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Abstract
In fixed budget bandit identification, an algorithm sequentially observes samples from several dis-
tributions up to a given final time. It then answers a query about the set of distributions. A good
algorithm will have a small probability of error. While that probability decreases exponentially
with the final time, the best attainable rate is not known precisely for most identification tasks. We
show that if a fixed budget task admits a complexity, defined as a lower bound on the probability of
error which is attained by the same algorithm on all bandit problems, then that complexity is deter-
mined by the best non-adaptive sampling procedure for that problem. We show that there is no such
complexity for several fixed budget identification tasks including Bernoulli best arm identification
with two arms: there is no single algorithm that attains everywhere the best possible rate.
Keywords: Multi-armed bandits, fixed budget, best arm identification

1. Introduction

A multi-armed bandit is a model of a sequential interaction between an algorithm and its envi-
ronment. The bandit is described by a finite number of probability distributions (called arms)
ν1, . . . , νK with finite means. At every discrete step t ∈ N, the algorithm chooses one arm kt
and observes a sample Xkt

t from the distribution νkt . The bandit model was introduced to study
clinical trials, but has found many applications in recommender systems and online advertisement.

Most of the bandit literature is concerned with the design of algorithms that maximize the ex-
pected sum of the samples gathered by the algorithm, which in this case represent rewards accrued
by choosing the arms. See (Bubeck et al., 2012; Lattimore and Szepesvári, 2020) for extensive sur-
veys. We are on the other hand interested in the identification setting. We also consider a set D of
tuples of real probability distributions (we call such a tuple a bandit problem), but we additionally
define a finite answer set I, and a function i⋆ : D → I, called the correct answer function. We
call (D, I, i⋆) an identification task. An identification algorithm will sequentially observe samples
from the unknown distributions (ν1, . . . , νK) ∈ D until a time τ at which it stops and returns an
answer. Its goal is to return the correct answer with high probability. At each successive discrete
time t ≥ 1 until a stopping time τ , the algorithm chooses an arm kt based on previous observations
and it observes Xkt

t ∼ νkt . At τ , the algorithm returns an answer îτ ∈ I. We say that the answer
is correct if îτ = i⋆(ν), and that the algorithm makes an error otherwise. We denote by pν,τ (A) the
probability of error of algorithm A on problem ν, that is pν,τ (A) := Pν,A(̂iτ ̸= i⋆(ν)) (we index
the probability by the problem and the algorithm). The bandit identification problem has mainly
been studied in the two following ways:

• Fixed confidence: the stopping time τ is a part of the algorithm design, and we want to find
an algorithm A with minimal Eµ[τ ] under the constraint that for all µ ∈ D, pµ,τ (A) ≤ δ for
a known δ > 0.
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• Fixed budget: the stopping time is set to a value T ∈ N known in advance, and we are looking
for an algorithm A with minimal pµ,T (A) for all µ ∈ D.

Detailed example: best arm identification The bandit identification framework include diverse
queries about the distribution, the most popular of which is best arm identification (BAI, Even-Dar
et al. (2006); Bubeck et al. (2009); Audibert et al. (2010); Gabillon et al. (2012); Karnin et al.
(2013)). Here the goal of the algorithm is to find the arm with highest mean.

Suppose that we know that the distributions of the arms are Bernoulli, but with unknown means:
this is encoded in the set of tuples of distributions D = {(ν1, . . . , νK) | ∀k ∈ [K], ∃µk ∈
(0, 1), νk = B(µk)}, where B(µk) is the Bernoulli distribution with mean µk. In that example,
the tuple of distributions ν is uniquely described by the tuple of means µ and we will talk indiffer-
ently about ν and µ.

We want to find the arm with highest mean, hence the set of answers is I = {1, . . . ,K}. The
correct answer function i∗ : D → I is i⋆(µ) = argmaxk µk. To ensure that i∗ is a function, with a
unique value in I, we need to restrict D to the tuples µ such that the argmax is unique.

In fixed budget identification, an algorithm would sample an arm at each time until time T , then
return îτ ∈ [K], the arm which it thinks is the one with highest mean. That answer would be correct
if îτ = i⋆(ν) = argmaxk µk and would make a mistake otherwise

Other examples of identification tasks Identification is more general than BAI, and we could
seek the answer to other queries

• Thresholding Bandits (Locatelli et al., 2016): the algorithm returns for all arms whether its
mean is below or above a given threshold, and is correct only if all signs are correct. The
answer set is I = {−,+}K .

• Positivity: the goal of the algorithm is to determine whether all arms have means above a
threshold, or if at least one has mean below. The answer set is I = {all above, exists below}.
It was introduced in (Kaufmann et al., 2018) as a step towards identification of the best play
in two player min-max games, but can also model the task of verifying if all components of a
system meet minimal performance thresholds. See also (Degenne and Koolen, 2019).

These two examples vary the answer set and function, I and i⋆. Variants of these tasks can
also be obtained by choosing different sets of distributions D. For example, the distributions could
be Gaussian with same variance and a mean vector result of the product of a known matrix and an
unknown low dimensional parameter vector, as in linear bandits. These so-called structured settings
are the subject of a lot of recent attention in the fixed budget literature (Azizi et al., 2021; Alieva
et al., 2021; Yang and Tan, 2022; Cheshire et al., 2021). Our approach of fixed budget identification
is frequentist, but a bayesian goal could also be studied, as in (Atsidakou et al., 2022).

Assumptions on the identification problem We do not consider all possible identification prob-
lems, but restrict our attention to queries about the means of parametric distributions. We suppose
that for each arm k ∈ [K], the set of possible distributions is a subset of a one-parameter canonical
exponential family. For example, all arms may have Gaussian distributions with known variance but
unknown mean, or Bernoulli distributions with means in (0, 1). Exponential families is the setting
for which fixed confidence is best understood. Bandit identification is of course interesting beyond
that model. However the goal of this paper is to show mostly negative results, showing that fixed
budget is not as simple as fixed confidence, even in that very simple parametric model.
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For such exponential families, the distribution of each arm can be uniquely described by its
mean, we identify means and distributions everywhere in the remainder of the paper. We will talk
about some bandit problem µ ∈ D and also denote its mean vector by µ. The mean of each arm
k ∈ [K] belongs to an open interval Mk. For any set S, let cl(S) be its closure and int(S) be its
interior. The empirical mean µ̂T,k ∈ cl(Mk) of an arm k is the maximum likelihood estimator for
the mean µk and we can have concentration results for that estimator.

Finally, we need to introduce an assumption to make sure that every µ ∈ D has a well defined
correct answer which can reliably be found if we observe enough samples of every arm.

Assumption 1 For all i ∈ I, Di := {µ ∈ D | i⋆(µ) = i} is open and Di = int(cl(Di)). The union⋃
i∈I cl(Di) contains all tuples of distributions in the exponential family. Finally, D =

⋃
i∈I Di

Di = int(cl(Di)) ensures that if all problems in a neighborhood of µ ∈ D have the same
answer i, then i⋆(µ) = i as well. The condition on

⋃
i∈I cl(Di) ensures that the empirical mean

of the arms will always be in the closure of D. We then extend i⋆ beyond D, to all tuples in
cl(M1) × . . . × cl(MK), by giving it an arbitrary value outside of D. We can then define the
empirical correct answer i⋆(µ̂T ). Informally, we required that D contains all tuples of distributions
for which the correct answer i⋆ is unique. In thresholding bandits D contains all tuples for which all
arms have means not equal to the threshold. Everywhere in the paper D will satisfy that assumption,
even if not explicitly mentioned. For example, if we write that in a BAI task D contains Gaussian
distributions with variance 1, we mean all tuples such that there is a unique arm with highest mean.

1.1. Fixed confidence bandit identification

Fixed confidence identification is now well understood in the asymptotic regime, when δ → 0.
Let’s now describe one central facet of asymptotic fixed confidence identification: the existence of a
complexity. To that end we will consider two classes of algorithms. The first class contains δ-correct
algorithms. Denote it Cδ. An algorithm is said to be δ-correct on D if for all µ ∈ D, pµ,τ ≤ δ.

Garivier and Kaufmann (2016) showed that there exists a function HCδ : D → R such that any
δ-correct algorithm satisfies, for all µ ∈ D,

lim inf
δ→0

Eµ[τ ]/ log(1/δ) ≥ HCδ(µ) .

They introduced the Track-and-Stop algorithm (TnS), which is δ-correct and satisfies for all µ ∈ D

lim sup
δ→0

Eµ[τ ]/ log(1/δ) ≤ HCδ(µ) .

The conclusion from these two facts is that we can meaningfully talk about the complexity of
identification at µ for δ-correct algorithms: there is a function HCδ which is a lower bound on
lim infδ→0

Eµ[τ ]
log(1/δ) for all µ ∈ D and all algorithms A ∈ Cδ, and that bound can be matched on

every µ by the same algorithm in the class (TnS for example, among others (Degenne et al., 2019;
You et al., 2022)).

The second class of interest contains algorithms which are δ-correct and use static proportions,
meaning algorithms which are parametrized by w ∈ △K (the simplex) and maintain sampling
counts at every time T ∈ N close to wkT for each arm k ∈ [K], say |NT,k − wkT | ≤ K for
all T, k. Let us denote that class by Csp. For (D, I, i⋆) satisfying our assumptions, there exist
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stopping rules and recommendation rules which can make any algorithm using them δ-correct, re-
gardless of the sampling rule (Garivier and Kaufmann, 2016). This shows in particular that Csp

is not empty, and contains algorithms with the static proportion sampling rule for all w ∈ △K .
Let HCsp be the least expected stopping time (normalized by log(1/δ)) for algorithms in Csp:
HCsp(µ) = infA∈Csp lim infδ→0

Eµ,A[τ ]
log(1/δ) . Since Csp ⊆ Cδ, we have HCδ ≤ HCsp . A remark-

able property of fixed confidence identification is that these two functions are in fact equal. For
each µ ∈ D, there exists oracle static proportions w⋆(µ) ∈ △K and a static proportion algorithm

Asp
w⋆(µ) parametrized by w⋆(µ) such that lim infδ→0

Eµ,Aw⋆(µ)
[τ ]

log(1/δ) = HCδ(µ). The existence of op-
timal static proportions is used in the design of TnS: the sampling rule ensures that the sampling
proportions converge to w⋆(µ). To summarize, the class of δ-correct algorithms in fixed confidence
identification satisfies the following properties:

(C) It has a complexity HCδ which defines a lower bound for all µ ∈ D and all A ∈ Cδ and there
is an algorithm in Cδ that attains it for all µ ∈ D.

(SP) The complexity HCδ is equal to HCsp , which characterizes the difficulty of each µ ∈ D for
the best static proportions algorithm in hindsight.

The description above gives a good picture of asymptotic fixed confidence, in the regime δ → 0.
It is now the object of a large literature, which also deals with structured BAI, other identification
tasks, and/or give algorithms that have advantages over TnS. Fixed confidence BAI with δ not close
to zero and small gaps is also an active field of study, which is less well understood (Simchowitz
et al., 2017; Katz-Samuels and Jamieson, 2020).

1.2. Fixed Budget Bandit Identification

An algorithm family A is a sequence (AT )T≥1 of algorithms, one for each possible value of the hori-
zon. That definition allows us to describe the behavior of fixed budget algorithms in the limit T →
+∞. This is similar to fixed confidence, where we describe the limit as δ → 0 of Eµ[τ ]/ log(1/δ):
we compute that limit for a family of algorithms, one for each δ. A good fixed budget algorithm
family minimizes the probability of error pµ,T for all µ ∈ D. That probability is exponentially small
in T for any algorithm that pulls all arms linearly and recommends the empirical correct answer.
We hence look at the rate at which it decreases, and define hµ,T (A) = T/ log(1/pµ,T (A)) . Written
differently, the error probability of A on µ ∈ D is pµ,T (A) = exp(−T/hµ,T (A)).

Oracle difficulty of an algorithm class We call a set of algorithm families an algorithm class.
We want to quantify the performance of the best algorithm family in C at µ ∈ D. An algorithm
family A is asymptotically “good” if eventually as T → +∞, hµ,T (A) becomes small. We are thus
interested lim supT→+∞ hµ,T (A). For an algorithm class, we want to quantify that limsup for the
best algorithm in the class, hence we define the oracle difficulty as

HC(µ) := inf
A∈C

lim sup
T→+∞

hµ,T (A) = inf
A∈C

lim sup
T→+∞

T/ log(1/pµ,T (A)) .

We call HC(µ) an oracle difficulty because it reflects how difficult the problem µ is for the algorithm
family in the class which is best at µ. By definition, for all A ∈ C and for all ε > 0, there exists
infinitely many times T ≥ Tε such that pµ,T (A) ≥ exp (−T/(HC(µ)− ε)) . Thus HC represents a
lower bound on the probability of error of any algorithm family in the class.
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Complexity By analogy with fixed confidence identification, we say that an algorithm class C
admits a complexity if there exists A⋆

C ∈ C such that for all µ ∈ D, lim supT→+∞ hµ,T (A⋆
C) ≤

HC(µ) . We then have equality and furthermore HC = H{A⋆
C}. We thus say that the class has

an asymptotic complexity if a single algorithm matches the lower bound everywhere on D. Some
classes admit complexities, for example any singleton class, while we will see that others do not.

Difficulty ratio In order to establish whether a class admits a complexity, we will need to compare
the rate of algorithm families with the difficulty of the class. Suppose more generally that we are
given a function H : D → R+ which represents a difficulty a priori of each µ ∈ D, and that
we want to compare hµ,T (A) to H(µ) in order to assess how good A is when compared to the
baseline H . That function H which will usually be the oracle difficulty of an algorithm class, but
not necessarily. Most of the literature on sub-Gaussian BAI defines H as the sum of the inverse
squares of the gaps, and compares algorithms to that baseline. We define the difficulty ratio of an
algorithm family A to H at a problem µ ∈ D at time T as

RH,T (A, µ) =
hµ,T (A)

H(µ)
=

T

H(µ) log(1/pµ,T (A))
.

That ratio is larger than 1 if AT has error probability larger than the value exp(−T/H(µ)) pre-
scribed by the difficulty H . If we consider two classes C ⊆ C′, then HC ≥ HC′ and RHC ,T (A, µ) ≤
RHC′ ,T (A, µ). We introduce the notation RH,∞(A, µ) = lim supT→∞Rµ,T (A, µ). We call the
value supµ∈D RHC ,∞(A, µ) the maximal difficulty ratio of A.

An algorithm class C admits an asymptotic complexity iff there exists A⋆
C ∈ C such that

supµ∈D RHC ,∞(A⋆
C , µ) ≤ 1. If on the contrary that quantity is strictly greater than 1 for all A ∈ C,

then any algorithm in the class has a sub-optimal rate compared to the oracle at some point of D.

1.3. Contributions and structure of the paper

We are inspired by the open problem presented at COLT 2022 by Qin (2022). With our terminology,
they ask whether there exists a sufficiently large algorithm class that admits a complexity in fixed
budget best arm identification. We draw a parallel with the fixed confidence setting and also ask
whether that complexity necessarily equates the oracle difficulty of static proportions.

• We formalized in the introduction the notion of complexity of fixed budget identification and
we give tools for the study of that complexity. In particular, we reduce the question of its
existence to the derivation of a bound on the difficulty ratio.

• In Section 3, we present generic lower bounds on the difficulty ratio.
• In Section 4, we use these tools to study the range of the smallest possible maximal difficulty

ratio for any algorithm when compared to static proportions algorithms. We show that this
ratio is at least 1 for most tasks, and is at most K. The lower bound of 1 indicates that static
proportions oracles indeed define lower bounds on the error probability of any algorithm: if
a class C contains static proportions algorithms and has a complexity, then that complexity is
the oracle difficulty of static proportions. The upper bound of K is attained: in the positivity
task, uniform sampling is optimal and has a maximal difficulty ratio equal to K.

• In Section 5, we show that for any algorithm class that contains the static proportions al-
gorithms, BAI has no complexity for K large enough. We show that for the same classes,
Bernoulli BAI has no complexity for K = 2.
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2. Algorithmic classes

We introduce several algorithm classes for which we will ask whether a complexity exists. We
denote by C∞ the class of all algorithm families.

Static proportions Static proportions algorithms pull all arms according to a pre-defined alloca-
tion vector in the simplex, then return the empirical correct answer. That is, îT = i⋆(µ̂T ). Let
△0

K = {ω ∈ △K | ∀k ∈ [K], ωk > 0}. A static proportions algorithm parametrized by ω ∈ △0
K

is any sampling rule which satisfies |NT,k − Tωk| ≤ K for all k ∈ [K]. Such a sampling rule ex-
ists: see the tracking procedure of Garivier and Kaufmann (2016), and the bound on the difference
|NT,k − Tωk| for that procedure derived by Degenne et al. (2020).

Let Alt(µ) = {λ ∈ D | i⋆(λ) ̸= i⋆(µ)} be the set of alternatives to µ ∈ D. For λk, µk two
means of distributions in an exponential family, we denote by KL(λk, µk) the Kullback-Leibler
divergence between the two corresponding distributions. We give now a bound on the probability
of error of static proportions algorithms, which is adapted from (Glynn and Juneja, 2004).

Theorem 1 Let Asp
ω be a static proportions algorithm parametrized by ω ∈ △0

K . For all µ ∈ D,

lim
T→+∞

hµ,T (Asp
ω ) =

(
inf

λ∈Alt(µ)

∑
k∈[K]

ωkKL(λk, µk)
)−1

.

As a consequence, the oracle difficulty of the class Csp of static proportions algorithms is

HCsp(µ) = inf
ω∈△0

K

lim
T→+∞

hµ,T (Asp
ω ) =

(
max
ω∈△0

K

inf
λ∈Alt(µ)

∑
k∈[K]

ωkKL(λk, µk)
)−1

.

Let’s illustrate that difficulty on the BAI task with Gaussians distributions with variance 1. For
k ∈ [K], let ∆k = µi⋆(µ) − µk. It was shown by Garivier and Kaufmann (2016) that for all µ ∈ D,
HCsp satisfies the inequalities H∆(µ) ≤ HCsp(µ) ≤ 2H∆(µ), where H∆(µ) = 2

mink:∆k>0 ∆
2
k
+∑

k:∆k>0
2
∆2

k
.

Consistent and exponentially consistent An algorithm family is said to be consistent (Kaufmann
et al., 2016) if for all µ ∈ D, limT→+∞ pµ,T = 0. We denote that class by Cc. It is said to be
exponentially consistent (Barrier et al., 2022) if for all µ ∈ D, lim supT→+∞ hµ,T (A) < +∞.
We denote that class Cec. Consistent algorithms are the largest class of algorithm families which
are “good everywhere”, in the sense that they eventually get the right answer with high probability,
no matter which problem µ ∈ D they face. Any exponentially consistent algorithm is consistent:
Cec ⊆ Cc. Static proportions algorithms are exponentially consistent: Csp ⊆ Cec. Indeed for any
ω ∈ △0

K , under Assumption 1 the formula for limT→+∞ hµ,T (Asp
ω ) of Theorem 1 gives a finite

value. This proves that Asp
ω ∈ Cec for all ω ∈ △0

K . We restricted the static proportions to △0
K

instead of △K to ensure that the algorithms are exponentially consistent.

Bounded difficulty The approach of most fixed budget papers, which is however often not ex-
plicitly stated like this, is to suppose that some function H : D → R represents a complexity
of the fixed budget identification task and to look for algorithms that have error probability close
to exp(−T/H(µ)). Such a function can be for example H∆(µ) (defined in the static proportions
paragraph) for best arm identification. The algorithms Successive Rejects (Audibert et al., 2010) or
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Successive Halving (Karnin et al., 2013) thus achieve error bounds that depend on H∆. Komiyama
et al. (2022) make that approach explicit: a possibly arbitrary function H is considered and where
we are interested in the following class.

C(H) = {A | ∃R ∈ R, ∀µ ∈ D, lim sup
T→∞

hµ,T (A) ≤ RH(µ)} = {A | sup
µ∈D

RH,∞(A, µ) < +∞} .

We don’t allow H to be infinite in D, which means in particular that C(H) ⊆ Cec for all H . Of
course if H is chosen badly that class will be empty. The goal of Komiyama et al. (2022) is then
to design algorithms which get the smallest maximal difficulty ratio, given an arbitrary function H .
They derive a theoretical algorithm for which the ratio approaches a proxy of the lower bound (but
which is computationally intractable), and introduce a second heuristic based on neural networks.

Given an algorithm class C′, we will consider its oracle difficulty HC′ and then the class C(HC′)
of algorithms with bounded difficulty ratio with respect to HC′ . We denote C(HC′) by C′. The class
C′ might not contain C′. If C′ ⊆ C′′, then from the definition we get C′′ ⊆ C′. The class of static pro-
portions satisfies Csp ⊆ Csp. The proof is a simple study of the ratio between limT→+∞ hµ,T (Asp

ω )
for different values of ω. See the proof of Theorem 5 in Section 4.

Within a constant of the uniform allocation The uniform static proportions algorithm Au :=
Asp

(1/K,...,1/K) ∈ Csp, that allocates an equal number of samples to every arm, is a natural baseline
to which we can compare algorithms. We can for example look for algorithms that have a difficulty
ratio to the complexity of the uniform allocation which is uniformly bounded on D. This is the class
{Au} = C(H{Au}). Since Csp ⊆ Csp and {Au} ⊆ Csp, that class satisfies Csp ⊆ Csp ⊆ {Au} .

Summary Consistent, exponentially consistent algorithms and the class of algorithm families
within a constant of the uniform allocation all contain the static proportions algorithms Csp : Csp ⊆
Cec ⊆ Cc and Csp ⊆ {Au}. If we get a lower bound on RHCsp ,T (A, µ) for an algorithm family A,
then it is also a lower bound for the ratio to the difficulty of any of the classes Cc, Cec, {Au}.

3. Lower bounds on the difficulty ratio

Most of the bounds on the difficulty ratio we derive are consequences of the following theorem.

Theorem 2 Let H : D → R+ be an arbitrary difficulty function. Let µ, λ ∈ D be such that
i∗(λ) ̸= i∗(µ) and H(λ) ≤

√
T . Then for any algorithm A,

RH,T (A, λ)−1(1− pµ,T (A))− log 2√
T

≤ H(λ)

K∑
k=1

Eµ

[
NT,k

T

]
KL(µk, λk) .

The proof of this inequality follows the standard bandit lower bound argument, appealing to
the data processing inequality for the KL divergence, which can be found for example in (Garivier
et al., 2019). The proof is in Appendix B. The only mildly original step is to put H(λ) on the right
of the inequality instead of writing a lower bound on pλ,T (A) (which would give a bound akin to
Lemma 6 of (Barrier et al., 2022) when taking the limit as T → +∞).
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Theorem 3 For any consistent algorithm family A, for all µ ∈ D and all sets D(µ) ⊆ Alt(µ),

( sup
λ∈D(µ)

RH,∞(A, λ))−1 ≤ max
ω∈△K

inf
λ∈D(µ)

H(λ)

K∑
k=1

ωkKL(µk, λk) .

Furthermore, (sup
λ∈D

RH,∞(A, λ))−1 ≤ inf
µ∈D

max
ω∈△K

inf
λ∈Alt(µ)

H(λ)
K∑
k=1

ωkKL(µk, λk) .

Proof Let µ ∈ D. Since △K is compact, the sequence (Eµ,A[NT /T ])T∈N has a subsequence
indexed by some (Tn)n∈N which converges to a vector ωµ ∈ △K . Let λ ∈ Alt(µ). Theorem 2
gives, for n large enough,

RH,Tn(A, λ)−1(1− pµ,Tn(A))− log 2√
Tn

≤ H(λ)

K∑
k=1

Eµ

[
NTn,k

Tn

]
KL(µk, λk) .

Since A is consistent, 1− pµ,Tn(A) → 1. Taking a limit as n → +∞, we have

lim inf
n→+∞

RH,Tn(A, λ)−1 ≤ H(λ)

K∑
k=1

ωµ,kKL(µk, λk) .

That bound on the liminf of a subsequence gives a bound on the liminf of the whole sequence.
We finally take an infimum over λ ∈ D(µ) on both sides of the inequality, and replace ωµ by a
maximum over the simplex. We proved the first statement. The second inequality is obtained by
choosing D(µ) = Alt(µ) and taking an infimum over µ ∈ D.

The second inequality of Theorem 3 recovers Theorem 1 of (Komiyama et al., 2022), at least
under our assumptions (their hypotheses on D are not as strict as ours). They prove it differently:
they introduce typical concentration events, reduce the study to those events and use a change of
measure. Their proof does not give an explicit non-asymptotic version of the bound, unlike Theo-
rem 2. In contrast, our short proof is a direct application of the data processing inequality for the
KL divergence.

Instead of an inequality on the supremum of the limsup of RH,T (A, µ) as in Theorem 3, we
can also get a bound on the liminf of the supremum of RH,T (A, µ) over sets with bounded H . See
Theorem 13 in Appendix B. We will use Theorem 3 in order to describe the asymptotic difficulty
of fixed budget identification. We could derive bounds for a fixed T by using Theorem 2 instead,
at the cost of second order terms and restrictions of the alternative to problems with H bounded by√
T , that is to problems which are not too hard at time T .

Corollary 4 Let µ, λ(1), . . . , λ(K) be such that for all j ∈ [K], i⋆(λ(j)) ̸= i⋆(µ), H(λ(j)) >
0, and each λ(j) differ from µ only along coordinate j. Then for all algorithms A such that
limT→+∞ pµ,T (A) = 0 ,

sup
j∈[K]

RH,∞(A, λ(j)) ≥
K∑
j=1

1

H(λ(j))KL(µj , λ
(j)
j )

.
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Proof We apply the first inequality of Theorem 3 with D(µ) = {λ(1), . . . , λ(K)}.

( sup
j∈[K]

RH,∞(A, λ(j)))−1 ≤ max
ω∈△K

inf
j∈[K]

H(λ(j))
K∑
k=1

ωkKL(µk, λ
(j)
k )

= max
ω∈△K

inf
j∈[K]

H(λ(j))ωjKL(µj , λ
(j)
j ) .

The optimal ω equalizes H(λ(j))ωjKL(µj , λ
(j)
j ) for all j, which gives the result.

The sum on the right hand side of Corollary 4 is very close to the quantity h∗ defined in (Car-
pentier and Locatelli, 2016) in the setting of Bernoulli bandits with H the sum of inverse squared
gaps. This is due to the similar construction of a set of points in the alternative that each differ from
a given µ ∈ D in one coordinate only. That construction was reused by Ariu et al. (2021) to get
a bound on a quantity called expected policy regret and by Yang and Tan (2022) to prove a lower
bound for fixed budget BAI in linear bandits.

The main advantage of Corollary 4 is that it is simpler to use than Theorem 3, but it can lead
to worse bounds. For example in BAI in two-arms Gaussian bandits with known variance 1, with
H = HCsp Theorem 3 gives supλ∈D RH,∞(A, λ) ≥ 1 while the best bound that can be achieved
with Corollary 4 is 1/2. That task is very simple, as remarked by Kaufmann et al. (2016): the oracle
fixed proportions are independent of the means (both arms are played equally), which means that
the algorithm that plays those proportions has supλ∈D RH,∞(A, λ) ≤ 1. Theorem 3 shows that this
is tight and that no adaptive algorithm can beat it everywhere. We could not arrive to that conclusion
with the weaker Corollary 4 since it only proves a 1/2 lower bound.

4. The range of the difficulty ratio

In asymptotic fixed confidence, the complexity of δ-correct algorithms is given by the oracle dif-
ficulty of static proportions. There is an optimal sampling allocation at each µ ∈ D, and the
best any adaptive algorithm can do is match the performance of that allocation. The fixed confi-
dence analogue of the difficulty ratio would be greater than or equal to 1 for any δ-correct algo-
rithm, and exactly 1 for TnS. We hence focus on the ratio of fixed budget algorithm families to
the oracle difficulty of the class of static proportions algorithms, which is given by HCsp(µ) =(
maxω∈△k

infλ∈Alt(µ)

∑K
k=1 ωkKL(λk, µk)

)−1
. In a general fixed budget identification task de-

scribed by (D, I, i⋆), two related questions remain open:

• Do fixed proportions indeed always define oracle algorithms, or could there exist an adap-
tive algorithm with a better rate everywhere? In technical terms, can we have the inequality
infA∈C∞ supλ∈D RHCsp ,∞(A, λ) < 1 ? Recall that C∞ is the class of all algorithm fami-
lies. Ouhamma et al. (2021) exhibit a setting close to fixed budget identification in which an
adaptive algorithm can indeed beat any static proportions algorithm. However, their objective
does not fit into our fixed budget identification framework and their example uses families of
distributions in which the KL can be infinite.

• For Bernoulli BAI, a lower bound of (Carpentier and Locatelli, 2016) and the upper bound
on the Successive Rejects algorithm of (Audibert et al., 2010) together show that for H1

the sum of inverse squared gaps, the value infA∈C∞ supλ∈D RH1,∞(A, λ) is of order logK,

9
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strictly greater than 1 for K large enough. Do we have the same bound for HCsp and are there
problems on which the difficulty ratio can be much larger than logK?

We study the possible values for the smallest maximal difficulty ratio over all algorithm: we
prove upper and lower bounds on infA∈C∞ supλ∈D RHCsp ,∞(A, λ) when we vary the task (D, I, i⋆).

4.1. Upper bound

We first prove that infA∈C∞ supλ∈D RHCsp ,∞(A, λ) ≤ K on any task (D, I, i⋆) by showing that
uniform sampling can be worse than the oracle static proportions by a factor of at most K. We then
exhibit a task on which there is equality.

Theorem 5 For all ω ∈ △0
K , the static proportions algorithm Asp

ω belongs to Csp and satisfies
supλ∈D RHCsp ,∞(Asp

ω , λ) ≤ (minj∈[K] ωj)
−1. In particular, for Au ∈ Csp the uniform sampling

algorithm (static proportions with proportion 1/K for all arms), supλ∈D RHCsp ,∞(Au, λ) ≤ K .

Proof Let ω⋆(µ) ∈ △K be the oracle static proportions at µ and let ω ∈ △0
K . Then for all k,

ωk ≥ ω⋆
k(µ)minj ωj and, using Theorem 1,

lim sup
T→+∞

hµ,T (Asp
ω ) ≤ 1

minj∈[K] ωj

(
inf

λ∈Alt(µ)

K∑
k=1

ω⋆
k(µ)KL(λk, µk)

)−1

=
1

minj∈[K] ωj
HCsp(µ) .

We proved that lim supT→+∞RHCsp ,T (A
sp
ω , µ) ≤ (minj∈[K] ωj)

−1 for all µ ∈ D.

Of course there are tasks for which uniform sampling is not the best algorithm: for Gaussian
BAI the Successive-Rejects algorithm (Audibert et al., 2010) has a ratio of order logK (see also
(Barrier et al., 2022)). However, in some identification tasks K is the best achievable ratio.

Theorem 6 On the Positivity problem, where we check whether there is an arm with mean lower
than a threshold θ, infA∈C∞ supλ∈D RHCsp ,∞(A, λ) = K.

That theorem proves that on the positivity problem, if a class contains the static proportions
algorithms then it does not have a complexity. Furthermore, the uniform sampling algorithm is
optimal for the criterion supλ∈D RHCsp ,∞(A, λ).
Proof Let A be any algorithm family. We use Corollary 4 for µ a tuple of K times the same
distribution with mean m > θ. Either RHCsp ,∞(A, µ) = +∞ and the lower bound is obvious
or we can apply the corollary. For j ∈ [K], we define λ(j) identical to µ except for λ(j)

j = ℓ <

θ. Then maxj∈[K]RHCsp ,∞(A, λ(j)) ≥
∑K

j=1(HCsp(λ(j))KL(m, ℓ))−1 . Now for all j, a simple
computation gives HCsp(λ(j)) = (KL(θ, ℓ))−1, such that the lower bound is KKL(θ, ℓ)/KL(m, ℓ).
When ℓ tends to the lower bound of the means in the exponential family, the KL ratio tends to 1.

The proof of Theorem 6 exhibits K problems, each with a different arm with mean below the
threshold, and the oracle algorithm for each samples only that arm. The lower bound shows that
detecting which arm is below the threshold is harder than the identification task and that no matter
the algorithm, it is as bad as uniform sampling on one of the problems (but we don’t know which).

We established that the highest possible value for identification tasks (D, I, i⋆) of the quantity
infA∈C∞ supλ∈D RHCsp ,∞(A, λ) is K, and that this value is attained for the Positivity problem.

10
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4.2. Lower bounds

We turn our attention to lower bounds. A natural conjecture is the following: for all fixed budget
tasks and all algorithm families, supλ∈D RHCsp ,∞(A, λ) ≥ 1. If true, then no adaptive algorithm
that can do everywhere better than the static proportions oracle. It could still have lower error
probability on one problem µ ∈ D, but would have to be worse somewhere else. First, we prove the
conjecture for Gaussian half-space identification (Lemma 16 in Appendix C). In that task, there are
two answers and i⋆ has a different value on each side of a hyperplane. We then extend that result to
Gaussian distributions with piecewise linear boundaries between the answer sets.

Theorem 7 Suppose that there is an L2 ball B(η, r) with center η ∈ cl(D) and radius r > 0 such
that i⋆ takes only two values in B(η, r), say i and j, and the boundary between B(η, r) ∩ {µ |
i⋆(µ) = i} and B(η, r) ∩ {µ | i⋆(µ) = j} is the restriction of a hyperplane passing through η.
Then for Gaussian arms (each with a known but possibly different variance), the lowest maximal
difficulty ratio is infA∈C∞ supλ∈D RHCsp ,∞(A, λ) ≥ 1.

The idea of the proof is the following: if we consider λ ∈ D close to the center of the ball,
then the oracle difficulty HCsp(λ) of static proportions for our task is the same as for half-space
identification. Then if we choose µ even closer to the center, we can apply Theorem 3 to a set D(µ)
of points for which this equality holds. Up to border effects that disappear when µ get closer to the
center, we get the same lower bound as for half-space identification. Full proof in Appendix C.

The hypothesis of that lemma applies to all examples of fixed budget identification we intro-
duced. Indeed BAI, Thresholding bandits and Positivity all have piecewise linear boundaries. More
generally, we could extend Theorem 7 to tasks in which the boundary has bounded curvature at
some point: we can zoom in on that point and find problems for which we recover the half-space
bound. This remark also illustrates the limitation of Theorem 7: it is asymptotic in nature. The
proof requires points that are much closer to the center of the ball than the radius. Either we need a
very large ball (BAI when the two best arms have much higher means than other arms) or we need
problems very close to the boundary. It should be possible to extend the theorem to any exponential
family by using that locally the KL is quadratic. Again, we would describe the asymptotic behavior
of an algorithm family on problems very close to a given boundary point.

The lower bound infA∈C∞ supλ∈D RHCsp ,∞(A, λ) ≥ 1 shows that if a class C contains Csp and
admits a complexity, then that complexity has to be HCsp .

5. No Complexity in Best Arm Identification

We have investigated the possible values for the difficulty ratio over different identification tasks.
We now focus on best arm identification, with I = [K] and i⋆ the arm with highest mean. We show
that for several values of D, infA∈C∞ supλ∈D RHC ,∞(A, λ) > 1 for any class C that includes the
static proportions algorithms. We conclude that these classes don’t admit a complexity.

5.1. Gaussian best arm identification

Theorem 8 Consider the BAI task with Gaussian distributions with variance 1. For any class C
containing the static proportions algorithms, infA∈C∞ supλ∈D RHC ,∞(A, λ) ≥ (3/80) log(K) .

11
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This proves that for K large enough, no algorithm class containing the static proportions admits
a complexity in Gaussian BAI. It applies to (exponentially) consistent algorithms and to algorithms
that have a difficulty ratio to the complexity of the uniform allocation which is uniformly bounded.
Proof First, since Csp ⊆ C, for any algorithm A and µ ∈ D, RHC ,T (A, µ) ≥ RHCsp ,T (A, µ). It
suffices to give a lower bound for HCsp .

Let H∆(µ) = 2
mink:∆k>0 ∆

2
k
+
∑

k:∆k>0
2
∆2

k
. It was shown by Garivier and Kaufmann (2016)

that for all µ ∈ D, this function satisfies the inequalities H∆(µ) ≤ HCsp(µ) ≤ 2H∆(µ) . Thus
RHC ,T (A, µ) ≥ RH∆,T (A, µ)/2. From this point on, we use a construction similar to the one that
was used by Carpentier and Locatelli (2016) to prove a lower bound on the ratio to H∆ for Bernoulli
bandits. We define a Gaussian problem µ by µ1 = 0 (or any arbitrary value) and µk = µ1 − k∆
for all k ∈ {2, . . . ,K} and some ∆ > 0. We apply Corollary 4 to µ and λ(2), . . . , λ(K) where each
λ(j) is identical to µ except that λ(j)

j = µ1 + (µ1 − µj). The details can be found in appendix D.

The closest existing result is the lower bound of (Carpentier and Locatelli, 2016). They don’t
consider the difficulty of fixed proportions but H∆, the sum of inverse squared gaps. That function
was hypothesized to be a complexity for fixed budget at the time. They present a set of Bernoulli
problems and show that for all algorithms that return îT = i⋆(µ̂T ), there is a lower bound on the
probability of error on one problem in the set. Their lower bound can be rewritten as a bound on
supλ∈D RH∆,T (A, λ). It is not asymptotic in T , but we could also obtain a non-asymptotic bound
by using Theorem 2 instead of Theorem 3 when deriving Corollary 4 at the cost of additional low
order terms. Their result is valid only for algorithms that return the empirical correct answer and
does not for example apply to Successive Rejects, while we derive a result for any algorithm.

Since the Kullback-Leibler divergence for other exponential families can be bounded from
above and below by a constant times the Gaussian KL if we consider only parameters in a closed
bounded interval, we can extend Theorem 8 beyond Gaussians. We obtain that there exists a con-
stant c such that infA∈C∞ supλ∈D RHC ,∞(A, λ) ≥ c log(K) . Hence for K large enough there is no
complexity.

5.2. Two arms best arm identification with Bernoulli distributions

In BAI with two arms and Gaussian distributions with known variances (possibly different for each
arm), there is a unique static proportions oracle, independent of the means (Kaufmann et al., 2016).
Thus that same algorithm matches the lower bound on all µ ∈ D and fixed budget BAI with two
Gaussian arms has a complexity. We showed that as K becomes large, this is no longer the case. In
Bernoulli bandits, we show that there is no complexity even for K = 2. From Theorems 5 and 7,
we know that the infimum of the maximal difficulty ratio belongs to the interval [1, 2], where the
upper bound comes from K = 2. We now prove that it is strictly greater than 1. We will apply
Corollary 4 to well chosen mean vectors. In order to do so, we first compute explicitly the oracle
difficulty of static proportions algorithms.

Lemma 9 In a two arms BAI problem with Bernoulli distributions,

(HCsp(µ))−1 = KL
( log 1−µ2

1−µ1

log µ1(1−µ2)
(1−µ1)µ2

, µ1

)
= KL

( log 1−µ2

1−µ1

log µ1(1−µ2)
(1−µ1)µ2

, µ2

)
.
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Theorem 10 In BAI for Bernoulli bandits with two arms, for any class C containing the static
proportions algorithms, infA∈C∞ supλ∈D RHC ,∞(A, λ) > 1 .

The lemma is a special case of a more general result which applies to all exponential families:
Lemma 19 in Appendix D. The proof is an explicit computation. We now apply Corollary 4 to
µ = (x(1 + x), x) for some x ∈ (0, 1/2), λ(1) = (x/2, x) and λ(2) = (x(1 + x), 1/2). This
gives an explicit lower bound, function of x. The limit of that bound at 0 is approximately 1.22,
which means that there exists x small enough for which it is greater than 1. Theorem 10 is proved
(see Appendix D for details). Values x for which we get a lower bound greater than 1 are very
small, 10−9 and lower. We used Corollary 4 and not Theorem 3 because it allows a closed form
computation of the bound, but by doing so we may have lost constants. It is possible that we could
show a lower bound greater than 1 for x which is not so close to 0.

6. Conclusion

We prove that in most fixed budget identification tasks, if a class containing the static proportions
algorithms admits a complexity then it is HCsp . However, even in simple tasks like Positivity or
BAI with two Bernoulli arms, we showed that there is no such complexity. For other classes like
Thresholding bandits the question is still open. We know that the maximal difficulty ratio of APT
(Locatelli et al., 2016; Ouhamma et al., 2021) for Gaussian thresholding bandits is less than an
absolute constant, so there is no lower bound that depends on K. Another open question is whether
there exists a complexity in Gaussian BAI for small K > 2. We conjecture that there is none.

An important question remains: is there a meaningful class for which there exists a complexity
in BAI? We showed that it would need to exclude some static proportions algorithms. A candidate
could be algorithms with difficulty ratio to the uniform allocation less than n > 1. That class
contains Csp

1/n, static proportions with mink ωk ≥ 1/n. We can show (1 − 1/n)H−1
Csp ≤ H−1

Csp
1/n

≤

H−1
Csp , which means that a lower bound of 1 for HCsp would give a (1−1/n) bound here: an adaptive

algorithm could possibly beat all such static allocations everywhere, but only by that constant factor.
If there is no complexity, there can be many “good” algorithms. First, we could look for algo-

rithms with smallest maximal difficulty ratio, as pioneered by Komiyama et al. (2022). Successive
Rejects is such an algorithm for Gaussian BAI. Then we may want to design methods that are better
than the minimax lower bound on some parts of the space (and necessarily worse elsewhere). Can
we design an algorithm that sacrifices performance on very easy problems in order to beat the lower
bound on more interesting instances?

Acknowledgments

The author acknowledges the funding of the French National Research Agency under the project
FATE (ANR-22-CE23-0016-01). This work beneficiated from the support of the French Ministry
of Higher Education and Research, of Inria and of the Hauts-de-France region. The author is part
of the Inria Scool team.

References

Ayya Alieva, Ashok Cutkosky, and Abhimanyu Das. Robust pure exploration in linear bandits with
limited budget. In International Conference on Machine Learning, pages 187–195. PMLR, 2021.

13



DEGENNE

Kaito Ariu, Masahiro Kato, Junpei Komiyama, Kenichiro McAlinn, and Chao Qin. Policy choice
and best arm identification: Asymptotic analysis of exploration sampling. arXiv preprint
arXiv:2109.08229, 2021.

Alexia Atsidakou, Sumeet Katariya, Sujay Sanghavi, and Branislav Kveton. Bayesian fixed-budget
best-arm identification. arXiv preprint arXiv:2211.08572, 2022.
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Appendix A. Proofs of results from Section 2

Proof of Theorem 1 The empirical mean in canonical exponential families satisfies a large devi-
ation principle (LDP).

Lemma 11 Let µk be the mean of a distribution in a canonical one-parameter exponential family.
Then the empirical mean µ̂T,k of T samples of that distribution obeys an LDP with rate T and good
rate function x 7→ KL(x, µk).

Let intS be the interior of a set S, and clS be its closure. An application of the Gärtner-Ellis
theorem, as done in Glynn and Juneja (2004), leads to the following theorem.

Theorem 12 Let Asp
ω be a static proportions algorithm parametrized by ω ∈ △0

K . On problem
µ ∈ D, the empirical mean vector µ̂T obeys a LDP with rate T and good rate function λ 7→∑K

k=1 ωkKL(λk, µk). As a consequence, for any set S ⊆ RK ,

− inf
λ∈intS

K∑
k=1

ωkKL(λk, µk) ≤ lim inf
T→+∞

1

T
logPµ,Asp

ω
(µ̂T ∈ S) ,

lim sup
T→+∞

1

T
logPµ,Asp

ω
(µ̂T ∈ S) ≤ − inf

λ∈clS

K∑
k=1

ωkKL(λk, µk) .

By continuity of the Kullback-Leibler divergence in exponential families, for all µ ∈ D and
ω ∈ △K the infimum over the interior and the closure are equal to the infimum over the set. Thus,
the LDP of Theorem 12 gives the equality

lim
T→+∞

hµ,T (Asp
ω ) = lim

T→+∞

(
− 1

T
logPµ,Asp

ω
(µ̂T ∈ Alt(µ))

)−1

=

(
inf

λ∈Alt(µ)

K∑
k=1

ωkKL(λk, µk)

)−1

.

Appendix B. Proofs of results from Section 3

B.1. Proof of the lower bound Theorem 2

Proof [of Theorem 2] The proof of this inequality follows the standard bandit lower bound argu-
ment, which can be found for example in Garivier et al. (2019). The Kullback-Leibler divergence
between the observations up to T under models µ and λ is

∑K
k=1 Eµ[NT,k]KL(µk, λk). By the data

processing inequality, this Kullback-Leibler divergence is larger than the KL between Bernoulli dis-
tributions of means Pµ,A(E) and Pλ,A(E) for any event E. We apply this to E = {̂iT = i⋆(µ)} to
obtain

kl(Pµ,A(̂iT = i⋆(µ)),Pλ,A(̂iT = i⋆(µ))) ≤
K∑
k=1

Eµ[NT,k]KL(µk, λk) .
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We use the inequality kl(a, b) ≥ a log 1
b − log 2, then Pµ,A(̂iT = i⋆(µ)) = 1−pµ,T (A), Pλ,A(̂iT =

i⋆(µ)) ≤ pλ,T (A) (since i⋆(λ) ̸= i⋆(µ)) to get

(1− pµ,T (A)) log
1

pλ,T (A)
− log 2 ≤

K∑
k=1

Eµ[NT,k]KL(µk, λk) .

By definition, pλ,T (A) = exp(−TRH,T (A, λ)−1H(λ)−1),. We get

(1− pµ,T (A))TRH,T (A, λ)−1H(λ)−1 − log 2 ≤
K∑
k=1

Eµ[NT,k]KL(µk, λk) .

Dividing by TH(λ)−1 and using H(λ) ≤
√
T gives the result.

B.2. Additional results

Theorem 13 Let µ ∈ D and let A be an algorithm with limT→+∞ pµ,T (A) = 0. Let D(µ) ⊆
Alt(µ) be a set such that supλ∈D(µ)H(λ) < +∞. Then

(lim inf
T→+∞

sup
λ∈D(µ)

RH,T (A, λ))−1 ≤ max
ω∈△K

inf
λ∈D(µ)

H(λ)
K∑
k=1

ωkKL(µk, λk) .

If A is consistent, then it satisfies in particular the condition of the theorem limT→+∞ pµ,T (A) = 0.
Proof For T large enough, we can apply Theorem 2 for any λ ∈ D(µ), hence we can take an
infimum over λ ∈ D(µ) to get

( sup
λ∈D(µ)

RH,T (A, λ))−1(1− pµ,T (A))− log 2√
T

≤ inf
λ∈D(µ)

H(λ)

K∑
k=1

Eµ[
NT,k

T
]KL(µk, λk)

≤ max
ω∈△K

inf
λ∈D(µ)

H(λ)
K∑
k=1

ωkKL(µk, λk) .

Taking a limit when T → +∞ and using limT→+∞ pµ,T (A) = 0, we get the inequality we want to
prove.

Corollary 14 For all x ∈ R, let Altx(µ) = Alt(µ) ∩ {λ ∈ D | H(λ) ≤ x}. For all consistent
algorithm families A,

(lim inf
T→+∞

sup
λ∈D

RH,T (A, λ))−1 ≤ lim inf
x→∞

inf
µ∈D

max
ω∈△K

inf
λ∈Altx(µ)

H(λ)

K∑
k=1

ωkKL(µk, λk) .

Proof Let µ ∈ D and x > 0. We apply Theorem 13 to Altx(µ).

(lim inf
T→+∞

sup
λ∈Altx(µ)

RH,T (A, λ))−1 ≤ max
ω∈△K

inf
λ∈Altx(µ)

H(λ)

K∑
k=1

ωkKL(µk, λk) .

The left hand side is larger than (lim infT→+∞ supλ∈D RH,T (A, λ))−1, which is now independent
of µ and x. We then take on the right hand side first an infimum over µ, then a liminf over x. Doing
it in this order leads to the tighter bound (compared to infµ lim infx).
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Appendix C. Proofs of results from section 4

For u,w ∈ RK , we use the notation ∥u∥ω =
√∑K

k=1 ωku
2
k.

Lemma 15 For the Gaussian half-space identification problem, where arm k has variance σ2
k > 0,

with orthogonal vector u with ∥u · σ∥1 = 1, HCsp(λ)−1 = 1
2(λ

⊤u)2.

Proof We compute supω∈△K
infν∈Alt(λ)

∑K
k=1 ωkKL(νk, λk) for any λ.

inf
ν∈Alt(λ)

K∑
k=1

ωkKL(νk, λk) =
1

2
inf

ν∈Alt(λ)

K∑
k=1

ωkσ
−2
k (νk − λk)

2 =
1

2

(λ⊤u)2

∥u∥2
ω−1·σ2

sup
ω∈△K

inf
ν∈Alt(λ)

K∑
k=1

ωkKL(νk, λk) = sup
ω∈△K

1

2

(λ⊤u)2

∥u∥2
ω−1·σ2

=
1

2
(λ⊤u)2 .

Lemma 16 For Gaussian half-space identification, infA∈C∞ supλ∈D RHCsp ,∞(A, λ) ≥ 1.

Proof For the proof, the vector orthogonal to the hyperplane is u with ∥u · σ∥1 = 1.
We show that for all ν, maxω∈△K

infλ∈Alt(ν)HCsp(λ)
∑K

k=1 ωkKL(νk, λk) = 1. The result
then follows from an application of Theorem 3.

max
ω∈△K

inf
λ∈Alt(ν)

HCsp(λ)
K∑
k=1

ωkKL(νk, λk) = max
ω∈△K

inf
λ∈Alt(ν)

∑K
k=1 ωkσ

−2
k (νk − λk)

2

(λ⊤u)2

= max
ω∈△K

inf
a>0

1

a
inf

λ∈Alt(ν),(λ⊤u)2=a

K∑
k=1

ωkσ
−2
k (νk − λk)

2

= max
ω∈△K

inf
a>0

(
√
a+ |u⊤ν|)2

a∥u∥2
ω−1·σ2

= max
ω∈△K

1

∥u∥2
ω−1·σ2

= 1 .

We suppose in the remainder of this section that the distributions of the arms are Gaussian, where
arm k has variance σ2

k > 0. The Kullback-Leibler divergence is (x, y) 7→ 1
2σ2

k
(x − y)2. Suppose

that there is a ball B(η, r) in the norm ∥ ·∥σ−2 with center η ∈ D and radius r > 0 such that i⋆ takes
only two values in B(η, r), say i and j, and the boundary between B(η, r) ∩ {µ | i⋆(µ) = i} and
B(η, r) ∩ {µ | i⋆(µ) = j} is the restriction of a hyperplane passing through η. Let u be a vector
orthogonal to the hyperplane with ∥u · σ∥1 = 1.

18
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Lemma 17 For µ ∈ B(η, r/(
√
K + 1)) with µ⊤u < η⊤u,

max
ω∈△K

inf
λ∈Alt(µ)∩B(η,r)

K∑
k=1

ωk(λk − µk)
2 = max

ω∈△K

inf
λ:(λ−η)⊤u≥0

K∑
k=1

ωk(λk − µk)
2 = ((µ− η)⊤u)2 .

Proof Let µ ∈ B(η, r/(
√
K +1)) be such that u⊤µ < u⊤η. For the full half-space alternative, we

have

max
ω∈△K

inf
λ:(λ−η)⊤u≥0

K∑
k=1

ωkσ
−2
k (λk − µk)

2 = ((µ− η)⊤u)2

Let λu(µ) = µ− ((µ− η)⊤u)σ. We now prove that that point belongs to the ball B(η, r). We will
use the fact that ∥u∥2σ2 =

∑K
k=1 u

2
kσ

2
k ≤

∑K
k=1 ukσk = 1 (since ∥u · σ∥1 = 1).

∥λu(µ)− η∥2σ−2 = ∥µk − ηk − ((µ− η)⊤u)σ∥2σ−2

≤
(
∥µ− η∥σ−2 +

√
K|(µ− η)⊤u|

)2
≤
(
∥µ− η∥σ−2 +

√
K∥µ− η∥σ−2∥u∥σ2

)2
≤ (

√
K + 1)2∥µ− η∥2σ−2

≤ r2 .

For the problem restricted to the ball,

max
ω∈△K

inf
λ∈Alt(µ)∩B(η,r)

K∑
k=1

ωkσ
−2
k (λk − µk)

2

≤ max
ω∈△K

K∑
k=1

ωkσ
−2
k (λu,k(µ)− µk)

2 = ((µ− η)⊤u)2 ,

and max
ω∈△K

inf
λ∈Alt(µ)∩B(η,r)

K∑
k=1

ωkσ
−2
k (λk − µk)

2

≥ max
ω∈△K

inf
λ:(λ−η)⊤u≥0

K∑
k=1

ωkσ
−2
k (λk − µk)

2 = ((µ− η)⊤u)2 .

The last inequality comes from Alt(µ) ∩ B(η, r) ⊆ {λ | (λ − η)⊤u ≥ 0}. We have proved the
equality.

Lemma 18 Let δ > 0, ε > 0, r′ = r/(
√
K + 1) and r′′ = 1

2r
′ δε
(1+δ)(1+ε) . Let µ ∈ B(η, r′′) with

(µ− η)⊤u > 0 and let Dε,δ(µ) = Alt(µ) ∩B(η, r′). Then

max
ω∈△K

inf
λ∈Dε,δ(µ)

K∑
k=1

ωkKL(λk, µk) ≤ (1 + ε)(1 + δ)2 .
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This bound is then used in Theorem 3 to get a lower bound on the difficulty ratio. Taking the
limit as ε → 0 and δ → 0, we prove Theorem 7.
Proof For all λ ∈ Alt(µ) ∩B(η, r′), Lemma 17 gives HCsp(λ) = 2((λ− η)⊤u)−2.

max
ω∈△K

inf
λ∈Alt(µ)∩B(η,r′)

HCsp(λ)
K∑
k=1

ωkKL(µk, λk)

= max
ω∈△K

inf
λ∈Alt(µ)∩B(η,r′)

∑K
k=1 ωkσ

−2
k (µk − λk)

2

((λ− η)⊤u)2

= max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ωkσ

−2
k (µk − λk)

2

((λ− η)⊤u)2
.

If we did not restrict λ to the ball B(η, r′), then that quantity would be equal to 1 as shown in
Lemma 16. We now argue that if µ is sufficiently close to η, it approaches 1 even with the restriction
to the ball.

For ω ∈ △K , let ωε ∈ △0
K be such that ωε

k = ωk+ε
1+ε .

max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ωkσ

−2
k (µk − λk)

2

((λ− η)⊤u)2

≤ (1 + ε) max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ω

ε
kσ

−2
k (µk − λk)

2

((λ− η)⊤u)2

Let x = 1
2r

′ ε
(1+δ)(1+ε) . Let λωε(µ) be the vector with coordinates λωε,k(µ) = µk− (µ−η)⊤u+x

∥u∥2
(ωε)−1·σ2

uk
ωε
k
σ2
k.

We show that it belongs to the ball B(η, r′). This is possible only thanks to the lower bound on any
coordinate of ωε, and is the reason for introducing that modification of ω.

∥λωε(µ)− η∥σ−2 = ∥µ− η − (µ− η)⊤u+ x

∥u∥2
(ωε)−1·σ2

(
uk
ωε
k

σ2
k)k∈[K]∥σ−2

≤ ∥µ− η∥σ−2 +
(µ− η)⊤u+ x

∥u∥2
(ωε)−1·σ2

∥ u

ωε
σ2∥σ−2

≤ ∥µ− η∥σ−2 +
∥µ− η∥σ−2 + x

∥u∥2
(ωε)−1·σ2

∥ u

ωε
σ2∥σ−2

≤ ∥µ− η∥σ−2 + (∥µ− η∥σ−2 + x)∥ u

ωε
σ2∥σ−2

≤ ∥µ− η∥σ−2 + (∥µ− η∥σ−2 + x)
1 + ε

ε

≤ r′′ + (r′′ + x)
1 + ε

ε

= x(δ + (1 + δ)
1 + ε

ε
) ≤ 2x(1 + δ)

1 + ε

ε
= r′ .
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Now since λωε(µ) ∈ Alt(µ) ∩B(η, r′), we get

max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ωkσ

−2
k (µk − λk)

2

((λ− η)⊤u)2

≤ (1 + ε) max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ω

ε
kσ

−2
k (µk − λk)

2

((λ− η)⊤u)2

≤ (1 + ε) max
ω∈△K

∑K
k=1 ω

ε
kσ

−2
k (µk − λωε,k(µ))

2

((λωε(µ)− η)⊤u)2
.

We can compute explicitly both terms in the ratio:

K∑
k=1

ωε
kσ

−2
k (µk − λωε,k(µ))

2 =
((µ− η)⊤u+ x)2

∥u∥2
(ωε)−1·σ2

, (λωε(µ)− η)⊤u = −x .

Finally,

max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ωk(µk − λk)

2

((λ− η)⊤u)2

≤ (1 + ε) max
ω∈△K

inf
λ∈∩B(η,r′),(λ−η)⊤u≤0

∑K
k=1 ω

ε
k(µk − λk)

2

((λ− η)⊤u)2

≤ (1 + ε) max
ω∈△K

((µ− η)⊤u+ x)2

x2∥u∥2
(ωε)−1·σ2

≤ (1 + ε)(
(µ− η)⊤u

x
+ 1)2

≤ (1 + ε)(
r′′

x
+ 1)2

= (1 + ε)(1 + δ)2 .

Appendix D. Proofs of results from Section 5

D.1. Gaussian bandits

Proof [of Theorem 8] First, since Csp ⊆ C, for any algorithm A and µ ∈ D, RHC ,T (A, µ) ≥
RHCsp ,T (A, µ). It suffices to give a lower bound for HCsp .

Let H∆(µ) = 2
mink:∆k>0 ∆

2
k
+
∑

k:∆k>0
2
∆2

k
. It was shown in (Garivier and Kaufmann, 2016)

that for all µ ∈ D, this function satisfies the inequalities H∆(µ) ≤ HCsp(µ) ≤ 2H∆(µ) . Thus
RHC ,T (A, µ) ≥ RH∆,T (A, µ)/2. From this point on, we use a construction similar to the one used
in (Carpentier and Locatelli, 2016) to prove a lower bound on the ratio to H∆ for Bernoulli bandits.
We define a Gaussian problem µ by µ1 = 0 (or any arbitrary value) and µk = µ1 − k∆ for all
k ∈ {2, . . . ,K} and some arbitrary ∆ > 0. We apply Corollary 4 to µ and λ(2), . . . , λ(K) where
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each λ(j) is identical to µ except that λ(j)
j = µ1 + (µ1 − µj).

sup
j∈{2,...,K}

lim sup
T→+∞

RH∆,T (A, λ(j)) ≥
K∑
j=2

1

H∆(λ(j))KL(µj , λ
(j)
j )

=
K∑
j=2

1

(λ
(j)
j −µj)2

(λ
(j)
j −µ1)2

+
∑

k ̸=j

(λ
(j)
j −µj)2

(λ
(j)
j −µk)2

.

For our specific choice of λ(j),

(λ
(j)
j − µj)

2

(λ
(j)
j − µ1)2

+
∑
k ̸=j

(λ
(j)
j − µj)

2

(λ
(j)
j − µk)2

≤ 4 + 4
∑
k ̸=j

(µ1 − µj)
2

(µ1 − µj)2 + (µ1 − µk)2
≤ 4j + 4

∑
k>j

(µ1 − µj)
2

(µ1 − µk)2
.

We now use that µk = µ1 − k∆.

(λ
(j)
j − µj)

2

(λ
(j)
j − µ1)2

+
∑
k ̸=j

(λ
(j)
j − µj)

2

(λ
(j)
j − µk)2

≤ 4j + 4j2
∑
k>j

1

k2
≤ 4j + 4j2

1

j
≤ 8j .

We finally have the lower bound

sup
j∈{2,...,K}

lim sup
T→+∞

RH∆,T (A, λ(j)) ≥ 1

8

K∑
j=2

1

j
≥ 1

8
(log(K + 1)− log 2) ≥ 3

40
logK .

D.2. Bernoulli bandits

We consider the best arm identification task in bandits with two arms, both in the same exponential
family with one parameter. Two distributions in that family with means µ1, µ2 correspond to some
natural parameters ξ1, ξ2 and the Kullback-Leibler divergence can be written

KL(µ1, µ2) = d(ξ2, ξ1) = ϕ(ξ2)− ϕ(ξ1)− (ξ2 − ξ1)ϕ
′(ξ1) ,

where ϕ : R → R is a convex function specific to the exponential family and d is its Bregman
divergence. The mean parameter µ1 and the corresponding natural parameter ξ1 are related by the
equation ϕ′(ξ1) = µ1 (or ξ1 = ϕ′−1(µ1) since ϕ′ is invertible). In that setting, we want to compute

(HCsp(µ))−1 = max
ω∈△K

inf
λ∈Alt(µ)

K∑
k=1

ωkKL(λk, µk)

= max
ω∈△2

inf
x
(ω1KL(x, µ1) + ω2KL(x, µ2)) .

Lemma 19 In the one-parameter exponential family setting described above,

(HCsp(µ))−1 = KL

(
ϕ(ξ1)− ϕ(ξ2)

ξ1 − ξ2
, µ1

)
.

The infimum in the definition of the difficulty is attained for any ω at x(ω) = ϕ′(ω1ξ1 + ω2ξ2).
The maximum over the simplex is attained at ω⋆ such that ω⋆

1 = ϕ′−1(x⋆)−ξ2
ξ1−ξ2

, with x⋆ = x(ω⋆) =
ϕ(ξ1)−ϕ(ξ2)

ξ1−ξ2
.
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We can also rewrite ϕ(ξ1)−ϕ(ξ2)
ξ1−ξ2

= µ2 +
KL(µ2,µ1)

ξ1−ξ2
= µ1 − KL(µ1,µ2)

ξ1−ξ2
.

Proof We parametrize by the natural parameters:

inf
x
(ω1KL(x, µ1) + ω2KL(x, µ2)) = inf

y
(ω1d(ξ1, y) + ω2d(ξ2, y))

The optimality condition for y is ω1
∂
∂yd(ξ1, y)+ω2

∂
∂yd(ξ2, y) = 0. That derivative is ∂

∂yd(x, y) =

−(x− y)ϕ′′(y). We obtain

ω1(ξ1 − y)ϕ′′(y) + ω2(ξ2 − y)ϕ′′(y) = 0

=⇒ y = ω1ξ1 + ω2ξ2 .

We note for later the property

ω1
∂

∂y
d(ξ1, y) + ω2

∂

∂y
d(ξ2, y) = 0 at y = ω1ξ1 + ω2ξ2 . (1)

We now want to compute

max
ω∈△2

(ω1d(ξ1, ω1ξ1 + ω2ξ2) + ω2d(ξ2, ω1ξ1 + ω2ξ2))

= max
ω1∈[0,1]

(ω1d(ξ1, ω1ξ1 + (1− ω1)ξ2) + (1− ω1)d(ξ2, ω1ξ1 + (1− ω1)ξ2))

At the optimal value for ω the gradient is zero:

d(ξ1, ω1ξ1 + (1− ω1)ξ2)− d(ξ2, ω1ξ1 + (1− ω1)ξ2) + ω1
∂

∂y
d(ξ1, ω1ξ1 + (1− ω1)ξ2)(ξ1 − ξ2)

+ (1− ω1)
∂

∂y
d(ξ2, ω1ξ1 + (1− ω1)ξ2)(ξ1 − ξ2) = 0

We use Equation (1) to get that ω2
∂
∂yd(ξ2, ω1ξ1 + (1− ω1)ξ2) = −ω1

∂
∂yd(ξ1, ω1ξ1 + (1− ω1)ξ2).

We simplify the equation to

d(ξ1, ω1ξ1 + (1− ω1)ξ2) = d(ξ2, ω1ξ1 + (1− ω1)ξ2)

We expand the Bregman divergence.

ϕ(ξ1)− ϕ(y)− (ξ1 − y)ϕ′(y)− ϕ(ξ2) + ϕ(y) + (ξ2 − y)ϕ′(y) = 0

=⇒ ϕ′(y) =
ϕ(ξ1)− ϕ(ξ2)

ξ1 − ξ2

Solving this equation for y also gives the value of ω thanks to y = ω1ξ1 + (1 − ω1)ξ2. We get
ω1 =

y−ξ2
ξ1−ξ2

, and y is given by the equation above. The value of the objective is then

max
ω∈△2

inf
x
(ω1KL(x, µ1) + ω2KL(x, µ2)) = d(ξ1, y)

where y = ϕ′−1

(
ϕ(ξ1)− ϕ(ξ2)

ξ1 − ξ2

)
.

But we can simplify this further since d(ξ1, y) = KL(ϕ′(y), µ1) (also equal to KL(ϕ′(y), µ2)).

max
ω∈△2

inf
x
(ω1KL(x, µ1) + ω2KL(x, µ2)) = KL(

ϕ(ξ1)− ϕ(ξ2)

ξ1 − ξ2
, µ1) .
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Lemma 20 If the distributions with parameters µ1 and µ2 are σ2-sub-Gaussian, then

(HCsp(µ))−1 ≥ 1

2σ2(ξ1 − ξ2)2
max{KL(µ1, µ2)

2,KL(µ2, µ1)
2} .

For an exponential family of Gaussians with same variance σ2 there is equality, and the two terms
of the maximum are equal.

Gaussian case For Gaussian distributions, the functions used above are

• ϕ(a) = 1
2σ

2a2 with ϕ′(a) = aσ2, ϕ′−1(x) = x/σ2, ϕ(ϕ′−1(x)) = 1
2σ2x

2

• d(a, b) = σ2(12a
2 − 1

2b
2 − (a− b)b) = 1

2σ
2(a− b)2

• KL(x, y) = 1
2σ2 (x− y)2.

Using these values in Lemma 19 gives a static proportions difficulty equal to the inverse of
1

8σ2 (µ1 − µ2)
2.

Bernoulli case For Bernoulli distributions, the functions used above are

• ϕ(a) = log(1 + ea) with ϕ′(a) = ea

1+ea , ϕ′−1(x) = log x
1−x , ϕ(ϕ′−1(x)) = − log(1− x)

• d(a, b) = log(1 + ea)− log(1 + eb)− (a− b) eb

1+eb

• KL(x, y) = x log x
y + (1− x) log 1−x

1−y .

Using these values in Lemma 19 proves Lemma 9.

max
ω∈△2

inf
x
(ω1KL(x, µ1) + ω2KL(x, µ2)) = KL

 log 1−µ2

1−µ1

log µ1(1−µ2)
(1−µ1)µ2

, µ1

 .

We gather now a few limits, which will be useful in the proof of Theorem 10. These results use
the explicit formulas for HCsp derived above.

lim
x→0

HCsp((x, 1/2)) = 1/ log 2 ,

lim
x→0

KL(x, 1/2) = log 2 ,

lim
x→0,y→0,x/y→1

1

HCsp((y/2, y))KL(x, y/2)
=

1− 1
2 log 2 − log(2 log 2)

2 log 2

log 2− 1/2
≈ 0.22 .

Proof [of Theorem 10] For x ∈ (0, 1/2), let µ(x) = (x(1 + x), x), λ(1)(x) = (x/2, x), λ(2)(x) =
(x(1 + x), 1/2). Then Corollary 4 gives

sup
j∈[2]

RHCsp ,∞(A, λ(j)(x))

≥ 1

HCsp(λ(1)(x))KL(µ1(x), λ
(1)
1 (x))

+
1

HCsp(λ(2)(x))KL(µ2(x), λ
(2)
2 (x))

=
1

HCsp((x/2, x))KL(x(1 + x), x/2)
+

1

HCsp((x(1 + x), 1/2))KL(x, 1/2)
.

The limit of the quantity on the right when x → 0 is strictly greater than 1 (it is approximately
1.22).
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