1 p

2−α
t,i (ℓTs

t,i − xt)2 under the
condition (5). Similarly, stability-2 can be upper bounded by ηt

α

∑K
i=1 p

2−α
t,i bTs2

t,i ≤ 1
α

∑K
i=1 pt,ib

Ts
t,i

under the condition (7). Using Lemma 30, we can bound stability-3 by 2β
∑K

i=1 p
2
t,i(ℓ

Lo
t,i − wt)2

under the condition (6). Similarly, we can bound stability-4 by 2β
∑K

i=1 p
2
t,ib

Lo2
t,i ≤

∑K
i=1 pt,ib

Lo
t,i

under (8). Collecting all terms and using the definition of u′ finishes the proof.

Lemma 29 Consider the optimistic FTRL algorithm with bonus bt ≥ 0:

pt = argmin
p∈Ω

{〈
p,

t−1∑
τ=1

(ℓτ − bτ )

〉
+mt + ψt(p)

}
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with ψt(p) = 1
ηt

∑
i ln

1
pi

, and ηt is non-increasing. We have

t′∑
t=1

⟨pt − u, ℓt⟩ ≤
K ln 1

δ

ηt′
+ 2

t′∑
t=1

ηt

K∑
i=1

p2t,i(ℓt,i −mt,i − xt)2

+ 2
t′∑
t=1

⟨pt, bt⟩ −
t′∑
t=1

⟨u, bt⟩+ δ
t′∑
t=1

〈
−u+

1

K
1, ℓt − bt

〉
.

for any δ ∈ (0, 1) and any xt ∈ R if the following hold: ηtpt,i(ℓt,i − mt,i − xt) ≥ −1
4 and

ηtpt,ibt,i ≤ 1
4 for all t, i.

Proof Let u′ = (1− δ)u+ δ
K1. By Lemma 27 and letting η0 =∞, we have

t′∑
t=1

⟨pt − u′, ℓt − bt⟩ ≤
t′∑
t=1

K∑
i=1

(
ln
pt,i
u′i

)(
1

ηt
− 1

ηt−1

)
+

t′∑
t=1

max
p

(⟨pt − p, ℓt − bt −mt⟩ −Dψt(p, pt))

≤
K ln K

δ

ηt′
+

t′∑
t=1

max
p

(
⟨pt − p, ℓt −mt − xt1⟩ −

1

2
Dψt(p, pt)

)
︸ ︷︷ ︸

stability-1

+

t′∑
t=1

max
p

(
⟨pt − p,−bt⟩ −

1

2
Dψt(p, pt)

)
︸ ︷︷ ︸

stability-2

where in the last inequality we use ⟨pt − p,1⟩ = 0.
Using Lemma 30, we can bound stability-1 by 2ηt

∑K
i=1 p

2
t,i(ℓt,i − mt,i − xt)

2, and bound
stability-2 by 2ηt

∑K
i=1 p

2
t,ib

2
t,i ≤

∑K
i=1 pt,ibt,i under the specified conditions. Collecting all terms

and using the definition of u′ finishes the proof.

Lemma 30 (Stability under log barrier) Let ψ(p) = 1
β

∑
i ln

1
pi

, and let ℓt ∈ RK be such that
βpiℓt,i ≥ −1

2 . Then

max
p∈∆([K])

{⟨pt − p, ℓt⟩ −Dψ(p, pt)} ≤
∑
i

βp2t,iℓ
2
t,i.

Proof

max
p∈∆([K])

{⟨pt − p, ℓt⟩ −Dψ(p, pt)} ≤ max
q∈RK

+

{⟨pt − q, ℓt⟩ −Dψ(q, pt)}

Define f(q) = ⟨pt − q, ℓt⟩ − Dψ(q, pt). Let q⋆ be the solution in the last expression. Next, we
verify that under the specified conditions, we have∇f(q⋆) = 0. It suffices to show that there exists
q ∈ RK+ such that∇f(q) = 0 since if such q exists, then it must the maximizer of f and thus q⋆ = q.

[∇f(q)]i = −ℓt,i − [∇ψ(q)]i + [∇ψ(pt)]i = −ℓt,i +
1

βqi
− 1

βpt,i
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By the condition, we have − 1
βpt,i
− ℓt,i < 0 for all i. and so ∇f(q) = 0 has solution in R+, which

is qi =
(

1
pt,i

+ ηt,iℓt,i

)−1
.

Therefore,∇f(q⋆) = −ℓt −∇ψt(q⋆) +∇ψt(pt) = 0, and we have

max
q∈RK

+

{⟨pt − q, ℓt⟩ −Dψ(q, pt)} = ⟨pt − q⋆,∇ψ(pt)−∇ψ(q⋆)⟩ −Dψ(q
⋆, pt) = Dψ(pt, q

⋆).

It remains to bound Dψ(pt, q
⋆), which by definition can be written as

Dψ(pt, q
⋆) =

∑
i

1

β
h

(
pt,i
q⋆i

)
where h(x) = x − 1 − ln(x). By the relation between q⋆i and pt,i we just derived, it holds that
pt,i
q⋆i

= 1 + βpt,iℓt,i. By the fact that ln(1 + x) ≥ x− x2 for all x ≥ −1
2 , we have

h

(
pt,i
q⋆i

)
= βpt,iℓt,i − ln(1 + βpt,iℓt,i) ≤ β2p2t,iℓ2t,i

which gives the desired bound.

Lemma 31 (Stability under negentropy) If ψ is the negentropy ψ(p) =
∑

i pi log pi and ℓt,i > 0,
then for any η > 0 the stability is bounded by

max
p∈RK

≥0

⟨pt − p, ℓt⟩ −
1

η
Dψ(p, pt) ≤

η

2

∑
i

pt,iℓ
2
t,i .

If ℓt > − 1
η , then the stability is bounded by

max
p∈RK

≥0

⟨pt − p, ℓt⟩ −
1

η
Dψ(p, pt) ≤ η

∑
i

pt,iℓ
2
t,i .

instead.

Proof Let fi(pi) = (pt,i − pi)ℓti − 1
η (pi(log pi − 1)− pi log pt,i + pt,i). Then we maximize∑

i fi(pi), which is upper bounded by maximizing the expression in each coordinate for pi ≥ 0.
We have

f ′i(p) = −ℓt,i −
1

η
(log p− log pt,i),

and hence the maximum is obtained for p⋆ = pt,i exp(−ηℓt,i). Plugging this in leads to

fi(p
⋆) = pt,iℓt,i(1− exp(−ηℓt,i))−

1

η
(−pt,i exp(−ηℓt,i)ηℓt,i + pt,i(1− exp(−ηℓt,i)))

= pt,iℓt,i −
pt,i
η

(1− exp(−ηℓt,i)) ≤ pt,iℓt,i −
pt,i
η

(
ηℓt,i −

1

2
η2ℓ2t,i

)
=
η

2
pt,iℓ

2
t,i ,
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for non-negative ℓt and

fi(p
∗) ≤ ηpt,iℓ2t,i

for ℓt,i ≥ −1/η respectively, where we used the bound exp(−x) ≤ 1 − x + x2

2 which holds for
any x ≥ 0 and exp(−x) ≤ 1 − x + x2, which holds for x ≥ −1 respectively. Summing over all
coordinates finishes the proof.

Lemma 32 (Stability of Tsallis-INF) For the potential ψ(p) = −
∑

i
pαi

α(1−α) , any pt ∈ ∆([K]),
any non-negative loss ℓt ≥ 0 and any positive learning rate η > 0, we have

max
p
⟨p− pt, ℓt⟩ −

1

η
Dψ(p, pt) ≤

η

2

∑
i

p2−αi ℓ2t,i .

Proof We upper bound this term by maximizing over p ≥ 0 instead of p ∈ ∆([K]). Since ℓt is
positive, the optimal p⋆ satisfies p⋆i ≤ pi in all components. We have

Dψ(p
⋆, pt) =

K∑
i=1

∫ p⋆i

pt,i

pα−1
t,i − pα−1

1− α
dp =

K∑
i=1

∫ p⋆i

pt,i

∫ p̃

pt,i

pα−2 dp dp̃ ≥
K∑
i=1

∫ p⋆i

pt,i

∫ p̃

pt,i

pα−2
t,i dp dp̃

=

K∑
i=1

1

2
(p⋆i − pt,i)2pα−2

t,i .

By AM-GM inequality, we further have

max
p
⟨p− pt, ℓt⟩ −

1

η
Dψ(p, pt) ≤ max

p

∑
i

(
(pi − pt,i)ℓt,i −

(pi − pt,i)2pα−2
t,i

2η

)
≤ η

2

∑
i

p2−αt,i ℓ2t,i .
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Appendix B. Analysis for Variance-Reduced SCRiBLe (Algorithm 3 / Theorem 3)

Algorithm 3 VR-SCRiBLe
Define: Let ψ(·) be a ν-self-concordant barrier of conv(X ) ⊂ Rd.
for t = 1, 2, . . . do

Receive mt ∈ Rd. Compute

wt = argmin
w∈conv(X )

{〈
w,

t−1∑
τ=1

ℓ̂τ +mt

〉
+

1

ηt
ψ(w)

}
(9)

where

ηt = min

 1

16d
,

√√√√ ν log T∑t−1
τ=1 ∥ℓ̂τ −mτ∥2H−1

τ

 .

where Ht = ∇2ψ(wt).
Sample st uniformly from Sd (the unit sphere in d-dimension).
Define

w+
t = wt +H

− 1
2

t st, w−
t = wt −H

− 1
2

t st.

Find distributions q+t and q−t over actions such that

w+
t =

∑
x∈X

q+t,xx, w−
t =

∑
x∈X

q−t,xx

Sample At ∼ qt ≜ q+t +q−t
2 , receive ℓt,At ∈ [−1, 1] with E[ℓt,x] = ⟨x, ℓt⟩, and define

ℓ̂t = d(ℓt,At −mt,At)

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

)
H

1
2
t st +mt

where mt,x := ⟨x,mt⟩.
end

Lemma 33 In Algorithm 3, we have E
[
ℓ̂t

]
= ℓt and

E
[∥∥∥ℓ̂t −mt

∥∥∥2
∇−2ψ(wt)

]
≤ d2E

[∑
x∈X

min{pt,x, 1− pt,x}(ℓt,x −mt,x)
2

]
.

where pt,x is the probability of choosing action x in round t.
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Proof

E
[
ℓ̂t

]
= E

[
d(ℓt,At −mt,At)

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

)
H

1
2
t st +mt

]

= E

[
dE

[
(ℓt,At −mt,At)

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

) ∣∣∣∣st
]
H

1
2
t st +mt

]
(note that q+t , q

−
t depend on st)

= E

[
dE

[∑
x

qt,x(ℓt,x −mt,x)

(
q+t,x − q

−
t,x

q+t,x + q−t,x

) ∣∣∣∣st
]
H

1
2
t st +mt

]

= E

[
dE

[∑
x

⟨x, ℓt −mt⟩

(
q+t,x − q

−
t,x

2

) ∣∣∣∣st
]
H

1
2
t st +mt

]

= E
[
dE
[
⟨w+

t − w
−
t , ℓt −mt⟩
2

∣∣∣∣st]H 1
2
t st +mt

]
= E

[
d⟨H− 1

2 st, ℓt −mt⟩H
1
2
t st +mt

]
= E

[
dH

1
2
t sts

⊤
t H

− 1
2

t (ℓt −mt) +mt

]
= ℓt. (because E[sts⊤t ] = 1

dI)

E
[∥∥∥ℓ̂t −mt

∥∥∥2
∇−2ψ(wt)

]
= E

d2(ℓt,At −mt,At)
2

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

)2 ∥∥∥∥H 1
2
t st

∥∥∥∥2
H−1

t


= E

d2(ℓt,At −mt,At)
2

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

)2


= E

 E

d2(ℓt,At −mt,At)
2

(
q+t,At

− q−t,At

q+t,At
+ q−t,At

)2 ∣∣∣∣∣ st
 

≤ E

[
E

[∑
x

qt,xd
2(ℓt,x −mt,x)

2

∣∣∣∣∣q
+
t,x − q

−
t,x

q+t,x + q−t,x

∣∣∣∣∣
∣∣∣∣∣ st
] ]

For any x, we have qt,x

∣∣∣∣ q+t,x−q−t,xq+t,x+q
−
t,x

∣∣∣∣ ≤ qt,x and

qt,x

∣∣∣∣∣q
+
t,x − q

−
t,x

q+t,x + q−t,x

∣∣∣∣∣ = |q
+
t,x − q

−
t,x|

2
≤ 1−

q+t,x + q−t,x
2

= 1− qt,x.
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Therefore, we continue to bound E
[∥∥∥ℓ̂t −mt

∥∥∥2
∇−2ψ(wt)

]
by

E

[
E

[∑
x∈X

min{qt,x, 1− qt,x}d2(ℓt,x −mt,x)
2

∣∣∣∣∣ st
] ]

≤ E

[ ∑
x∈X

min
{
pt,x, 1− pt,x

}
d2(ℓt,x −mt,x)

2

]
.

(E[min(·, ·)] ≤ min(E[·],E[·]) and pt,x = E[E[qt,x | st]])

Lemma 34 If ηt ≤ 1
16d , then maxw

(
⟨wt − w, ℓ̂t −mt⟩ − 1

ηt
Dψ(w,wt)

)
≤ 8ηt∥ℓ̂t −

mt∥2∇−2ψ(wt)
.

Proof We first show that ηt∥ℓ̂t −mt∥∇−2ψ(wt) ≤
1
16 . By the definition of ℓ̂t, we have

ηt

∥∥∥ℓ̂t −mt

∥∥∥
∇−2ψ(wt)

≤ 1

16d
· d∥H

1
2
t st∥H−1

t
≤ 1

16
.

Define

F (w) = ⟨wt − w, ℓ̂t −mt⟩ −
1

ηt
Dψ(w,wt).

Define λ = ∥ℓ̂t − mt∥∇−2ψ(wt). Let w′ be the maximizer of F . it suffices to show ∥w′ −
wt∥∇2ψ(wt) ≤ 8ηtλ because this leads to

F (w′) ≤ ∥w′ − wt∥∇2ψ(wt)∥ℓ̂t −mt∥∇−2ψ(wt) ≤ 8ηtλ
2.

To show ∥w′ − wt∥∇2ψ(wt) ≤ 8ηtλ, it suffices to show that for all u such that ∥u − wt∥∇2ψ(wt) =
8ηtλ, F (u) ≤ 0. To see why this is the case, notice that F (wt) = 0, and F (w′) ≥ 0 because w′ is
the maximizer of F . Therefore, if ∥w′−wt∥∇2ψ(wt) > 8ηtλ, then there exists u in the line segment
between wt and w′ with ∥u − wt∥∇2ψ(wt) = 8ηtλ such that F (u) ≤ 0 ≤ min{F (wt), F (w′)},
contradicting that F is strictly concave.

Below, consider any u with ∥u − wt∥∇2ψ(wt) = 8ηtλ. By Taylor expansion, there exists u′ in
the line segment between u and wt such that

F (u) ≤ ∥u− wt∥∇2ψ(wt)∥ℓ̂t −mt∥∇−2ψ(wt) −
1

2ηt
∥u− wt∥2∇2ψ(u′).

Because ψ is a self-concordant barrier and that ∥u′ −wt∥∇2ψ(wt) ≤ ∥u−wt∥∇2ψ(wt) = 8ηtλ ≤ 1
2 ,

we have∇2ψ(u′) ⪰ 1
4∇

2ψ(wt). Continuing from the previous inequality,

F (u) ≤ ∥u− wt∥∇2ψ(wt)∥ℓ̂t −mt∥∇−2ψ(wt) −
1

8ηt
∥u− wt∥2∇2ψ(wt)

= 8ηtλ · λ−
(8ηtλ)

2

8ηt
= 0.
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This concludes the proof.

Proof [Proof of Theorem 3] By the standard analysis of optimistic-FTRL and Lemma 34, we have
for any u,

E

[
T∑
t=1

(ℓt,At − ℓt,u)

]

≤ O

(
E

[
ν log T

ηT
+

T∑
t=1

ηt

∥∥∥ℓ̂t −mt

∥∥∥2
∇−2ψ(wt)

])

= O


√√√√ν log TE

[
T∑
t=1

∥∥∥ℓ̂t −mt

∥∥∥2
∇−2ψ(wt)

]
+ dν log(T )

 . (by the tuning of ηt)

(10)

In the adversarial regime, using Lemma 33, we continue to bound (10) by

O

d
√√√√ν log TE

[
T∑
t=1

(ℓt,At −mt,At)
2

]
+ dν log(T )


When losses are non-negative and mt = 0, we can further upper bound it by

O

d
√√√√ν log TE

[
T∑
t=1

ℓt,At

]
+ dν log(T )

 .

Then solving the inequality for E
[∑T

t=1 ℓt,At

]
, we can further get the first-order regret bound of

E

[
T∑
t=1

(ℓt,At − ℓt,u)

]
≤ O

d
√√√√ν log TE

[
T∑
t=1

ℓt,u

]
+ dν log(T )

 .

In the corrupted stochastic setting, using Lemma 33, we continue to bound (10) by

O

d
√√√√√ν log(T )E

 T∑
t=1

(1− pt,u)(ℓt,u −mt,u)2 +
∑
x ̸=u

pt,x(ℓt,x −mt,x)2




≤ O

d
√√√√ν log(T )E

[
T∑
t=1

(1− pt,u)

] .

Then by the self-bounding technique stated in Proposition 2, we can further bound the regret in the
corrupted stochastic setting by

O

(
d2ν log(T )

∆
+

√
d2ν log(T )

∆
C

)
.
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Appendix C. Analysis for LSB Log-Determinant FTRL (Algorithm 4 / Lemma 5)

Algorithm 4 LSB-logdet

Input: X (= {
(
x
0

)
}), x̂ =

(
0
1

)
.

Define: H(α) := Ex∼α[xx⊤] , µα := Ex∼α[x].
Let πX be John’s exploration over X , i.e., πX is such that maxx∈X ∥x∥2H(πX )−1 ≤ d.
for t = 1, 2, . . . do

Let

ηt = min

{
1

4d
,

√
log(T )∑t−1

τ=1(1− pτ,x̂)

}
,

pt := argmin
α∈∆(X∪{x̂})

〈
µα,

t−1∑
τ=1

ℓ̂τ

〉
− 1

ηt
log det

(
H(α)− µαµ⊤α

)
,

p̃t := (1− ηtd)pt + ηtd((1− pt,x̂)πX + pt,x̂πx̂)

where πx̂ denotes the sampling distribution that picks x̂ with probability 1.
Sample an action At ∼ p̃t.
Construct loss estimator:

ℓ̂t(a) = a⊤
(
H(p̃t)− µp̃tµ

⊤
p̃t

)−1(
at − µp̃t

)
ℓt(at) .

end

We begin by using the following simplifying notation. For a distribution α ∈ ∆(X ∪ {x̂}), we
define αX as the restricted distribution over X such that αX ∝ α over X , i.e. αX ,x = αx

1−αx̂
for any

x ∈ X . We further define

H(α) = Ex∼α[xx⊤] , µα = Ex∼α[x],
HV
α = H(α)− µαµ⊤α ,

G(α) = H(αX ), mα = µαX ,

GV
α = G(α)−mαm

⊤
α .

Lemma 35 Assume α ∈ ∆(X ∪ {x̂})) is such that GV
α is of rank d − 1 (i.e. full rank over X ).

Then we have the following properties:

HV
α = (1− αx̂)

(
GV
α + αx̂(mα − x̂)(mα − x̂)⊤

)
,

[HV
α ]

−1 =
1

1− αx̂

(
[GV

α]
+ + [GV

α]
+mαx̂

⊤ + x̂m⊤
α [G

V
α]

+ +

(
∥mα∥2[GV

α]
+ +

1

αx̂

)
x̂x̂⊤

)
,

where [GV
α]

+ denotes the pseudo-inverse.
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Proof The first identity is a simple algebraic identity

HV
α = H(α)− µαµ⊤α = (1− αx̂)G(α) + αx̂x̂x̂

⊤ − ((1− αx̂)mα + αx̂x̂)((1− αx̂)mα + αx̂x̂)
⊤

= (1− αx̂)
(
GV
α + αx̂(mα − x̂)(mα − x̂)⊤

)
,

which holds for any α. For the second identity note that by the definition of x̂ =
(
0
1

)
and ∀x ∈ X :

⟨x, x̂⟩ = 0, we have GV
αx̂ = [GV

α]
+x̂ = 0. Furthermore GV

α[G
V
α]

+ = I− x̂x̂−1 due to the rank d−1
assumption. Multiplying the two matrices yields(
GV
α + αx̂(mα − x̂)(mα − x̂)⊤

)
·
(
[GV

α]
+ + [GV

α]
+mαx̂

⊤ + x̂m⊤
α [G

V
α]

+ +

(
∥mα∥2[GV

α]
+ +

1

αx̂

)
x̂x̂⊤

)
= I − x̂x̂⊤ +mαx̂

⊤ + αx̂(mα − x̂)
(
[GV

α]
+mα + ∥mα∥2[GV

α]
+ x̂− [GV

α]
+mα −

(
∥mα∥2[GV

α]
+ +

1

αx̂

)
x̂

)⊤

= I − x̂x̂⊤ +mαx̂
⊤ − (mα − x̂)x̂⊤ = I

which implies for any x, y ∈ span(X )

⟨x, [HV
α ]

−1y⟩ = ⟨x, [G
V
α]

+y⟩
1− αx̂

, (11)

⟨x, [HV
α ]

−1(x̂−mα)⟩ = 0, (12)

∥x̂−mα∥2[HV
α]

−1 =
1

(1− αx̂)αx̂
. (13)

Lemma 36 Let π1, π2 ∈ ∆(X ∪ {x̂}), then for any λ ∈ [0, 1]:

HV
λπ1+(1−λ)π2 ⪰ λH

V
π1 .

Proof Simple algebra shows

HV
λπ1+(1−λ)π2 = λHV

π1 + (1− λ)HV
π2 + λ(1− λ)(µπ1 − µπ2)(µπ1 − µπ2)⊤ .

Lemma 37 Let π ∈ ∆(X ) be arbitrary, and π̃ = (1 − ηtd)π + ηtdπX for (ηtd) ∈ (0, 1), then it
holds for any x ∈ X :

∥mπ −mπ̃∥[GV
π̃ ]

+ ≤

√
ηtd

1− ηtd

∥x−mπ̃∥[GV
π̃ ]

+ ≤
2
√
ηt
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Proof We have

GV
π̃ = ηtdG

V
πX + (1− ηtd)GV

π + ηtd(1− ηtd)(mπ −mπX )(mπ −mπX )
⊤ ,

hence

∥mπ −mπ̃∥2[GV
π̃ ]

+ = (ηtd)
2 ∥mπ −mπX ∥

2

[ηtdGV
πX +(1−ηtd)GV

π+ηtd(1−ηtd)(mπ−mπX )(mπ−mπX )⊤]
−1

≤ (ηtd)
2 ∥mπ −mπX ∥

2

[ηtd(1−ηtd)(mπ−mπX )(mπ−mπX )⊤]
+ =

ηtd

1− ηtd
.

For the second inequality, we have

∥x−mπ̃∥[GV
π̃ ]

+ ≤ ∥x−mπX ∥[GV
π̃ ]

+ + ∥mπ̃ −mπX ∥[GV
π̃ ]

+

≤ 1√
ηtd

(
∥x−mπX ∥[GV

πX ]+ + ∥mπ̃ −mπX ∥[GV
πX ]+

)
≤ 2
√
ηt
,

where the last inequality uses that John’s exploration satisfies ∥x−mπX ∥
2
[GV

πX ]+ ≤ d for all x ∈ X .

Lemma 38 The Bregman divergence between two distributions α, β over X ∪ {x̂} with respect to
the function F (α) = − log det

(
HV
α

)
is bounded by

D(α, β) ≥ Dlog(αx̂, βx̂) +Dlog(1− αx̂, 1− βx̂) +
1− αx̂
1− βx̂

∥mα −mβ∥2[GV
β ]

+

where Dlog is the Bregman divergence of − log(x).

Proof We begin by simplifying F (α). Note that

HV
α = (1− αx̂)

(
GV
α + αx̂x̂

⊤
) 1

2
M
(
GV
α + αx̂x̂

⊤
) 1

2
,

M = I + (
√
αx̂[G

V
α]

+mα − x̂)(
√
αx̂[G

V
α]

+mα − x̂))⊤ − x̂x̂⊤.

M is a matrix with d− 2 eigenvalues of size 1, since it is the identity with two rank-1 updates. The
product of the remaining eigenvalues is given by considering the determinant of the 2×2 sub-matrix
with coordinates [GV

α]
+mα

∥[GV
α]

+mα∥ and x̂. We have that

det(M) = x̂⊤Mx̂ · m
⊤
α [G

V
α]

+

∥[GV
α]

+mα∥
M

[GV
α]

+mα

∥[GV
α]

+mα∥
−
(
x̂⊤M

[GV
α]

+mα

∥[GV
α]

+mα∥

)2

= 1 ·
(
1 + αx̂

∥∥∥[GV
α]

+mα

∥∥∥2)− αx̂ ∥∥∥[GV
α]

+mα

∥∥∥2 = 1.

Hence we have

F (α) = − log(1− αx̂)− log(αx̂)− log detd−1((1− αx̂)GV
α)
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Where detd−1 is the determinant over the first d−1 eigenvalues of the submatrix of the first (d−1)
coordinates. The derivative term is given by

⟨α− β,∇F (β)⟩ =
∑

x∈X∪{x̂}

(αx − βx) ∥x− µβ∥2[HV
β ]

−1

=
∑

x∈X∪{x̂}

αx ∥x− µβ∥2[HV
β ]

−1 − d

= Tr

 ∑
x∈X∪{x̂}

αx(x− µβ)(x− µβ)⊤[HV
β ]

−1

− d
= Tr

((
HV
α + (µα − µβ)(µα − µβ)⊤

)
[HV

β ]
−1
)
− d

= Tr
(
HV
α [H

V
β ]

−1
)
+ ∥µα − µβ∥2[HV

β ]
−1 − d.

The first term is

Tr
(
HV
α [H

V
β ]

−1
)

= Tr
(
(1− αx̂)GV

α[H
V
β ]

−1
)
+ αx̂(1− αx̂) ∥x̂−mα∥2[HV

β ]
−1 (by Lemma 35)

= Trd−1

(
1− αx̂
1− βx̂

GV
α[G

V
β ]

+

)
+ αx̂(1− αx̂)

(
∥x̂−mβ∥2[HV

β ]
−1 + ∥mα −mβ∥2[HV

β ]
−1

)
(by Lemma 35)

= Trd−1

(
1− αx̂
1− βx̂

GV
α[G

V
β ]

+

)
+
αx̂(1− αx̂)
βx̂(1− βx̂)

+
αx̂(1− αx̂) ∥mα −mβ∥2[GV

β ]
+

1− βx̂
. (by (13))

The norm term is

∥µα − µβ∥2[HV
β ]

−1

= ∥µα − (αx̂x̂+ (1− αx̂)mβ)∥2[HV
β ]

−1 + ∥(αx̂x̂+ (1− αx̂)mβ)− µβ∥2[HV
β ]

−1

= (1− αx̂)2 ∥mα −mβ∥2[HV
β ]

−1 + (αx̂ − βx̂)2 ∥x̂−mβ∥2[HV
β ]

−1

=
(1− αx̂)2 ∥mα −mβ∥2[GV

β ]
+

1− βx̂
+

(αx̂ − βx̂)2

βx̂(1− βx̂)
.

Combining both terms

⟨α− β,∇F (β)⟩

= Trd−1

(
1− αx̂
1− βx̂

GV
α[G

V
β ]

+

)
+
αx̂(1− αx̂) + (αx̂ − βx̂)2

βx̂(1− βx̂)
+

1− αx̂
1− βx̂

∥mα −mβ∥2[GV
β ]

+ − d

= Trd−1

(
1− αx̂
1− βx̂

GV
α[G

V
β ]

+

)
+
αx̂
βx̂

+
1− αx̂
1− βx̂

− 1 +
1− αx̂
1− βx̂

∥mα −mβ∥2[GV
β ]

+ − d .
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Combining the everything

D(α, β)

= Dlog(αx̂, βx̂) +Dlog(1− αx̂, 1− βx̂) +
1− αx̂
1− βx̂

∥mα −mβ∥2[GV
β ]

+ +Dd−1

(
(1− αx̂)GV

α, (1− βx̂)GV
β

)
≥ Dlog(αx̂, βx̂) +Dlog(1− αx̂, 1− βx̂) +

1− αx̂
1− βx̂

∥mα −mβ∥2[GV
β ]

+ ,

where the last inequality follows from the positiveness of Bregman divergences.

Lemma 39 For any b ∈ (0, 1), any x ∈ R and η ≤ 1
2|x| , it holds that

sup
α∈[0,1]

|a− b|x− 1

η
Dlog(a, b) ≤ ηb2x2 .

Proof The statement is equivalent to

sup
a∈[0,1]

f(a) = sup
a∈[0,1]

(b− a)x− 1

η
Dlog(a, b) ≤ ηb2x2 ,

since x can take positive or negative sign. The function is concave, so setting the derivative to 0 is
the optimal solution if that value lies in (0,∞).

f ′(a) = −x+
1

η

(
1

a
− 1

b

)
a⋆ =

b

1 + ηbx
.

Plugging this in, leads to

f(a⋆) =
ηb2x2

1 + ηbx
− 1

η

(
log(1 + ηbx) +

1

1 + ηbx
− 1

)
≤ ηb2x2

1 + ηbx
− 1

η

(
ηbx− η2b2x2 − ηbx

1 + ηbx

)
= ηb2x2 ,

where the last line uses log(1 + x) ≥ x− x2 for any x ≥ −1
2 .

Lemma 40 The stability term

stabt := sup
α∈∆(X∪{x̂})

⟨µpt − µα, ℓ̂t⟩ −
1

ηt
D(α, pt) ,

satisfies

Et[stabt] = O((1− pt,x̂)ηtd) .
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Proof We have

µpt − µα = (pt,x̂ − αx̂)x̂+ (1− pt,x̂)mpt − (1− αx̂)mα

= (pt,x̂ − αx̂)(x̂−mp̃t +mp̃t −mpt) + (1− αx̂)(mp̃t −mα) .

Hence for At = y ∈ X :

⟨µpt − µα, ℓ̂t⟩ = ⟨µpt − µα, [HV
p̃t
]−1(y − µp̃t)⟩ℓt,At

= (pt,x̂ − αx̂)⟨x̂−mp̃t , [H
V
p̃t
]−1(y − µp̃t)⟩ℓt,At

+ (pt,x̂ − αx̂)⟨mp̃t −mpt , [H
V
p̃t
]−1(y − µp̃t)⟩ℓt,At

+ (1− αx̂)⟨mp̃t −mα, [H
V
p̃t
]−1(y − µp̃t)⟩ℓt,At

= (pt,x̂ − αx̂)⟨x̂−mp̃t , [H
V
p̃t
]−1(mp̃t − µp̃t)⟩ℓt,At (By Eq. (12))

+ (pt,x̂ − αx̂)⟨mp̃t −mpt , [H
V
p̃t
]−1(y −mp̃t)⟩ℓt,At

+ (1− αx̂)⟨mp̃t −mα, [H
V
p̃t
]−1(y −mp̃t)⟩ℓt,At

≤
|αx̂ − pt,x̂|
1− pt,x̂

+
|pt,x̂ − αx̂|
1− pt,x̂

|⟨mp̃t −mpt , [H
V
p̃t
]−1(y −mp̃t)⟩|

+
1− αx̂
1− pt,x̂

|⟨mp̃t −mα, [G
V
p̃t
]+(y −mp̃t)⟩| (By Eq. (13) and Eq. (11))

≤
|pt,x̂ − αx̂|
1− pt,x̂

(1 + 2
√
d)

+
4

3
× 1− αx̂

1− pt,x̂
∥mpt −mα∥[GV

pt
]+

∥∥y −mp̃t)
∥∥
[GV

p̃t
]+

(Cauchy-Schwarz and Lemma 37, Lemma 36)

Equivalently for At = x̂,

⟨µpt − µα, ℓ̂t⟩ = ⟨µp̃t − µα, [H
V
p̃t
]−1(x̂− µp̃t)⟩ℓt,At

= (pt,x̂ − αx̂)⟨x̂−mp̃t , [H
V
p̃t
]−1(x̂− µp̃t)⟩ℓ̂t,At

≤
|pt,x̂ − αx̂|

pt,x̂
.

Hence the stability term for At ∈ X , is bounded by

sup
α∈∆(X∪{x̂})

⟨µpt − µα, ℓ̂t⟩ −
1

ηt
D(α, pt)

≤ sup
α∈∆(X∪{x̂})

|αx̂ − pt,x̂|
1− pt,x̂

(1 + 2
√
d)− 1

ηt
D(1− αx̂, 1− pt,x̂)

+
1− αx̂
1− pt,x̂

(
4

3

∥∥mα −mp̃t

∥∥
[GV

p̃t
]+

∥∥y −mp̃t

∥∥
[GV

p̃t
]+
− 1

ηt

∥∥mα −mp̃t

∥∥2
[GV

p̃t
]+

)
≤ ηt

∥∥y −mp̃t

∥∥2
[GV

p̃t
]+

+ sup
αx̂∈[0,1]

|αx̂ − pt,x̂|
1− pt,x̂

(1 + 2
√
d)
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+ ηt
|αx̂ − pt,x̂|
1− pt,x̂

∥∥y −mp̃t

∥∥2
[GV

p̃t
]+
− 1

ηt
D(1− αx̂, 1− pt,x̂) (AM-GM inequality)

≤ ηt
∥∥y −mp̃t

∥∥2
[GV

p̃t
]+

+ sup
αx̂∈[0,1]

|αx̂ − pt,x̂|
1− pt,x̂

(5 + 2
√
d)− 1

ηt
D(1− αx̂, 1− pt,x̂) (Lemma 37)

≤ ηt
∥∥y −mp̃t

∥∥2
[GV

p̃t
]+

+O(ηtd) . (Lemma 39)

Taking the expectation over y ∼ p̃t,X leads to

EAt∼p̃t,X [stabt] = O(ηtd)

For At = x̂ we have two cases. If pt,x̂ ≥ 1
2 , then by Lemma 39,

stabt ≤ sup
αx̂∈[0,1]

|pt,x̂ − αx̂|
pt,x̂

− 1

ηt
Dlog(1− αx̂, 1− pt,x̂) ≤ O

(
ηt(1− pt,x̂)2 ×

1

p2t,x̂

)
≤ O

(
ηt(1− pt,x̂)

)
.

Otherwise If 1− pt,x̂ ≥ 1
2 , then by Lemma 39,

stabt ≤ sup
αx̂∈[0,1]

|pt,x̂ − αx̂|
pt,x̂

− 1

ηt
Dlog(αx̂, pt,x̂) ≤ O

(
ηtp

2
t,x̂ ×

1

p2t,x̂

)
≤ O(ηt(1− pt,x̂)) .

Finally we have

Et [stabt] = (1− pt,x̂)EAt∼pt,X [stabt] + pt,x̂EAt∼πx̂ [stabt] = O((1− pt,x̂)ηtd)

Proof [Proof of Lemma 5] By standard analysis of FTRL (Lemma 27) and Lemma 40, for any τ
and x

τ∑
t=1

Et
[
⟨pt, ℓ̂t⟩ − ℓ̂t(x)

]
≤ d log T

ητ
+

τ∑
t=1

O(ηt(1− pt,x̂)d) ≤ O

√√√√d log T

τ∑
t=1

(1− p̃t,x̂)

 ,

where the last inequality follows from the definition of learning rate and p̃t,x̂ = pt,x̂. Additionally,
we have

Et
[
⟨p̃t − pt, ℓ̂t⟩

]
= ⟨p̃t − pt, ℓt⟩ ≤ ηtd(1− pt,x̂) ,

so that

τ∑
t=1

Et
[
⟨p̃t, ℓ̂t⟩ − ℓ̂t(x)

]
= O

√√√√d log T

τ∑
t=1

(1− p̃t,x̂)

 .

Taking expectations on both sides finishes the proof.
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Appendix D. Proof of Proposition 2

Proof [Proof of Proposition 2] The guarantee in the adversarial regime is directly by Definition 1.
In the corrupted stochastic regime, if x⋆ ̸= argminu∈X E[

∑T
t=1 ℓt,u], then it holds that T∆− C =∑T

t=1(∆− Ct) ≤
∑T

t=1 E[ℓt,u − ℓt,x⋆ ] < 0 for some u ̸= x⋆. Therefore, by Definition 1, we have
that for any u ∈ X ,

E

[
T∑
t=1

(ℓt,At − ℓt,u)

]
≤ (c1 log T )

1−αTα + c2 log T ≤ (c1 log T )
1−α (C∆−1

)α
+ c2 log T.

Now, assume that x⋆ = argminu∈X E[
∑T

t=1 ℓt,u]. By Definition 1, we have

E

[
T∑
t=1

(ℓt,At − ℓt,x⋆)

]
≤ (c1 log T )

1−αE

[
T∑
t=1

(1− pt,x⋆)

]α
+ c2 log T.

On the other hand,

E

[
T∑
t=1

(ℓt,At − ℓt,x⋆)

]
≥ ∆E

[
T∑
t=1

(1− pt,x⋆)

]
− C.

Combining the two inequalities, we get

E

[
T∑
t=1

(ℓt,At − ℓt,x⋆)

]

= sup
λ∈[0,1]

(1 + λ)E

[
T∑
t=1

(ℓt,At − ℓt,x⋆)

]
− λE

[
T∑
t=1

(ℓt,At − ℓt,x⋆)

]

≤ sup
λ∈[0,1]

2(c1 log T )
1−αE

[
T∑
t=1

(1− pt,x⋆)

]α
+ 2c2 log T − λ

(
∆E

[
T∑
t=1

(1− pt,x⋆)

]
− C

)
≤ O

(
c1 log(T )∆

− α
1−α + (c1 log T )

1−α(C∆−1)α + c2 log T
)
. (using Lemma 41)

Appendix E. Analysis for the First Reduction

E.1. BOBW to LSB (Algorithm 1 / Theorem 6)

Proof [Proof of Theorem 6] We use τk = Tk+1−Tk to denote the length of epoch k, and let n be the
last epoch (define Tn+1 = T ). Also, we use Et[·] to denote expectation conditioned on all history
up to time t. We first consider the adversarial regime. By the definition of local-self-bounding
algorithms, we have for any u,

ETk

 Tk+1∑
t=Tk+1

(ℓt,At − ℓt,u)

 ≤ c1−α0 ETk [τk]
α + c2 log(T ),
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which implies

E

 Tk+1∑
t=Tk+1

(ℓt,At − ℓt,u)

 ≤ c1−α0 E[τk]α + c2 log(T )

using the property E[xα] ≤ E[x]α for x ∈ R+ and 0 < α < 1. Summing the bounds over
k = 1, 2, . . . , n, and using the fact that τk ≥ 2τk−1 for all k < n, we get

E

[
T∑
t=1

(ℓt,At − ℓt,u)

]

≤ c1−α0

(
E [τn]

α + E [τn−1]
α

(
1 +

1

2α
+

1

22α
+ · · ·

))
+ c2 log(T ) log2

(
T

c2 log(T )

)
≤ O

(
c1−α0 Tα + c2 log

2(T )
)
. (14)

The same analysis also gives

E

[
T∑
t=1

(ℓt,At − ℓt,u)

]
≤ O

(
(c1 log T )

1−αTα + c2 log
2(T )

)
. (15)

Next, consider the corrupted stochastic regime. We first argue that it suffices to consider the regret
comparator x⋆. This is because if x⋆ ̸= argminu∈X E

[∑T
t=1 ℓt,u

]
, then it holds that C ≥ T∆.

Then the right-hand side of (15) is further upper bounded by

O
(
(c1 log T )

1−α(C∆−1)α + c2 log(T ) log(C∆
−1)
)
,

which fulfills the requirement for the stochastic regime. Below, we focus on bounding the pseudo-
regret with respect to x⋆.

Let m = max{k ∈ N | x̂k ̸= x⋆}. Notice that m is either the last epoch (i.e., m = n) or the
second last (i.e., m = n − 1), because for any two consecutive epochs, at least one of them must
have x̂k ̸= x⋆. Below we show that |{t ∈ [Tm+1] |At ̸= x⋆}| ≥ Tm+1

8 − 2τ0.
If τm > 2τm−1, by the fact that the termination condition was not triggered one round earlier,

the number of playsNm(x
⋆) in epochm is at most τm−1

2 +1 = τm+1
2 ; in other words, the number of

times
∑Tm+1

t=Tm+1 I{At ̸= x⋆} is at least τm−1
2 . Further notice that because τm > 2τm−1 ≥ 4τm−2 >

· · · , we have τm−1
2 ≥ 1

4

∑m
k=1 τk −

1
2 = Tm+1

4 − 1
2 .

Now consider the casem > 1 and τm ≤ 2τm−1. Recall that x̂m is the action withNm−1(x̂m) ≥
τm−1

2 . This implies that
∑Tm

t=Tm−1+1 I{At ̸= x⋆} ≥ τm−1

2 ≥ 1
2 max

{
τm
2 ,

1
2

∑m−1
k=1 τk

}
≥

1
8

∑m
k=1 τk =

Tm+1

8 .
Finally, consider the case m = 1 and τ1 ≤ 2τ0, then we have T2 − 2τ0 ≤ 0 and the statement

holds trivially.
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The regret up to and including epochm can be lower and upper bounded using the self-bounding
technique:

E

Tm+1∑
t=1

(ℓt,At − ℓt,x⋆)

 = (1 + λ)E

Tm+1∑
t=1

(ℓt,At − ℓt,x⋆)

− λE
Tm+1∑
t=1

(ℓt,At − ℓt,x⋆)


(for 0 ≤ λ ≤ 1)

≤ O
(
(c1 log T )

1−αE [Tm+1]
α + c2 log(T ) log

(
E[Tm+1]

c2 log(T )

))
− λ

((
1

8
E [Tm+1]− c2 log(T )

)
∆− C

)
(the first term is by a similar calculation as (14), but replacing T by Tm and c0 by c1 log T )

≤ O
(
c1 log(T )∆

− α
1−α + (c1 log T )

1−α (C∆−1
)α

+ c2 log(T ) log(C∆
−1)
)

where in the last inequality we use Lemma 41.
Ifm is not the last epoch, then it holds that x̂n = x⋆ for the final epoch n. In this case, the regret

in the final epoch is

E

[
T∑

t=Tn+1

(ℓt,At − ℓt,x⋆)

]
= (1 + λ)E

[
T∑

t=Tn+1

(ℓt,At − ℓt,x⋆)

]
− λE

[
T∑

t=Tn+1

(ℓt,At − ℓt,x⋆)

]

≤ O

(
(c1 log T )

1−αE

[
T∑

t=Tn+1

(1− pt,x⋆)

]α)
− λ

(
E

[
T∑

t=Tn+1

(1− pt,x⋆)

]
∆− C

)
+ c2 log(T )

≤ O
(
c1 log(T )∆

− α
1−α + (c1 log T )

1−α (C∆−1
)α)

+ c2 log(T ). (Lemma 41)

Lemma 41 For ∆ ∈ (0, 1] and c, c′, X ≥ 1 and C ≥ 0, we have

min
λ∈[0,1]

{
1

2
c1−αXα +

1

2
c′ logX − λ(X∆− C)

}
≤ c∆− α

1−α + 2c1−α
(
C

∆

)α
+ 2c′ log

(
1 +

c′ + C

∆

)
Proof If c1−αXα ≥ c′ log T , we have

1

2
c1−αXα +

1

2
c′ logX ≤ c1−αXα ≤ λX∆+ cλ−

α
1−α∆− α

1−α .

where the last inequality is by the weighted AM-GM inequality. Therefore,

min
λ∈[0,1]

{
1

2
c1−αXα +

1

2
c′ logX − λ(X∆− C)

}
≤ min

λ∈[0,1]
cλ−

α
1−α∆− α

1−α + Cλ.

Choosing λ = min{1, c1−αC−(1−α)∆−α}, we bound the last expression by

cmax

{
1,
(
c1−αC−(1−α)∆−α

)− α
1−α

}
∆− α

1−α + c1−αCα∆−α

≤ cmax

{
1, c−αCα∆

α2

1−α

}
∆− α

1−α + c1−αCα∆−α

≤ c∆− α
1−α + 2c1−αCα∆−α.
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If c1−αXα ≤ c′ log T , we have

1

2
c1−αXα +

1

2
c′ logX − λ(X∆− C) ≤ c′ logX − λX∆+ λC ≤ c′ log

(
1 +

c′2

λ2∆2

)
+ λC

where the last inequality is because if X ≥ c′2

λ2∆2 then c′ logX − λX∆ ≤ c′ logX − c′
√
X < 0.

Choosing λ = min{1, c′C }, we bound the last expression by c′ log(1+(c′2+C2)/∆2) ≤ 2c′ log(1+
(c′ + C)/∆). Combining cases finishes the proof.

E.2. dd-BOBW to dd-LSB (Algorithm 1 / Theorem 23)

Proof [Proof of Theorem 23] In the adversarial regime, we have that the regret in each phase k is
bounded by

ETk

 Tk+1∑
t=Tk+1

(ℓt,At − ℓt,u)

 ≤
√√√√√c1 log(T )ETk

 Tk+1∑
t=Tk+1

∑
x

pt,xξt,x

+ c2 log T .

We have maximally log T episodes, since the length doubles every time. Via Cauchy-Schwarz, we
get

kmax∑
k=1

ETk

 Tk+1∑
t=Tk+1

(ℓt,At − ℓt,u)

 ≤
√√√√√c1 log T

kmax∑
k=1

ETk

 Tk+1∑
t=Tk+1

∑
x

pt,xξt,x

√log T + c2 log
2 T .

Taking the expectation on both sides and the tower rule of expectations finishes the bound for the
adversarial regime. For the stochastic regime, note that ξt,x ≤ 1 and hence∑

x

pt,xξt,x − I{u = x̂}p2t,uξt,u

≤ 1− I{u = x̂}p2t,u
= (1− I{u = x̂}pt,u)(1 + I{u = x̂}pt,u) ≤ 2(1− I{u = x̂}pt,u) .

dd-LSB implies regular LSB (up to a factor of 2) and hence the stochastic bound of regular LSB
applies.

Appendix F. Analysis for the Second Reduction

F.1. 1
2 -LSB to 1

2 -iw-stable (Algorithm 2 / Theorem 11)

Proof [Proof of Theorem 11] The per-step bonus bt = Bt −Bt−1 is the sum of two terms:

bTs
t =

√√√√c1

t∑
τ=1

1

qτ,2
−

√√√√c1

t−1∑
τ=1

1

qτ,2
≤

c1
qt,2√

c1
∑t

τ=1
1
qτ,2

≤
√

c1
qt,2

,

bLo
t =

c2
minτ≤t qτ,2

− c2
minτ≤t−1 qτ,2

=
c2
qt,2

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)
.
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Since q̄t,2
qt,2
≤ 2, using the inequalities above, we have

ηt
√
q̄t,2b

Ts
t ≤ ηt

√
q̄t,2
qt,2

c1 ≤ ηt
√
2c1 ≤

1

4
. (16)

βq̄t,2b
Lo
t ≤ β

q̄t,2
qt,2

c2 ≤ 2βc2 ≤
1

4
. (17)

By Lemma 28 and that q̄t,2qt,2
≤ 2, we have for any u,

t′∑
t=1

⟨qt − u, zt⟩ ≤
t′∑
t=1

⟨qt − q̄t, zt⟩︸ ︷︷ ︸
term1

+O

(
√
c1 +

t′∑
t=1

√
qt,2√
t︸ ︷︷ ︸

term2

+
log t′

β︸ ︷︷ ︸
term3

+

t′∑
t=1

ηt min
|θt|≤1

q
3
2
t,i(zt,i − θt)

2

︸ ︷︷ ︸
term4

+

t′∑
t=1

qt,2b
Ts
t︸ ︷︷ ︸

term5

+

t′∑
t=1

qt,2b
Lo
t︸ ︷︷ ︸

term6

)
− u2

t′∑
t=1

bt.

(18)

We bound individual terms below:

E[term1] = E

[
t′∑
t=1

⟨qt − q̄t, zt⟩

]
≤ O

(
t′∑
t=1

1

t2

)
= O(1).

term2 ≤ O

min

√t′,
√√√√ t′∑

t=1

qt,2 log T


 .

term3 =
log t′

β
≤ O (c2 log T ) .

E [term4] = E

[
t′∑
t=1

ηt min
θt∈[−1,1]

q
3
2
t,i(zt,i − θt)

2

]

≤ E

[
t′∑
t=1

ηt

2∑
i=1

q
3
2
t,i (zt,i − ℓt,At)

2

]

= E

[
t′∑
t=1

ηt

2∑
i=1

1
√
qt,i

(I[it = i]ℓt,At − qt,iℓt,At)
2

]

≤ E

[
t′∑
t=1

ηt

2∑
i=1

(
√
qt,i(1− qt,i)2 + (1− qt,i)q

3
2
t,i

)]

≤ O

(
E

[
t′∑
t=1

ηt
√
qt,2

])
≤ O (E[term2]) .
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term5 =

t′∑
t=1

qt,2b
Ts
t ≤

t′∑
t=1

qt,2

 c1
qt,2√

c1
∑t

τ=1
1
qτ,2


=
√
c1

t′∑
t=1

1√
qt,2√∑t
τ=1

1
qτ,2

×√qt,2 (19)

≤
√
c1

√√√√ t′∑
t=1

1
qt,2∑t
τ=1

1
qτ,2

√√√√ t′∑
t=1

qt,2 (Cauchy-Schwarz)

≤
√
c1

√√√√1 + log

(
t′∑
t=1

1

qt,2

)√√√√ t′∑
t=1

qt,2

≤ O


√√√√c1

t′∑
t=1

qt,2 log T

 .

Continuing from (19), we also have term5 ≤
∑t′

t=1 qt,2b
Ts
t ≤

√
c1
∑t′

t=1
1√
t
≤ 2
√
c1t′ because

qτ,2 ≤ 1.

term6 =
t′∑
t=1

qt,2b
Lo
t = c2

t′∑
t=1

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)
≤ c2

t′∑
t=1

log

(
minτ≤t−1 qτ,2
minτ≤t qτ,2

)
≤ O (c2 log T ) .

Using all bounds above in (18), we can bound E
[∑t′

t=1⟨qt − u, zt⟩
]

by

O

min

√c1E[t′],
√√√√c1

[
t′∑
t=1

qt,2

]
log T

+ c2 log T


︸ ︷︷ ︸

pos-term

−u2 E


√√√√c1

t′∑
t=1

1

qt,2
+

c2
mint≤t′ qt,2


︸ ︷︷ ︸

neg-term

.

For comparator x̂, we choose u = e1 and bound E
[∑t′

t=1(ℓt,At − ℓt,x̂)
]

by the pos-term above. For

comparator x ̸= x̂, we first choose u = e2 and upper bound E
[∑t′

t=1(ℓt,At − ℓt,Ãt
)
]

by pos-term−

neg-term. On the other hand, by the 1
2 -iw-stable assumption, E

[∑t′

t=1(ℓt,Ãt
− ℓt,x)

]
≤ neg-term.

Combining them, we get that for all x ̸= x̂, we also have E
[∑t′

t=1(ℓt,At − ℓt,x)
]
≤ pos-term.

Comparing the coefficients in pos-term with those in Definition 4, we see that Algorithm 2 satisfies
1
2 -LSB with constants (c′0, c

′
1, c

′
2) where c′0 = c′1 = O(c1) and c′2 = O(c2).
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F.2. 2
3 -LSB to 2

3 -iw-stable (Algorithm 5 / Theorem 18)

Algorithm 5 LSB via Corral (for α = 2
3 )

Input: candidate action x̂, 2
3 -iw-stable algorithm B over X\{x̂} with constants c1, c2.

Define: ψt(q) = − 3
ηt

∑2
i=1 q

2
3
i + 1

β

∑2
i=1 ln

1
qi

.
for t = 1, 2, . . . do

Let B generate an action Ãt.
Let

q̄t = argmin
q∈∆2


〈
q,

t−1∑
τ=1

zτ −

 0

Bt−1

〉+ ψt(q)

 , qt = (1− γt)q̄t,

where ηt =
1

t
2
3 + 8c

1
3
1

, β =
1

8c2
, and γt = max

{
√
ηtq

2
3
t,2, ηtq

1
3
t,2

}
.

Sample it ∼ q̄t.
if it = 1 then set Āt = x̂ ;
else set Āt = Ãt ;
Sample jt ∼ γt.
if jt = 1 then draw a revealing action of Āt and observe ℓt,Āt

;
else draw At = Āt ;

Define zt,i =
ℓt,Āt

I{it=i}I{jt=1}
γt

and

Bt = c
1
3
1

(
t∑

τ=1

1
√
qτ,2

) 2
3

+
c2

minτ≤t qτ,2
.

end

Proof [Proof of Theorem 18] The per-step bonus bt = Bt −Bt−1 is the sum of two terms:

bTs
t = c

1
3
1

( t∑
τ=1

1
√
qτ,2

) 2
3

−

(
t−1∑
τ=1

1
√
qτ,2

) 2
3

 ≤ c 1
3
1

1√
qt,2(∑t

τ=1
1√
qτ,2

) 1
3

≤
(
c1
qt,2

) 1
3

,

bLo
t =

c2
minτ≤t qτ,2

− c2
minτ≤t−1 qτ,2

=
c2
qt,2

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)
.

Since q̄t,2
qt,2
≤ 2, using the inequalities above, we have

ηtq̄
1
3
t,2b

Ts
t ≤ ηt

(
q̄t,2c1
qt,2

) 1
3

≤ ηt(2c1)
1
3 ≤ 1

4
. (20)

βq̄t,2b
Lo
t ≤ β

q̄t,2
qt,2

c2 ≤ 2βc2 ≤
1

4
. (21)
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By Lemma 28 and that q̄t,2qt,2
≤ 2, we have for any u,

t′∑
t=1

⟨qt − u, zt⟩ ≤
t′∑
t=1

⟨qt − q̄t, zt⟩︸ ︷︷ ︸
term1

+O

(
c
1
3
1 +

t′∑
t=1

q
2
3
t,2

t
1
3︸ ︷︷ ︸

term2

+
log t′

β︸ ︷︷ ︸
term3

+
t′∑
t=1

ηt min
|θt|≤1

q
4
3
t,i(zt,i − θt)

2

︸ ︷︷ ︸
term4

+
t′∑
t=1

qt,2b
Ts
t︸ ︷︷ ︸

term5

+
t′∑
t=1

qt,2b
Lo
t︸ ︷︷ ︸

term6

)
− u2

t′∑
t=1

bt

(22)

We bound individual terms below:

E[term1] = E

[
t′∑
t=1

⟨qt − q̄t, zt⟩

]
≤ O

(
t′∑
t=1

γt

)
= O

 t′∑
t=1

q
2
3
t,2

t
1
3

+
q

1
3
t,2

t
2
3


= O

min

t′ 23 ,
(

t′∑
t=1

qt

) 2
3

(log T )
1
3 + log T


 .

term2 ≤ O (term1)

term3 =
log t′

β
≤ O (c2 log T ) .

E [term4] = E

[
t′∑
t=1

ηtq
4
3
t,2(zt,2 − zt,1)

2

]

≤ E

 t′∑
t=1

ηt
q

4
3
t,i

γt

 ≤ E

[
t′∑
t=1

γ2t
γt

]
= E [O(term1)] .

term5 =
t′∑
t=1

qt,2b
Ts
t ≤

t′∑
t=1

qt,2

c 1
3
1

1√
qt,2(∑t

τ=1
1√
qτ,2

) 1
3


= c

1
3
1

t′∑
t=1

q
− 1

6
t,2(∑t

τ=1
1√
qτ,2

) 1
3

× q
2
3
t,2 (23)

≤ c
1
3
1

 t′∑
t=1

1√
qt,2∑t

τ=1
1√
qτ,2

 1
3 ( t′∑

t=1

qt,2

) 2
3

(Cauchy-Schwarz)

43



DANN WEI ZIMMERT

≤ c
1
3
1

(
1 + log

(
t′∑
t=1

1

qt,2

)) 1
3
(

t′∑
t=1

qt,2

) 2
3

≤ O

c 1
3
1

(
t′∑
t=1

qt,2

) 2
3

(log T )
1
3

 .

Continuing from (23), we also have term5 ≤
∑t′

t=1 qt,2b
Ts
t ≤ c

1
3
1

∑t′

t=1
1

t
1
3
≤ O(c

1
3
1 t

′ 23 ) because
qτ,2 ≤ 1.

term6 =
t′∑
t=1

qt,2b
Lo
t = c2

t′∑
t=1

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)
≤ c2

t′∑
t=1

log

(
minτ≤t−1 qτ,2
minτ≤t qτ,2

)
≤ O (c2 log T ) .

Using all bounds above in (22), we can bound E
[∑t′

t=1⟨qt − u, zt⟩
]

by

O

min

c
1
3
1 E[t

′]
2
3 , (c1 log T )

1
3

[
t′∑
t=1

qt,2

] 2
3

+ c2 log T


︸ ︷︷ ︸

pos-term

−u2 E

c 1
3
1

(
t′∑
t=1

1

qt,2

) 2
3

+
c2

mint≤t′ qt,2


︸ ︷︷ ︸

neg-term

.

For comparator x̂, we choose u = e1 and bound E
[∑t′

t=1(ℓt,At − ℓt,x̂)
]

by the pos-term above. For

comparator x ̸= x̂, we first choose u = e2 and upper bound E
[∑t′

t=1(ℓt,At − ℓt,Ãt
)
]

by pos-term−

neg-term. On the other hand, by the 1
2 -iw-stable assumption, E

[∑t′

t=1(ℓt,Ãt
− ℓt,x)

]
≤ neg-term.

Combining them, we get that for all x ̸= x̂, we also have E
[∑t′

t=1(ℓt,At − ℓt,x)
]
≤ pos-term.

Finally, notice that Et[I{At ̸= x̂}] ≥ q̄t,2(1 − γt) = qt,2,. This implies that Algorithm 5 is
2
3 -LSB with coefficient (c′0, c

′
1, c

′
2) with c′0 = c′1 = O(c1), and c′2 = O(c

1
3
1 + c2).

F.3. 1
2 -dd-LSB to 1

2 -dd-iw-stable (Algorithm 6 / Theorem 22)

Proof [Proof of Theorem 22] Define bt = Bt −Bt−1. Notice that we have

ηtq̄t,2bt ≤ 2ηtqt,2bt

≤ 2ηtqt,2


c1ξt,At I[it=2]

q2t,2√
c1
∑t−1

τ=1
ξτ,Aτ I[iτ=2]

q2τ,2

+ 2c2

(
1

minτ≤t qτ,2
− 1

minτ≤t−1 qτ,2

)

≤ 2ηt
√
c1 + 2ηtc2

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)
≤ 1

4
. (24)
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Algorithm 6 dd-LSB via Corral (for α = 1
2 )

Input: candidate action x̂, 1
2 -iw-stable algorithm B over X\{x̂} with constant c.

Define: ψ(q) =
∑2

i=1 ln
1
qi

. B0 = 0.
Define: For first-order bound, ξt,x = ℓt,x and mt,x = 0; for second-order bound, ξt,x = (ℓt,x −
mt,x)

2 where mt,x is the loss predictor.
for t = 1, 2, . . . do

Let B generate an action Ãt (which is the action to be chosen if B is selected in this round).
Receive prediction mt,x for all x ∈ X , and set yt,1 = mt,x̂ and yt,2 = m

t,Ãt
.

Let

q̄t = argmin
q∈∆2


〈
q,

t−1∑
τ=1

zτ + yt −

 0

Bt−1

〉+
1

ηt
ψ(q)

 , qt =

(
1− 1

2t2

)
q̄t +

1

4t2
1,

where ηt =
1

4
(log T )

1
2

(
t−1∑
τ=1

(I[iτ = i]− qτ,i)2ξτ,Aτ + (c1 + c22) log T

)− 1
2

.

Sample it ∼ qt.
if it = 1 then draw At = x̂ and observe ℓt,At ;
else draw At = Ãt and observe ℓt,At ;

Define zt,i =
(ℓt,At−yt,i)I{it=i}

qt,i
+ yt,i and

Bt =

√√√√c1

t∑
τ=1

ξt,AtI[iτ = 2]

q2τ,2
+

c2
minτ≤t qτ,2

.

end

By Lemma 29 and that q̄t,2qt,2
≤ 2, we have for any u,

t′∑
t=1

⟨qt − u, zt⟩ ≤ O

(
log T

ηt′︸ ︷︷ ︸
term1

+
t′∑
t=1

ηt min
|θ|≤1

2∑
i=1

q2t,i (zt,i − yt,i − θt)
2

︸ ︷︷ ︸
term2

+

t′∑
t=1

⟨qt − q̄t, zt⟩︸ ︷︷ ︸
term3

+

t′∑
t=1

qt,2bt︸ ︷︷ ︸
term4

)
−

t′∑
t=1

u2bt
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term1 ≤ O

√∑t′−1
t=1

∑2
i=1(I[it = i]− qt,i)2ξt,At + (c1 + c22) log T

log T
log T


≤ O


√√√√ t′∑

t=1

2∑
i=1

(I[it = i]− qt,i)2ξt,At log T + (
√
c1 + c2) log T

 .

E [term2] ≤ E

[
t′∑
t=1

ηtmin
θ

2∑
i=1

q2t,i

(
(ℓt,At −mt,At)I[it = i]

qt,i
− θ
)2
]

≤ E

[
t′∑
t=1

ηt

2∑
i=1

(I[it = i]− qt,i)2(ℓt,At −mt,At)
2

]
(choosing θ = ℓt,At −mt,At)

≤ E


√√√√ t′∑

t=1

2∑
i=1

(I[it = i]− qt,i)2ξt,At log T

 .

E [term3] = E

[
t′∑
t=1

⟨qt − q̄t,Et[zt]⟩

]
= E

[
t′∑
t=1

〈
− 1

2t2
q̄t +

1

4t2
1,Et[zt]

〉]
≤ O(1).

term4 ≤
t′∑
t=1

qt,2bt

=

t′∑
t=1

qt,2


c1ξt,At I[it=2]

q2t,2√
c1
∑t

τ=1
ξτ,Aτ I[iτ=2]

q2τ,2

+ c2

(
1

minτ≤t qτ,2
− 1

minτ≤t−1 qτ,2

)

≤
√
c1

t′∑
t=1

√√√√√ ξt,At I[it=2]

q2t,2∑t
τ=1

ξτ,Aτ 1[iτ=2]

q2τ,2

×
√
ξt,AtI[it = 2] + c2

t′∑
t=1

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)

≤
√
c1

√√√√√ t′∑
t=1

ξt,At I[it=2]

q2t,2∑t
τ=1

ξτ,Aτ 1[iτ=2]

q2τ,2

×

√√√√ t′∑
t=1

ξt,AtI[it = 2] + c2

t′∑
t=1

log

(
minτ≤t−1 qτ,2
minτ≤t qτ,2

)
(Cauchy-Schwarz)

≤
√
c1

√√√√1 + log

(
t′∑
t=1

ξt,AtI[it = 2]

q2t,2

)√√√√ t′∑
t=1

ξt,AtI[it = 2] + c2 log
1

minτ≤t′ qτ,2

≤ O


√√√√c1

t′∑
t=1

ξt,AtI[it = 2] log T + c2 log T

 .
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term5 = −u2Bt′ = −u2


√√√√c1

t′∑
t=1

ξt,AtI[it = 2]

q2t,2
+

c2
mint≤t′ qt,2

 .

Combining all inequalities above, we can bound E
[∑t′

t=1⟨qt − u, zt⟩
]

by

O

E


√√√√c1

t′∑
t=1

2∑
i=1

(I[it = i]− qt,i)2ξt,At log T +

√√√√c1

t′∑
t=1

ξt,AtI[it = 2] log T

+ (
√
c1 + c2) log T


︸ ︷︷ ︸

pos-term

(25)

− u2


√√√√c1

t′∑
t=1

ξt,AtI[it = 2]

q2t,2
+

c2
mint≤t′ qt,2


︸ ︷︷ ︸

neg-term

.

Similar to the arguments in the proofs of Theorem 11 and Theorem 18, we end up bounding
E
[∑t′

t=1(ℓt,At − ℓt,x)
]

by the pos-term above for all x ∈ X . Finally, we process pos-term. Ob-
serve that

Et

[
2∑
i=1

(I[it = i]− qt,i)2ξt,At

]
= Et

[
qt,1(1− qt,1)2ξt,x̂ + (1− qt,1)q2t,1ξt,Ãt

+ qt,2(1− qt,2)2ξt,Ãt
+ (1− qt,2)q2t,2ξt,x̂

]
= Et

[
2qt,1q

2
t,2ξt,x̂ + 2q2t,1qt,2ξt,Ãt

]
= 2qt,1q

2
t,2ξt,x̂ + 2q2t,1

∑
x ̸=x̂

pt,xξt,x


≤ 2pt,x̂(1− pt,x̂)ξt,x̂ + 2

∑
x ̸=x̂

pt,xξt,x


= 2

(∑
x

pt,xξt,x − p2t,x̂ξt,x̂

)
,

and that

Et
[
ξ
t,Ãt

I[it = 2]
]
=
∑
x ̸=x̂

pt,x̂ξt,x ≤
∑
x

pt,xξt,x − p2t,x̂ξt,x̂

Thus, for any u ∈ X ,

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
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≤ E [pos-term] ≤ O


√√√√c1E

[
t′∑
t=1

(∑
x

pt,xξt,x − p2t,x̂ξt,x̂

)]
log T + (

√
c1 + c2) log T

 ,

which implies that the algorithm satisfies 1
2 -dd-LSB with constants (O(c1), O(

√
c1 + c2)).

F.4. 1
2 -LSB to 1

2 -strongly-iw-stable (Algorithm 7 / Theorem 25)

Algorithm 7 LSB via Corral (for α = 1
2 , using a 1

2 -strongly-iw-stable algorithm)

Input: candidate action x̂, 1
2 -iw-stable algorithm B over X with constant c.

Define: ψt(q) = −2
ηt

∑2
i=1

√
qi +

1
β

∑2
i=1 ln

1
qi

.
B0 = 0.
for t = 1, 2, . . . do

Let B generate an action Ãt (which is the action to be chosen if B is selected in this round).
Let

q̄t = argmin
q∈∆2


〈
q,

t−1∑
τ=1

zτ −

 0

Bt−1

〉+ ψt(q)

 , qt =

(
1− 1

2t2

)
q̄t +

1

4t2
1,

where ηt =
1√∑t

τ=1 I{Ãτ ̸= x̂}+ 8
√
c1

, β =
1

8c2
.

Sample it ∼ qt.
if it = 1 then draw At = x̂ and observe ℓt,At ;
else draw At = Ãt and observe ℓt,At ;

Define zt,i =
ℓt,At I{it=i}

qt,i
I{Ãt ̸= x̂} and

Bt =

√√√√√c1

t∑
τ=1

I
{
Ãt ̸= x̂

}
qτ,2

+ c2max
τ≤t

1

qτ,2
.

end

Proof [Proof of Theorem 25] The proof of this theorem mostly follows that of Theorem 11. The
difference is that the regret of the base algorithm B is now bounded by√√√√c1

t′∑
t=1

1

qt,2 + qt,1I{Ãt = x̂}
+

c2 log T

mint≤t′ qt,2
≤

√√√√c1

t′∑
t=1

I{Ãt ̸= x̂}
qt,2

+
√
c1t′ +

c2 log T

mint≤t′ qt,2

(26)

because when Ãt = x̂, the base algorithm B is able to receive feedback no matter which side the
Corral algorithm chooses. The goal of adding bonus is now only to cancel the first term and the
third term on the right-hand side of (26).
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Similar to Eq. (18), we have

t′∑
t=1

⟨qt − u, zt⟩ ≤
t′∑
t=1

⟨qt − q̄t, zt⟩︸ ︷︷ ︸
term1

+O

(
√
c1 +

t′∑
t=1

√
qt,2I{Ãt ̸= x̂}√∑t
τ=1 I{Ãτ ̸= x̂}︸ ︷︷ ︸
term2

+
log T

β︸ ︷︷ ︸
term3

+

t′∑
t=1

ηt min
|θt|≤1

q
3
2
t,i(zt,i − θt)

2

︸ ︷︷ ︸
term4

+

t′∑
t=1

qt,2b
Ts
t︸ ︷︷ ︸

term5

+

t′∑
t=1

qt,2b
Lo
t︸ ︷︷ ︸

term6

)

− u2
t′∑
t=1

bt (27)

where

bTs
t =

√√√√c1

t∑
τ=1

I{Ãτ ̸= x̂}
qτ,2

−

√√√√c1

t−1∑
τ=1

I{Ãτ ̸= x̂}
qτ,2

≤
c1I{Ãt ̸=x̂}

qt,2√
c1
∑t

τ=1
I{Ãτ ̸=x̂}
qτ,2

≤
√

c1
qt,2

,

bLo
t =

c2
minτ≤t qτ,2

− c2
minτ≤t−1 qτ,2

=
c2
qt,2

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)

satisfying ηt
√
q̄t,2b

Ts
t ≤ 1

2 and βq̄t,2bLo
t ≤ 1

2 as in (20) and (21).

Below, we bound term1, . . . , term6.

E[term1] = E

[
t′∑
t=1

⟨qt − q̄t, zt⟩

]
≤ O

(
t′∑
t=1

1

t2

)
= O(1).

term2 ≤ O

min


√√√√ t′∑

t=1

I{Ãt ̸= x̂},

√√√√ t′∑
t=1

qt,2I{Ãt ̸= x̂} log T




term3 =
log T

β
≤ O (c2 log T ) .
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E [term4] = E

[
t′∑
t=1

ηt min
θt∈[−1,1]

q
3
2
t,i(zt,i − θt)

2

]

≤ E

[
t′∑
t=1

ηt

2∑
i=1

q
3
2
t,i (zt,i − ℓt,At)

2 I{Ãt ̸= x̂}

]
(when Ãt = x̂, zt,1 = zt,2 = 0)

= E

[
t′∑
t=1

ηt

2∑
i=1

1
√
qt,i

(I[it = i]ℓt,At − qt,iℓt,At)
2 I{Ãt ̸= x̂}

]

≤ E

[
t′∑
t=1

ηt

2∑
i=1

(
√
qt,i(1− qt,i)2 + (1− qt,i)q

3
2
t,i

)
I{Ãt ̸= x̂}

]

≤ E

[
t′∑
t=1

ηt

√
qt,2I{Ãt ̸= x̂}

]
≤ O (E[term2]) .

term5 + term6 =
t′∑
t=1

qt,2(b
Ts
t + bLo

t )

=
t′∑
t=1

qt,2

 c1I{Ãt ̸=x̂}
qt,2√

c1
∑t

τ=1
I{Ãτ ̸=x̂}
qτ,2

+ c2

(
1

minτ≤t qτ,2
− 1

minτ≤t−1 qτ,2

)
=
√
c1

t′∑
t=1

I{Ãt ̸=x̂}√
qt,2√∑t

τ=1
I{Ãτ ̸=x̂}
qτ,2

×
√
qt,2I{Ãt ̸= x̂}+ c2

t′∑
t=1

(
1− minτ≤t qτ,2

minτ≤t−1 qτ,2

)

(28)

≤
√
c1

√√√√√ t′∑
t=1

I{Ãt ̸=x̂}
qt,2∑t

τ=1
I{Ãτ ̸=x̂}
qτ,2

√√√√ t′∑
t=1

qt,2I{Ãt ̸= x̂}+ c2

t′∑
t=1

log

(
minτ≤t−1 qτ,2
minτ≤t qτ,2

)
(Cauchy-Schwarz)

≤
√
c1

√√√√1 + log

(
t′∑
t=1

I{Ãt ̸= x̂}
qt,2

)√√√√ t′∑
t=1

qt,2I{Ãt ̸= x̂}+ c2 log
1

minτ≤t′ qτ,2

≤ O


√√√√c1

t′∑
t=1

qt,2I{Ãt ̸= x̂} log T + c2 log T

 . (29)

Continuing from (28), we also have term5 ≤
√
c1
∑t′

t=1
I{Ãt ̸=x̂}∑t

τ=1 I{Ãτ ̸=x̂}
≤ 2
√
c1t′.

50



A BLACKBOX APPROACH TO BEST OF BOTH WORLDS IN BANDITS AND BEYOND

Using all the inequalities above in (27), we can bound E
[∑t′

t=1⟨qt − u, zt⟩
]

by

O

min

√c1E[t′],
√√√√c1

[
t′∑
t=1

qt,2I{Ãt ̸= x̂}

]
log T

+ (
√
c1 + c2) log T


︸ ︷︷ ︸

pos-term

− u2 E


√√√√c1

t′∑
t=1

I{Ãt ̸= x̂}
qt,2

+
c2

mint≤t′ qt,2


︸ ︷︷ ︸

neg-term

.

For comparator x̂, we set u = e1. Then we have E[
∑t′

t=1(ℓt,At − ℓt,x̂)] ≤ pos-term.

Observe that E
[∑t′

t=1 qt,2I{Ãt ̸= x̂}
]

= E
[∑t′

t=1(1− pt,x̂)
]
, so this gives the desired prop-

erty of 1
2 -LSB for action x̂. For x ̸= x̂, we set u = e2 and get E

[∑t′

t=1(ℓt,At − ℓt,x)
]

=

E
[∑t′

t=1(ℓt,At − ℓt,Ãt
)
]
+ E

[∑t′

t=1(ℓt,Ãt
− ℓt,x)

]
≤ (pos-term − neg-term) + (neg-term +√

c1E[t′]) where the additional
√
c1t′ term comes from the second term on the right-hand side

of (26), which is not cancelled by the negative term. Note, however, that this still satisfies the re-
quirement of 1

2 -LSB for x ̸= x̂ because for these actions, we only require the worst-case bound to
hold. Overall, we have justified that Algorithm 7 satisfies 1

2 -LSB with constants (c′0, c
′
1, c

′
2) where

c′0 = c′1 = O(c1) and c2 = (
√
c1 + c2).

F.5. 1
2 -dd-LSB to 1

2 -dd-strongly-iw-stable (Algorithm 8 / Lemma 42)

Lemma 42 Let B be an algorithm with the following stability guarantee: given an adaptive se-
quence of weights q1, q2, · · · ∈ (0, 1]X such that the feedback in round t is observed with probability
qt(x) if x is chosen, and an adaptive sequence {mt,x}x∈X available at the beginning of round t, it
obtains the following pseudo regret guarantee for any stopping time t′:

E

[
t′∑
t=1

(ℓt,At − ℓt,u)

]
≤ E


√√√√c1

t′∑
t=1

updt · ξt,At

qt(At)2
+

c2
mint≤t′ minx qt(x)

 ,
where updt = 1 if feedback is observed in round t and updt = 0 otherwise. ξt,x = (ℓt,x −mt,x)

2 in
the second-order bound case, and ξt,x = ℓt,x in the first-order bound case. Then Algorithm 8 with
B as input satisfies 1

2 -dd-LSB.

Proof The proof of this lemma is a combination of the elements in Theorem 22 (data-dependent
iw-stable) and Theorem 25 (strongly-iw-stable), so we omit the details here and only provide a
sketch.
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Algorithm 8 dd-LSB via Corral (for α = 1
2 , using a 1

2 -dd-strongly-iw-stable algorithm)

Input: candidate action x̂, 1
2 -iw-stable algorithm B over X with constant (c1, c2).

Define: ψ(q) =
∑2

i=1 ln
1
qi

. B0 = 0.
Define: For first-order bound, ξt,x = ℓt,x and mt,x = 0; for second-order bound, ξt,x = (ℓt,x −
mt,x)

2 where mt,x is the loss predictor.
for t = 1, 2, . . . do

Receive prediction mt,x for all x ∈ X , and set yt,1 = mt,x̂ and yt,2 = m
t,Ãt

.

Let B generate an action Ãt (which is the action to be chosen if B is selected in this round).
Let

q̄t = argmin
q∈∆2


〈
q,

t−1∑
τ=1

zτ + yt −

 0

Bt−1

〉+
1

ηt
ψ(q)

 , qt =

(
1− 1

2t2

)
q̄t +

1

4t2
1,

where ηt =
1

4
(log T )

1
2

(
t−1∑
τ=1

(I[iτ = i]− qτ,i)2ξτ,Aτ I[Ãτ ̸= x̂] + (c1 + c22) log T

)− 1
2

.

Sample it ∼ qt.
if it = 1 then draw At = x̂ and observe ℓt,At ;
else draw At = Ãt and observe ℓt,At ;

Define zt,i =
(
(ℓt,At−yt,i)I{it=i}

qt,i
+ yt,i

)
I{Ãt ̸= x̂} and

Bt =

√√√√c1

t∑
τ=1

ξt,AtI{iτ = 2}I{Ãt ̸= x̂}
q2τ,2

+
c2

minτ≤t qτ,2
. (30)

end

In Algorithm 8, since B is 1
2 -dd-strongly-iw-stable, its regret is upper bounded by the order of√√√√c1

t′∑
t=1

(
I{Ãt = x̂} · ξt,At

1
+

I{Ãt ̸= x̂}I{it = 2}ξt,At

q2t,2

)
+

c2
mint≤t′ minx qt(x)

≤

√√√√c1

t′∑
t=1

I{Ãt ̸= x̂}I{it = 2} · ξt,At

q2t,2
+

√√√√c1

t′∑
t=1

ξt,At +
c2

mint≤t′ minx qt(x)
(31)

because if B chooses x̂, then the probability of observing the feedback is 1, and is qt,2 otherwise.
This motivates the choice of the bonus in (30). Then we can follow the proof of Theorem 22 step-
by-step, and show that the regret compared to x̂ is upper bounded by the order of

E


√√√√c1

t′∑
t=1

2∑
i=1

(I[it = i]− qt,i)2ξt,AtI{Ãt ̸= x̂} log T


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+ E


√√√√c1

t′∑
t=1

ξt,AtI[it = 2]I{Ãt ̸= x̂} log T

+ (
√
c1 + c2) log T

≤

√√√√c1E

[
t′∑
t=1

(
2qt,1q2t,2ξt,x̂ + 2q2t,1qt,2ξt,Ãt

)
I{Ãt ̸= x̂}

]

+

√√√√c1E

[
t′∑
t=1

ξ
t,Ãt

qt,2I{Ãt ̸= x̂}

]
log T + (

√
c1 + c2) log T

(taking expectation over it and following the calculation in the proof of Theorem 22)

=

√√√√√c1E

 t′∑
t=1

2qt,1q2t,2ξt,x̂ Pr[Ãt ̸= x̂] + 2q2t,1qt,2
∑
x̸=x̂

Pr[Ãt = x]ξt,x



+

√√√√√c1E

 t′∑
t=1

qt,2
∑
x ̸=x̂

Pr[Ãt = x]ξt,x

 log T + (
√
c1 + c2) log T

(taking expectation over Ãt)

≤

√√√√√c1E

 t′∑
t=1

2qt,1(1− pt,x̂)ξt,x̂ + 2q2t,1
∑
x ̸=x̂

pt,xξt,x



+

√√√√√c1E

 t′∑
t=1

∑
x ̸=x̂

pt,xξt,x

 log T + (
√
c1 + c2) log T

(using the property that for x ̸= x̂, pt,x = Pr[Ãt = x]qt,2 and thus 1− pt,x̂ = Pr[Ãt ̸= x̂]qt,2)

≤

√√√√√c1E

 t′∑
t=1

2pt,x̂(1− pt,x̂)ξt,x̂ + 2
∑
x ̸=x̂

pt,xξt,x

 (qt,1 ≤ pt,x̂ ≤ 1)

+

√√√√√c1E

 t′∑
t=1

∑
x ̸=x̂

pt,xξt,x

 log T + (
√
c1 + c2) log T

≤ O


√√√√c1E

[
t′∑
t=1

(∑
x

pt,xξt,x − p2t,x̂ξt,x̂

)]
log T

+ (
√
c1 + c2) log T

which satisfies the requirement of 1
2 -dd-LSB for the regret against x̂. For the regret against x ̸= x̂,

similar to the proof of Theorem 25, an extra positive regret comes from the second term in (31).
Therefore, the regret against x ̸= x̂, can be upper bounded by

O


√√√√c1E

[
t′∑
t=1

∑
x

pt,xξt,x

]
log T

+ (
√
c1 + c2) log T
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which also satisfies the requirement of 1
2 -dd-LSB for x ̸= x̂.

Appendix G. Analysis for IW-Stable Algorithms

Algorithm 9 EXP2
Input: X .
for t = 1, 2, . . . do

Receive update probability qt.
Let

ηt = min

{√
ln |X |

d
∑t

τ=1
1
qτ

,
1

2d
min
τ≤t

qτ

}
, Pt(a) ∝ exp

(
−ηt

t−1∑
τ=1

ℓ̂τ (a)

)
.

Sample an action at ∼ pt = (1− dηt
qt
)Pt +

dηt
qt
ν, where ν is John’s exploration.

With probability qt, receive ℓt(at) = ⟨at, θt⟩+ noise
(in this case, set updt = 1; otherwise, set updt = 0).
Construct loss estimator:

ℓ̂t(a) =
updt
qt

a⊤
(
Eb∼pt [bb⊤]

)−1
atℓt(at)

end

G.1. EXP2 (Algorithm 9 / Lemma 9)

Proof [Proof of Lemma 9] Consider the EXP2 algorithm (Algorithm 9) which corresponds to FTRL
with negentropy potential. By standard analysis of FTRL (Lemma 27), for any τ and any a⋆,

τ∑
t=1

Et

[∑
a

Pt(a)ℓ̂t(a)

]
−

τ∑
t=1

Et
[
ℓ̂t(a

⋆)
]
≤ ln |X |

ητ
+

τ∑
t=1

Et
[
max
P

(
⟨Pt − P, ℓt⟩ −

1

ηt
Dψ(P, Pt)

)]
.

To apply Lemma 31, we need to show that ηtℓ̂t(a) ≥ −1. We have by Cauchy Schwarz

|a⊤
(
Eb∼pt [bb⊤]

)−1
at| ≤

√
a⊤ (Eb∼pt [bb⊤])

−1
a
√
a⊤t (Eb∼pt [bb⊤])

−1
at. For each term, we have

a⊤
(
Eb∼pt [bb⊤]

)−1
a ≤ qt

dηt
a⊤
(
Eb∼ν [bb⊤]

)−1
a =

qt
ηt
,
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due to the properties of John’s exploration. Hence |ηtℓ̂t(a)| ≤ |ℓt(a)| ≤ 1. We can apply Lemma 31
for the stability term, resulting in

Et
[
max
P

(
⟨Pt − P, ℓt⟩ −

1

ηt
Dψ(P, Pt)

)]
≤ ηtEt

[∑
a

Pt(a)
a⊤
(
Eb∼pt [bb⊤]

)−1
ata

⊤
t

(
Eb∼pt [bb⊤]

)−1
a

q2t

]

= ηt
∑
a

Pt(a)
a⊤
(
Eb∼pt [bb⊤]

)−1
a

qt

= 2ηt
∑
a

Pt(a)
a⊤
(
Eb∼Pt [bb

⊤]
)−1

a

qt
=

2ηtd

qt
.

By |ℓt(a)| ≤ 1 we have furthermore

τ∑
t=1

Et

[∑
a

(Pt(a)− pt(a))ℓ̂t(a)

]
=

τ∑
t=1

Et

[∑
a

(Pt(a)− pt(a))ℓt(a)

]
≤

τ∑
t=1

dηt
qt

.

Combining everything and taking the expectation on both sides leads to

E

[
τ∑
t=1

∑
a

pt(a)ℓt(a)− ℓt(a⋆)

]
≤ E

[
log |X |
ητ

+
τ∑
t=1

3dηt
qt

]

≤ E

7
√√√√d log |X |

τ∑
t=1

1

qt
+ 2 log |X |d 1

mint≤τ qt

 .

G.2. EXP4 (Algorithm 10 / Lemma 10)

In this section, we use the more standard notation Π to denote the policy class.
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Algorithm 10 EXP4
Input: Π (policy class), K (number of arms)
for t = 1, 2, . . . do

Receive context xt.
Receive update probability qt.
Let

ηt =

√
ln |Π|

K
∑t

τ=1
1
qτ

, Pt(π) ∝ exp

(
−ηt

t−1∑
τ=1

ℓ̂τ (π(xτ ))

)
.

Sample an arm at ∼ pt where pt(a) =
∑

π:π(xt)=a
Pt(π)π(xt).

With probability qt, receive ℓt(at) (in this case, set updt = 1; otherwise, set updt = 0).
Construct loss estimator:

ℓ̂t(a) =
updtI[at = a]ℓt(a)

qtpt(a)
.

end

Proof [Proof of Lemma 10] Consider the EXP4 algorithm with adaptive stepsize (Algorithm 10),
which corresponds to FTRL with negentropy regularization. By standard analysis of FTRL
(Lemma 27) and Lemma 31, for any τ and any π⋆

τ∑
t=1

Et

[∑
π

Pt(π)ℓ̂t(π(xt))

]
−

τ∑
t=1

Et
[
ℓ̂t(π

⋆(xt))
]
≤ ln |Π|

ητ
+

τ∑
t=1

ηt
2
Et

[∑
π

Pt(π)ℓ̂
2
t (π(xt))

]

≤ ln |Π|
ητ

+

τ∑
t=1

ηt
2

∑
π

Pt(π)
ℓt(π(xt))

qtpt(π(xt))

≤ ln |Π|
ητ

+K
ηt
2qt
≤ 2

√√√√K ln |Π|
τ∑
t=1

1

qt
.

Taking expectation on both sides finishes the proof.
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G.3. (1− 1/ log(K))-Tsallis-INF (Algorithm 11 / Lemma 14)

Algorithm 11 (1− 1/ log(K))-Tsallis-Inf (for strongly observable graphs)
Input: G \ x̂.

Define: ψ(x) =
∑K

i=1
xβi

β(1−β) , where β = 1− 1/ log(K).
for t = 1, 2, . . . do

Receive update probability qt.
Let

pt = argmin
x∈∆([K])

{
t−1∑
τ=1

⟨x, ℓ̂τ ⟩+
1

ηt
ψ(x)

}

where ηt =

√
logK∑t

s=1
1
qs
(1 + min{α̃, α logK})

.

Sample At ∼ pt.
With probability qt receive ℓt,i for all At ∈ N (i) (in this case, set updt = 1; otherwise, set
updt = 0).
Define

ℓ̂t,i = updt

(
(ℓt,i − I{i ∈ It})I{At ∈ N (i)}∑

j∈N (i) pt,jqt
+ I{i ∈ It}

)
,

where It =
{
i ∈ [K] : i ̸∈ N (i) ∧ pt,i >

1

2

}
and N (i) = {j ∈ G \ x̂ | (j, i) ∈ E}.

end

We require the following graph theoretic Lemmas.

Lemma 43 Let G = (V,E) be a directed graph with independence number α and vertex weights
pi > 0, then

∃i ∈ V :
pi

pi +
∑

j:(j,i)∈E pj
≤ 2piα∑

i pi
.

Proof Without loss of generality, assume that p ∈ ∆(V ), since the statement is scale invariant. The
statement is equivalent to

min
i
pi +

∑
j:(j,i)∈E

pj ≥
1

2α
.

Let

min
p∈∆(V )

min
i

pi + ∑
j:(j,i)∈E

pj

 ≤ min
p∈∆(V )

∑
i

p2i + ∑
j:(j,i)∈E

pipj

 .
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Via K.K.T. conditions, there exists λ ∈ R such that for an optimal solution p⋆ it holds

∀i ∈ V : either 2p⋆i +
∑

j:(j,i)∈E

p⋆j +
∑

j:(i,j)∈E

p⋆j = λ

or 2p⋆i +
∑

j:(j,i)∈E

p⋆j +
∑

j:(i,j)∈E

p⋆j ≥ λ and p⋆i = 0 .

Next we bound λ. Take the sub-graph over V+ = {i : p⋆i > 0} and take a maximally independence
set S over V+ (|S| ≤ α, since V+ ⊂ V ). We have

1 ≤
∑
j ̸∈V+

p⋆j︸ ︷︷ ︸
=0

+
∑
i∈S

2p⋆i +
∑

j:(j,i)∈E

p⋆j +
∑

j:(i,j)∈E

p⋆j

 = |S|λ ≤ αλ.

Hence λ ≥ 1
α . Finally,

∑
i

(p⋆i )
2 +

∑
j:(j,i)∈E

p⋆i p
⋆
j

 =
1

2

∑
i

2(p⋆i )
2 +

∑
j:(j,i)∈E

p⋆i p
⋆
j +

∑
j:(i,j)∈E

p⋆i p
⋆
j

 ≥∑
i

p⋆iλ

2
≥ 1

2α
.

Lemma 44 (Lemma 10 Alon et al. (2013)) let G = (V,E) be a directed graph. Then, for any
distribution p ∈ ∆(V ) we have:∑

i

pi
pi +

∑
j:(j,i)∈E pj

≤ mas(G) ,

where mas(G) ≤ α̃ is the maximal acyclic sub-graph.

With these Lemmas, we are ready to proof the iw-stability.
Proof [Proof of Lemma 14] Consider the (1 − 1/ log(K))-Tsallis-INF algorithm with adaptive
stepsize (Algorithm 11). Applying Lemma 27, we have for any stopping time τ and a⋆ ∈ [K]:

τ∑
t=1

Et[⟨pt, ℓ̂t⟩ − ℓ̂t,a⋆ ] ≤
2e logK

ητ
+

τ∑
t=1

Et
[
max
p
⟨p− pt, ℓ̂t⟩ −

1

ηt
Dψ(p, pt)

]

=
2e logK

ητ
+

τ∑
t=1

Et
[
max
p
⟨p− pt, ℓ̂t + ct1⟩ −

1

ηt
Dψ(p, pt)

]
,

where ct = −updt
(ℓt,It−1)I{At∈N (It)}∑

j∈N (It)
pt,jqt

, which is well defined because It contains by definition

maximally one arm.
We can apply Lemma 32, since the losses are strictly positive.

Et
[
max
p
⟨p− pt, ℓ̂t + ct1⟩ −

1

ηt
Dψ(p, pt)

]
≤ ηt

2
Et

[∑
i

p
1+ 1

logK

t,i (ℓ̂t,i + ct)
2

]
.
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We split the vertices in three sets. Let M1 = {i | i ∈ N (i)} the nodes with self-loops. Let M2 =
{i | i ̸∈M1, ̸∈ It} and M3 = It. we have

ηt
2
Et

[∑
i

p
1+ 1

logK

t,i (ℓ̂t,i + ct)
2

]

≤ ηtEt

updt

 ∑
i∈M1∪M2

Pt,ic
2
t +

∑
i∈M1

p
1+ 1

logK

t,i

(
∑

j∈N (i) pt,jqt)
2
+
∑
i∈M2

4pt,i
q2t

+ pt,It

 ,
since for any i ∈ M2, we have

∑
j∈N (i) pt,j > 1

2 . The first term is in expectation

Et
[∑

i∈M1∪M2
pt,ic

2
t

]
≤ 1

qt
, the third term is in expectation Et

[∑
i∈M2

4pt,iupdt

q2t

]
≤ 4

qt
, while

the second is

Et

∑
i∈M1

p
1+ 1

logK

t,i updt
(
∑

j∈N (i) pt,jqt)
2

 ≤ 2

qt

∑
i∈M1

p
1+ 1

logK

t,i∑
j∈N (i) pt,j

.

The subgraph consisting of M1 contains sef-loops, hence we can apply Lemma 44 to bound this
term by 2α̃

qt
. If α logK < α̃, we instead take a permutation p̃ of p, such that M1 is in position

1, .., |M1| and for any i ∈ [|M1|]

p̃t,i∑
j∈N (i) p̃t,j

≤ p̃t,i∑
j∈N (i)∩[i] p̃t,j

≤ 2αp̃t,i∑i
j=1 p̃t,j

.

The existence of such a permutation is guaranteed by Lemma 43: Apply Lemma 43 on the graph
M1 to select p̃|M1|. Recursively remove the i-th vertex from the graph and apply Lemma 43 on the
resulting sub-graph to pick p̃i−1. Applying this permutation yields

2

qt

∑
i∈M1

p
1+ 1

logK

t,i∑
j∈N (i) pt,j

≤ 4α

qt

M1∑
i=1

p̃
1+ 1

logK

i∑i
j=1 p̃j

≤ 4α

qt

M1∑
i=1

p̃i(∑i
j=1 p̃j

)1− 1
logK

≤ 4α logK

qt
.

Combining everything

Et
[
max
p
⟨p− pt, ℓ̂t + ct1⟩ −

1

ηt
Dψ(p, pt)

]
≤ ηt
qt

(6 + 4min{α̃, α logK}) .

By the definition of the learning rate, we obtain

τ∑
t=1

Et[⟨pt, ℓ̂t⟩ − ℓ̂t,a⋆ ] ≤
2e logK

ητ
+

τ∑
t=1

ηt
qt

(6 + 4min{α̃, α logK})

≤ 18

√√√√(1 + min{α̃, α logK})
τ∑
t=1

1

qt
logK .
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G.4. EXP3 for weakly observable graphs (Algorithm 12 / Lemma 17)

Algorithm 12 EXP3 (for weakly observable graphs)
Input: G \ x̂, dominating set D (potentially including x̂).
Define: ψ(x) =

∑K
i=1 xi log(xi). νD is the uniform distribution over D.

for t = 1, 2, . . . do
Receive update probability qt.
Let

Pt = argmin
x∈∆([K])

{
t−1∑
τ=1

⟨x, ℓ̂τ ⟩+
1

ηt
ψ(x)

}
, pt = (1− γt)Pt + γtνD

where ηt =

(
√
δ
∑t

s=1
1√
qs

log(K)

) 2
3

+
4δ

mins≤t qs


−1

and γt =

√
ηtδ

qt
.

Sample At ∼ pt.
With probability qt receive ℓt,i for all At ∈ N (i) (in this case, set updt = 1; otherwise, set
updt = 0).
Define

ℓ̂t,i =
ℓt,iupdtI{At ∈ N (i)}∑

j∈N (i) pt,jqt
.

end

Proof [Proof of Lemma 17] Consider the EXP3 algorithm (Algorithm 12). By standard analysis of
FTRL (Lemma 27) and Lemma 31 by the non-negativity of all losses, for any τ and any a⋆,

τ∑
t=1

Et

[∑
a

Pt(a)ℓ̂t(a)

]
−

τ∑
t=1

Et
[
ℓ̂t(a

⋆)
]

≤ logK

ητ
+

τ∑
t=1

ηt
2
Et

[∑
i

Pt,iℓ̂
2
t,i

]

≤ logK

ητ
+

τ∑
t=1

ηt
2

∑
i

Pt,i
1∑

j∈N (i) pt,jqt

≤ logK

ητ
+

τ∑
t=1

√
ηtδ

4qt
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where in the last inequality we use ηt
2

∑
i Pt,i×

δ
γt
× 1
qt

= 1
2

√
ηtδ
qt

. We have due to Et[⟨Pt−pt, ℓ̂t⟩] ≤
γt

τ∑
t=1

Et

[∑
a

pt(a)ℓ̂t(a)

]
−

τ∑
t=1

Et
[
ℓ̂t(a

⋆)
]
≤ logK

ητ
+

τ∑
t=1

√
9
ηtδ

4qt

≤ 6(δ log(K))
1
3

(
τ∑
t=1

1
√
qt

) 2
3

+
4δ log(K)

mint≤T qt
.

Taking expectation on both sides finishes the proof.

Appendix H. Surrogate Loss for Strongly Observable Graph Problems

When there exist arms such that i ̸∈ N (i), we cannot directly apply Algorithm 2. To make the
algorithm applicable to all strongly observable graphs, define the surrogate losses ℓ̃t in the following
way:

ℓ̃t,x̂ = ℓt,x̂I{(x̂, x̂) ∈ E} −
∑

j∈[K]\{x̂}

pt,jℓt,jI{(j, j) ̸∈ E}

∀j ∈ [K] \ {x̂} : ℓ̃t,j = ℓt,jI{(j, j) ∈ E} − ℓt,x̂I{(x̂, x̂) ̸∈ E} ,

where pt is the distribution of the base algorithm B over [K] \ {x̂} at round t. By construction
and the definition of strongly observable graphs, ℓ̃t,j is observed when playing arm j. (When the
player does not have access to pt, one can also sample one action from the current distribution for
an unbiased estimate of ℓt,x̂.) The losses ℓ̃t are in range [−1, 1] instead of [0, 1] and can further be
shifted to be strictly non-negative. Finally observe that

E[ℓ̃t,At − ℓ̃t,x̂] = qt,2

 ∑
j∈[K]\{x̂}

pt,j ℓ̃t,j − ℓ̃t,x̂


= qt,2

 ∑
j∈[K]\{x̂}

pt,jℓt,j − ℓt,x̂


= E[ℓt,At − ℓt,x̂],

as well as

E

ℓ̃t,At −
∑

j∈[K]\{x̂}

pt,j ℓ̃t,j

 = qt,1

ℓ̃t,x̂ − ∑
j∈[K]\{x̂}

pt,j ℓ̃t,j


= qt,1

ℓ̃t,x̂ − ∑
j∈[K]\{x̂}

pt,jℓt,j


= E

ℓt,At −
∑

j∈[K]\{x̂}

pt,jℓt,j

 .
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That means running Algorithm 2, replacing ℓt by ℓ̃t allows to apply Theorem 11 to strongly observ-
able graphs where not every arm receives its own loss as feedback.

Appendix I. Tabular MDP (Theorem 26)

In this section, we consider using the UOB-Log-barrier Policy Search algorithm in Lee et al. (2020)
(their Algorithm 4) as our base algorithm. To this end, we need to show that it satisfies a dd-
strongly-iw-stable condition specified in Lemma 42. We consider a variant of their algorithm by
incorporating the feedback probability q′t = qt+ (1− qt)I[πt = π̂]. The algorithm is Algorithm 13.

We refer the readers to Section C.3 of Lee et al. (2020) for the setting descriptions and notations,
since we will follow them tightly in this section.

I.1. Base algorithm

Lemma 45 Algorithm 13 ensures for any u⋆,

E

[
T∑
t=1

⟨wt − u⋆, ℓt⟩

]
≤ O


√√√√HS2Aι2E

[
T∑
t=1

∑
s,a

updtIt(s, a)ℓt(s, a)
q′2t

]
+ E

[
S5A2ι2

mint q′t

] .

Proof The regret is decomposed as the following (similar to Section C.3 in Lee et al. (2020)):

T∑
t=1

⟨wt − u⋆, ℓt⟩ =
T∑
t=1

⟨wt − ŵt, ℓt⟩︸ ︷︷ ︸
Error

+
T∑
t=1

⟨ŵt, ℓt − ℓ̂t⟩︸ ︷︷ ︸
Bias-1

+
T∑
t=1

⟨ŵt − u, ℓ̂t⟩︸ ︷︷ ︸
Reg-term

+

T∑
t=1

⟨u, ℓ̂t − ℓt⟩︸ ︷︷ ︸
Bias-2

+
T∑
t=1

⟨u− u⋆, ℓt⟩︸ ︷︷ ︸
Bias-3

,

with the same definition of u as in (24) of Lee et al. (2020). Bias-3 ≤ H trivially (see (25) of
Lee et al. (2020)). For the remaining four terms, we use Lemma 49, Lemma 50, Lemma 51, and
Lemma 52, respectively. Combining all terms finishes the proof.

Lemma 46 (Lemma C.2 of Lee et al. (2020)) With probability 1−O(δ), for all t, s, a, s′,∣∣P (s′|s, a)− P t(s′|s, a)∣∣ ≤ ϵt(s
′|s, a)
2

.

Lemma 47 (cf. Lemma C.3 of Lee et al. (2020)) With probability at least 1− δ, for all h,

T∑
t=1

∑
s∈Sh,a∈A

q′t · wt(s, a)
max{1, Nt(s, a)}

= O (|Sh|A log(T ) + ln(H/δ))

Proof The proof of this lemma is identical to the original one — only need to notice that in our
case, the probability of obtaining a sample of (s, a) is q′t · wt(s, a).
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Algorithm 13 UOB-Log-Barrier Policy Search
Input: state space S, action space A, candidate policy π̂.
Define: Ω =

{
ŵ : ŵ(s, a, s′) ≥ 1

T 3S2A

}
, ψ(w) =

∑
h

∑
(s,a,s′)∈Sh×A×Sh+1

ln 1
w(s,a,s′) .

δ = 1
T 5S3A

.
Initialization:

ŵ1(s, a, s
′) =

1

|Sh||A||Sh+1|
, π1 = πŵ1 , t⋆ ← 1.

for t = 1, 2, . . . do
If πt = π̂, updt = 1; otherwise, updt = 1 w.p. qt and updt = 0 w.p. 1− qt.
If updt = 1, obtain the trajectory sh, ah, ℓt(sh, ah) for all h = 1, . . . ,H .
Construct loss estimators

ℓ̂t(s, a) =
updt
q′t
· ℓt(s, a)It(s, a)

ϕt(s, a)
, where It(s, a) = I{(sh(s), ah(s)) = (s, a)}

where q′t = qt + (1− qt)1[πt = π̂].
Update counters: for all s, a, s′,

Nt+1(s, a)← Nt(s, a) + It(s, a), Nt+1(s, a, s
′)← Nt(s, a, s

′) + It(s, a)I{sh(s)+1 = s′}.

Compute confidence set

Pt+1 =
{
P̂ :

∣∣∣P̂ (s′|s, a)− P t+1(s
′|s, a)

∣∣∣ ≤ ϵt+1(s
′|s, a), ∀(s, a, s′)

}
where P t+1(s

′|s, a) = Nt+1(s,a,s′)
max{1,Nt+1(s,a)} and

ϵt+1(s
′|s, a) = 4

√
P t+1(s′|s, a) ln(SAT/δ)

max{1, Nt+1(s, a)}
+

28 ln(SAT/δ)

3max{1, Nt+1(s, a)}

if
∑t

τ=t⋆
∑

s,a
updτ Iτ (s,a)ℓτ (s,a)

2

q′2t
+maxτ≤t

H
q′2τ
≥ S2A ln(SAT )

η2t
then

ηt+1 ← ηt
2

ŵt+1 = argminw∈∆(Pt+1)∩Ω ψ(w)
t⋆ ← t+ 1.

end
else

ηt+1 = ηt

ŵt+1 = argminw∈∆(Pt+1)∩Ω

{
⟨w, ℓ̂t⟩+ 1

ηt
Dψ(w, ŵt)

}
.

end
Update policy πt+1 = πŵt+1 .

end
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Lemma 48 (cf. Lemma C.6 of Lee et al. (2020)) With probability at least 1−O(δ), for any t and
any collection of transition functions {P st }s∈S such that P st ∈ Pt for all s, we have

T∑
t=1

∑
s∈S,a∈A

∣∣wP s
t ,πt(s, a)− wt(s, a)

∣∣ ℓt(s, a) = O

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩
q′t

ι2 +
S5A2ι2

mint q′t

 .

where ι ≜ log(SAT/δ) and ℓ2t (s, a) ≜ (ℓt(s, a))
2.

Proof Following the proof of Lemma C.6 in Lee et al. (2020), we have

T∑
t=1

∑
s∈S,a∈A

∣∣wP s
t ,πt(s, a)− wt(s, a)

∣∣ ℓt(s, a) ≤ B1 + SB2

where

B2 ≤ O

 T∑
t=1

∑
s,a,s′

∑
x,y,x′

√
P (s′|s, a)ι

max{1, Nt(s, a)}
wt(s, a)

√
P (x′|x, y)ι

max{1, Nt(x, y)}
wt(x, y|s′)


+O

 T∑
t=1

∑
s,a,s′

∑
x,y,x′

wt(s, a)ι

max{1, Nt(s, a)}

 (32)

The first term in (32) can be upper bounded by the order of

T∑
t=1

∑
s,a,s′

∑
x,y,x′

√
wt(s, a)P (x′|x, y)wt(x, y|s′)ι

max{1, Nt(s, a)}

√
wt(s, a)P (s′|s, a)wt(x, y|s′)ι

max{1, Nt(x, y)}

≤
T∑
t=1

√√√√∑
s,a,s′

∑
x,y,x′

wt(s, a)P (x′|x, y)wt(x, y|s′)ι
max{1, Nt(s, a)}

√√√√∑
s,a,s′

∑
x,y,x′

wt(s, a)P (s′|s, a)wt(x, y|s′)ι
max{1, Nt(x, y)}

≤
T∑
t=1

√√√√H
∑
s,a,s′

wt(s, a)ι

max{1, Nt(s, a)}

√√√√H
∑
x,y,x′

wt(x, y)ι

max{1, Nt(x, y)}

≤ HS
T∑
t=1

∑
s,a,s′

wt(s, a)ι

max{1, Nt(s, a)}

≤ O
(
HS2ι

mint q′t
(SA ln(T ) +H log(H/δ))

)
. (by Lemma 47)

The second term in (32) can be upper bounded by the order of

S2A
T∑
t=1

∑
s,a,s′

wt(s, a)ι

max{1, Nt(s, a)}
= O

(
S3Aι

mint q′t
(SA ln(T ) +H log(H/δ))

)
. (by Lemma 47)

Combining the two parts, we get

B2 ≤ O
(

1

mint q′t

(
S4A2 ln(T )ι+HS3Aι log(H/δ)

))
≤ O

(
S4A2ι2

mint q′t

)
.
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Next, we bound B1. By the same calculation as in Lemma C.6 of Lee et al. (2020),

B1

≤ O

 T∑
t=1

∑
s,a,s′

∑
x,y

wt(s, a)

√
P (s′|s, a)ι

max{1, Nt(s, a)}
wt(x, y|s′)ℓt(x, y) +H

T∑
t=1

∑
s,a,s′

wt(x, a)ι

max{1, Nt(s, a)}


≤ O

 T∑
t=1

∑
s,a,s′

∑
x,y

wt(s, a)

√
P (s′|s, a)ι

max{1, Nt(s, a)}
wt(x, y|s′)ℓt(x, y) +

HS2Aι2

mint q′t


For the first term above, we consider the summation over (s, a, s′) ∈ Th ≜ Sh × A × Sh+1. We
continue to bound it by the order of

T∑
t=1

∑
s,a,s′∈Th

∑
x,y

wt(s, a)

√
P (s′|s, a)ι

max{1, Nt(s, a)}
wt(x, y|s′)ℓt(x, y)

≤ α
T∑
t=1

1

q′t

∑
s,a,s′∈Th

∑
x,y

wt(s, a)P (s
′|s, a)wt(x, y|s′)ℓt(x, y)2

+
1

α

T∑
t=1

∑
s,a,s′∈Th

∑
x,y

q′twt(s, a)wt(x, y|s′) ·
ι

max{1, Nt(s, a)}

(by AM-GM, holds for any α > 0)

≤ α
T∑
t=1

1

q′t

∑
x,y

wt(x, y)ℓt(x, y)
2 +

H|Sh+1|
α

T∑
t=1

∑
s,a∈Sh×A

q′twt(s, a)ι

Nt(s, a)

≤ α
T∑
t=1

⟨wt, ℓ2t ⟩
q′t

+
H|Sh+1||Sh|Aι2

α
(by Lemma 47)

≤ O


√√√√H|Sh||Sh+1|A

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

 (choose the optimal α)

≤ O

(|Sh|+ |Sh+1|)

√√√√HA
T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t


Therefore,

B1 ≤ O

∑
h

(|Sh|+ |Sh+1|)

√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
HS2Aι2

mint q′t


≤ O

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
HS2Aι2

mint q′t

 .

Combining the bounds finishes the proof.
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Lemma 49 (cf. Lemma C.7 of Lee et al. (2020))

E [Error] = E

[
T∑
t=1

⟨ŵt − wt, ℓt⟩

]
≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
S5A2ι2

mint q′t

 .

Proof By Lemma 48, with probability at least 1−O(δ),

Error =
T∑
t=1

⟨ŵt − wt, ℓt⟩ ≤
T∑
t=1

∑
s,a

|ŵt(s, a)− wt(s, a)|ℓt(s, a)

≤ O

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
S5A2ι2

mint q′t


Furthermore, |Error| ≤ O(SAT ) with probability 1. Therefore,

E[Error] ≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
S5A2ι2

mint q′t

+ δSAT


≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩ι2
q′t

+
S5A2ι2

mint q′t


by our choice of δ.

Lemma 50 (cf. Lemma C.8 of Lee et al. (2020))

E[Bias-1] = E

[
T∑
t=1

⟨ŵt, ℓt − ℓ̂t⟩

]
≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓt⟩
q′t

+
S5A2ι2

mint q′t

 .

Proof Let Et be the event that P ∈ Pτ for all τ ≤ t.

Et
[
⟨ŵt, ℓt − ℓ̂t⟩

∣∣∣∣ Et] =∑
s,a

ŵt(s, a)ℓt(s, a)

(
1− wt(s, a)

ϕt(s, a)

)
≤
∑
s,a

|ϕt(s, a)− wt(s, a)|ℓt(s, a)

Thus,

Et
[
⟨ŵt, ℓt − ℓ̂t⟩

]
≤
∑
s,a

|ϕt(s, a)− wt(s, a)|ℓt(s, a) +O(HI[E t])

Summing this over t,

T∑
t=1

Et
[
⟨ŵt, ℓt − ℓ̂t⟩

]
≤

T∑
t=1

∑
s,a

|ϕt(s, a)− wt(s, a)|ℓt(s, a)︸ ︷︷ ︸
(⋆)

+O

(
H

T∑
t=1

I[E t]

)
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By Lemma 48, (⋆) is upper bounded by O
(
S

√
HA

∑T
t=1

⟨wt,ℓ2t ⟩
q′t

ι2 + S5A2ι2

mint q′t

)
with probability

1−O(δ). Taking expectations on both sides and using that Pr[E t] ≤ δ, we get

E

[
T∑
t=1

⟨ŵt, ℓt − ℓ̂t⟩

]
≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩
q′t

ι2 +
S5A2ι2

mint q′t

+O (δSAT )

≤ O

E

S
√√√√HA

T∑
t=1

⟨wt, ℓ2t ⟩
q′t

ι2 +
S5A2ι2

mint q′t

 .

Lemma 51 (cf. Lemma C.9 of Lee et al. (2020))

E[Bias-2] = E

[
T∑
t=1

⟨u, ℓ̂t − ℓt⟩

]
≤ O(1).

Proof Let Et be the event that P ∈ Pτ for all τ ≤ t. By the construction of the loss estimator, we
have

Et
[
⟨u, ℓ̂t − ℓt⟩

∣∣ Et] ≤ 0

and thus

Et
[
⟨u, ℓ̂t − ℓt⟩

]
≤ I[E t] ·H · T 3S2A (by Lemma C.5 of Lee et al. (2020), ℓ̂t(s, a) ≤ T 3S2A)

and

E

[
T∑
t=1

⟨u, ℓ̂t − ℓt⟩

]
≤ HT 4S2AE

[
T∑
t=1

I[E t]

]
≤ O(δHT 5S2A) ≤ O(1),

where the last inequality is by our choice of δ.

Lemma 52 (cf. Lemma C.10 of Lee et al. (2020))

E[Reg-term] ≤ O


√√√√S2A ln(SAT )E

[
T∑
t=1

∑
s,a

updtIt(s, a)ℓt(s, a)2
q′2t

+max
t

H

q′2t

] .

Proof By the same calculation as in the proof of Lemma C.10 in Lee et al. (2020),

⟨ŵt − u, ℓ̂t⟩ ≤
Dψ(u, ŵt)−Dψ(u, ŵt+1)

ηt
+ ηt

∑
s,a

ŵt(s, a)
2ℓ̂t(s, a)

2

≤
Dψ(u, ŵt)−Dψ(u, ŵt+1)

ηt
+ ηt

∑
s,a

updtIt(s, a)ℓt(s, a)2

q′2t
.
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Let t1, t2, . . . be the time indices when ηt =
ηt−1

2 , and let ti⋆ be the last time this happens. Summing
the inequalities above and using telescoping, we get

T∑
t=1

⟨ŵt − u, ℓ̂t⟩ ≤
∑
i

Dψ(u, ŵti)

ηti
+ ηti

ti+1−1∑
t=ti

∑
s,a

updtIt(s, a)ℓt(s, a)2

q′2t


≤
∑
i

O(S2A ln(SAT ))

ηti
+ ηti

ti+1−1∑
t=ti

∑
s,a

updtIt(s, a)ℓt(s, a)2

q′2t


(computed in the proof of Lemma C.10 in Lee et al. (2020))

≤
∑
i

O(S2A ln(SAT ))

ηti
(by the timing we halve the learning rate)

= O

(
S2A ln(SAT )

ηti⋆

)

≤ O


√√√√S2A ln(SAT )

(
T∑
t=1

∑
s,a

updtIt(s, a)ℓt(s, a)2
q′2t

+max
t

H

q′2t

) .

I.2. Corraling

We use Algorithm 8 as the corral algorithm for the MDP setting, with Algorithm 13 being the base
algorithm. The guarantee of Algorithm 8 is provided in Lemma 42.
Proof [Proof of Theorem 26] To apply Lemma 42, we have to perform re-scaling on the loss because
for MDPs, the loss of a policy in one round is H . Therefore, scale down all losses by a factor of 1

H .
Then by Lemma 45, the base algorithm satisfies the condition in Lemma 42 with c1 = S2Aι2 and
c2 = S5A2ι2/H where ξt,π is defined as ℓ′t,π = ℓt,π/H , the expected loss of policy π after scaling.
Therefore, by Lemma 42, the we can transform it to an 1

2 -dd-LSB algorithm with c1 = S2Aι2 and
c2 = S5A2ι2/H . Finally, using Theorem 23 and scaling back the loss range, we can get

O

(√
S2AHL⋆ log

2(T )ι2 + S5A2 log2(T )ι2
)

regret in the adversarial regime, and

O

(
H2S2Aι2 log T

∆
+

√
H2S2Aι2 log T

∆
C + S5A2ι2 log(T ) log(C∆−1)

)

regret in the corrupted stochastic regime.
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