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Abstract
We consider the sparse moment problem of learning a k-spike mixture in high-dimensional space
from its noisy moment information in any dimension. We measure the accuracy of the learned
mixtures using transportation distance. Previous algorithms either assume certain separation as-
sumptions, use more recovery moments, or run in (super) exponential time. Our algorithm for the
one-dimensional problem (also called the sparse Hausdorff moment problem) is a robust version
of the classic Prony’s method, and our contribution mainly lies in the analysis. We adopt a global
and much tighter analysis than previous work (which analyzes the perturbation of the intermediate
results of Prony’s method). A useful technical ingredient is a connection between the linear system
defined by the Vandermonde matrix and the Schur polynomial, which allows us to provide tight
perturbation bound independent of the separation and may be useful in other contexts. To tackle
the high-dimensional problem, we first solve the two-dimensional problem by extending the one-
dimensional algorithm and analysis to complex numbers. Our algorithm for the high-dimensional
case determines the coordinates of each spike by aligning a 1d projection of the mixture to a random
vector and a set of 2d projections of the mixture. Our results have applications to learning topic
models and Gaussian mixtures, implying improved sample complexity results or running time over
prior work.
Keywords: Moment Problems, Topic Modeling, Gaussian Mixture Models

1. Background

We study the moment problem in which we are given the (noisy) information of the moments of a
measure µ, and our goal is to recover µ up to certain accuracy. The moment problem is a classical
problem studied for over a century in mathematics, statistics, computer science, physics, control
theory, medical image, etc. Various versions of the problem have found numerous applications
in different domains (e.g., Schmüdgen (2017); Lasserre (2009); Ang et al. (2002); Pintarelli and
Vericat (2016); Bessis et al. (1976); Natterer (2001)). We study the sparse version of the problem,
in which the underlying measure is a mixture of k discrete distributions over a common discrete
domain rds “ t1, 2, ¨ ¨ ¨ , du. In particular, we consider mixture ϑ which is a k-spike distribution
supported on the d ´ 1 dimensional simplex ∆d´1 “ tx “ px1, ¨ ¨ ¨ , xdq P Rd |

řd
i“1 xi “ 1, xi ě

0 @i P rdsu. Each point in ∆d´1 represents a discrete distribution over rds. We first introduce the
sparse moment problem for d “ 2 (also known as the sparse Hausdorff moment problem or the
k-coin model (Schmüdgen, 2017; Li et al., 2015; Gordon et al., 2020)).

The sparse Hausdorff moment problem: For d “ 2, the mixture is a k-spike distribution sup-
ported on ∆1 – r0, 1s. We call the model the k-coin model (i.e., a mixture of k Bernoulli dis-
tributions). Denote the underlying mixture as ϑ “ pα,wq. Here, α “ tα1, α2, ¨ ¨ ¨ , αku and
w “ tw1, w2, ¨ ¨ ¨ , wku P ∆k´1, where αi P r0, 1s specifies the ith Bernoulli distribution and
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wi P r0, 1s is the probability of mixture component αi. For mixture ϑ “ pα,wq, the tth moment is
defined as Mtpϑq “

ş

r0,1s
αtϑpdαq “

řk
i“1wiα

t
i. Our goal is to recover the unknown parameters

pα,wq of the mixture ϑ given the first K noisy moment values M 1
t with |M 1

t ´ Mtpϑq|8 ď ξ for
1 ď t ď K.

We call K the moment number and ξ the moment precision/accuracy, both of which are essential
parameters of the problem. We measure the quality of our estimation rϑ in terms of the transportation
distance between probability distributions, i.e., Tranprϑ,ϑq ď Opϵq. Using transportation distance
as the metric is advantageous for several reasons: (1) if the desired accuracy ϵ is much smaller than
the minimum separation ζ “ min }αi ´ αj}, the estimation rϑ must be a per-spike recovery since
it must contain a spike that is sufficiently close to an original spike in ϑ (given the weight of the
spike is lower bounded); (2) if the desired accuracy ϵ is larger than ζ or the minimum weight wmin,
we are allowed to be confused by two very close spikes or miss a spike with a very small weight,
thus potentially avoiding the inverse dependency on ζ and wmin, which are otherwise unavoidable
if we must recover every spike. Generally, for this problem, we are interested in understanding
the relations and trade-offs among the moment number K, the moment accuracy/precision ξ, and
the accuracy ϵ of our estimation rϑ (i.e., transportation distance at most ϵ), and designing efficient
algorithms for recovering ϑ to the desired accuracy.

The sparse moment problem in higher dimensions: For the higher dimensional case, suppose the
underlying mixture is ϑ “ pα,wq where α “ tα1, . . . ,αku (αi P ∆d´1 which are d-dimensional
points in a bounded domain) and w “ tw1, . . . , wku P ∆k´1. For vector αi “ pαi,1, . . . , αi,dq and
multi-index t “ pt1, ¨ ¨ ¨ , tdq P Zd

`, we denote monomial αt
i “ αt1

i,1α
t2
i,2 ¨ ¨ ¨αtd

i,d, and the t-moment

of ϑ as Mtpϑq “
ş

∆d´1
αtϑpdαq “

řk
i“1wiα

t
i . In the sparse moment problem, we are given

noisy access of t-moment Mtpϑq for }t}1 ď K. Here we also call K the moment number. Since
there are KOpdq different moments, when d is large, we also consider the case where we have noisy
access to the moments of the projections of ϑ onto lower-dimensional subspaces (typically 1d or 2d
projections). An affine transformation of the samples in concrete applications such as topic models
can often obtain such noisy moments.

1.1. Applications and connections to prior work

The Hausdorff moment problem and its higher dimensional version have many applications in dif-
ferent areas, such as mathematics, statistics, computer science, physics, etc. In recent years, the
noisy sparse moment problem has found applications to a variety of unsupervised learning scenar-
ios, including learning topic models (Hofmann, 1999; Blei et al., 2003; Papadimitriou et al., 2000),
learning Gaussian mixtures (Wu and Yang, 2020), collaborative filtering (Hofmann and Puzicha,
1999; Kleinberg and Sandler, 2008), learning a mixture of product distributions (Feldman et al.,
2008; Gordon et al., 2021a) and causal inference (Gordon et al., 2021b). Now, we first discuss the
connection between the sparse moment problem and learning mixture models. Then we list some
applications in other areas.

Applications to learning mixture models.: Indeed, several prior results for the sparse moment
problem we study in this paper were presented explicitly or implicitly in the context of learning
mixture models (e.g., Rabani et al. (2014); Li et al. (2015); Kim et al. (2019); Gordon et al. (2020);
Wu and Yang (2020); Doss et al. (2020)). Here we use the problem of learning topic model as an
example: We are given a corpus of documents. We adopt the popular “bag of words” model and
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take each document as an unordered multiset of words. The assumption is that a small number of
k “pure” topics are distributed over the underlying vocabulary of d words. A K-word document
(i.e., a string in rdsK) is generated by first selecting a topic p P ∆d´1 from the mixture ϑ, and then
sampling K words from this topic. K is called the snapshot number and we call such a sample a
K-snapshot of p. For all }t}1 ď K, we can obtain noisy estimates of Mtpϑq or MtpΠRpϑqq (where
ΠRpϑq is the projection of ϑ onto a lower dimensional subspace R) using the K-snapshots (i.e., the
documents in the corpus). We aim to recover the mixture ϑ using as few samples as possible. Once
we have computed the noisy moments using samples, the problem reduces to the sparse moment
problem. We will discuss the applications to learning topic models in Section 6.1 and to learning
Gaussian mixtures in Section 6.2.

Other Applications.: We mention a few other problems where our results are directly or potentially
useful:

1. The moment problem can be used for recovering the initial condition for a class of heat dif-
fusion equations (Ang et al., 2002): Suppose the initial condition fpx, tq at t “ 0 is a k-spike
distribution (e.g., k heat sources), and we can measure fpx, tq at t “ 1 (with measurement
noise), and the task is to recover the initial k-spike distribution (Ang et al., 2002). See Re-
mark 54 for more details. In some other PDE problems, the input moment information is com-
puted using a particular numerical algorithm (now the noise comes from the error/precision
of the numerical algorithms), and the moment problem is used as a sub-procedure for solving
the PDE. For example, the moment problem can be used for approximately solving a class
of Poisson equations (Pintarelli and Vericat, 2016), in which the moment information can be
computed using numerical integration.

2. The Hausdorff moment problem is used as a sub-procedure for bounding/locating the zeros of
the partition function of the lattice Ising model (Lee-Yang theory) (Bessis et al., 1976). Here
the moments can be computed exactly for some special lattices and approximated for more
general lattices.

3. Our algorithm for higher dimensions is also closely related to computerized tomography,
in which we would like to recover the 3d (or higher dimensional) object from its 1d or 2d
projections (Natterer, 2001). Existing techniques used the information from a continuous set
(or a net) of 1d or 2d projections for recovery (e.g., the classical Radon transform). Our
technique (see Theorem 5 and Algorithm 3) only use only Opdq 1d and 2d projections.

2. Our Contributions

The k-Coin model. We first discuss prior work on the k-coin model (ϑ is supported on r0, 1s),
and our results. Rabani et al. (2014) showed that recovering a k-spike mixture requires at least the
first K “ 2k ´ 1 moments in the worst case (even without any noise). Moreover, they showed
that for the topic learning problem, if one use K “ cp2k ´ 1q snapshot samples (for any constant
c ě 1q and wish to achieve an accuracy Op1{kq in terms of transportation distance, eΩpKq samples
are required (or equivalently, the moment accuracy should be at most e´ΩpKq). On the positive
side, they solved the problem using sample complexity maxtp1{ζqOpkq, pk{ϵqOpk2qu (or moment
accuracy mintζOpkq, pϵ{kqOpk2qu), where ζ is a lower bound of the minimum separation). In fact,
their algorithm is a variant of the classic Prony’s method and the (post-sampling) running time is
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Reference K Moment Accuracy pξq Running Time Separation
Rabani et al. (2014) 2k ´ 1 mintζOpkq, pϵ{kqOpk2qu polypkq Required
Kim et al. (2019) 2k ´ 1 ζOpkq ¨ w2

min ¨ ϵ Opk3q Required
Gordon et al. (2020) 2k ζOpkq ¨ wmin ¨ ϵ Opk2`op1qq Required
Li et al. (2015) 2k ´ 1 pϵ{kqOpkq pk{ϵqOpk2q No Need
Wu and Yang (2020) 2k ´ 1 pϵ{kqOpkq Opk2ωq No Need
Theorem 3 2k ´ 1 pϵ{kqOpkq Opk2q No Need

Table 1: Algorithms for the k-coin problem where K is the moment number. The last column indi-
cates whether the algorithm needs the separation assumption. In particular, the algorithms
that require the separation assumption need to know ζ and wmin where ζ is the minimum
separation, i.e., ζ ď mini‰j |αi ´ αj | ď 1{k, and wmin ď miniwi. We measure the
running time in terms of the arithmetic operations In addition, polypkq refers to Opkcq
for a relatively large constant c and ω refers to the smallest real number such that two
k ˆ k matrices can be multiplied using Opkω`op1qq operations. We note that there is a
trivial lower bound ω ě 2 while the best-known upper bound is ω ď 2.373 (Alman and
Williams, 2021).

polypkq where their bottleneck is solving a special convex quadratic programming instance. Li et al.
(2015) provided a linear programming-based algorithm that requires the moment accuracy pϵ{kqOpkq

(or sample complexity pk{ϵqOpkq), matching the lower bound in Rabani et al. (2014). However,
after computing the noisy moments, the running time of their algorithm is super-exponential kOpk2q.
Motivated by a problem in population genetics that could be reduced to the k-coin mixture problem,
Kim et al. (2019) analyzed the Matrix Pencil Method, which requires moment accuracy ζOpkq ¨

w2
min ¨ ϵ. The matrix pencil method requires solving a generalized eigenvalue problem, which needs

Opk3q time. Wu and Yang (2020) studied the same problem in the context of learning Gaussian
mixtures. In fact, they showed that learning 1d Gaussian mixture models with the same variance
can be reduced to learning the k-coin model. Their algorithm achieves the optimal dependency on
the moment accuracy without separation assumption. Their recovery algorithm is based on SDP
and runs in time Opk2ωq for some ω ă 2.373 using the state-of-the-art SDP solver (Huang et al.,
2022). Recently, Gordon et al. (2020) showed that under the separation assumption, it is possible
to recover all k spikes up to accuracy ϵ, using the first 2k-moments with accuracy ζOpkq ¨ wmin ¨ ϵ.
Their algorithm is also a variant of Prony’s method and it runs in time Opk2`op1qq. We summarize
the prior and our results in Table 1.

Theorem 1 (The k-Coin model, informal) Let ϑ be an arbitrary k-spike distribution over r0, 1s.
Suppose we have noisy moments M 1

t such that |Mtpϑq ´ M 1
t | ď pϵ{kqOpkq for 0 ď t ď 2k ´ 1. We

can obtain a mixture rϑ such that Tranprϑ,ϑq ď Opϵq in Opk2q arithmetic operations.

Our techniques: Our algorithm for the k-coin model is also based on the classic Prony’s method
(de Prony, 1795). Suppose the true mixture is ϑ “ pα,wq where α “ rα1, ¨ ¨ ¨ , αksJ and w “

rw1, ¨ ¨ ¨ , wksJ. In Prony’s method, if we know the moment vector M exactly, every αi can be
recovered from the roots of a polynomial whose coefficients are the entries of the eigenvector c
(corresponding to eigenvalue 0) of a Hankel matrix (see e.g., the matrix Hk`1 in Gordon et al.
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(2020)). However, if we only know the noisy moment vector M 1, we only get a perturbation of the
original Hankel matrix. Recent analyses of Prony’s method (Rabani et al., 2014; Gordon et al., 2020)
aim to upper bound the error of recovery from the perturbed Hankel matrix. If αi and αj (i ‰ j)
are very close, or any wi is very small, the second smallest eigenvalue of the Hankel matrix is also
very close to 0. From matrix perturbation theory, we know that the eigenvector c corresponding to
eigenvalue 0 is extremely sensitive to small perturbation (see e.g.,Stewart (1990)). Hence, the recent
analyses of Prony’s method (Rabani et al., 2014; Gordon et al., 2020) requires that αi and αj are
separated by at least ζ, and the minimum wi is lower bounded by wmin to ensure certain stability of
the eigenvector (hence the coefficients of the polynomial), and the corresponding sample complexity
becomes unbounded when ζ or wmin approaches to 0. Our algorithm (Algorithm 1) can be seen as
a robust version of Prony’s method. Instead of computing the smallest eigenvector of the perturbed
Hankel matrix, we solve a ridge regression to obtain a vector pc, which plays a similar role as c
(Line 1 in Algorithm 1). However, instead of showing pc is close to c (in fact, they can be very
different), we adopt a more global analysis to show that the moment vector of the estimated mixture
is close to the true moment vector M , and by a moment-transportation inequality (see Section B),
we can guarantee the quantity of our solution in terms of transportation distance.

Another technical challenge lies in bounding the error in recovering the weight vector w. In
the noiseless case, the weight is simply the solution of Vαw “ M where Vα is a Vandemonde
matrix (see Equation (2)). It is known that Vandermonde matrices tend to be badly ill-conditioned
(Gautschi and Inglese, 1987; Pan, 2016; Moitra, 2015) (with a large dependency on the inverse of the
minimal separation). Hence, using standard condition number-based analysis, slight perturbations
of Vα and M may result in an unbounded error. 1 However, we show interestingly, in our case,
that we can bound the error independent of the separation (Lemma 32) via the connection between
Vandermonde linear systems and Schur polynomial (Lemma 31). Our technology may be useful in
analyzing the perturbation of Vandermonde linear systems in other contexts as well.

Higher Dimensions. For the high-dimensional case, especially when d is large, it is costly to obtain
all moments Mtpϑq for all t with }t}1 ď K. Indeed, most previous work (Rabani et al., 2014; Li
et al., 2015; Wu and Yang, 2020; Gordon et al., 2020; Doss et al., 2020) on learning mixtures solved
the problem using noisy moment information of the projections of ϑ onto some lower-dimensional
subspaces (in fact, lines). In particular, if one projects ϑ to Opkq directions such as in Rabani
et al. (2014); Wu and Yang (2020); Gordon et al. (2020), existing techniques require the separation
assumption for the recovery. 2 Other works without separation condition such as Li et al. (2015);
Doss et al. (2020) requires to project ϑ to a net of exponentially many directions.

In our work, we assume we have noisy access to the moments of the linear projections ΠRpϑq

of ϑ onto lines or 2d planes (one may refer to the formal definition of ΠRpϑq in Section 5.2). See
Theorem 2 for an informal statement of our result. A comparison between our result and prior work
is summarized in Table 2. One can see that we either use much fewer projections (hence better
running time) or do not need the separation assumption. We note that using 2d projections is crucial

1. Note that for Vandermonde matrix V “ paj
i q0ďiăk,1ďjďk, its determinant is detpV q “ p´1q

kpk´1q{2 ś

păqpap ´

aqq. Hence, detpV q
´1 depends inversely on the separation.

2. It is possible to convert an algorithm with a separation assumption to an algorithm without a separation assumption
by merging close-by spikes and removing spikes with small weights. However, the resulting algorithm is far from
optimal. For example, sample complexity pk{ϵqOpkq

¨ w
´Op1q

min ¨ ζ´Opkq in Gordon et al. (2020) can be converted to
one without separation with sample complexity pk{ϵqOpk2q. We omit the details.
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Reference #Projections Moment Accuracy pξq Running Time Separation
Rabani et al. (2014) Opkq pϵ{kqOpk2q ¨ pwminζqOpk2q polypkq Required
Gordon et al. (2020) Opkq pϵ{kqOpkq ¨ w

Op1q

min ¨ ζOpkq polypkq Required
Wu and Yang (2020) Opdq pϵ{kqOpkq ¨ wmin ¨ ζ Opdk2ωq Required
Li et al. (2015) pk{ϵqOpkq pϵ{kqOpk2q pk{ϵqOpk2q No Need
Doss et al. (2020) pk{ϵqOpkq pϵ{kqOpkq pk{ϵqOpkq No Need
Theorem 5 Opdq* pϵ{kqOpkq Opdk3q No Need

Table 2: Algorithms for recovering the mixture ϑ in higher dimensional space. We assume that
dimension d ă k and we have oracle access to noisy moments of any 1d or 2d projections.
The last column indicates whether the algorithm needs the separation assumption. *: The
second column indicates the number of lower dimensional projections that the algorithm
requires. Specifically, our algorithm uses one 1d projection and Opdq 2d projections while
all previous algorithms use a certain number of 1d projections.

for the improvement beyond prior work. We hope this idea of using 2d projections is helpful in
solving other high-dimensional recovery problems.

Theorem 2 (Higher dimension, informal) Let ϑ be an arbitrary k-spike mixture supported in ∆d´1.
Suppose we can access any noisy t-moments of the 1d and 2d linear projection ΠRpϑq with preci-
sion pϵ{pdkqqOpkq, (i.e., onto lines and 2d planes). We can construct a k-spike mixture rϑ such that
Tranprϑ,ϑq ď Opϵq using only Opdk3q arithmetic operations with high probability.

Our techniques: We first solve the two-dimensional problem. This is done by extending the previ-
ous one-dimensional algorithm and its analysis to complex numbers. The real and imaginary parts
of a complex location can represent the two dimensions, respectively. While most ideas are similar
to the one-dimensional case, the analysis requires extra care in various places. In particular, we need
to extend the moment-transportation inequality to complex numbers (Appendix B).

Our algorithm for the high-dimensional case uses the algorithms for one-dimensional and two-
dimensional cases as subroutines. We first pick a random vector r and learn the projection rϕ of ϑ
onto r using the one-dimensional algorithm. It is not difficult to show that for two spikes that are
far apart, with reasonable probability, their projections on r are also far apart. Hence, the remaining
task is to recover the coordinates (in Rd) of each spike in rϕ. So, we learn the 2d-linear map pϕt of ϑ
onto the two-dimensional subspace spanned by r and the tth dimensional axis for each dimension
t P rds. Combining the information from the 1d projected measure rϑ and the 2d projected measure
pϑt, we show that we can extract the tth coordinates of all spikes.

Application to Learning Topic Models. Our result for the high-dimensional case can be easily
translated into an algorithm for topic modeling. Previously, Rabani et al. (2014) showed that it
is possible to produce an estimate rϑ of the original mixture ϑ such that Tranpϑ, rϑq ď ϵ, using
polypn, k, 1{ϵq 1- and 2-snapshot samples, and pk{ϵqOpk2q ¨ pwminζq´Opk2q K-snapshot samples,
under minimal separation assumptions. Li et al. (2015) provided an LP-based learning algorithm
which uses almost the same number of samples (with a slightly worse polynomial for 2-snapshot
samples), but without requiring any separation assumptions. The number of the p2k ´ 1q-snapshot
samples used by both Rabani et al. (2014); Li et al. (2015) are pk{ϵqOpk2q while that of the lower
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bound (for 1d) is only eΩpkq. Recently, Gordon et al. (2020) showed that under the minimal sep-
aration assumption, the sample complexity could be reduced to pk{ϵqOpkq ¨ w

´Op1q

min ¨ ζ´Opkq. We
obtain for the first time the worst case optimal sample complexity for the high-dimensional case,
improving previous work (Rabani et al., 2014; Li et al., 2015; Gordon et al., 2020) and matching
the lower bound even for the one-dimensional case (Rabani et al., 2014). See Section 6.1 for the
details.

Application to Learning Gaussian Mixtures. We also study the problem of learning the param-
eters of Gaussian mixtures. We assume that all Gaussian components share a variance parameter,
following the setting studied by Wu and Yang (2020). We can leverage our algorithm for the k-coin
model for the one-dimensional setting. Our algorithm achieves the same sample complexity as in
Wu and Yang (2020), but an Opk2q post-sampling running time, improving over the SDP-based
Opk2ωq-time algorithm developed by Wu and Yang (2020). See Theorem 53 for more details.

For the high-dimensional setting, we can use the dimension reduction technique in Li et al.
(2015) or Doss et al. (2020) to reduce the dimension d to Opkq. The dimension reduction part is not
a bottleneck and we assume d “ Opkq for the the following discussion. We show in Section G.2
that we can utilize our algorithm for the high-dimensional sparse moment problem and obtain an
algorithm without any separation assumption with sample complexity pk{ϵqOpkq. Note that the
algorithm in Wu and Yang (2020) requires a sample size of pk{ϵqOpkq ¨ w

´Op1q

min ¨ ζ´Opkq, which
depends on the separation parameter ζ between Gaussian distributions. Recently, Doss et al. (2020)
removed the separation assumption and achieved the optimal sample complexity pk{ϵqOpkq. Com-
pared with Doss et al. (2020), the sample complexity of our algorithm is the same, but our running
time is substantially better: during the sampling phase, the algorithm in Doss et al. (2020) requires
Opn5{4 polypkqq time where n “ pk{ϵqOpkq is the number of samples (for each sample, they need
to update Opn1{4 polypkqq numbers, since their algorithm requires Opn1{4q 1d projections) while
our algorithm only needs Opn polypkqq time (we only need one 1d projection and d “ Opkq 2d
projections). The post-sampling running time of the algorithm in Doss et al. (2020) is exponential
pk{ϵqOpkq while our algorithms runs in polynomial time polypkq. For more details, see Section 6.2.

Last but not least, we argue that improving the post-sampling running time is very important,
despite the exponential sample complexity for both problems. During the sampling phase, we only
need to keep track of the first few moments (e.g., using basic operations such as counting or adding
numbers), hence the sampling phase can be easily distributed, streamed, or implemented in inex-
pensive computing devices. Our mixture recovery algorithm only requires the moment information
(without storing the samples) and runs in time polynomial in k (not the sample size). Moreover,
one may well have other means to measure the moments to achieve the desired moment accuracy
(e.g., via longer documents, prior knowledge, existing samples, etc.) Exploiting other settings and
applications is an interesting further direction.

3. Preliminaries

We are given a statistical mixture ϑ of k discrete distributions over rds “ t1, 2, ¨ ¨ ¨ , du. Each dis-
crete distribution αi can be regarded as a point in the pd´1q-simplex ∆d´1 “ tx “ px1, ¨ ¨ ¨ , xdq P

Rd |
řd

i“1 xi “ 1, xi ě 0 @i P rdsu. We use ϑ “ pα,wq to represent the mixture where
α “ tα1,α2, ¨ ¨ ¨ ,αku Ă ∆d´1 are the locations of spikes and w “ tw1, w2, ¨ ¨ ¨ , wku P ∆k´1

in which wi is the weight of αi. Since the dimension of ∆d´1 is d ´ 1, we say the dimension of
the problem is d ´ 1. In addition, we use Spikep∆d´1,∆k´1q to denote the set of all such mixtures
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where ∆d´1 indicates the domain of αi and ∆k´1 indicates the domain of w. Since our algorithm
may produce negative or complex weights as intermediate results, we further denote ΣR

d´1 “ tx “

px1, ¨ ¨ ¨ , xdq P Rd |
řd

i“1 xi “ 1u and ΣC
d´1 “ tx “ px1, ¨ ¨ ¨ , xdq P Cd |

řd
i“1 xi “ 1u.

For the one-dimensional case (which is called the k-coin problem or sparse Hausdorff moment
problem), we have ϑ “ pα,wq P Spikep∆1,∆k´1q where α “ tα1, α2, ¨ ¨ ¨ , αku is a set of k
discrete points in r0, 1s. In this scenario, for each t P N, we denote the tth moment as

Mtpϑq “

ż

r0,1s

αtϑpdαq “

k
ÿ

i“1

wiα
t
i.

For the higher dimensional case, we use t “ pt1, t2, ¨ ¨ ¨ , tdq P Zd
` such that }t}1 “ Kp“

2k ´ 1q to denote a multi-index. In addition, we denote monomial αt
i “ αt1

i,1α
t2
i,2 ¨ ¨ ¨αtd

i,d for every
discrete distribution αi “ pαi,1, αi,2, ¨ ¨ ¨ , αi,dq P Rd. The moment vector of ϑ is then defined as

Mpϑq “ tMtpϑqu}t}1ďK where Mtpϑq “

ż

∆d´1

αtϑpdαq “

k
ÿ

i“1

wiα
t
i . (1)

We define the moment distance between two mixtures ϑ and ϑ1 as the L8 norm of the difference
between corresponding moment vectors: MomKpϑ,ϑ1q :“ max|t|ďK |Mtpϑq ´ Mtpϑ

1q|.

Transportation Distance: For any two probability measures P and Q defined over Rd, we define
the L1-transportation distance TranpP,Qq is defined as

TranpP,Qq :“ inf
!

ż

}x ´ y}1 dµpx, yq : µ P MpP,Qq

)

where MpP,Qq is the set of all joint distributions (also called coupling) on Rd ˆRd with marginals
P and Q. Transportation distance is also called Rubinstein distance, Wasserstein distance or earth
mover distance in the literature. We also need to define transportation distance for signed measures
and complex domains. See Appendix A.

4. An Efficient Algorithm for the k-Coin Problem

In this section, we study the k-coin model, i.e., ϑ is a k-spike distribution over r0, 1s. We present
an efficient algorithm reconstructing the mixture from the first K “ 2k ´ 1 noisy moments. Let
ϑ :“ pα,wq P Spikep∆1,∆k´1q be the ground truth mixture where α “ rα1, ¨ ¨ ¨ , αksJ P ∆k

1 and
w “ rw1, ¨ ¨ ¨ , wksJ P ∆k. Let Mpϑq “ rM0pϑq, ¨ ¨ ¨ ,M2k´1pϑqsJ be the ground truth moment
vector containing moments of degree at most K “ 2k ´ 1. We denote the noisy moment vector
as M 1 “ rM 1

0, ¨ ¨ ¨ ,M 1
2k´1s where the error is bounded by }M 1 ´ Mpϑq}8 ď ξ. Since ϑ is a

distribution, we assume M 1
0 “ M0pϑq “ 1. In the light of lower bound in Rabani et al. (2014) or

Lemma 8, we further assume the noise satisfies ξ ď 2´Ωpkq.
For vector M “ rM0, ¨ ¨ ¨ ,M2k´1sJ and α “ rα1, ¨ ¨ ¨ , αksJ, we denote

AM :“

»

—

—

—

–

M0 M1 ¨ ¨ ¨ Mk´1

M1 M2 ¨ ¨ ¨ Mk
...

...
. . .

...
Mk´1 Mk ¨ ¨ ¨ M2k´2

fi

ffi

ffi

ffi

fl

, bM :“

»

—

—

—

–

Mk

Mk`1
...

M2k´1

fi

ffi

ffi

ffi

fl

, Vα :“

»

—

—

—

–

α0
1 α0

2 ¨ ¨ ¨ α0
k

α1
1 α1

2 ¨ ¨ ¨ α1
k

...
...

. . .
...

α2k´1
1 α2k´1

2 ¨ ¨ ¨ α2k´1
k

fi

ffi

ffi

ffi

fl

.

(2)
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Algorithm 1 Algorithm for the k-coin problem
Input: number of spikes k, noisy moments M 1p¨q, noise level ξ
Output: recovered spike distribution qϑ

1: pc Ð argminxPRk }AM 1x ` bM 1}22 ` ξ2}x}22 ñ pc “ rpc0, ¨ ¨ ¨ ,pck´1sJ P Rk

2: pα Ð rootsp
řk´1

i“0 pcix
i ` xkq ñ pα “ rpα1, ¨ ¨ ¨ , pαksJ P Ck

3: α Ð project∆1
ppαq ñ α “ rα1, ¨ ¨ ¨ , αksJ P ∆k

1

4: rα Ð α ` Noisepξq ñ rα “ rrα1, ¨ ¨ ¨ , rαksJ P ∆k
1

5: pw
Op1q´approx

ÐÝÝÝÝÝÝÝ argminxPRk }V
rαx ´ M 1}22 ñ pw “ r pw1, ¨ ¨ ¨ , pwksJ P Rk

6: rw Ð pw{p
řk

i“1 pwiq ñ rw “ r rw1, ¨ ¨ ¨ , rwksJ P Σk´1

7: rϑ Ð prα, rwq ñ rϑ P Spikep∆1,Σk´1q

8: qw Ð argminxP∆k´1
Tranprϑ, prα,xqq

9: qϑ Ð prα, qwq ñ qϑ P Spikep∆1,∆k´1q

Note that AM is a Hankel matrix and Vα is a Vandemonde matrix.
Our algorithm is a variant of Prony’s method (de Prony, 1795). The pseudocode can be found

in Algorithm 1. The algorithm takes the number of spikes k, the noisy moment vector M 1 which
}M 1 ´Mpϑq}8 ď ξ and the moment accuracy ξ as the input. We describe our algorithm as follows.

Let c “ rc0, ¨ ¨ ¨ , ck´1sJ P Rk such that
śk

i“1px ´ αiq “
řk´1

i“0 cix
i ` xk be the character-

istic vector of locations αi. We first perform a ridge regression to obtain pc in Line 1. We note
that AMpϑqc ` bMpϑq “ 0. (see Lemma 24). Hence, pc serves a similar role as c (note that pc is
not necessarily close to c without the separation assumption). From Line 2 to Line 4, we aim to
obtain estimations of the positions of the spikes, i.e., αis. We first solve the roots of polynomial
řk´1

i“0 pcix
i ` xk. For polynomial root findings, note that some roots may be complex without any

separation assumption. 3 Hence, we need to project the solutions back to ∆1 and inject small noise,
ensuring that all values are distinct and still in ∆1. We note that any noise of size at most ξ suffices.
After recovering the positions of the spikes, we aim to recover the corresponding weights rw by
the linear regression defined by the Vandemonde matrix Vα in Line 5 with weight normalization in
Line 6. We note that rw may still have some negative components. In Line 8, we find the closest
k-spike distribution in Spikep∆1,∆k´1q, which is our final output. The details for implementing
the above steps in Opk2q time can be found in Appendix C.1. The performance guarantee of the
algorithm is given by the following theorem.

Theorem 3 Let ϑ be an arbitrary k-spike distribution over r0, 1s. Suppose we have noisy moments
M 1

t such that |Mtpϑq ´ M 1
t | ď pϵ{kqOpkq for 0 ď t ď 2k ´ 1. Then Algorithm 1 outputs a mixture

rϑ such that Tranprϑ,ϑq ď Opϵq using Opk2q arithmetic operations.

4.1. Proof Sketch

In this section, we present a proof sketch of Theorem 3. The complete proof of the theorem can be
found in Appendix C.2. Firstly, using the relationship between pc and pα, one can show that

k
ÿ

i“1

wi

k
ź

j“1

pαi ´ pαjq
2 “

k
ÿ

i“1

wi

˜

k´1
ÿ

j“0

pcjα
j
i ` αk

i

¸2

“

k´1
ÿ

i“0

ppci ´ ciq
´

AMpϑqpc ` bMpϑq

¯

i

3. Gordon et al. (2020) proved that all roots are real and separated under the minimal separation assumption.
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Since we use the ridge regression to get pc (Line 1), the norms of both AM 1pc ` bM 1 and pc are small.
Note that M 1 is close to Mpϑq, the norm of vector AMpϑqpc ` bMpϑq is also small. Hence one can
get

k
ÿ

i“1

wi

k
ź

j“1

pαi ´ pαjq
2 ď 2Opkq ¨ ζ.

The above inequality shows that every ground truth spike ai P α has a close spike rαj P rα where the
closeness depends on the weight of the spike wi. We note that this property tolerates permutation
and small spikes weights, enabling us to analyze mixtures without separation.

Next, note we can decompose Mpϑq “
řk

i“1wiMpαiq where Mpαiq is the moment vector
generated by the single-spike distribution located at αi. By triangular inequality, the error of lin-
ear regression (Line 5) can be decomposed by minx }V

rαx ´ Mpϑq}2 ď
řk

i“1wiminx }V
rαx ´

Mpαiq}2, Therefore, to bound }V
rα pw ´ Mpϑq}2 « minx }V

rαx ´ Mpϑq}2, it is sufficient to prove
minx }V

rαx ´ Mpαiq} for each αi is bounded. We use }V
rαx

˚ ´ Mpαq}2 for a specific x˚ as its
upper bound. x˚ is chosen to be the vector in which the first k rows of V

rαx
˚ and Mpαiq are equal

(x˚ is the solution of a linear system). By binomial expansion, we can compute the jth row of V
rαx

˚

for large j ą k by

pV
rαx

˚qj “

j
ÿ

p“1

ˆ

j

p

˙

αj´p
i

ÿ

t“1

x˚
t prαt ´ αiq

p.

Expressing x˚ using the adjoint matrix, using Using Cramer’s rule, and plugging it into the right-
hand side of the above equality, the resulting term appears to be difficult to bound (see the third
equation in the analysis of Lemma 32). Fortunately, by leveraging a matrix equation derived from
the Shur polynomial, one can get the following nice equation for the inner summation,

ÿ

t“1

x˚
t prαt ´ αiq

p “

k
ź

t“1

prαt ´ αiq ¨
ÿ

sĎpkqj´k

k
ź

t“1

prαt ´ αiq
st ,

where we use paqb Ă t0, ¨ ¨ ¨ , bua to denote the set that contains all vector s in which
řa

i“1 si “ b.
Since kj´k has no more than 2Opkq elements, one can thus easily bound the approximation error by:

min
x

}V
rαx ´ Mpαiq}2 ď 2Opkq ¨

k
ź

j“1

|αi ´ rαj |

from the right-hand side of the above equation.
Note that rαj are pαi close, combining all the above results gives }V

rα pw´Mpϑq}8 ď 2Opkq ¨
?
ζ,

indicating moment distance between the recovered distribution and the ground truth is small. Fi-
nally, one can reach the desired statement using the moment-transportation inequality (Lemma 8),
which asserts that if the moment distance between two measures is sufficiently small, the transporta-
tion distance between them is also small.

5. Efficient Algorithms for Higher Dimensions

In this section, we solve the problem in higher dimensions. We first present the algorithm for the
two-dimensional problem. The algorithm for higher dimensions takes both the one-dimensional and
two-dimensional algorithms as subroutines.

10
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5.1. An Efficient Algorithm for the Two-Dimensional Problem

We first generalize the one-dimensional algorithm described in Section 4 to the dimension of two.
Let ϑ :“ pα,wq P Spikep∆2,∆k´1q be the underlying mixture where α “ rα1, ¨ ¨ ¨ ,αksJ for
two-dimensional points αi “ pαi,1, αi,2q and weight vector w “ rw1, ¨ ¨ ¨ , wksJ P ∆k´1. The
true moments is defined by Mi,jpϑq “

řk
t“1wtα

i
t,1α

j
t,2. We assume the input noisy moments

M 1
i,j satisfies |M 1

i,j ´ Mi,jpϑq| ď ξ for every 0 ď i, j, i ` j ď 2k ´ 1. We further assume that
M 1

0,0 “ M0,0pϑq “ 1 and noise level ξ ď 2´Ωpkq.
The key idea for our algorithm is that, a distribution supported in R2 can be mapped to a dis-

tribution supported in the complex plane C. In particular, let complex simplex ∆C “ ta ` bi |

pa, bq P ∆2u. We denote β “ rβ1, ¨ ¨ ¨ , βksJ :“ rα1,1 ` α1,2i, ¨ ¨ ¨ , αk,1 ` αk,2is
J P ∆k

C and define
ϕ :“ pβ,wq P Spikep∆k

C,∆k´1q to be the complex mixture corresponding to ϑ. The correspond-
ing moments of ϕ can thus be defined as Gi,jpϕq “

řk
t“1wtpβ

:
t qiβj

t , where β:
t is the complex

conjugate of βt. We note Gi,j can be computed from Mi,j (see Lemma 37). Therefore, the task
reduces to the recovery of the complex mixture ϕ given noisy moments G1

i,j . The algorithm and the
proof of the following theorem are similar to that in Section 4. Handling complex numbers requires
several minor changes, and we present the full details in Appendix D. For the analysis, we also need
to generalize the moment-transportation inequality to the complex domains (see Appendix B.2).
Theorem 4 (The Two-dimensional Problem) Let ϑ P Spikep∆2,∆k´1q. Suppose we have noisy
moments Mi,j (0 ď i, j, i ` j ď 2k ´ 1) up to precision pϵ{kqOpkq. We can obtain a mixture rϑ such
that Tranprϑ,ϑq ď Opϵq using only Opk3q arithmetic operations.

5.2. An Efficient Algorithm for Dimension d ě 3

Now, we present our algorithm for higher dimensions. Let ϑ :“ pα,wq P Spikep∆d´1,∆k´1q be
the underlying mixture where α “ rα1, ¨ ¨ ¨ ,αksJ P Rkˆd such that αi “ rαi,1, ¨ ¨ ¨ , αi,dsJ and
w “ rw1, ¨ ¨ ¨ , wksJ. We denote α:,i “ rα1,i, ¨ ¨ ¨ , αk,is as the vector of the ith coordinates of the
spikes and also write rα “ rα:,1, ¨ ¨ ¨ ,α:,ksJ.

Since the number of different moments is exponential in d, we consider the setting in which
one can access the noisy moments of some linear maps of ϑ onto lower-dimensional subspaces,
as in previous works (Rabani et al., 2014; Li et al., 2015) (such noisy moments can be easily ob-
tained in applications such as topic modeling, see Section 6.1, or in learning Gaussian mixtures,
see Section 6.2). For some ϑ “ pα,wq P SpikepRd,∆k´1q and a vector r P Rd, we denote
Πrpϑq :“ pαr,wq P SpikepR,∆k´1q as the projected distribution of ϑ along vector r. For a
matrix R “ rr1, ¨ ¨ ¨ , rps P Rdˆp, we also denote ΠRpϑq :“ pαR,wq P SpikepRp,∆k´1q as
the projected distribution of ϑ along multiple dimensions r1, ¨ ¨ ¨ , rp. In this section, we consider
mappings to one-dimensional and two-dimensional subspaces, which suffice for our purposes.

The idea of our algorithm is as follows: We first generate a random vector r. Then with some
constant probability, the distance between spikes is roughly kept after the projection along r. This
enables us to recover a projected measure rϕ along r of the discrete mixture by running the one-
dimensional algorithm on the projected moments. Next, we try to assign every spike of the projected
measure a coordinate in Rd. This is done by running the two-dimensional algorithm over the plane
spanned by r and unit vector et for each dimension t P rds to get pϕt, and assigning the t-th coor-
dinate of each spike in rϕ the coordinate of the closet spike in pϕt. We use a geometric argument to
show the recovered distribution is close to the ground truth ϑ in terms of the transportation distance
(see Lemma 47). The algorithm and the analysis are deferred to Appendix E.
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Theorem 5 Let ϑ be an arbitrary k-spike mixture supported in ∆d´1. Suppose we can access noisy
t-moments of ΠRpϑq, with precision pϵ{pdkqqOpkq, where ΠRpϑq is the projected measure obtained
by applying linear transformation R (with }R}8 ď 1) of ϑ onto any h-dimensional subspace we
choose, for all }t} ď K “ 2k ´ 1 and h “ 1, 2 (i.e., lines and 2d planes). We can construct
a k-spike mixture rϑ such that Tranprϑ,ϑq ď Opϵq using only Opdk3q arithmetic operations with
probability at least 0.99.

6. Applications

6.1. Applications to Topic Models

This section discusses the application of our results to topic models. Due to space limitations,
the full details are deferred to Appendix F. Consider the “bag of words” model in which we take
each document as an unordered multiset of words. Let d be the number of different words in
the document. We assume there are k topics tα1,α2, ¨ ¨ ¨αku that are distributed over rds. Each
document is generated by first selecting a topic i P ∆d´1 from the mixture ϑ, and then sampling
K i.i.d. words according to αi from this topic. Here, K is referred to as the snapshot number and
we call such a sample a K-snapshot of p. Our goal is to recover ϑ P Spikep∆d´1,∆k´1q that is a
discrete distribution over k pure topics. If d " k, we can use the dimension reduction technique in
Li et al. (2015) to reduce the dimension d to Opkq, using Õpϵ´6k3dq 1-snapshots and Õpϵ´4k2dq

2-snapshots, respectively. Then, we can apply Theorem 5 to derive the required moment accuracy.
Translating the moment accuracy to the sample complexity is standard. In sum, we can obtain the
following result.

Theorem 6 There is an algorithm that can learn an arbitrary k-spike mixture supported in ∆d´1

for any d within L1 transportation distance Opϵq with probability at least 0.99 using polypd, k, 1ϵ q,
polypd, k, 1ϵ q, many 1-,2-,snapshots and pk{ϵqOpkq many p2k ´ 1q-snapshots.

6.2. Applications to Gaussian Mixture Learning

This section shows how to leverage our results for sparse moment problems to obtain improved
algorithms for learning Gaussian mixtures. The full details can be found in Appendix G. We
consider the following setting studied in Wu and Yang (2020); Doss et al. (2020). We param-
eterise a k-Gaussian mixture in Rd as ϑN “ pα,w,Σq. Here, α “ tα1,α2, ¨ ¨ ¨ ,αku and
w “ tw1, w2, ¨ ¨ ¨ , wku P ∆k´1 where αi P Rd and wi P r0, 1s represents the mean and weight of
ith component. We assume all k mixture components share a common covariance matrix Σ P Rdˆd

that is known in advance and the maximal eigenvalue of Σ is bounded by a constant. We focus on
parameter learning, that is, to learn the parameter α and w given known covariance matrix Σ and a
set of i.i.d. samples from ϑN “

řk
i“1wiNpαi,Σq. We have the following result:

Theorem 7 There is an algorithm that can learn an arbitrary d-dimensional k-spike Gaussian
mixture (with known common covariance matrix Σ) within transportation distance Opϵq with prob-
ability at least 0.99 using pk{ϵqOpkq ` polyp1{ϵ, d, kq samples.

12



EFFICIENT ALGORITHMS FOR SPARSE MOMENT PROBLEMS WITHOUT SEPARATION

7. Concluding Remarks

We provide efficient algorithms for learning the k-mixture over discrete distributions from noisy
moments. We measure the accuracy in terms of transportation distance, and our analysis is inde-
pendent of the minimal separation. The techniques used in our analysis for the one-dimensional
case may be useful in the perturbative analysis of other problems involving the Hankel matrix or the
Vandermonde matrix (such as super-resolution).

Our problem is a special case of learning mixtures of product distribution (Gordon et al., 2021a),
which is further a special case of the general problem of learning mixtures of Bayesian networks
(Gordon et al., 2021b), which has important applications in causal inferences. In fact, the algorithms
in Gordon et al. (2021a,b) used the algorithm for sparse Hausdorff moment problem as a subroutine.
It would be interesting to see if our techniques can be useful in these problems.
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Appendix A. Transportation Distance for Non-Probability Measures

Let 1-Lip be the set of 1-Lipschitz functions on Rd, i.e., 1-Lip :“ tf : Rd Ñ R | |fpxq ´ fpyq| ď

}x ´ y}1,@x, y P Rdu. We need the following important theorem by Kantorovich and Rubinstein
(see e.g., Dudley (2002)), which states the dual formulation of transportation distance:

TranpP,Qq “ sup

"
ż

fdpP ´ Qq : f P 1-Lip
*

. (3)

The dual formulation (3) can be generalized to non-probability measures. For two signed mea-
sures P and Q defined over Rd with

ş

Pdx “
ş

Qdx “ 1, we still can use (3) to compute its
transportation distance.

We now introduce the equivalent primal formulation as follows: For some signed measure R,
we define measure R` as its positive components that R`pxq “ maxtRpxq, 0u. According to
the duality formulation (3), one can see TranpP,Qq “ TranppP ´ Qq`, pQ ´ P q`q where both
pP ´Qq` and pQ´P q` are non-negative. From the primal formulation of transportation distance,
we conclude another definition for generalized transportation distance:

TranpP,Qq “ inf

"
ż

}x ´ y}1dµpx, yq : µ P MppP ´ Qq`, pQ ´ P q`q

*

. (4)

We also need to define the transportation distance over complex measures. Denote BC “ tα P

C : |α| ď 1u. For some complex measure P that
ş

C dP pxq “ 1. We denote the real and imaginary
components of P as P r and P i respectively that P pxq “ P rpxq ` iP ipxq for P rpxq, P ipxq P R. We
generalize transportation distance to complex weights by

TranpP,Qq “ TranpP r, Qrq ` TranpP i, Qiq. (5)

We also have this transportation distance in a dual form:

TranpP,Qq “ sup

"
ż

f rdpP r ´ Qrq : f r P 1-Lip
*

` sup

"
ż

f idpP i ´ Qiq : f i P 1-Lip
*

“ sup

"

real
ˆ
ż

pf r ´ if iqdpP ´ Qq

˙

: f r, f i P 1-Lip
*

ď 2 sup

"
ż

fdpP ´ Qq : f P 1-LipC

*

where 1-LipC :“ tf : C Ñ C | |fpxq´fpyq| ď |x´y| for any x, y P Cu is the complex 1-Lipschitz
functions on C, and the last inequality holds since we can assign fpxq “ pf rpxq ´ if ipxqq{2.

Appendix B. Moment-Transportation Inequalities

Our analysis needs to bound the transportation distance by a function of moment distance. We first
present a moment-transportation inequality in one dimension (Lemma 8), and then generalize the
result to complex numbers and higher dimensions. The first such inequality in one dimension is
obtained in Rabani et al. (2014, (Lemma 5.4)) (with worse parameters). Lemma 8 is firstly proved
by Wu and Yang (2020) in the context of learning Gaussian mixtures. Here, we prove the theorem
in our notations for completeness, and later we extend the proof to complex domains in Section B.2.
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B.1. A One-Dimensional Moment-Transportation Inequality

We allow more general mixtures with spikes in r´1, 1s and negative weights. This slight general-
ization will be useful since some intermediate coordinates and weights may be negative. Recall that
Σk´1 “ tw “ pw1, ¨ ¨ ¨ , wkq P Rk |

řk
i“1wi “ 1u.

Lemma 8 (Wu and Yang (2020)) For any two mixtures with k components ϑ,ϑ1 P Spikepr´1, 1s,Σk´1q,
it holds that

Tranpϑ,ϑ1q ď OpkMomKpϑ,ϑ1q
1

2k´1 q.

We begin with some notations. Let Supp “ SupppϑqYSupppϑ1q and let n “ |Supp| (n ď 2k).
Arrange the points in Supp as α “ pα1, ¨ ¨ ¨ , αnq where α1 ă ¨ ¨ ¨ ă αn.

Definition 9 Let α “ pα1, ¨ ¨ ¨ , αnq such that ´1 ď α1 ă ¨ ¨ ¨ ă αn ď 1. Let Pα denote the set of
polynomials of degree at most n ´ 1 and 1-Lipschitz over the discrete points in α, i.e.,

Pα “ tf | deg f ď n ´ 1, fpα1q “ 0; |fpαiq ´ fpαjq| ď |αi ´ αj | @i, j P rns.u

Note that we do not require f to be 1-Lipschitz over the entire interval r´1, 1s. From the dual
formulation of transportation distance (see e.g., Dudley (2002)), we have the following proposition:

Proposition 10 Tranpϑ,ϑ1q “ sup
␣ş

fdpϑ ´ ϑ1q : f P 1-Lip
(

“ sup
␣ş

pdpϑ ´ ϑ1q : p P Pα

(

.

We can view Pα as a subset in the linear space of all polynomials of degree at most n ´ 1. In
fact, Pα is a convex polytope (a convex combination of two polynomials being 1-Lipschitz over
α is also a polynomial that is 1-Lipschitz over α). The height of a polynomial

ř

i cix
i is the

maximum absolute coefficient maxi |ci|. As we will see shortly, the height of a polynomial in Pα

is related to the required moment accuracy, and we need the height to be upper bounded by a value
independent of the minimum separation ζ. However, a polynomial in Pα may have a very large
height (depending on the inverse of the minimum separation 1{|αi`1 ´ αi|). This can be seen from
the Lagrangian interpolation formula: ppxq :“

řn
j“1 ppαjqℓjpxq where ℓj is the Lagrange basis

polynomial ℓjpxq :“
ś

1ďmďn,m‰jpx ´ αmq{pαj ´ αmq. To remedy this, one can show that for
any polynomial in Pα, there is an approximate polynomial with bounded height:

Lemma 11 For any polynomial ppxq P Pα and η ą 0, there is a polynomial pηpxq of degree at
most n ´ 1 such that the following properties hold:

1. |pηpαiq ´ ppαiq| ď 2η, for any i P rns.

2. The height of pη is at most n22n´2pnη qn´2.

Before proving Lemma 11, we show Lemma 8 can be easily derived from Proposition 10 and
Lemma 11.
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Proof [Proof of Lemma 8] Fix any constant η ą 0. Let ξ “ MomKpϑ,ϑ1q

Tranpϑ,ϑ1q “ sup
fP1-Lip

ż

fdpϑ ´ ϑ1q “ sup
pPPα

ż

pdpϑ ´ ϑ1q pProposition 10q

ď 4η ` sup
pPPα

ż

pηdpϑ ´ ϑ1q pLemma 11q

ď 4η ` sup
pPPα

n´1
ÿ

i“1

n22n´2

ˆ

n

η

˙n´2

MomKpϑ,ϑ1q pLemma 11q

ď 4η ` 24kp2kq2k
ξ

η2k´2
pn ď 2kq

By choosing η “ 16kξ
1

2k´1 , we conclude that Tranpϑ,ϑ1q ď Opkξ
1

2k´1 q.

Next, we prove Lemma 11. We introduce the following set Fα of special polynomials. They
are in fact the extreme points of the polytope Pα.

Definition 12 Let α “ pα1, ¨ ¨ ¨ , αnq such that ´1 ď α1 ă ¨ ¨ ¨ ă αn ď 1. Let

Fα “ tp | deg p ď n ´ 1, ppα1q “ 0; |ppαi`1q ´ ppαiq| “ |αi`1 ´ αi| @i P rn ´ 1su

It is easy to see that Fα Ă Pα and |Fα| “ 2n´1. Now, we modify each polynomial p P Fα

slightly, as follows. Consider the intervals rα1, α2s, ¨ ¨ ¨ , rαn´1, αns. If αi ´ αi´1 ď η{n, we say
the interval rαi´1, αis is a small interval. Otherwise, it is large. We first merge all consecutive
small intervals. For each resulting interval, we merge it with the large interval to its right. Note
that we never merge two large intervals together. Let S “ tαi1 “ α1, αi2 , ¨ ¨ ¨ , αim “ αnu Ď α
be the endpoints of the current intervals. It is easy to see the distance between any two points in
S is at least η{n (since the current interval contains exactly one original large interval). Define a
continuous piecewise linear function L : rα1, αns Ñ R as follows: (1) Lpα1q “ ppα1q “ 0. (2)
The breaking points are the points in S; (3) Each linear piece of L has slope either 1 or ´1; for two
consecutive breaking points αij , αij`1 P S, if ppαij q ą ppαij`1q, the slope of the corresponding
piece is ´1. Otherwise, it is 1.

Lemma 13 For any αi P α, |Lpαiq ´ ppαiq| ď 2η.

Proof We prove inductively that |Lpαiq´ppαiq| ď 2iη{n. The base case (i “ 1) is trivial. Suppose
the lemma holds true for all value at most i and now we show it holds for i`1. There are two cases.
If αi`1 ´ αi ď η{n, we have

|Lpαi`1q ´ ppαi`1q| ď |Lpαi`1q ´ Lpαiq| ` |Lpαiq ´ ppαiq| ` |ppαiq ´ ppαi`1q|

“ 2|αi`1 ´ αi| ` |Lpαiq ´ ppαiq| ď 2pi ` 1qη{n.

If αi`1 ´ αi ą η{n, we have αi`1 P S (by the merge procedure). Suppose αj (α ď i) is the point
in S right before αi`1. We can see that (by the definition of p):

|ppαjq ´ ppαi`1q| P |αi`1 ´ αi| ˘ |αi ´ αj | Ď |αi`1 ´ αi| ˘ pj ´ iqη{n.
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In addition, we have

|Lpαi`1q ´ ppαi`1q| ď |Lpαi`1q ´ Lpαjq ` ppαjq ´ ppαi`1q| ` |Lpαjq ´ ppαjq|

ď 2pi ` 1 ´ jqη{n ` 2jη{n ď 2pi ` 1qη{n,

where second inequality holds since Lpαi`1q ´ Lpαjq “ αi´1 ´ αj when ppαi`1q ą ppαjq and
Lpαi`1q ´ Lpαjq “ αj ´ αi`1 when ppαi`1q ď ppαjq.

Let Tηppq be the polynomial with degree ď n ´ 1 that interpolates Lpαiq, (i.e. Tηppqpαiq “

Lpαiq for all i P rns. ) Tηppq is unique by this definition and by Lemma 13, |Tηppqpαiq ´ ppαiq| ď

2i ¨
η
n ď 2η. Now, we show the height of Tηppq can be bounded, independent of the minimum

separation |αi`1 ´ αi|, due to its special structure.

Lemma 14 For any polynomial ppxq P Fα, define polynomial Tηppq as the above. Suppose
Tηppq “

řn´1
i“0 cix

i. We have |ct| ď n22n´2pnη qn´2 for t P rn ´ 1s.

Proof The key to the proof is Newton’s interpolation formula, which we briefly review here (see
e.g., Hamming (2012)). Let F rα1, ¨ ¨ ¨ , αis be the ith order difference of Tηppq, which can be
defined recursively:

F rαt, αt`1s “
Tηppqpαt`1q ´ Tηppqpαtq

αt`1 ´ αt
, ¨ ¨ ¨ ,

F rαt, ¨ ¨ ¨ , αt`is “
F rαt`1, ¨ ¨ ¨ , αt`is ´ F rαt, ¨ ¨ ¨ , αt`i´1s

αt`i ´ αi
.

Then, by Newton’s interpolation formula, we can write that

Tηppqpxq “ F rα1, α2spx´α1q`F rα1, α2, α3spx´α1qpx´α2q`¨ ¨ ¨`F rα1, ¨ ¨ ¨ , αns

n´1
ź

i“1

px´αiq.

By the definition of Tηppq, we know that every 2nd order difference of Tηppq is either 1 or ´1.
Now, we show inductively that the absolute value of the ith order difference absolute value is at
most 2i´2pnη qi´2 for any i “ 3, ¨ ¨ ¨ , n. The base case is simple: F rα, αt`1s “ ˘1. Now, we prove
it for i ě 3. We distinguish two cases.

1. If αt`i´1 ´ αt ď η{n, all αt, αt`1, ¨ ¨ ¨ , αt`i´1 must belong to the same segment of L
(since all intervals in this range are small, thus merge together). Therefore, we can see that
F rαt, αt`1s “ F rαt`1, αt`2s “ ¨ ¨ ¨ “ F rαt`1, αt`i´1s, from which we can see any 3rd
order difference (hence the 4th, 5th, up to the ith) in this interval is zero.

2. Suppose αt`i´1 ´ αt ą η{n. By the induction hypothesis, we have that

|F rαt, ¨ ¨ ¨ , αt`i´1s| “

ˇ

ˇ

ˇ

ˇ

F rαt, ¨ ¨ ¨ , αt`i´2s ´ F rαt`1, ¨ ¨ ¨ , αt`i´1s

αt`i´1 ´ αt

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ 2i´3

ˆ

n

η

˙i´3

¨
n

η
ď 2i´2

ˆ

n

η

˙i´2

.
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Also since αj P r´1, 1s, the absolute value of the coefficient of xt in
śi

j“1px´αjq is less than 2n.
So, finally we have ci ď n22n´2p

η
nqn´2.

Proof [Proof of Lemma 11] For every polynomial ppxq P Pα. Let gi “ pppαi`1q ´ppαiqq{pαi`1 ´

αiq for i “ rn ´ 1s. So ´1 ď gi ď 1, implying that the point g “ pg1, ¨ ¨ ¨ , gn´1q is in the
n ´ 1 dimensional hypercube. Hence, by Carathedory theorem, there are λ1, ¨ ¨ ¨ , λn ě 0, λ1 `

¨ ¨ ¨ ` λn “ 1, such that g “
řn

i“1 λiqi where q1, ¨ ¨ ¨ , qn are n vertices of the hypercube, i.e.,
qi P t´1,`1un´1. For each qi, we define pipxq be the polynomial with degree at most n ´ 1 and

pipα1q “ 0, pipαmq “

m´1
ÿ

j“1

qi,jpαj`1 ´ αjq.

where qi,j is the jth coordinate of qi. We can see pi P Fα. It is easy to verify that ppxq “
řn

i“1 λipipxq, since both the LHS and RHS take the same values at tα1, ¨ ¨ ¨ , αnu. For η ą 0, we
define pηpxq as pη “

řn
i“1 λiTηppiq. We know |Tηppiqpαjq ´ pipαjq| ď 2η for all i P rns and

j P rns and the height of each Tηppiq is at most n22n´2pnη qn´2. So, pηpxq satisfies the properties of
the lemma.

B.2. Moment-Transportation Inequality over Complex Numbers

In this subsection, we extend Lemma 8 to complex numbers. We allow the mixture components
to be complex numbers, and the mixture weight wi can also be complex numbers. Recall in the
complex domain, the definition of transportation distance is extended according to (5).

We first see that n complex numbers in C can be clustered with the following guarantee.

Proposition 15 For α1, α2, ¨ ¨ ¨ , αn where αi P C and any constant η ą 0, we can partition these
n points into clusters such that:

1. |αi ´ αj | ă η if αi and αj are in the same cluster.

2. |αi ´ αj | ą η{n if αi and αj are in different clusters.

Let Supp “ Supppϑq Y Supppϑ1q and let n “ |Supp| pn ď 2kq. Arrange the points in Supp
as α “ pα1, ¨ ¨ ¨ , αnq such that each cluster lies in a continuous segment. In other words, if αi and
αj lie in the same cluster for indexes i ă j, then αi1 and αj1 also lie in the same cluster for all
i ď i1 ă j1 ď j; if αi and αj lie in the different cluster for indexes i ă j, then αi1 and αj1 also lie
in the different cluster for all i1 ď i ă j ď j1.

Definition 16 Suppose α “ pα1, α2, ¨ ¨ ¨ , αnq P Bn
C. Let Pα be the set of polynomials of degree at

most n ´ 1 and Lipschitz over α, i.e.,

Pα “ tP | degP ď n ´ 1, P pα1q “ 0; |P pαiq ´ P pαjq| ď |αi ´ αj | @i, j P rnsu.

From the discussion in Appendix A, we have the following proposition on the generalized trans-
portation distance.

Proposition 17 Tranpϑ,ϑ1q ď 2 sup
␣ş

fdpϑ ´ ϑ1q : f P 1-LipC
(

“ 2 sup
␣ş

pdpϑ ´ ϑ1q : p P Pα

(

.
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Similar to the real case, we only need to focus on the extreme points of Pα.

Definition 18 Let α “ pα1, α2, ¨ ¨ ¨ , αnq P Bn
C. Let

Fα “

"

p | deg p ď n ´ 1, ppα1q “ 0;
ppαi`1q ´ ppαiq

αi`1 ´ αi
P t˘1,˘iu @i P rn ´ 1s

*

.

It is easy to see that |Fα| “ 4n´1.

Again, we modify each polynomial p P Fα slightly. We define a degree-pn ´ 1q polynomial
Tηppq : C Ñ C by assigning values to all αi for i P rns as follows:

1. If αi is one of the first two points in the cluster corresponding to αi, assign Tηppqpαiq “ ppαiq.

2. Otherwise, denote αj , αj`1 as the first two points of the cluster, we would assign Tηppqpαiq

to be the linear interpolation of Tηppqpαjq and Tηppqpαj ` 1q. In concrete,

Tηppqpαiq “
ppαj`1q ´ ppαjq

αj`1 ´ αj
pαi ´ αjq ` ppαjq.

Since we have fixed n points in n´1-degree polynomial Tηppq, we can see that Tηppq is uniquely
determined. The following lemma shows Tηppq is close to p over the points in α.

Lemma 19 |Tηppqpαiq ´ ppαiq| ď 2η for each αi P α.

Proof We only need to prove the case that αi is not the first two points in the cluster.

|Tηppqpαiq ´ ppαiq| ď

ˇ

ˇ

ˇ

ˇ

ppαj`1q ´ ppαjq

αj`1 ´ αj
pαi ´ αjq ` ppαjq ´ ppαiq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ppαj`1q ´ ppαjq

αj`1 ´ αj
pαi ´ αjq

ˇ

ˇ

ˇ

ˇ

` |ppαjq ´ ppαiq|

ď 2|αi ´ αj | ď 2η,

where the third inequality holds since |ppαj`1q´ppαjq| “ |αj`1 ´αj | and the last inequality holds
because αi and αj are in the same cluster.

Lemma 20 Let α “ pα1, α2, ¨ ¨ ¨ , αnq P BC. Suppose Tηppq “
řn´1

i“0 cix
i. We have |ct| ď

n22n´2pnη qn´2.

Proof Again, we would use Newton’s interpolation polynomials. Let F rx1, ¨ ¨ ¨ , xis be the ith order
difference of Tηppq. By definition of Tηppq, we know that every 2nd order difference of Tηppq is in
t˘1,˘iu. Now, we show inductively that the absolute value of ith order difference absolute value
is at most p2n{ηqi´2 for any i “ 3, ¨ ¨ ¨ , n. We distinguish two cases:

1. If |αt`i ´ αt| ă η{n, then all αt, αt`1, ¨ ¨ ¨ , αt`i lie in the same cluster (according to
the assigned order). Therefore, we can see that F rαt, αt`1s “ F rαt`1, αt`2s “ ¨ ¨ ¨ “

F rαt`i´1, αt`is, from which any 3rd order difference (hence the 4th, 5th, up to the ith) in
this interval is zero.
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2. Otherwise, |αt`i ´ αt| ą η{n. By the induction hypothesis, we have that

|F rαt, ¨ ¨ ¨ , αt`is| “

ˇ

ˇ

ˇ

ˇ

F rαt`1, ¨ ¨ ¨ , αt`is ´ F rαt, ¨ ¨ ¨ , αt`i´1s

αt`i ´ αt

ˇ

ˇ

ˇ

ˇ

ď 2¨p2n{ηqi´3¨pn{ηq ď p2n{ηqi´2.

Also since |αj | ď 1, the absolute value of the coefficient of xt in
śi

j“1px´αjq is less than 2n. So,
finally we have ct ď n22n´2pnη qn´2.

Lemma 21 For any polynomial p P Pα, there is a polynomial pηpxq such that the following
properties hold:

1. |pηpαiq ´ ppαiq| ď 2η, for any i P rns.

2. The height of gη is at most n22n´2pnη qn´2.

Proof For every polynomial ppxq P Pα, let g “
ppαi`1q´ppαiq

αi`1´αi
for i “ rn ´ 1s. So |gi| ď 1, that

means the point p “ pg1, ¨ ¨ ¨ , gn´1q is in the n ´ 1 dimensional complex hypercube (which has
4n´1 vertices). Then, we apply exactly the same argument as in the proof of Lemma 11.

Theorem 22 For any two mixtures with k components ϑ,ϑ1 P SpikepBC,Σ
C
k´1q, it holds that

Tranpϑ,ϑ1q ď OpkMomKpϑ,ϑ1q
1

2k´1 q.

Proof Fix any constant η ą 0. Let ξ “ MomKpϑ,ϑ1q

Tranpϑ,ϑ1q ď 2 sup
fP1-LipC

ż

fdpϑ ´ ϑ1q “ 2 sup
pPPα

ż

pdpϑ ´ ϑ1q

ď 2

˜

4η ` sup
pPPα

ż

pηdpϑ ´ ϑ1q

¸

pLemma 21q

ď 2

˜

4η ` sup
pPPα

2k´1
ÿ

p“0

n22n´2

ˆ

n

η

˙n´2

MomKpϑ,ϑ1q

¸

pLemma 21q

ď 2

ˆ

4η ` 24kp2kq2k
ξ

η2k´2

˙

. pn ď 2kq

By choosing η “ 16kξ
1

2k´1 , we conclude that Tranpϑ,ϑ1q ď Opkξ
1

2k´1 q.
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B.3. Moment-Transportation Inequality in Higher Dimensions

We generalize our proof for one dimension to higher dimensions. Lemma 45 shows there exists a
vector r such that the distance between spikes are still lower bounded (up to factors depending on
k and d) after projection. This enables us to extend Lemma 8 to high dimension.

Theorem 23 Let ϑ,ϑ1 be two k-spike mixtures in Spikep∆d´1,∆k´1q, and K “ 2k´ 1. Then, the
following inequality holds

Tranpϑ,ϑ1q ď Opk3dMomKpϑ,ϑ1q
1

2k´1 q.

Proof Apply the argument in Lemma 45 to Supp “ Supppϑq Y Supppϑ1q. There always exists
vector r P Sd´1 and constant c such that |rJpαi ´ αjq| ě c

k2d
}αi ´ αj}1 for all αi,αj P Supp.

Note that |rJαi| ď }r}8}αi}1 ď 1, both Πrpϑq and Πrpϑ1q are in Spikep∆1,∆k´1q. In this case,

Tranpϑ,ϑ1q “ inf

"
ż

}x ´ y}1dµpx,yq : µ P Mpϑ,ϑ1q

*

pDefinitionq

ď inf

"
ż

k2d

c
|rJpx ´ yq|dµpx,yq : µ P Mpϑ,ϑ1q

*

pLemma 45q

“
k2d

c
TranpΠrpϑq,Πrpϑ1qq

ď Opk3dMomKpϑ,ϑ1q
1

2k´1 q. pLemma 8q

Appendix C. Missing Details from Section 4

C.1. Implementation Details of Algorithm 1

In this subsection, we show how to implement Algorithm 1 in Opk2q time. We first perform a ridge
regression to obtain pc in Line 1. The explicit solution of this ridge regression is pc “ pAJ

M 1AM 1 `

ξ2Iq´1AJ
M 1bM 1 . Since AM 1 is a Hankel matrix, pc “ pAM 1 ´ iξIq´1pAM 1 ` iξIq´1AM 1bM 1 holds.

Note that x “ pA`λIq´1b is a single step of the inverse power method, which can be computed in
Opk2q time when A is a Hankel matrix(see Xu and Qiao (2008)). Hence, Line 1 can be implemented
in Opk2q arithmetic operations.

In Line 2, we solve the roots of polynomial
řk´1

i“0 pcix
i ` xk. We can use the algorithm in Neff

and Reif (1996) to find the solution with ξ-additive noise in Opk1`op1q ¨ log logp1{ξqq arithmetic
operations.

Line 5 is a linear regression defined by Vandemonde matrix Vα. We can use the recent algo-
rithm developed in Meyer et al. (2022) to find a constant factor multiplicative approximation, which
uses Opk1`op1qq arithmetic operations. Note that a constant factor approximation suffices for our
purpose.

In Line 8, we find the k-spike distribution in Spikep∆1,∆k´1q closest to ϑ̃. To achieve Opk2q

running time, we limit the spike distribution to have support rα. In this case, the optimization
problem is equivalent to finding a transportation plan from prα, rw´

q to prα, rw`
q where rw´ and

rw` are the negative components and positive components of rw respectively. In concrete, rw´
i “
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maxt0,´ rwiu and rw`
i “ maxt0, rwiu. Note that the points are in one dimension. Using the clas-

sical algorithm in Aggarwal et al. (1992), we can solve this transportation problem in Opk1`op1qq

arithmetic operations.

C.2. Proof of Theorem 3

Now, we start to bound the reconstruction error of the algorithm. The following lemma is well
known (see e.g., Chihara (2011); Gordon et al. (2020)). We provide a proof for completeness.

Lemma 24 Let ϑ “ pα,wq P Spikep∆1,∆k´1q where α “ rα1, ¨ ¨ ¨ , αksJ and w “ rw1, ¨ ¨ ¨ , wksJ.
Let c “ rc0, ¨ ¨ ¨ , ck´1sJ P Rk such that

śk
i“1px´αiq “

řk´1
i“0 cix

i`xk. Then,
řk´1

j“0 Mi`jpϑqcj`

Mi`kpϑq “ 0 for any i ě 0. The equation can also be written as AMpϑqc ` bMpϑq “ 0 in the
matrix form.

Proof By direct calculation,

k´1
ÿ

j“0

Mi`jpϑqcj ` Mi`kpϑq “

k´1
ÿ

j“0

k
ÿ

t“1

wtα
i`j
t cj `

k
ÿ

t“1

wtα
i`k
t “

k
ÿ

t“1

wtα
i
t

˜

k´1
ÿ

j“0

cjα
j
t ` αk

t

¸

“

k
ÿ

t“1

wtα
i
t

k
ź

j“1

pαt ´ αjq “ 0.

The ith row of AMpϑqc ` bMpϑq is
řk´1

j“0 Mi`jpϑqcj ` Mi`kpϑq, hence the matrix form.

Next, the following lemma shows that the intermediate result pc a good estimation for the solution
of AMpϑqx ` bMpϑq “ 0 with a small norm:

Lemma 25 Let c “ rc0, ¨ ¨ ¨ , ck´1sJ P Rk be the sequence of number in which
śk

i“1px ´ αiq “
řk´1

i“0 cix
i ` xk. Suppose }M 1 ´ Mpϑq}8 ď ξ. Let pc “ rpc0, ¨ ¨ ¨ ,pck´1sJ P Rk be the intermediate

result (Line 1) in Algorithm 1. Then, }c}1 ď 2k, }pc}1 ď 2Opkq and }AMpϑqpc` bMpϑq}8 ď 2Opkq ¨ ξ.

Proof From Vieta’s formulas (see e.g., Barbeau (2003)), we have ci “
ř

SPp rks

k´iq

ś

jPSp´αjq.

Thus,

}c}1 “

k´1
ÿ

i“0

|ci| ď
ÿ

SP2rks

ź

jPS

|αj | “

k
ź

i“1

p1 ` |αi|q ď 2k.

where the last inequality holds since |αi| ď 1 for all i according to the definition of ϑ.
From Lemma 24, we can see that }AMpϑqc ` bMpϑq}8 “ 0. Therefore, we can further get

}AM 1c ` bM 1}8 ď }AMpϑqc ` bMpϑq}8 ` }AM 1c ´ AMpϑqc}8 ` }bM 1 ´ bMpϑq}8

ď }AMpϑqc ` bMpϑq}8 ` }pAM 1 ´ AMpϑqqc}8 ` }bM 1 ´ bMpϑq}8

ď }AMpϑqc ` bMpϑq}8 ` }AM 1 ´ AMpϑq}8}c}1 ` }bM 1 ´ bMpϑq}8

ď }AMpϑqc ` bMpϑq}8 ` }M 1 ´ Mpϑq}8p}c}1 ` 1q

ď 2Opkq ¨ ξ,
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where the fourth inequality holds since pAM 1 ´AMpϑqqi,j “ pM 1´Mpϑqqi`j and pbM 1 ´bMpϑqqi “

pM 1 ´ Mpϑqqi`k. From the definition of pc, we can see that

}AM 1pc ` bM 1}22 ` ξ2}pc}22 ď }AM 1c ` bM 1}22 ` ξ2}c}22

ď k}AM 1c ` bM 1}28 ` ξ2}c}21

ď 2Opkq ¨ ξ2.

The second inequality holds since }x}2 ď }x}1 and }x}2 ď
?
k}x}8 holds for any vector x P Rk.

Now, we can directly see that

}AM 1pc ` bM 1}8 ď }AM 1pc ` bM 1}2 ď 2Opkq ¨ ξ,

}pc}1 ď
?
k}pc}2 ď 2Opkq.

Finally, we can bound }AMpϑqpc ` bMpϑq}8 as follows:

}AMpϑqpc ` bMpϑq}8 ď }AM 1pc ` bM 1}8 ` }AM 1pc ´ AMpϑqpc}8 ` }bM 1 ´ bMpϑq}8

ď }AM 1pc ` bM 1}8 ` }AM 1 ´ AMpϑq}8}pc}1 ` }bM 1 ´ bMpϑq}8

ď }AM 1pc ` bM 1}8 ` }M 1 ´ Mpϑq}8p}pc}1 ` 1q

ď 2Opkq ¨ ξ.

Using this result, we are able to show that rα in Line 4 is a good estimation for the ground truth
spikes, α. In particular, the following lemma shows that every ground truth spike ai P α has a
close spike rαj P rα where the closeness depends on the weight of the spike wi. We note that this
property tolerates permutation and small spikes weights, enabling us to analyze mixtures without
separations.

Lemma 26 Let pα “ rpα1, ¨ ¨ ¨ , pαksJ P Ck be the intermediate result (Line 2) in Algorithm 1. Then,
the following inequality holds:

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ pαj |
2 ď 2Opkq ¨ ξ.

Proof Since pc and α are real, from the definition of pc,

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ pαj |
2 “

k
ÿ

i“1

wi

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

j“1

pαi ´ pαjq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

k
ÿ

i“1

wi

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

j“0

pcjα
j
i ` αk

i

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

k
ÿ

i“1

wi

˜

k´1
ÿ

j“0

pcjα
j
i ` αk

i

¸2

.
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By expanding the RHS, we can reach that

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ pαj |
2 “

k
ÿ

i“1

wi

˜

k´1
ÿ

p“0

k´1
ÿ

q“0

pcppcqα
p`q
i ` 2

k´1
ÿ

p“0

pcpα
p`k
i ` α2k

i

¸

“

k´1
ÿ

p“0

k´1
ÿ

q“0

pcppcq

k
ÿ

i“1

wiα
p`q
i ` 2

k´1
ÿ

p“0

pcp

k
ÿ

i“1

wiα
p`k
i `

k
ÿ

i“1

wiα
2k
i

“

k´1
ÿ

p“0

pcp

˜

k´1
ÿ

q“0

Mp`qpϑqpcq ` Mp`kpϑq

¸

`

k´1
ÿ

p“0

pcpMp`kpϑq ` M2kpϑq

“

k´1
ÿ

p“0

pcp

´

AMpϑqpc ` bMpϑq

¯

p
`

k´1
ÿ

p“0

pcpMp`kpϑq ` M2kpϑq,

where the last equality holds from the definition of matrix AMpϑq and vector bMpϑq. Moreover,

k´1
ÿ

p“0

pcpMp`kpϑq ` M2kpϑq “

k´1
ÿ

p“0

pcp

˜

´

k´1
ÿ

q“0

Mp`qpϑqcq

¸

`

˜

´

k´1
ÿ

q“0

Mk`qpϑqcq

¸

“ ´

k´1
ÿ

q“0

cq

˜

k´1
ÿ

p“0

Mp`qpϑqpcp ` Mk`qpϑq

¸

“ ´

k´1
ÿ

q“0

cq

´

AMpϑqpc ` bMpϑq

¯

q
,

where the first equality dues to Lemma 24 in which Mp`kpϑq “ ´
řk´1

q“0 Mp`qpϑqcq. Combining
the above results, we finally get

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ pαj |
2 “

k´1
ÿ

i“0

ppci ´ ciq
´

AMpϑqpc ` bMpϑq

¯

i

ď p}pc}1 ` }c}1q}AMpϑqpc ` bMpϑq}8

ď p2k ` 2Opkqq ¨ 2Opkq ¨ ξ pLemma 25q

ď 2Opkq ¨ ξ.

We provide the following simple inequality that allows us to upper bound the impact of the
injected noise.

Lemma 27 Let b ą 0 be some constant. For a1, ¨ ¨ ¨ , ak P R and a1
1, ¨ ¨ ¨ , a1

k P R such that
ai P r0, bs and |a1

i ´ ai| ď ξ holds for all i. In case that ξ ď n´1, then,

k
ź

i“1

a1
i ď

k
ź

i“1

ai ` Opbk ¨ kξq.
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Proof The proof is similar to the proof of Lemma 1 in (Li and Deshpande, 2010).

k
ź

i“1

a1
i ´

k
ź

i“1

ai “
ÿ

SĎrks,S‰H

ź

iPS

ai
ź

iRS

pa1
i ´ aiq

ď

k
ÿ

t“1

ÿ

|S|“t

ź

iPS

ai
ź

iRS

pa1
i ´ aiq

ď bk
k
ÿ

t“1

ˆ

k

t

˙

ξk ď bk
k
ÿ

t“1

pkξqk

t!

ď bkpekξ ´ 1q “ Opbk ¨ kξq.

The third inequality holds because
`

k
t

˘

ď kt

t! . The last inequality holds since ex “
ř

ią0
xi

i! and the
fact that efpxq “ 1 ` Opfpxqq if fpxq “ Op1q.

With this lemma, we are able to show that the projection (Line 3) and the injected noise (Line 4)
do not introduce much extra error for our estimation of the positions of ground truth spikes.

Lemma 28 Let rα “ rrα1, ¨ ¨ ¨ , rαksJ P Rk be the intermediate result (Line 4) in Algorithm 1. Then,

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ rαj |
2 ď 2Opkq ¨ ξ.

Proof Let α “ rα1, ¨ ¨ ¨ , αksJ P Rk be the set of projections (Line 3). Since the projected domain
∆1 is convex, |αi ´ αj | ď |αi ´ pαj | always holds. This gives

k
ź

j“1

|αi ´ αj |
2 ď

k
ź

j“1

|αi ´ pαj |
2.

Since rαj is noisy αj with additive noise of size less than ξ, we have |αi ´ rαj | ď |αi ´ αj | ` ξ.
Applying Lemma 27 by regarding |αi ´ rαj | as aj and |αi ´ pαj | as a1

j , with the constrain guaranteed
according to |αi ´ rαj | ď |αi| ` |rαj | ď 2, we can conclude that

k
ź

j“1

|αi ´ rαj |
2 ď

k
ź

j“1

|αi ´ αj |
2 ` Op2k ¨ kξq.

Combining two inequalities, we get the desired inequality:

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ rαj |
2 ď

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ pαj | ` Op2k ¨ kξq ď 2Opkq ¨ ξ,

where the last inequality is given by Lemma 26.

We now start to bound the error in Line 5 which is a linear regression defined by the Van-
dermonde matrix. We first introduce the Schur polynomial which has a strong connection to the
Vandermonde matrix.
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Definition 29 (Schur polynomial) Given a partition λ “ pλ1, ¨ ¨ ¨ , λkq where λ1 ě ¨ ¨ ¨ ě λk ě 0,
the Schur polynomial sλpx1, x2, ¨ ¨ ¨ , xkq is defined by the ratio

sλpx1, x2, ¨ ¨ ¨ , xkq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xλ1`k´1
1 xλ1`k´1

2 ¨ ¨ ¨ xλ1`k´1
k

xλ2`k´2
1 xλ2`k´2

2 ¨ ¨ ¨ xλ2`k´2
k

...
...

. . .
...

xλk
1 xλk

2 ¨ ¨ ¨ xλk
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 ¨ ¨ ¨ 1
x11 x12 ¨ ¨ ¨ x1k
...

...
. . .

...
xk´1
1 xk´1

2 ¨ ¨ ¨ xk´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´1

.

A Schur polynomial is a symmetric function because the numerator and denominator are both
alternating (i.e., it changes sign if we swap two variables), and a polynomial since all alternating
polynomials are divisible by the Vandermonde determinant

ś

iăjpxi ´ xjq. 4 The following clas-
sical result (see, e.g., Stanley (2011)) shows an alternative way to calculate Schur polynomial. It
plays a crucial role in bounding the error of a linear system defined by the Vandermonde matrix
(Lemma 32).

Theorem 30 (e.g. Stanley (2011)) Let SSYTpλq be the set consists all semistandard Young tableau
of shape λ “ pλ1, ¨ ¨ ¨ , λkq. Then, Schur polynomial sλpx1, x2, ¨ ¨ ¨ , xkq can also be computed as
follows:

sλpx1, x2, ¨ ¨ ¨ , xkq “
ÿ

TPSSYTpλq

k
ź

i“1

xTi
i .

where Ti counts the occurrences of the number i in T .

In a semistandard Young tableau, we allow the same number to appear more than once (or not
at all), and we require the entries weakly increase along each row and strictly increase down each
column As an example, for λ “ p2, 1, 0q, the list of semistandard Young tableau are:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

The corresponding Schur polynomial is

sp2,1,0qpx1, x2, x3q “ x21x2 ` x21x3 ` x1x
2
2 ` x1x2x3 ` x1x3x2 ` x1x

2
3 ` x22x3 ` x2x

2
3.

Considering the special case where λ “ pj ´ k ` 1, 1, 1, ¨ ¨ ¨ , 1q, this theorem implies the
following result. We also present a self-contained proof of the lemma for completeness.

Lemma 31 For all j ě k and distinct numbers a1, ¨ ¨ ¨ , ak P R (or a1, ¨ ¨ ¨ , ak P C),
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

aj1 aj2 ¨ ¨ ¨ ajk
a11 a12 ¨ ¨ ¨ a1k
...

...
. . .

...
ak´1
1 ak´1

2 ¨ ¨ ¨ ak´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 ¨ ¨ ¨ 1
a11 a12 ¨ ¨ ¨ a1k
...

...
. . .

...
ak´1
1 ak´1

2 ¨ ¨ ¨ ak´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´1

“

k
ź

i“1

ai ¨
ÿ

sPpkqj´k

k
ź

i“1

asii

where paqb Ă t0, ¨ ¨ ¨ , bua denotes the set that contains all vector s in which
řa

i“1 si “ b.

4. It is easy to see that if a polynomial ppx1, . . . , xnq is alternating, it must contain pxi ´ xjq as a factor .
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Proof We provide a self-contained proof here for completeness. According to the property of
Vandermonde determinant, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 ¨ ¨ ¨ 1
a11 a12 ¨ ¨ ¨ a1k
...

...
. . .

...
ak´1
1 ak´1

2 ¨ ¨ ¨ ak´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p´1qkpk´1q{2
ź

păq

pap ´ aqq.

By expansion along first row, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

aj1 aj2 ¨ ¨ ¨ ajk
a11 a12 ¨ ¨ ¨ a1k
...

...
. . .

...
ak´1
1 ak´1

2 ¨ ¨ ¨ ak´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

k
ÿ

i“1

p´1qi`1aji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 ¨ ¨ ¨ a1i´1 a1i`1 ¨ ¨ ¨ a1k
...

. . .
...

...
. . .

...
ak´1
1 ¨ ¨ ¨ ak´1

i´1 ak´1
i`1 ¨ ¨ ¨ ak´1

k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

k
ÿ

i“1

p´1qi`1aji p´1qpk´1qpk´2q{2
ź

t‰i

at
ź

păq,p‰i,q‰i

pap ´ aqq

“ p´1qkpk´1q{2 ¨ p´1qk`1
k
ÿ

i“1

aji p´1qi`1
ź

t‰i

at
ź

păq,p‰i,q‰i

pap ´ aqq

Thus,

LHSpjq “

k
ÿ

i“1

aji ¨
ź

t‰i

at
ai ´ at

Let Lpzq “
ř

jěk LHSpjqzj and Rpzq “
ř

jěk RHSpjqzj be the generating functions of LHS and
RHS corresponding to j respectively. Then,

Lpzq “

k
ÿ

i“1

¨

˝

ÿ

jěk

ajiz
j

˛

‚

ź

t‰i

at
at ´ ai

“ zk
k
ÿ

i“1

aki
1 ´ aiz

ź

t‰i

at
ai ´ at

Rpzq “

k
ź

i“1

˜

ÿ

jě1

ajiz
j

¸

“ zk
k
ź

t“1

at
1 ´ atz

Consider the quotient between two functions,

Lpzq

Rpzq
“

k
ÿ

i“1

ak´1
i

ź

t‰i

1 ´ atz

ai ´ at
.

For z “ a´1
p where p P r1, ks, the product in each additive term with i ‰ p equals 0. As a result,

we can see that

Lpa´1
p q

Rpa´1
p q

“ ak´1
p

ź

t‰p

1 ´ ata
´1
p

ai ´ at
“ 1.
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Since Lpzq{Rpzq is polynomial of z of degree k ´ 1, from the uniqueness of polynomial, we have

Lpzq

Rpzq
“ 1 ñ LHS “ RHS

which directly proves the statement.

Using this result, we can show the reconstructed moment vector V
rα pw is close to the ground

truth Mpϑq. The next lemma shows the discrete mixture with support rα can well approximate a
single spike distribution at α in terms of the moments if any of the spikes in rα is close to α.

Lemma 32 Let Mpαq be the vector rα0, α1, ¨ ¨ ¨ , α2k´1sJ. Suppose F is either tR or Cu. For
α P F with |α| ď 1 and rα “ rrα1, ¨ ¨ ¨ , rαksJ P F k with all rαs distinct and }rα}8 ď 1. We have,

min
xPFk

}V
rαx ´ Mpαq}2 ď 2Opkq

k
ź

j“1

|α ´ rαj |.

Proof Let ∆rαj “ rαj ´ α and let x˚ “ rx˚
1 , ¨ ¨ ¨ , x˚

ksJ be the solution to linear equation

»

—

—

—

–

1 1 ¨ ¨ ¨ 1
∆rα1

1 ∆rα1
2 ¨ ¨ ¨ ∆rα1

k
...

...
. . .

...
∆rαk´1

1 ∆rαk´1
2 ¨ ¨ ¨ ∆rαk´1

k

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x˚
1

x˚
2
...
x˚
k

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl

.

Denote pV
rαx

˚ ´Mpαqqj as the jth element of vector V
rαx

˚ ´Mpαq. We will show that |pV
rαx

˚ ´

Mpαqqj | ď 2k ¨ 22j
śk

t“1 |∆rαt| for any integer j ě 0.It is clear that we have
řk

t“1 x
˚
t∆rαj

t “ 0 for
any 1 ď j ă k according to the construction of x˚. For larger j, we can expand the element by

pV
rαx

˚ ´ Mpαqqj “

k
ÿ

t“1

x˚
t rα

j
t ´ αj “

k
ÿ

t“1

x˚
t

j
ÿ

p“0

ˆ

j

p

˙

∆rαp
tα

j´p ´ αj

“

j
ÿ

p“1

ˆ

j

p

˙

αj´p
k
ÿ

t“1

x˚
t∆rαp

t .

where the second equality follows from the definition of ∆rαj . So it is sufficient to bound
řk

t“1 x
˚
t∆rαj

t

for any j ě k. We have that

k
ÿ

t“1

x˚
t∆rαj

t “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆rαj
1 ∆rαj

2 ¨ ¨ ¨ ∆rαj
k

∆rα1
1 ∆rα1

2 ¨ ¨ ¨ ∆rα1
k

...
...

. . .
...

∆rαk´1
1 ∆rαk´1

2 ¨ ¨ ¨ ∆rαk´1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 ¨ ¨ ¨ 1
∆rα1

1 ∆rα1
2 ¨ ¨ ¨ ∆rα1

k
...

...
. . .

...
∆rαk´1

1 ∆rαk´1
2 ¨ ¨ ¨ ∆rαk´1

k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´1

“

k
ź

t“1

∆rαt ¨
ÿ

sĎpkqj´k

k
ź

t“1

∆rαst
t ,
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where the first equality dues to the relation between inverse matrix and adjoint matrix, and the other
equation holds from Lemma 31. Since |∆rαt| ď |α| ` |rαt| ď 2, pkqj´k has exactly

`

j
k

˘

terms, we
can bound the summation by

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

t“1

x˚
t∆rαj

t

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2k ¨ 2j´k
k
ź

t“1

|∆rαt|.

Plugging in this result, we can reach that

|pV
rαx

˚ ´ Mpαqqj | “

ˇ

ˇ

ˇ

ˇ

ˇ

j
ÿ

p“1

ˆ

j

p

˙

αj´p
k
ÿ

t“1

x˚
t∆rαp

t

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j
ÿ

p“k

ˆ

j

p

˙

¨ 2k ¨ 2p´k
k
ź

t“1

|∆rαt|

ď 2k ¨ 22j
k
ź

t“1

|∆rαt|.

As a result, we conclude that

min
xPFk

}V
rαx ´ Mpαq}2 ď }V

rαx
˚ ´ Mpαq}2 ď

g

f

f

e

2k´1
ÿ

j“k

˜

2k ¨ 22j
k
ź

t“1

|∆rαt|

¸2

ď 2Opkq

k
ź

j“1

|α ´ rαj |.

Lemma 28 shows that every discrete distribution in ground truth ϑ has a close spike in recovered
positions rα and thus can be well approximated according to the above lemma. Therefore, the
mixture of the discrete distributions can also be well approximated with support rα. As the following
lemma shows, solving linear regression in Line 5 finds a weight vector rw in which the corresponding
moment vector V

rα pw is close to the ground truth Mpϑq.

Lemma 33 Let pw “ r pw1, ¨ ¨ ¨ , pwksJ P Rk be the intermediate result (Line 5) in Algorithm 1. Then,

}V
rα pw ´ Mpϑq}8 ď 2Opkq ¨ ξ

1
2 .

Proof Firstly, we have

}V
rα pw ´ Mpϑq}2 ď }V

rα pw ´ M 1}2 ` }Mpϑq ´ M 1}2

ď Op1q ¨ min
xPRk

}V
rαx ´ M 1}2 ` }Mpϑq ´ M 1}2

ď Op1q ¨ min
xPRk

}V
rαx ´ Mpϑq}2 ` Op1q ¨ }Mpϑq ´ M 1}2

where the first and third inequalities hold due to triangle inequality, and the second inequality holds
since }V

rα pw ´ M 1}22 ď Op1q ¨ minxPRk }V
rαx ´ M 1}22 (we only find an Op1q-approximation in this

step).
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For the first term, we can see that

min
xPRk

}V
rαx ´ Mpϑq}2 “ min

x1,¨¨¨ ,xkPRk

›

›

›

›

›

k
ÿ

i“1

wiV
rαxi ´

k
ÿ

i“1

wiMpαiq

›

›

›

›

›

2

ď

k
ÿ

i“1

wi min
xPRk

}V
rαx ´ Mpαiq}2

ď 2Opkq

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ rαj | pLemma 32q

ď 2Opkq

g

f

f

e

k
ÿ

i“1

wi

k
ź

j“1

|αi ´ rαj |
2 pAM-QM Inequality,w P ∆k´1q

ď 2Opkq ¨
a

ξ. pLemma 28q.

For the second term, }Mpϑq ´ M 1}2 ď
?
k}Mpϑq ´ M 1}8 ď

?
k ¨ ξ. As a result,

}V
rα pw ´ Mpϑq}8 ď }V

rα pw ´ Mpϑq}2 ď Op1q ¨ 2Opkq ¨
a

ξ ` Op1q ¨
?
k ¨ ξ ď 2Opkq ¨ ζ

1
2 .

The moment-transportation inequality (Lemma 8) requires the input to be signed measure. So,
we normalize the recovered spikes in Line 6. The following lemma shows the moment vector would
not change too much after normalization.

Lemma 34 Let rϑ “ prα, rwq be the intermediate result (Line 7) in Algorithm 1. Then, we have

MomKprϑ,ϑq ď 2Opkq ¨ ξ
1
2 .

Proof According to the definition of V
rα and Mpϑq, we have pV

rα pw ´ Mpϑqq1 “
řk

i“1 pwi ´ 1.
Therefore, |

řk
i“1 pwi ´ 1| ď |pV

rα pw ´ Mpϑqq1| ď }V
rα pw ´ Mpϑq}8 ď 2Opkq ¨ ξ

1
2 .

Note that }rw ´ pw}1 “ }rw}1 ´ }pw}1 “ |p
řk

i“1 pwiq
´1 ´ 1|. For 2Opkq ¨ ξ

1
2 ď 1{2, we can

conclude that }rw ´ pw}1 “ |p
řk

i“1 pwiq
´1 ´ 1| ď 2|

řk
i“1 pwi ´ 1| ď 2Opkq ¨ ξ

1
2 .

Thus, we can reach that

MomKprϑ,ϑq “ }Mprϑq ´ Mpϑq}8 “ }V
rα rw ´ Mpϑq}8

ď }V
rα pw ´ Mpϑq}8 ` }V

rα rw ´ V
rα pwq}8

ď }V
rα pw ´ Mpϑq}8 ` }V

rα}8}rw ´ pw}1

ď 2Opkq ¨ ξ
1
2 .

where the first inequality holds due to triangle inequality and the third holds since }V
rα}8 ď 1.

Moreover, the weight can still be negative after normalization. To find a reconstruction in the
original space, we want to find a mixture of discrete distributions in Spikep∆1,∆k´1q that is close
to rϑ. However, this step can cast a huge impact on the moment. Thus, we directly estimate the
influence in terms of the transportation distance instead of the moment distance. We note the trans-
portation distance in the next lemma is defined possibly for non-probability measures (see Equation
(4) in Appendix A for details).

34



EFFICIENT ALGORITHMS FOR SPARSE MOMENT PROBLEMS WITHOUT SEPARATION

Lemma 35 Let C be a compact convex set in Rd and let rϑ “ prα, rwq P SpikepC,Σk´1q be a
k-spike distribution over support C. Then, we have

min
qϑPSpikeprα,∆k´1q

Tranprϑ, qϑq ď 2 min
ϑPSpikepC,∆k´1q

Tranprϑ,ϑq.

Note that the minimization on the left is over support rα.

Proof Consider any ϑ “ pα, swq P SpikepC,∆k´1q such that α “ rα1, ¨ ¨ ¨ , αksJ and sw “

r sw1, ¨ ¨ ¨ , swksJ. Let ϑ1 “ argminϑ1PSpikeprα,Σk´1q Tranpϑ1,ϑq. Since rϑ P Spikeprα,Σk´1q, we

have Tranpϑ1,ϑq ď Tranprϑ,ϑq. From triangle inequality, we have

Tranprϑ,ϑ1q ď Tranprϑ,ϑq ` Tranpϑ,ϑ1q ď 2Tranprϑ,ϑq.

Now, we start to show ϑ1 P Spikeprα,∆k´1q, i.e., the weight of spikes in the closest distribution to
ϑ with support rα should be all non-negative.

Towards a contradiction, assume the optimal distribution ϑ1 contains at least one negative spike,
that is, let pϑ1q´ “ pα,maxt´w,0uq be the negative spikes of ϑ1, we have pϑ1q´ ‰ 0. In
this case, since ϑ is a probability distribution, Tranpϑ,ϑ1q “ Tranpϑ ` pϑ1q´, pϑ1q`q where
pϑ1q` “ pα,maxtw,0uq is positive spikes of ϑ1.

Let µ1 be the optimal matching distribution corresponding to Tranpϑ` pϑ1q´, pϑ1q`q. From its
definition, µ1 is non-negative. Let µ2 be the matching distribution in µ1 that maps ϑ and pϑ1q`. Let
ϑ2 be the marginal distribution of µ2 other than ϑ. In this case, µ2 is a valid matching distribution
for Tranpϑ,ϑ2q. Moreover, µ2 gives less transportation distance than µ1 does since the cost on the
eliminated terms is non-negative. Hence, Tranpϑ,ϑ2q ă Tranpϑ,ϑ1q, which is a contradiction.

As a result, ϑ1 P Spikeprα,∆k´1q. Therefore, min
qϑPSpikepα,∆k´1q

Tranprϑ, qϑq ď Tranprϑ,ϑ1q.

By taking minimization over ϑ, we can conclude that

min
qϑPSpikepα,∆k´1q

Tranprϑ, qϑq ď 2 min
ϑPSpikepC,∆k´1q

Tranprϑ,ϑq.

Finally, we are ready to bound the transportation distance error of the reconstructed k-spike
distribution:

Lemma 36 Let qϑ “ prα, qwq be the final result (Line 9) in Algorithm 1. Then, we have

Tranpqϑ,ϑq ď Opkξ
1

4k´2 q.

Proof Combining Lemma 8 and Lemma 34, we can see

Tranprϑ,ϑq ď Opk ¨ p2Opkq ¨ ξ
1
2 q

1
2k´1 q ď Opkξ

1
4k´2 q.

Moreover, from Lemma 35, we have

Tranprϑ, qϑq ď 2 min
ϑPSpikep∆1,∆k´1q

Tranprϑ,ϑq ď 2Tranprϑ,ϑq “ Opkξ
1

4k´2 q.

Finally, by triangle inequality, Tranpqϑ,ϑq ď Tranpqϑ, rϑq ` Tranprϑ,ϑq ď Opkξ
1

4k´2 q.

By choosing ξ “ pϵ{kqOpkq, the previous lemma directly implies Theorem 3.
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Appendix D. An Algorithm for the Two-Dimensional Problem

We can generalize the 1-dimension algorithm described in Section 4 to 2-dimension. Let ϑ :“
pα,wq P Spikep∆2,∆k´1q be the underlying mixture where α “ tα1, ¨ ¨ ¨ ,αku for αi “ pαi,1, αi,2q

and w “ rw1, ¨ ¨ ¨ , wksJ P ∆k´1. The true moments can be computed according to Mi,jpϑq “
řk

t“1wtα
i
t,1α

j
t,2. The input is the noisy moments M 1

i,j in 0 ď i, j, i ` j ď 2k ´ 1 such that
|M 1

i,j ´ Mi,jpϑq| ď ξ. We further assume that M 1
0,0 “ M0,0pϑq “ 1 and ξ ď 2´Ωpkq.

The key idea is simple: a distribution supported in R2 can be mapped to a distribution supported
in the complex plane C. In particular, we define the complex set ∆C “ ta ` bi | pa, bq P ∆2u.
Moreover, we denote β “ rβ1, ¨ ¨ ¨ , βksJ :“ rα1,1 ` α1,2i, ¨ ¨ ¨ , αk,1 ` αk,2is

J P ∆k
C, and define

ϕ :“ pβ,wq P Spikep∆k
C,∆k´1q to be the complex mixture corresponding to ϑ. The correspond-

ing moments of ϕ can thus be defined as Gi,jpϕq “
řk

t“1wtpβ
:
t qiβj

t .
For G “ rGi,js

J
0ďiďk;0ďjďk´1, denote

AG :“

»

—

—

—

–

G0,0 G0,1 ¨ ¨ ¨ G0,k´1

G1,0 G1,1 ¨ ¨ ¨ G1,k´1
...

...
. . .

...
Gk´1,0 G1,k´1 ¨ ¨ ¨ Gk´1,k´1

fi

ffi

ffi

ffi

fl

, bG :“

»

—

—

—

–

G0,k

G1,k
...

Gk´1,k

fi

ffi

ffi

ffi

fl

,MG :“

»

—

—

—

–

G0,0

G0,1
...

G0,k´1

fi

ffi

ffi

ffi

fl

.

Algorithm 2 Reconstruction Algorithm in Two-Dimensional Problem
Input: number of spikes k, noisy moments M 1p¨q, noise level ξ
Output: recovered spike distribution qϑ

1: G1 Ð rG1
i,j :“

ři
p“0

řj
q“0

`

i
p

˘`

j
q

˘

p´iqi´pij´qM 1
p`q,i`j´p´qsJ

0ďiďk;0ďjďk´1

2: pc Ð argminxPCk }AG1x ` bG1}22 ` ξ2}x}22 ñ pc “ rpc0, ¨ ¨ ¨ ,pck´1sJ P Ck

3: pβ Ð rootsp
řk´1

i“0 pcix
i ` xkq ñ pβ “ rpβ1, ¨ ¨ ¨ , pβksJ P Ck

4: sβ Ð project∆C
1
ppβq ñ sβ “ rsβ1, ¨ ¨ ¨ , sβksJ P ∆k

C

5: rβ Ð sβ ` Noisepξq ñ rβ “ rrβ1, ¨ ¨ ¨ , rβksJ P ∆k
C

6: pw Ð argminxPCk }V
rβ
x ´ MG1}22 ñ pw “ r pw1, ¨ ¨ ¨ , pwksJ P Ck

7: rw Ð pw{p
řk

i“1 pwiq ñ rw “ r rw1, ¨ ¨ ¨ , rwksJ P ΣC
k´1

8: rϕ Ð prβ, rwq ñ rϕ P Spikep∆C,Σ
C
k´1q

9: rϑ Ð prrealprβq, imagprβqs, realprwqq ñ rϑ P Spikep∆2,Σk´1q

10: qw Ð argminxP∆k´1
Tranprϑ, prα,xqq

11: qϑ Ð prα, qwq ñ qϑ P Spikep∆2,∆k´1q

The pseudocode can be found in Algorithm 2. The algorithm takes the number of spikes k and
the error bound ξ to reconstruct the original spike distribution using empirical moments M 1. Now,
we describe the implementation details of our algorithm.

We first calculate the empirical complete moments G1 of ϕ in Line 1. Since the process follows
relationship between Gpϕq and Mpϑq (see Lemma 37), G1 would be an estimation of ground truth
Gpϕq. Since it is a two-dimensional convolution, this step can be implemented in Opk3q arithmetic
operations.
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Then, we perform a ridge regression to obtain c in Line 2. We note that AGpϕqc ` bGpϕq “ 0.
(see Lemma 38). Hence, pc can be seen as an approximation of c. The explicit solution of this ridge
regression is pc “ pAJ

G1AG1 ` ξ2Iq´1AJ
G1bG1 which can be computed in Opk3q time.

From Line 3 to Line5, we aim to estimate the positions of the spikes of complex correspondence,
i.e., βi s. Similar to the 1-dimensional case, we solve the roots of polynomial

řk´1
i“0 pcix

i `xk. Note
that the roots we found may locate outside ∆C, which is the support of the ground truth. Thus,
we use the description of ∆2 to project the solutions back to ∆C and inject small noise to ensure
that all values are distinct and rβ are still in ∆C. Any noise of size at most ξ suffices here. We
note that from the definition of complex correspondence, the realized spikes in the original space
are rrealprβq, imagprβqs. For implementation, this step can be done using the numerical root-finding
algorithm allowing ξ additive noise in Opk1`op1q ¨ log logp1{ξqq arithmetic operations.

After that, we aim to recover the weight of the spikes. Line 6 is a linear regression defined
by Vandemonde matrix Vβ. Since β may be complex numbers, we would calculate over complex
space. Again, we would apply moment inequality to bound the recovered parameter error. Hence,
we normalize pw and get rw in Line 9. Note from our definition of transportation distance, the
real components and imaginary components are considered separately. Hence, we can discard the
imaginary parts of rw and reconstruct the k-spike distribution in Line 7. Using linear regression, this
step can be done in Opk3q time.

The remaining thing is to deal with the negative weights of rw. We find a close k-spike distri-
bution in Spikep∆2,∆k´1q in Line 7. The optimization problem is equivalent to finding a trans-
portation from prα, rw´

q to prα, rw`
q where rw´ and rw` are the negative components and positive

components of rw respectively, i.e., rw´
i “ maxt0,´ rwiu and rw`

i “ maxt0, rwiu. This transportation
can be found using the standard network flow technique, which takes Opk3q time.

Since the noise satisfies ξ ď 2´Ωpkq, the whole algorithm requires Opk3q arithmetic operations.

D.1. Error Analysis

From now, we bound the reconstruction error of the algorithm. The following lemma presents the
relationship between the moments of the original k-spike distribution and its complex correspon-
dence.

Lemma 37 Let ϑ “ pα,wq P Spikep∆2,∆k´1q and let ϕ “ pβ,wq P Spikep∆C,∆k´1q be its
complex correspondence. Then, the complete moment satisfies

Gi,jpϕq “

i
ÿ

p“0

j
ÿ

q“0

ˆ

i

p

˙ˆ

j

q

˙

p´iqi´pij´qMp`q,i`j´p´qpϑq.

Proof According to the definition,

Gi,jpϕq “

k
ÿ

t“1

wtpβ
:
t qiβj

t “

k
ÿ

t“1

wtpαt,1 ´ αt,2iq
ipαt,1 ` αt,2iq

j

“

k
ÿ

t“1

wt

i
ÿ

p“0

ˆ

i

p

˙

αp
t,1α

i´p
t,2 p´iqi´p

j
ÿ

q“0

ˆ

j

q

˙

αq
t,1α

j´q
t,2 ij´q

“

i
ÿ

p“0

j
ÿ

q“0

ˆ

i

p

˙ˆ

j

q

˙

p´iqi´pij´qMp`q,i`j´p´qpϑq.
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The following lemma is a complex extension of Lemma 24.

Lemma 38 Let ϕ “ pβ,wq P Spikep∆C,∆k´1q where β “ rβ1, ¨ ¨ ¨ , βksJ and w “ rw1, ¨ ¨ ¨ , wksJ.
Let c “ rc0, ¨ ¨ ¨ , ck´1sJ P Ck such that

śk
i“1px ´ αiq “

řk´1
i“0 cix

i ` xk. Then,

k´1
ÿ

j“0

Gi,jpϑqcj ` Gi,kpϑq “

k´1
ÿ

j“0

Gj,ipϑqc:

j ` Gk,ipϑq “ 0,

for all i ě 0. In matrix form, the equation can be written as:

AGpϑqc ` bGpϑq “ 0.

Proof According to the definition of G, it holds that

k´1
ÿ

j“0

Gi,jpϕqcj ` Gk,ipϕq “

k´1
ÿ

j“0

k
ÿ

t“1

wtpβ
:
t qiβj

t cj `

k
ÿ

t“1

wtpβ
:
t qiβk

t

“

k
ÿ

t“1

wtpβ
:
t qi

˜

k´1
ÿ

j“0

cjβ
j
t ` βk

t

¸

“

k
ÿ

t“1

wtpβ
:
t qi

k
ź

j“1

pβt ´ βjq “ 0,

k´1
ÿ

j“0

Gj,ipϕqc:

j ` Gk,ipϕq “

k´1
ÿ

j“0

k
ÿ

t“1

wtpβ
:
t qjβi

tc
:

j `

k
ÿ

t“1

wtpβ
:
t qkβi

t

“

˜

k´1
ÿ

j“0

k
ÿ

t“1

wtpβ
:
t qiβj

t cj `

k
ÿ

t“1

wtpβ
:
t qiβk

t

¸:

“ 0.

Similar to Lemma 25, we present some useful properties of pc.

Lemma 39 Let pc “ rpc0, ¨ ¨ ¨ ,pck´1sJ P Rk be the intermediate result (Line 2) in the algorithm.
Then, }G1 ´ Gpϕq}8 ď 22k ¨ ξ, }c}1 ď 2k, }pc}1 ď 2Opkq and }AGpϕqpc ` bGpϕq}8 ď 2Opkq ¨ ξ.

Proof From Vieta’s formulas, we have ci “
ř

SPp rks

k´iq

ś

jPSp´αjq. Thus,

}c}1 “

k´1
ÿ

i“0

|ci| ď
ÿ

SP2rks

ź

jPS

|βj | “

k
ź

i“1

p1 ` |βi|q ď 2k.

where the last inequality holds because |βi| “

b

α2
i,1 ` α2

i,2 ď 1 for all i.
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According to Lemma 37,

|G1
i,j ´ Gi,jpϕq| ď

i
ÿ

p“0

j
ÿ

q“0

ˇ

ˇ

ˇ

ˇ

ˆ

i

p

˙ˆ

j

q

˙

p´iqi´pij´q

ˇ

ˇ

ˇ

ˇ

}M 1 ´ Mpϑq}8 ď 2i`j ¨ ξ.

This shows that }G1 ´ Gpϕq}8 ď 22k ¨ ξ.
From Lemma 24, we can see that }AMpϑqc ` bMpϑq}8 “ 0. Therefore,

}AG1c ` bG1}8 ď }AGpϕqc ` bGpϕq}8 ` }AG1c ´ AGpϕqc}8 ` }bG1 ´ bGpϕq}8

ď }AGpϕqc ` bGpϕq}8 ` }pAG1 ´ AGpϕqqc}8 ` }bG1 ´ bGpϕq}8

ď }AGpϕqc ` bGpϕq}8 ` }AG1 ´ AGpϕq}8}c}1 ` }bG1 ´ bGpϕq}8

ď }AGpϕqc ` bGpϕq}8 ` }G1 ´ Gpϕq}8p}c}1 ` 1q

ď 2Opkq ¨ ξ.

The fourth inequality holds since pAG1 ´ AGpϕqqi,j “ pG1 ´ Gpϕqqi,j and pbG1 ´ bGpϕqqi “ pG1 ´

Gpϕqqi,k.
From the definition of pc, we can see that

}AG1pc ` bG1}22 ` ξ2}pc}22 ď }AG1c ` bG1}22 ` ξ2}c}22

ď k}AG1c ` bG1}28 ` ξ2}c}21

ď 2Opkq ¨ ξ2.

The second inequality holds since }x}2 ď }x}1 and }x}2 ď
?
k}x}8 holds for any vector x P Rk.

Now, we get that

}AG1pc ` bG1}8 ď }AG1pc ` bG1}2 ď 2Opkq ¨ ξ,

}pc}1 ď
?
k}pc}2 ď 2Opkq.

Finally, we can bound }AGpϕqpc ` bGpϕq}8 according to

}AGpϕqpc ` bGpϕq}8 ď }AG1pc ` bG1}8 ` }AG1pc ´ AGpϕqpc}8 ` }bG1 ´ bGpϕq}8

ď }AG1pc ` bG1}8 ` }AG1 ´ AGpϕq}8}pc}1 ` }bG1 ´ bGpϕq}8

ď }AG1pc ` bG1}8 ` }G1 ´ Gpϕq}8p}pc}1 ` 1q

ď 2Opkq ¨ ξ,

which finishes the proof.

We then show rw obtained in Line 7 is close to the ground truth β.

Lemma 40 Let pβ “ rpβ1, ¨ ¨ ¨ , pβksJ P Ck be the intermediate result (Line 3) in Algorithm 2. Then,

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ pβj |
2 ď 2Opkq ¨ ξ.
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Proof Consider

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ pβj |
2 “

k
ÿ

i“1

wi

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

j“1

pβi ´ pβjq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

k
ÿ

i“1

wi

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

j“0

pcjβ
t
i ` βk

i

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

k
ÿ

i“1

wi

˜

k´1
ÿ

j“0

pcjβ
t
i ` βk

i

¸: ˜k´1
ÿ

j“0

pcjβ
t
i ` βk

i

¸

“

k
ÿ

i“1

wi

˜

k´1
ÿ

p“0

k´1
ÿ

q“0

pc:
ppcqpβ:

i qpβq
i `

k´1
ÿ

p“0

pc:
ppβ:

i qpβk
i `

k´1
ÿ

p“0

pcpβ
p
i pβ:

i qk ` pβ:

i qkβk
i

¸

“

k´1
ÿ

p“0

k´1
ÿ

q“0

pc:
ppcq

k
ÿ

i“1

wipβ
:

i qpβq
i `

k´1
ÿ

p“0

pc:
p

k
ÿ

i“1

wipβ
:

i qpβk
i `

k´1
ÿ

p“0

pcp

k
ÿ

i“1

wiβ
p
i pβ:

i qk `

k
ÿ

i“1

wipβ
:

i qkβk
i

“

k´1
ÿ

p“0

pc:
p

˜

k´1
ÿ

q“0

Gp,qpϑqpcq ` Gp,kpϑq

¸

`

k´1
ÿ

p“0

pcpGk,ppϑq ` Gk,kpϑq

“

k´1
ÿ

p“0

pc:
ppAGpϑqpc ` bGpϑqqp `

k´1
ÿ

p“0

pcpGk,ppϑq ` Gk,kpϑq,

where the last equality holds from the definition of matrix AGpϑq and vector bGpϑq. According to
Lemma 38, Gk,ppϑq “ ´

řk´1
q“0 Gq,ppϑqc:

q, so

k´1
ÿ

p“0

pcpGk,ppϑq ` Gk,kpϑq “

k´1
ÿ

p“0

pcp

˜

´

k´1
ÿ

q“0

Gq,ppϑqc:
q

¸

`

˜

´

k´1
ÿ

q“0

Gq,kpϑqc:
q

¸

“ ´

k´1
ÿ

q“0

c:
q

˜

k´1
ÿ

p“0

Gq,ppϑqpcp ` Gk,qpϑq

¸

“ ´

k´1
ÿ

q“0

c:
qpAGpϑqpc ` bGpϑqqq.

Therefore,

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ pβj |
2 “

k´1
ÿ

i“0

ppc:

i ´ c:

i qpAGpϑqpc ` bGpϑqqi

ď p}pc}1 ` }c}1q}AGpϑqpc ` bGpϑq}8

ď p2k ` 2Opkqq ¨ 2Opkq ¨ ξ pLemma 39q

ď 2Opkq ¨ ξ.

Similar to Lemma 28, the following lemma shows the error still can be bounded after projection
and injecting noise.
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Lemma 41 Let rβ “ rrβ1, ¨ ¨ ¨ , rβksJ P Ck be the intermediate result (Line 5) in Algorithm 2. Then,

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ rβj |
2 ď 2Opkq ¨ ξ.

Proof Let sβ “ rsβ1, ¨ ¨ ¨ , sβksJ P Rk be the set of projections (Line 4). Since ∆2 is convex, ∆C is
also convex. From βi P ∆C, |βi ´ sβj | ď |βi ´ pβj | holds. Thus,

k
ź

j“1

|βi ´ sβj |
2 ď

k
ź

j“1

|βi ´ pβj |
2.

Recall that rβj is obtained from sβj by adding of size noise no more than ξ. We have |βi ´ rβj | ď

|βi ´ sβj | ` ξ. Apply Lemma 27 by regarding |βi ´ rβj | as aj and |βi ´ pβj | as a1
j . From |βi ´ rβj | ď

|βi| ` |rβj | ď 2, we can conclude that

k
ź

j“1

|βi ´ rβj |
2 ď

k
ź

j“1

|βi ´ sβj |
2 ` Op2k ¨ kξq.

Combining two inequalities,

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ rβj |
2 ď

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ pβj | ` 2k ¨ ξ ď 2Opkq ¨ ξ.

Similar to Lemma 33, we can bound the error of approximating ground truth over recovered
spikes.

Lemma 42 Let pw “ r pw1, ¨ ¨ ¨ , pwksJ P Rk be the intermediate result (Line 6) in Algorithm 2. Then,

}V
rβ
pw ´ Mpϕq}8 ď 2Opkq ¨ ξ

1
2 .

Proof Firstly,

}V
rβ
pw ´ Mpϕq}2 ď }V

rβ
pw ´ MG1}2 ` }Mpϕq ´ MG1}2

ď min
xPCk

}V
rβ
x ´ MG1}2 ` }Mpϕq ´ MG1}2

ď min
xPCk

}V
rβ
x ´ Mpϕq}2 ` }Mpϕq ´ MG1}2

where the first and third inequalities hold due to triangle inequality, and the second inequality holds
since }V

rβ
pw ´ MG1}22 ď minxPRk }V

rβ
x ´ MG1}22.
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For the first term, we can see that

min
xPCk

}V
rβ
x ´ Mpϕq}2 “ min

x1,¨¨¨ ,xkPCk

›

›

›

›

›

k
ÿ

i“1

wiV
rβ
xi ´

k
ÿ

i“1

wiMpβiq

›

›

›

›

›

2

ď

k
ÿ

i“1

wi min
xPCk

}V
rβ
x ´ Mpβiq}2

ď 2Opkq

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ rβj | pLemma 32q

ď 2Opkq

g

f

f

e

k
ÿ

i“1

wi

k
ź

j“1

|βi ´ rβj |2 pAM-QM Inequality,w P ∆k´1q

ď 2Opkq ¨
a

ξ. pLemma 41q.

For the second term,

}Mpϕq ´ MG1}2 ď
?
k}Mpϕq ´ MG1}8

ď
?
k}G1 ´ Gpϕq}8

ď 2Opkq ¨ ξ. pLemma 39q

As a result,

}V
rβ
pw ´ Mpϕq}8 ď }V

rβ
pw ´ Mpϕq}2 ď 2Opkq ¨

a

ξ ` 2Opkq ¨ ξ ď 2Opkq ¨ ξ
1
2 .

Similar to Lemma 34, we can prove that rϕ is also a good estimation of ϕ.

Lemma 43 Let rϕ “ prβ, rwq be the intermediate result (Line 8) in Algorithm 2. Then,

MomKprϕ,ϕq ď 2Opkq ¨ ξ
1
2 .

Proof According to the definition of V
rβ

and Mpϕq, we have pV
rβ
pw ´ Mpϕqq1 “

řk
i“1 pwi ´ 1.

Therefore, |
řk

i“1 pwi ´ 1| ď |pV
rβ
pw ´ Mpϕqq1| ď }V

rβ
pw ´ Mpϕq}8 ď 2Opkq ¨ ξ

1
2 .

Note that }rw ´ pw}1 “ }rw}1 ´ }pw}1 “ |p
řk

i“1 pwiq
´1 ´ 1|. For 2Opkq ¨ ξ

1
2 ď 1{2, we can

conclude that }rw ´ pw}1 “ |p
řk

i“1 pwiq
´1 ´ 1| ď 2|

řk
i“1 pwi ´ 1| ď 2Opkq ¨ ξ

1
2 .

Thus,

MomKprϕ,ϕq “ }Mprϕq ´ Mpϕq}8 “ }V
rβ
rw ´ Mpϕq}8

ď }V
rβ
pw ´ Mpϕq}8 ` }V

rβ
}8}rw ´ pw}1

ď 2Opkq ¨ ξ
1
2 .

where the first inequality holds because of the triangle inequality.

Now everything is in place to show the final bound.
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Lemma 44 Let qϑ “ prα, qwq be the final result (Line 11) in Algorithm 2. Then, we have

Tranpqϑ,ϑq ď Opkξ
1

4k´2 q.

Proof Apply Lemma 43 to the result of Lemma 22. We have

Tranprϕ,ϕq ď Opk ¨ p2Opkq ¨ ξ
1
2 q

1
2k´1 q ď Opkξ

1
4k´2 q.

Denote rϕ
1

“ prβ, realprwqq as the result that discards all imaginary components from rϕ. From
the definition of transportation distance for complex weights, the imaginary components is indepen-
dent from the real components. Moreover, ϕ has no imaginary components. Thus, discarding all
imaginary components from rϕ reduces the transportation distance to ϕ. That is,

Tranprϕ
1
,ϕq ď Tranprϕ,ϕq.

Moreover, from any βi, βj P C, we have

}rrealpβiq, imagpβiqs ´ rrealpβjq, imagpβjqs}1 ď 2}rrealpβiq, imagpβiqs ´ rrealpβjq, imagpβjqs}2

“ 2|βi ´ βj |.

This shows the distance over C is smaller than 2 times of the distance over R2. As a result,

Tranprϑ,ϑq ď 2Tranprϑ,ϑq ď Opkξ
1

4k´2 q.

Moreover, from Lemma 35, we have

Tranprϑ, qϑq ď 2 min
ϑPSpikep∆2,∆k´1q

Tranprϑ,ϑq ď 2Tranprϑ,ϑq “ Opkξ
1

4k´2 q.

Finally, from triangle inequality, Tranpqϑ,ϑq ď Tranpqϑ, rϑq ` Tranprϑ,ϑq ď Opkξ
1

4k´2 q.

Appendix E. An Algorithm for Higher-dimensional Problem

We assume the moment information is revealed by a noisy moment oracle. A moment oracle corre-
sponding to k-spike distribution ϑ is defined to be a function M 1p¨q that takes a matrix (or a vector)
R with }R}8 ď 1 and generates a noisy vector M 1pRq such that }M 1pRq ´ MpΠRpϑqq}8 ď ξ
and M 1

0pRq “ M0pΠRpϑqq “ 1 where ξ ď 2´Ωpkq is the noise level and M is the moment vector
defined in (1).

Let et P Rd be the unit vector that takes value 1 in only the t-th coordinate and 0 in the remaining
coordinates. Denote 1d “ p1, ¨ ¨ ¨ , 1q P Rd. Let Sd´1 be the unit sphere in Rd.

The pseudocode can be found in Algorithm 3. The algorithm’s input consists of the number of
spikes k, the moment error bound ξ, and the noisy moment oracle M 1p¨q mentioned above. Now,
we describe the implementation details of our algorithm.

We first generate a random vector r in Line 2 by sampling from unit sphere Sd´1 “ tr P Rd |

}r}2 “ 1u. Note that by a probabilistic argument, the distance between spikes is roughly kept
after the projection along r (see Lemma 45). Then, we aim to use the one-dimension algorithm to
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Algorithm 3 Reconstruction Algorithm in High Dimension
1: input: number of spikes k, noisy moments M 1p¨q, noise level ξ

output: recovered spike distribution qϑ
2: r Ð Sd´1

3: rϕ
1

Ð OneDimensionpk,M 1pr`1
4 q, ξq ñ rϕ

1
“ pry1, rw1

q P Spikep∆1,∆k´1q

4: rϕ Ð pr4ry1
´ 1ds, rw1

q ñ rϕ “ pry, rwq

5: for t P r1, ds do
6: pϕ

1

t Ð TwoDimensionpk,M 1prr`1
4 , et2 sq, ξq ñ pϕ

1

t “ prpy1
:,t, pα

1
:,ts, pw

1
:,tq P Spikep∆2,∆k´1q

7: pϕt Ð pr4y1
:,t ´ 1d, 2pα

1
:,ts, pw

1
:,tq ñ pϕt “ prpy:,t, pα:,ts, pw:,tq

8: for j P r1, ks do
9: s˚

j,t Ð argmins: pws,tą
?
ϵ |ryj ´ pys,t|

10: rαj,t Ð pαs˚
j,t,t

11: end for
12: rα:,t Ð rrα1,t, ¨ ¨ ¨ , rαk,ts

J ñ rα P Rk

13: end for
14: rα Ð rrα:,1, ¨ ¨ ¨ , rα:,dsJ ñ rα “ rrα1, ¨ ¨ ¨ , rαks P Rdˆk

15: rϑ Ð prα, rwq ñ rϑ P SpikepRd,∆k´1q

16: qα Ð project∆d´1
prαq ñ qα “ rqα1, ¨ ¨ ¨ , qαks P ∆k

d´1

17: qϑ Ð pqα, rwq ñ qϑ P Spikep∆d´1,∆k´1q

recover Πrpϑq. However, the support of Πrpϑq is contained in r´1, 1s but not r0, 1s. In Line 3,
we apply the 1-dimension algorithm (Algorithm 1) to the noisy moments of a shifted and scaled
map Πpr`1dq{4pϑq whose support is in r0, 1s. Then we scale and shift back to obtain the result rϕ in
Line 4. Intuitively, rϕ is close to Πrpϑq.

Now, we try to recover the coordinates of the spikes. In particular, we would like to find, for
each spike of rϕ, the coordinates of the corresponding location in ∆d´1. This is done by considering
each dimension separately. For each coordinate t P rds, we run the two-dimension algorithm (i.e.,
Algorithm 2) to recovery the projection Πrr,etspϑq, that is a linear map of ϑ onto the subspace
spanned by vector r and axis et. However, rr, etsαi is in r´1, 1s ˆ r0, 1s. Again, in Line 6,
we apply the algorithm to the noisy moments of a shifted and scaled projection ΠBtpϑq where
Bt “ r

r`1d
4 , et2 s, and scale the result back in Line 7. The result is denoted as pϕt.

Next, we assemble the 1d projection rϕ and 2-d projections pϕt, t P rds. Due to the noise, rϕt and
rϕ may have different supports along r. So we assign the coordinates of rϕ according to the closest
spike of pϕt with relatively large weights in Line 7 to Line 12. Due to the error, the support of the
reconstructed distribution rϑ may not locate in ∆d´1. Thus the final step in Line 16 is to project
each individual spike back to ∆d´1.

We note the bottleneck of this algorithm is Line 6, where we have to solve the two-dimensional
problem d times. Hence, the total running time of the algorithm is Opdk3q.
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E.1. Error Analysis

First, we show the random vector r has a critical property that two distant spikes are still distant
after the projection with high probability. This result is standard and similar statements are known
in the literature (e.g., Lemma 37 in Wu and Yang (2020)).

Lemma 45 Let Supp “ pα1, ¨ ¨ ¨ ,αkq Ă ∆d´1 such that d ą 3. For every constant 0 ă η ă 1
and a random vector r Ð Sd´1, with probability at least 1 ´ η, for any αi,αj P Supp, we have
that

|rJpαi ´ αjq| ě
η

k2d
}αi ´ αj}1.

Proof Let 0 ă ϵ ă 1 be some constant depending on k and d which we fix later. Assume r “

rr1, ¨ ¨ ¨ , rdsJ. For a fixed pair pαi,αjq, we have

Pr
r„Sd´1

r|rJpαi ´ αjq| ă ϵ}αi ´ αj}2s “ Pr
r„Sd´1

r|r1| ă ϵs.

Suppose r is obtained by first sampling a vector from unit ball Bd and then normalizing it to the
unit sphere Sd´1. We can see that

Pr
r„Sd´1

r|r1| ă ϵs ď Pr
r„Bd

r|r1| ă ϵs

where the RHS is equal to the probability that r lies in the slice r´ϵ, ϵs.
Let Vd be the volume of d-dimensional ball. We have

Pr
r„Bd

r|r1| ă ϵs “

şϵ
´ϵ Vd´1p1 ´ x2q

d´1
2 dx

Vd
ď ϵ

?
d

where the last inequality holds since Vd{Vd´1 ě 2{
?
d.

By union bound over all pairs pαi,αjq, we can see that the failure probability can be bounded
by

Pr
r„Sd´1

rDαi,αj P Supp : |rJpAi ´ Ajq| ă ϵ}Ai ´ Aj}2s ă k2ϵ
?
d.

Notice that }α}1 ď
?
d}α}2 for any α P Rd, and let ϵ “

η

k2
?
d

. We conclude that

Pr
r„Sd´1

r@αi,αj P Supp : |rJpAi ´ Ajq| ě
η

k2d
}Ai ´ Aj}1s ą 1 ´ η.

Next, we show that we can recover and reconstruct the higher dimension mixture ϑ, using
its 1d projection rϕ „ Πrpϑq, by assigning each spike pryi, rwiq in the one dimension distribution
a location in Rd. In a high level, consider a clustering of the spikes in Πrpϑq. The spikes in
one cluster still form a cluster in the original ϑ by Lemma 45 since the projection approximately
keeps the distance. Thus assigning the clusters a location in Rd can produce a good estimation
for ϑ. The following lemma formally proves that we can reconstruct the original mixture using
two-dimensional projections.
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Lemma 46 Let rϑ P SpikepRd,∆k´1q be the intermediate result (Line 15) in Algorithm 3. Let ϵ
be the smallest number such that Tranprϕ,Πrpϑqq ď ϵ and Tranppϕt,Πrr,etspϑqq ď ϵ for all t. If
Lemma 45 holds for ϑ, we have that

Tranprϑ,ϑq ď Opk3d2
?
ϵq.

Proof Let C1, ¨ ¨ ¨ , Cm be a partition of rks for ϑ such that:

• |rJαi ´ rJαj | ď k
?
ϵ if i P Cl, j P Cl for some l P rms.

• |rJαi ´ rJαj | ą
?
ϵ if i P Cl, j P Cl1 for l ‰ l1

For every cluster Cp, we construct another set rCp for rϑ containing every index j P rks such that
miniPCp |ryj ´ rJαi| ă

?
ϵ
2 . From the construction of the partition, for each spike ryj , there exists at

most one Cp1 such that miniPCp1 |ryj ´ rJαi| ă
?
ϵ
2 . Thus, we have all rC1, ¨ ¨ ¨ , rCm disjoint.

In this case, for every pair of i R Cp and j P rCp, we have |ryj ´ rJαi| ą
?
ϵ
2 . Since the total

transportation distance between rϕ and Πrpϑq is no more than ϵ. Hence, a portion of at most ϵ?
ϵ{2

of the weight in Cp can be matched out of rCp. This gives

ˇ

ˇ

ÿ

iPCp

wi ´
ÿ

jP rCp

rwj

ˇ

ˇ ă 2
?
ϵ.

Recall the transportation distance Tranpϑ, rϑq is the solution of the following program over
coupling distribution µ.

min
k
ÿ

i“1

k
ÿ

j“1

µi,j}rαj ´ αi}1

s.t. wi “

k
ÿ

j“1

µi,j , rwj “

k
ÿ

i“1

µi,j , µ ě 0.

Consider a specific distribution µ generated by the following two-stage procedure: Initially, set
µi,j “ 0 for every pair of pi, jq In the first stage, increase µi,j for every i P Cp and j P rCp whenever
wi ě

řk
j“1 µi,j , rwj ě

řk
i“1 µi,j . In the second stage, increase µi,j arbitrarily for every pair of pi, jq

to satisfy every constraint. Since the restriction set is convex, Cp are disjoint, and rCp are disjoint,
for some specific p, this two-stage process ensures

ÿ

iPCp

ÿ

jP rCp

µi,j “ mint
ÿ

iPCp

wi,
ÿ

jP rCp

rwju.

As a result, the coupling distribution satisfies
ÿ

iPCp

ÿ

jR rCp

µi,j ď |
ÿ

iPCp

wi ´
ÿ

jP rCp

rwj | ď 2
?
ϵ.
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Now we start to show µ is a good coupling distribution for Tranpϑ, rϑq. Since tCpu is a partition
of rks, we can decompose the transportation distance into:

Tranpϑ, rϑq ď

k
ÿ

i“1

k
ÿ

j“1

µi,j}rαj ´ αi}1 “
ÿ

p

ÿ

iPCp

k
ÿ

j“1

µi,j}rαj ´ αi}1.

Next, we bound the RHS by considering each cluster Cp. If it holds
ř

iPCp

řk
j“1 µi,j ď 2k

?
ϵ,

from }rαj ´ αi}1 ď 1, we can directly get

ÿ

iPCp

k
ÿ

j“1

µi,j}rαj ´ αi}1 ď 2k
?
ϵ.

Otherwise, we have
ř

iPCp

řk
j“1 µi,j ą 2k

?
ϵ. We can decompose the last summation into:

ÿ

iPCp

k
ÿ

j“1

µi,j}rαj ´ αi}1 “
ÿ

iPCp

ÿ

jR rCp

µi,j}rαj ´ αi}1 `
ÿ

iPCp

ÿ

jP rCp

µi,j}rαj ´ αi}1.

For the first term, we have
ř

iPCp

ř

jR rCp
µi,j ď 2

?
ϵ as we had discussed above. Together

with }rαj ´ αi}1 ď 1, we can bound the first term by 2
?
ϵ. For the second term, we have

ř

iPCp

ř

jP rCp
µi,j ď 1 according to the property of coupling distribution and the following lemma

shows }rαj ´ αi}1 is small. We delay the proof for readability.

Lemma 47 If
ř

iPCp
wi ą 2k

?
ϵ, then }rαj ´ αi}1 ď Opk3d2

?
ϵq for all i P Cp and j P rCp.

As a result, we can see that

ÿ

iPCp

k
ÿ

j“1

µi,j}rαj ´ αi}1 ď Opk3d2
?
ϵq.

Hence, we can conclude that Tranpϑ, rϑq ď Opk3d2
?
ϵq.

Proof [Proof of Lemma 47] For some fixed cluster Cp with i P Cp and j P rCp, we will prove the
statement by showing αi and rαj are close on every dimension t.

Firstly, we claim that for the cluster Cp, there exist s P rks and i1 P Cp in which pws,t ě
?
ϵ

and |pys,t ´ rJαi1 | ` |pαs,t ´ αi1,t| ď
?
ϵ in which pϕt contains a spike at ppys,t, pαs,tq of weight pws,t

and αi1,t is the dimension t of αi1 . Towards a contradiction, each spike in pϕt is either of weight
less than

?
ϵ or is of distance at least

?
ϵ from the projected spikes in Cp along rr, ets. Then,

each unit of the weights in Cp suffers a transportation cost of at least
?
ϵ after the first k ˆ

?
ϵ

weights since it is not sufficient to cover spikes in Cp using nearby spikes. Note the total weight
in Cp is at least 2k

?
ϵ. So in this case, the transportation distance between pϕ and Πrpϑq is at least

Tranppϕt,Πrr,etspϑqq ě p2k
?
ϵ ´

?
ϵ ˆ kq ˆ

?
ϵ ą kϵ which contradicts to the definition of ϵ.

Next, we take some i2 P Cp for j such that |ryj ´ rJαi2 | ď
?
ϵ
2 . This always exists according

to the definition of rCp. From the clustering, it holds that |rJαi ´ rJαi2 | ď k
?
ϵ and |rJαi1 ´

rJαi2 | ď k
?
ϵ. With the triangle inequality, we have

|ryj ´ pys,t| ď |pys,t ´ rJαi1 | ` |rJαi1 ´ rJαi2 | ` |ryj ´ rJαi2 | ď p1.5 ` kq
?
ϵ.
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Since pws,t ě
?
ϵ which fits the condition in Line 9 of Algorithm 3, the minimization thus ensures

|ryj ´ pys˚
j,t,t

| ď p1.5 ` kq
?
ϵ.

In addition, since the weight of spike ppys˚
j,t,t

, pαs˚
j,t,t

q satisfies pws˚
j,t,t

ą
?
ϵ and the total trans-

portation distance satisfies Tranppϕt,Πrr,etspϑqq ď ϵ. There must exist some i3 P rks such that
|rJαi3 ´pys˚

j,t,t
|`|αi3,t´pαs˚

j,t,t
| ă ϵ?

ϵ
“

?
ϵ, that is, ppys˚

j,t,t
, pαs˚

j,t,t
q is close to spike prJαi3 , αi3,tq.

From the triangle inequality, we have

|rJαi ´ rJαi3 | ` |αi3,t ´ pαs˚
j,t,t

|

ď |rJαi ´ rJαi2 | ` |ryj ´ rJαi2 | ` |ryj ´ pys˚
j,t,t

| ` |rJαi3 ´ pys˚
j,t,t

| ` |αi3,t ´ pαs˚
j,t,t

|

ď p3 ` 2kq
?
ϵ.

Applying Lemma 45 for αis, we have that |rJαi´rJαi3 | ě
η

k2d
}αi´αi3}1 ě

η
k2d

|αi,t´αi3,t|

under the good event. Thus,

|rαj,t ´ αi,t| “ |pαs˚
j,t,t

´ αi,t|

ď |αi,t ´ αi3,t| ` |αi3 ´ pαs˚
j,t,t

|

ď
k2d

η
p|rJαi ´ rJαi3 | ` |αi3,t ´ pαs˚

j,t,t
|q

ď
k2d

η
¨ p3 ` 2kq

?
ϵ ď Opk3d

?
ϵq

where the equality holds due to the assignment of rαj,t Ð pαs˚
j,t,t

in Line 10 of Algorithm 3 and the
second inequality holds since η ă 1. Taking summation over t, we conclude that

}rαj ´ αi}1 ď

d
ÿ

t“1

|rαj,t ´ αi,t| ď Opk3d2
?
ϵq.

Note that we can bound ϵ using Lemma 36 and Lemma 44. As a result, we can provide a
performance guarantee of our algorithm for the high-dimensional case.

Theorem 48 Let qϑ “ pqα, rwq be the final result (Line 17) in Algorithm 3. Then with probability at
least 1 ´ η for any fixed constant 0 ă η ă 1,

Tranpqϑ,ϑq ď pkdξ
1
k qOp1q.

Proof Since rϕ
1

is generated by one dimension algorithm, according to Lemma 36, we have

Tranprϕ
1
,Π r`1

4
pϑqq ď Opkξ

1
4k´2 q.

Note that Π r`1
4

pϑq can be transformed to Πrpϑq by transforming the coordinates by α Ñ 4α ´ 1.
We have

Tranprϑ,Πrpϑqq ď 4Tranprϕ
1
,Π r`1

4
pϑqq ď Opkξ

1
4k´2 q.
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Similarly, according to Lemma 44, we can see Tranppϕt,Πrr,etspϑqq ď Opkξ
1

4k´2 q. Thus, from the

definition of ϵ, we have ϵ ď Opkξ
1

4k´2 q. With Lemma 46, we have

Tranprϑ,ϑq ď Opk3d2
?
ϵq ď pkdξ

1
k qOp1q.

Note that ∆d´1 is a convex set and qαj is the projection of rαj to the same set. Thus, }αi ´ qαj}1 ď

}αi ´ rαj}1 holds for all Ai P ∆d´1 and j. Hence, the projection to ∆d´1 does not increase the
transportation distance. As a result, Tranprϑ, qϑq ď Tranprϑ,ϑq. Finally, by triangle inequality, we
have

Tranpqϑ,ϑq ď Tranprϑ,ϑq ` Tranpqϑ, rϑq ď pkdξ
1
k qOp1q.

By choosing ξ “ pϵ{pdkqqOpkq, the previous theorem directly implies Theorem 5.

Appendix F. Applications to Topic Models

In this section, we discuss the application of our results to topic models. Here, the underlying
vocabulary consists of d words. We are given a corpus of documents. We adopt the popular “bag of
words” model and take each document as an unordered multiset of words. The assumption is that
there is a small number k of “pure” topics, where each topic is a distribution over rds. A K-word
document (i.e., a string in rdsK) is generated by first selecting a topic i P ∆d´1 from the mixture
ϑ, and then sampling K words i.i.d. according to αi from this topic. Here, K is referred to as
the snapshot number and we call such a sample a K-snapshot of p. Our goal here is to recover
ϑ P Spikep∆d´1,∆k´1q, which is a discrete distribution over k pure topics. Again, we measure the
accuracy in terms of L1-transportation distance.

F.1. An Algorithm for d “ Opkq

In this section, we first directly handle the high-dimensional case using Algorithm 3. We will
perform dimension reduction when d " k, in Section F.2.

Lemma 49 There is an algorithm that can learn an arbitrary k-spike mixture of discrete distribu-
tions supported in ∆d´1 for any d within L1 transportation distance ϵ with probability at least 0.99
using pkd{ϵqOpkq many p2k ´ 1q-snapshots.

The following lemma is a high-dimensional version for empirical error (see e.g. Rabani et al.
(2014); Li et al. (2015); Gordon et al. (2020)).

Lemma 50 For matrix R “ rr1, ¨ ¨ ¨ , rps P Rdˆp with }R}8 ď 1, using 2Opkpq ¨ ξ´2 ¨ logp1{ηq

samples, we can obtain transformed empirical moments M 1pRq satisfying

max
|t|ďK

|M 1
tpRq ´ MtpΠRpϑqq| ď ξ

with probability at least 1 ´ η.
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Proof Assume the words of a document are x1, ¨ ¨ ¨ , xK . If the document is from some topic i,
we have Erxj “ cs “ αp,t for all i, j, c. For each word xj , we generate a i.i.d. random vector
βj “ rβ1,j , ¨ ¨ ¨ , βp,js

J P t0, 1up such that Erβc,js “ rc,xj . For t “ pt1, ¨ ¨ ¨ , tpq with |t| ď K, we
define observable ht “ 1r@c :

řK
j“1 βc,j “ tcs.

Note that ht is the normalized histogram for projected distribution ΠRpϑq. Hence, from the
relation between normalized histogram and standard moments, we can conclude that

MpΠRpϑqq “

˜

p
â

t“1

Pas

¸

h

where Pas P RpK`1qˆpK`1q such that Pasi,j “ rj ě is
`

j
i

˘`

K`1
i

˘

and b is the tensor product. Since
}Pas} ď 2Opkq, we have p

Âp
t“1 Pasq ď 2Opkpq.

Let pht be the empirical average of ht. Since ht is a Bernoulli variable, from Hoeffding’s in-
equality, we have Prr|pht´Erhts| ă ϵs ď 2 expp´2ϵ2sq. By applying union bound on t, we can see
that using s ą 2Opkpq ¨ ξ´2 ¨ logp1{ηq samples, we have |pht ´ Erhts| ă ξ ¨ 2´Ωpkpq with probability
at least 1 ´ η. Moreover, if we calculate M 1 from ph using the relationship between M and h, this
leads to max|t|ďK |M 1

tpRq ´ MtpΠRpϑqq| ď ξ.

Proof [Proof of Lemma 49] Let ξ “ pϵ{kdqOpkq. From Theorem 48, the recovered k-spike distribu-
tion qϑ satisfies Tranpqϑ,ϑq ď pkdξ

1
k qOp1q “ Opϵq. According to Lemma 50, we can construct such

a noisy moment oracle M 1p¨q using pkd{ϵqOpkq samples with high probability.

F.2. Dimension Reduction When d " kΩp1q

In topic modeling, the number of words is typically much larger than the number of pure topics
(i.e., d " k). In this case, we face another challenge in recovering the mixture. First, there are
`

d
1

˘

`
`

d
2

˘

`¨ ¨ ¨`
`

d
k

˘

“ Opdkq many different moments. Obtaining all empirical moments accurately
enough would require a huge number of 2k ´ 1-snapshot samples. So if d " k, we reduce the
dimension from d to Opkq. Now, we prove the following theorem. It improves on the result in
Rabani et al. (2014); Li et al. (2015), which uses more than pk{ϵqOpk2q p2k ´ 1q-snapshots, and
Gordon et al. (2020) which use pk{ϵqOpkq ¨ pwminζ

kq´Op1q 2k-snapshots and requires the minimum
separation assumption.

Let ϑ be the target k-spike mixture in ∆d´1 (d " k). Suppose there is a learning algorithm
A satisfying the assumption in the theorem. We show how to apply A to the projection of ϑ to a
subspace of dimension at most k in Rd. However, an arbitrary subspace of dimension at most k is
not enough, even the one spanning the k spikes of ϑ. This is because L1 distance is not rotationally
invariant and not preserved under projection. For example, the L1 distance between p1{d, . . . , 1{dq

and p2{d, . . . , 2{d, 0, . . . , 0q is 1 in Rd but only
a

1{d in the line spanned by the two points. Hence,
an accurate estimation of the projected measure ϑB “ ΠBpϑq may not translate to an accurate
estimation in the ambient space Rd. Here, we can use the dimension reduction method developed
by Li et al. (2015), which shows that if suffices to project the mixture to a special subspace B, such
that a unit L1-ball in B (L1 measured in Rd) is close to being an rOpd´1{2q L2-ball ( rO hides factors
depending only on k and ϵ, but not d).

Lemma 51 (Li et al., 2015) There is an algorithm that requires polypd, k, 1ϵ q many 1-,2- snapshots
to construct a subspace B (dimpBq ď k) with the following useful properties:
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1. Suppose tb1, b2, ¨ ¨ ¨ , bmu is an orthonormal basis of B where m “ dimpBq ď k (such a basis
can be produced by the above algorithm as well). For any i P rms, }bi}8 ď Opk3{2ϵ´2d´1{2q.

2. Suppose we can learn an approximation rϑB , supported on SpanpBq, of the projected mea-
sure ϑB “ ΠSpanpBqpϑq such that TranpϑB, rϑBq ď ϵ1 “ polyp1{k, ϵq (here L1 is measured
in Rd, not in the subspace) using N1pdq, N2pdq and NKpdq 1-, 2-, and K-snapshot sam-
ples. Then there is an algorithm for learning a mixture rϑ such that Tranpϑ, rϑq ď ϵ using
OpN1pd{ϵq ` d log d{ϵ3q, OpN2pd{ϵq ` Opk4d3 log n{ϵ6qq and OpNKpd{ϵqq 1-, 2-, and K-
snapshot samples respectively.

Proof [Proof of Theorem 6] In light of Lemma 51, we only need to show how to learn the projection
ϑB “ ΠSpanpBqpϑq using the algorithm developed in Section F.1.

First, we show how to translate a K-snapshots from ϑ to a K-snapshot in some new k-dimensional
mixture ϑnew (then we apply the algorithm in Section F.1 for dimension k). Let L “

řm
i“1 }bi}8.

So L ď Opk5{2ϵ´2d´1{2q. Let f : r´L,Ls Ñ r0, 1s defined as fpxq “ x
2mL ` 1

2m . For each
word in the original K-snapshot, say i P rds, we translate it to j with probability qi,j “ fpbj,iq,
for each j P rms, where bj,i denotes the ith coordinate of bj , and translate it into m ` 1 with
probability qi,m`1 “ 1 ´

řm
j“1 qi,j . Since we have

řm
j“1 fpbj,iq “ 1

2mL

řm
j“1 bj,i ` 1

2 , we know
that qi,1, qi,2, ¨ ¨ ¨ , qi,m`1 P r0, 1s and

řk`1
j“1 qi,j “ 1. So this is a well defined k-spike mixture

ϑnew and its K snapshots. Then we apply our learning algorithm A for dimension k to obtain some
ϑ1

new such that Tranpϑnew,ϑ
1
newq ď ϵ1 “ polyp1{k, ϵq with polypk, 1{ϵ1q “ polypk, 1{ϵq many

2k ´ 1-snapshots.
Next we can see ϑnew (in Rk) and ϑB (in SpanpBq) are related by an affine transform. For a

spike αi P Supppϑq, one can see that ΠBpαiq “
řm

j“1 ai,jbj , where ai,j “ xαi, bjy. αi produces a
new spike βi in ϑnew and the mapping is as follows: for each j P rks, we have

βi,j “

d
ÿ

t“1

αi,tfpbj,tq “

d
ÿ

t“1

αi,tp
bj,t
2mL

`
1

2m
q “

ai,j
2mL

`
1

2m

(βi,j denotes the jth coordinate of βi). So ai,j “ 2mLpβi,j ´ 1
2mq and gpxq “ 2mLx ´ L is the

affine transformation. Now we can translate ϑ1
new into a mixture in SpanpBq by applying gp.q in

each coordinate of each βi P Supppϑ1
newq, and obtain an estimation of ϑB , say ϑ1

B .
It remains to show Tranpϑ1

B,ϑBq ď ϵ1. If we let TranB denote the transportation distance
in SpanpBq (where if a “

řk
j“1 ajbj , c “

řk
j“1 cjbj then TranBpa, cq “

řk
j“1 |aj ´ cj |). Then

TranBpϑ1
B,ϑBq ď 2mLTranpϑ1

new,ϑnewq “ polypϵ, 1k q{
?
d. Hence, we have

Tranpϑ1
B,ϑBq ď dmax

i
}bi}8 TranBpϑ1

B,ϑBq ď ϵ1.

where the first inequality holds since Tranpa, cq “ }
řk

j“1paj ´cjqbj}1 ď dmaxi }bi}8

řk
j“1paj ´

cjq for any two point a, c P SpanpBq.

Appendix G. Applications to Gaussian Mixture Learning

In this section, we show how to leverage our results for sparse moment problem to obtain improved
algorithms for learning Gaussian mixtures. We consider the following setting studied in Wu and
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Yang (2020); Doss et al. (2020). A k-Gaussian mixture in Rd can be parameterised as ϑN “

pα,w,Σq. Here, α “ tα1,α2, ¨ ¨ ¨ ,αku and w “ tw1, w2, ¨ ¨ ¨ , wku P ∆k´1 where αi P Rd

specifies the mean of ith component and wi P r0, 1s is the corresponding weight. Σ P Rdˆd is
the common covariance matrix for all k mixture components and we assume that Σ is known in
advance. We further assume }αi}2 ď 1 and the maximal eigenvalue }Σ}2 is bounded by a constant.
For k-Gaussian mixture ϑN “ pα,w,Σq, each observation is distributed as

ϑN „

k
ÿ

i“1

wiNpαi,Σq.

We consider the parameter learning problem, that is, to learn the parameter α and w given known
covariance matrix Σ and a set of i.i.d. samples from ϑN . The model is also called Gaussian location
mixture model (Wu and Yang, 2020; Doss et al., 2020). 5

G.1. Efficient Algorithm for d “ 1

In the 1-dimensional case, we denote the known variance by σ which is upper bounded by some
constant. As shown by Wu and Yang (2020), the moments of Gaussian mixture have a close con-
nection with the moments of corresponding discrete distributions ϑ “ pα,wq. For x „ Npµ, 1q,
we have ErHtpxqs “ µt for Hermite polynomial Htpxq which is defined as

Htpxq “

t
ÿ

i“0

ht,ix
i “ t!

t t
2

u
ÿ

j“0

p´1{2qj

j!pt ´ 2jq!
xt´2j . (6)

For 1-dimensional Gaussian mixture ϑN “ pα,w, σq with variance σ, the tth moment of the
discrete distribution ϑ “ pα,wq satisfies

Mtpϑq “ Ex„ϑN

«

t
ÿ

i“0

ht,iσ
t´ixi

ff

.

The following lemma guarantees the performance of estimating the moment by sampling.

Lemma 52 (Lemma 5 of Wu and Yang (2020), restated) Let x1, ¨ ¨ ¨ , xn „ ϑN be n independent
samples.

ĂMtpϑq “
1

n

n
ÿ

j“1

«

t
ÿ

i“0

ht,iσ
t´ixij

ff

is an unbiased estimator for Mtpϑq, and the variance of this estimator can be bounded by

VarrĂMtpϑqs ď
1

n
pσtqOptq.

Thus we can compute the moment of the original distribution and use our Algorithm 1 for
recovering the parameter of ϑ. More concretely, we can replace the last two lines (an SDP) in
Algorithm 2 of Wu and Yang (2020) by our Algorithm 1, and obtain the following theorem. The
post-sampling time is improved from from Opk2ωq in Wu and Yang (2020) to Opk2q.

5. Wu and Yang (2020) also studied the problem with unknown Σ. We leave it as a future direction.
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Theorem 53 Let ϑN be an arbitrary k-Gaussian mixture over R with means α1, ¨ ¨ ¨ , αn and
known variance σ bounded by some constant. There is an algorithm that can learn the parameter
ϑ “ pα,wq within transportation distance Opϵq, with probability at least 0.99, using pk{ϵqOpkq

samples from the mixture ϑN . Moreover, once we obtain the estimation of the moments of ϑN , our
algorithm only uses Opk2q arithmetic operations.

Proof Let c be the constant to be determined. With n “ pk{ϵqck samples, the variance of the
empirical moment can be bounded by

VarrM 1
tpϑqs ď

1

pk{ϵqck
¨ kOpkq ď pϵ{kqΩpkq

where the first inequality holds due to Lemma 52 and σ is bounded by a constant, and the second
inequality holds by selecting a large enough constant c ą 0. According to Chebyshev’s inequality,
for each t, with probability at least 1 ´ 0.01k´2,

|M 1
tpϑq ´ Mtpϑq| ď 0.1k ¨ pϵ{kqΩpkq ď pϵ{kqΩpkq.

By taking union bound, the probability that the above inequality holds for all 0 ď t ď 2k ´ 1 is
greater than 0.99. We can conclude the result by applying Theorem 3 directly.

Remark 54 (Connection between heat equations and Gaussian mixtures) Consider the heat equa-
tion

Bupx, tq

Bt
“ ∆xupx, tq, where ∆xu “

ÿ

i

B2u

Bx2i
.

Suppose at t “ 0, upx, 0q is a k-spike distribution upx, 0q “
řk

i“1wiδαipxq. It is well known that
for t ą 0, upx, tq “

řk
i“1wiNpαi, 2tq (see e.g.,Ang et al. (2002); Moitra and Valiant (2010)).

Hence, if we know up., tq at time t ą 0, we can compute the moments and recovering the heat
source up., 0q at t “ 0 is equivalent to recovering the means of the Gaussian mixture components
(i.e., the spikes) from the moment information, hence can be solved by the moment problem.

G.2. Efficient Algorithm for d ą 1

For higher dimensional Gaussian mixture, we can reduce the problem to learning the discrete mix-
ture ϑ “ pα,wq, and leverage Algorithm 3 to solve the problem. Assume the locations of all
Gaussians are in the unit ball. The error can be bounded easily according to Theorem 5.

Firstly, as shown in Doss et al. (2020), one can use SVD to reduce a d-dimensions problem
to a k-dimension problem using polyp1{ϵ, d, kq samples. Thus, we only need to consider settings
with d ď k. Similar to the 1d case, we can transform the problem of learning Gaussian mixture
ϑN “ pα,w,Σq to the problem of learning the discrete mixture ϑ “ pα,wq. In particular, as we
show below, we can estimate the moments of the projection of ϑ from the samples. After obtaining
the noisy moment information, we can apply Algorithm 3 to recover the parameter pα,wq. We
mention that we need to modify Algorithm 3 slightly: we change to domain from ∆d´1 to the unit
ball (it suffices to change the projected domain in Line 16 in Algorithm 3 from the simplex to the
unit ball). We note this does not affect the proof to Theorem 5 since it only requires the projected
space to be a convex domain.
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The remaining task is to show how to estimate the projected moments for 1d and 2d projections.
To estimate the moments of 1-dimensional projection, we can use the estimator in the last section.
In particular, for the projected measure Πrpϑq where r is an arbitrary unit vector, the tth moment
can be computed by

MtpΠrpϑqq “ Ex„ϑN

«

t
ÿ

i“0

ht,ipr
JΣrqt´iprJxqi

ff

.

We can use sample average to estimate MtpΠrpϑqq, and we denote the estimation as ĂMtpΠrpϑqq.
Now, we consider the problem of estimating the moments for 2-dimensional projection along

r1 and r2. First, we compute the vector r1
2 “ r2 ´

rJ
1 Σr2

rJ
1 Σr1

r1. According to Gram–Schmidt process,

r1
2 is Σ-orthogonal to r1, i.e., rJ

1 Σr
1
2 “ 0. Moreover, rJ

1 x and r1J
2 x are independent Gaussian dis-

tributions for variable x „ Np0,Σq. Note that for independent Gaussian variables x1 „ Npµ1, 1q

and x2 „ Npµ2, 1q, we have ErHt1px1qHt2px2qs “ ErHt1px1qsErHt2px2qs “ µt1
1 µ

t2
2 , where H is

the Hermite polynomial defined in (6). As a result, the projected moments along r1 and r1
2 can be

computed by

Mpt1,t2qpΠrr1,r1
2spϑqq “ Ex„ϑN

«

t1
ÿ

i1“0

t2
ÿ

i2“0

ht1,i1ht2,i2prJ
1 Σr1qt1´i1pr1J

2 Σr1
2qt2´i2prJ

1 xqi1pr1J
2 xqi2

ff

.

Moreover, the projected moments along r1 and r2 can be computed by

Mpt1,t2qpΠrr1,r2spϑqq “

t2
ÿ

i“0

ˆ

t2
i

˙ˆ

rJ
1 Σr2

rJ
1 Σr1

˙i

Mpt1`i,t2´iqpΠrr1,r1
2spϑqq

since rJ
2 x “ r1J

2 x `
rJ
1 Σr2

rJ
1 Σr1

rJ
1 x which implies prJ

2 xqt2 “
řt2

i“0

`

t2
i

˘

´

rJ
1 Σr2

rJ
1 Σr1

¯i
prJ

1 xqipr1J
2 xqt2´i.

We use ĂMpt1,t2qpΠrr1,r2spϑqq to denote the sample average estimation of Mpt1,t2qpΠrr1,r2spϑqq. We
are ready to state the performance guarantee:
Proof [Proof of Theorem 7] We first consider the problems of dimension d ď k. The only thing we
need to show is that the above estimators ĂMtpΠrpϑqq and ĂMtpΠr1,r2pϑqq have sufficient accuracy
with high probability using n “ pk{ϵqΘpkq samples. Clearly, both estimators are unbiased. So it is
sufficient to bound the variance of the estimators.

For 1-dimensional projected moments, we can use the same argument as Theorem 53. In par-
ticular, we can show that with probability at least 0.999, for all 0 ď t ď 2k ´ 1,

|ĂMtpΠrpϑqq ´ MtpΠrpϑqq| ď pk{ϵqOpkq.

For 2-dimensional projected moments, we first bound the variance of the estimator along r1 and
r1
2. With the same argument as Lemma 52, we have

VarrĂMpt1,t2qpΠrr1,r1
2spϑqqs ď pϵ{kqΩpkq.

for all t1 ` t2 ď 2k with probability at lest 0.999. Moreover, since we randomly chooses the same
r1 over a sphere of radius Θp1q in Line 6 of Algorithm 3, we have rJ

1 Σr1 ě Ωp
µ
k2

}r1}22}Σ}2q with
probability at least 1 ´ µ. In this case, we have

rJ
1 Σr2

rJ
1 Σr1

ď
}r1}2}Σ}2}r2}

Ωp
µ
k2

}r1}22}Σ}2q
ď Opk2{µq
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where the last inequality holds because r1 and r2 are of norm Θp1q. Since
a

Varrx ` ys ď
a

Varrxs `
a

Varrys for any random variables x and y,

b

VarrĂMpt1,t2qpΠrr1,r2spϑqqs ď

t2
ÿ

i“0

ˆ

t2
i

˙ˆ

rJ
1 Σr2

rJ
1 Σr1

˙ib

VarrĂMpt1`i,t2´iqpΠrr1,r1
2spϑqqs.

As a result, by choosing µ “ 0.001, we have

VarrĂMpt1,t2qpΠrr1,r2spϑqqs ď pϵ{kqΩpkq

holds for all r2 with probability at least 0.999. Conditioning on that this event holds, according
Chebyshev’s inequality and a union bound, with probability at least 1´ 0.001d, for all 0 ď t1, t2 ď

2k ´ 1,

|ĂMpt1,t2qpΠrr1,r2spϑqqs ´ Mpt1,t2qpΠrr1,r2spϑqqs| ď pϵ{kqΩpkq.

Recall that the algorithm uses 1d projection for one r, 2d projection for one r1 and d different r2
and the algorithm succeeds with high probability statement for random r. Hence, by union bound
over all these events, the projected moment estimations have sufficient accuracy with a probability
at least 0.995.

If the dimension d ą k, we can apply the dimension reduction in Doss et al. (2020), which
requires an extra sample complexity of polyp1{ϵ, d, kq. The total sample complexity is pk{ϵqOpkq `

polyp1{ϵ, d, kq.

Finally, we discuss the running time during the sampling phase and post-sampling phase. The
dimension reduction requires polyp1{ϵ, d, kq samples and Opd3q time (Doss et al., 2020). For the
recovery problem in dimension k, each 1-d or 2-d moment oracle can be computed in Opnk3q time
where n “ pk{ϵqOpkq is the number of samples. Since we only require Opkq moment oracles, the
sampling time can be bounded by Opnk4q. This improves the Opn5{4 polypkqq sampling time in
Doss et al. (2020) (their algorithm requires 1d projections to Opn1{4q many directions. For the post-
sampling running time, our Algorithm 3 runs in time Opk4q (since d ď k by dimension reduction).
This improves the Opn1{2 polypkqq post-sampling time in Doss et al. (2020).

Appendix H. Other Related Work

The problem we study can be seen as a sparse version of the classic moment problem in which our
goal is to invert the mapping that takes a measure to the sequences of moments (Schmüdgen, 2017;
Lasserre, 2009). When the measure is supported on a finite interval, the problem is known as the
Hausdorff moment problem.

Learning statistical mixture models has been studied extensively for the past two decades. A
central problem in this area was the problem of learning a mixture of high-dimensional Gaussians,
even robustly (Dasgupta, 1999; Dasgupta and Schulman, 2007; Arora and Kannan, 2005; Vem-
pala and Wang, 2002; Kannan et al., 2008; Achlioptas and McSherry, 2005; Feldman et al., 2006;
Brubaker and Vempala, 2008; Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant, 2010;
Liu and Moitra, 2021; Bakshi et al., 2022; Wu and Yang, 2020; Doss et al., 2020). Many other
structured mixture models have also been studied (see e.g., Kearns et al. (1994); Cryan et al. (2001);
Batu et al. (2004); Mossel and Roch (2005); Dasgupta et al. (2005); Feldman et al. (2008); Kannan

55



FAN LI

et al. (2008); Chaudhuri and Rao (2008); Daskalakis et al. (2012); Liu and Moitra (2018)). Our
problem is closely related to topic models which have also been studied extensively recently (Arora
et al., 2012; Anandkumar et al., 2012a,b; Arora et al., 2018). Most work make certain assumptions
on the structure of the mixture, such as the pure topics being separated, Dirichlet prior, the existence
of anchor words, or certain rank conditions. Some assumptions (such as Arora et al. (2012); Anand-
kumar et al. (2012a)) allow one to use documents of constant length (independent of the number of
pure topics k and the desired accuracy ϵ) for recovering all topics.

Our problem is also related to the super-resolution problem in which each measurement takes
the form vℓ “

ş

e2πℓtdϑptq ` ξℓ where ξℓ is the noise of the measurement. We can observe the
first few vℓ for |ℓ| ď K where K is called cutoff frequency, and the goal is to recover the original
signal ϑ. There is a long history of the estimation problem. The noiseless version can be solved
by Prony’s method (de Prony, 1795), ESPRIT algorithm (Roy and Kailath, 1989) or matrix pencil
method (Hua and Sarkar, 1990), if K ě k (i.e., we have K “ 2k ` 1 measurements). The noisy
case has also been studied extensively and a central goal is to understand the relations between the
cutoff frequency, the size of measure noises and minimum separation (Donoho, 1992; Candès and
Fernandez-Granda, 2014, 2012; Moitra, 2015; Huang and Kakade, 2015; Chen et al., 2016). Various
properties, such as the condition number of the Vandermonde matrix, also play essential roles in this
line of study (Moitra, 2015). The relation between the Vandermonde matrix and Schur polynomial
is also exploited in Chen et al. (2016).
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