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Abstract
Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or
sampling methods to produce smaller representations of large datasets: For certain tasks, these
sketched representations have been observed to exhibit many robust performance characteristics
that are known to occur when a data sample comes from a sub-gaussian random design, which is a
powerful statistical model of data distributions. However, this phenomenon has only been studied
for specific tasks and metrics, or by relying on computationally expensive methods. We address
this by providing an algorithmic framework for gaussianizing data using sparse sketching opera-
tors, proving that it is possible to efficiently construct data sketches that are nearly indistinguishable
(in terms of total variation distance) from sub-gaussian random designs. In particular, relying on a
recently introduced sketching technique called Leverage Score Sparsified (LESS) embeddings, we
show that one can construct an n × d sketch of an N × d matrix A, where n � N , that is nearly
indistinguishable from a sub-gaussian design, in time O(nnz(A) logN + nd2), where nnz(A) is
the number of non-zero entries in A. As a consequence, strong statistical guarantees and precise
asymptotics available for the estimators produced from sub-gaussian designs (e.g., for least squares
and Lasso regression, covariance estimation, low-rank approximation, etc.) can be straightfor-
wardly adapted to our sketching framework. We illustrate this with a new approximation guarantee
for sketched least squares, among other examples. The key technique that enables our analysis is
a novel variant of the Hanson-Wright inequality on the concentration of random quadratic forms,
which we establish for random vectors that arise from sparse sketches.
Keywords: Sketching, Least squares, Randomized Numerical Linear Algebra, Sub-gaussianity

1. Introduction

In a standard statistical learning setup, we are given a sample of i.i.d. points (x1, y1), ..., (xn, yn),
and our goal is to perform an estimation or prediction task. For example, in linear regression, we
aim to learn a linear model w∗ from labels/responses yi = x>i w∗ + ξi, where ξi represents the
noise. Naturally, the performance of prediction models for linear regression, such as ordinary least
squares (OLS) and Lasso, depends greatly on the properties of the sample distribution, as well as on
the distribution of the noise ξ, e.g., whether they are heavy-tailed or not. To that end, there is exten-
sive literature (see Section 5.2) which provides precise analysis of statistical and machine learning
models under strong distributional assumptions on the data, one of the most common assumptions
being Gaussianity and sub-gaussianity. When, the data and noise exhibit small sub-gaussian tails
(e.g., by having a constant sub-gaussian Orlicz norm), then estimators such as OLS and Lasso, as
well as model selection methods such as cross-validation, exhibit provably good, even optimal, per-
formance. In modern learning tasks these distributional assumptions are rarely met. On the other
hand, we can often benefit from a great abundance of cheap data available in many domains. To that
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end, we ask: Can we leverage this data abundance to algorithmically introduce sub-gaussianity into
a data distribution, and when is it practical?

A key motivation in this context is randomized sketching, which is useful in situations when
running a learning/estimation algorithm directly on the entire dataset is computationally prohibitive.
Instead, we produce a smaller sketch of the data, e.g., via importance sampling or random projec-
tions, and use it as a surrogate data sample. To illustrate this, suppose that our goal is to solve a least
squares regression task (A,b):

Find w∗ = argmin
w

L(w) for L(w) = ‖Aw − b‖2,

where A is a large tallN×dmatrix and b is anN -dimensional vector. In the context of sketching, a
classical way of computationally reducing this task to a much smaller and more tractable instance is
via the so-called Gaussian embedding: We apply a randomized linear transformation to both A and
b, where the transformation is defined by an n×N sketching matrix S with i.i.d. Gaussian entries
from N (0, 1/n) to produce a much smaller n × d sketched regression task (X,y) = (SA,Sb),
where n � N . Remarkably, for an arbitrary fixed input (A,b), the resulting algorithmically
generated data sample (X,y) exactly matches the standard Gaussian random design: each row
vector x>i of X is a Gaussian vector with covariance Σ = 1

nA>A, whereas each entry of y is
distributed according to a linear model yi = x>i w∗ + ξi with independent mean zero Gaussian
noise.1 Note that we did not impose any linear noise model on the original problem (A,b), but
rather, it arises naturally through the sketching transformation. In particular, this allows us to derive
the exact expected approximation error of the sketched ordinary least squares (OLS) estimator:

E
[
L(ŵ)− L(w∗)

]
=

d

n− d− 1
· L(w∗) for ŵ = argmin

w
‖Xw − y‖2. (1)

This statistical model implies many other strong performance guarantees for a variety of tasks
such as covariance estimation, OLS, Lasso, PCA etc. (e.g., Koltchinskii and Lounici, 2017; Do-
briban and Wager, 2018; Miolane and Montanari, 2021), which directly apply to data transformed
by Gaussian embeddings, regardless of the distribution of the matrix A. We refer to this phe-
nomenon as Algorithmic Gaussianization. Unfortunately, Gaussian embeddings carry a substantial
preprocessing cost, compared to, say, uniformly down-sampling the data, and so, many other sketch-
ing techniques have been proposed, e.g., CountSketch, Sparse Johnson-Lindenstrauss Transforms
(SJLT), Subsampled Randomized Hadamard Transforms (SRHT) and Leverage Score Sampling
(e.g., Sarlos, 2006; Drineas et al., 2006; Clarkson and Woodruff, 2017), which can be viewed as
computationally efficient algorithms for transforming a large dataset into a small data sample. Exist-
ing work has shown various approximation guarantees for these algorithms, via arguments based on
subspace embeddings and the Johnson-Lindenstrauss property (Woodruff, 2014; Drineas and Ma-
honey, 2016; Dereziński and Mahoney, 2021). However, even though some level of gaussianization
is implied by these guarantees, exact parallels with Gaussian random designs are not available.

In this work, we establish a framework for studying Algorithmic Gaussianization. Specifically,
in our main result (Theorem 3), we characterize the total variation distance between a sketched
data sample and the closest sub-gaussian random design. This approach can be used to show sub-
gaussian properties for extremely sparse sketching transformations, including the so-called Lever-
age Score Sparsified (LESS) embeddings, whose time complexity matches that of other state-of-the-
art techniques (Dereziński et al., 2021b). For these transformations, our result yields a sub-gaussian

1. This follows because x>
i w∗ and yi − x>

i w∗ are uncorrelated and jointly Gaussian, and therefore, independent.
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property known as the Hanson-Wright inequality (Rudelson and Vershynin, 2013), which is widely
used to establish both asymptotic and non-asymptotic guarantees for statistical models. We also
provide a matching lower bound (Theorem 5), which shows that some sketching methods, such as
leverage score sampling, do not enjoy the same sub-gaussian properties.

We illustrate the strength of our framework on several examples, including least squares (The-
orem 7), Lasso regression (Corollary 10), and Randomized SVD (Corollary 15 in Appendix A). In
particular, as a second main result of independent interest, we show that the Gaussian approximation
error formula (1) for the sketched OLS estimator can be non-asymptotically extended to efficient
sparse sketches such as LESS embeddings. Namely, we show that for any A and b, if S is a LESS
embedding matrix, then the sketched OLS estimator satisfies:

(Theorem 7) E
[
L(ŵ)− L(w∗)

]
≈1+ε

d

n− d− 1
· L(w∗) for ε = Õ(1/

√
d).

Here, a ≈1+ε b denotes a (1 + ε)-approximation b/(1 + ε) ≤ a ≤ (1 + ε)b. This type of guarantee
for sketched OLS is a first of its kind (outside of Gaussian embeddings), as prior work only showed
upper bounds (with additional constant and logarithmic factors) of the form Õ(d/n) · L(w∗) (e.g.,
see Woodruff, 2014), or asymptotic results (Dobriban and Liu, 2019). Remarkably, we show empir-
ically (Appendix B) that for LESS embeddings the above approximation error estimate is extremely
accurate, whereas for other popular sketching methods that are not covered by our theory (such as
row sampling and SRHT), the approximation error can be much more problem dependent.

2. Main result: Hanson-Wright inequality for sparse sketches

In this section, we present our main result, showing that certain sparse sketching operators produce
data sketches whose distributions are nearly indistinguishable from sub-gaussian random designs.

As there are a number of closely related notions of sub-gaussianity, we clarify this here, with a
more detailed discussion in Section 5 (see Figure 3 for an illustration of different sub-gaussian prop-
erties). We say that a variable X is K-sub-gaussian if its corresponding sub-gaussian Orlicz norm,
i.e., ‖X‖ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}, is bounded by K. For a random vector, perhaps
the simplest and most popular model of sub-gaussianity is to assume that it has independent sub-
gaussian entries. However, entry-wise independence is a fairly strong assumption. The multivariate
sub-gaussian norm, i.e., ‖x‖ψ2 = supv:‖v‖=1 ‖v>x‖ψ2 , is a popular relaxation that allows for sub-
gaussian vectors with dependent entries. However, this notion is too weak for some applications,
e.g., in high-dimensional statistics (Bai and Silverstein, 2010), or to obtain our least squares result
(Theorem 7). These settings often rely on a stronger property, called the Hanson-Wright inequality,
which has seen significant interest in the literature (e.g., Hsu et al., 2012; Rudelson and Vershynin,
2013; Adamczak, 2015; Vershynin, 2020; Bamberger et al., 2021). In the classical version given
below (due to Rudelson and Vershynin, 2013), the inequality is established for vectors with inde-
pendent sub-gaussian entries, however, in our main results, we demonstrate that it is applicable far
beyond that setting. In the following statement, c denotes an absolute constant.

Lemma 1 (Hanson-Wright inequality) Let x have independentK-sub-gaussian entries with mean
zero and unit variance. Then, it satisfies the Hanson-Wright inequality with constant K:

Pr
{
|x>Bx− tr(B)| ≥ t

}
≤ 2 exp

(
− cmin

{ t2

K4‖B‖2F
,

t

K2‖B‖

})
for any B. (2)
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Figure 1: Illustration of p-sparsified sketches, highlighting the interaction of one row of S with A.

Consider an n × d random matrix X. We will say that X is a sub-gaussian random design
satisfying Hanson-Wright inequality with constant K, if it can be decomposed so that X = ZΣ1/2,
where Σ is the positive definite covariance matrix and Z consists of i.i.d. isotropic row vectors z>i
that satisfy (2). Note that the rows of Z may not have independent entries.

Before we present our main result for sparse sketches, let us start with a simpler example of
dense sub-gaussian sketches. Consider an N ×d data matrix A with full column rank and an n×N
sketching matrix S consisting of independent random ±1/

√
n entries (scaled random signs). The

scaling in S is standard, and chosen so that the singular values of the resulting sketch SA are of the
same order as the singular values of A. Now, let Σ = A>A and Z =

√
nSU, where U = AΣ−1/2.

Then, we have SA = 1√
n
ZΣ1/2, where the scaling by 1/

√
n could also be absorbed into Σ. It is

easy to see that the rows of Z are i.i.d. and isotropic. Moreover, since the rows of
√
nS have

i.i.d. sub-gaussian entries withK = O(1), and the Hanson-Wright inequality is preserved under the
transformation from x to U>x, it follows from Lemma 1 that the rows of Z also satisfy (2) with the
same constant K. Even in this example, the rows of Z do not have independent entries, which is
why we use inequality (2) to define sub-gaussianity, rather than the assumptions of Lemma 1.

We next show that a similar reduction can be achieved for a class of sparse sketching matrices.

Definition 2 (p-sparsified sub-gaussian sketch) Let p = (p1, ..., pN ) be a probability distribu-
tion. A p-sparsified sub-gaussian matrix S of size n with k non-zeros per row has n i.i.d. row vectors
1√
n

∑k
i=1

ri√
kpIi

e>Ii , where Ii ∼ p and ri are i.i.d. mean zero, unit variance andO(1)-sub-gaussian.

In the following theorem, our main result, we show that many sparse sketches as defined above
are very close to a sub-gaussian random design that satisfies the Hanson-Wright inequality with a
small constant K. The closeness is measured using the total variation distance, denoted by dtv,
which allows transferring virtually any property from the design matrix to the sketch. The best
guarantees are obtained when the sparsifying distribution p is close to the so-called leverage score
distribution of matrix A (Drineas et al., 2006): the ith leverage score of a rank dmatrix A is defined
as `i(A) = a>i (A>A)−1ai, where a>i is the ith row of A. Note that we have

∑N
i=1 `i(A) = d.

Also, in the statement, we use C ≈1+ε D to denote a (1 + ε)-approximation between two positive
semidefinite (psd) matrices C and D in terms of the Loewner psd ordering.

Theorem 3 (Main result) Consider an N × d matrix A with rank d, and a p-sparsified sub-
gaussian matrix S of size n with k non-zeros per row. Define µ := maxi `i(A)/pi ≥ d. For any
δ > 0, there is a d× d psd matrix Σ̃ and an n× d random matrix Z with i.i.d. mean zero isotropic
row vectors, each satisfying the Hanson-Wright inequality (2) withK = O

(
1+
√
µ log(µn/δ)/k

)
,

such that:

dtv
(
SA, 1√

n
ZΣ̃1/2

)
≤ δ and Σ̃ ≈1+δ A>A.
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Figure 2: Illustration for Theorem 3. Matching lower bound is given in Theorem 5. Note that a p-
sparsified sketch with k = N is not strictly equivalent to a standard sub-gaussian sketch,
due to with-replacement sampling of non-zero entries (chosen to simplify the analysis).

To illustrate this result, consider the scenario where N � d and p is the approximate leverage
score sampling distribution, i.e., pi ≈O(1) `i(A)/d for all i, in which case µ = Θ(d) and so the
Hanson-Wright constant satisfies K = Õ(1 +

√
d/k). In this case, as shown in Figure 1 (where the

rows of A are sorted by leverage scores for the purpose of illustration), as we vary sketch density k,
i.e., the number of non-zeros per row of S, we recover: leverage score sampling for k = 1, LESS
embeddings for k = d, and dense sub-gaussian sketches for k = N (up to minor differences in
the definitions, which do not affect the conclusions). For leverage score sampling, we can only get
K = Õ(

√
d), which is essentially vacuous. However, to get the optimal K = Õ(1), we only need

k = d� N . Increasing k further has little effect on the Hanson-Wright constant, as we observe in
Figure 2, which illustrates the dependence of K on sketch density. In Theorem 5 below, we provide
a nearly-matching lower bound of K = Ω̃(1 +

√
d/k), which in particular confirms that leverage

score sampling does not enjoy a near-optimal Hanson-Wright guarantee.

Remark 4 Below are the key examples of sparse sketches that fall under Theorem 3, for which the
Hanson-Wright constant satisfies K = Õ(1):

1. LESS embeddings. Here, p is an approximate leverage score sampling distribution, i.e., we
have pi ≈O(1) `i(A)/d for all i. The number of non-zeros needs to satisfy k = Ω(d). Sketch-
ing takesO(nnz(A) logN+nd2) time, where nnz(A) is the number of non-zero entries in A.

2. Uniformly sparsified sketches. We use a uniform distribution p, i.e., pi = 1
N for all i. The

number of non-zeros needs to satisfy k = Ω(N ·maxi `i(A)), which can be anywhere between
d and N , depending on A. Here, sketching takes O(ndk) time.

3. Preconditioned sparse sketches. Replacing A with Ã = HDA, where H is a fast Hadamard
transform and D is diagonal with random ±1 entries, we can ensure that all leverage scores
are nearly uniform: `i(Ã) ≈ d/N (Tropp, 2011), while preserving the data covariance,
Ã>Ã = A>A. Then, the uniformly sparsified sketch needs only k = Ω(d) non-zeros. This
procedure takes O(Nd logN + nd2) time for preconditioning and sketching.
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Based on the above result, LESS embeddings and preconditioned sparse sketches provide the most
effective Gaussianizing property for arbitrary data matrices A. However, simpler uniformly spar-
sified sketches can be equally effective for certain input matrices (depending on the leverage score
distribution). We note that the nearly-linear time complexity of LESS embeddings is primarily based
on the cost of approximating the leverage scores of A (Drineas et al., 2012), which can be done in
O(nnz(A) logN + d3 log(d)) time. Thus, when using LESS embeddings, our Hanson-Wright re-
duction can be achieved in time nearly linear in the input size (a.k.a. input sparsity time), with its
complexity matching state-of-the-art sketching methods up to logarithmic factors (see Section 5.2).

Certain sparse sketches, such as CountSketch or SJLT, do not technically fit into our frame-
work (we assume row-wise independence, while they have column-wise independence). Yet, these
methods align closely with uniformly sparsified sketches (e.g., for CountSketch, with k ≈ N/n
non-zeros per row). This suggests that the sparsity needed to recover sub-gaussian behavior with
these methods depends both on the leverage score distribution and the dimensions of the data matrix.

Next, we demonstrate the sharpness of Theorem 3 by constructing examples of data matrices
and p-sparsified sketches for which one cannot find a sufficiently good sub-gaussian random design
that is close in total variation distance. Importantly, the result gives a lower bound ofK=Ω̃(

√
d) for

leverage score sampling (i.e., k = 1), and shows that LESS embeddings require k=Ω̃(d) non-zeros
per row to get K = Õ(1), matching our upper bounds up to logarithmic factors (see Figure 2).

Theorem 5 (Lower bound) For anyN ≥ d, there is a rank dmatrix A ∈ RN×d with the property:
Given any n, k ≥ 1, let S be a p-sparsified sub-gaussian matrix of size n with k non-zeros per row,
where variables ri are random ±1 signs, and the distribution p satisfies pi ≈O(1) `i(A)/d for all i.
Suppose there is Z having i.i.d. isotropic row vectors satisfying Hanson-Wright inequality (2) with
K, such that dtv(SA, 1√

n
ZΣ̃1/2) ≤ 1/2 for some Σ̃ ≈O(1) A>A. Then:

K = Ω
(

1 +
√

d/k
log d

)
.

Remark 6 Recall that when pi ≈O(1) `i(A)/d (i.e., approximate leverage score sampling), then
µ = Θ(d) in Theorem 3, so the lower bound matches our upper bound up to logarithmic factors for
leverage score sampling and LESS embeddings. In Appendix G we show an even stronger result,
lower bounding the sub-gaussian norm ‖ · ‖ψ2 instead of the Hanson-Wright constant K, so that Z
cannot be a sub-gaussian design even in this weaker sense (see Figure 3 for comparison).

To demonstrate the benefits of our main results, recall that small total variation distance, namely
dtv(SA, 1√

n
ZΣ̃1/2) ≤ δ, means that we can couple the sketch SA with the sub-gaussian design so

that they are identical with probability 1− δ. This effectively allows us to transfer any property that
holds with high probability for the sub-gaussian design to a property that holds for the sketch. The
only caveat is that the covariance matrix gets slightly distorted in the process, but both this distortion
and the failure probability are controlled by δ which can be made negligibly small. We use this in
Section 3 to show new guarantees for sparse sketches in least squares and Lasso regression.

3. Applications: Least squares and Lasso regression

We next present some of the implications of Theorem 3. In Section 3.1, we present our main appli-
cation, giving a precise characterization of the expected approximation error of the sketched least
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squares estimator with LESS embeddings. Here, this is not merely a corollary of our main result,
but rather a result of independent interest, and to our knowledge, it was not previously known even
for dense sub-gaussian sketches. Then, in Section 3.2, we demonstrate how our results imply new
efficient algorithms for approximately solving Lasso regression and other constrained optimization
tasks. Further applications to low-rank approximation, as well as corollaries for the subspace em-
bedding and Johnson-Lindenstrauss properties of LESS embeddings, are given in Appendix A.

3.1. Sketched least squares with LESS embeddings

As a motivating application of our theory, we study the approximation properties of the sketched
least squares estimator, showing that, when the sketch is a LESS embedding, then it achieves nearly
the same expected approximation error as for a Gaussian embedding, even down to constant factors.

Consider an N × d data matrix A with full column rank, where N � d, and an N -dimensional
vector b. Recall that our goal is to approximately solve the least squares task (A,b), i.e., find:

w∗ = argmin
w

L(w) = (A>A)−1A>b, where L(w) = ‖Aw − b‖2.

Given an n × N sketching matrix S, the sketched least squares estimator ŵ for this model is the
solution of the sketched version of the problem, i.e., (SA,Sb). If S is a Gaussian embedding,
then via a reduction to a Gaussian random design, the expected error of this estimator is given by
the exact formula (1), but the cost of constructing such a sketch is O(Ndn), which is prohibitively
expensive. If we let S be a LESS embedding matrix with d non-zeros per row (see Remark 4),
then the cost of computing this estimator is O(nnz(A) logN + nd2), which includes the cost of
approximating the leverage scores, sketching the data, and computing ŵ from the sketch. We show
that the resulting estimator enjoys nearly the same expected error guarantee as the Gaussian embed-
ding. To avoid numerical precision issues which may occur when computing the exact expectation
(there is a small but non-zero probability that SA is very ill-conditioned), we assume that: the
LESS embedding matrix is constructed so that the random variables ri from Definition 2 are ran-
dom ±1 sign variables, and the probability distribution satisfies pi ≈O(1) `i(A)/d + 1/N . We
also restrict the entries of the sketched solution ŵ to a finite range R = [−D,D], for a sufficiently
large D = poly(N,κ(A), ‖A‖, ‖b‖) which is absorbed by the logarithmic factors in the result (see
Appendix E for details).

Theorem 7 Fix A of rank d and let S be a LESS embedding as above, with n ≥ Õ(d) rows and
k = d non-zeros per row. For any b, the estimator ŵ = argminw∈Rd ‖S(Aw − b)‖2 satisfies:

E
[
L(ŵ)− L(w∗)

]
≈1+ε

d

n− d− 1
· L(w∗) for ε = Õ(1/

√
d ),

where L(w) = ‖Aw − b‖2 and w∗ = argminw L(w).

The result easily extends to any sketching method covered by Remark 4, as long as the entries of
S are almost surely bounded, as well as to dense random ±1 matrices, affecting only the polyloga-
rithmic factors hidden in Õ.

Remark 8 The obtained expression for the expected multiplicative approximation error, i.e., d
n−d−1 ,

is completely independent of the data matrix A or the regression vector b, and it matches the for-
mula (1) for the Gaussian embedding. Comparable non-asymptotic guarantees for other fast sketch-
ing methods, such as SJLT, SRHT, or leverage score sampling, take the form of Õ(d/n) · L(w∗),

7
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where the precise constant and logarithmic terms are problem-dependent (e.g., see Woodruff, 2014;
Chen and Price, 2019). To our knowledge, this result was not previously known even for dense
sub-gaussian sketches.

Proof sketch The proof, given in Appendix E, proceeds differently from the existing bounds for
sketched least squares. Our approach is inspired by the asymptotic analysis of the OLS estimator in
high-dimensional statistics (e.g., Hastie et al., 2019), but we obtain a non-asymptotic bound and we
avoid any statistical assumptions on the label noise. We start by rewriting the expected loss E[L(ŵ)]
as the expectation of the leave-one-out cross-validation estimator, LCV =

∑n
i=1(ã

>
i ŵ−i − b̃i)

2,
where (ã>i , b̃i) is the ith row of the sketched problem (SA,Sb) and ŵ−i is computed by excluding
this row from the sketch. We then use the Hanson-Wright inequality via Theorem 3 to show that all
of the leverage scores of the sketch are with high probability very close to uniform (Lemma 22):

`i(SA) ≈1+ε
d

n
with ε = Õ(1/

√
d ) for all i.

Using a standard short-cut formula, this allows us to approximate the expectation of LCV as follows:

E[LCV] ≈1+ε′
(
1− d

n

)−2E[‖S(Aŵ − b)‖2
]

with ε′ = Õ(
√
d/n).

Finally, our key contribution in the analysis is a new approximate expectation formula for the sketch
of the so-called hat matrix, H = A(A>A)−1A (i.e., the orthogonal projection onto the column-
span of A), which arises when deriving the optimum least squares loss: L(w∗) = b>(I − H)b.
Specifically, in Lemma 23 we show that the hat matrix Ĥ of the sketch SA satisfies:

E
[
S>(I− Ĥ)S

]
≈1+ε′

(
1− d

n

)
· (I−H) with ε′ = Õ(

√
d/n),

where ≈1+ε is defined in terms of the psd matrix ordering, and the formula holds exactly when S is
a Gaussian embedding. The result then follows because E[‖S(Aŵ−b)‖2] = b>E[S>(I− Ĥ)S]b.

Experiments In Appendix B we empirically show that our estimate for the expected approxima-
tion error of sketched OLS with a LESS embedding is even more accurate than suggested by the
theory, on a range of benchmark regression tasks. Our experiments also show that this problem-
independent expected approximation error is not always shared by other fast sketching methods that
are considered to have strong guarantees for least squares, such as SRHTs.

3.2. Lasso and constrained least squares

In this section, we show how our results can be used to extend existing sketching guarantees in con-
strained least squares optimization from dense sub-gaussian sketches to LESS embeddings. This
general problem setting includes such standard tasks as Lasso regression, sparse recovery and train-
ing a support vector machine.

We consider the following constrained optimization task for A ∈ RN×d and b ∈ RN :

find w∗ = argmin
w∈C

L(w), for L(w) = ‖Aw − b‖2,

where C is some convex subset of Rd. Our goal is to approximately solve this task by solving
a sketched version of the problem: ŵ = argminw∈C ‖S(Aw − b)‖2, for an n × N sketching
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matrix S. When the sketching matrix is a sub-gaussian embedding, then Pilanci and Wainwright
(2015) showed that the sketch size n needed for ŵ to achieve a (1+ ε)-approximation, i.e., L(ŵ) ≤
(1 + ε) ·L(w∗), is controlled by the so-called Gaussian width, which can be viewed as a measure of
the degrees of freedom for the constrained optimization task (in particular, it can be much smaller
than the actual dimension d), and is defined as follows:

W := W(AK) = Eg

[
sup

u∈AK∩SN−1

|g>u|
]
,

where g has i.i.d. standard Gaussian entries, SN−1 is the unit sphere in RN , and K is the tangent
cone of the constraint set C at the optimum w∗, i.e., the closed convex hull of {∆ ∈ Rd | ∆(w −
w∗) for t ≥ 0,w ∈ C}. Specifically, they showed that if S consists of i.i.d. mean zero isotropic
sub-gaussian rows and n ≥ O(W2/ε2), then with high probability ŵ is a (1 + ε)-approximation of
w∗. We use Theorem 3 to extend this result to LESS embeddings (see Appendix F).

Theorem 9 If S is a LESS embedding matrix for A, with size n ≥ Õ(W2/ε2), then with high
probability ŵ is a (1 + ε)-approximation of w∗.

We illustrate this claim with a corollary for Lasso regression, where the constraint set is an `1 ball,
i.e., C = {w : ‖w‖1 ≤ R}. Crucially, here the sketch size needed to obtain a good approximation
scales with the sparsity of the solution w∗, rather than with the dimension of the data. First, we
formulate an `1-restricted condition number of A, which is always smaller than the actual condition
number, and which naturally arises in bounding the Gaussian width:

κ = max
i
‖A:,i‖/γ−s (A), where γ−s (A) = min

‖v‖=1, ‖v‖1≤2
√
s
‖Av‖.

Corollary 10 Suppose that the Lasso solution w∗ is s-sparse. Then, using a LESS embedding of
size n ≥ Õ(κ2s/ε2), we can obtain a (1+ε)-approximation of w∗ in timeO(nnz(A) logN+nd2).

Finally, we note that similar results for approximately solving Lasso and other constrained least
squares problems can be obtained for SRHT sketches. However, there are two key differences:
(1) the bounds obtained for SRHT are weaker than the ones achieved for LESS or sub-gaussian
sketches, e.g., in addition to the Gaussian width, they also scale with other problem-dependent
quantities such as the Rademacher width (see Theorem 2 of Pilanci and Wainwright, 2015); and (2)
the cost of SRHT is O(Nd logN), which is higher than the cost of LESS when nnz(A)� Nd.

4. Key technical result: A Hanson-Wright limit theorem

In this section, we present the key technical result that we use to prove Theorem 3. This result shows
that, by relying on the central limit phenomenon, we can establish that a sum of bounded random
vectors gets very close, in terms of the total variation distance dtv, to a random vector that satisfies
the Hanson-Wright inequality (2) with a small constant K, even though the sum may not satisfy
this property directly. There has been extensive literature dedicated to extending and adapting the
Hanson-Wright inequality (e.g., Hsu et al., 2012; Adamczak, 2015; Vershynin, 2020; Bamberger
et al., 2021), and our result is of independent interest in the context of this line of works.
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Theorem 11 Let x1,x2, ... be i.i.d. random vectors, where E[xix
>
i ] = Σ is full-rank and ‖Σ−1/2xi‖2

is M -sub-gaussian. Define a k-gaussianized sample x̃ = 1√
k

∑k
i=1 rixi, where ri are indepen-

dent mean zero unit variance R-sub-gaussian random variables. For any δ > 0, there is L =
O
(
1 +M log(M/δ)/

√
k
)
, a d× d psd matrix Σ̃, and a mean zero isotropic vector z satisfying the

Hanson-Wright inequality (2) with K = LR, such that:

dtv
(
x̃, Σ̃1/2z

)
≤ δ and Σ̃ ≈1+δ Σ.

Remark 12 Note that M2 ≥ E[‖Σ−1/2xi‖22] = d, where d is the dimension of xi. If we make a
stronger assumption that ‖Σ−1/2xi‖2 ≤ M almost surely, then we can obtain a slightly sharper
result: L = O(1 + M

√
log(M/δ)/k), which is what we use to establish Theorem 3. Either of the

boundedness assumptions includes all distributions over finite populations in general position.

The proof, which can be found in Appendix D, is briefly summarized here. We start by defining
a high-probability event E ensuring that the sample covariance matrix 1

k

∑
i xix

>
i is sufficiently well

bounded. In the process, we establish a bound on the matrix moments of the random covariates xix
>
i

(Lemma 20). Then, we construct the vector z so that it is coupled with x̃ when the event E holds.
This requires introducing a correction term designed to minimize the distortion of the covariance
matrix of z, so as to ensure that Σ̃ ≈1+δ Σ. We then establish the Hanson-Wright inequality for z
in three steps: First, analyzing the error coming from the ri’s; then accounting for the randomness
in xi’s; and finally, bounding the noise coming from the correction term.

At a high level, Theorem 11 states that as k goes to infinity, the total variation distance of x̃
from a certain family of sub-gaussian distributions goes to zero. Using the total variation distance
to measure central limit behavior (instead of, say, the Wasserstein distance) is unusual because of
how strong of a guarantee it requires (see Section 5.2 for discussion). This is possible here because
we are comparing to a sub-gaussian distribution, instead of directly to a Gaussian.

Note that the lower bound we provide in Theorem 5 for p-sparsified sketches also constitutes
a lower bound for Theorem 11. In particular, Theorem 5 implies that there are distributions of xi
such that M = Θ(

√
d), for which K = Ω̃(1 + M/

√
k). This, up to logarithmic factors, matches

our upper bound of K = Õ(1 +M/
√
k) samples, and can be easily extended to M �

√
d.

Proof of Theorem 3 We now briefly explain how Theorem 3 follows from Theorem 11. Consider
an N × d matrix A with rank d, and let Σ = A>A. Suppose that the random vectors xi = 1√

pIi
a>i

are defined as scaled row samples from A, drawn using the index distribution Ii ∼ p and scaled so
that Σ := E[xix

>
i ] = A>A. Now, let us construct an n × d random matrix X̃ consisting of rows

x̃1, ..., x̃n which are independent k-gaussianized samples defined as in Theorem 11. This sketch can
be obtained by applying a p-sparsified sketching matrix

√
nS to A, where each row of

√
nS is given

by
∑k

i=1
ri√
kpIi

e>Ii . Notice that ‖Σ−1/2xi‖2 ≤
√
`Ii(A)/pIi ≤

√
µ (as defined in Theorem 3), so

we can let the constant M in Theorem 11 be
√
µ, where recall that `i(A) is the ith leverage score of

matrix A, i.e., `i(A) = a>i (A>A)−1ai = ‖Σ−1/2ai‖2. Note that we can rely here on the stronger
boundedness condition as in Remark 12, so that we obtain dtv(x̃i, Σ̃

1/2z) ≤ δ for each i, with
K = O(1 +

√
µ log(µ/δ)/k). Recall that small total variation distance implies that we can couple

x̃i with a corresponding Σ̃1/2zi, where zi is an independent sample of z, so that they are identical
with probability 1− δ. It remains to apply a union bound over the n random vectors x̃1, ..., x̃n and
their corresponding coupled samples z1, ..., zn, to show the total variation distance of nδ between

10
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Examples
x ∈ Rd

Gaussian vectors

uniform on the sphere

i.i.d. bounded entries

i.i.d. sub-gaussian entries

Hanson-Wright vectors

sub-gaussian vectors

Concentration
F ⊆ {Rd→R}

Lipschitz functions

Convex functions

Euclidean functions
f(x) =

√
x>Bx

Linear functions
f(x) = |v>x|

Figure 3: Hierarchy of sub-gaussian concentration for mean zero isotropic random vectors. Right
column represents different function classes F used in Definition 13, and left column
provides examples of random vectors that satisfy the property with a particular function
class (the larger the function class, the stronger the concentration property). “Hanson-
Wright vectors” refers to vectors satisfying the Hanson-Wright inequality (2), whereas
“sub-gaussian vectors” have bounded multivariate sub-gaussian norm ‖ · ‖ψ2 .

the entire sketch
√
nSA and the corresponding sub-gaussian design ZΣ̃1/2. Replacing δ with δ/n,

we obtain the claim of Theorem 3.

5. Background and related work

In this section, we put our results in context by discussing different types of sub-gaussianity that
have been considered in the literature. Here, we rely on the hierarchy of sub-gaussian concentration,
shown in Figure 3, which is based on a range of classical results in high-dimensional probability
(e.g., see Vershynin, 2018). We then discuss how these concepts arise in related work, particularly
in the context of randomized sketching.

5.1. Sub-gaussian concentration hierarchy for random vectors

While the notion of sub-gaussian concentration for scalar random variables can be naturally rep-
resented by the Orlicz norm ‖ · ‖ψ2 , the landscape of sub-gaussian concentration becomes more
complex when we consider multivariate distributions. As discussed in Section 2, the natural mul-
tivariate extension of the Orlicz norm, i.e., the sub-gaussian norm ‖x‖ψ2 = supv:‖v‖=1 ‖v>x‖ψ2 ,
while useful for some applications (such as Theorem 9), does not suffice for other Gaussian-like
guarantees (such as Theorem 7). A more general approach to quantifying sub-gaussianity of ran-
dom vectors is to analyze the concentration of real-valued functions of these vectors. In this con-
text, let F be some subset of functions f : Rd → R with a bounded Lipschitz constant defined as:
‖f‖Lip := supu,v |f(u)− f(v)|/‖u− v‖.

11
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Definition 13 We say that a d-dimensional random vector x has the concentration property over
F with constant K if ‖f(x)− E f(x)‖ψ2 ≤ K · ‖f‖Lip for all f ∈ F .

For the sake of simplicity, we focus on random vectors that are mean zero, E[x]=0, and isotropic,
i.e., E[xx>] = I. Gaussian vectors (as well as, e.g., random vectors on the sphere) satisfy the con-
centration property over all Lipschitz functions, with an absolute constant K. However, as this con-
dition is very restrictive, smaller function families have been considered. If we restrict F to convex
functions, then vectors with independent bounded entries satisfy the concentration property (but vec-
tors with i.i.d. sub-gaussian entries may not). On the other end of the concentration hierarchy, illus-
trated in Figure 3, is the family of linear functions, i.e., F = {f : f(x)= |v>x|, for some v∈Rd},
for which the concentration constant of x becomes simply its sub-gaussian norm. Of primary inter-
est to this work is the family of Euclidean functions (Vershynin, 2020), defined as F = {f : f(x) =√

x>Bx for psd B}, which falls between convex and linear in the hierarchy, and can be used to
characterize vectors with i.i.d. sub-gaussian entries.

Proposition 14 (Vershynin, 2018, Section 6.3) If an isotropic mean zero vector satisfies the Hanson-
Wright inequality (2), then it has O(K) sub-gaussian norm and O(K2)-Euclidean concentration.

5.2. Related work

Randomized sketching has emerged out of theoretical computer science, as part of the broader
area of Randomized Numerical Linear Algebra (RandNLA; Woodruff, 2014; Drineas and Ma-
honey, 2016; Dereziński and Mahoney, 2021), including computationally efficient techniques such
as the Subsampled Randomized Hadamard Transform (SRHT; Ailon and Chazelle, 2009), Lever-
age Score Sampling (Drineas et al., 2006), the CountSketch (Clarkson and Woodruff, 2017), Sparse
Johnson-Lindenstrauss Transforms (SJLT; Nelson and Nguyên, 2013), Leverage Score Sparsified
embeddings (LESS; Dereziński et al., 2021b) and Determinantal Point Processes (DPPs; Dereziński,
2019). More recently, there has been an increased interest in the statistical analysis of sketching and
importance sampling techniques, for example in the context of linear regression (Ma et al., 2014),
kernel ridge regression (Alaoui and Mahoney, 2015), model averaging (Wang et al., 2017), and the
bootstrap (Lopes et al., 2019). Some works have shown deep connections between the performance
of certain sketching methods and Gaussian/sub-gaussian embeddings: for DPPs, e.g., in the con-
text of low-rank approximation and stochastic optimization (Dereziński et al., 2020b); for LESS
embeddings in the context of inverse covariance estimation and stochastic optimization (Dereziński
et al., 2021a,b); and for SRHT, a similar phenomenon has been studied asymptotically in linear
regression (Dobriban and Liu, 2019) and stochastic optimization (Lacotte et al., 2020). Despite this
extensive literature, no general non-asymptotic equivalence result was known between any of these
fast sketching methods and sub-gaussian embeddings. Our results show such equivalence for LESS
embeddings, while also providing a negative result for leverage score sampling.

Statistical analysis of random design models has a long history, with important connections
to both asymptotic and non-asymptotic random matrix theory (e.g., see Bai and Silverstein, 2010;
Vershynin, 2018). A variety of random designs have been considered, of which the most relevant
to our work are Gaussian and sub-gaussian designs. These models have proven extremely useful
in understanding the performance of a variety of linear regression estimators (Dobriban and Wager,
2018; Hastie et al., 2019; Bayati and Montanari, 2011; Miolane and Montanari, 2021), sample
covariance estimators (Koltchinskii and Lounici, 2017; Ledoit and Péché, 2011) and others. Here,

12



ALGORITHMIC GAUSSIANIZATION THROUGH SKETCHING

a sub-gaussian random design typically refers to a matrix ZΣ1/2, where Z consists of independent
rows which have either bounded sub-gaussian norm or i.i.d. sub-gaussian entries, or more generally,
satisfy a concentration property for a family of Lipschitz functions (e.g., Louart and Couillet, 2018).
Our gaussianization framework opens the possibility of extending many of these results to sketching.

Our results are related to the study of the rates of convergence in the multivariate central limit
theorem (CLT), with the key difference that we relax our notion of gaussianity, which allows us to
use a stronger notion of distance (i.e., the total variation distance, together with the Hanson-Wright
constant). Nevertheless, it is helpful to compare our approach with the convergence rates for the
multivariate CLT in terms of the Wasserstein distance (Chen and Shao, 2005; Bonis, 2020; Fang
and Koike, 2022). Using the setup from our key technical result, Theorem 11, for a random vector
x with covariance matrix Σ = E[xx>] that satisfies ‖Σ−1/2x‖ ≤ M almost surely, the currently
best known Wasserstein CLT of order 2 yields W2(x̃,N (0,Σ)) = O(M

√
d log(k)/k) (Eldan

et al., 2020), whereas our bound on the Hanson-Wright constant is O(1 + M
√

log(M)/k). The
guarantees are not directly comparable, but one could argue that both bounds are useful primarily
when k is large enough to absorb the dependence on M and d, i.e., k = O(M2d log(M)) for the
Wasserstein bound and k = O(M2 log(M)) for our result. Also, while the Wasserstein distance
can be used to bound the difference between expectations of Lipschitz functions, it is non-trivial
to effectively bound the Lipschitz constant for most of the quantities considered in this work, such
as the least squares approximation error, and using this approach would require a more complex
case-by-case analysis.

6. Conclusions and open questions

We provided the first general characterization of Algorithmic Gaussianization, which refers to the
phenomenon that many algorithmic techniques used to construct small random representations
(sketches) of large datasets produce data samples that are more Gaussian-like than the original
data. In our main result, we showed that a sparse sketching matrix can be used to produce a sam-
ple that is nearly indistinguishable from a sub-gaussian random design. We used this to show a
reduction between a fast sketching technique called LESS embeddings and a sub-gaussian random
matrix whose rows satisfy the classical Hanson-Wright inequality. Our lower bound showed that
the result is nearly tight up to logarithmic factors, and that the sub-gaussian reduction is not pos-
sible for leverage score sampling. We demonstrated how our techniques can be used to provide
improved guarantees for sketched estimators in least squares, Lasso regression, and low-rank ap-
proximation. More broadly, our results point to new open questions related to the complexity of
generating repeated samples from a product between a matrix and a Gaussian-like random vector:

Open question. Given an N × d matrix A and a function family F in Rd → R (as in Figure 3),
what is the complexity of producing n independent samples of a d-dimensional random vector that
is, up to total variation distance δ, distributed according to A>z, where z is isotropic and has the
concentration property over F with constant K = O(1), as given by Definition 13.
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Appendix A. More applications: Randomized SVD and low-distortion embeddings

In this section, we provide further examples of how Theorem 3 can be applied in combination
with existing results for sub-gaussian random designs. In each of these examples, we can extend
existing results from sub-gaussian embeddings (which are dense, and therefore not very efficient)
to analogous results for LESS embeddings (which are sparse, and thus can be implemented much
more efficiently).

A.1. Randomized SVD

An important application of randomized sketching is low-rank approximation, where our goal is
to estimate a small number of top principal directions of an N × d data matrix A. One of the
most popular techniques in this area is the Randomized SVD algorithm (Halko et al., 2011), where
we construct the approximation by projecting the dataset onto a subspace spanned by the rows of
the sketch SA, with S denoting the n × N sketching matrix, and n � d. The error of such an
approximation is often measured by the sum of squared lengths of the residuals from the projection:
‖A−A ·ProjSA‖2F , where ProjSA denotes the projection onto the row-span of SA and ‖·‖F is the
Frobenius norm. Prior work has shown strong approximation guarantees for Gaussian embeddings
in this context, such as the following, given by Halko et al. (2011), comparing the expected error to
the best rank k approximation, for some k < n− 2:

E
[∥∥A−A · ProjSA

∥∥2
F

]
≤
(

1 +
k

n− k − 1

)
· min

B: rank(B)=k
‖A−B‖2F .

Those guarantees were later extended (and, in some regimes, improved) for sub-gaussian embed-
dings (Dereziński et al., 2020b) and Determinantal Point Processes (Dereziński et al., 2020a). The
results for Gaussian and sub-gaussian embeddings rely heavily on the Hanson-Wright property of
the rows of the sketching matrices. Thus, our techniques can be used to extend them to LESS em-
beddings by using Theorem 3. Consequently, we can obtain bounds for the expected approximation
error of Randomized SVD with LESS embeddings that, in a certain regime of small sketch sizes,
nearly match those achieved by Gaussian embeddings.

Corollary 15 Consider an N × d matrix A with stable rank r = ‖A‖2F /‖A‖2. Given a LESS
embedding S of size n ≤ r/2, and a Gaussian embedding S̃ of the same size, we have:

E
[∥∥A−A · ProjSA

∥∥2
F

]
≈1+ε E

[∥∥A−A · Proj
S̃A

∥∥2
F

]
with ε = Õ(1/

√
r).

Proof We rely on Theorem 2 of Dereziński et al. (2020b), characterizing the expected approxima-
tion error for a sub-gaussian embedding of size n via an implicit analytic formula:

E
[∥∥A−A · Proj

S̃A

∥∥2
F

]
≈1+ε nλn, where λn = f−1A (n) for fA(λ) = tr A>A(A>A + λI)−1.

(3)

Here, f−1A (n) denotes the function inverse of fA at n. The function fA(λ) is known in the liter-
ature as λ-statistical dimension, a notion of degrees of freedom that arises in the analysis of ridge
regression. Naturally, their result applies to the Gaussian embedding S̃A, but also to any random
design ZΣ1/2 (where Σ = A>A) such that the rows satisfy the Hanson-Wright inequality with
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a constant K (with ε having a polynomial dependence on K). So, we can apply our reduction to
LESS embeddings by coupling

√
nSA with ZΣ̃1/2 for some Σ̃ ≈1+δ Σ, as in Theorem 3. Letting

Er(SA) denote ‖A−A ·ProjSA‖2F and E be the (1−δ)-probability event where
√
nSA = ZΣ̃1/2,

we have:∣∣E[Er(SA)
]
− E

[
Er(ZΣ̃1/2)

]∣∣ = δ ·
∣∣E[Er(SA)− Er(ZΣ̃1/2) | ¬E

]∣∣ ≤ δ · ‖A‖2F .
Since ‖A‖2F ≤ r · ‖A‖2 ≤ r

r−n · minZ Er(ZΣ̃1/2), setting δ ≤ ε/2, we get E
[
Er(SA)

]
≈1+ε

E
[
Er(ZΣ̃1/2)

]
. Next, since Σ̃ ≈1+δ Σ, we can use the implicit error formula for sketching Σ̃1/2

with Z, and relate that back to the original problem as follows:

E
[
Er(ZΣ̃1/2)

]
≈1+δ E

[
‖Σ̃1/2(I− Proj

ZΣ̃
)‖2F
]
≈1+ε nλ̃n,

where λ̃n is defined as in (3), but with A>A replaced by Σ̃. To close the loop, we must relate
the implicit analytic expression based on Σ̃ back to λn. This can be done easily by bounding the
derivative of f−1A , showing that λ̃n ≈1+O(δ) λn. Now, it remains to observe that since both the LESS
embedding error E

[
Er(SA)

]
and the Gaussian embedding error E

[
Er(S̃A)

]
are approximated by

the same quantity nλn up to a 1+O(ε) factor, they are also approximated by each other, concluding
the proof.

A.2. Low-distortion embeddings

Another important property of sub-gaussian random matrices is that they can be used to construct
low-dimensional embeddings that preserve the geometry of a high-dimensional space, such as the
subspace embedding property and the Johnson-Lindenstrauss property, which are central to many
applications of sketching (e.g., see Woodruff, 2014). We briefly mention some classical examples
and discuss how they can be extended to gaussianized sketches, including LESS embeddings.

We say that an n×N matrix S is an ε-low-distortion embedding for some set of points X ⊆ RN
if there is a fixed scalar α > 0 such that ‖αSv‖ ≈1+ε ‖v‖ for all v ∈ X , i.e., the embedding
approximately preserves the Euclidean norm of v. When S is a sketching matrix applied to an
N × d data matrix A, we are typically interested in vectors v from the column span of A (i.e.,
such that v = Ax for some x ∈ Rd), denoted by span(A). Relying on Theorem 3 and standard
properties of sub-gaussian random matrices Vershynin (2018), we can establish the following low-
distortion embedding properties for LESS embeddings.

Corollary 16 Let A be N × d, and S be a LESS embedding for A of size n with d log(nd/(εδ))
non-zeros per row. Then, there is an absolute constant C such that the following claims are true:

1. (Johnson-Lindenstrauss property) For any finite setX ⊆ span(A), if n ≥ C log(|X |/δ)/ε2,
then with probability 1− δ, matrix S is an ε-low-distortion embedding for X .

2. (Subspace embedding property) If n ≥ C(d + log(1/δ))/ε2, then with probability 1 − δ,
matrix S is an ε-low-distortion embedding for X = span(A).

Proof Whenever, X ⊆ span(A), the low-distortion property can be formulated as a property of
the sketch SA, treated as a linear transformation: for any v ∈ span(A), we have v = Ax for
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some x ∈ Rd, and we need to ensure that ‖αSAx‖ ≈1+ε ‖Ax‖. Here, we can once again rely on
Theorem 3, coupling

√
nSA with a sub-gaussian design ZΣ̃1/2 for some Σ̃ ≈1+δ A>A. If Z is an

ε-low-distortion embedding for X̃ = {Σ̃1/2x : Ax ∈ X} with constant α, then with probability
1− δ (specifically, when

√
nSA = ZΣ̃1/2), for any Ax ∈ X , we have:

‖α
√
nSAx‖ = ‖αZΣ̃1/2x‖ ≈1+ε ‖Σ̃1/2x‖ ≈1+δ ‖Ax‖,

where in the last step we used that Σ̃ ≈1+δ A>A. Thus, as long as δ ≤ ε, we reduced the prob-
lem to showing the corresponding property for Z. Both the Johnson-Lindenstrauss and subspace
embedding properties can be shown for sub-gaussian embeddings (with sizes as given in the state-
ment) using standard arguments (e.g., see the proof of Theorem 4.6.1 in Vershynin (2018)), thus
concluding the proof.

We note that low-distortion embedding properties have been shown for other sketching operators,
including SRHTs (Tropp, 2011) and other sparse sketching matrices like CountSketch (Clarkson
and Woodruff, 2017) and SJLTs (Nelson and Nguyên, 2013). These results often circumvent sub-
gaussian analysis by relying on matrix concentration inequalities such as the matrix Bernstein in-
equality (Lemma 18) or other more involved arguments, however this inevitably incurs additional
overhead factors in the required sketch size n. For example, an SRHT requires sketch size of at least
n ≥ O(d log(d)/ε2) to establish the subspace embedding property, instead ofO(d/ε2) shown above
(the additional log factor is a well-known limitation of the matrix concentration-style analysis). The
O(d log(d)/ε2) guarantee was also previously shown for LESS embeddings with d non-zeros per
row, also using matrix concentration inequalities instead of sub-gaussian concentration (Dereziński
et al., 2021b, Lemma 12). Thus, the above corollary suggests that, when requiring a subspace em-
bedding, we can trade an additional log-factor in the sketch size for a log-factor in the density of a
LESS embedding matrix. This could be a useful trade-off when we wish to minimize the storage
space of the sketched data.

Appendix B. Experiments

In this section, we aim to evaluate the degree of Algorithmic Gaussianization for various sketching
methods, using the sketched least squares task from Section 3.1 as an example. In this task, we
are given an N × d matrix A and an N -dimensional vector b which define the regression loss
L(w) = ‖Aw − b‖2. We then use an n × N sketching matrix S to generate a sketched least
squares estimate ŵ = argminw ‖S(Aw − b)‖2 of the exact solution w∗. Our goal is to compare
the normalized expected approximation error E[L(ŵ)−L(w∗)]/L(w∗) of the sketched estimate to
the problem-independent expression d

n−d−1 achieved by a Gaussian embedding.
In Figure 4, we plot the empirically estimated expected approximation error with varying sketch

size for several sketching techniques on four benchmark datasets. We compare them against the ex-
pected error for Gaussian embeddings, which is given by (1). Two of the sketching techniques, Sub-
sampled Randomized Hadamard Transform (SRHT, Ailon and Chazelle, 2009) and Leverage Score
Sparsified embeddings (LESS, Dereziński et al., 2021b), have strong theoretical guarantees for the
expected error, and have comparable nearly-linear time complexity.2 However, there are some key

2. Recall that the complexity of sketched least squares with LESS is O(nnz(A) logN + nd2), compared to
O(Nd logN + nd2) for SRHT. So, the complexity of LESS is better than SRHT when A is a sparse matrix, i.e.,
when nnz(A)� Nd, and otherwise, the complexities are comparable.
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(a) (b)

(c) (d)

Figure 4: Comparison of expected approximation error for sketched least squares on Libsvm
datasets (Chang and Lin, 2011), with shading indicating standard error of the mean, and
“Gaussian” showing the theoretical d

n−d−1 expression from Theorem 7.

differences: LESS has a precise non-asymptotic guarantee given in this work (Theorem 7), whereas
SRHT only has a non-asymptotic upper bound (Sarlos, 2006) and a precise asymptotic guarantee
under some additional assumptions (Dobriban and Liu, 2019). We compare these two sketches with
two much cheaper baselines: (1) uniform sampling, and (2) a simplified variant of LESS, called
LessUniform (Dereziński et al., 2021a), which eliminates the leverage score approximation pre-
processing step (but still uses d non-zeros per row). The overall cost for both LessUniform and
for uniform sampling is the same as the cost of solving the sketched sub-problem, i.e., O(nd2),
where n is the sketch size. Our Theorems 3 and 7 can also be applied to LessUniform, but the
Hanson-Wright constant becomes dependent on the maximum leverage score of matrix A (i.e., the
coherence of A; see Remark 4).

From Figure 4, we first confirm that LESS enjoys a Gaussian-like problem-independent ex-
pected approximation error that matches our theory. Remarkably, we can verify this for all datasets
and all sketch sizes, downto the precision of our empirical mean estimates. Thus, these results
suggest that the Gaussian error estimate for LESS embeddings is even more accurate and broadly
applicable than promised by our theory. Next, we observe that for small sketch sizes, SRHT does
not always exhibit Gaussian-like error (see left two plots), but as the sketch size increases, the gap
decreases. This appears roughly in line with the existing asymptotic theory for SRHTs. Finally,
LessUniform performs much better than uniform sampling, despite having the same time complex-
ity. The error for LessUniform appears Gaussian-like in three out of four cases. In the case of
dataset cpusmall, the problem exhibits very high coherence, and as a result both uniform sampling
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and LessUniform perform worse. This aligns with Theorem 3 applied to LessUniform, since the
Hanson-Wright constant scales with the largest leverage score of A.

Appendix C. Notation and preliminaries for the proofs

Notation. We say that a ≈α b for α ≥ 1, if b/α ≤ a ≤ αb. We analogously define A ≈α B
for positive semidefinite matrices using the Loewner ordering. We use ‖A‖F =

√
tr(A>A) to

denote the Frobenius norm and ‖A‖ to denote the spectral norm. Also, we let a . b denote that
there exists an absolute constant C > 0 such that a ≤ Cb, and a = poly(b, c) means that a is
bounded by a polynomial function of b and c. Moreover, we use Õ(·) to refer to big-O notation
where polylogarithmic terms are ignored. For random variables/vectors X and Y defined over the
same domain with measures µ and ν, respectively, we define the total variation distance between
them as dtv(X,Y ) = supE∈B |µ(E)−ν(E)|, where B denotes all measurable events. Note that the
total variation distance can also be defined as the infimum over δ such that there exists a coupling
between X and Y for which Pr(X 6= Y ) = δ. Finally, we define the sub-gaussian Orlicz norm as:
‖X‖ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}.

Matrix concentration inequalities. In the proof of our main results, we use the following ver-
sions of the matrix Bernstein concentration inequality for the sums of independent symmetric ran-
dom matrices.

Lemma 17 (Sub-exponential matrix Bernstein) (Tropp, 2012, Theorem 6.2) For i = 1, 2, ...,
consider a finite sequence Mi of d× d independent and symmetric random matrices such that

E[Mi] = 0, E[Mp
i ] �

p!

2
·Rp−2A2

i for p = 2, 3, ...

Then, defining the variance parameter σ2 = ‖
∑

i A
2
i ‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Mi

)
≥ t
}
≤ d · exp

(
−t2/2
σ2 +Rt

)
.

Lemma 18 (Bounded matrix Bernstein) (Tropp, 2012, Theorem 6.1) For i = 1, 2, ..., consider a
finite sequence Mi of d× d independent and symmetric random matrices such that

E[Mi] = 0, λmax(Mi) ≤ R almost surely.

Then, defining the variance parameter σ2 = ‖
∑

i E[M2
i ]‖, for any t > 0 we have:

Pr

{
λmax

(∑
i
Mi

)
≥ t
}
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
.

Linear algebraic identities. Our proof of the least squares approximation guarantee for LESS
embeddings relies on the following standard rank-one update formula for the matrix inverse.

Lemma 19 (Sherman-Morrison formula) For a matrix A ∈ Rn×n and u,v ∈ Rn such that both
A and A + uv> are invertible, we have:

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

In particular, it follows that:

(A + uv>)−1u =
A−1u

1 + v>A−1u
.
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Appendix D. Hanson-Wright limit theorem: Proof of Theorem 11

In this section, we prove our main result, Theorem 11, showing that a k-gaussianized sample x̃ =
1√
k

∑k
i=1 rixi is close in total variation distance to a random vector that satisfies the Hanson-Wright

inequality with a small constant.
We start by using the matrix Bernstein inequality to verify how well the sample covariance

1
k

∑k
i=1 xix

>
i can be bounded in terms of the true covariance Σ. For this we establish the following

lemma, proven in Appendix H. The lemma is used to show the matrix moment condition required
by the sub-exponential matrix Bernstein (Lemma 17).

Lemma 20 There is an absolute constant C such that any d-dimensional random vector x with
covariance E[xx>] = Σ, such that ‖Σ−1/2x‖ is M -sub-gaussian, satisfies the following sub-
exponential matrix moment bound:∥∥∥∥E[(Σ−1/2xx>Σ−1/2 − I

)p]∥∥∥∥ ≤ (CM2(p+ logM)
)p−1

.

We can now use Lemma 20 in conjunction with the sub-exponential matrix Bernstein inequality
(Lemma 17) by setting Mi = Σ−1/2xix

>
i Σ−1/2−I. From Lemma 20, we can setR = CM2 logM

and A2
i = RI, with σ2 = kR (appropriately adjusting constant C), concluding that:

Pr

{
λmax

(
k∑
i=1

Mi

)
≥ kt

}
≤ d · exp

( −t2k
2(1 + t)CM2 logM

)
.

Now, define the k × d matrix U with ith row 1√
k
x>i Σ−1/2. The above concentration inequality

implies that if k ≥ 4CM2 log2(M/δ)/t for t ≥ 1, then ‖U‖2 = ‖U>U‖ ≤ 1 + t with probability
1 − δ. We mention that, if we assumed ‖Σ−1/2x‖ ≤ M almost surely, as in Remark 12, then
we can use the bounded matrix Bernstein (Lemma 18) to obtain a slightly sharper guarantee of
k ≥ O(M2 log(d/δ)/t), without relying on Lemma 20.

We next define the random variable z and covariance matrix Σ̃ discussed in the theorem:

z = 1E · Σ̃−1/2x̃ + 1¬E · αV>r, Σ̃ =
1

Pr{E}
E[1E x̃x̃>],

for E =
[
‖U‖ ≤ L

]
, α = max

{
1,

√
d

k

}
, V = G((G>G)†)1/2,

where r is the vector of R-sub-gaussian random variables ri from the definition of x̃; G denotes
a k × d matrix with i.i.d. Gaussian entries and (·)† is the Moore-Penrose pseudoinverse (so that
either V>V = I or VV> = I); and E denotes an event in the probability space of x̃, with 1E
being the characteristic function of E . Here, L = O(1 + M log(M/δ)/

√
k) is chosen so that

Pr{¬E} ≤ δ/L2.3 We can do this by simply adjusting the constants, because M log(ML/δ) =
O(M log(M/δ)). Also, we can easily make sure that L ≥ max{2, α} (recall that α ≤ 1+

√
d/k ≤

1 +M/
√
k). Note that z is an isotropic random vector since:

E[zz>] = Σ̃−1/2E[1E x̃x̃>]Σ̃−1/2 + Pr{¬E} · E[α2V>V] = Pr{E}I + Pr{¬E} I = I.

3. If ‖Σ−1/2xi‖ ≤M a.s., as in Remark 12, then we can let L = O(1 +M
√

log(M/δ)/k) by using bounded matrix
Bernstein (Lemma 18).
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Also, note that we can write z = Ũ>r, where

Ũ = 1E ·UΣ1/2Σ̃−1/2 + 1¬E · αV,

and since r is mean zero and independent of Ũ, then z is also mean zero.
Next we show that Σ̃ approximates Σ. First, by definition we immediately have Σ̃ � 1

1−δ/2Σ �
(1 + δ)Σ. Next, observe that we have:

‖Σ−
1
2 (Σ− Σ̃)Σ−

1
2 ‖ = ‖Σ−

1
2E
[
x̃x̃> · 1¬E

]
Σ−

1
2 ‖ =

∥∥E[U>rr>U · 1¬E
]∥∥

= ‖E[U>U · 1¬E ]‖ ≤ E
[
‖U‖2 · 1¬E

]
(∗)
=

∫ ∞
0

Pr
{
‖U‖2 · 1¬E > x

}
dx

≤ δ

L2
· L2 +

∫ ∞
L2

Pr
{
‖U‖2 > x

}
dx,

where (∗) is the integral formula for the expectation of a non-negative random variable via its cdf,
and the last step uses the observation that we have Pr{‖U‖2 · 1¬E > x} ≤ Pr{¬E} ≤ δ/L2. To
bound the integral, note that for x ≥ L2:

Pr
{
‖U‖2 > x

}
≤ d · exp

( −(x− 1)k

4CM2 log d

)
≤ (δ/L2)(x−1)/L

2
.

Thus, using the formula
∫

(δ/L2)x/L
2
dx = −L2(δ/L2)x/L

2
/ ln(L2/δ), we obtain:∫ ∞

L2

Pr
{
‖U‖2 > x

}
dx ≤ (δ/L2)−1/L

2

∫ ∞
L2

(δ/L2)x/L
2

= (δ/L2)−1/L
2 · L2(δ/L2)/ ln(L2/δ) ≤ δ.

We conclude that ‖Σ−
1
2 (Σ− Σ̃)Σ−

1
2 ‖ ≤ δ + δ ≤ 2δ, obtaining:

(1− 2δ) ·Σ � Σ̃ � (1 + δ)Σ,

so Σ̃ ≈1+O(δ) Σ. Note that the above also implies that ‖Σ̃−1/2Σ1/2‖2 = ‖Σ̃−1/2ΣΣ̃−1/2‖ ≤
1

1−2δ . As a consequence we have:

‖Ũ‖2 = 1E · ‖Σ̃−1/2Σ1/2U>UΣ1/2Σ̃−1/2‖+ 1¬E · ‖α2V>V‖

≤ max
{
‖Σ̃−1/2Σ1/2‖2‖1EU‖2, α2

}
≤ L2

1− 2δ
≤ 2L2.

We are now ready to establish the Hanson-Wright inequality for z. Specifically, consider a d × d
psd matrix B. We study the concentration of the quadratic form z>Bz around its mean trB. We
start with the following decomposition:

|z>Bz− trB| = |r>ŨBŨ>r− trB| ≤ |r>ŨBŨ>r− tr(ŨBŨ>)|+ |tr(ŨBŨ>)− trB|. (4)

Since Ũ and r are independent, and we have E[r>ŨBŨ>r] = tr(ŨBŨ>), we can show concen-
tration for the first term in (4) by using the classical Hanson-Wright inequality (Lemma 1) applied
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to the random vector r and the matrix ŨBŨ>:

Pr
{
|r>ŨBŨ>r− tr(ŨBŨ>)| ≥ t | Ũ

}
≤ 2 exp

(
− cmin

{ t2

R4‖ŨBŨ‖2F
,

t

R2‖ŨBŨ>‖

})
≤ 2 exp

(
− cmin

{ t2

4L4R4‖B‖2F
,

t

2L2R2‖B‖

})
,

where we used that ‖Ũ‖2 ≤ 2L2. Next, to show concentration for the second term in (4), we
decompose it further as follows, letting B̃ = Σ1/2Σ̃−1/2BΣ̃−1/2Σ1/2:

|tr(ŨBŨ>)− trB| ≤ 1E · |tr(UB̃U>)− trB|+ 1¬E · |α2trVBV> − trB|

≤ |tr(UB̃U>)− trB̃|+ |trB̃− trB|+ |α2trVBV> − trB|. (5)

Note that tr(UB̃U)− trB̃ = 1
k

∑k
i=1Xi for Xi = ‖B̃1/2Σ−1/2xi‖2− trB̃. We are going to again

use Bernstein’s inequality, this time the scalar version, i.e., Lemma 17 with d = 1.4 Note that we
have E[Xi] = 0, and also in Lemma 28 (along the same lines as Lemma 20, see Appendix H) we
show that:

E[|Xi|p] ≤ (CM2(p+ logM))p−1‖B̃‖p−2‖B̃‖2F .

Using Lemma 17 with R = O(‖B̃‖M2 logM) and σ2 = k · O(‖B̃‖2FM2 logM), we obtain (for
some absolute constants c, c′ > 0):

Pr
{
|tr(UB̃U>)− trB̃| ≥ t

}
≤ 2 exp

(
− cmin

{ t2k

‖B̃‖2FM2 logM
,

tk

‖B̃‖M2 logM

})
≤ 2 exp

(
− c′min

{ t2

L2‖B‖2F
,

t

L2‖B‖

})
,

where we used the facts that ‖B̃‖ ≤ 2‖B‖ and L2 ≥ M2 log(M)/k. We now turn to the second
term in (5). Note that this is in fact a deterministic quantity which can be bounded as follows:
|trB̃ − trB| ≤ 4δ · trB. Now, assuming that δ ≤ 1/(4d) (which is w.l.o.g. by adjusting the
constants), we have that for any 0 ≤ t ≤ 4δtrB:

min
{ t2

‖B‖2F
,
t

‖B‖

}
≤ min

{ (trB)2

d2‖B‖2F
,

trB

d‖B‖

}
≤ min

{ ‖B‖2
‖B‖2F

,
‖B‖
‖B‖

}
≤ 1,

where we used that trB/d ≤ ‖B‖. This means that Pr{‖trB̃ − trB| ≥ t} ≤ 1[t≤4δ·trB] ≤
2 exp(−cmin{ t2

‖B‖2F
, t
‖B‖}), so the desired concentration inequality trivially holds. Finally, it re-

mains to establish the concentration for |α2tr(VBV>)− trB|, the final term in (5). If k ≥ d, then
V>V = I and α2 = 1, so the term is 0. Now, suppose that k < d. In this case, V>V is a projection
onto a uniformly random k-dimensional subspace of Rd. Here, we will use a simple form of the
Johnson-Lindenstrauss lemma for uniformly random projections (Lemma 5.3.2, Vershynin, 2018),
which states that for any fixed unit vector b ∈ Rd:

Pr
{∣∣‖αVb‖ − 1

∣∣ ≥ ε} ≤ 2 exp(−cε2k).

4. Here, again, if we have the boundedness assumption from Remark 12, then we can use bounded Bernstein (scalar
version of Lemma 18).

24



ALGORITHMIC GAUSSIANIZATION THROUGH SKETCHING

Let B =
∑d

i=1 λibib
>
i be the eigendecomposition of B. The Johnson-Lindenstrauss concentration

lemma implies that with probability 1− 2d exp(−cε2k) we have maxi |‖αVbi‖− 1| ≤ ε, which in
turn implies that:

|α2tr(VBV>)− trB| ≤
d∑
i=1

λi
∣∣‖αVbi‖2 − 1

∣∣ ≤ trB ·max
i

∣∣‖αVbi‖2 − 1
∣∣ ≤ ε(ε+ 2) · trB.

Setting t = ε(ε+ 2)trB and solving for ε, we convert this to a concentration inequality:

Pr
{
|α2tr(VBV>)− trB| ≥ t

}
≤ 2d exp

(
− cmin

{ t2k
trB

,
tk

trB

})
≤ 2 exp

(
− cmin

{ t2k

‖B‖d log d
,

tk

‖B‖d log d

})
≤ 2 exp

(
− cmin

{ t2

L2‖B‖2F
,

t

L2‖B‖

})
.

Putting everything together, we combine the four inequalities to obtain that for any psd matrix B:

Pr
{
z>Bz− trB| ≥ t

}
≤ 4 · 2 exp

(
− cmin

{ t2

(LR)4‖B‖2F
,

t

(LR)2‖B‖

})
.

We can easily extend this to arbitrary matrices B. First, observe that if B is symmetric, then we
can write it as B = B+ −B− where B+ and B− are psd, and it suffices to apply the concentration
inequality to both B+ and B−. Next, consider an arbitrary B. Then, it suffices to apply the result
to (B + B>)/2, which is symmetric.

Appendix E. Sketched least squares: Proof of Theorem 7

In this section, we prove Theorem 7, giving a precise estimate for the expected approximation error
for sketched least squares with LESS embeddings. Recall that we are given an N × d data matrix
A and an N -dimensional vector b. We let L(w) = ‖Aw − b‖2 and w∗ = argminw L(w). Given
an n×N LESS embedding matrix S, we define the sketched least squares estimator as:

ŵ = argmin
w∈Rd

‖S(Aw − b)‖2,

whereR = [−D,D] is only used to protect against the corner cases where SA is very ill-conditioned,
which arise with a small but non-zero probability when computing the exact expectation of the loss.
In the proof, we will use our reduction between a LESS embedding and a sub-gaussian design to
define an event that holds with a high 1 − δ probability (Lemma 22). This event ensures certain
regularity conditions on the sketch, such as near-uniformity of the leverage scores, and avoids the
aforementioned corner cases. We then proceed to analyze the conditional expectation, conditioned
on the high-probability event. To obtain the final unconditional expectation, we must choose δ suf-
ficiently small to absorb the worst-case loss that might occur if the high-probability event fails. This
is where we incur a dependence on the range diameter D, which is in general unavoidable when
computing the expected loss, but it only affects the logarithmic factors in the result.

Let us briefly comment on those logarithmic dependencies. If we let the LESS embedding
have d non-zeros per row, as recommended by Dereziński et al. (2021b), then our reduction to a
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sub-gaussian sketch (which is used in Lemma 22) incurs a logarithmic dependence in the Hanson-
Wright constant, i.e., K = O(

√
log(nd/δ)), and also, the lower bound on the sketch size required

for the claim becomes n ≥ O(d log(d/δ)). This also results in a polylogarithmic factor in the error
ε. We note that these logarithmic terms can be avoided if we slightly increase the density of the
sketch, from d to d log(nd/δ) non-zeros per row. Then, the result can be established for n ≥ O(d).

Instead of computing the expectation of L(ŵ) directly, we will define an unbiased estimate of
the expected loss via leave-one-out cross-validation (CV):

LCV =
n∑
i=1

(
s>i Aŵ−i − s>i b

)2
, for ŵ−i = argmin

w∈Rd

‖S−i(Aw − b)‖2,

where s>i is the ith row of S and S−i denotes S without the ith row. We use the following standard
“shortcut formula” for the CV estimate, which holds as long as the scalar range R = [−D,D] is
large enough so that each ŵ−i is the same as the unconstrained least squares solution (we include
the proof in Appendix I).

Lemma 21 Suppose that (A>S−iS−iA)−1 � O(1) · (A>A)−1 for all i. Then, for sufficiently
large D, the sketched estimator is given by ŵ = (A>S>SA)−1A>S>Sb, and the leave-one-out
cross-validation loss can be computed as:

LCV =
n∑
i=1

(
s>i Aŵ − s>i b

1− `i(SA)

)2

,

where `i(SA) = s>i A(A>S>SA)−1A>si is the ith leverage score of the sketch.

Crucially, the CV loss is an unbiased estimate of the expected loss based on the sketch of size n−1:

E[LCV] = E[L(ŵ−n)],

Thus, for the rest of the proof, we will actually estimate E[L(ŵ−n)] rather than E[L(ŵ)], but the
difference between the estimates is sufficiently small to be absorbed by ε since d

n−d ≈1+ε
d

n−d−1 .
A key part of the analysis is showing that the leverage scores of the sketched matrix are nearly

uniform with high probability. This is established in the following lemma.

Lemma 22 With probability 1− δ, for every i ∈ [n] we have:

(A>S>−iS−iA)−1 � O(1) · (A>A)−1 and s>i A(A>S>−iS−iA)−1A>si ≈1+ε
d

n− d
,

for ε = Õ(1/
√
d). In particular, this implies that `i(SA) ≈1+2ε

d
n for all i.

We now define a high probability event E that ensures uniformity of the leverage scores:

E =
[
(A>S>−iS−iA)−1 � O(1) · (A>A)−1, s>i A(A>S>−iS−iA)−1A>si ≈1+ε

d

n− d
∀i
]
.

In particular, the event implies that 1 − `i(SA) ≈1+ε′ 1 − d
m for ε′ = Õ(

√
d/n), which allows us

to simplify the CV loss by approximating all the leverage scores with a uniform estimate. In what
follows, we will use EE to denote expectation conditioned on the event E :

EE [LCV] ≈1+ε′ EE
[ n∑
i=1

(
s>i Aŵ − s>i b

1− d/n

)2]
=
( n

n− d

)2
· EE

[
‖S(Aŵ − b)‖2

]
.
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Thus, it remains to approximate EE
[

minw ‖S(Aw−b)‖2
]

in terms ofL(w∗) = minw ‖Aw−b‖2.
Here, we are going to take advantage of the similar form of the two quantities, in that they can be
both written as squared distance between a vector and a subspace. In the case of L(w∗), it is the
squared distance between b and the column-span of A, and it can be written as:

L(w∗) = b>(I−H)b, for H = A(A>A)−1A,

where H is the so-called hat matrix, an orthogonal projection onto the column-span of A. In the
sketched version, we get a squared distance between Sb and the column-span of SA, which can be
written similarly, using a sketched version of the hat matrix:

min
w
‖S(Aw − b)‖2 = b>S>(I− Ĥ)Sb, for Ĥ = SA(A>S>SA)−1A>S>.

Thus, both quantities are quadratic forms applied to the vector b. We relate these two quadratic
forms in expectation through the following result.

Lemma 23 The sketched hat matrix Ĥ satisfies the following approximate expectation formula:

EE
[
S>(I− Ĥ)S

]
≈1+ε′

(
1− d

n

)
· (I−H), for ε′ = Õ(

√
d/n).

Remark 24 Here,≈1+ε refers to upper/lower bounds in terms of the positive semidefinite ordering.
This result extends an exact expectation formula that holds when S is a Gaussian embedding.

Putting everything together, we obtain the following approximation of the expected CV loss condi-
tioned on E :

EE [LCV] ≈1+ε′

( n

n− d

)2
b>EE

[
S>(I− Ĥ)S

]
b

≈1+ε′

( n

n− d

)2(
1− d

n

)
· L(w∗) =

n

n− d
· L(w∗).

From this it follows that

EE [LCV]− L(w∗) ≈1+ε
d

n− d
· L(w∗) ≈1+ε

d

n− d− 1
· L(w∗),

for ε = Õ(1/
√
d). Note that for this we have to switch from ε′ = Õ(

√
d/n) to ε = Õ(1/

√
d),

because the right-hand side gets scaled by d/n. Finally, we convert from conditional expectation as
follows:

(1− δ)EE [LCV] ≤ E[LCV] ≤ EE [LCV] + δ sup
S
LCV

≤ EE [LCV] + δ · n · sup
S
‖sn‖2‖Aŵ−n − b‖2

≤ EE [LCV] + δ · poly(N,D),

where in the last step, to avoid the corner cases where sketch SA is extremely ill-conditioned,
we used that ŵ, as well as A and b, have entries in [−D,D], and that, by our assumption on the
sparsifying distribution p, a LESS embedding matrix S has entries uniformly bounded byO(

√
Nk).
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Choosing sufficiently small δ ≤ εL(w∗)/poly(N,D), we can obsorb that bound into a logarithmic
factor that appears in the upper bound on ε (if we use d non-zeros per row in LESS). Alternatively,
we can increase the number of non-zeros per row in LESS to d log(nd/δ), in which case, we avoid
the dependence of ε on D. We note that another simple way to impose a strict bound on the worst-
case loss is to use a small `2 regularizer when computing the sketched least squares, ensuring that the
sketched problem is never ill-conditioned. Extending our analysis to the regularized least squares
setting is an interesting direction for future work.

E.1. Proof of Lemma 23

Let U = A(A>A)−1/2 and note that U is an N ×d matrix that satisfies U>U = I. We can rewrite
both H and Ĥ by replacing A with U, namely: H = UU> and Ĥ = SU(U>S>SU)−1U>S>.
To show the claim, it suffices to show that for every vector v ∈ RN , the following approximation
holds:

EE [v>S>(I− Ĥ)Sv] ≈1+ε′

(
1− d

n

)
v>(I−H)v. (6)

First, if v lies in the column-span of U, i.e., v = Ux for some x, then clearly the right-hand side is
zero, and also:

v>S>(I− Ĥ)Sv = x>U>S>SUx− x>U>S>ĤSUx = 0 =
(

1− d

n

)
v>(I−H)v.

Thus, it suffices to show (6) for v orthogonal to the column-span of U, i.e., one that satisfies
U>v = 0. In that case,∣∣∣v>EE [S>(I− Ĥ)S]v −

(
1− d

n

)
v>(I−H)v

∣∣∣ =
∣∣∣v>EE [S>S]v − v>EE [S>ĤS]v −

(
1− d

n

)∣∣∣.
We now focus on analyzing EE [S>ĤS]. To that end, let us use the shorthands Q = (γU>S>SU)−1

and Q−i = (γU>S>−iS−iU)−1, where γ = n
n−d , so that Ĥ = SUγQU>S>. We also use the

formula s>i UQ = s>i UQ−i/γi, where γi = 1 + γs>i UQ−iU
>si, which is a consequence of the

Sherman-Morrison formula (Lemma 19). Recall that, from Lemma 22, the event E implies that
γi ≈ γ. Also, let us use a simplifying shorthand of s̃i =

√
n si, so that E[s̃is̃

>
i ] = I. We can now

rewrite the expectation as follows (where i is any fixed index):

EE [S>ĤS] = EE [S>SUγQU>S>S] = EE [s̃is̃>i UγQU>S>S] = EE
[ γ
γi

s̃is̃
>
i UQ−iU

>S>S
]

=
1

n
EE
[ γ
γi

s̃is̃
>
i UQ−iU

>s̃is̃
>
i ] + EE

[ γ
γi

s̃is̃
>
i UQ−iU

>S>−iS−i

]
= EE

[γi − 1

γi
s̃is̃
>
i ] + EE

[ γ
γi

s̃is̃
>
i UQ−iU

>S>−iS−i

]
= EE

[γ − 1

γ
· s̃is̃>i

]
+ EE

[
UQ−iU

>S>−iS−i
]

+ EE
[(1

γ
− 1

γi

)
s̃is̃
>
i

]
+ EE

[( γ
γi
− 1
)
s̃is̃
>
i UQ−iU

>S>−iS−i

]
=: T1 + T2 + T3 + T4.
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Thus, it follows that:

EE
[
S>(I− Ĥ)S

]
= EE

[
s̃is̃
>
i ]− EE

[γ − 1

γ
s̃is̃
>
i

]
− (T2 + T3 + T4)

=
(

1− d

n

)
EE [s̃is̃>i ]− (T2 + T3 + T4).

In the following steps, we will show that EE [s̃is̃>i ] ≈ I and that v>Tkv ≈ 0 for k ∈ {2, 3, 4}. First,
denoting δ = Pr(¬E), we have:

‖EE [s̃is̃>i ]− I‖ =
1

1− δ
‖E[1¬E s̃is̃i]‖ ≤

δ

1− δ
·O(Nk),

where we used that ‖s̃i‖2 ≤ O(Nk). Next, observe that for v orthogonal to the column-span of U,
we have v>T2v = v>UQ−iU

>S>−iS−iv = 0 because v>U = 0. Furthermore, using Lemma 22,
conditioned on E we know that |γi − γ| = Õ(

√
d/n), which allows us to control the remaining

terms. In the following, we also use the fact that EE [X] ≤ 1
1−δE[X] for any non-negative X:

∣∣v>T3v
∣∣ ≤ EE

[ |γi − γ|
γγi

(v>s̃i)
2
]
≤ Õ(

√
d/n) · EE [(v>s̃i)

2]

≤ Õ(
√
d/n) · v>E[s̃is̃i]v = Õ(

√
d/n) · ‖v‖2.

Similarly, we bound the last term, using the Cauchy-Schwartz inequality:∣∣v>T4v
∣∣ ≤ Õ(

√
d/n) · EE

[
|v>s̃i| · |s̃>i UQ−iU

>S>−iS−iv|
]

≤ Õ(
√
d/n) ·

√
EE
[
(v>s̃i)2

]
·
√
EE
[
(s̃>i UQ−iU>S>−iS−iv)2

]
.

As before, we have EE [(v>s̃i)
2] ≤ O(1) · ‖v‖2. For the last term in the product, we use a LESS

embedding property of the random vector vector U>s̃i that was shown in (Dereziński et al., 2021b,
Lemma 28), which they called the Bai-Silverstein property. In particular, this property implies that
for any vector v, we have E[(s̃>i Uv)2] ≤ O(1) · ‖v‖2 (this property also holds for any sub-gaussian
vector, so it could be easily inferred from our Theorem 3, after conditioning on a high-probability
event). We also use that the event E implies that ‖Q−i‖ = O(1). It follows that:

EE
[
(s̃>i UQ−iU

>S>−iS−iv)2
]
≤ 1

1− δ
E
[
(s̃>i UQ−iU

>S>−iS−iv)2 | ‖Q−i‖ = O(1)
]

≤ O(1) · E
[
‖Q−iU>S>−iS−iv‖2 | ‖Q−i‖ = O(1)

]
≤ O(1) · E

[
‖U>S>−iS−iv‖2

]
= O(1) · E

[∥∥∥ 1

n

∑
j 6=i

U>s̃j s̃
>
j v
∥∥∥2] ≤ O(1) · 1

n
E
[
‖U>s̃j s̃

>
j v‖2

]
,

where in the last step we used that s̃j are independent, and U>v = 0. To bound E[‖U>s̃j s̃
>
j v‖2],

we will use the definition of a p-sparsified embedding (Definition 2), where we let Ii be the k random
indices that indicate the non-zero entries of s̃j =

∑k
i=1

rieIi√
kpIi

and ri’s are the random signs.

E
[
‖U>s̃j s̃

>
j v‖2

]
≤ kE

[‖U>eI1‖2(e>I1v)2

k2p2I1

]
+ k2 E

[
‖U>eI1‖2

kpI1

]
E
[

(e>I2v)2

kpI2

]
≤
(
Cd/k + Cd

)
· ‖v‖2,
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where, to eliminate the cross-terms when expanding the square, we used independence of Ii’s and
that U>v = 0. In the second step, we used that pIi ≥ ‖U>eIi‖2/(Cd). Thus, |v>T4v| ≤
Õ(d/n1.5)‖v‖2 = Õ(

√
d/n)‖v‖2. We conclude that for sufficiently small δ, claim (6) is satisfied

with ε = Õ(
√
d/n), which completes the proof.

E.2. Proof of Lemma 22

We note that the first claim, i.e, that (A>S−iS−iA)−1 � O(1) · (A>A)−1 follows easily for LESS
embeddings with d non-zeros per row of size n ≥ O(d log(d/δ)), by relying on the subspace em-
bedding property, shown in (Dereziński et al., 2021b, Lemma 12), which essentially follows from
the matrix Bernstein inequality (Lemma 18). An alternative way of showing this claim is to rely on
the subspace embedding guarantee for sub-gaussian embeddings, and then convert that to a result
for LESS embeddings via our Theorem 3. This approach is given in Corollary 16. Interestingly,
this leads to a slightly different trade-off in terms of the logarithmic factors. Namely, if we con-
sider a LESS embedding with d log(nd/δ) non-zeros per row, slightly more than recommended by
Dereziński et al. (2021b), then the subspace embedding guarantee holds for n ≥ O(d) samples,
rather than n ≥ O(d log d). Such a guarantee is new for LESS embeddings, since it cannot be
obtained via the matrix Bernstein inequality.

We now focus on establishing the second part of the claim, i.e., the uniformity of the leverage
scores, which is where the Hanson-Wright inequality is essential. Since we want to show a statement
that holds with high probability, we can use Theorem 3 to show this claim for an n×d sub-gaussian
design X = ZΣ1/2 with Z consisting of mean zero isotropic rows that satisfy the Hanson-Wright
inequality (2) with constant Õ(1), and then convert the claim to LESS embeddings. In this case, our
goal is to show that for n ≥ Õ(d), with probability 1− δ:

x>i
(
X>−iX−i

)−1
xi ≈1+ε

d

n− d
.

Note that, by Hanson-Wright, with high probability we immediately have that x>i
(
X>−iX−i

)−1
xi ≈

tr Σ(X>−iX−i)
−1 (this will be formalized later on), so the main challenge is in showing that the

trace functional is also concentrated. Below, we provide a slightly more general result, regarding
the concentration properties of a certain class of trace functionals for a sub-gaussian design, which
may be of independent interest. (Below, we use a . b to denote a ≤ cb for an absolute constant c).

Lemma 25 Suppose that X consists of rows x>1 ,x
>
2 , ...,x

>
n for n ≥ Õ(d), that are i.i.d. sampled

from a d-variate distribution with covariance E[xix
>
i ] = Σ such that Σ−1/2xi satisfies the Hanson-

Wright inequality (2) with constant K = Õ(1). Consider F (X) = tr B( 1
nX>X + C)−1 for some

psd matrices B and C. Then, there is a scalar F̃ such that with probability 1− δ:

|F (X)− F̃ | ≤ C‖M‖ · r(M) +K4

√
n

log 1/δ,

where M = B1/2(Σ + C)−1B1/2, r(M) = tr(M)/‖M‖, and C is an absolute constant.

Proof Note that C may not be positive definite (in fact, of our primary interest is when C = 0), so
function F (X) may not be well defined everywhere because of the inverse. In particular, it may not
have a bounded expectation. So, to define our scalar F̃ , we first construct a high-probability event
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E which will ensure that F (X) is not only well-defined, but also sufficiently well behaved. Without
loss of generality, assume that n is even. Now, define:

E1 =
[ 2

n

n/2∑
i=1

xix
>
i �

1

C
Σ
]
, E2 =

[ 2

n

n∑
i=n/2+1

xix
>
i �

1

C
Σ
]
,

with E = E1 ∧ E2. Since n ≥ Õ(d), by relying on the subspace embedding property (as discussed
at the beginning of the section), each of the events E1 and E2 holds with probability at least 1 − δ.
We will use F̃ = EE [F (X)] as our scalar. Note that, conditioned on E , the function F satisfies
0 ≤ F (X) ≤ C tr M, so in particular the conditional expectation is well-defined.

Next, we proceed with the following decomposition of the trace (following standard literature
in random matrix theory). Let Q = ( 1

nX>X + C)−1 and Q−i = ( 1
nX>−iX−i + C)−1 where X−i

denotes X without the i row. Also, let Ei denote expectation conditioned on x1, ...,xi. We have,
conditioned on E that:

F (X)− F̃ = En[trBQ | E ]− E0[trBQ | E ] =
n∑
i=1

(Ei − Ei−1)[trBQ | E ]

=
n∑
i=1

(Ei − Ei−1)[trB(Q−Q−i) | E ] + (Ei − Ei−1)[trBQ−i | E ].

We proceed to bound each of the two terms. The latter can be bounded straightforwardly. Note that
one of E1 or E2 is independent of xi. Without loss of generality suppose that it is E1. Then, we have:∣∣(Ei − Ei−1)[trBQ−i | E ]

∣∣ ≤ δ

1− δ
·
∣∣(Ei − Ei−1)[trBQ−i | E1 ∧ ¬E2]

∣∣ . δ · tr M.

To bound the first term, we use the Sherman-Morrison rank-one update formula (Lemma 19), ob-
serving that:

|trB(Q−Q−i)| =
1
ntr BQ−ixix

>
i Q−i

1 + 1
nx>i Q−ixi

≤ 1

n
x>i Q−iBQ−ixi =

1

n
z>i M̃izi,

where we let zi = Σ−1/2xi and M̃i = Σ1/2Q−iBQ−iΣ
1/2. Now, since zi satisfies Hanson-

Wright inequality with constant K, it also satisfies Euclidean concentration with constant O(K2)
(see Proposition 14), and in particular, letting Zi = (z>i M̃izi)

1/2 and conditioning on M̃i we have:
‖Zi − E[Zi | M̃i]‖ψ2 . K2‖M̃i‖1/2. Thus, defining Mi = E[Zi | M̃i] ≤ (trM̃i)

1/2, we have:

E
[
|z>i M̃izi|p | E

]1/p ≤ 1

1− δ
E
[
|z>i M̃izi|p | E1

]1/p
=

1

1− δ
E
[
(Mi −Mi + Zi)

2p | E1]1/p

. E
[
E[M2p

i | M̃i] | E1
]1/p

+ E
[
E[|Zi −Mi|2p | M̃i] | E1

]1/p
. E

[
(trM̃i)

p | E1
]1/p

+ E
[
(
√
pK2‖M̃i‖1/2)2p | E1

]1/p
. trM + pK4‖M‖.

where the last step follows because conditioned on E1 we have tr M̃i . tr M and ‖M̃i‖ . ‖M‖.
Using Burkholder’s inequality (e.g., see Hitczenko, 1990) for the martingale difference sequence

31



DEREZIŃSKI

Xi = (Ei − Ei−1)[trBQ | E ], we get:

E
[
|F (X)− F̃ |p

]1/p
= E

[( n∑
i=1

Xi

)p]1/p
≤ Cp ·

(
E
[( n∑

i=1

Ei−1[X2
i ]
)p/2]

+

n∑
i=1

E
[
Xp
i

])1/p

.
p

n
·

((
n((tr M)2 +K4‖M‖)

)p/2
+ n(tr M + pK4‖M‖)p

)1/p

. p
(
tr M +K4‖M‖

)
·
( 1√

n
+

p

n1−1/p

)
.

Applying Markov’s inequality with p = log(1/δ), we obtain the desired result.

Note that in Lemma 25 we did not explicitly state what is the scalar F̃ around which the trace
functional F (X) concentrates. Normally, one would expect this quantity to be the expectation of
F (X), however since this expectation may not exist, we instead realy on the notion of a nearly-
unbiased estimator. For the trace functional we are interested in, i.e., F (X) = tr Σ(X>X)−1, a
nearly-unbiased estimator has been derived by Dereziński et al. (2021b), and we use that result in
the following corollary.

Corollary 26 Suppose that X consists of rows x>1 ,x
>
2 , ...,x

>
n that are i.i.d. sampled from a d-

variate distribution with covariance E[xix
>
i ] = Σ such that Σ−1/2xi satisfies the Hanson-Wright

inequality (2) with K = Õ(1) and n ≥ Õ(d). Then, with probability 1− δ:

trΣ(X>X)−1 ≈1+ε
d

n− d
where ε ≤ Õ

(
log 1/δ√

n

)
.

Proof Here, we use the result from Dereziński et al. (2021b) which shows that Σ1/2( 1
nX>X)−1Σ1/2

is an (ε′, δ)-unbiased estimator of n
n−dI, where ε′ = O(K4

√
d/n). Namely, this means that there

is an event E with probability 1 − δ such that E[Σ1/2( 1
nX>X)−1Σ1/2 | E ] ≈1+ε

n
n−dI and

conditioned on E we have Σ1/2( 1
nX>X)−1Σ1/2 � O(1) · n

n−dI. As a consequence, following
the argument analogous to Lemma 34 in Dereziński et al. (2021b), we can easily show that if
F (X) = trΣ( 1

nX>X)−1, then our scalar F̃ used in Lemma 25 also satisfies F̃ ≈1+ε
n
n−d · d. So,

combining this with Lemma 25, and observing that in this case we have M = I completes the proof.

To conclude the proof of Lemma 22, we combine the corollary with the Hanson-Wright inequal-
ity, which states that, conditioned on X>−iX−i:

Pr
{
|x>i (X>−iX−i)

−1xi − trΣ(X>−iX−i)
−1| ≥ ε · trΣ(X>−iX−i)

−1
}

≤ 2 exp
(
− cmin

{ ε2 · (trΣ(X>−iX−i)
−1)2

K4‖Σ1/2(X>−iX−i)
−1Σ1/2‖2F

,
ε · trΣ(X>−iX−i)

−1

K2‖Σ1/2(X>−iX−i)
−1Σ1/2‖

})
≤ exp

(
− cε2

trΣ(X>−iX−i)
−1

K4‖Σ1/2(X>−iX−i)
−1Σ1/2‖

)
.
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Using that K = Õ(1), as well as that with high probability we have trΣ(X>−iX−i)
−1 ≈ d

n−d and
‖Σ1/2(X>−iX−i)

−1Σ1/2‖ = O(1/n), we conclude that with high probability, we also have:

x>i (X>−iX−i)
−1xi ≈1+ε

d

n− d
for ε = Õ(1/

√
d).

By coupling a LESS embedding with the sub-gaussian design, we obtain the desired claim.

Appendix F. Constrained least squares: Proof of Theorem 9

The claim can be shown by using our reduction from a LESS embedding to a sub-gaussian em-
bedding. Namely, let ZΣ̃1/2 be the sub-gaussian design that is coupled with the LESS embedding√
nSA in Theorem 3. Recall that we have Σ̃ ≈1+δ Σ. To simplify the reduction, let us also define

the following sketching matrix:

S̃ =
1√
n

(
ZΣ̃1/2Σ−1/2U> + G(I−UU>)

)
,

where U = AΣ−1/2 and G is an n × N Gaussian matrix. It is easy to verify that
√
nS̃A =

ZΣ1/2 =
√
nSA with probability 1− δ, since I−UU> is the projection onto the complement of

the column-span of A. Moreover, we have E[S̃>S̃] ≈1+δ I, with each row of
√
nS̃ being mean zero

and Õ(1)-sub-gaussian. Thus, it suffices to verify that the analysis of Pilanci and Wainwright (2015)
still works when the sketching matrix is only approximately isotropic. Note that the difference here
is very small since we can easily let δ � ε. It suffices to show that their Proposition 1 can be
adapted. This proposition is itself a corollary of Theorem D from Mendelson et al. (2007). We can
easily obtain a variant that suits our setup.

Proposition 27 Let s̃1, ..., s̃n be i.i.d. N -dimensional samples from a zero mean K-sub-gaussian
distribution with covariance E[s̃is̃

>
i ] ≈1+δ I. For any subset Y ⊆ SN−1, if n ≥ CK2W2(Y)/ε2

and δ ≤ cε, then:

sup
y∈Y

∣∣∣y>( 1

n

n∑
i=1

s̃is̃
>
i − I

)
y
∣∣∣ ≤ ε,

with probability at least 1− 2 exp(−cε2n/K4).

The proposition follows from Theorem D of Mendelson et al. (2007), with functions fy(s) = s>y
‖y‖M ,

where M = E[s̃is̃
>
i ]. Remainder of the analysis in Pilanci and Wainwright (2015) stays the same.

Appendix G. Lower bound: Proof of Theorem 5

Without loss of generality, assume that N is a multiple of d (otherwise we can pad the matrix with
zeros), and consider matrix A consisting of stacked d × d identity matrices, scaled by

√
d/N so

that A>A = I. It suffices to prove the result for n = 1, in which case the sketching matrix S and
the design matrix Z both consist of single random vectors s and z, respectively.

We will in fact show a strictly stronger claim that ‖z‖ψ2 ≥ min
{

1, c
√

d/k
log d

}
, for some constant

c > 0. This claim is stronger because, by Proposition 14, the Hanson-Wright constant K upper
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bounds the sub-gaussian norm as follows: ‖z‖ψ2 = O(K). Observe that since z is isotropic, it

has to satisfy ‖z‖ψ2 ≥ 1, so it suffices to show ‖z‖ψ2 ≥ c
√

d/k
log d for k ≤ d/C, where C is some

absolute constant.
Let x̃ = A>s = 1√

k

∑k
i=1

ri√
pIi

aIi , and let z̃ = Σ1/2z be the random vector coupled with x̃ so
that there is an event E with probability at least 1/2 such that, conditioned on E , we have z̃ = x̃.

Next, in the joint probability space of (x̃, z̃), for each j = 1, ..., d, define an event Aj , which
holds when exactly one of the vectors aI1 , ...,aIk has a non-zero jth coordinate. Also, let A =
A1 ∨ ... ∨ Ad. Let us start by showing the Pr{A} ≥ 2/3. Each row of A has only one non-
zero coordinate, and each coordinate is equally represented among the rows, which means all of the
leverage scores of A are the same. So, since the probability distribution p is approximately uniform,
i.e., pi ≈O(1) 1/N for all i, after sampling k − 1 rows, we have at least 1 − O(k/d) chance that
the last sample will produce a row aIk with a non-zero in a coordinate we have not seen before.
Choosing constant C apprioriately, we can ensure that this probability is at least 2/3. Thus, we
showed that Pr{A} ≥ 2/3.

Next, our goal is to show that one of the events Aj has a positive intersection with the event E
(i.e., when x̃ coincides with z̃). We proceed as follows:

d∑
j=1

Pr{Aj ∧ E} ≥ Pr{A ∧ E} ≥ Pr{A} − Pr{¬E} ≥ 2/3− 1/2 ≥ 1/6,

where we used the union bound. We conclude that there exists j such that Pr{Aj ∧ E} ≥ 1/(6d).
Note that as long as Aj holds, then |x̃j | ≥ c

√
d/k (here, x̃j denotes the jth coordinate of x̃), so:

‖x̃ · 1E‖ψ2 ≥
∥∥|x̃j | · 1E∥∥ψ2

≥
∥∥∥c√d/k · 1Ai∧E

∥∥∥
ψ2

= Ω
(√

d/k
log d

)
,

where we used a simple lower bound for the sub-gaussian norm of a Bernoulli random variable.
This immediately implies the same bound for z̃ since ‖z̃‖ψ2 ≥ ‖x̃ · 1E‖ψ2 . We can finally return to
z = Σ̃−1/2z̃. Using the fact that Σ̃ � O(1) · I, we get:

‖z‖ψ2 = sup
v:‖v‖=1

‖v>Σ̃−1/2z̃‖ψ2 = sup
v:‖v‖=1

‖v>Σ̃−1/2‖
∥∥∥∥ v>Σ̃−1/2

‖v>Σ̃−1/2‖
z̃

∥∥∥∥
ψ2

= Ω(1) sup
v:‖v‖=1

∥∥∥∥ v>Σ̃−1/2

‖v>Σ̃−1/2‖
z̃

∥∥∥∥
ψ2

= Ω
(
‖z̃‖ψ2

)
= Ω

(√
d/k
log d

)
.

Appendix H. Proof of Lemma 20

Let u = Σ−1/2x. We will use the following simple decomposition:

(uu> − I)p = (‖u‖2 − 1)p−1uu> − (uu> − I)p−1. (7)

Using the fact that ‖u‖ is M -sub-gaussian, for any t > 0 we have that:

Pr
{
‖u‖2 ≥ t

}
≤ exp(−ct/M2),
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for some absolute constant c. Define the following event: E =
[
‖u‖2 ≤ L

]
where L = CM2(p +

3 logM). We conclude that Pr{¬E} ≤ exp(−c′(p + 2 logM)) ≤ M−2 exp(−c′(p + logM)).
Next, we use this to bound the first term from (7):∥∥E[(‖u‖2 − 1)p−1uu>

]∥∥ ≤ ∥∥E[|‖u‖2 − 1|p−1uu>1E
]∥∥+

∥∥E[|‖u‖2 − 1|p−1uu>1¬E
]∥∥

≤ Lp−1‖E[uu>]‖+ E
[
‖u‖2p1¬E

]
≤ Lp−1 +

∫ ∞
0

pxp−1Pr
{
‖u‖21¬E > x

}
dx

≤ Lp−1 + Lp ·M−2 exp(−c(p+ logM)) +

∫ ∞
L

pxp−1 exp(−cx/M2) dx

≤ C ′Lp−1 + (C ′M2p)p exp(−c′L/M2)

≤ (C ′′L)p−1,

where C, C ′ and C ′′ all denote absolute constants. Thus, we obtain that ‖E[(uu> − I)p]‖ ≤
(C ′′L)p−1 + ‖E[(uu> − I)p−1]‖ ≤ (C ′′′L)p−1 (by expanding the recursion). This completes the
proof of Lemma 20.

Here, we also establish a closely related result used in the proof of Theorem 11.

Lemma 28 There is an absolute constant C > 0 such that any d-dimensional random vector x
with covariance E[xx>] = Σ, where ‖Σ−1/2x‖ is M -sub-gaussian, satisfies the following sub-
exponential moment bound for any psd matrix B:

E
[∣∣‖B1/2Σ−1/2x‖2 − trB

∣∣p] ≤ (CM2(p+ logM))p−1‖B‖p−2‖B‖2F .

Proof We proceed similarly to the proof of Lemma 20, letting L = CM2(p + logM) and E =
[‖Σ−1/2x‖2 ≤ L]:

E
[
‖B1/2Σ−1/2x‖2p

]
≤ E

[
‖Σ−1/2x‖2(p−1)x>Σ−1/2BpΣ−1/2x

]
≤ Lp−1trBp + ‖B‖p · E

[
1¬E‖Σ−1/2x‖2p

]
≤ (CL‖B‖)p−2L‖B‖2F ,

where we used the integral bound from the proof of Lemma 20 and that trBp ≤ ‖B‖p−2‖B‖2F .
Finally, note that

E
[∣∣‖B1/2Σ−1/2x‖2 − trB

∣∣p] ≤ 2p
(
E
[∣∣‖B1/2Σ−1/2x‖2

]
+ (trB)p

)
≤ 2p(L‖B‖)p−2L‖B‖2F + 2p(d‖B‖)p−2‖B‖2F
≤ (C ′L‖B‖)p−2L‖B‖2F ,

where we used the fact that L ≥M2 ≥ d.
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Appendix I. Leave-one-out cross-validation formula: Proof of Lemma 21

First, note that, assuming (A>S−iS−iA)−1 � O(1) · (A>A)−1, we have:∥∥ argmin
w

‖S−i(Aw − b)‖
∥∥ = ‖(A>S>−iS−iA)−1A>S>−iS−ib‖

≤ ‖(A>S>−iS−iA)−1A>S>−i‖ · ‖S−ib‖

≤ O(1)
√
‖(A>A)−1‖ ·O(

√
Nk)‖b‖ ≤ poly(N,κ(A), ‖A‖, ‖b‖),

where we used that ‖S−i‖2 = O(Nk) for LESS embeddings satisfying the assumptions from The-
orem 7. The same bound holds for the unconstrained version of ŵ. Thus, it follows that, for
sufficiently large D, each ŵ−i, as well as ŵ, can be computed using the standard formulas for the
unconstrained least squares, without restricting toRd = [−D,D]d.

Proof of the shortcut formula. This is a standard derivation, which we include for completeness.
As shorthands, we let X = SA, y = Sb, and `i = x>i (X>X)−1xi. From Sherman-Morrison
(Lemma 19), we have:

(X>−iX−i)
−1xi =

(X>X)−1xi
1− x>i (X>X)−1xi

=
(X>X)−1xi

1− `i
,

where X−i is X without the ith row. Next, we use that to obtain:

ŵ−i = (X>−iX−i)
−1X>y − (X>−iX−i)

−1xiyi

=

(
(X>X)−1 +

(X>X)−1xix
>
i (X>X)−1

1− `i

)
X>y − (X>X)−1xiyi

1− `i

= ŵ +
(X>X)−1xi

1− `i

(
x>i (X>X)−1X>y − yi

)
= ŵ +

x>i ŵ − yi
1− `i

(X>X)−1xi.

Finally, we plug this into the ith component of the leave-one-out cross-validation estimate:

x>i ŵ−i − yi = x>i ŵ +
x>i ŵ − yi

1− `i
· `i − yi =

x>i ŵ − yi
1− `i

.

Squaring and summing the components concludes the proof.
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