
Proceedings of Machine Learning Research vol 195:1–14, 2023 36th Annual Conference on Learning Theory

Find a witness or shatter:
the landscape of computable PAC learning.

Valentino Delle Rose VALENTINO.DELLEROSE@CENIA.CL
Institute for Mathematical and Computational Engineering, PUC, Chile & CENIA, Chile.

Alexander Kozachinskiy AKOZACHINSKYI@CENIA.CL
CENIA, Chile & IMFD, Chile.

Cristóbal Rojas CRISTOBAL.ROJAS@MAT.UC.CL
Institute for Mathematical and Computational Engineering, PUC, Chile & CENIA, Chile.

Tomasz Steifer TSTEIFER@IPPT.PAN.PL

Institute of Fundamental Technological Research, Polish Academy of Sciences & Institute for Mathematical
and Computational Engineering, PUC, Chile & IMFD, Chile

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
This paper contributes to the study of CPAC learnability—a computable version of PAC learning—
by solving three open questions from recent papers. Firstly, we prove that every improperly CPAC
learnable class is contained in a class which is properly CPAC learnable with polynomial sam-
ple complexity. This confirms a conjecture by Agarwal et al (COLT 2021). Secondly, we show
that there exists a decidable class of hypotheses which is properly CPAC learnable, but only with
uncomputably fast-growing sample complexity. This solves a question from Sterkenburg (COLT
2022). Finally, we construct a decidable class of finite Littlestone dimension which is not improp-
erly CPAC learnable, strengthening a recent result of Sterkenburg (2022) and answering a question
posed by Hasrati and Ben-David (ALT 2023). Together with previous work, our results provide a
complete landscape for the learnability problem in the CPAC setting.
Keywords: PAC learnability, CPAC learnability, VC dimension, Littlestone dimension, computabil-
ity, foundations of machine learning

1. Introduction

The fundamental problem in the theory of Machine Learning is to understand when a given hypoth-
esis class can be learned by an algorithm that has access to finitely many random samples of an
unknown objective function. The goal of the learner is to select a function that approximates the
objective function at least as well as any hypothesis from the given class. The fundamental theorem
of statistical learning provides a characterization of the existence of learners for a given hypothesis
class in terms of the finitude of a combinatorial quantity (VC dimension) associated with the class
(Vapnik and Chervonenkis, 1971; Blumer et al., 1989). This characterization is concerned with
the existence of learners as abstract mathematical functions and does not take into account their
computational properties.

Recently, a new framework combining PAC learning and Computability Theory was proposed
by Agarwal et al. (2020). In computable PAC (CPAC) learning, both the learner and the functions it
outputs are required to be computable, in the sense that they can be computed by a Turing Machine.
As observed in Agarwal et al. (2020), the existence of a computable learner no longer follows from

© 2023 V. Delle Rose, A. Kozachinskiy, C. Rojas & T. Steifer.

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

finite VC dimension. Moreover, the computable setting is sensible to aspects of the problem that
make no difference in the classical setting. For example, it becomes important whether the learner is
required to be proper (i.e., constrained to only output functions that belong to the hypothesis class)
or allowed to be improper (can output arbitrary functions). Another issue is whether the sample
complexity, i.e., the number of samples a learner needs in order to work as requested, can always
be bounded by a computable function (a setting referred to as strong CPAC learning). This raises
a number of natural questions —which of these aspects of the problem actually lead to different
versions of computable learnability?

Significant progress was made by Sterkenburg (2022), who gave a characterization of proper
strong CPAC learning in terms of the computability of a Empirical Risk Minimizer (ERM) and
who constructed a class of finite VC dimension which is not CPAC learnable, even in the improper
sense. Independently, the framework of computable PAC learning was lifted to continuous spaces
and studied in terms of Weihrauch reducibility Ackerman et al. (2022). Very recently, Hasrati and
Ben-David (2023) gave the computability-theoretic perspective on a related framework of online
learning, further improving our understanding of the learning problem in the computable setting.

Main results. The current paper contributes to this line of research, in particular, by solving three
open problems raised in these recent papers. First, we provide a characterization of CPAC learning
in the improper setting, i.e., when the learner is allowed to output a function outside of the given
hypothesis class. For that, we introduce the effective VC dimension. The classical VC dimension of
a hypothesis class H can be defined as the minimal k such that for any tuple of k+1 distinct natural
numbers one can indicate a Boolean function on them which is not realizable by hypotheses of H. In
the effective version of VC dimension, there also must be an algorithm, transforming a tuple of k+1
distinct natural numbers into a Boolean function, not realizable on them by H. Our first result states
that a hypothesis class is improperly CPAC learnable if and only if its effective VC dimension is
finite. As a byproduct, we obtain that every improperly CPAC learnable class is in fact a subclass of a
properly CPAC learnable class, settling a conjecture formulated by Agarwal et al. (2021). Secondly,
we show that there exists a decidable class of hypotheses H that has proper computable learners, but
only those whose sample complexity cannot be bounded from above by a computable function. This
separates CPAC learning from strong CPAC learning in the proper setting, solving a question asked
by Sterkenburg (2022). Finally, we strengthen a theorem of Sterkenburg (2022), who constructed
a decidable class of finite VC dimension which is not improperly CPAC learnable. We show that
such a class can be constructed to even have a finite Littlestone dimension, providing an answer to a
question posed by Hasrati and Ben-David (2023) in the context of online learning. Altogether, our
results provide a comprehensive landscape for the learnability problem in the computable setting.

Organization of the paper. In Section 2, we briefly recall the classical PAC learning framework.
In Section 3, we provide a detailed overview of computable PAC learning, go through results and
open problems from previous works, and then present precise statements of our results. Proofs are
given in the subsequent sections.

2. Preliminaries

2.1. Notation

For any two sets A and B, we denote by BA the set of functions f : A → B. If f : A → {0, 1}, by
the support of f , denoted by supp(f), we mean f−1(1).

2

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

2.2. Classical PAC learning

In this section, we briefly introduce the classical PAC learning framework. We only work over the
domain N. Thus, a hypothesis class H is an arbitrary subset of {0, 1}N. Elements of H will be
called hypotheses. We will say that a class is finitely supported if it consists of only hypotheses
with finite support. A sample of size n is an element of (N× {0, 1})n. A learner is any function A
from the set of all samples (that is, from

⋃
n∈N(N×{0, 1})n) to {0, 1}N. Now, if D is a probability

distribution over N× {0, 1}, then the generalization error of h ∈ {0, 1}N with respect to D is

LD(h) = Pr
(x,y)∼D

[h(x) ̸= y].

When we write S ∼ Dm, we mean that the coordinates of the sample S = ((x1, y1), . . . , (xm, ym))
were drawn independently m times from D. In the PAC learning framework, the learner receives a
sample S ∼ Dm for some sufficiently large m. The learner’s task is to select, with high probability
over Dm, some function f : N → {0, 1} whose generalization error with respect to D is close to the
best possible generalization error achievable by functions in some known, a priori given, hypothesis
class H.

Definition 1 Let H be a hypothesis class and A be a learner. We say that A PAC learns H if for
every n ∈ N there exists mn such that for every m ≥ mn and for every probability distribution D
over N× {0, 1} we have:

Pr
S∼Dm

[LD(A(S)) ≤ inf
h∈H

LD(h) + 1/n] ≥ 1− 1/n. (1)

If there exists A which PAC learns H, then H is called PAC learnable.
If A PAC learns H, then the sample complexity of A w.r.t. H is a function m : N → N, where

m(n) is the minimal natural number mn such that, for all m ≥ mn, (1) holds for n.
We say that A is proper for H if it only outputs hypotheses from H. Otherwise, we say that A is

improper for H.

A classical result of learning theory is that PAC learnability admits a combinatorial character-
ization via the parameter called the Vapnik-Chervonenkis (VC) dimension. More specifically, let
x1, . . . , xk be k distinct natural numbers. We say that a hypothesis class H shatters x1, . . . , xk if for
all 2k functions f : {x1, . . . , xk} → {0, 1} there exists h ∈ H with f(x1) = h(x1), . . . , f(xk) =
h(xk). The VC dimension of H is the maximal natural k for which there exist k distinct natural
numbers that are shattered by H. If such k distinct natural numbers exist for all k, the VC dimen-
sion of H is +∞. It turns out that a class H is PAC learnable if and only if its VC dimension is
finite.

Another classical result is that any PAC learnable class H can be learned by a specific type of
learners called Empirical Risk Minimizers (or ERM for short). To define them, we first have to
define the error of a hypothesis on a sample. Namely, let S = ((x1, y1), . . . , (xm, ym)) be a sample
and h : N → {0, 1}. The error of h on S is defined as:

LS(h) =
|{i ∈ {1, . . . ,m} | h(xi) ̸= yi}|

m
.

A learner A is an ERM for a class H if for every sample S we have A(S) ∈ argminh∈H LS(h).
In other words, for a given sample S an ERM outputs a hypothesis from H with the least error

3

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

on S. Note that ERM might be not unique (there might be more than one hypothesis attaining the
minimum of LS(h)). Finally, there is another relevant property of a class H that we will also use.
We say that a class of hypothesis H has the uniform convergence property if for every n there exists
mn such that for every m ≥ mn and for every probability distribution D,

Pr
S∼Dm

[
∀h ∈ H, |LD(h)− LS(h)| ≤

1

n

]
≥ 1− 1/n. (2)

The fundamental theorem of statistical learning links together the VC dimension, learnability,
Empirical Risk Minimization, and the uniform convergence property.

Theorem 2 (Vapnik and Chervonenkis (1971), Blumer et al. (1989)) 1

For any class of hypotheses H, the following conditions are equivalent:

• H is PAC learnable,

• the VC dimension of H is finite;

• every ERM for H PAC learns H, and its sample complexity w.r.t. H is bounded by O(n2 log n),
where the constant hidden in O(·) depends only on H;

• H has the uniform convergence property.

Similarly to the VC dimension for PAC learnability, there is a combinatorial property that char-
acterizes online learnability (see Littlestone (1988) and Ben-David and Pál (2009)) and private PAC
learning (Alon et al., 2022). Consider a full rooted binary tree T of depth d where each non-leaf
node is labeled by some x ∈ N. We say that T is shattered by a hypothesis class H if for every leaf
l of T , there exists a hypothesis h ∈ H which leads to l in T . I.e., l can be obtained by descending
from the root of T in the following manner: if we are in some non-leaf node v (in the beginning, v
is the root), and if x ∈ N is the label of v in T , then we go to the left child of v if h(x) = 0 and
we go to the right child of v if h(x) = 1, and this continues until we reach a leaf. The Littlestone
dimension of H (denoted by Ldim(H)) is defined as the maximal depth of a tree which is shattered
by H. If H shatters trees of arbitrary depth, then we set Ldim(H) = ∞. It is not hard to see that
for every hypotheses class H, the VC dimension of H is at most Ldim(H) (see e.g. Shalev-Shwartz
and Ben-David (2014), Theorem 21.9).

3. Computable PAC learning: previous results and our contribution

In the computable version of PAC learning (introduced by Agarwal et al. (2020)) one considers
only computable learners, i.e. learners that can be implemented by an algorithm. In more detail,
we say that a learner A is computable if there exists an algorithm which, given a sample S, outputs
a description of a computer program (formally, a Turing machine), implementing h = A(S) (the
function that A outputs on S). In particular, with this program, we can evaluate h on any natural
number. In this paper, we mainly deal with learners that only output finitely supported hypotheses.
To show that such a learner A is computable, it is enough to exhibit an algorithm that transforms

1. The definition of VC dimension and its connection with the uniform convergence property were established in Vapnik
and Chervonenkis (1971), while the relationship with PAC learnability is due to Blumer et al. (1989). See e.g. Shalev-
Shwartz and Ben-David (2014), Theorem 6.7 for an explanatory presentation.

4

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

S into supp(A(S)) – when supp(A(S)) is finite, one can easily construct a Turing machine that
outputs 1 exactly on supp(A(S)). Requiring a learner to be computable naturally leads to the
following definition:

Definition 3 A hypothesis class H is computably PAC learnable (or CPAC learnable for short) if
there exists a computable learner2 that PAC learns it.

Remark 4 Previous authors make an explicit assumption for CPAC learnability that a hypothesis
class must contain only computable functions. In this paper, we drop this assumption because it is
never used in the proofs and we consider it unnecessarily restrictive. Nevertheless, all our results
hold with this assumption as well. Moreover, all examples of classes in this paper are computation-
ally simple. Namely, they consist only of functions with finite support. In fact, all these classes are
decidable, meaning that there is an algorithm that, when provided the support of a given finitely
supported function h, decides whether h belongs to the class.

The question of whether or not improper CPAC learnability is different from PAC learnability
is not obvious and was left as an open problem in Agarwal et al. (2020). It was recently solved
by Sterkenburg (2022), who gave an example of a hypothesis class with VC-dimension 1 which is
not improperly CPAC learnable. In fact, his class consists of hypotheses with finite support and is
decidable.

Agarwal et al. also introduced a more restrictive version of CPAC learnability by constraining
learners to only output functions from the given hypothesis class H.

Definition 5 A hypothesis class H is properly CPAC learnable if there exists a computable learner
that PAC learns H and that is proper for H.

Remark 6 The reader should be warned that the choice of names for these definitions is not con-
sistent across the literature. Here we have followed Agarwal et al. (2020). But for example,
Sterkenburg (2022) calls CPAC learnability what we have called here proper CPAC learnability.

In the classical setting, the requirement of being proper does not change anything. Indeed, by
Theorem 2, whenever some learner PAC learns H, we have that any ERM for H PAC learns it as
well, and any ERM is proper by definition. However, in the computable setting, the existence of
a computable learner does not necessarily guarantee the computability of some ERM, or of any
other proper learner. In fact, as shown by Agarwal et al. (2020), the set of properly CPAC learnable
classes is indeed strictly contained in the set of CPAC learnable ones. Their example consists of
a certain decidable class of hypotheses H made of functions with the support of size 2 (and thus
PAC learnable since its VC dimension is at most 2) which does not admit any proper computable
learner, but for which an (improper) computable learner can be easily constructed. Even better, in
this case, the class H is included in the decidable class H2 of all functions with size support of size
2, which clearly admits a computable ERM and is therefore properly CPAC learnable. A question
then naturally arises:

is every improperly CPAC learnable class H contained in some properly CPAC learnable class Ĥ?

2. We stress that in this definition the learner might be improper, in the sense that it is allowed to output functions that
do not necessarily belong to H.

5

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

Observe that indeed all subclasses of a properly CPAC learnable Ĥ are (improperly) CPAC learnable
(via the same computable learner that PAC learns Ĥ). However, it is not clear if this is the only way
a class H can be CPAC learnable. This question was raised by both Sterkenburg (2022) and Agarwal
et al. (2021). In this paper, we shall answer it in the affirmative (see Theorem 11 below).

A similar analysis can be carried out with a focus on a different aspect of the problem –sample
complexity. As we have just mentioned, in the classical setting, a class H that is PAC learnable,
is automatically learnable by any ERM, and the sample complexity of ERMs is only polynomial
in n. Once again, in the computable setting, ERMs are not necessarily computable. Therefore,
for a given computable learner, even the computability of its sample complexity function is not
guaranteed. Motivated by this issue, Sterkenburg introduced the following strong variant of CPAC
learnability.

Definition 7 A hypothesis class H is strongly CPAC learnable (or SCPAC learnable for short) if
there exists a computable learner that PAC learns H and whose sample complexity is bounded from
above by some total computable function. Moreover, if there exists a learner with these properties
which is proper for H, then H is properly SCPAC learnable.

Sterkenburg obtained a characterization of proper SCPAC learnability.

Theorem 8 (Sterkenburg (2022), Theorem 2) A class of hypotheses H is properly SCPAC learn-
able if and only if it has a computable ERM and its VC dimension is finite.

One interesting consequence of this result is that whenever H has a proper computable learner
whose sample complexity is bounded by some total computable function, no matter how fast it
grows, H automatically has some other computable learner whose sample complexity is just polyno-
mial (because by Theorem 2, every ERM has polynomial sample complexity). As a main problem,
Sterkenburg left open the following natural question:

is proper CPAC learnability equivalent to proper SCPAC learnability?

In this paper, we solve this problem by showing that these two notions can be separated by a decid-
able class of hypotheses, see Theorem 14 below.

3.1. Statements of our results.

We start with a characterization of CPAC learnability via effective VC-dimension.

Definition 9 Let H ⊆ {0, 1}N be a hypothesis class. A k-witness of VC dimension for H is any
function w, whose domain is the set of all increasing (k + 1)-tuples of natural numbers and whose
range is {0, 1}k+1, such that for every x1 < x2 < . . . < xk+1 ∈ N and for every h ∈ H we have:(

h(x1), . . . , h(xk+1)
)
̸= w((x1, . . . , xk+1)).

The effective VC-dimension of H is the minimal k ∈ N such that there exists a computable
k-witness of VC-dimension for H. If no such k exists, then the effective VC-dimension of H is
infinite.

6

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

In other words, for every x1 < x2 < . . . < xk+1, the witness function w provides a Boolean
function on x1, . . . , xk+1 which is not realizable by hypotheses from H. The minimal k for which
such w exists (possibly, not computable) is equal to the ordinary VC dimension of H. Now, if we
consider only computable witnesses, we obtain the effective VC dimension. Thus, the effective VC
dimension can only be larger than the ordinary one.

Sterkenburg proved that having a finite effective VC dimension is a necessary condition for
CPAC learnability (and used this to give an example of a class that is PAC learnable but not CPAC
learnable):

Proposition 10 (Sterkenburg (2022), Lemma 1) If H is CPAC learnable, then it admits a com-
putable k-witness of VC dimension, for some natural number k.

We show that these two conditions are, in fact, equivalent. Moreover, they are equivalent to
being contained in some properly SCPAC learnable class. Thus, our next theorem settles a question
of Sterkenburg (2022); Agarwal et al. (2021).

Theorem 11 For every H, the following 3 conditions are equivalent:

• (a) Effective VC dimension of H is finite;

• (b) H is CPAC learnable;

• (c) H is contained in some properly SCPAC learnable hypothesis class Ĥ.

Proof Section 4.

We note that the previous result also shows that CPAC learnability is equivalent to SCPAC
learnability, as well as to being contained in some properly CPAC learnable class (as the latter two
properties are stronger than condition (b) but weaker than condition (c) of Theorem 11).

Next, we observe that one can give a characterization of proper CPAC learnability which is
similar in spirit to Proposition 8, Sterkenburg’s characterization of proper SCPAC learnability. For
that, we need the following relaxed version of ERMs.

Definition 12 Let H ⊆ {0, 1}N be an hypothesis class. A learner A is called an asymptotic ERM
for H if it outputs only hypotheses from H and if there exists an infinite sequence {εm ∈ [0, 1]}∞m=1,
converging to 0 as m → ∞, such that for every sample S we have that:

LS(A(S)) ≤ inf
H

LS(h) + ε|S|.

Just like the existence of a computable ERM characterizes proper SCPAC learnability, proper
CPAC learnability boils down to the existence of a computable asymptotic ERM.

Proposition 13 A hypothesis class H ⊆ {0, 1}N is properly CPAC learnable if and only if its VC
dimension is finite and it has a computable asymptotic ERM.

Proof Section 5.

From the proof of Proposition 13 it is not hard to see that the error εm is to an asymptotic
ERM for H exactly as the sample complexity function m(n) is to a corresponding proper learner.

7

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

It follows that εm can be bounded above by a computable function that decreases to 0, exactly
when H is properly SCPAC learnable. We use this observation to answer another open question
of Sterkenburg (2022). Namely, that not every properly CPAC learnable class is properly SCPAC
learnable.

Theorem 14 There is a decidable class of finitely supported hypotheses H which is properly CPAC
learnable but not properly SCPAC learnable.

Proof Section 6.

Our results, together with previous works, fully determine the landscape of computable PAC
learning (see Figure 1). First, by Theorem 14, we have that the set of properly SCPAC learnable
classes is strictly included in the set of properly CPAC learnable classes. Next, due to the example
of Agarwal et al. (2020), the set of properly CPAC learnable classes is strictly included in the
set of CPAC learnable classes. On the other hand, CPAC learnable classes coincide with SCPAC
learnable classes, as well as with classes that are subsets of proper CPAC (or SCPAC) learnable
superclasses (denoted by ⊆prop. (S)CPAC in Figure 1), by Theorem 13. Finally, by the construction
of Sterkenburg (2022), the set of CPAC learnable classes is strictly included in the set of PAC
learnable classes. We were able to strengthen this separation by constructing such an example with
not only a finite VC dimension but even a finite Littlestone dimension. More precisely, we prove
the following result.

prop. SCPAC

prop. CPAC

CPAC = SCPAC = ⊆prop. CPAC = ⊆prop. SCPAC

PAC

Figure 1: The landscape of computable PAC learning. Note that the strict inclusions hold even in
the case of decidable classes of hypotheses.

Theorem 15 There is a decidable class of finitely supported hypotheses H with Ldim(H) = 1
which is not (improperly) CPAC learnable.

Proof Section 7.

8

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

This theorem answers an open question from Hasrati and Ben-David (2023). It also establishes the
separation between the classical online learnability (recently shown to be equivalent to a version
of private PAC learning by Alon et al. (2022)) and its computable counterpart, even for decidable
classes of hypotheses (see details in Hasrati and Ben-David (2023), section 6).

4. Proof of Theorem 11

Proof Implication (b) =⇒ (a) has been already shown in Sterkenburg (2022) (Proposition
10 above), and (c) =⇒ (b) follows directly from the definitions. It remains to establish that
(a) =⇒ (c).

Assume that the effective VC dimension of H is finite. Then for some k ∈ N there exists a
computable k-witness w of VC dimension for H. Let us say that a function h : N → {0, 1} is
good if h has finite support and for every x1 < x2 < . . . < xk+1 < max supp(h) we have that
h disagrees with w on x1 . . . , xk+1, i.e.,

(
h(x1), . . . , h(xk+1)

)
̸= w((x1, . . . , xk+1)). Let Hgood

denote the set of all good h : N → {0, 1}. Define Ĥ = H ∪Hgood. Obviously, H ⊆ Ĥ. It remains
to show that Ĥ is SCPAC learnable. By Theorem 8, it is sufficient to show two things: that Ĥ has
finite VC dimension and that Ĥ has computable ERM.

We first show that the VC dimension of Ĥ is at most k + 1. Indeed, take any x1 < x2 < . . . <
xk+2 ∈ N. We claim that(

h(x1), . . . , h(xk+1), h(xk+2)
)
̸=

(
w((x1, . . . , xk+1)), 1

)
for all h ∈ Ĥ. (3)

Indeed, if h ∈ H, then
(
h(x1), . . . , h(xk+1)

)
̸= w((x1, . . . , xk+1)) because w is a k-witness of VC

dimension for H, and hence (3) holds as well. Now, assume that h ∈ Hgood. If h(xk+2) = 0, then
(3) holds. In turn, if h(xk+2) = 1, observe that x1 < x2 < . . . < xk+1 < xk+2 ≤ max supp(h).
Hence, by definition of a good hypothesis, we have

(
h(x1), . . . , h(xk+1)

)
̸= w((x1, . . . , xk+1)),

and this implies (3).
It remains to show that Ĥ has a computable ERM. The key is to note that for any given sam-

ple S = ((x1, y1), . . . , (xm, ym)) with M = max{x1, . . . , xm}, in order to find a hypothesis with
minimal error on S, it is enough to go through all good hypotheses whose support is a subset of
{0, 1, . . . ,M}. There are finitely many of them, and we can effectively list them because w is
computable. It remains to show that the resulting learner is an ERM for H. For that, it is enough
to establish that for any h ∈ Ĥ there exists a good h1 with supp(h1) ⊆ {0, 1, . . . ,M} such that
LS(h) = LS(h1). Indeed, consider h1 that coincides with h on {0, 1, . . . ,M} and equals 0 oth-
erwise (so that supp(h1) ⊆ {0, . . . ,M}). Clearly, LS(h) = LS(h1) because S only involves
numbers up to M . It remains to show that h1 is good, i.e., that it disagrees with w on every tuple
x1 < x2 < . . . < xk+1 with xk+1 < max supp(h1). Indeed, note that max supp(h1) ≤ M . Hence,
h agrees with h1 on x1 < x2 < . . . < xk+1 and on xk+2 = max supp(h1) (which means that
h(xk+2) = 1). Thus, h1 must disagree with w on x1 < x2 < . . . < xk+1 because otherwise we
have (h(x1), . . . , h(xk+1)) = w((x1, . . . , xk+1)) and h(xk+2) = 1, which contradicts (3) for h.

5. Proof of Proposition 13

Proof First, assume that the VC dimension of H is finite and that it admits a computable asymptotic
ERM A. We show that A PAC learns H. Since A is computable and only outputs functions from H

9

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

by definition, this means that H is properly CPAC learnable. Since the VC dimension of H is finite,
Theorem 2 ensures that it has the uniform convergence property. Let then mn be such that for every
m ≥ mn and every probability distribution D, it holds that

Pr
S∼Dm

[
∀h ∈ H, |LD(h)− LS(h)| ≤

1

3n

]
≥ 1− 1

n
.

Since A only outputs hypothesis from H, we have that with probability at least 1− 1
n , it holds that

|LD(A(S))−LS(A(S))| ≤ 1
3n , as well as |LD(h

∗)−LS(h
∗)| ≤ 1

3n for any h∗ ∈ argminh∈H LS(h).
Furthermore, by definition of asymptotic ERM, there exists a sample size m′

n such that for any sam-
ple of size at least m′

n we have

LS(A(S)) ≤ LS(h
∗) +

1

3n
.

It follows that for any sample S of size m ≥ max(mn,m
′
n),

Pr
S∼Dm

[
LD(A(S)) ≤ inf

h∈H
LD(h) +

1

n

]
≥ 1− 1

n

holds, which shows that A is a PAC learner for H.
Now assume that H is CPAC learnable and let A be a computable learner. We construct a

computable asymptotic ERM Â. For any sample S, consider the probability distribution D(S)
which assigns probability 1

|S| to any element (x, y) ∈ S (in case S has repetitions, we simply sum
the corresponding probabilities). Note that with this definition for D(S) we have that

LS(h) = LD(S)(h) for all h ∈ H. (4)

Let us denote by Ŝ the set of all samples S′ of size m = |S| that can be drawn from D(S). We then
define the output of Â on S by

Â(S) = arg min
{A(S′) :S′∈Ŝ}

LS(A(S′)).

It is clear that Â is computable since A and D(S) are. To show that Â is an asymptotic ERM,
let m(n) be the sample complexity of A w.r.t. H. Then, for every n and every m such that m(n) ≤
m < m(n + 1), let ϵm = 1

n . Since A is a PAC learner for H, we have that for such an m and
S′ ∼ D(S)m, with probability at least 1− 1/n it holds that

LD(S)(A(S′)) ≤ inf
h∈H

LD(S)(h) + ϵ|S|.

This means that there exists some S∗ ∈ Ŝ for which this holds, which together with equality (4)
above gives LS(Â(S)) ≤ infh LS(h) + ϵ|S|, as it was to be shown.

10

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

6. Proof of Theorem 14

Proof We start by defining the class H. First, we partition all even numbers into blocks of in-
creasing sizes: I1 = {2}, I2 = {4, 6}, I3 = {8, 10, 12} and so on so that the size of Ik =
{nk1, . . . , nkj , . . . nkk} is k. Then, for every k ≥ 1 and 1 ≤ j ≤ k we let

hkj(n) =

{
1 if n ∈ Ik \ {nkj},
0 otherwise,

and put it into H. Then we consider a total injective computable function f : N → N such that f(N)
is undecidable. For example, one can take any enumerable undecidable set S ⊆ N and let f(a) be
the ath natural number in a computable enumeration of S (without repetitions to ensure that f is
injective). Now, for every a ∈ N, we define a hypothesis ha which is equal to 1 on If(a) ∪ {2a+1}
and nowhere else. We put all hypotheses ha into H as well. This finishes the description of H,
which consists only of functions with finite support.

We now show that H is decidable. Let h : N → N be any function with finite support. We first
check whether the support of H intersects Ik for exactly one k (otherwise, h /∈ H). If it does, there
are two possibilities for h to be in H. The first possibility is when supp(h) is a subset of Ik of
size k − 1. In this case, h = hkj for some j and thus h ∈ H. The only other possibility is when
supp(h) = Ik ∪ {2a + 1} for some a. Then h ∈ H if and only if k = f(a), and we check this by
computing f(a).

We now show that H is properly CPAC learnable. By Proposition 13, it is enough to show two
things: that H has finite VC dimension and that H has a computable asymptotic ERM. We now
show that the VC dimension of H is at most 3. For that, we take any 4 distinct natural numbers
x1, x2, x3, x4 and show that not all 24 Boolean functions on S = {x1, x2, x3, x4} can be realized
by hypotheses from H. First, observe that the support of every hypothesis from H intersects exactly
one block Ik. Hence, if S intersects two different blocks, we cannot realize the all-ones function
on S. Likewise, we cannot realize the all-ones function if S has two distinct odd numbers (every
hypothesis from S has at most one odd number in its support). The only case left is when S
intersects exactly one block Ik and, besides that, possibly has exactly one odd number. Then at least
3 elements of S are from Ik. Observe that no function from H can be equal to 0 on two of these
elements and to 1 on the third one.

We now construct a computable asymptotic ERM A for H. Assume that A receives on input
a sample S = ((x1, y1), . . . , (xm, ym)) of size m. Then A works as follows. First, it constructs
a finite set of hypotheses HS ⊆ H (we describe how A does it later). Then it goes through all
hypotheses of HS and outputs one which minimizes LS(h) among them. We will argue that

min
h∈HS

LS(h) ≤ min
h∈H

LS(h) + εm, εm =
1

min
[
f(N) \ f({1, . . . ,m})

] . (5)

Since f is an injection, we have that εm → 0 as m → ∞. By (5) we will have that A is an
asymptotic ERM for H. We now explain how A constructs HS . Let M = max{x1, . . . , xm}.
First, A puts hM1 into HS . Observe that hM1 equals 0 on {1, . . . ,M}. Then A puts into HS all
hypotheses of the form hkj such that Ik intersects {1, . . . ,M}. Note that there are finitely many
such hkj , and we can effectively list them. This is because Ik is disjoint from {1, . . . ,M} for
k ≥ M . Finally, A puts h1, . . . , hmax{m,M} into HS . To compute these hypotheses, A computes
f(1), . . . , f(max{m,M}).

11

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

To show that HS satisfies (5), we take any h ∈ H and show that there exists h′ ∈ HS with
LS(h

′) ≤ LS(h) + εm. Assume first that h = hkj for some k, j. If supp(hkj) is disjoint from
{1, . . . ,M}, we let h′ = hM1 ∈ HS . Observe that LS(h

′) = LS(hkj) because both h and h′

are equal to 0 on {1, . . . ,M}. Now, if supp(hkj) intersects {1, . . . ,M}, then Ik ⊃ supp(hkj)
intersects {1, . . . ,M} as well. Hence, hkj ∈ HS in this case by definition of HS . We then simply
take h′ = hkj .

Next, assume that h = ha for some a. If a ≤ max{m,M}, then h is also in HS , so we can set
h′ = h. Likewise, we are done if ha equals 0 on {1, . . . ,M} (then again we can set h′ = hM1).
The only remaining case is when a > max{m,M} and supp(ha) intersects {1, . . . ,M}. Recall
that supp(ha) = If(a) ∪ {2a + 1}. Since a > M , we see that If(a) must intersect {1, . . . ,M}
in this case. Hence, HS contains all hypotheses of the form hf(a)j . Note that any of these hf(a)j
differs from ha exactly at two points: 2a + 1 and the jth element of If(a). Hence, the difference
between LS(ha) and LS(hf(a)j) can be bounded by the number of times these two points appear
in the sample (divided by m, the size of the sample). Since a > M , the point 2a+ 1 actually does
not appear in the sample, and there exists j such that the jth element of If(a) appears in S at most
m/|If(a)| = m/f(a) times. Hence, LS(ha) ≤ LS(hf(a)j) +

1
f(a) for some j. Finally, since a > m

and f is injective, we have that f(a) ∈ f(N) \ f({1, . . . ,m}) and hence

1

f(a)
≤ 1

min
[
f(N) \ f({1, . . . ,m})

] = εm.

It remains to show that H is not properly SCPAC learnable. Equivalently, by Theorem 8, we
have to show that H does not have a computable ERM. Assume for contradiction that it does, and
call it A. We deduce from it that f(N) is decidable. Take any k ∈ N. Our goal is to check if
k ∈ f(N). Define S to be a sample of size k, having each element of Ik exactly once, all of them
labeled by 1. The only possible hypothesis in H which has 0-error on S (equivalently, is equal
to 1 everywhere on Ik) is ha for a with f(a) = k. Thus, such a hypothesis exists if and only
if k ∈ f(N), which can then be decided by running A on S, and checking whether the output
hypothesis has 0-error on S, a contradiction.

7. Proof of Theorem 15

Proof We start by observing that if all the hypotheses in a class H have pairwise disjoint supports,
then the Littlestone dimension of this class is at most 1. Indeed, consider any tree of depth 2. We
show that H does not shatter it. Assume that its root is labeled by x ∈ N. Note that there is at
most one hypothesis h ∈ H with h(x) = 1. Hence, only one leaf under the right child of x can be
reached via a hypothesis from H. This means that H does not shatter this tree.

By Proposition 10, every CPAC learnable class admits a computable k-witness of VC dimen-
sion, for some k ∈ N. We will construct a class that is not CPAC learnable by diagonalizing against
all possible computable k-witnesses, for all k. We will guarantee that for every potential computable
k-witness w, there is a block of natural numbers and a hypothesis from H which agrees with w on
this block. We will use disjoint blocks for different potential witnesses to ensure that hypotheses
in our class have pairwise disjoint supports. Thus, the class will have Littlestone dimension 1. We
have to take into account that

12

FIND A WITNESS OR SHATTER: THE LANDSCAPE OF COMPUTABLE PAC LEARNING.

Let ((Me, ke))e∈N be a computable enumeration of all pairs of the form (M,k), where M is a
Turing machine and k is a natural number. Partition the set of even numbers into consecutive blocks
(Ie)e∈N, where the size of Ie is ke. Let Ie(i) denote the ith smallest element of Ie. Also, fix a
computable bijection p : N2 → N.

We now define the class of hypotheses H. For every e, s ∈ N such that Me halts on (a code for)
the tuple (Ie(1), . . . , Ie(ke)) in exactly s steps and outputs a binary word x = x1 . . . xke of length
ke, we define hes : N → {0, 1} by

hes(n) =


1 if n = 2p(e, s) + 1,

xi if n = Ie(i),

0 otherwise,

and let H be the collection of all such hypothesis. Notice that every h in H has finite support. We
claim that, moreover, any two hypotheses from H have disjoint supports. Indeed, for any e, there is
at most one s such that hes is in our class. Hence, for any block Ie of even numbers, there is at most
one hypothesis whose support intersects this block. Thus, two distinct hypotheses cannot have a
common even number in their support. Likewise, each odd number can be in the support of at most
one hes, because p is a bijection. Hence, H has Littlestone dimension 1.

Next, we observe that H is decidable. We give an algorithm that, for a function h : N → {0, 1}
with finite support, decides, whether h ∈ H. Note that h can be a member of H only if h has exactly
one odd number n in its support. Using the fact that p is a computable bijection, we find unique e, s
such that n = 2p(e, s) + 1 (via brute force). Note that h belongs to H if and only if hes does and
hes = h. We then run Me on the code for the tuple (Ie(1), . . . , Ie(ke)). If it halts in exactly s steps
and outputs a binary string x1 . . . xke of length ke, we know that hes belongs to H. It remains to
check if hes = h.

To complete the proof, suppose for contradiction that H is CPAC learnable and w is a com-
putable k-witness of VC dimension for H. There exists e such that Me realizes w and ke = k + 1.
In particular, there exists s such that Me halts on (Ie(1), . . . , Ie(ke)) in exactly s steps and outputs
x = w((Ie(1), . . . , Ie(ke)). Observe that hes belongs to H but agrees with w on (Ie(1), . . . , Ie(ke)),
a contradiction.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No 731143. Delle Rose,
Kozachinskiy, and Rojas were also funded by the National Center for Artificial Intelligence CENIA
FB210017, Basal ANID. Additionally, Kozachinskiy and Steifer were funded by the Millennium
Science Initiative Program - Code ICN17002.

References

Nathanael Ackerman, Julian Asilis, Jieqi Di, Cameron Freer, and Jean-Baptiste Tristan. Computable
pac learning of continuous features. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1–12, 2022.

13

DELLE ROSE KOZACHINSKIY ROJAS STEIFER

Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner, and Ruth Urner. On
learnability with computable learners. In Algorithmic Learning Theory, pages 48–60. PMLR,
2020.

Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner, and Ruth Urner.
Open Problem: Are all VC-classes CPAC learnable? In Conference on Learning Theory, pages
4636–4641. PMLR, 2021.

Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private and online learn-
ability are equivalent. ACM Journal of the ACM (JACM), 69(4):1–34, 2022.

Shai Ben-David and Shai Pál, Dávid Shalev-Shwartz. Agnostic Online Learning. In Annual Con-
ference Computational Learning Theory, 2009.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.

Niki Hasrati and Shai Ben-David. On computable online learning. In International Conference on
Algorithmic Learning Theory, pages 707–725. PMLR, 2023.

Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold
Algorithm. Mach. Learn., 2(4):285–318, apr 1988. ISSN 0885-6125. doi: 10.1023/A:
1022869011914. URL https://doi.org/10.1023/A:1022869011914.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014. doi: 10.1017/CBO9781107298019.

Tom F Sterkenburg. On characterizations of learnability with computable learners. In Conference
on Learning Theory, page 178:1–15. PMLR, 2022.

VN Vapnik and A Ya Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

14

https://doi.org/10.1023/A:1022869011914

	Introduction
	Preliminaries
	Notation
	Classical PAC learning

	Computable PAC learning: previous results and our contribution
	Statements of our results.

	Proof of Theorem 11
	Proof of Proposition 13
	Proof of Theorem 14
	Proof of Theorem 15

