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Abstract
We show that computing approximate stationary Markov coarse correlated equilibria (CCE) in
general-sum stochastic games is PPAD-hard, even when there are two players, the game is turn-
based, the discount factor is an absolute constant, and the approximation is an absolute constant.
Our intractability results stand in sharp contrast to the results in normal-form games, where exact
CCEs are efficiently computable. A fortiori, our results imply that, in the setting of multi-agent
reinforcement learning (MARL), it is computationally hard to learn stationary Markov CCE poli-
cies in stochastic games, even when the interaction is two-player and turn-based, and both the
discount factor and the desired approximation of the learned policies is an absolute constant. In
turn, these results stand in sharp contrast to single-agent reinforcement learning (RL) where near-
optimal stationary Markov policies can be computationally efficiently learned. Complementing our
intractability results for stationary Markov CCEs, we provide a decentralized algorithm (assuming
shared randomness among players) for learning a nonstationary Markov CCE policy with polyno-
mial time and sample complexity in all problem parameters. Previous work for learning Markov
CCE policies all required exponential time and sample complexity in the number of players. In the
balance, our work advocates for the use of nonstationary Markov CCE policies as a computation-
ally and statistically tractable solution concept in MARL, advancing an important and outstanding
frontier in machine learning.

1. Introduction

Learning in multi-agent, dynamic environments lies at the heart of many important advances and
outstanding challenges in artificial intelligence, from playing Go (Silver et al., 2016) and Poker (Brown
and Sandholm, 2019) to improving algorithms for multi-robot interaction and autonomous driv-
ing (Shalev-Shwartz et al., 2016) and evaluating the outcomes of economic policies (Zheng et al.,
2020). A prominent and general learning framework capturing these and other important appli-
cations is that of multi-agent reinforcement learning (MARL), which generalizes its single-agent
analogue, reinforcement learning (RL) (Busoniu et al., 2008; Zhang et al., 2021). In the same way
that RL is mathematically grounded on the model of Markov Decision Processes (MDPs), MARL
is grounded on the model of Stochastic Games (SGs), the multi-agent analog of MDPs introduced
in the seminal work of Shapley (Shapley, 1953). In contrast to RL, however, where a range of
algorithms for learning optimal policies are known, it has remained challenging to pin down what
types of policies are efficiently learnable in MARL, unless the setting has a very special structure,
as we discuss below. The goal of this work is to shed light on this central challenge, by showing
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that (i) a prominent type of policy, namely stationary Markov coarse correlated equilibrium (CCE),
is intractable, even when the MARL setting is fully known and relatively simple, and (ii) another
prominent type of policy, namely nonstationary Markov CCE, is efficiently learnable via distributed
learning dynamics, even when the environment is unknown.

To place our results in their equilibrium complexity and machine learning context, recall that
in a stochastic game, several agents interact in an environment over multiple steps: at each step,
each agent takes an action, and then the environment transitions to a new state and each agent
receives a reward. The rewards and transitions depend on both the current state and the profile
of actions chosen by the players at the current step. In contrast to the study of MDPs, where
a standard goal is to learn a near-optimal policy, a standard goal in the study of SGs is for the
agents to learn a near-equilibrium policy by interacting. Since their introduction by Shapley, SGs
have received extensive study in game theory (Neyman and Sorin, 2003; Solan and Vieille, 2015),
machine learning (Littman, 1994; Hu and Wellman, 2003; Busoniu et al., 2008; Zhang et al., 2021),
and various other fields, due to their broad applicability.

When there is a single state and the interaction lasts for a single step, SGs degenerate to normal-
form games. In this case, our understanding of equilibrium existence, computational complexity,
and learnability is quite advanced. If the game is two-player and zero-sum, Nash equilibria are
identical to minimax equilibria (von Neumann, 1928), which can be computed efficiently using
linear programming (Dantzig, 1951), and a large number of (decentralized) learning algorithms
have been discovered which converge to minimax equilibrium when employed by the agents to
iteratively update their strategies, even when the game is a priori unknown to them; see e.g., Cesa-
Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012) for overviews. Beyond two-player
zero-sum games, it is known that computing a Nash equilibrium is intractable in general (Daskalakis
et al., 2009; Chen et al., 2009), but (coarse) correlated equilibria can be computed efficiently using
linear programming, or decentralized learning (Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-
Bianchi, 2012).

When there are more states and steps, questions of equilibrium existence, computation, and
learning become much more intricate, occupying many works in the literature; see e.g., Solan and
Vieille (2015); Zhang et al. (2021). Indeed, there are various versions of (coarse) correlated equi-
librium, and it is often unclear which we should search for. In particular, when the players interact
over multiple steps, strategic behavior might be history-dependent, giving rise to notions of equilib-
rium that are also history-dependent and, thus, extremely complex. Circumventing this complexity,
a compelling type of strategic behavior, introduced by Shapley and studied in much of the game
theory and machine learning literature, is Markovian, i.e., strategic behavior wherein the actions
chosen by the players at every step of the game depend on the current state (and potentially the
step count), but not the history of states visited and actions played so far. Indeed, under broad and
natural conditions, e.g., future payoff discounting, there exist Markov Nash equilibria that are also
stationary, i.e., the actions played at every state are also step-count independent; see e.g., Shapley
(1953); Takahashi (1962); Fink (1964); Solan and Vieille (2015).

On the computation and learning front, most of the progress has been on efficient computa-
tion and learning of (approximate) Nash equilibria in two-player zero-sum stochastic games; see
e.g., Brafman and Tennenholtz (2002); Wei et al. (2017); Xie et al. (2020); Zhang et al. (2020); Sid-
ford et al. (2020); Bai and Jin (2020); Daskalakis et al. (2020); Bai et al. (2020); Liu et al. (2021);
Jin et al. (2021). Indeed, some of these works provide time- and sample-efficient learning algo-
rithms for computing Nash equilibria that are also Markovian. Beyond the two-player zero-sum
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case, however, our understanding is lagging. On the one hand, Nash equilibria are computationally
intractable (namely, PPAD-hard), as SGs are more expressive than normal-form games. On the
other hand, the complexity and learnability of (coarse) correlated equilibria are not well-understood
in SGs. It is easy to see that approximate nonstationary Markov (coarse) correlated equilibria can
be computed efficiently via backward induction, but the complexity of stationary Markov (coarse)
correlated equilibria remained unknown prior to this work. At the same time, a flurry of recent work
has provided learning algorithms for nonstationary (coarse) correlated equilibria in finite-horizon
episodic SGs (Liu et al., 2021; Mao and Başar, 2021; Song et al., 2021; Jin et al., 2021). How-
ever, each of these algorithms suffers from one of two shortfalls: either they cannot output Markov
equilibria (Mao and Başar, 2021; Song et al., 2021; Jin et al., 2021), or they require exponentially
many samples in the number of agents (Liu et al., 2021), i.e., suffering from the so-called “curse of
multi-agents;” see Jin et al. (2021) for additional explanation. We defer a more detailed literature
review to Appendix A.

Overview of results. In this work, we settle the complexity of computing stationary Markov
(coarse) correlated equilibria, showing that they are intractable; we then complement these re-
sults with time- and sample-efficient decentralized learning algorithms for computing nonstationary
Markov coarse correlated equilibria. In particular, we show the following results (which are sum-
marized and compared to existing results in Table 1):

• In Theorems 3 and 4, we establish intractability of computing approximate stationary Markov
coarse correlated equilibria (CCE) in 2-player, discounted general-sum stochastic games,
even when both the approximation and the discount factors are absolute constants. In par-
ticular, a notion of stationary Markov CCE called perfect CCE (Definition 1) are PPAD-hard
to approximate up to a constant, and a relaxed notion (stationary CCE) are PPAD-hard to
approximate up to a constant assuming the “PCP for PPAD” conjecture (Conjecture 10).

• To circumvent the above intractability results, we then consider the computation of Markov
nonstationary CCE, a relaxation of stationary CCE. While it is trivial to compute an approx-
imate Markov nonstationary CCE using backward induction, the learning problem, in which
the SG is unknown and agents must employ exploratory policies to learn its transitions and
rewards, is more challenging. In Theorem 5, we establish the first guarantee for learning a
Markov nonstationary CCE which has sample and computational cost polynomial in all pa-
rameters, including the number of agents. In particular, our algorithm (SPoCMAR, Algorithm
1) avoids the curse of multi-agents suffered by prior work Liu et al. (2021), which required
sample complexity exponential in the number of agents for computing Markov nonstationary
CCE. We also show that SPoCMAR can be implemented in a decentralized manner (Section
4.4), assuming that agents have access to shared common randomness.

Contemporaneous & subsequent work. Since the initial release of this paper, there have been
several works that prove related results. On the lower bound front, the most closely related work
is the concurrent work of Jin et al. (2022), which shows a similar (but weaker) result to Theorem
3, where the number of players is equal to the number of states. As we will discuss in Appendix
B.5, it requires nontrivial ideas to reduce the number of players in the hardness result down to 2.
Moreover, no decentralized learning algorithms were investigated therein.

Subsequent to our work, several papers studied decentralized algorithms for learning CCE in
general-sum Markov games, though generally under significantly stronger assumptions than our
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Table 1: Complexity results of finding approximate CCE in general-sum stochastic games. The two rows
correspond to computational and sample complexities, respectively. Polynomial means com-
putational and sample costs with polynomial dependence on all problem parameters (namely the
number of states, actions, players, and the inverse approximation), and Exponential means
computational and sample costs which are exponential in the number of players.

Markovian Non-Markovian
Stationary Nonstationary

Computation
PPAD-hard

(Theorems 3, 4)
Polynomial

(Folklore, via backward induction) Polynomial
(Song et al., 2021; Mao and Başar, 2021; Jin et al., 2021)

Learning
PPAD-hard

(Theorems 3, 4)
Exponential (Liu et al., 2021);
Polynomial (Theorem 5)

own. Li et al. (2022) find a decentralized algorithm for learning a Markov nonstationary CCE in the
setting of a generative model (which is easier than our setting due to the ability to query the transition
distribution at any state-action pair). Erez et al. (2022) study decentralized no-regret algorithms in
Markov games; while their no-regret algorithms do succeed at finding approximate CCE through
standard reductions, their results only hold under the strong assumption that all policies visit each
state with a lower-bounded probability, which makes the need for exploration less of a challenge
compared to our general setting. Furthermore, their rates are worse than ours in their dependence
on the approximation, namely their sample complexity scales as ϵ−9 vs the ϵ−3 of our Theorem 5.
Finally, several recent papers Giannou et al. (2022); Ding et al. (2022); Fox et al. (2022); Cen et al.
(2022); Zhang et al. (2022); Leonardos et al. (2022) have studied the convergence of policy gradient
methods to equilibria in stochastic games; while these algorithms are decentralized and do avoid the
curse of multi-agents, they all either are restricted to the full-information setting, in which an oracle
can return exact policy gradients, or make strong assumptions on the game dynamics which avoid
the need for exploration. Additionally, most of them only apply to special classes of games, such
as Markov potential games (Ding et al., 2022; Fox et al., 2022; Cen et al., 2022; Zhang et al., 2022;
Leonardos et al., 2022). Indeed, understanding how to explore in general settings while at the same
time avoid the curse of multi-agents is a key technical obstacle we face.

Discussion & future work. Our work provides significant progress in understanding the com-
putational and statistical complexities of equilibrium computation in stochastic games. Theorems
3 and 4 indicate that if we wish to avoid computational intractability, then the “correct” notion of
Markov CCE is the nonstationary variant. Algorithm 1 (Theorem 5) then provides the first guar-
antee for learning such a Markov nonstationary CCE which has sample (and computational) cost
polynomial in all parameters and which does not make simplifying assumptions that ease the chal-
lenge of exploration. We remark, however, that the sample complexity of Algorithm 1 is suboptimal
in its dependence on H , S, and 1/ϵ. Improving the dependence on ϵ (from 1/ϵ3 to 1/ϵ2) seems
to be a particularly interesting direction for future work, as it would likely require new exploration
techniques: as discussed further in Section 4.1, Algorithm 1 uses Rmax-type exploration bonuses
(Brafman and Tennenholtz, 2002; Jin et al., 2020), which seem insufficient to get tight rates. It
would be interesting to see if upper confidence bound-type bonuses (e.g., as in V-learning (Song
et al., 2021; Mao and Başar, 2021; Jin et al., 2021)) can achieve the optimal dependence on ϵ.
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Notation. We use ⊥ to denote a null element. For m ∈ N, [m] denotes the set {1, · · · ,m}. For a
finite set T , ∆(T ) denotes the space of distributions over T , |T | denotes the cardinality of the set.
Let ⊔ denote the disjoint union of sets. For x ∈ R, sign(x) ∈ {±1} denotes the sign of x.

2. Problem Formulation & Preliminaries

2.1. Stochastic games

We begin with some background regarding the terminology and equilibrium concepts in general-
sum stochastic games. Formally, for some m ∈ N, an infinite-horizon discounted m-player1

stochastic game G is defined to be a tuple (S, (Ai)i∈[m],P, (ri)i∈[m], γ, µ), where:

• S denotes the (finite) state space, and we denote S = |S|.

• Ai denotes the (finite) action space of each player i ∈ [m], and we denote Ai = |Ai|.
We will write A := A1 × · · · × Am to denote the joint action space, and, for i ∈ [m],
A−i :=

∏
i′ ̸=iAi′ .

• γ ∈ [0, 1) denotes the discount factor.

• µ ∈ ∆(S) denotes the distribution over initial states.

• ri : S ×A → [−1, 1] denotes the reward function for player i.

• P : S × A → ∆(S) denotes the transition kernel: P(·|s,a) ∈ ∆(S) denotes the distribution
over the next state if joint action profile is played at a state.

We denote joint action profiles a ∈ A with boldface; to denote the action of some agent i ∈ [m]
when the joint action profile is a, we write ai ∈ Ai. Similarly, we denote a joint reward profile as
r ∈ Rm, with ri ∈ R denoting the reward to agent i.

Policies: Stationary and nonstationary. We primarily consider two types of policies in this pa-
per, namely stationary Markov policies and nonstationary Markov policies: a stationary Markov
policy for some player i is a mapping πi : S → ∆(Ai), and a nonstationary Markov policy for
player i is a sequence of maps πi,1, πi,2, . . . : S → ∆(Ai), which we denote by πi = (πi,1, πi,2, . . .).
A stationary Markov policy πi maps each state s to a distribution over actions πi(s) ∈ ∆(Ai) for
player i; in the nonstationary case, the distribution over actions taken, πi,h(s), depends also on the
current step h. Furthermore, we will often write πi(ai|s) to denote the probability of taking ai under
the distribution πi(s). We denote the set of all stationary Markov policies of player i by ∆(Ai)S ,
and the set of all nonstationary Markov policies of player i by ∆(Ai)N×S .2

Joint Markov policies are defined analogously to policies for individual players, except they
prescribe a distribution over joint actions at each state: in particular a joint stationary Markov policy
is a mapping π : S → ∆(A), and a joint nonstationary Markov policy with horizonH is a sequence
π = (π1, π2, . . .), where each πh : S → ∆(A). With slight abuse of terminology, we will drop

1. Hereafter, we use “player” and “agent” interchangeably.
2. Notice that it takes infinite space to specify a general nonstationary policy: to obtain efficient algorithms which output

nonstationary policies, we fully specify the policy for some number H of steps and then specify a fixed policy (e.g.,
playing a uniform action) for all remaining steps. As long as H ≫ 1

1−γ , any suboptimality of the policy played at
steps h > H incurs only a small approximation error.
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“Markov” and “joint” from our terminology when discussing policies if the context is clear. We say
that the stationary policy π : S → ∆(A) is a product policy if there are policies πi : S → ∆(Ai)
so that π(s) = π1(s) × · · · × πm(s) for all s ∈ S . A nonstationary policy is a product policy
if each of its constituent policies πh : S → ∆(A) is a product policy. Given a stationary policy
π : S → ∆(A) and a player i ∈ [m], let π−i : S → ∆(A−i) denote the joint policy which at
each state s outputs the marginal distribution of π(s) over A−i. For a joint nonstationary policy
π ∈ ∆(A)N×S , we write π−i,h := (πh)−i : S → ∆(A−i), and define π−i to be the sequence
(π−i,1, π−i,2, . . .).

Value functions. Consider first a joint stationary policy π. The evolution of the stochastic game
G proceeds as follows: the system starts at some s1 ∈ S , drawn according to µ, and at each step
h ≥ 1, all players observe sh, draw a joint action ah ∼ π(sh), and then the system transitions
to some sh+1 ∼ P(·|sh,ah). We call the tuple (s1,a1, s2,a2, . . .) a trajectory, and will write
(s1,a1, s2,a2, . . .) ∼ (G, π) to denote a trajectory drawn in this manner. For any agent i ∈ [m],
their value function V π

i : S → [−1, 1] is defined as the expected γ-discounted cumulative reward
that player i receives if the game starts at state s1 = s and the players act according to π:

V π
i (s) := (1− γ) · E(s1,a1,s2,a2,...)∼(G,π)

[ ∞∑
h=1

γh−1 · ri(sh,ah)
∣∣∣∣ s1 = s

]
.

Furthermore, set V π
i (µ) := Es∼µ[V π

i (s)]. The value function is defined similarly for a joint non-
stationary policy π ∈ ∆(A)N×S , except that, due to nonstationarity, it is useful to define separate
value functions at each step h ≥ 1: thus, we write, for h ≥ 1,

V π
i,h(s) = (1− γ) · E(sh,ah,sh+1,ah+1,...)∼(G,π)

[ ∞∑
h′=h

γh
′−h · ri(sh′ ,ah′)

∣∣∣ sh = s

]
, (1)

and for simplicity write V π
i (s) = V π

i,1(s). In the expectation in (1), for h′ ≥ h the action ah′ is

drawn from πh′(sh′). Similarly to above, we define V π
i,h(µ) := Es∼µ

[
V π
i,h(s)

]
.

2.2. Equilibrium notions

To define the equilibrium notions we work with, we begin by introducing best-response policies.

Best-response policies. For any i ∈ [m] and for stationary Markov policies πi : S → ∆(Ai), π−i :
S → ∆(A−i), we let πi × π−i refer to the policy which at each state s, samples an action profile
according to the product distribution πi(s) × π−i(s). Fix any i ∈ [m], and consider any joint sta-
tionary policy π−i : S → ∆(A−i) of all players except player i. There is a stationary policy of

the ith player, π†i (π−i) : S → ∆(Ai), so that V π†
i (π−i)×π−i

i (s) = supπ′
i:S→∆(Ai) V

π′
i×π−i

i (s) for

all s ∈ S. The policy π†i (π−i) is called the best-response policy of player i, and we will write

V
†,π−i
i (s) := V

π†
i (π−i)×π−i

i (s), and V †,π−ii (µ) := Es∼µ
[
V
†,π−i
i (s)

]
.3

3. It is well-known that when π−i is Markov (as is assumed here), the best response amongst all history-dependent
policies is Markovian (and is in fact deterministic), as it reduces to a single-agent Markov decision process problem;
thus it is without loss of generality to constrain ourselves to Markov policies π′

i above; an analogous fact also holds
for nonstationary policies.
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Best-response policies for nonstationary policies are defined similarly: for a nonstationary pol-
icy π−i ∈ ∆(A−i)N×S , there is a nonstationary best-response policy of the ith player π†i (π−i) ∈

∆(Ai)N×S so that for all (h, s) ∈ N×S , V π†
i (π−i),π−i

i,h (s) = supπ′
i∈∆(Ai)N×S V

π′
i×π−i

i,h (s). As above

we write V †,π−ii,h (s) := V
π†
i (π−i)×π−i

i,h (s) and V †,π−ii,h (µ) := Es∼µ
[
V
†,π−i
i,h (s)

]
.

Coarse correlated equilibrium. We first define approximate Markov CCE in stochastic games.

Definition 1 (Coarse correlated equilibrium) For ϵ > 0:

• A stationary policy π ∈ ∆(A)S is an ϵ-approximate stationary Markov coarse correlated
equilibrium (abbreviated ϵ-stationary CCE) if maxi∈[m]

{
V
†,π−i
i (µ)− V π

i (µ)
}
≤ ϵ.

• A nonstationary policy π ∈ ∆(A)N×S is an ϵ-approximate nonstationary Markov coarse cor-
related equilibrium (abbreviated ϵ-nonstationary CCE) if maxi∈[m]

{
V
†,π−i
i (µ)− V π

i (µ)
}
≤

ϵ.

• A stationary policy π ∈ ∆(A)S is an ϵ-approximate perfect Markov coarse correlated equi-
librium (abbreviated ϵ-perfect CCE) if it holds that maxi∈[m],s∈S

{
V
†,π−i
i (s)− V π

i (s)
}
≤ ϵ.

It is also possible to define ϵ-perfect nonstationary CCE in a natural way, but we will not need to do
so (as such equilibria are easily seen to be computationally feasible to compute, yet also impossible
to learn in the model of PAC learning of stochastic games we consider, see Section 2.3). When
stationarity (or lack thereof) of π is clear from context, we will drop the words “stationary” and
“nonstationary” from the above definitions; furthermore, we will drop the word “Markov” when
referring to the above definitions since all equilibria we consider are Markovian.

Nash equilibrium. We next define approximate Markov-Nash equilibria in stochastic games.

Definition 2 (Nash equilibrium) For ϵ > 0, the notions:

• ϵ-approximate stationary Markov Nash equilibrium (abbreviated ϵ-stationary NE)

• ϵ-approximate nonstationary Markov Nash equilibrium (abbreviated ϵ-nonstationary NE)

• ϵ-approximate perfect Markov Nash equilibrium (abbreviated ϵ-perfect NE)

are defined to be ϵ-stationary CCE, ϵ-nonstationary CCE, and ϵ-perfect CCE, respectively, which
are also product policies.

In the literature, perfect NE is also referred to as Markov perfect equilibrium (Maskin and Tirole,
1988) for stochastic games. It is known that perfect a Markov NE always exists for discounted SGs
(Shapley, 1953; Fink, 1964), thus so do the stationary and nonstationary NE, and the corresponding
CCE counterparts.
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2.3. The PAC-RL model for stochastic games

Our results on learning SGs (Section 4) operate in the probably approximately correct (PAC) learn-
ing model of RL, which is standard in the literature (Kakade, 2003; Azar et al., 2017). In par-
ticular, at the onset of the algorithm, the agents have no information about the transitions P, the
reward functions ri, or the initial state distribution µ; only the parameters S, γ are known to all
agents, and each agent i knows Ai. The agents’ only access to the SG is through the ability
to repeatedly choose some joint (perhaps nonstationary) policy π and then sample a trajectory
(s1,a1, r1, s2,a2, r2, . . .) ∼ (G, π). In the centralized setting (studied, for instance, in Liu et al.
(2021)), all agents may communicate with a central coordinator who may choose π and observe
the entire trajectory. Our algorithm may in fact be implemented in the stricter decentralized setting
with public randomness, which is discussed in Section 4.4. Note that in either case, the agents
need to efficiently explore the environment, as the trajectory data they access might not visit all the
state-action pairs with large rewards often enough, usually leading to a poor sample complexity.

In order to have computationally efficient algorithms, each trajectory must be truncated at some
stepH ∈ N, after which another trajectory is started anew. In the infinite-horizon discounted setting,
we, therefore, assume that agents can choose to stop playing the SG at some point: in particular for
a desired error parameter ϵ > 0, all agents will truncate after H := log 1/ϵ

1−γ steps, incurring only ϵ
loss from steps h > H .

2.4. Turn-based stochastic games

A stochastic game G is called a turn-based stochastic game if, at each state s ∈ S, there is a single
player i ∈ [m] (called the controller of state s, and denoted i = cr(s)) whose action at s entirely
determines the reward and the transition to the next state. Formally, for all j ∈ [m] there is some
function r′j : S×(A1⊔· · ·⊔Am)→ [−1, 1] and some transition kernel P′ : S×(A1⊔· · ·⊔Am)→
∆(S) so that rj(s,a) = r′j(s, acr(s)) for all s ∈ S, j ∈ [m], a = (a1, . . . , am) ∈ A, and so that
P(·|s,a) = P′(·|s, acr(s)) for all s ∈ S, a ∈ A. It is evident that in turn-based stochastic games,
the notions of ϵ-CCE and ϵ-NE are equivalent, both for stationary and nonstationary policies (and
the same holds for the perfect versions of the equilibria), since in such games we may restrict to
product policies without loss of generality.

2.5. PPAD and the generalized circuit problem

The problems of computing equilibria of the types defined in Definitions 1 and 2 are instances
of total search problems (Megiddo and Papadimitriou, 1991). In particular, they lie in the class
TFNP, which is the class of binary relations P ⊂ {0, 1}⋆ × {0, 1}⋆ so that for all x,y ∈ {0, 1}⋆,
there is a polynomial-time algorithm that can determine whether P(x,y) holds, and so that for all
x ∈ {0, 1}⋆, there is some y ∈ {0, 1}⋆ with |y| ≤ poly(|x|) so that P(x,y) holds. Approximate
equilibrium computation in stochastic games is seen to be in TFNP as follows: x represents the
description of the stochastic game and the approximation requirement, y represents a proposed
approximate equilibrium policy, and P(x,y) holds if y is an approximate equilibrium of x. For all
notions of equilibria we have defined, an equilibrium always exists (Fink, 1964; Solan and Vieille,
2015) and it may thus be easily seen that there exists an approximate one that has polynomial bit
description in the description of the game and the approximation requirement. Moreover, it may be
efficiently checked whether a proposed policy y is indeed an approximate equilibrium for the game
represented by x.
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The class PPAD (Papadimitriou, 1994) is defined as the class of all problems in TFNP which
have a polynomial-time reduction to the End-of-the-Line (EOTL) problem; we refer the reader to
Papadimitriou (1994); Daskalakis et al. (2009) for a description of EOTL, as we do not need to
directly use its definition. To establish our hardness results (i.e. PPAD-completeness for computing
approximate stationary CCE), we instead use the fact, proven in Rubinstein (2016), that the ϵ-
GCircuit problem (Definition 8) is PPAD-complete for some absolute constant ϵ (Theorem 9).
Additional preliminaries regarding PPAD and ϵ-GCircuit are presented in Appendix B.1.

3. PPAD-hardness for Stationary Equilibria

We next state our main lower bounds, which establish hardness for finding stationary CCE in
infinite-horizon discounted SGs. To do so, we first prove hardness for finding stationary NE in
the special case of turn-based discounted SGs, and then note that in such games, stationary Nash
equilibria and stationary coarse correlated equilibria coincide (so do the perfect versions).

Theorem 3 (PPAD-hardness for perfect equilibria) There is a constant ϵ > 0 so that the prob-
lem of computing ϵ-perfect NE in 2-player, 1/2-discounted turn-based stochastic games is PPAD-
hard. Thus, computing ϵ-perfect CCE in 2-player, 1/2-discounted stochastic games is PPAD-hard.

We next turn to showing intractability results for the weaker, “non-perfect” notions of equilibria,
namely ϵ-stationary NE in turn-based stochastic games, and more generally, ϵ-stationary CCE in
stochastic games. The motivation for pursuing these results is two-fold: First, they are standard
equilibrium concepts and thus a natural target where to extend our intractability results. Second, if
the initial state distribution µ is not sufficiently exploratory, it is impossible, in the PAC-RL model,
to learn notions of equilibrium which are perfect because these require a condition to hold for
each state. Accordingly, in the learning setting we consider in Section 4, our algorithms only learn
the (non-perfect) notions of ϵ-nonstationary NE in turn-based games and ϵ-nonstationary CCE in
general stochastic games. By establishing intractability results for their stationary counterparts, we
are able to argue that our learning results cannot be extended to stationary non-perfect equilibria.

Theorem 4 (PPAD-hardness for non-perfect equilibria) There are constants ϵ, c > 0 so that:

• The problem of computing c/S-stationary NE in 2-player, 1/2-discounted turn-based stochas-
tic games is PPAD-hard; and thus so is the problem of computing c/S-stationary CCE in
2-player, 1/2-discounted stochastic games.

• Under the “PCP for PPAD conjecture” (Conjecture 10), the problem of computing ϵ-stationary
NE in 2-player, 1/2-discounted turn-based stochastic games is PPAD-hard; and thus so is the
problem of computing ϵ-stationary CCE in 2-player, 1/2-discounted stochastic games.

3.1. Proof overview for Theorems 3 and 4

The proofs of Theorems 3 and 4 proceed by reducing the (ϵ, δ)-GCircuit problem, introduced in
Appendix B.1, to the problem of finding approximate stationary Nash equilibria in 2-player general-
sum turn-based stochastic games. We overview here the proof of Theorem 3, which uses PPAD-
hardness of the (ϵ, 0)-GCircuit problem (Theorem 9); the proof of Theorem 4 is similar, except
that the second part of the theorem relies on the PPAD-hardness of the (ϵ, δ)-GCircuit problem
for some constants ϵ, δ > 0, which is not yet known but is rather the content of Conjecture 10.
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Given an instance C of the (ϵ, 0)-GCircuit problem, we wish to construct a 2-player, 1/2-
discounted turn-based stochastic game G so that given an ϵ′-perfect NE of G, for some ϵ′ > 0,
we can compute an assignment of values to the nodes of the generalized circuit C which ϵ-satisfies
all gates. To do so, we construct G by creating a number of “gadgets” (Appendix B.4), each of
which implements one gate in the generalized circuit instance C. Each such gadget consists of a
constant number of states of G, each of which is controlled by a single player who can take one
of two actions, say {0, 1}, at the state. A stationary policy of G then is equivalent to a mapping
π : S → [0, 1], where S is the state space of G and, for s ∈ S , π(s) denotes the probability that
the agent controlling s chooses action 1 at state s. We then define transitions and rewards for the
states in each gadget in a way that forces any ϵ′-perfect NE π of G to have the property that the
restriction of π to the gadget ϵ-approximately satisfies the gate corresponding to the gadget. By
defining transitions between the gadgets in a way that mirrors the structure of the circuit C, we
achieve the desired reduction. The gadgets we use are somewhat reminiscent of the gadgets used in
Daskalakis et al. (2009) to show PPAD-hardness of computing Nash equilibria in graphical games.

The reduction as described above suffices to show PPAD-hardness of computing ϵ′-perfect NE
of |S|-player stochastic turn-based games, namely games in which a different player chooses an
action at each state. In this case, because of the discounting, each player essentially only strate-
gizes about their short-term rather than long-term reward, and the equilibrium constraints remain
essentially local and faithful to the intended gadget functionality. To establish hardness for 2-player
games, care must be taken to ensure that for each player, the rewards assigned to them from dif-
ferent gadgets do not conflict with each other. In fact, as we describe in Appendix B.5, conflicts
could arise for the gadgets that we use. To overcome this issue, we show (in Lemma 25) how to
map the given generalized circuit instance C to an equivalent one, C′, which has the property that
conflicts as described above cannot arise. In particular, we introduce the notion of valid colorings
(Definition 24) to establish a formal condition on the circuit instance C′ which guarantees that there
will be no conflicts. We then show, using our game gadgets, how to map the instance C′ (equipped
with a valid coloring) to a 2-player stochastic game G whose ϵ′-perfect NE yields an assignment of
C that ϵ-satisfies all gates.

The above description omits some details; for instance, rather than reducing directly to the
problem of ϵ′-perfect NE in stochastic games, we instead reduce ϵ-GCircuit to the problem of
computing perfect well-supported Nash equilibria in stage games (Definition 15), which in turn
reduces to perfect NE (Lemma 14). The full proofs for our lower bounds are in Appendix B.

4. A Decentralized MARL Algorithm

Given the intractability results discussed in the previous section, it is natural to relax the notion of
(Markov) stationary equilibria. A very natural relaxation, and indeed one considered in a number
of recent works, is to drop the requirement of stationarity of the equilibrium policy. While comput-
ing approximate nonstationary (coarse) correlated equilibria in general-sum discounted stochastic
games is straightforward via backward induction, the learning problem, in which the stochastic
game is unknown and the players must employ exploratory policies to learn an equilibrium, is sig-
nificantly less trivial. All prior work (on finite-horizon episodic SGs) for learning nonstationary
equilibria either requires a number of samples exponential in the number of players (Bai and Jin,
2020; Liu et al., 2021), or else does not compute Markov policies (Mao and Başar, 2021; Jin et al.,
2021; Song et al., 2021). In this section, we present Theorem 5, which establishes a decentralized

10



COMPLEXITY OF MARKOV EQUILIBRIUM

learning algorithm that learns a Markov nonstationary equilibrium in time polynomial in the number
of players.

Reduction to the finite-horizon case. To learn ϵ-nonstationary CCE in infinite-horizon discounted
games, we use a standard reduction to computing ϵ-nonstationary CCE in finite-horizon undis-
counted games, which is the setting studied by most of the aforementioned work (Mao and Başar,
2021; Jin et al., 2021; Song et al., 2021; Liu et al., 2021). A finite-horizon stochastic game
G = (S, (Ai)i∈[m],P, (ri)i∈[m], H, µ) is defined identically to the infinite-horizon case (Section
2.1), except that the discount factor γ is replaced by an integer H ∈ N, denoting the horizon; as
such, the total reward is no longer discounted, but is summed from steps h = 1 to H (see Appendix
C.3 for further details).

4.1. The SPoCMAR algorithm

We next introduce our main algorithm, called SPoCMAR (Stage-based Policy Cover for Multi-
Agent Learning with Rmax), presented in full in Algorithm 1 (see Appendix C). The SPoCMAR
algorithm combines multiple tools from the literature in order to learn a Markov equilibrium while
breaking the curse of multi-agents: it uses an adversarial bandit routine at each state (see Appendix
C.2), similar to the recent works of Mao and Başar (2021); Song et al. (2021); Jin et al. (2021),
optimistic rewards inspired by those in the Rmax algorithm (Brafman and Tennenholtz, 2002) to
induce exploration, as well as a policy cover (see, e.g., Agarwal et al. (2020); Foster et al. (2021);
Jin et al. (2020)) to ensure that exploratory policies learned in the past are not forgotten.

High-level overview & challenges. At a high level, these ingredients are combined in the follow-
ing manner. Suppose first that we had a collection of policies that explored the entire state space
(namely, a policy cover); then we could learn an approximate equilibrium in a backward-inductive
manner, as follows. For each h ∈ {H,H−1, . . . , 1}, and for each state at step h, play some element
of the policy cover which reaches that state, and then choose an action according to a bandit no-
regret algorithm at that state, with rewards for the bandit learner given by an estimate of the value
function for the approximate CCE that we have already learned at steps h + 1 through H . After
sufficiently many rounds, the bandit no-regret learners ensure that there is no useful deviation at all
states at each step h, which suffices to show that no player can usefully deviate to any fixed policy,
thus establishing that we have found a Markov nonstationary CCE.

A key technical challenge is how to cope with the fact that we do not have a policy cover that
explores the entire state space; in fact, such a “complete” cover may not exist, since some states may
not be reachable under any policy. Additionally, it may be the case that there are some reachable
states but that it takes exponentially (in the number of agents) many samples to reach. For instance,
suppose there is a fixed starting state s1, and some state s⋆2 at step 2 is only reachable if the agents
play according to a fixed joint action a⋆1 ∈ A at s1. Via standard multi-armed bandit lower bounds
(Lattimore and Szepesvári, 2020), it is straightforward to show that finding a policy which reaches
s⋆2 with nontrivial probability requires Ω(|A|) = Ω (

∏m
i=1Ai) ≥ Ω(exp(m)) many samples.

We overcome both of the aforementioned challenges by adding an exploration bonus to each
state which has not been sufficiently explored in the past (similar to the Rmax algorithm (Brafman
and Tennenholtz, 2002)). The use of such bonuses allows the algorithm SPoCMAR to reach any
state that any agent can reach as a result of deviating from the approximate CCE being learned.
Roughly speaking, this follows since, in the presence of such a deviation, the exploration bonuses
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will propagate, via Bellman updates, to some profitable action that some player’s bandit learner at
some state can take. In such a case, the bandit learner will eventually take that action over time.
Hence, by taking note of which states are visited by each policy played in the course of SPoCMAR,
we can build up a sufficiently good policy cover over time. Since the order in which we find new
states may not necessarily be decreasing in h (e.g., we may first visit a new state at step H , then
step H/2, then at step H − 1), the algorithm needs to operate in multiple stages, computing new
value function estimates for each stage.

Detailed description. In more detail, the algorithm proceeds as follows: it takes as input the pa-
rametersm,S,A, H of the finite-horizon stochastic game, as well as additional parametersK,Nvisit ∈
N, p ∈ (0, 1) whose interpretations will be explained below. SPoCMAR’s computation proceeds in
a number of stages q (step 4). At a high level, the algorithm will attempt to find, for each pair (h, s),
a policy πcoverh,s which visits (h, s) with nontrivial probability (namely, at least p; see step 31). For
each stage q, the algorithm loops over h = H,H − 1, . . . , 1 (step 7), and for each such value of
h, the algorithm first re-initializes all adversarial bandit instances according to a bandit algorithm
satisfying the guarantee of Theorem 28 (step 9), and then loops over all policies in a policy cover
set Πqh (step 10), which is the set of current non-null cover policies πcoverh,s . To deal with the case that
Πqh is empty (e.g., if q = 1), in step 10 the algorithm also loops over the policy πU which prescribes
all agents to choose their action uniformly at random at each state.

For each π ∈ Πqh ∪ π
U , the algorithm executes a policy π (step 13), which is identical to π

except that at step h each agent plays according to her adversarial bandit instance. The policy π is
executed for a total of K episodes (step 11). The algorithm then uses the trajectory data drawn from
π at each episode to update the adversarial bandit instances at step h (steps 15 to 19). Using the
data collected from all K episodes for each cover policy in Πqh ∪π

U , the algorithm then computes a
function V q

i,h : S → R, representing a value function estimate for a coarse correlated equilibrium,
in steps 22 through 25. Crucially, the estimates V q

i,h depend on V q
i,h+1, necessitating the backward

loop over h in step 7.
After this backward loop over h has been completed, the algorithm constructs a policy π̃q

(step 27) representing an estimate for an approximate CCE given the data collected at stage q.
By drawing a total of Nvisit additional trajectories from π̃q, in step 28 it uses the sub-procedure
EstVisitation (Algorithm 2) to estimate the state visitation probabilities for π̃q. If π̃q does not
visit any new pairs (h, s) with significant probability, SPoCMAR terminates, outputting π̃q; other-
wise, it sets πcoverh,s ← π̃q for newly visited pairs (h, s), and then proceeds to the following stage.

4.2. Guarantee for SPoCMAR

In Theorem 5 we state the main guarantee for SPoCMAR, which shows that for finite-horizon
general-sum stochastic games, SPoCMAR achieves sample and computational complexities poly-
nomial in all relevant parameters, including the number of players.

Theorem 5 Fix any ϵ, δ > 0. For appropriate settings of the parameters Nvisit,K, p (specified in
Appendix C.4), SPoCMAR outputs an ϵ-nonstationary Markov CCE with probability at least 1 − δ
after sampling at most O

(
H10S3ι2 maxi∈[m] Ai

ϵ3

)
trajectories, where ι = log

(
SHmaxi Ai

ϵδ

)
. The

computational complexity of SPoCMAR is polynomial in H,S,maxiAi, 1/ϵ, log 1/δ.
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Combining SPoCMAR with the reduction from infinite-horizon discounted games to finite-horizon
(undiscounted) games described in Appendix C.3, we obtain the following as an immediate corol-
lary of Theorem 5:

Corollary 6 There is a polynomial-time algorithm which learns a ϵ-nonstationary Markov CCE in

γ-discounted general-sum stochastic games using Õ
(
S3 maxi∈[m] Ai

(1−γ)10ϵ3

)
trajectories.

The proof of Theorem 5 can be found in Appendix C, with an overview provided next. We will also
explain next how SPoCMAR (Algorithm 1) can be implemented in a decentralized manner (with
access to shared randomness).

4.3. Proof overview for Theorem 5

We now overview the proof of Theorem 5. Let V̂ denote the value of V at the termination of
SPoCMAR, and q̂ denote the value of the final stage of SPoCMAR. The main tool in the proof is
to construct an intermediate game, denoted GV̂ (Appendix C.5): we will first show that the output
policy of SPoCMAR is an ϵ-CCE with respect to the game GV̂ , and then, using the termination
criterion of SPoCMAR, we will show that this implies that π̂ is an ϵ-CCE with respect to the true
game G.

The game GV̂ is constructed in a similar way as an intermediate MDP used in the analysis of
the Rmax algorithm (Brafman and Tennenholtz, 2002; Jin et al., 2020). For tuples (h, s) ̸∈ V̂ ,
GV̂ transitions, at (h, s), to a special sink state at which all agents receive reward 1 (the maximum
possible reward) at all future steps; for all (h, s) ∈ V̂ , the rewards and transitions of GV̂ at (h, s) are
identical to those of G. By ensuring that the parameter K passed to SPoCMAR is sufficiently large,
we may guarantee that, during stage q̂, SPoCMAR visits all (h, s) ∈ V̂ sufficiently many times to
compute accurate estimates of V

GV̂ ,π̂

i,h (s) for such (h, s) ∈ V̂ . Since, for all (h, s) ̸∈ V̂ , we have

V
GV̂ ,π̂

i,h (s) = H + 1 − h, it is possible to show (Lemma 32) that
∣∣∣V q̂

i,h(s)− V
GV̂ ,π̂

i,h (s)
∣∣∣ is small for

all (h, s) ∈ [H]× S and all i ∈ [m].
Using the no-regret property of the adversarial bandit instances used by each player for each

(h, s), we then obtain (Lemmas 33 and 34) that π̂ is an ϵ-CCE of GV̂ . To derive such a guarantee
for the true SG G, we use two facts: first, by the optimistic nature of the reward of GV̂ , the value
function of GV̂ is always an upper bound on the value function of G, and second, by the termination
criterion of SPoCMAR, the probability that a trajectory (s1, s2, . . . , sH) ∼ (G, π̂) visits any state
(h, sh) ̸∈ V̂ is small (Lemma 35). These arguments are worked out in detail in Lemma 36.

Reduction from infinite-horizon to finite-horizon. Finally, to derive Corollary 6, we remark
that there is a simple reduction from episodic learning of an infinite-horizon discounted game with
discount factor γ to episodic learning of a finite-horizon game with horizon H := log 1/ϵ

1−γ (see
Appendix C.3). Owing to the fact that γH ≤ ϵ, this reduction preserves nonstationary equilibria up
to an additive approximation of ϵ.

4.4. Implementing SPoCMAR in a decentralized manner

So far, we have described SPoCMAR as a centralized algorithm, declining to make distinctions
between the computations performed by each agent. We now proceed to explain how SPoCMAR
can be implemented in a decentralized way, namely in the following setting:
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1. All agents know m,S,A, H , as well as ϵ, δ, so that they may each compute the additional
parameters K,Nvisit, p passed to SPoCMAR.

2. For each trajectory of G sampled from a policy π, each agent i ∈ [m] sees only the states,
their actions, and their rewards.

3. The agents may access a common string of uniformly random bits during the course of the
algorithm, but no communication between agents is allowed.

4. The agents are required to be able to sample from the output policy π̂, again using only
common randomness (and no communication).

The only existing decentralized learning algorithm for multi-player general-sum stochastic games,
V-learning (Song et al., 2021; Mao and Başar, 2021; Jin et al., 2021), shares all requirements above
except item 3. In particular, while V-learning requires public random bits to sample a trajectory
from its output CCE policy, such bits are not used in the process of learning the policy.

To implement SPoCMAR in a decentralized manner, we first describe how agents can sample
trajectories from π (defined in step 13) without communicating: note that the first h − 1 steps of
π are given by (π̃q1, . . . , π̃

q
h−1), for some stage q: furthermore, π̃qh′(·|s) is a uniform mixture over

some number Jqh′,s of joint action profiles (step 24; we denote the parameter Jh′,s at stage q by
Jqh′,s). Thus, if each agent stores its action taken in each of the Jqh′,s such steps for all s, h′, q, the
agents may draw an action sampled from π̃qh′ by using the public randomness to sample a uniformly
random element of [Jqh′,s]. Noting that Jqh′,s ≤ K(S + 1) for all h′, s, we see that the total number
of common random bits needed to execute π is O(H3S2K log(SK)).

It is straightforward that the bandit updates in steps 15 through 19 as well as the computation of
V
q
i,h in steps 22 through 25 may be implemented in a decentralized way (in particular, each agent

i only computes its own value estimate V q
i,h). Finally, the procedure EstVisitation allows

each agent i ∈ [m] to compute their own estimates of d̂qh, for all h, q, which all coincide since the
states drawn from each trajectory are common knowledge. In order to play the policy π̃q passed
to EstVisitation, the same strategy as described above may be used, which requires a total of
O(H2S log(SK)) bits of common randomness over all stages q ≥ 1.

In sum, executing SPoCMAR in a decentralized way requires O(H3S2K log(SK)) bits of com-

mon randomness. For the K described in Appendix C.4, this leads to Õ
(
H7S3 maxi∈[m] Ai

ϵ3

)
bits.
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Appendix A. Related Work

In this section, we summarize the most related work in the literature.

Equilibrium computation complexity in games. The computational complexity of finding equi-
libria has been extensively studied in normal-form games. It is known that for two-player zero-
sum normal-form games, Nash equilibria can be computed efficiently using either linear program-
ming (Dantzig, 1951) or decentralized no-regret learning algorithms (Cesa-Bianchi and Lugosi,
2006). For general-sum normal-form games, however, computing a Nash equilibrium is known
to be PPAD-complete (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2016), even for the
two-player case. In contrast, (coarse) correlated equilibria (Aumann, 1987) can be found via either
linear programming (Gilboa and Zemel, 1989; Papadimitriou and Roughgarden, 2008) or no-regret
learning (Cesa-Bianchi and Lugosi, 2006) efficiently, even in this general-sum setting. The study
of the complexity of equilibria computation in stochastic games has been comparatively scarce.
Since stochastic games generalize normal-form games, the complexity of computing Markov per-
fect Nash equilibrium in general-sum SGs is thus at least PPAD-hard. Very recently, Deng et al.
(2021) confirmed that computing Markov perfect NE is PPAD-complete (meaning that the problem
of computing perfect CCE is also in PPAD). Other computational complexity results for stochastic
games include the following: determining whether a pure-strategy NE exists in an SG is PSPACE-
hard (Conitzer and Sandholm, 2008); determining if there exists a memoryless ϵ-NE in reachability
SGs is NP-hard (Chatterjee et al., 2004); in simple stochastic games (Condon, 1990), a special class
of zero-sum SGs introduced in (Shapley, 1953), deciding which player has the greater chance of
winning is in NP ∩ co-NP (Condon, 1992; Zwick and Paterson, 1996), and computing an equilib-
rium is in UEOPL, a subclass of CLS, which is, in turn, a subclass of PPAD (see Etessami and
Yannakakis (2010); Fearnley et al. (2018)).

Multi-agent RL in stochastic games. Stochastic games (Shapley, 1953) have served as the foun-
dational framework of multi-agent reinforcement learning since Littman (1994). There is a rich
literature on multi-agent RL in two-player zero-sum SGs, including the early studies of Littman
(1994); Brafman and Tennenholtz (2002) as well as more recent ones with finite-sample complex-
ity guarantees (Wei et al., 2017; Xie et al., 2020; Zhang et al., 2020; Sidford et al., 2020; Bai and
Jin, 2020; Daskalakis et al., 2020; Bai et al., 2020; Liu et al., 2021; Cui and Du, 2022; Zhong
et al., 2022). On the general-sum front, Q-learning based algorithms, e.g., Nash Q-learning (Hu
and Wellman, 2003) and Friend-or-Foe Q-learning (Littman, 2001), have been shown to converge
to the Nash equilibrium asymptotically under certain restrictive assumptions. Another variant, Cor-
related Q-learning (Greenwald et al., 2003), which also aims to find a correlated equilibrium in a
similar spirit to the present work, was shown to converge empirically in several SGs. Related to our
findings, Zinkevich et al. (2005) demonstrated that value-based RL methods cannot find stationary
equilibria in arbitrary general-sum SGs, and advocated instead for an alternative nonstationary equi-
librium concept – cyclic equilibria. Finally, decentralized multi-agent RL has attracted increased
attention recently (Daskalakis et al., 2020; Sayin et al., 2021; Jin et al., 2021; Song et al., 2021;
Mao and Başar, 2021), due to the fact that decentralized algorithms are more natural, require fewer
assumptions, and typically avoid exponential dependence on the number of agents. Most relevant
to our paper are the works of Jin et al. (2021); Song et al. (2021); Mao and Başar (2021), which
developed the V-learning algorithm for learning nonstationary (C)CE in general-sum SGs. These
algorithms have tighter sample complexity than ours, but the output policies are not Markovian.
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Appendix B. Proofs for Section 3

In this section, we prove Theorems 3 and 4. To this end, we show how to reduce solving an instance
of ϵ-GCircuit (or (ϵ, δ)-GCircuit; defined in Section B.1 below) to computing the appropriate
notion of equilibria in a 2-player stochastic game. The proof is organized into the following parts:

• In Section B.1 we introduce some additional preliminaries regarding PPAD-hardness and
(ϵ, δ)-GCircuit, and in Section B.2 we introduce some additional preliminaries regarding
stochastic games.

• In Section B.3, we introduce a notion of Nash equilibrium in turn-based games, namely
well-supported Nash equilibrium in stage games (WSNE-SG). We show (roughly speaking)
that computing approximate WSNE-SG reduces to computing approximate NE in turn-based
games, i.e., it suffices to show PPAD-hardness for computing approximate WSNE-SG.

• In Section B.4, we show how each of the gates in Definition 8 can be implemented via a
gadget with a constant number of states, transitions, and rewards in a turn-based stochastic
game; these gadgets are similar in nature to those introduced by Daskalakis et al. (2009) in
showing that computing Nash equilibria in graphical games is PPAD-complete.

• In Section B.5, we show how to combine the gadgets from Section B.4 to construct a turn-
based stochastic game whose approximate WSNE-SG correspond to approximate assign-
ments to a given GCircuit instance.

Unless otherwise stated, the policies considered in this section are Markov stationary policies.

B.1. Additional preliminaries for PPAD

For some ϵ > 0 and reals x, y, we use x = y±ϵ to denote x ∈ [y−ϵ, y+ϵ] throughout this section.4

Definition 7 (Generalized circuit) A generalized circuit C = (V,G) is a finite set of nodes V and
gates G. Each gate in G is characterized as G(ℓ|v1, v2|v), where G ∈ {G←, G×,+, G<} denotes a
gate type, ℓ ∈ R⋆ is a vector of real parameters (perhaps of length 0), v1, v2 ∈ V ∪ {⊥} denote the
gate’s input nodes, and v ∈ V denotes the gate’s output node. The collection of gates G satisfies
the following property: for every two gates G(ℓ|v1, v2|v) and G′(ℓ′|v′1, v′2|v′), it holds that v ̸= v′

(i.e., each gate computes a distinct, and thus well-defined, output node).

For the purposes of proving hardness results, it is without loss of generality to assume that each
node v ∈ V is the output node of some gate in G: for each node which is not the output node of
some gate, we can add a gate specifying that the node is equal to 1± ϵ. The resulting circuit is still
a valid instance of the generalized circuit problem, and it has a solution by Brouwer’s fixed point
theorem. Any such solution is certainly a valid solution to the original generalized circuit instance.

Definition 8 ((ϵ, δ)-GCircuit) Fix ϵ, δ ∈ (0, 1). Given a generalized circuit C = (V,G), an
assignment π : V → [0, 1] is said to ϵ-approximately satisfy some gate G ∈ G, if the following
holds:

4. We remark that in Rubinstein (2016), x±ϵ was used to denote the fact that x ∈ (y−ϵ, y+ϵ); this difference does not
materially change any of the hardness results from Rubinstein (2016), since ϵ may be scaled down by any constant
factor.
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• If for some constant ζ ∈ {0, 1}, the gate G is of the form G←(ζ||v), then we have π(v) = ζ;

• If for some constants ξ, ζ ∈ [−1, 1], the gate G is of the form G×,+(ξ, ζ|v1, v2|v3), then we
have

π(v3) = max {min {ξ · π(v1) + ζ · π(v2), 1} , 0} ± ϵ;

• If the gateG is of the formG<(|v1, v2|v3), then we have π(v3) =

{
1± ϵ, π(v1) ≤ π(v2)− ϵ
0± ϵ, π(v1) ≥ π(v2) + ϵ.

We stress that in the gates G×,+(ξ, ζ|v1, v2|v3) and in G<(|v1, v2|v3), we allow for v1 = v2. The
problem (ϵ, δ)-GCircuit is the following: Given a generalized circuit C = (V,G), find an assign-
ment π : V → [0, 1] (represented in binary) which ϵ-approximately satisfies all but a δ-fraction of
the gates in G. We then define the ϵ-GCircuit problem to be the (ϵ, 0)-GCircuit problem.

The following theorem will be crucial for our hardness results.

Theorem 9 ((Rubinstein, 2018)) There is a constant ϵ > 0 so that ϵ-GCircuit is PPAD-
complete.

The problem of (ϵ, δ)-GCircuit for positive δ is not (yet) known to be PPAD-hard, but it has
been conjectured to be so:

Conjecture 10 (PCP for PPAD conjecture (Babichenko et al., 2015)) There are constants ϵ, δ >
0 so that EOTL has a polynomial-time reduction to (ϵ, δ)-GCircuit.

We remark that Conjecture 10 is slightly weaker (i.e., more plausible) than (Babichenko et al., 2015,
Conjecture 2), which states that the reduction is quasilinear.

Further, we remark that the definition of ϵ-GCircuit in Rubinstein (2018) uses some ad-
ditional gates; it is straightforward to see that these gates may be implemented using the gates in
Definition 8, meaning that the ϵ-GCircuit problem with the set of gates listed above is still PPAD-
complete for constant ϵ (and Conjecture 10 is implied by (Babichenko et al., 2015, Conjecture 2)).
For completeness, we have presented the details of this reduction in Appendix D.

B.2. Additional preliminaries for stochastic games

In this section, we introduce some additional definitions and lemmas which will be helpful in our
proofs. Consider an infinite-horizon discounted stochastic game G and a stationary policy π ∈
∆(A)S . Then one can define the state-action value function Qπi : S × A → [−1, 1] under policy π
as

Qπi (s,a) := (1− γ) · E(s1,a1,s2,a2,...)∼(G,π)

[ ∞∑
h=1

γh−1ri(sh,ah)

∣∣∣∣ s1 = s,a1 = a

]
,

which corresponds to the γ-discounted cumulative reward starting from (s,a).
The state-visitation distribution under the policy π given that the initial state is s is defined as

follows:

dπs (s
′) := (1− γ) ·

∞∑
h=1

γh−1 · Psh∼(G,π)
[
sh = s′|s1 = s

]
.

Note that dπs is a valid distribution over S, i.e., dπs (s
′) ≥ 0 for all s′ and

∑
s′∈S d

π
s (s
′) = 1.
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Lemma 11 (Performance difference lemma (Kakade and Langford, 2002)) Consider any two
stationary policies π : S → ∆(A), π′ : S → ∆(A). Then for all s1 ∈ S and i ∈ [m],

V π
i (s1)− V π′

i (s1) =
1

1− γ
· Es∼dπs1Ea∼π(s)[Q

π′
i (s,a)− V π′

i (s)].

The following lemma is standard but we give a proof in Section F.1 for completeness:

Lemma 12 For policies π, π′ ∈ ∆(A)S , it holds that, for all states s ∈ S , joint actions a ∈ A,
and agents i ∈ [m], ∣∣∣V π

i (s)− V π′
i (s)

∣∣∣ ≤ 1

1− γ
·max
s′∈S
∥π(·|s′)− π′(·|s′)∥1∣∣∣Qπi (s,a)−Qπ′

i (s,a)
∣∣∣ ≤ γ

1− γ
·max
s′∈S
∥π(·|s′)− π′(·|s′)∥1.

B.3. Reductions between notions of equilibria

We begin by introducing a variant of Nash equilibrium which holds with respect to each stage game:

Definition 13 We say that a product Markov policy π : S → ∆(A) is an ϵ-perfect NE in stage
games (abbreviated ϵ-PNE-SG) if for all states s ∈ S and all agents i ∈ [m],

max
ai∈Ai

Ea−i∼π−i(s) [Q
π
i (s, (ai,a−i))]− V π

i (s) ≤ ϵ. (2)

We also say that π is an ϵ-NE in stage games (abbreviated ϵ-NE-SG) if for all agents i ∈ [m],

Es∼µ

[
max
ai∈Ai

Ea−i∼π−i(s) [Q
π
i (s, (ai,a−i))]− V π

i (s)

]
≤ ϵ. (3)

The below lemma reduces the problem of computing an ϵ-(P)NE-SG to computing an ϵ-(perfect)
NE.

Lemma 14 Consider a stationary product policy π ∈ ∆(A)S . Then:

• If π is an ϵ-perfect NE, then it is an ϵ-PNE-SG.

• If π is an ϵ-NE, then it is an ϵ-NE-SG.

The proof of Lemma 14 may be found in Section F.2. Next, we introduce a well-supported variant
of the stage-game Nash equilibrium of Definition 13.

Definition 15 Consider a product Markov policy π ∈ ∆(A)S . For each i ∈ [m] and s ∈ S, define

ϵi,s := max
a′i∈Ai

Ea−i∼π−i(s)
[
Qπi (s, (a

′
i,a−i))

]
− min
ai∈Ai:πi(ai|s)>0

Ea−i∼π−i(s) [Q
π
i (s, (ai,a−i))] .

(4)

We say that:
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• π is an ϵ-perfect well-supported Nash equilibrium in stage games (abbreviated ϵ-PWSNE-SG)
if

max
i∈[m],s∈S

ϵi,s ≤ ϵ;

• π is an ϵ-well-supported Nash equilibrium in stage games (abreviated ϵ-WSNE-SG) if

max
i∈[m]

Es∼µ[ϵi,s] ≤ ϵ.

Lemma 16 reduces the problem of computing a well-supported Nash equilibrium in stage games
to that of computing a Nash equilibrium in stage games.

Lemma 16 Suppose the stochastic game G satisfies the property that at each state, all but p players
have trivial action space (i.e., equal to a singleton). Given a product stationary policy π : S →
∆(A), then:

• If π is an ϵ-PNE-SG, we can construct in polynomial time a policy π′ : S → ∆(A) which is
a 6 ·

√
pϵ
1−γ -PWSNE-SG.

• If π is an ϵ-NE-SG, we can construct in polynomial time a policy π′ : S → ∆(A) which is a
6 ·
√

pϵ
1−γ -WSNE-SG.

The proof of Lemma 16 may be found in Section F.2. Combining the results presented in this
section, we have the following:

Lemma 17 Consider a turn-based stochastic game G. Given a product stationary policy π ∈
∆(A)S , the following statements hold:

• If π is an ϵ-perfect NE, then we can construct in polynomial time a policy π′ ∈ ∆(A)S which
is a 6 ·

√
ϵ

1−γ -PWSNE-SG.

• If π is an ϵ-NE, then we can construct in polynomial time a policy π′ ∈ ∆(A)S which is a
6 ·
√

ϵ
1−γ -WSNE-SG.

Proof The lemma is an immediate consequence of Lemmas 14 and 16, noting that since G is
turn-based we may take p = 1 in Lemma 16.

B.4. Implementing the gates with “stochastic game gadgets”

In this section, we introduce several “game gadgets” which show how to implement each of the
arithmetic gates of Definition 8 using a constant number of states in a turn-based stochastic game.
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Notation for turn-based games. Throughout this section, we will consider an m-player turn-
based stochastic game G = (S, (Ai)i∈[m],P, (ri)i∈[m], γ, µ) (Though we will eventually take m =
2, we will introduce the gadgets in this section for games with an arbitrary number of players). In
our construction, we will have that for each player i ∈ [m], Ai = {0, 1}. Since, at each state
s ∈ S, there is a single agent (namely, cr(s)) whose action affects the reward and transition at
that state, the value functions induced by a stationary policy π : S → ∆(A) depend only on
the values of πcr(s)(s), for each s ∈ S . Thus, we may represent such a policy as a mapping
from S to [0, 1] = ∆({0, 1}); with a slight abuse of notation, we denote this mapping also as
π : S → [0, 1]. In particular, π(s) is to be interpreted as the probability that agent cr(s) plays the
action 1 ∈ Acr(s) = {0, 1} at state s.

We will furthermore work with games G that have a designated sink state s0sink ∈ S, so that
P(s0sink|s0sink,a) = 1 for all a ∈ A, and ri(s0sink,a) = 0 for all i ∈ [m],a ∈ A. We allow cr(s0sink)
to be arbitrary; the value of cr(s0sink) will have no relevance to any of our results. In particular,
whenever the system reaches state s0sink, it stays there for all future steps and all agents accumulate
0 additional reward.

Unimprovable states. Given a turn-based game G and a policy π : S → [0, 1], note that, for each
s ∈ S and a = (a1, . . . , am) ∈ A, Qπcr(s)(s,a) depends only on acr(s) ∈ Acr(s). Thus, to simplify
notation, we will useQπcr(s)(s, acr(s)) := Qπcr(s)(s,a). We say that a state s ∈ S is ϵ-unimprovable
under π if

max
a′∈{0,1}

Qπcr(s)(s, a
′)− min

a∈{0,1}:π(s)̸=1−a
Qπcr(s)(s, a) ≤ ϵ. (5)

Note that the set of actions a ∈ {0, 1} so that π(s) ̸= 1 − a is exactly the set of actions on which
π(s) puts positive probability. Hence the quantity in (5) is identical to the quantity ϵi,s defined
more generally in (4). Thus, if π is an ϵ-PWSNE-SG (Definition 15), it holds that all states are
ϵ-unimprovable. Furthermore, if π is an ϵ-WSNE-SG, then by Markov’s inequality, for all k ≥ 1, a
fraction 1− 1/k of states are ϵ · k-unimprovable.

Implementing the G×,+ gate. We first define a gadget that implements the G×,+(ξ, ζ|v1, v2|v3)
gate: in particular, the gadget will consist of states v1, v2, v3 of the stochastic game G together with
a helper state w of G. We will choose the transitions and rewards of G so that, roughly speaking,
for any equilibrium policy π : S → [0, 1], π(v3) is close to max{min{ξ · π(v1) + ζ · π(v2), 1}, 0}.

Definition 18 Consider any α,ψ, β ∈ R, each with absolute value at most 1 − γ. We say that
a G×,+( α2β ,

ψ
2β |v1, v2|v3) gate embeds in a stochastic game G via the states (v1, v2, v3, w) and the

constants (α,ψ, β), for states v1, v2, v3, w ∈ S if the following holds:

1. The transitions out of v3 and w satisfy the following

• P(v1|w, 0) = min{12 ,
|α|
2|β|}, P(v2|w, 0) = min{12 ,

|ψ|
2|β|}, P(s

0
sink|w, 0) = 1−P(v1|w, 0)−

P(v2|w, 0), and P(v3|w, 1) = 1;

• P(w|v3, 0) = 1, and P(s0sink|v3, 1) = 1.

2. The rewards to the players controlling v3, w at states v1, v2, v3, w satisfy the following:

• rcr(w)(v1, 1) =
α·max{1, |β||α|}

1−γ , rcr(w)(v2, 1) =
ψ·max{1, |β||ψ|}

1−γ , and rcr(w)(v3, 1) =
β

1−γ ;

25



DASKALAKIS GOLOWICH ZHANG

• rcr(v3)(w, 1) =
β

1−γ and rcr(v3)(w, 0) = −
β

1−γ ;

• For all a ∈ {0, 1}, it holds that

rcr(w)(v1, 0) = rcr(w)(v2, 0) = rcr(w)(v3, 0) = rcr(w)(w, a) = rcr(v3)(v3, a) = 0.

Recall from Definition 8 that we allow for v1 = v2 in the gate G×,+(ξ, ζ|v1, v2|v3). If this is the

case, we require that α = ψ and instead require that P(v1|w, 0) = P(v2|w, 0) = 2 ·min
{

1
2 ,
|α|
2|β|

}
above.

In the context of Definition 18, we will at times refer to w as the helper node for the embedded gate.

Lemma 19 SupposeG×,+( α2β ,
ψ
2β |v1, v2|v3) embeds in a stochastic game G via the tuple (v1, v2, v3, w)

and the vector (α,ψ, β), and consider any ϵ, ϵ′ ∈ (0, 1). Suppose that γ|β|ϵ − 2γ2 > ϵ′. Then for
any policy π : S → [0, 1] for which v3, w are each ϵ′-unimprovable under π, it holds that

π(v3) = max

{
min

{
α

2β
· π(v1) +

ψ

2β
· π(v2), 1

}
, 0

}
± ϵ.

Proof Since γ|β|ϵ− 2γ2 > ϵ′ and ϵ < 1, we have that γ|β| − γ2 > ϵ′ > 0 and β ̸= 0.
Consider any policy π : S → [0, 1]. First note that, since rcr(w)(v1, 0) = rcr(w)(v2, 0) = 0, it

holds that

V π
cr(w)(v1) =(1− γ) · π(v1) · rcr(w)(v1, 1)± γ = α ·max

{
1,
|β|
|α|

}
· π(v1)± γ (6)

V π
cr(w)(v2) =(1− γ) · π(v2) · rcr(w)(v2, 1)± γ = ψ ·max

{
1,
|β|
|ψ|

}
· π(v2)± γ. (7)

In particular, we have used that the total contribution of rewards of cr(w) to V π
cr(w)(v1) (respec-

tively, to V π
cr(w)(v2)) at states at least 1 step out from v1 (respectively, v2) is at most (1− γ) · (γ +

γ2 + · · · ) = γ.
We first computeQπcr(w)(w, b) for b ∈ {0, 1}, as follows. Using that rcr(w)(v3, 0) = rcr(w)(w, 0) =

rcr(w)(w, 1) = 0, we have:

• Qπcr(w)(w, 1) = γ · π(v3) · β ± γ2.

• Qπcr(w)(w, 0) =
1
2γα · π(v1) +

1
2γψ · π(v2)± γ

2, which may be seen as follows:

Qπcr(w)(w, 0) =γ ·min

{
1

2
,
|α|
2|β|

}
· V π

cr(w)(v1) + γ ·min

{
1

2
,
|ψ|
2|β|

}
· V π

cr(w)(v2)

=γ ·min

{
1

2
,
|α|
2|β|

}
·
(
α ·max

{
1,
|β|
|α|

}
· π(v1)± γ

)
+ γ ·min

{
1

2
,
|ψ|
2|β|

}
·
(
ψ ·max

{
1,
|β|
|ψ|

}
· π(v2)± γ

)
=
1

2
γα · π(v1) +

1

2
γψ · π(v2)± γ2.
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For computation ofQπcr(w)(w, 0) above, we have used (6) and (7), as well as the fact that min
{

1
2 ,
|α|
2|β|

}
·

max
{
1, |β||α|

}
= 1

2 (and an analogous equality clearly holds with ψ replacing α).
We next compute Qπcr(v3)(v3, b) for b ∈ {0, 1} in the particular case where π(w) ∈ {0, 1},

using that rcr(v3)(v3, a) = 0 for each a ∈ {0, 1}:

• If π(w) = 1, then:

– Qπcr(v3)(v3, 0) = γ · β ± γ2;

– Qπcr(v3)(v3, 1) = 0.

• If π(w) = 0, then:

– Qπcr(v3)(v3, 0) = −γ · β ± γ
2;

– Qπcr(v3)(v3, 1) = 0.

We consider two cases, depending on the sign of β.

Case 1: β > 0. If π(v3) > max{ α2β · π(v1) +
ψ
2β · π(v2), 0}+ ϵ, then β · π(v3) > α

2 · π(v1) +
ψ
2 ·

π(v2) + βϵ, and so we have

Qπcr(w)(w, 1)−Q
π
cr(w)(w, 0) ≥γ ·

(
β · π(v3)−

1

2
α · π(v1)−

1

2
ψ · π(v2)

)
− 2γ2 > γβ · ϵ− 2γ2 > ϵ′,

which implies, since w is ϵ′-unimprovable under π, that π(w) = 1. But then

Qπcr(v3)(v3, 0)−Q
π
cr(v3)

(v3, 1) ≥ γβ − γ2 > ϵ′,

which implies that, since v3 is ϵ′-unimprovable under π, π(v3) = 0. But we have assumed above
that π(v3) > max{ α2β · π(v1) +

ψ
2β · π(v2), 0}+ ϵ > 0, which is a contradiction.

Next suppose that π(v3) < min{ α2β · π(v1) +
ψ
2β · π(v2), 1}− ϵ, which implies that β · π(v3) ≤

α
2 · π(v1) +

ψ
2 · π(v2)− βϵ. Then

Qπcr(w)(w, 0)−Q
π
cr(w)(w, 1) ≥γ ·

(
1

2
α · π(v1) +

1

2
ψ · π(v2)− β · π(v3)

)
− 2γ2 ≥ γβ · ϵ− 2γ2 > ϵ′,

which implies that, since w is ϵ′-unimprovable under π, π(w) = 0. But then

Qπcr(v3)(v3, 1)−Q
π
cr(v3)

(v3, 0) ≥ γβ − γ2 > ϵ′,

which implies that, since v3 is ϵ′-unimprovable under π, π(v3) = 1 > 1 − ϵ, a contradiction to
π(v3) < min{ α2β · π(v1) +

ψ
2β · π(v2), 1} − ϵ.

Case 2: β < 0. Roughly speaking, this case is similar to Case 1, except that some inequalities are
reversed. We work out the details for completeness. If π(v3) > max{ α2β ·π(v1)+

ψ
2β ·π(v2), 0}+ϵ,

then β · π(v3) < α
2 · π(v1) +

ψ
2 · π(v2) + βϵ, and so we have

Qπcr(w)(w, 0)−Q
π
cr(w)(w, 1) ≥γ ·

(
1

2
α · π(v1) +

1

2
ψ · π(v2)− β · π(v3)

)
− 2γ2 ≥ −γβ · ϵ− 2γ2 > ϵ′,
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which implies that, since w is ϵ′-unimprovable under π, then π(w) = 0. But then

Qπcr(v3)(v3, 0)−Q
π
cr(v3)

(v3, 1) ≥ −γβ − γ2 > ϵ′,

which implies that, since v3 is ϵ′-unimprovable under π, π(v3) = 0 < ϵ, a contradiction to π(v3) >
max{ α2β + ψ

2β · π(v2), 0}+ ϵ, which we assumed above.

Next suppose that π(v3) < min{ α2β · π(v1) +
ψ
2β · π(v2), 1}− ϵ, which implies that β · π(v3) ≥

α
2 · π(v1) +

ψ
2 · π(v2)− βϵ. Then

Qπcr(w)(w, 1)−Q
π
cr(w)(w, 0) ≥γ ·

(
β · π(v3)−

1

2
α · π(v1)−

1

2
ψ · π(v2)

)
− 2γ2 > −γβ · ϵ− 2γ2 > ϵ′,

which implies that, since w is ϵ′-unimprovable under π, π(w) = 1. But then

Qπcr(v3)(v3, 1)−Q
π
cr(v3)

(v3, 0) ≥ −γβ − γ2 > ϵ′,

which implies that, since v3 is ϵ′-unimprovable under π, π(v3) = 1 > 1 − ϵ, a contradiction to
π(v3) < min{ α2β · π(v1) +

ψ
2β · π(v2), 1} − ϵ.

In all possible cases, we have established that π(v3) ≥ min{ α2β · π(v1) +
ψ
2β · π(v2), 1}− ϵ and

π(v3) ≤ max{ α2β · π(v1) +
ψ
2β · π(v2), 0}+ ϵ, which establishes the statement of the lemma.

Implementing the G← gate. Next, we define a gadget that implements the G←(b||v) gate, for a
constant b ∈ {0, 1}.

Definition 20 For b ∈ {0, 1}, we say that a G←(b||v) gate embeds in a stochastic game G via the
state v ∈ S and the constant b, if the following holds:

1. The transitions out of v satisfy P(s0sink|v, 0) = P(s0sink|v, 1) = 1;

2. The rewards to player cr(v) at the state v satisfy rcr(v)(v, 1) = b and rcr(v)(v, 0) = 1− b.

Lemma 21 Suppose that G←(b||v) embeds in a stochastic game G via the state v and the constant
b ∈ {0, 1}, and consider a policy π : S → [0, 1]. Then if the state v is ϵ-unimprovable under π with
ϵ < (1− γ)/2, it holds that π(v) = b.

Proof For b ∈ {0, 1}, it is clear that Qπcr(v)(v, 1) = (1−γ) · b and Qπcr(v)(v, 0) = (1−γ) · (1− b).
Thus, since v is ϵ-unimprovable under π and ϵ < (1− γ)/2, we must have that π(v) = b.

Implementing the G< gate. Finally, we define a gadget which implements the G<(|v1, v2|v3)
gate, for states v1, v2, v3 of the stochastic game G.

Definition 22 Consider any β ∈ R with absolute value at most 1−γ. We say that aG<(|v1, v2|v3)
gate embeds in a stochastic game G via the states (v1, v2, v3, w) and the constant β, for states
v1, v2, v3, w ∈ S if the following holds:

1. The transitions out of v3 and w satisfy the following:
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• P(v1|w, 0) = 1 and P(v2|w, 1) = 1;

• P(w|v3, 1) = 1 and P(s0sink|v3, 0) = 1.

2. The reward of the players controlling w, v3 at states v1, v2, w satisfy the following:

• rcr(w)(v1, 1) = rcr(w)(v2, 1) =
β

1−γ ;

• rcr(w)(v1, 0) = rcr(w)(v2, 0) = 0;

• For each a ∈ {0, 1}, rcr(w)(w, a) = rcr(v3)(v3, a) = 0;

• rcr(v3)(w, 1) =
β

1−γ and rcr(v3)(w, 0) = −
β

1−γ .

In the context of Definition 22, we will at times refer to w as the helper node for the gate.

Lemma 23 Suppose thatG<(|v1, v2|v3) embeds in a stochastic game G via the states (v1, v2, v3, w)
and the constant β, and consider any ϵ, ϵ′ ∈ (0, 1). Suppose that γ|β|ϵ − 2γ2 > ϵ′. Then for any
policy π : S → [0, 1] so that v3, w are ϵ′-unimprovable under π, it holds that

π(v3) =

{
1± ϵ : π(v1) ≤ π(v2)− ϵ
0± ϵ : π(v1) ≥ π(v2) + ϵ.

The proof of Lemma 23 uses similar ideas to that of Lemma 19 and may be found in Section F.3.

B.5. Gluing gadgets via valid colorings

Next, we discuss how to combine the gadgets introduced in the previous section into a 2-player turn-
based stochastic game such that an approximate Nash equilibrium yields an approximate assignment
to a given instance of the generalized circuit problem.

Thought experiment & challenges. If we were willing to allow each player to control a different
node (so that the number of players would be polynomial in the input length), then this procedure
would be quite straightforward. Since we aim to show hardness for 2-player games, however,
we have to be more careful, since some of the constraints induced by the embedding of gates in
Definitions 18-22 may conflict with each other when multiple states are controlled by a single player.

For instance, Definition 18 requires that for the embedded gate G = G×,+(
α
2β ,

ψ
2β |v1, v2|v3)

with helper node w, we must have rcr(w)(v1, 1) =
α·max

{
1,

|β|
|α|

}
1−γ . Now suppose we were to attempt

to embed gate G′ = G×,+(
α′

2β′ ,
ψ′

2β′ |v′1, v′2|v′3) with some helper node w′. Suppose further that the
output node v′3 ofG′ equals v1 (which corresponds to the output ofG′ feeding into the gateG). Then
the constraints of Definition 18 for this gate would require that rcr(w′)(v

′
3, 1) = rcr(w′)(v1, 1) =

β′

1−γ . It is possible that β′

1−γ ̸=
α·max

{
1,

|β|
|α|

}
1−γ , which implies that cr(w) ̸= cr(w′). It is a straight-

forward consequence of Definition 18 that we must also have that cr(w′) ̸= cr(v′3) = cr(v1).
Similar constraints may arise involving cr(v2) and cr(v3), and it is evident that the task of assign-
ing a controller to each node becomes quite nontrivial. If we assign all non-helper nodes (denoted
by v, v1, v2, v3 in Definitions 18, 20, 22) to a single player, it is possible to show that, assuming the
given generalized circuit instance has fan-out 2 (which is without loss of generality by (Rubinstein,
2018)), by greedily assigning each of the helper nodes to one of 4 players (for a total of 5 players),
we may satisfy all constraints of the embedded gadgets.
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To obtain hardness for 2-player (as opposed to 5-player) games, we instead take a different
approach. As discussed above, we will assign all non-helper states to a single player, which we
call V, and all helper states (denoted by w in Definitions 18 and 22) to a second player, which we
call W. As mentioned above, this will cause conflicts; however, it is straightforward to check that
the only type of conflict that arises is that for states w,w′ controlled by W, there is some state v
controlled by player V so that the constraints on the embedded gates require that rcr(w)(v, 1) = c
and rcr(w′)(v, 1) = c′ for some c ̸= c′. To avoid this type of conflict, we will show how to convert a
given generalized circuit instance into an equivalent instance for which such conflicts cannot arise.
In particular, we introduce a notion of valid coloring of the nodes of a generalized circuit, so that a
circuit equipped with a valid coloring has the property that no conflicts of the above type can arise
when embedding the circuit into a 2-player turn-based stochastic game.

Valid colorings. Given a generalized circuit C = (V,G), we will say that the assignment of a real
number to each node, denoted by ϕ : V → R, is a coloring of V . Below we define the notion of
valid coloring, which requires, loosely speaking, that the colorings of nodes are consistent with the
rewards given to the cr(w) player in each of the gate gadgets defined in the previous section:

Definition 24 Given a coloring ϕ : V → R, we say that ϕ is valid if the following holds:

1. For each gate G<(|v1, v2|v3), it holds that ϕ(v1) = ϕ(v2);

2. For each gate G×,+(ξ, ζ|v1, v2|v3), it holds that

ϕ(v1)

ϕ(v3)
=

{
2 · ξ : |ξ| ≥ 1/2

sign(ξ) : |ξ| < 1/2
, and

ϕ(v2)

ϕ(v3)
=

{
2 · ζ : |ζ| ≥ 1/2

sign(ζ) : |ζ| < 1/2.

We say that a gate G is valid if, in the case that it is one of the above types of gates, the respective
condition above is met (If G is not one of the above types of gates, i.e., the G← gate, then it is
automatically defined to be valid).

To understand Definition 24, ϕ(v) may be interpreted as the reward being given to the W player in
the hard instance of stochastic games we are constructing: indeed, when reducing the ϵ-GCircuit
problem to finding approximate equilibria in stochastic games, in Lemma 27, the reward to W at
a state v is given by the scaling ϕ(v)

1−γ . Then the constraints of Definition 24 are defined so as to
ensure that there will be no conflicts in terms of the rewards given to the W = cr(w) player in
Definition 22 for the gate G<(|v1, v2|v3) and in Definition 18 for the gate G×,+(ξ, ζ|v1, v2|v3). In
particular, Definition 22 requires that if G<(|v1, v2|v3) embeds in G via the states (v1, v2, v3, w),
then rcr(w)(v1, 1) = rcr(w)(v2, 1) = β

1−γ , which corresponds to the first item in Definition 24.
Similarly, the second item of Definition 24 corresponds to the constraints in item 2 of Definition 18
on rcr(w)(v1, 1), rcr(w)(v2, 1), rcr(w)(v3, 1).

We define the range of ϕ to be the set {ϕ(v) : v ∈ V } ⊂ R. The below lemma shows,
loosely speaking, how to convert a circuit with some coloring ϕ to an equivalent circuit with a valid
coloring. For simplicity, we use the following terminology: given a generalized circuit C = (V,G),
we say that an assignment π : V → [0, 1] is an (ϵ, δ)-assignment of C if at least a 1− δ fraction of
the gates are ϵ-approximately satisfied by π (see Definition 8). We say that π is an ϵ-assignment if
it is an (ϵ, 0)-assignment.
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Lemma 25 There is an absolute constant C0 > 0 so that the following holds. Let C = (V,G) be a
generalized circuit and ϵ > 0. Then one can construct, in polynomial time, a circuit C′ = (V ′,G′)
together with a valid coloring ϕ : V ′ → R, so that:

1. V ⊂ V ′;

2. The range of ϕ is contained in [1/4, 1/2] ∪ [−1/2,−1/4];

3. For any δ ≥ 0, given an (ϵ, δ)-approximate assignment π : V ′ → [0, 1] of C′, the restriction
of π to V constitutes a (133

√
ϵ, C0δ/

√
ϵ)-approximate assignment of C.

We first sketch the proof of Lemma 25. For an appropriate choice of V ′ which contains V as a
subset, we will define ϕ : V ′ → R so that ϕ(v) = 1/4 for all v ∈ V . Notice that we would be able
to choose V ′ = V,G′ = G and would immediately have a valid coloring if it were not for gates of
the type G×,+(ξ, ζ|v1, v2|v3), which can require that different nodes have different colors under ϕ
(i.e., when ξ ̸= 1/2 or ζ ̸= 1/2).

To circumvent this obstacle, for each gate of the form G×,+(ξ, ζ|v1, v2|v3), we introduce a
sequence of gates and nodes connecting each of v1 (respectively, v2) to some (new) node v′1 (re-
spectively, v′2), which approximately implements the identity map. Importantly, this sequence of
gates and nodes will have the property that there is a cut (i.e., a separating set) consisting solely of
gates of the type G<(|u1, u2|u3), which place no restriction on ϕ(u3) for a valid coloring ϕ. We
will be able to use this cut to ensure that the value of ϕ at vertices on one side of the cut differs from
the value of ϕ at vertices on the other side of the cut, thus ensuring that ϕ(v′1) (respectively, ϕ(v′2))
can differ from ϕ(v1) (respectively, ϕ(v2)), while maintaining validity.
Proof [Proof of Lemma 25] We follow the outline sketched above. In particular, we build up the
circuit (V ′,G′) according to the following procedure. We initialize V ′ = V and set ϕ(v) = 1/4
for all v ∈ V . Moreover, for all gates apart from those of the type G×,+, we add the same gate
(with the same input and output nodes) to G′. It is immediate that any such gate satisfies the validity
constraint in Definition 24 under the coloring ϕ (if applicable). Now define the function f : R→ R
by

f(x) =

{
2x : |x| ≥ 1/2

sign(x) : |x| < 1/2
.

Consider each gate of the form G×,+(ξ, ζ|v1, v2|v3) in turn. For each such gate, we perform the
following steps: We add nodes v′1, v

′
2 to V ′, and add the gate G×,+(ξ, ζ|v′1, v′2|v3) to G′. Further-

more, we set ϕ(v′1) := f(ξ) · ϕ(v3) = f(ξ) · 14 and ϕ(v′2) := f(ζ) · ϕ(v3) = f(ζ) · 14 , thus ensuring
that the validity constraint for G×,+(ξ, ζ|v′1, v′2|v3) is satisfied. Furthermore, since |f(x)| ≥ 1 for
all x ∈ R, we have that |ϕ(v′1)| ≥ 1/4 and |ϕ(v′2)| ≥ 1/4. Moreover, since |ζ| ≤ 1 and |ξ| ≤ 1 (by
Definition 8), it holds that |ϕ(v′1)| ≤ 1/2 and |ϕ(v′2)| ≤ 1/2.

In Claim 26 below, we add a sequence of gates and nodes to G′, V ′, respectively (together
with respective colors ensuring validity), that lie between v1 and v′1, which ensure that in any ϵ-
approximate assignment π, |π(v1) − π(v′1)| ≤ O(

√
ϵ). By symmetry, the same construction can

be implemented for the nodes v2, v′2; as we discuss following the proof of Claim 26 the result of
Lemma 25 will follow in a straightforward manner.

Claim 26 Consider two nodes a, a′ ∈ V ′ so that ϕ(a), ϕ(a′) are defined. Then it is possible to add
a set Ṽ of O(1/

√
ϵ) nodes to V ′ and a set G̃ of O(1/

√
ϵ) gates to G′ so that the gates in G̃ have all

their input and output nodes in Ṽ ∪ {a, a′}, and the following holds:
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1. ϕ may be extended to a mapping on Ṽ so that for all v ∈ Ṽ , ϕ(v) ∈ {ϕ(a), ϕ(a′)}. Further-
more, the resulting ϕ is so that all gates in G̃ are valid;

2. Given any assignment π of the circuit (including that of the nodes in Ṽ ), if all gates in G̃ are
satisfied under π, then |π(a)− π(a′)| ≤ 66 ·

√
ϵ.

Proof The construction we introduce mirrors that of Algorithms 6 and 7 of (Rubinstein, 2018),
with a few differences. Choose ϵ′ ≥

√
ϵ as small as possible so that 4/ϵ′ is a power of 2 (so that

ϵ′ ≤ 2
√
ϵ). Initialize Ṽ , G̃ to be empty sets. We now introduce the following nodes and gates, which

are added to Ṽ and G̃, respectively:

1. Add a gate G←(1||σ) to G̃, whose output node σ is added to Ṽ . Define ϕ(σ) := ϕ(a).

2. For each k ∈ [4/ϵ′]:

(a) Add a gate G×,+(kϵ′/8, kϵ′/8|σ, σ|σk) to G̃, whose output node σk is added to Ṽ . De-
fine ϕ(σk) := ϕ(σ). (Validity of this gate is ensured since 0 < kϵ′/8 ≤ 1/2 and we
have ϕ(σk) = ϕ(σ).)

(b) Add a gate G<(|σk, a|bk) to G̃, whose output node bk is added to Ṽ . Define ϕ(bk) :=
ϕ(a′). (Validity of this gate is ensured since ϕ(σk) = ϕ(σ) = ϕ(a); importantly, we are
allowed to set ϕ(bk) to something which does not equal ϕ(a).)

3. For each j ∈ [log2(4/ϵ
′)]:

(a) For each k ∈ [(4/ϵ′)/2j ]:

i. If j = 1, add a gate G×,+(1/2, 1/2|b2k−1, b2k|d1,k) to G̃, whose output node d1,k
is added to Ṽ . Define ϕ(d1,k) := ϕ(a′). (Validity of this gate is ensured since
ϕ(b2k−1) = ϕ(b2k) = ϕ(d1,k) = ϕ(a′).)

ii. If j > 1, add a gate G×,+(1/2, 1/2|dj−1,2k−1, dj−1,2k|dj,k) to G̃, whose output
node dj,k is added to Ṽ . Define ϕ(dj,k) := ϕ(a′). (Validity of this gate is ensured
since ϕ(dj−1,2k−1) = ϕ(dj−1,2k) = ϕ(dj,k) = ϕ(a′).)

4. Add a gate G×,+(1/2, 1/2|dlog2(4/ϵ′),1, dlog2(4/ϵ′),1|a
′) to G̃. (Validity of this gate is ensured

since ϕ(dlog2(4/ϵ′),1) = ϕ(a′).)

It is straightforward to see that |Ṽ |, |G̃| are bounded above by O(1/ϵ′) = O(1/
√
ϵ) at the end of the

above procedure.
It is clear that at all nodes v added to Ṽ in the above construction, we have ϕ(v) ∈ {ϕ(a), ϕ(a′)},

thus verifying the first item in the claim’s statement. To see the second item, let π denote an
assignment for the generalized circuit (V ′,G′), after Ṽ has been added to V ′ and G̃ has been added
to G′, and suppose that π ϵ-approximately satisfies all gates in G̃. By definition of the gateG×,+, we
must have that for each k ∈ [4/ϵ′], π(σk) = kϵ′/4 ± ϵ. Thus, the number of integers k ∈ [4/ϵ′] so
that π(bk) ≥ 1− ϵ lies in the range

[
4
ϵ′ · (π(a)− 3ϵ), 4

ϵ′ · (π(a) + 3ϵ)
]
, and the number of integers

k ∈ [4/ϵ′] so that π(bk) ≤ ϵ lies in the range
[
4
ϵ′ · (1− π(a)− 3ϵ), 4

ϵ′ · (1− π(a) + 3ϵ)
]
.

It follows that
4/ϵ′∑
k=1

π(bk) =
4

ϵ′
· π(a)±

(
ϵ · 4
ϵ′
+

4

ϵ′
· 6ϵ
)

=
4

ϵ′
· π(a)± 28ϵ′.
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By the definition of the gate G×,+ and the triangle inequality, it holds that π(dlog2(4/ϵ′),1) =
ϵ′

4

∑4/ϵ′

k=1 π(bk) ± log2(4/ϵ
′) · ϵ = ϵ′

4

∑4/ϵ′

k=1 π(bk) ± 4ϵ′, since log2(4/ϵ
′) ≤ 4/ϵ′. Since also

π(a′) = π(dlog2(4/ϵ′),1)± ϵ, we conclude that

π(a′) =
ϵ′

4

4/ϵ′∑
k=1

π(bk)± (4ϵ′ + ϵ) = π(a)± (4ϵ′ + ϵ+ 28(ϵ′)2) = π(a)± 33ϵ′ = π(a)± 66
√
ϵ,

where the last step uses that ϵ ≤ ϵ′ ≤ 2
√
ϵ.

Given Claim 26, we complete the proof of Lemma 25. For the gate G×,+(ξ, ζ|v1, v2|v3) (as was
introduced above), we apply Claim 26 once with a = v1, a

′ = v′1, adding sets Ṽ1, G̃1 to V ′,G′,
respectively, and once with a = v2, a

′ = v′2, adding sets Ṽ2, G̃2 to V ′,G′, respectively. After this
procedure, it still holds that for all v ∈ V ′, |ϕ(v)| ∈ [1/4, 1/2] by item 1 of Claim 26. Furthermore,
item 2 of Claim 26 gives that in any assignment π : V ′ → [0, 1] for which all gates in G̃1 ∪ G̃2 ∪
{G×,+(ξ, ζ|v′1, v′2|v3)} are ϵ-approximately satisfied,

π(v3) =max
{
min

{
ξ · π(v′1) + ζ · π(v′2), 1

}
, 0
}
± ϵ

=max
{
min

{
ξ · (π(v1)± 66

√
ϵ) + ζ · (π(v2)± 66

√
ϵ), 1

}
, 0
}
± ϵ

=max {min {ξ · π(v1) + ζ · π(v2), 1} , 0} ± 133
√
ϵ,

where the final step uses that |ξ|, |ζ| ≤ 1. Note that |G̃1 ∪ G̃2| ≤ O(1/
√
ϵ) by Claim 26. Thus,

after applying Claim 26 for each gate G×,+ in the original circuit C, we note that for an (ϵ, δ)-
approximate assignment π : V ′ → [0, 1] of C′, it must hold that, for some constant C > 1, for at
least a fraction 1 − Cδ/

√
ϵ fraction of the gates G of the original circuit C, the gate G is 133

√
ϵ-

satisfied. (This holds because at least a 1 − Cδ/
√
ϵ fraction of the gates in C are either not of the

type G×,+ or have all of the O(1/
√
ϵ) supplementary gates added in course of Claim 26 ϵ-satisfied

by π.) This completes the proof of the lemma.

Next we show that the problem of finding an approximate assignment of a circuit which has a
valid coloring can be reduced to the problem of finding an approximate (P)WSNE-SG of an infinite-
horizon discounted stochastic game.

Lemma 27 Fix any ϵ ∈ (0, 1
12) and δ ∈ (0, 1). Set γ = ϵ2, ϵ′ = ϵ4, and ϵ′′ = ϵ′ · δ. Then the

following statements hold.

• The problem of finding an ϵ-assignment to a generalized circuit instance equipped with a valid
coloring with range contained in [−1/2,−1/4]∪ [1/4, 1/2] has a polynomial-time reduction
to the problem of computing an ϵ′-PWSNE-SG in 2-player turn-based γ-discounted stochastic
games.

• The problem of finding an (ϵ, 3δ)-assignment to a generalized circuit instance equipped with
a valid coloring with range contained in [−1/2,−1/4] ∪ [1/4, 1/2] has a polynomial-time
reduction to the problem of computing a ϵ′′-WSNE-SG in 2-player turn-based γ-discounted
stochastic games.
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Proof Let C = (V,G) be a generalized circuit together with some valid coloring ϕ : V → R, and
ϵ ∈ (0, 1). We construct a γ-discounted 2-player turn-based stochastic game G, as follows: the two
players are denoted by W and V, the action spaces of each player of G satisfiy AV = AW = {0, 1},
and the state space S satisfies:

S = V ⊔W ⊔ s0sink,

where s0sink is a special sink state which transitions to itself indefinitely and at which all players
receive 0 reward, and W is in bijection with G, consisting of a designated node wG for each gate
G ∈ G. The ownership of the states is as follows: for all v ∈ V , we have cr(v) = V, for all w ∈W ,
we have cr(w) = W. Finally, we arbitrarily set cr(s0sink) = V.

For each gate of the form G(ℓ|v1, v2|v3), we will ensure that G embeds in G via the tuple
(v1, v2, v3, wG) or the tuple (v1, v2, v3) (depending on the type of gate G), and via an appropriate
vector of constants (if applicable, again depending on the type of gate G). To do so, we construct
the transitions and rewards of G as follows: intially set the reward at each state (for all agents and
actions) to be 0, and define the transitions so that each state transitions to s0sink under any action.
We will then make several modifications to the rewards and transitions: First, for each state v ∈ V ,
define

rW(v, 1) =
ϕ(v)

1− γ
. (8)

Next, for each state v ∈ V which is the outgoing node of a gate of the form G←(b||v), set

rV(v, b) = b, rV(v, 0) = 1− b.

Next, for each gate G ∈ G, we make the following modifications to G’s transitions and rewards,
depending on the type of gate G:

1. If G is of the form G×,+(ξ, ζ|v1, v2|v3), then define

α =

{
ϕ(v1) : |ξ| ≥ 1/2

ϕ(v1) · 2|ξ| : |ξ| < 1/2
, ψ =

{
ϕ(v2) : |ζ| ≥ 1/2

ϕ(v2) · 2|ζ| : |ζ| < 1/2,
, β = ϕ(v3),

and modify the outgoing transitions from the states v3, wG and the rewards at state v3 to satisfy
the requirements of Definition 18 with the above values of α,ψ, β. The above definitions and
the validity of ϕ ensure that α

2β = ξ and ψ
2β = ζ, as in Definition 18. Furthermore, we do not

have to modify rW(v1, 1), rW(v2, 1), or rW(v3, 1) since they are set to ϕ(v1)
1−γ , ϕ(v2)1−γ , and ϕ(v3)

1−γ ,
respectively, in (8), and it holds by validity of ϕ and the definitions of α, β, ψ above that

α ·max

{
1,
|β|
|α|

}
= ϕ(v1), ψ ·max

{
1,
|β|
|ψ|

}
= ϕ(v2), β = ϕ(v3). (9)

2. If G is of the form G←(1||v), then modify the outgoing transitions from the state v to satisfy
the requirements of Definition 20.

3. IfG is of the formG<(|v1, v2|v3), then modify the outgoing transitions from the states v3, wG
and the rewards at state wG to satisfy the requirements of Definition 22, with β = ϕ(v1) (We
do not have to modify rW(v1, 1) or rW(v2, 1) since both are set to β

1−γ = ϕ(v1)
1−γ = ϕ(v2)

1−γ , by
validity of ϕ and (8)).
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Note that for each gate G, whose output node is denoted by v, in the above procedure we have
modified only the outgoing transitions at v and wG, and the two players’ rewards at state wG. Since
each node is the output node of a unique gate, this process ensures that neither the transitions nor
reward at any state are modified twice in the below procedure, thus ensuring that the embedding
requirements for each gate are still satisfied at the end of the above procedure.

Since maxv∈V |ϕ(v)| ≤ 1/2, all nonzero rewards assigned to state-action pairs in the above
procedure are bounded in magnitude by maxv∈V |ϕ(v)|

1−γ , and γ < 1/2, it holds that all rewards of G
have absolute value at most 1.

Now we verify the condition in Lemma 19. Let us write β0 := minv∈V |ϕ(v)| ≥ 1/4. We claim
that γ · |β0| · ϵ − 2γ2 > ϵ′. This holds since γϵ/4 − 2γ2 > ϵ′, which is guaranteed by our choice
of γ = ϵ2 and ϵ′ = ϵ4 and since ϵ3/4 − 2ϵ4 > ϵ4, which holds as long as ϵ < 1/12, which was
assumed in the lemma statement.

Consider a policy π of G, is represented by a function π : S → [0, 1]. If π is an ϵ′-PWSNE-SG
of G, then by Definition 15 and (5), all states s of G are ϵ′-unimprovable under π. By Lemmas
19, 21, and 23, since γ · |β0| · ϵ − 2γ2 > ϵ′, in any ϵ′-PWSNE-SG π of G, it holds that each gate
is ϵ-approximately satisfied by the restriction of π to V . Thus, the restriction of an ϵ′-PWSNE-SG
π to the nodes V ⊂ S furnishes an ϵ-approximate assignment to the ϵ-GCircuit instance C, as
desired.

Next, suppose that π is an ϵ′′-WSNE-SG of G. Then by Definition 15, (5), and Markov’s
inequality, a fraction 1 − δ of states of G are ϵ′′/δ = ϵ′-unimprovable. Since each node v ∈ V is
the output node of some (unique) gate in G, a fraction 1 − 3δ of gates G in G have the following
property:

• If G = G×,+(ξ, ζ|v1, v2|v3), then v3, wG are ϵ′-unimprovable.

• If G = G←(1||v), then v is ϵ′-unimprovable.

• If G = G<(|v1, v2|v3), then v3, wG are ϵ′-unimprovable.

By Lemmas 19, 21, and 23, it follows that a fraction 1 − 3δ of the gates of G are ϵ-approximately
satisfied by the restriction of π to V .

Finally, we are ready to prove Theorems 3 and 4.
Proof [Proof of Theorem 3] By Theorem 9, it suffices to show that there is a constant c > 0 so that
for all ϵ0 < 1/12, the ϵ0-GCircuit problem has a polynomial-time reduction to the problem of
computing c · ϵ160 -perfect NE in 1/2-discounted 2-player stochastic games.

Fix any ϵ ∈ (0, 1/12), and write γ = ϵ2. Consider an instance C = (V,G) of ϵ-GCircuit.
We construct a circuit C′ = (V ′,G′), together with a valid coloring ϕ : V ′ → R, as guaranteed in
the statement of Lemma 25 (where we take δ = 0). By Lemma 27, we may further construct in
polynomial time, given C′ together with ϕ, a γ-discounted 2-player turn-based stochastic game G
so that given an ϵ4-PWSNE-SG of G, we may compute an ϵ-approximate assignment to C′, which,
by Lemma 25, yields a 133

√
ϵ-approximate assignment of C.

By Lemma 17, the problem of computing an ϵ4-PWSNE-SG of G reduces to the problem of
computing a ϵ8

144 -perfect NE of G. Finally, noting that the game G is γ-discounted and we wish
to reduce to the problem of computing equilibria in 1/2-discounted games, we argue as follows:
given the game G, we may construct a 1/2-discounted stochastic game G′ whose states, actions,
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and rewards are identical to that of G, and whose transitions P′(·|s, a) are determined from the
transitions P(·|s, a) of G as follows:

P′(s′|s, a) =

{
γ
1/2 · P(s

′|s, a) : s′ ̸= s0sink
γ
1/2 · P(s

′|s, a) + (1− 2γ) : s′ = s0sink.
(10)

Let V G,π
i denote the value function of G and V G′,π

i denote the value function of G′. It is clear that
for all π and all i ∈ [m], V G,π

i (s0sink) = V G′,π
i (s0sink) = 0. It is now straightforward to see that for

any joint stationary policy π ∈ ∆(A)S , we have, for all s ∈ S and i ∈ [m],

V G′,π
i (s) =Ea∼π(s)

[
r(s,a) +

1

2
·
∑
s′∈S

γ

1/2
· V G′,π

i (s′)

]

V G,π
i (s) =Ea∼π(s)

[
r(s,a) + γ ·

∑
s′∈S

V G,π
i (s′)

]
,

which immediately implies that V G,π
i ≡ V G′,π

i . Hence the ϵ8

144 -perfect Nash equilibria of G and
G′ coincide. Choosing ϵ0 =

√
ϵ shows that the ϵ0-GCircuit problem reduces to the problem of

finding c · ϵ160 -perfect NE in 1/2-discounted 2-player stochastic games, as desired.
Finally, to show PPAD-hardness of computing approximate stationary CCE in 2-player 1/2-

discounted stochastic games, we note that in any turn-based stochastic game, any stationary policy
π is equivalent to some product policy π′ (in the sense that V π

i ≡ V π′
i for all i): in particular, π′ is

the policy where at each state s, all players except cr(s) take some fixed action in their action set
and cr(s) plays according to their marginal in π(s). Thus, for any ϵ > 0, an ϵ-perfect CCE may be
converted into an ϵ-perfect NE in polynomial time.

On larger discount factors. We remark that it is evident from the above proof that the constant
1/2 for the discount factor can be replaced by any constant γ′ ∈ (1/2, 1). In particular, we would
simply modify the transition probabilities of the game G′ in (10) by replacing the constant 1/2 with
γ′.
Proof [Proof of Theorem 4] The first part of the theorem is an immediate consequence of Theorem
3, as we proceed to explain. Consider a turn-based stochastic game G, and ϵ > 0. Note that an
ϵ/S-stationary NE π of G must satisfy maxi∈[m] Es∼µ

[
V
†,π−i
i (s)− V π

i (s)
]
≤ ϵ/S. Since π is a

product policy, we have that V †,π−ii (s) − V π
i (s) ≥ 0 for all i ∈ [m]. Thus, for all i ∈ [m], s ∈ S,

we have V †,π−ii (s) − V π
i (s) ≤ ϵ, i.e., π is an ϵ-perfect NE of G, which is PPAD-hard to compute

by Theorem 3.
We proceed to prove the second part of Theorem 3. Since we assume Conjecture 10, it suffices

to show that there is a constant c > 0 so that for all ϵ0 < 1/12 and δ0 < 1, the (ϵ0, δ0)-GCircuit
problem has a polynomial-time reduction to the problem of computing c · ϵ180 δ20-stationary NE in
1/2-discounted 2-player stochastic games.

To do so, fix ϵ ∈ (0, 1/12), δ ∈ (0, 1) and write γ = ϵ2. Consider an instance C = (V,G) of the
(ϵ, δ)-GCircuit problem. We construct a circuit C′, together with a valid coloring ϕ : V ′ → R, as
guaranteed in the statement of Lemma 25: in particular, given an (ϵ, δ)-approximate assignment π :
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V ′ → [0, 1] of C′, the restriction of π to V constitutes a (133
√
ϵ, C0δ/

√
ϵ)-approximate assignment

of C (for some constant C0 > 1).
By Lemma 27, we may further construct in polynomial time, given C′ together with ϕ, a γ-

discounted 2-player turn-based stochastic game G so that, given a ϵ4δ/3-WSNE-SG of G, we may
compute an (ϵ, δ)-assignment to C′, which thus yields a (133

√
ϵ, C0δ/

√
ϵ)-approximate assignment

of C. By Lemma 17, the problem of computing an ϵ4δ/3-WSNE-SG of G reduces to computing an
ϵ8δ2

144·9 -stationary NE of G. The same construction as in the proof of Theorem 3 allows us to reduce
further to the problem of computing an ϵ8δ2

144·9 -stationary NE of a 2-player 1/2-discounted game G′.
Choosing ϵ0 =

√
ϵ and δ0 = δ/

√
ϵ, we have shown that the (ϵ0, δ0)-GCircuit problem reduces to

computing a cϵ180 δ
2
0-stationary NE in 1/2-discounted 2-player stochastic games, for some constant

c > 0.

Appendix C. Proofs for Section 4

In this section, we prove Theorem 5, which gives a PAC-RL guarantee for SPoCMAR (Algorithm
1). First, in Section C.1, we give an overview of the proof of Theorem 5. Then, in Section 4.4,
we explain how Algorithm 1 can be implemented in a decentralized manner with access to shared
randomness. Section C.2 reviews some preliminaries regarding adversarial bandit regret bounds.
In Section C.3 we proceed to review some basic preliminaries for finite-horizon stochastic games
(closely mirroring the analogous definitions in Section 2). In Section C.4 we introduce some param-
eters and concentration inequalities used in the proof. In Section C.5, we introduce an intermediate
stochastic game that is used in the analysis, which is reminiscient of the analysis of Rmax (Brafman
and Tennenholtz, 2002; Jin et al., 2020). In Section C.6, we complete the proof of Theorem 5.

C.1. Proof overview for Theorem 5

We now overview the proof of Theorem 5. Let V̂ denote the value of V at termination of SPoCMAR
and q̂ denote the value of the final stage of SPoCMAR. The main tool in the proof is to construct an
intermediate game, denoted GV̂ (Section C.5): we will first show that the output policy of SPoCMAR
is an ϵ-CCE with respect to the game GV̂ , and then, using the termination criterion of SPoCMAR,
we will show that this implies that π̂ is an ϵ-CCE with respect to the true game G.

The game GV̂ is constructed in a similar way to an intermediate MDP used in the analysis of
the Rmax algorithm (Brafman and Tennenholtz, 2002; Jin et al., 2020). For tuples (h, s) ̸∈ V̂ ,
GV̂ transitions, at (h, s), to a special sink state at which all agents receive reward 1 (the maximum
possible reward) at all future steps; for all (h, s) ∈ V̂ , the rewards and transitions of GV̂ at (h, s) are
identical to those of G. By ensuring that the parameter K passed to SPoCMAR is sufficiently large,
we may guarantee that, during stage q̂, SPoCMAR visits all (h, s) ∈ V̂ sufficiently many times to
compute accurate estimates of V

GV̂ ,π̂

i,h (s) for such (h, s) ∈ V̂ . Since, for all (h, s) ̸∈ V̂ , we have

V
GV̂ ,π̂

i,h (s) = H + 1 − h, it is possible to show (Lemma 32) that
∣∣∣V q̂

i,h(s)− V
GV̂ ,π̂

i,h (s)
∣∣∣ is small for

all (h, s) ∈ [H]× S and all i ∈ [m].
Using the no-regret property of the adversarial bandit instances used by each player for each

(h, s), we then obtain (Lemmas 33 and 34) that π̂ is an ϵ-CCE of GV̂ . To derive such a guarantee
for the true SG G, we use two facts: first, by the optimistic nature of the rewards of GV̂ the value
function of GV̂ is always an upper bound on the value function of G, and second, by the termination
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Algorithm 1 SPoCMAR (Stage-based Policy Cover for Multi-Agent Learning with Rmax)
1: procedure SPOCMAR(m,S,A, H,K,Nvisit, p)
2: Set V = ∅. (V denotes the set of “well-visited” states, updated at each stage.)
3: For each h ∈ [H], s ∈ S, set πcoverh,s =⊥. (πcoverh,s will be set to a joint policy in ∆(A)[H]×S .)
4: for q ≥ 1 and while τ = 0 do
5: Set τ = 1 (τ is a bit indicating whether we should terminate at the current stage).
6: Set Πqh := {πcoverh,s : s ∈ S} for each h ∈ [H]. (Note that |Πqh| ≤ S for each h.)
7: for h = H,H − 1, . . . , 1 do
8: Set k = 0, and V q

i,H+1(s) = 0 for all s ∈ S and i ∈ [m].
9: Each player i initializes an adversarial bandit instance at each state s ∈ S for the

step h, according to some algorithm satisfying the guarantee of Theorem 28.
10: for each π ∈ Πqh ∪ π

U do (πU chooses actions uniformly at random)
11: for a total of K times do
12: Increment k by 1.
13: Let π be the policy which follows π for the first h−1 steps and plays accord-

ing to the bandit algorithm for the state visited at step h (and acts arbitrarily for steps h′ > h).
14: Draw a joint trajectory (s1,k,a1,k, r1,k, . . . , sH,k,aH,k, rH,k) from π.
15: if (h, sh,k) ∈ V then
16: Each i updates its bandit alg. at (h, sh,k) w/

(ai,h,k,
H−ri,h,k−V

q
i,h+1(sh+1,k)

H ).
17: else
18: Each i updates its bandit alg. at (h, sh,k) w/ (ai,h,k,

H−(H+1−h)
H ).

19: end if
20: end for
21: end for
22: For each s ∈ S, and j ≥ 1, let kj,h,s ∈ [K(S+1)+1] denote the jth smallest value

of k so that sh,k = s, or K(S + 1) + 1 if such a jth smallest value does not exist.
23: For each s ∈ S, let Jh,s denote the largest integer j so that kj,h,s ≤ K(S + 1).
24: Define π̃qh ∈ ∆(A)S to be the 1-step policy: π̃qh(a|s) =

1
Jh,s

∑Jh,s
j=1 1[a = ah,kj,h,s ].

25: Set

V
q
i,h(s) :=

{
1
Jh,s

∑Jh,s
j=1

(
ri,h,kj,h,s + V

q
i,h+1(sh+1,kj,h,s)

)
: (h, s) ∈ V

(H + 1− h) : (h, s) ̸∈ V.
(11)

26: end for
27: Define the joint policy π̃q, which follows π̃qh′ at each step h′ ∈ [H].
28: Call EstVisitation(π̃q, Nvisit) (Alg. 2) to obtain estimates d̂qh′ ∈ ∆(S) for each

h′ ∈ [H].
29: for each s ∈ S and h′ ∈ [H] do
30: if d̂qh′(s) ≥ p and (h′, s) ̸∈ V then
31: Set πcoverh′,s ← π̃q.
32: Add (h′, s) to V .
33: Set τ ← 0.
34: end if
35: end for
36: end for
37: return the policy π̂ := π̃q.
38: end procedure
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Algorithm 2 EstVisitation
1: procedure ESTVISITATION(π,N )
2: for 1 ≤ n ≤ N do
3: Draw a trajectory from π, and let (sn1 , . . . , s

n
H) denote the sequence of states observed.

4: end for
5: for h ∈ [H] do
6: Let d̂h ∈ ∆(S) denote the empirical distribution over (s1h, . . . , s

N
h ).

7: end for
8: return (d̂1, . . . , d̂H).
9: end procedure

criterion of SPoCMAR, the probability that a trajectory (s1, s2, . . . , sH) ∼ (G, π̂) visits any state
(h, sh) ̸∈ V̂ is small (Lemma 35). These arguments are worked out in detail in Lemma 36.

Reduction from infinite-horizon to finite-horizon. Finally, to derive Corollary 6, we remark
that there is a simple reduction from episodic learning of an infinite-horizon discounted game with
discount factor γ to episodic learning of a finite-horizon game with horizon H := log 1/ϵ

1−γ (see
Section C.3). Owing to the fact that γH ≤ ϵ, this reduction preserves nonstationary equilibria up to
an additive approximation of ϵ.

C.2. Review of adversarial bandit regret bound

SPoCMAR requires all players to choose their actions at certain steps of each episode according
to a no-regret bandit algorithm at each state. For completeness, we briefly overview the setup
and guarantees of adversarial no-regret bandit learning. Consider the following setting involving a
bandit learner and an adversary interacting over T rounds. The learner has access to a finite set B
of arms, with B := |B|. For each time step t ∈ [T ]:

1. The learner picks a distribution pt ∈ ∆(B).

2. The adversary chooses a loss vector ℓt ∈ [0, 1]B, depending on the arms chosen by the learner
at previous steps, as well as a vector ℓ̃t ∈ [0, 1]B, so that, if Ft denotes the sigma-algebra
generated by all random variables in the adversary’s view up to time t (including ℓt), for all
b ∈ B, we have E[ℓ̃t(b)|Ft] = ℓt(b).

3. The learner takes action bt ∼ pt and sees ℓ̃t(bt), which satisfies E[ℓ̃t(bt)|bt,Ft] = ℓt(bt). The
learner uses the pair (bt, ℓ̃t(bt)) to update its distribution.

Theorem 28 below gives a high-probability regret guarantee for an adversarial bandit algorithm,
which may be taken to be Exp3-IX (Neu, 2015); the statement of the theorem differs slightly from
that in prior works, so we explain how to derive it from Neu (2015) in Section E.

Theorem 28 (Neu (2015), Theorem 1) There is an algorithm for the above adversarial bandit
setting which obtains the following regret guarantee and runs in poly(B) time at each step: for any
T0 ∈ N, δ ∈ (0, 1), we have that, with probability at least 1− δ, for all T ≤ T0,

max
b∈B

T∑
t=1

(ℓt(bt)− ℓt(b)) ≤ O
(√

TB · log(T0B/δ)
)
.
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C.3. Preliminaries for finite-horizon stochastic games

We first introduce the requisite notation and terminology regarding finite horizon games: a finite-
horizon m-player stochastic game G is defined as a tuple (S, (Ai)i∈[m],P, (ri)i∈[m], H, µ), which
have the same interpretations as in the infinite-horizon discounted case, with the following excep-
tions:

• H ∈ N denotes the horizon (replacing the discount factor γ); in particular, a trajectory pro-
ceeds for a total of H steps, at which point it terminates.

• The reward and transitions are allows to depend on the step h ∈ [H]: in particular, ri is to be
interpreted as a tuple ri = (ri,1, . . . , ri,H), where each ri,h : S ×A → [−1, 1], and P is to be
interpreted as a tuple P = (P1, . . . ,PH), where each Ph : S ×A → ∆(S).

When discussing the finite-horizon case, we consider only nonstationary policies, which are se-
quences of maps π = (π1, . . . , πH), where each πh : S → ∆(A); we will therefore drop the
descriptor “nonstationary”. The space of such policies is denoted ∆(A)[H]×S . With a slight abuse
of notation we will denote the value function of a nonstationary policy π by V π

i,h : S → R, h ∈ [H],
which is defined similarly to (1) except with no discount factor; in particular, in the finite-horizon
setting, we have, for all i ∈ [m], h ∈ [H], s ∈ S,

V π
i,h(s) = E(sh,ah,...,sH ,aH)∼(G,π)

[
H∑

h′=h

ri,h(sh′ ,ah′)|sh = s

]
,

and V π
i,h(µ) := Es∼µ

[
V π
i,h(s)

]
. We also write V π

i := V π
i,1 for simplicity, as in the infinite-horizon

case. Given a policy π ∈ ∆(A)[H]×S and i ∈ [m], the best response policy π†i (π−i) is defined ex-

actly as in the infinite-horizon case, so that, in particular, V †,π−ii,h (s) = supπ′
i∈∆(Ai)[H]×S V

π′
i×π−i

i,h (s)

for all (h, s) ∈ [H]× S. Finally, the notion of ϵ-(nonstationary) CCE is defined exactly as in Defi-
nitions 1, recalling that V π

i (µ) = V π
i,1(µ) and V †,π−ii (µ) = V

†,π−i
i,1 (µ) by definition. When we wish

to clarify the SG G that corresponds to a value function, we will write V G,π
i in place of V π

i .
Given a policy π ∈ ∆(A)S , the state visitation distribution dπh at step h for the policy π is

defined similarly to in the infinite-horizon discounted case, except with different normalization: for
all s ∈ S, dπh(s) := P(s1,...,sH)∼(G,π) (sh = s) . Here the trajectory (s1, . . . , sH) drawn from (G, π),
is drawn with initial state state s1 ∼ µ.

Given an infinite-horizon discounted game G′ and a desired accuracy level ϵ, we consider the
following finite-horizon game G with horizon H := log 1/ϵ

1−γ , so that γH ≤ ϵ. The state space, action
space, initial state distribution, and transitions at each step of G are the same as those of G′. Letting
r′i : S → [−1, 1] denote the reward function of G′ and ri,h : S → [−1, 1] (for h ∈ [H]) denote
the reward function of G, we define ri,h(s,a) := γh−1 · ri(s,a). It is straightforward to see that
for all nonstationary policies π′ ∈ ∆(A)N×S , the truncation of π′ to the first H steps, which we

denote by π ∈ ∆(A)[H]×S satisfies, for all i ∈ [m], s ∈ S ,
∣∣∣∣V G′,π′
i (s)
1−γ − V G,π

i (s)

∣∣∣∣ ≤ ϵ
1−γ . Thus,

given an ϵ-CCE of G, we may readily construct a 2ϵ-CCE of G′. Furthermore, if our algorithm is
given access to G′ in the episodic PAC-RL model of Section 2.3, we may readily simulate access
to G by drawing the first H steps of a trajectory of G′ and discounting the reward received at each

40



COMPLEXITY OF MARKOV EQUILIBRIUM

step h ∈ [H] by a factor of γh−1. Thus, for the remainder of the section, we proceed to discuss
the problem of learning approximate CCE in finite-horizon general-sum stochastic games (i.e., the
proof of Theorem 5).

C.4. Parameters & concentration inequalities

Fix a finite-horizon stochastic game G = (S, (Ai)i∈[m],P, (ri)i∈[m], H, µ), and an error parameter
ϵ > 0 as well as a failure probability δ > 0. For fixed values of the above, we introduce the
following notation and parameters for use throughout this section:

• Choose p = ϵ
16SH2 .

• Choose J = CJ ·
H6ι2·maxi∈[m] Ai

ϵ2
, for some sufficiently large constantCJ > 2 (to be specified

below).

• Choose K = 8J
p .

• Choose εval = ϵ
4H .

• Choose εreg = ϵ
8H .

• Choose εtvd = p/2.

• Choose Nvisit = CN · Sι
(εtvd)2

, for some sufficiently large constant CN > 1 (to be specified
below).

• Set ι := log
(
SHmaxi∈[m] Ai

ϵδ

)
.

• Let q̂ denote the value of q at termination of SPoCMAR (i.e., q̂ denotes the total number of
stages completed by the algorithm).

Also, recall the following parameters introduced in SPoCMAR:

• For q ≥ 1 and k ≥ 1 we let (sq1,k,a
q
1,k, r

q
1,k, . . . , s

q
H,k,a

q
H,k, r

q
H,k) denote the trajectory

drawn in step 14 of SPoCMAR at stage q.

• For h ∈ H , we write ŝh,k := sq̂h,k, âh,k := aq̂h,k, r̂h,k = rq̂h,k to denote the trajectory at the
final stage q̂.

• For j ≥ 1, h ∈ [H], and q ≥ 1, let kqj,h,s and Jqh,s denote the values of the parameters kj,h,s
and Jh,s defined in steps 22 and 23 at stage q.

• For all j, h, s, write k̂j,h,s := kq̂j,h,s and Ĵh,s := J q̂h,s to denote the values at the final stage.

• For q ≥ 1, let Vq denote the value of the set V at the beginning of stage q of SPoCMAR.
Furthermore we will write V̂ to denote V q̂, which is the value of V at the termination of
SPoCMAR (by the termination criterion, the value of the set V does not change during the
final stage q̂.
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Throughout the proof, we let C > 1 denote a constant whose value may change from line to line.
Our first basic lemma states that SPoCMAR always terminates (in particular, the for loop at step

4 terminates).

Lemma 29 The algorithm SPoCMAR terminates after at most SH stages (i.e., q̂ ≤ SH).

Proof If SPoCMAR does not terminate at some stage q, then it must add some pair (h′, s) to Vq at
that stage, which did not previously belong to Vq. Since elements of Vq are never removed, the total
number of stages is bounded above by SH .

The next lemma states that the state visitation estimates constructed in step 28 of SPoCMAR are
accurate with high probability.

Lemma 30 There is an event Evisitation that occurs with probability at least 1− δ so that under the
event Evisitation, for all stages q ≥ 1, and all h′ ∈ [H], it holds that∥∥∥dπ̃qh′ − d̂qh′∥∥∥

1
≤ εtvd.

Proof Consider any call to EstVisitation(π,N), which produces outputs (d̂1, . . . , d̂H). Then
by (Canonne, 2020, Theorem 1), for any h ∈ [H], with probability 1 − δ/(H2S), as long as
N ≥ C · S+log(H2S/δ)

(εtvd)2
(for a sufficiently large constant C), it holds that

∥∥∥dπh − d̂h∥∥∥
1
≤ εtvd. Taking

a union bound over all h ∈ [H] and the at most SH stages q at which EstVisitation is called
at step 28 of SPoCMAR, we obtain the claim of the lemma as long as Nvisit ≥ C · S+log(H2S/δ)

(εtvd)2
; but

this inequality is ensured by our choice of Nvisit in Section C.4.

Lemma 31 There is an event Ecoverage that occurs with probability at least 1− δ so that under the
event Ecoverage ∩ Evisitation, for all stages q, h ∈ [H], and s ∈ S , then if (h, s) ∈ Vq, it holds that
Jqh,s ≥ J .

Proof If (h, s) ∈ Vq, then for some q′ < q, we must have that d̂q
′

h (s) ≥ p, and πcoverh,s was set to π̃q
′
.

By Lemma 30 and since εtvd ≤ p/2, it must hold that dπ̃
q′

h (s) ≥ p/2 under the event Evisitation. Let
us now condition on the event Evisitation; then in the for-loop in step 10 corresponding to the policy
πcoverh,s = π̃q

′
, for each of the K episodes (in the loop in step 11), (h, s) is visited with probability at

least p/2. Thus, by the Chernoff bound, with probability at least 1−e−Kp/8, the number of episodes
k in the loop in step 10 at which (h, s) is visited is at least Kp/2, i.e., we must have Jqh,s ≥ Kp/2.
Then by the union bound, since Kp/2 ≥ J and Kp/8 > 2ι ≥ log(S2H2/δ) (see Section C.4),
under an event Ecoverage occuring with probability at least 1− δ, for all stages q and all (h, s) ∈ Vq,
the state (h, s) will be visited at least Kp/2 ≥ J times at stage q. This completes the proof of the
lemma.
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C.5. Intermediate game

Recall that V̂ = V q̂ denotes the value of the set V at termination of SPoCMAR. Define a stochastic
game GV̂ as follows:

• The action space of GV̂ isA and the state space of GV̂ is S∪s1sink, where s1sink is a special state
which always transitions to itself deterministically and at which all players receive reward 1
at each step.

• For all (h, s) ∈ V̂ , the transitions and reward of GV̂ are identical to that of G.

• For all (h, s) ̸∈ V̂ , all joint actions at (h, s) yield reward 1 to all players and transition to to
the state s1sink.

In the remainder of the section, we will be working with the parameters of both G and GV̂ : to avoid

amibuity, we denote their value functions V
GV̂ ,π

i,h and V G,π
i,h ; we denote their transitions as PGV̂

h and

PG
h ; and we denote their reward functions as r

GV̂
i,h and rGi,h.

Recall that π̂ denotes the policy output by SPoCMAR. The below lemma shows that the value
functions V q̂

i,h constructed at the final stage of SPoCMAR are close to those of GV̂ under π̂.

Lemma 32 There is an event Eval that occurs with probability at least 1 − 2δ, so that under the
event Eval, for all s ∈ S, h ∈ [H], i ∈ [m], it holds that∣∣∣V q̂

i,h(s)− V
GV̂ ,π̂

i,h (s)
∣∣∣ ≤ εval. (12)

Proof We use reverse induction on h, noting that the base case h = H + 1 is immediate since all
value functions are identically 0. Now suppose that there is some constant C so that for all h′ > h,
it holds that, for some event Evalh′ , under the event Evalh′ ∩ Ecoverage, for all s ∈ S and i ∈ [m],∣∣∣V q̂

i,h′(s)− V
GV̂ ,π̂

i,h′ (s)
∣∣∣ ≤ (H + 1− h′) · CH

√
ι

J
. (13)

We will show that (13) holds with h′ = h, for an appropriate choice of the event Evalh ⊃
⋃
h′≥h Evalh′ .

To do so, consider any state s ∈ S and any agent i ∈ [m]; we consider the following two cases
regarding s:
Case 1. (h, s) ∈ V̂ . By Lemma 31, under the event Ecoverage, we have that Ĵh,s = J q̂h,s ≥ J . For

each j ≥ 1, recall that we have defined k̂j,h,s = kq̂j,h,s ∈ [K(S + 1) + 1] (and kq̂j,h,s is defined in

step 22 of SPoCMAR). As h, s are fixed, we will write kj := k̂j,h,s. It is evident that kj is a stopping
time for each j. Note that, for any t ≥ 1, the sequence(
1[kj ≤ K(S + 1)] ·

(
r̂i,h,kj + V

q̂
i,h+1(ŝh+1,kj )− Es′∼PG

h(·|ŝh,kj ,âh,kj )

[
rGi,h(ŝh,kj , âh,kj ) + V

q̂
i,h+1(s

′)
]))

1≤j≤t
(14)

is a martingale difference sequence with respect to the filtration Fj , where Fj denotes the sigma-
field generated by all random variables up to step h+1 of episode kj (i.e., of stage q̂). By the Azuma-
Hoeffding inequality and a union bound, it follows that, with probability at least 1− δ/(HmS), for
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all 1 ≤ t ≤ K(S + 1),

1

t
·

∣∣∣∣∣∣
t∑

j=1

1[kj ≤ K(S + 1)] ·
(
r̂i,h,kj + V

q̂
i,h+1(ŝh+1,kj )− Es′∼PG

h(·|ŝh,kj ,âh,kj )

[
rGi,h(ŝh,kj , âh,kj ) + V

q̂
i,h+1(s

′)
])∣∣∣∣∣∣

≤CH
√
ι

t
,

where C > 1 denotes some constant. Let Evalh denote the intersection of Evalh+1 and all instances of
this probability 1− δ/(HmS) event, over i ∈ [m], s ∈ S . In particular, the above inequality holds
for t = Ĵh,s under Evalh , which gives that, under the event Ecoverage ∩ Evalh , Ĵh,s ≥ J , and so∣∣∣∣∣∣V q̂

i,h(s)−
1

Ĵh,s

Ĵh,s∑
j=1

Es′∼PG
h(·|s,âh,kj )

[
rGi,h(s, âh,kj ) + V

q̂
i,h+1(s

′)
]∣∣∣∣∣∣ ≤ CH

√
ι

J
. (15)

(Here we have also used that ŝh,kj = s for all j ≤ Ĵh,s by the definition of kj .)
By definition of π̂, we have that, again for the fixed value of (h, s, i),

V
GV̂ ,π̂

i,h (s) =
1

Ĵh,s
·
Ĵh,s∑
j=1

Es′∼PG
h(·|s,âh,kj )

[
rGi,h(s, âh,kj ) + V

GV̂ ,π̂

i,h+1 (s
′)
]
.

Here we have used that since (h, s) ∈ V̂ , it holds that for all a ∈ A, PG
h (·|s,a) = PGV̂

h (·|s,a) and

rGi,h(s,a) = r
GV̂
i,h (s,a). By the inductive hypothesis (13) with h′ = h + 1, it holds that under the

event Ecoverage ∩ Evalh+1,

∣∣∣V GV̂ ,π̂

i,h+1 (s)− V
q̂
i,h+1(s)

∣∣∣ ≤(H − h) · CH√ ι

J
. (16)

Combining (15) and (16), we get that, under the event Ecoverage ∩ Evalh ,

∣∣∣V q̂
i,h(s)− V

GV̂ ,π̂

i,h (s)
∣∣∣ ≤ (H + 1− h) · CH

√
ι

J
,

thus completing the inductive step in the case that (h, s) ∈ V̂ .
Case 2. (h, s) ̸∈ V̂ . Here we note that, by (11), V q̂

i,h(s) = H + 1 − h. Furthermore, it is

immediate from the definition of GV̂ that V
GV̂
i,h (s) = H + 1− h since (h, s) ̸∈ V̂ . Hence, we have∣∣∣V q̂

i,h(s)− V
GV̂ ,π̂

i,h (s)
∣∣∣ = 0 in this case.

Thus we have verified that in all cases, (13) holds at step h, thus completing the inductive step.
Summarizing, if we set Eval = Eval1 ∩ Ecoverage, then the guarantee (12) holds as long as we

have εval ≥ CH2
√

ι
J , which is ensured by choosing the constant CJ large enough (see Section

C.4). Furthermore, by a union bound (over all values of h ∈ [H], i ∈ [m], s ∈ S, Eval holds with
probability at least 1− 2δ.
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For each s ∈ S, i ∈ [m], ai ∈ Ai, define

Qi,h(s, ai) = Ea−i∼π̂−i,h(s)Es′∼PG
h(·|s,(ai,a−i))

[
rGi,h(s, (ai,a−i)) + V

q̂
i,h+1(s

′)
]
. (17)

In Lemma 33 below, we use Theorem 28 (giving a no-regret property for the bandit learners
used at each state in SPoCMAR) to bound the difference between Qi,h and V q̂

i,h.

Lemma 33 There is an event Ereg that occurs with probability at least 1 − δ, so that under the
event Ereg, for all s ∈ S, h ∈ [H], i ∈ [m], it holds that

max
ai∈Ai

(
Qi,h(s, ai)− V

q̂
i,h(s)

)
≤ εreg. (18)

Proof Fix any (s, h, i) ∈ S × [H] × [m]. First we treat the case that (h, s) ̸∈ V̂ . Note that by the
definition (11) we have that V q̂

i,h(s) ≤ H + 1 − h for all i, h, s. It then follows that Qi,h(s, ai) ≤
H + 1− h, for all i, h, s, ai. Furthermore, we have that V q̂

i,h(s) = H + 1− h when (h, s) ̸∈ V̂ (by

the definition (11) in SPoCMAR), meaning that maxai∈Ai

(
Qi,h(s, ai)− V

q̂
i,h(s)

)
≤ 0.

For the remainder of the proof treat those pairs (h, s) so that (h, s) ∈ V̂ . Fix some value of
(h, s) ∈ V̂ , and set, for each j ≥ 1, kj := k̂j,h,s. It is evident that for each j, kj is a stopping
time with respect to the filtration Hk, where Hk denotes the sigma-field generated by all states and
actions taken up to (and including) step h+ 1 of episode k.

Note that each agent i runs the adversarial bandit algorithm at state s and step h at each episode
kj (as ŝh,kj = s by definition of kj). Furthermore, for each j so that kj ≤ K(S + 1), the expected
reward that agent i would receive upon playing action ai ∈ Ai, conditioned on the actions â−i,h,kj
taken by all other agents at step h of episode kj , is given by

ℓj(ai) := Es′∼PG
h(·|s,(ai,â−i,h,kj ))

H − rGi,h(s, (ai, â−i,h,kj ))− V q̂
i,h+1(s

′)

H

 . (19)

Furthermore, it is evident that, for each j ≥ 1, for the choice of action âi,h,kj by agent i’s bandit
algorithm at (s, h), the feedback

ℓ̃j(âi,h,kj ) :=
H − ri,h,kj − V

q̂
i,h+1(ŝh+1,kj )

H

fed to the bandit algorithm satisfies to E[ℓ̃j(âi,h,kj )|Fi,j−1] = ℓj(âi,h,kj ), where Fi,j denotes the the
sigma-field generated by all states and actions taken up to (and including) step h of episode kj+1. It
is straightforward to see that Fi,j is well-defined, as kj+1 is a stopping time. It is also evident that
ℓ̃j(âi,h,kj ) is Fi,j-measurable, meaning that

∑t
j=1 1[kj ≤ K(S + 1)] · (ℓ̃j(âi,h,kj ) − ℓj(âi,h,kj ))

is a martingale difference sequence adapted to the filtration Fi,t. Thus, by the Azuma-Hoeffding
inequality, with probability at least 1 − δ/(SHm), for all t ∈ [K(S + 1)], we have that for some
constant C > 0,

1

t
·

∣∣∣∣∣∣
t∑

j=1

1[kj ≤ K(S + 1)] · (ℓ̃j(âi,h,kj )− ℓj(âi,h,kj ))

∣∣∣∣∣∣ ≤ C
√
ι

t
. (20)
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Next, we have from Theorem 28 that for some constant C ′, with probability at least 1 −
δ/(SHm), for all t ∈ [K(S + 1)],

max
ai∈Ai

t∑
j=1

ℓj(âi,h,kj )− ℓj(ai) ≤ C
′ι ·
√
tAi. (21)

From (20) and (21), and choosing t = Ĵh,s, we get that, with probability at least 1− 2δ/(SHm),

max
ai∈Ai

Ĵh,s∑
j=1

ℓ̃j(âi,h,kj )− ℓj(ai) ≤ C
′′ι ·
√
Ĵh,s ·Ai, (22)

for some constant C ′′ > 0. Let the event that (22) holds be denoted as Ei,h,s.
By definition we have π̂h(s) ∈ ∆(A) is given by the following distribution: for a ∈ A,

π̂h(a|s) =
1

Ĵh,s
·
Ĵh,s∑
j=1

1[âh,kj = a].

Therefore using (17) and (19), we have that, for each ai ∈ Ai,

1

Ĵh,s
·
Ĵh,s∑
j=1

ℓj(ai) = 1−
Qi,h(s, ai)

H
. (23)

From the definition of V q̂
i,h(s) in (11), we have

1

Ĵh,s
·
Ĵh,s∑
j=1

ℓ̃j(âi,h,kj ) =
1

Ĵh,s
·
Ĵh,s∑
j=1

(
1−

r̂i,h,kj + V
q̂
i,h+1(ŝh+1,kj )

H

)
= 1−

V
q̂
i,h(s)

H
. (24)

From (22), (23), and (24), we have that, under the event Ecoverage ∩ Ei,h,s,

max
ai∈Ai

(
Qi,h(s, ai)− V

q̂
i,h(s)

)
≤ C ′′ι ·H

√
Ai
J
. (25)

(In particular, we work under the event Ecoverage to ensure that Ĵh,s ≥ J). Thus, taking a union
bound over all i, h, s, and letting Ereg := Ecoverage ∩

⋂
i,h,s Ei,h,s, which has probability at least

1 − 3δ, we get that under the event Ereg, for all s, h, i so that (h, s) ∈ V̂ , (18) holds as long as we

have εreg ≥ C ′′ιH
√

Ai
J , which holds as long as CJ is sufficiently large (see Section C.4).

Next we combine the previous lemmas in the section to show that the policy π̂ is a coarse
correlated equilibrium for the game GV̂ .

Lemma 34 Under the event Ereg ∩ Eval, for all i ∈ [m], for any policy πi of player i, it holds that

V
GV̂ ,(πi,π̂−i)
i,1 (µ)− V GV̂ ,π̂

i,1 (µ) ≤ H · (εreg + 2 · εval).
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Proof For each i ∈ [m], h ∈ [H], s ∈ S, a ∈ A, we will write, for any policy π ∈ ∆(A)[H]×S and
any a ∈ A,

Q
GV̂ ,π

i,h (s,a) = E
s′∼P

GV̂
h (·|s,a)

[
r
GV̂
i,h (s,a) + V

GV̂ ,π

i,h+1 (s
′)
]
.

Now fix any (h, s) ∈ V̂ , so that PG
h (·|s,a) = PGV̂

h (·|s,a) and rGi,h(s,a) = r
GV̂
i,h (s,a) for all a ∈ A.

From (17) and the fact that (h, s) ∈ V̂ , we have

Qi,h(s, ai) = Ea−i∼π̂−i,h(s)Es′∼PGV̂
h (·|s,(ai,a−i))

[
r
GV̂
i,h (s, (ai,a−i)) + V

q̂
i,h+1(s

′)
]
.

Then for any fixed action ai ∈ Ai of player i, we have, under the event Eval (see Lemma 32),∣∣∣Ea−i∼π̂−i,h(s)

[
Q

GV̂ ,π̂

i,h (s, (ai,a−i))
]
−Qi,h(s, ai)

∣∣∣
=

∣∣∣∣Ea−i∼π̂−i,h(s)

[
Q

GV̂ ,π̂

i,h (s, (ai,a−i))− E
s′∼P

GV̂
h (·|s,(ai,a−i))

[
r
GV̂
i,h (s, (ai,a−i)) + V

q̂
i,h+1(s

′)
]]∣∣∣∣

=

∣∣∣∣Ea−i∼π̂−i,h(s)Es′∼PGV̂
h (·|s,(ai,a−i))

[
V

GV̂ ,π̂

i,h+1 (s
′)− V q̂

i,h+1(s
′)
]∣∣∣∣

≤εval, (26)

where the final inequality uses (12). Therefore, for all (h, s) ∈ V̂ , it holds that, under the event
Eval ∩ Ereg,

Ea−i∼π̂−i,h(s)

[
Q

GV̂ ,π̂

i,h (s, (ai,a−i))− V
GV̂ ,π̂

i,h (s)
]

≤Qi,h(s, ai)− V
q̂
i,h(s) + 2 · εval (27)

≤εreg + 2 · εval, (28)

where (27) follows from (26) as well as
∣∣∣V GV̂ ,π̂

i,h (s)− V q̂
i,h(s)

∣∣∣ ≤ εval under Eval, and (28) follows
from Lemma 33.

Now consider any (h, s) ̸∈ V̂ . Since a reward of at most 1 can be received at each step in GV̂ ,

it holds that Q
GV̂ ,π̂

i,h (s,a) ≤ H + 1− h for all i ∈ [m] and a ∈ A. Furthermore, since it still holds

that
∣∣∣V GV̂ ,π̂

i,h (s)− V q̂
i,h(s)

∣∣∣ ≤ εval under Eval, we see that

Ea−i∼π̂−i,h(s)

[
Q

GV̂ ,π̂

i,h (s, (ai,a−i))− V
GV̂ ,π̂

i,h (s)
]

≤(H + 1− h)− V q̂
i,h(s) + εval ≤ εval, (29)

where the final inequality follows from V
q̂
i,h(s) = H + 1− h for (h, s) ̸∈ V̂ (see (11)).

Now fix any player i and any policy πi of player i. Since the policy π̂−i is a Markov policy,
the value function of the game GV̂ as a function of player i’s policy is equivalent to that of a MDP.
Thus, we may apply the finite horizon version of the performance difference lemma (Kakade and

47



DASKALAKIS GOLOWICH ZHANG

Langford, 2002), which gives that

V
GV̂ ,(πi,π̂−i)
i,1 (µ)− V GV̂ ,π̂

i,1 (µ) =Es1:H ,a1:H∼(GV̂ ,(πi,π̂−i))

[
H∑
h=1

Q
GV̂ ,π̂

i,h (sh,ah)− V
GV̂ ,π̂

i,h (sh)

]
.

(30)

For each h ∈ [H], we bound the hth term in the above expression as follows:

Es1:H ,a1:H∼(GV̂ ,(πi,π̂−i))

[
Q

GV̂ ,π̂

i,h (sh,ah)− V
GV̂ ,π̂

i,h (sh)
]

=Esh∼(GV̂ ,(πi,π̂−i))
Eai∼πi,h(sh)Ea−i∼π̂−i,h(sh)

[
Q

GV̂ ,π̂

i,h (sh, (ai,a−i))− V
GV̂ ,π̂

i,h (sh)
]

≤εreg + 2 · εval, (31)

where (31) follows from (28) and (29). Thus, from (30), we get that, under Ereg ∩ Eval,

V
GV̂ ,(πi,π̂−i)
i,1 (µ)− V GV̂ ,π̂

i,1 (µ) ≤ H · (εreg + 2 · εval).

This completes the proof.

C.6. Completion of proof of Theorem 5

Lemma 34 comes close to showing that π̂ is an ϵ-CCE, except that it applied to the game GV̂ as
opposed to the game G. To get guarantees for the game G, we need to bound the probability (under
π̂ that a trajectory visits a state not in V̂), which is done in Lemma 35 below.

Lemma 35 For the output policy π̂ of SPoCMAR, we have that, for all h ∈ [H], under the event
Evisitation,

Psh∼(G,π̂)
[
(h, sh) ̸∈ V̂

]
≤ pS + εtvd.

Proof Recall that q̂ denotes the index of the final stage of SPoCMAR. Under the event Evisitation of
Lemma 30, since we have that π̂ = π̃q̂, it holds that for all h ∈ [H],∥∥∥dπ̂h − d̂q̂h∥∥∥

1
≤ εtvd.

Since q̂ is the final stage, it must be the case that for all s ∈ S and h ∈ [H] so that (h, s) ̸∈ V̂ = V q̂,
it holds that d̂q̂h(s) < p. In particular, for each h ∈ [H],

∑
s∈S:(h,s)̸∈V̂ d̂

q̂
h(s) < pS. Thus, under the

event Evisitation, it holds that
∑

s∈S:(h,s)̸∈V̂ d
π̂
h(s) < pS + εtvd.

By noting that for each h ∈ [H]

Psh∼(G,π̂)[(h, sh) ̸∈ V̂] =
∑

s∈S:(h,s)̸∈V̂

dπ̂h(s),

which concludes the proof.

Combining the previous lemmas, we now show that the policy π̂ is an approximate CCE of G
with high probability.
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Lemma 36 Under the event Evisitation ∩ Ereg ∩ Eval, the output policy π̂ of SPoCMAR satisfies the
following: for all i ∈ [m] and policies πi for player i, we have

V
G,(πi,π̂−i)
i,1 (µ)− V G,π̂

i,1 (µ) ≤ H · (εreg + 2 · εval) + 2H2 · (pS + εtvd) ≤ ϵ.

Proof We first show the following two facts hold under the joint event Evisitation ∩ Ereg ∩ Eval:

1. For all joint policies π and all players i, it holds that V G,π
i,1 (µ) ≤ V GV̂ ,π

i,1 (µ).

2. It holds that V
GV̂ ,π̂
i,1 (µ) ≤ V G,π̂

i,1 (µ) +H2 · (pS + εtvd).

To see the above facts, fix any joint policy π and note that, by definition,

V G,π
i,1 (µ) =Es1:H ,a1:H∼(G,π)

[
H∑
h=1

rGi,h(sh,ah)

]

V
GV̂ ,π
i,1 (µ) =Es′1:H ,a′

1:H∼(GV̂ ,π)

[
H∑
h=1

r
GV̂
i,h (s

′
h,a

′
h)

]
.

We now construct a coupling between trajectories (s1:H ,a1:H) ∼ (G, π) and (s′1:H ,a
′
1:H) ∼

(GV̂ , π), as follows:

1. First set s1 = s′1 to be the initial state, drawn from the initial state distribution µ.

2. Set a parameter τ = 1 and h = 1.

3. While τ = 1 and h ≤ H:

(a) Draw a sample ah = a′h ∼ πh(sh).
(b) Draw a sample sh+1 = s′h+1 ∼ PG

h (·|sh,ah).

(c) If (h+ 1, sh+1) ∈ V̂ , then increment h by 1, and continue.

(d) If (h+ 1, sh+1) ̸∈ V̂ , set τ = 0 and increment h by 1.

4. If h ≤ H (which means that the above loop was terminated early and we must have τ = 0):

(a) Draw independent samples (ah:H , sh+1:H) ∼ (PG
h , π), and (a′h:H , s

′
h+1:H) ∼ (PGV̂

h , π),
conditioned on starting at state sh = s′h at step h.5

It is immediate to see that the above joint distribution of (s1:H ,a1:H , s
′
1:H ,a

′
1:H) constitutes a cou-

pling between the trajectories induced by the pairs (G, π) and (GV , π). Let the distribution of
this coupling be denoted by ν. Note that for a pair of trajectories (s1:H ,a1:H , s

′
1:H ,a

′
1:H) drawn

from the distribution ν, we must have, with probability 1, sh = s′h,ah = a′h if for all h′ ≤ h,
(h′, sh′) ∈ V̂ . Let Jh denote the event that for all h′ ≤ h, (h′, sh′) ∈ V̂ , and let χJh ∈ {0, 1}
denote the indicator of Jh.

Next, we claim that for all h ∈ [H] and i ∈ [m], with probability 1, rGi,h(sh,ah) ≤ r
GV̂
i,h (s

′
h,a

′
h):

this is evident under the event Jh, since then we have (sh,ah) = (s′h,a
′
h) ∈ V̂ . Furthermore, if Jh

5. In the case that h = H , we only draw the joint action profiles aH and a′
H .
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does not hold, then for some (random) h′ ≤ h, we have (h′, sh′) ̸∈ V̂ , meaning that, regardless of
the policy π, r

GV̂
i,h (sh,ah) = 1 (since we have either sh = s1sink, and r

GV̂
i,h (s

1
sink,a) = 1 for all a, or

h = h′ in which case we have defined r
GV̂
i,h (s

′
h,a) = 1 for all a). It follows that, for any policy π,

V
GV̂ ,π
i,1 (µ)− V G,π

i,1 (µ) = E(s1:H ,a1:H ,s
′
1:H ,a

′
1:H)∼ν

[
H∑
h=1

(
r
GV̂
i,h (s

′
h,a

′
h)− rGi,h(sh,ah)

)]
≥ 0,

where ν is the joint distribution of (s1:H ,a1:H , s
′
1:H ,a

′
1:H) corresponding to π, establishing the first

of our claims (item 1) above.
Next we establish item 2, for which we only need to consider the policy π = π̂ output by

SPoCMAR. Under the event Evisitation, we have∣∣∣V G,π̂
i,1 (µ)− V GV̂ ,π̂

i,1 (µ)
∣∣∣

=

∣∣∣∣∣E(s1:H ,a1:H ,s
′
1:H ,a

′
1:H)∼ν

[
H∑
h=1

(
rGi,h(sh,ah)− r

GV̂
i,h (s

′
h,a

′
h)
)]∣∣∣∣∣

≤
H∑
h=1

∣∣∣Eν [χJh · (rGi,h(sh,ah)− rGV̂
i,h (s

′
h,a

′
h)
)]∣∣∣+ H∑

h=1

Eν
[∣∣∣(1− χJh) · (rGi,h(sh,ah)− rGV̂

i,h (s
′
h,a

′
h)
)∣∣∣]

≤2
H∑
h=1

Eν [1− χJh ] (32)

≤2H · Ps1:H ,a1:H∼(G,π̂)

[
∃h ∈ [H] : (h, sh) ̸∈ V̂

]
≤2H

H∑
h=1

Ps1:H ,a1:H∼(G,π̂)

[
(h, sh) ̸∈ V̂

]
≤2H2 · (pS + εtvd), (33)

where (32) follows because rGi,h(sh,ah)− r
GV̂
i,h (s

′
h,a

′
h) = 0 whenever χJh = 1 (as then (sh,ah) =

(s′h,a
′
h) ∈ V̂), and (33) uses the conclusion of Lemma 35 and the fact that Evisitation is assumed to

hold.
Using items 1 (with the policy (πi, π̂−i)) and 2 above, we obtain that, under the event Evisitation∩

Ereg ∩ Eval,

V
G,(πi,π̂−i)
i,1 (µ)− V G,π̂

i,1 (µ) ≤V GV̂ ,(πi,π̂−i)
i,1 (µ)− V GV̂ ,π̂

i,1 (µ) +H2 · (pS + εtvd)

≤H · (εreg + 2 · εval) + 2H2 · (pS + εtvd) ≤ ϵ,

where the second-to-last inequality follows from Lemma 34 and the final inequality follows by our
choices of εreg, εval, p, εtvd in Section C.4.

Finally, we may prove Theorem 5 as a consequence of Lemma 36 and the choices of our param-
eters.
Proof [Proof of Theorem 5] Consider any stochastic game G and any ϵ, δ > 0. Lemma 36 gives
that under the event Evisitation ∩Ereg ∩Eval (which has probability at least 1− 4δ), we have that the
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output policy π̂ of SPoCMAR satisfies

max
i∈[m]

{
V

G,(†,π̂−i)
i,1 (µ)− V G,π̂

i,1 (µ)
}
≤ ϵ,

which implies that π̂ is an ϵ-(nonstationary) CCE (Definition 1). It remains to bound the number of
trajectories collected by SPoCMAR: it is seen by inspection to be bounded above by

q̂∑
q=1

(
H∑
h=1

|Πqh| ·K +Nvisit

)
≤HS · (SHK +Nvisit)

≤HS ·O
(
SH · J

p
+
Sι

p2

)
≤HS ·O

(
SH ·H6ι2 ·maxiAi · SH2

ϵ3
+
Sι · SH2

ϵ2

)
≤O

(
H10S3ι2maxi∈[m]Ai

ϵ3

)
.

Finally, the proof is completed by rescaling δ to be δ/4.

Appendix D. On the Gates Used in GCircuit

The definition of ϵ-GCircuit in (Rubinstein, 2018) uses some gates not introduced in Definition 8,
namely G×(ζ|v1|v2), G=(|v1|v2), G+(|v1, v2|v3), G−(|v1, v2|v3), G∨(|v1, v2|v3), G∧(|v1, v2|v3),
G¬(|v1|v2), and G←(ζ|v), for ζ ∈ [0, 1]. However, it is straightforward to see that these gates may
be implemented as follows:

• G×, G=, G+, G− may each be implemented using the gate G×,+ (for appropriate choices of
ξ, ζ): in particular, we may implementG×(ζ|v1|v2) asG×,+(ζ/2, ζ/2|v1, v1|v2),G=(|v1|v2)
asG×,+(1/2, 1/2|v1, v1|v2),G−(|v1, v2|v3) asG×,+(1,−1|v1, v2|v3), andG+ asG×,+(1, 1|v1, v2|v3).

• The gateG←(ζ|v), for ζ ∈ [0, 1], may be implemented usingG←(1||u),G×,+(ζ/2, ζ/2|u, u|v);
since any ϵ-approximate assignment π must satisfy π(u) = 1, we get that π(v) = ζ · π(u)±
ϵ = ζ ± ϵ.

• The gateG∨(|v1, v2|v3) may be implemented using the following gates: G×,+(1/2, 1/2|v1, v2|u1),
G←(1||u2), G×,+(1/8, 1/8|u2, u2|u3), andG<(|u3, u1|v3), where u1, u2, u3 are supplemen-
tary nodes. Any ϵ-approximate assignment π must satisfy π(u1) =

π(v1)+π(v2)
2 ± ϵ, π(u3) =

1
4 ± ϵ. Thus, when π(v1) = 1 ± ϵ or π(v2) = 1 ± ϵ, as long as 1 − 2ϵ > 1/4 + 2ϵ (which
holds when ϵ < 1/16), π(v3) = 1± ϵ. Furthermore, when π(v1) = 0± ϵ and π(v2) = 0± ϵ,
again as long as ϵ < 1/16, we have π(v3) = 0± ϵ.

• The gateG¬(|v1|v2) may be implemented using the following gates: G←(1||u1),G×,+(1,−1|u1, v1|v2),
where u1 is a supplementary node. Any ϵ-approximate assignment π must satisfy π(u1) = 1
and so π(v2) = max{π(u1)− π(v1), 0} ± ϵ = 1− π(v1)± ϵ.
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• The gate G∧ may be implemented exactly as G∨(|v1, v2|v3) above, except the gate with
output node u3 being replaced with G×,+(3/8, 3/8|u2, u2|u3). (Alternatively, we may use
the gates G¬ and G∨.)

We also remark that our requirement that π(v) = ζ for G←(ζ||v) when ζ ∈ {0, 1} is stronger than
that in (Rubinstein, 2018), which allows for error ϵ, and that the gate G×,+ is not considered in
(Rubinstein, 2018). However, these modifications only make the problem harder. Summarizing, the
ϵ-GCircuit problem with the set of gates listed above is still PPAD-complete for some constant
ϵ.

Appendix E. Adversarial Bandit Guarantees

In the context of the adversarial no-regret bandit learning setting described in Section C.2, it was
shown in (Neu, 2015, Theorem 1) (see also (Lattimore and Szepesvári, 2020, Theorem 12.1), which
is not quite sufficient for us since it requires T to be known ahead of time) that for any T0 ∈ N,
δ ∈ (0, 1), with probability at least 1− δ, we have that for all T ≤ T0,

max
b∈B

T∑
t=1

(
ℓ̃t(bt)− ℓ̃t(b)

)
≤ O

(√
TB · log(T0B/δ)

)
.

To obtain Theorem 28 as a consequence of the above, let Ft denote the sigma-field generated by
b1, . . . , bt+1, ℓ̃1, . . . , ℓ̃t, ℓ1, . . . , ℓt+1. We now note that for each t, E[ℓ̃t(bt)|Ft−1] = ℓt(bt) and for
all t, b, E[ℓ̃t(b)|Ft−1] = ℓt(b). We then apply the Azuma-Hoeffding inequality (followed by a
union bound) to each of

(
ℓ̃t(bt)− ℓt(bt)

)
t∈[T0]

and, for all b ∈ B,
(
ℓ̃t(b)− ℓt(b)

)
t∈[T0]

, which are

martingale difference sequences with respect to the filtration Ft.

Appendix F. Omitted Proofs from Section B

In this section we give the proofs of some lemmas which were omitted in Section B.

F.1. Proofs from Section B.2

Proof [Proof of Lemma 12] Let us view π ∈ ∆(A)S ⊂ RS×A as a vector whose components are
π(a|s), for all (s,a) ∈ S ×A. Then by policy gradient theorem (Sutton et al., 1999), we have that
for all π and states s1 ∈ S,

∇πV π(s1) =
1

1− γ
· Es∼dπs1Ea∼π(·|s) [∇π log π(a|s) ·Qπ(s,a)]

=
1

1− γ
· Es∼dπs1

[∑
a∈A
∇ππ(a|s) ·Qπ(s,a)

]

=
1

1− γ
· Es∼dπs1

[∑
a∈A

e(s,a) ·Qπ(s,a)

]
,

where e(s,a) denotes an all-zero vector except that the (s,a) component is one. For a vector v ∈
RS×A and s ∈ S, write vs := (vs,a)a∈A ∈ RA. Since |Qπ(s,a)| ≤ 1 for all s,a and

∑
s d

π
s1(s) =
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1, it holds that
∑

s∈S ∥(∇πV π(s1))s∥∞ ≤ 1/(1 − γ). Furthermore, note that for any vectors
v, w ∈ RS×A, we have

|⟨v, w⟩| ≤
∑
s∈S
|⟨vs, ws⟩| ≤

∑
s∈S
∥vs∥∞ · ∥ws∥1 ≤ max

s∈S
{∥ws∥1} ·

∑
s∈S
∥vs∥∞.

It follows that for all s ∈ S and i ∈ [m],

|V π
i (s)− V π′

i (s)| ≤ max
π̃∈∆(A)S

|⟨π − π′,∇π̃V π̃(s)⟩| ≤ 1

1− γ
·max
s′∈S
∥π(·|s′)− π′(·|s′)∥1,

verifying the first claim of the lemma. The second claim follows as a consequence of the first and
the fact that for all policies π, Qπi (s,a) = (1− γ) · ri(s,a) + γ · Es′∼P(·|s,a)[V π

i (s
′)].

F.2. Proofs from Section B.3

Proof [Proof of Lemma 14] For each i ∈ [m], s ∈ S, define

π†i (s) ∈ argmax
ai∈Ai

Ea−i∼π−i(s)[Q
π
i (s, (ai,a−i))] (34)

ρi,s := max
ai∈Ai

Ea−i∼π−i(s)[Q
π
i (s, (ai,a−i))]− V π

i (s).

Since V π
i (s) = Ea∼π(s)[Q

π
i (s,a)] and πi(s) is a product distribution for all i, s, it holds that for all

i, s,

ρi,s = E
a∼(π†

i×π−i)(s)
[Qπi (s,a)− V π

i (s)] = Ea−i∼π−i(s)[Q
π
i (s, (π

†
i (s),a−i))− V

π
i (s)] ≥ 0.

(35)

By the performance difference lemma (Lemma 11), we have, for all i ∈ [m], s ∈ S,

V
π†
i×π−i

i (s)− V π
i (s) =

1

1− γ
· E

s′∼d
π
†
i
×π−i

s

E
a∼π†

i×π−i(s′)
[Qπi (s

′,a)− V π
i (s

′)]

≥E
a∼(π†

i×π−i)(s)
[Qπi (s,a)− V π

i (s)] = ρi,s,

where the second inequality follows from (35) and the fact that dπs (s) ≥ 1− γ by definition of dπs .

If π is an ϵ-perfect NE, then we have that V π†
i×π−i

i (s)− V π
i (s) ≤ ϵ for all i, s, which therefore,

implies that for all i, s, we have ρi,s ≤ ϵ, i.e., (2) holds, and therefore π is an ϵ-PNE-SG.
If π is an ϵ-NE, then for all agents i ∈ [m], we know from Lemma 11 that

ϵ ≥ Es∼µ
[
V
π†
i×π−i

i (s)− V π
i (s)

]
=

1

1− γ
· E

s′∼d
π
†
i
×π−i

µ

E
a∼π†

i×π−i(s′)
[Qπi (s

′,a)− V π
i (s

′)]

≥Es∼µEa∼(π†
i×π−i)(s)

[Qπi (s,a)− V π
i (s)] = Es∼µ

[
ρi,s
]
,

where we use the fact that dπµ(s) ≥ (1− γ)µ(s) for all s. This shows that π is an ϵ-NE-SG.
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Proof [Proof of Lemma 16] We will use the following shorthand notation in the proof: for a Markov
product policy π, a state s ∈ S, an agent i ∈ [m], and an action ai ∈ Ai, we write (with a slight
abuse of notation):

Qπi (s, ai) := Ea−i∼π−i(s) [Q
π
i (s, (ai,a−i))] .

Fix a stationary product policy π : S → ∆(A1)× · · · ×∆(Am). For each i ∈ [m] and s ∈ S,
define

ρi,s := max
ai∈Ai

Ea−i∼π−i(s)[Q
π
i (s, (ai,a−i))]− V π

i (s) = max
ai∈Ai

Qπi (s, ai)− Eai∼πi(s)[Q
π
i (s, ai)].

In the case that π is an ϵ-PNE-SG, we have that maxi,s ρi,s ≤ ϵ, and in the case that π is an ϵ-NE-SG,
we have that maxi Es∼µ[ρi,s] ≤ ϵ.

Fix some k > 1 to be specified later. We construct a new product policy π′ as follows: for each
i ∈ [m], s ∈ S, and ai ∈ Ai,

π′i(ai|s) :=

{
πi(ai|s)
1−π̄i(s) : Qπi (s, ai) ≥ maxa′i∈Ai{Q

π
i (s, a

′
i)} − k · ρi,s

0 : otherwise,

where π̄i(s) is the sum, over all ai so that Qπi (s, ai) < maxa′i∈Ai{Q
π
i (s, a

′
i)} − kρi,s, of πi(ai|s).

Next, using the fact that π is an ϵ-NE-SG, we have the following claim:

Lemma 37 ((Daskalakis et al., 2009), Claim 6) For all i ∈ [m], s ∈ S, it holds that∑
ai∈Ai

∣∣π′i(ai|s)− πi(ai|s)∣∣ ≤ 2

k − 1
.

Thus

max
s∈S
∥π(s)− π′(s)∥1 ≤ max

s∈S

∑
i∈[m]

∥πi(s)− π′i(s)∥1 ≤
2p

k − 1
.

Hence, for all s ∈ S, i ∈ [m], a ∈ A, by Lemma 12,∣∣∣Qπi (s, a)−Qπ′
i (s, a)

∣∣∣ ≤ 2pγ

(k − 1)(1− γ)
,

which implies that for all ai ∈ Ai, we have

|Qπi (s, ai)−Qπ
′
i (s, ai)| ≤∥π−i(·|s)− π′−i(·|s)∥1 +

2pγ

(k − 1)(1− γ)
≤ 2p

(k − 1)(1− γ)
.

Thus, for all s ∈ S, i ∈ [m], and ai ∈ Ai so that π′i(ai|s) > 0, we have

Qπ
′
i (s, ai) ≥Qπi (s, ai)−

2p

(k − 1)(1− γ)

≥ max
a′i∈Ai

{Qπi (s, a′i)} − kρi,s −
2p

(k − 1)(1− γ)

≥ max
a′i∈Ai

{Qπ′
i (s, a′i)} − kρi,s −

8p

k(1− γ)
.
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Let us now choose k =
√

8p
(1−γ)ϵ . Then in the case that π is an ϵ-PNE-SG, we have ρi,s ≤ ϵ for all

i, s, and we immediately obtain the desired result.
If π is only an ϵ-NE-SG, then for all i ∈ [m],

Es∼µ
[
max
a′i∈Ai

Qπi (s, a
′
i)− min

ai∈Ai:πi(ai|s)>0
Qπi (s, ai)

]
≤Es∼µ

[
kρi,s +

8p

k(1− γ)

]
≤kϵ+ 8p

k(1− γ)
,

which gives that π′ is an 6 ·
√

pϵ
1−γ -WSNE-SG.

F.3. Proofs from Section B.4

Proof [Proof of Lemma 23] Consider any policy π : S → [0, 1]. We first compute Qπcr(w)(w, b) for
b ∈ {0, 1}:

• Qπcr(w)(w, 1) = γ · V π
cr(w)(v2) = γ · (β · π(v2)± γ) = γ · β · π(v2)± γ2;

• Qπcr(w)(w, 0) = γ · V π
cr(w)(v1) = γ · (β · π(v1)± γ) = γ · β · π(v1)± γ2.

We next compute Qπcr(v3)(v3, b) for b ∈ {0, 1} in the particular case where π(w) ∈ {0, 1}:

• If π(w) = 1, then:

– Qπcr(v3)(v3, 1) = γβ ± γ2.

– Qπcr(v3)(v3, 0) = 0.

• If π(w) = 0, then

– Qπcr(v3)(v3, 1) = −γβ ± γ
2.

– Qπcr(v3)(v3, 0) = 0.

Notice that γ|β|ϵ − 2γ2 > ϵ′ implies β ̸= 0. Suppose that π(v1) ≤ π(v2) − ϵ and that β > 0.
We have

Qπcr(w)(w, 1)−Q
π
cr(w)(w, 0) ≥ γβ · (π(v2)− π(v1))− 2γ2 ≥ γβϵ− 2γ2 > ϵ′,

which implies that, since w is ϵ′-unimprovable under π, we must have that π(w) = 1. Then we have

Qπcr(v3)(v3, 1)− V
π
cr(v3)

(v3, 0) ≥ γβ − γ2 > ϵ′,

meaning that π(v3) = 1 since v3 is ϵ′-unimprovable under π, which is what we wanted to show in
this case. In a similar manner, if π(v1) ≤ π(v2)− ϵ but β < 0, then we see that π(w) = 0 and since
−γβ − γ2 > ϵ′, we again get that π(v3) = 1.

Similarly, if π(v1) ≥ π(v2) + ϵ, then we have π(w) = 0 if β > 0 and π(w) = 1 if β < 0. In
the case that β > 0, we get that π(v3) = 0, and in the case that β < 0, we also get that π(v3) = 0,
as desired.
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