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Abstract
In the problem of quantum channel certification, we have black box access to a quantum process
and would like to decide if this process matches some predefined specification or is ε-far from this
specification. The objective is to achieve this task while minimizing the number of times the black
box is used. Here, we focus on optimal incoherent strategies for two relevant extreme cases of
channel certification. The first one is when the predefined specification is a unitary channel, e.g., a
gate in a quantum circuit. In this case, we show that testing whether the black box is described by
a fixed unitary operator in dimension d or ε-far from it in the trace norm requires Θ(d/ε2) uses of
the black box. The second setting we consider is when the predefined specification is a completely
depolarizing channel with input dimension din and output dimension dout. In this case, we prove
that, in the non-adaptive setting, Θ̃(d2ind

1.5
out /ε

2) uses of the channel are necessary and sufficient to
verify whether it is equal to the depolarizing channel or ε-far from it in the diamond norm. Finally,
we prove a lower bound of Ω(d2indout/ε

2) for this problem in the adaptive setting. Note that the
special case din = 1 corresponds to the well-studied quantum state certification problem.
Keywords: Quantum testing, testing identity, quantum channel, adaptive strategies.

1. Introduction

We consider the problem of quantum channel certification which consists in verifying whether a
quantum process to which we have black box access behaves as intended. A valid process in quan-
tum theory is modeled by a quantum channel. A quantum channel with input dimension din and
output dimension dout is a linear map Cdin×din → Cdout×dout satisfying some positivity and nor-
malization conditions (see Section 2 for details). Given a complete description of a known quantum
channel N0 and N copies of an unknown quantum channel N that can be either N0 or ε-far from
it, at each step 1 ≤ t ≤ N , we can choose an input quantum state, send it through the unknown
process N then measure the output quantum state. After collecting a sufficient amount of classical
observations, our goal is to decide in which case is the quantum channel N with high probability
and while minimizing N . We also call this problem testing identity to the quantum channel N0.

This testing task is important for many reasons. Firstly, the building blocks of a quantum com-
putation are unitary gates. It is thus important to understand the complexity of checking that an
unknown channel implements a given gate as specified. Secondly, quantum channel certification
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is the natural generalization of the quantum state certification. Indeed, if the channels are con-
stant quantum states, then testing them becomes equivalent to testing those states. It might seem
at first sight that using the Choi–Jamiołkowski isomorphism, quantum channel certification can be
obtained by applying quantum state certification algorithms to the corresponding Choi states. How-
ever, there are at least two reasons this is not true: first, in models where an auxilliary system is
not allowed the Choi state cannot easily be prepared from a black box implementing the channel
and second, the natural notion of distance for channels does not correspond to the trace distance
between Choi states. Finally, quantum process tomography, the problem of learning completely a
channel in the diamond norm is costly (Surawy-Stepney et al., 2022; Oufkir, 2023), and our hope is
that certification can be done with fewer copies than full tomography.

In this paper, we focus on two extreme cases, N0(ρ) = NU (ρ) = UρU † is a unitary channel
whereU is a unitary matrix and N0(ρ) = D(ρ) = Tr(ρ) I

dout
is the completely depolarizing channel.

Contribution. We propose an incoherent ancilla-free testing algorithm for testing identity to a
fixed unitary channel NU in the trace distance using O(d/ε2) measurements (here din = dout = d).
The tester chooses a random input state and measures with the corresponding POVM conjugated
by the unitary U . This result is stated in Thm. 1. The standard inequality relating the 1-norm of a
Choi state and the diamond norm of the channel only implies an upper bound O(d2/ε2). We ob-
tain the quadratic improvement in the dimension dependency by proving a new inequality between
the entanglement fidelity and the trace distance to the identity channel (Lem. 10). Moreover, we
establish a matching lower bound of Ω(d/ε2) for testing identity to a fixed unitary channel in the
trace distance. This lower bound applies even for ancilla-assisted strategies. For this, we construct
a well-chosen distribution of channels ε-far from the identity channel. After a sufficient number
of measurements, the observations under the two hypotheses should be distinguishable, i.e., the
(Kullback-Leibler) KL divergence is Ω(1). However, we can show that for this particular choice
of distribution over channels, any adaptive tester can only increase the KL divergence by at most
O(ε2/d) after a measurement no matter the dependence on the previous observations. The lower
bound is stated and proved in Thm. 11.
Concerning the certification of the completely depolarizing channel D(ρ) = Tr(ρ) I

dout
, we pro-

pose an incoherent ancilla-free strategy to distinguish between N = D and N is ε-far from it in
the diamond distance using O(d2ind

1.5
out/ε

2) measurements (see Thm. 5). For this we show how to
reduce this certification problem to the certification of the maximally mixed state (testing mixed-
ness) I

dout
. We choose the input state |ϕ⟩⟨ϕ| randomly and we compare the 2-norm between the

output state N (|ϕ⟩⟨ϕ|) and the maximally mixed state I
dout

. We show that with at least a proba-
bility Ω(1), we have Y = ∥N (|ϕ⟩⟨ϕ|) − I/dout∥22 ≥ ε2/(4doutd

2
in). This inequality is sufficient

to obtain the required complexity, however, it requires some work to be proved. First, we show a
similar inequality in expectation using Weingarten calculus. Then we control the variance of the
random variable Y carefully in a way that this upper bound depends on the actual difficulty of the
problem, mainly the expectation of Y and the diamond distance between N and D. Next, we obtain
the anti-concentration inequality using the Paley-Zygmund inequality.
On the other hand, we establish a lower bound of Ω

(
d2ind

1.5
out/(log(dindout/ε)

2ε2)
)

for testing iden-
tity to the depolarizing channel with non-adaptive strategies (Thm. 6). For this, we construct a
random quantum channel whose output states are almost O(ε/din)-close (in the 1-norm) to the max-
imally mixed state I

dout
except for a neighborhood of an input state chosen randomly whose output

is ε-far from I
dout

in the 1-norm. Then we use LeCam’s method (LeCam, 1973) as in (Bubeck et al.,
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Testing identity to N0
Lower bound Upper bound

Ancilla-assisted Ancilla-free

N0 = NU Ω
(

d
ε2

)
, Thm. 1 O

(
d
ε2

)
, Thm. 1

adaptive strategies in trace distance dTr
N0 = NU Ω

(
d
ε2

)
, Thm. 1 O

(
d
ε4

)
, Thm. 1

adaptive strategies in diamond distance d⋄
N0 = D

Ω
(

d2ind
1.5
out

log(dindout/ε)2ε2

)
, Thm. 6 O

(
d2ind

1.5
out

ε2

)
, Thm. 5

non-adaptive strategies
N0 = D

Ω
(
d2indout+d1.5out

ε2

)
, Thm. 7 O

(
d2ind

1.5
out

ε2

)
, Thm. 5

adaptive strategies

Table 1: Lower and upper bounds for testing identity of quantum channels in the diamond and trace
distances using incoherent strategies. NU is the unitary quantum channel NU (ρ) = UρU †

and D is the depolarizing channel D(ρ) = Tr(ρ) I
dout

. Our proposed algorithms (upper
bounds) are ancilla-free while the lower bounds hold even for ancilla-assisted algorithms.

2020) with some differences. First, we need to condition on the event that the input states chosen
by the testing algorithm have very small overlaps with the best input state. This conditioning is the
main reason for the additional logarithmic factor we obtain in the lower bound. Next, with a con-
struction using random matrices with Gaussian entries rather than Haar distributed unitaries, we can
invoke hypercontractivity (Aubrun and Szarek, 2017, Proposition 5.48) which allows us to control
all the moments once we upper bound the second moment. In the special case din = 1, this recovers
a result of (Bubeck et al., 2020) while significantly simplifying their analysis. Furthermore, a lower
bound of Ω(d2indout/ε

2) is proved for adaptive strategies (Thm. 7) using the same construction. In
this proof, we use Kullback-Leibler divergence instead of the Total-Variation distance. We refer to
Table 1 for a summary of these results.

Related work. Testing identity to a unitary channel can be seen as a generalization of the usual
testing identity problem for discrete distributions (Valiant and Valiant, 2016) and quantum states
(Chen et al., 2022f). However, in the worst-case setting, testing identity to the identity channel
requires Ω(d/ε2) measurements in contrast to testing identity to a rank 1 quantum state or a Dirac
distribution which can be done with only O(1/ε2) measurements/samples. Also, in the definition
of testing identity to a unitary channel problem, we don’t require the unknown tested channel to be
unitary. In this latter setting, efficient tests can be designed easily if an auxiliary system is allowed.
This can be found along with other tests on properties of unitary channels in (Wang, 2011). We also
refer to the survey (Montanaro and de Wolf, 2013) for other examples of tests on unitary channels.
Since a unitary channel has a Choi rank equal to 1 and the depolarizing channel has a Choi rank
equal to dindout, this work is a first step to obtain instance-optimal quantum channel certification
as for the classical case (Valiant and Valiant, 2016) or quantum states (Chen et al., 2022f). On the
other hand, testing identity to the completely depolarizing channel is a generalization of identity
testing of distributions (Diakonikolas et al., 2017) and testing mixedness of states (Bubeck et al.,
2020; Chen et al., 2022d). In particular, if the input dimension is din = 1, the channels are constant
and the problem reduces to a testing mixedness of states of dimension dout. In this case, we recover
the optimal complexity of (Bubeck et al., 2020; Chen et al., 2022d). Another noteworthy work is
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unitarity estimation of (Chen et al., 2022a). In this work, it is shown that ancilla-free non-adaptive
strategies could estimate Tr(J 2

N ) to within ε using O(d0.5/ε2) measurements where JN is the Choi
state of the channel N . In particular, this estimation can be used to distinguish between N = NU

for which Tr(J 2
N ) = 1 and N = D for which Tr(J 2

N ) = 1/d2. A matching lower bound (in
d) is given for adaptive strategies in (Chen et al., 2022a) improving the previous lower bound of
(Chen et al., 2022c). This complexity may seem to contradict our results but this is not the case.
Indeed, such a test cannot be used for testing identity to a fixed unitary channel for instance since we
can have two unitary channels that are ε-far in the diamond distance. Finally, we note that testing
problems for states were also studied for the class of coherent or entangled strategies where one can
use arbitrary entangled measurements: see e.g., (Bădescu et al., 2019) for state certification in this
setting. In this article, we focus on incoherent strategies where entangled inputs to the different uses
of the channel or entanglement measurements are not allowed.

2. Preliminaries

We consider quantum channels of input dimension din and output dimension dout. We adopt the bra-
ket notation: a column vector is denoted |ϕ⟩ and its adjoint is denoted ⟨ϕ| = |ϕ⟩†. With this notation,
⟨ϕ|ψ⟩ is the dot product of the vectors ϕ and ψ and, for a unit vector |ϕ⟩ ∈ Sd, |ϕ⟩⟨ϕ| is the projector
on the space spanned by ϕ. The canonical basis {ei}i∈[d] is denoted {|i⟩}i∈[d] := {|ei⟩}i∈[d]. A
quantum state is a positive semi-definite Hermitian matrix of trace 1. The fidelity between two
quantum states is defined F(ρ, σ) =

(
Tr
√√

ρσ
√
ρ
)2. It is symmetric and admits the simpler

expression if one of the quantum states ρ or σ has rank 1: F(ρ, |ϕ⟩⟨ϕ|) = ⟨ϕ| ρ |ϕ⟩. A (din, dout)-
dimensional quantum channel is a map N : Cdin×din → Cdout×dout of the form N (ρ) =

∑
k AkρA

†
k

(Kraus decomposition) where the Kraus operators {Ak}k satisfy
∑

k A
†
kAk = I. For instance, the

identity map idd(ρ) = ρ admits the Kraus operator {Id} and the completely depolarizing channel
D(ρ) = Tr(ρ) I

dout
admits the Kraus operators

{
1√
dout

|i⟩ ⟨j|
}
j∈[din],i∈[dout]

. Given a unitary matrix

U , the corresponding unitary channel NU (ρ) = UρU † admits the Kraus operator {U}. We denote
by Haar(d) the Haar probability measure over the compact group of unitary d × d matrices. A
Haar random vector is then any column vector of a Haar distributed unitary.

We define the trace distance between two quantum channels N and M as the trace norm of their
difference: dTr(N ,M) := maxρ ∥(N −M)(ρ)∥1 where the maximization is over quantum states

and the Schatten p-norm of a matrix M is defined as ∥M∥pp = Tr
(√

M †M
p
)

. In some situations,
it can be helpful to allow an auxiliary system and apply the identity on it. In this case, we obtain
the diamond distance which is defined formally as d⋄(N ,M) := maxρ ∥idd ⊗ (N − M)(ρ)∥1
where the maximization is over quantum states ρ ∈ Cd×d ⊗ Cdin×din . Note that because of the
Schmidt decomposition we can always suppose that d = din. The trace/diamond distance can be
thought of as a worst-case distance, while we can define an average case distance by the Schatten
2-norm between the corresponding Choi states. We define the Choi state of the channel N as
JN = id⊗N (|Ψ⟩⟨Ψ|) where |Ψ⟩ = 1√

din

∑din
i=1 |i⟩⊗|i⟩ is the maximally entangled state. The map

J : N 7→ id ⊗ N (|Ψ⟩⟨Ψ|) is an isomorphism called the Choi–Jamiołkowski isomorphism (Choi,
1975; Jamiołkowski, 1972). Note that for any quantum channel N , JN is positive semi-definite and
satisfy Tr2(JN ) = I

din
. Moreover, any K satisfying these conditions is called a Choi state and we

can construct a quantum channel N such that JN = K.
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We consider the problem of testing identity to a fixed channel. Given a fixed quantum channel
N0 and a precision parameter ε > 0, the goal is to test whether an unknown quantum channel N is
exactly N0 or ε-far from it with at least a probability 2/3:

H0 : N = N0 vs. H1 : dist(N ,N0) ≥ ε

where dist ∈ {d⋄, dTr}. H0 is called the null hypothesis whileH1 is called the alternate hypothesis.
An algorithm A is 1/3-correct for this problem if it outputsH1 whileH0 is true with a probability at
most 1/3 and outputs H0 while H1 is true with a probability at most 1/3. If 0 < dist(N ,N0) < ε,
the algorithm A can output any hypothesis. The natural figure of merit for this test is the diamond
(resp. trace) distance because it characterizes the minimal error probability to distinguish between
two quantum channels when auxiliary systems are allowed (resp. not allowed) (Watrous, 2018).
A testing algorithm can only extract classical information from the unknown quantum channel N
by performing a measurement on the output state. In this article we only consider incoherent strate-
gies. That is, the testing algorithm can only use one copy of the channel at each step. In other
words, for a (din, dout) dimensional channel, the testing algorithm could only use din dimensional
input states and dout dimensional measurement devices. Precisely, a d-dimensional measurement is
defined by a POVM (positive operator-valued measure) with a finite number of elements: this is a
set of positive semi-definite matrices M = {Mx}x∈X acting on the Hilbert space Cd and satisfying∑

x∈X Mx = I. Each element Mx in the POVM M is associated with the outcome x ∈ X . The
tuple {Tr(ρMx)}x∈X is non-negative and sums to 1: it thus defines a probability. Born’s rule (Born,
1926) says that the probability that the measurement on a quantum state ρ using the POVM M will
output x is exactly Tr(ρMx). Depending on whether an auxiliary system is allowed to be used, we
distinguish two types of incoherent strategies.

• Ancilla-free strategies. At each step t, the learner would choose an input din-dimensional
state ρt and a dout-dimensional measurement device Mt = {M t

x}x∈Xt . It thus sees the
outcome xt ∈ Xt with a probability Tr(N (ρt)M

t
xt
). If the choice of the state ρt and mea-

surement device Mt can depend on the previous observations (x1, . . . , xt−1) the strategy is
called adaptive, otherwise it is called non-adaptive (see Fig. 1 for an illustration).

• Ancilla-assisted strategies. At each step t, the learner would choose an input danc × din-
dimensional state ρt ∈ Cdanc×danc ⊗ Cdin×din (for some arbitrary danc) and a danc × dout-
dimensional measurement device Mt = {M t

x}x∈Xt It thus sees the outcome xt ∈ Xt with
a probability Tr(iddanc ⊗ N (ρt)M

t
xt
). If the choice of the state ρt and measurement device

Mt can depend on the previous observations (x1, . . . , xt−1) the strategy is called adaptive,
otherwise it is called non-adaptive (see Fig. 2 for an illustration).

Note that we can see an ancilla-free strategy as a special case of an ancilla-assisted strategy
with danc = 1. But it turns out that ancilla-assisted strategies have an advantage over ancilla-free
strategies for some problems e.g., (Chen et al., 2022b,c). However, in this article, we show that
ancilla-free strategies suffice to achieve the optimal complexity for testing identity to a fixed unitary
channel or to the depolarizing channel.

3. Testing identity to a unitary channel

In this section, we focus on the problem of testing identity to a fixed unitary channel in the diamond
and trace distances. Given a fixed unitary U and a precision parameter ε > 0, the goal is to

5
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M1

ρ1 N x1

M2

ρ2 N x2
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ρN N xN
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ρ1 N x1

x1
−→

Mx1
2

ρx1
2 N x2

. . .

x1, . . . , xN−1
−−−−−−−−−→

Mx<N

N

ρ
x<N

N N xN

Figure 1: Illustration of an ancilla-free incoherent non-adaptive (left) and adaptive (right) strategies
for testing identity of quantum channels. The observations (x1, . . . , xN ) are then pro-
cessed with a classical algorithm to answer H0 or H1.

distinguish between the hypotheses:

H0 : N = NU = U · U † vs. H1 : dist(N ,NU ) ≥ ε

with at least a probability 2/3 where dist ∈ {d⋄, dTr}. Since we consider a unitary channel, the
input and output dimensions should be equal din = dout = d.
Reduction to the case U = I. Knowing the unitary channel NU is equivalent to knowing U . We
can thus reduce every testing identity to NU to testing identity to NI = idd by conjugating the
measurement device by U . This is possible because the trace/diamond distance is unitary invariant:
dist(N ,NU ) = dist(U †NU, id) and Tr(U †N (ρ)UM) = Tr(N (ρ)UMU †) for all ρ andM . From
now on, we only consider the case U = I and we call this particular testing problem to NI = idd
simply “testing identity to identity”.
Given the nature of the diamond and trace distances, under the alternate hypothesis, a channel
N could be equal to the identity channel except on a neighbourhood of some state. In addition,
this state is unknown to the learner. When the algorithm is allowed to use an auxiliary system, it
can prepare the Choi state JN of the channel N (which essentially captures everything about the
channel) by taking as input the maximally entangled state |Ψ⟩⟨Ψ|. Under the null hypothesis H0,
the Choi state is exactly Jid = id⊗ id(|Ψ⟩⟨Ψ|) = |Ψ⟩⟨Ψ| while under the alternate hypothesis H1,
the Choi state JN has a fidelity with |Ψ⟩⟨Ψ| satisfying:

Tr(id⊗N (|Ψ⟩⟨Ψ|) |Ψ⟩⟨Ψ|) = F(JN , |Ψ⟩⟨Ψ|) ≤ 1− 1

4
∥JN − Jid∥21 ≤ 1− d⋄(N , id)2

4d2

where we use a Fuchs–van de Graaf inequality (Fuchs and Van De Graaf, 1999) and the standard
inequality relating the diamond norm between two channels and the trace norm between their cor-
responding Choi states: ∥JN − JM∥1 ≥ d⋄(N ,M)

d (e.g., Jenčová and Plávala (2016)). Thus, a
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ρ1 M1 x1
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ρx1
2 Mx1
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. . .

x1, . . . , xN−1
−−−−−−−−−→

ρ
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N Mx<N

N
xN

N

Figure 2: Illustration of an ancilla-assisted incoherent non-adaptive (left) and adaptive (right) strate-
gies for testing identity of quantum channels. The observations (x1, . . . , xN ) are then
processed with a classical algorithm to answer H0 or H1.

measurement using the POVM MΨ = {|Ψ⟩⟨Ψ| , I − |Ψ⟩⟨Ψ|} can distinguish between the two
situations. However, if the tester is not allowed to use an auxiliary system it can neither prepare
the Choi state JN nor measure using the POVM MΨ. Instead, we use a random d-dimensional
rank-1 input state. Indeed, this choice is natural because the expected fidelity between the input
state |ϕ⟩⟨ϕ| and the output state N (|ϕ⟩⟨ϕ|) can be easily related to the fidelity between Choi states:
E|ϕ⟩∼Haar [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|))] = 1+d F(JN ,|Ψ⟩⟨Ψ|)

1+d (see Lem. 8 for a proof). This Lemma is
well known because it relates the average fidelity E|ϕ⟩∼Haar [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|))] and the entan-
glement fidelity F(JN , |Ψ⟩⟨Ψ|). If we measure using the measurement device Mϕ = {|ϕ⟩⟨ϕ| , I−
|ϕ⟩⟨ϕ|}, the error probability under H0 is 0, and under H1 is E|ϕ⟩∼Haar[⟨ϕ| N (|ϕ⟩⟨ϕ|) |ϕ⟩] =
E|ϕ⟩∼Haar[F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|)]. The algorithm is detailed in Alg. 1.

7
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Algorithm 1: Testing identity to identity in the diamond/trace distance
N = O(d/ε4) (replace with N = O(d/ε2) for testing in the trace distance).
for k = 1 : N do

Sample ϕk a Haar random vector in Sd.
Measure the output state N (|ϕk⟩⟨ϕk|) using the POVM {|ϕk⟩⟨ϕk| , I− |ϕk⟩⟨ϕk|}.
Observe Xk ∼ Bern(1− ⟨ϕk| N (|ϕk⟩⟨ϕk|) |ϕk⟩).

end for
if ∃k : Xk = 1 then return N is ε-far from id else return N = id.

We can upper bound the error probability under H1 using the well-known Lem. 8 and our Lem. 10:

E|ϕ⟩∼Haar [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|)] = 1 + d F(JN , |Ψ⟩⟨Ψ|)
1 + d

≤ 1− dTr(N , id)2

4(d+ 1)
≤ 1− d⋄(N , id)4

16(d+ 1)
.

Observe that the standard inequality ∥JN − JM∥1 ≥ d⋄(N ,M)
d implies:

Eϕ [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|)] ≤ 1 − d⋄(N ,id)2

4d(d+1) which has a better dependency in the diamond
distance but a worst dependency in the dimension d. This simple lemma (Lem. 10), which relates
the entanglement fidelity and the trace/diamond distance when one of the channels is unitary might
be of independent interest. To obtain a 1/3 correct algorithm it suffices to repeat the described
procedure using N = O(d/ε2) copies of |ϕ⟩⟨ϕ| in the case of trace distance and N = O(d/ε4)
copies of |ϕ⟩⟨ϕ| in the case of diamond distance. Indeed, for instance for the trace distance, the
probability of error under H1 can be controlled as follows:

PH1(error) = PH1(∀k ∈ [N ] : Xk = 0) =

N∏
k=1

PH1(Xk = 0)

≤
(
1− ε2

4(d+ 1)

)N

≤ exp

(
− ε2N

4(d+ 1)

)
≤ 1

3

for N = 4 log(3)(d+1)/ε2 = O(d/ε2) 1. A similar proof shows that O(d/ε4) copies are sufficient
to test in the diamond distance. This concludes the correctness of Alg. 1. A matching lower bound
of N = Ω

(
d
ε2

)
is proved in App. B. For this we construct a random quantum channel ε-far from

the identity channel in the trace/diamond distance but looks similar to the identity channel for the
majority of the input states. Then we compare the observations under the two hypotheses using
the KL divergence. Interestingly, the analogous classical problem, testing identity to identity has
a complexity Θ(d/ε). Thus, for this task, when going to the quantum case, the dependence on the
dimension d remains the same whereas the dependency in the precision parameter ε changes from
ε to ε2. In fact, obtaining the correct ε2 dependence is the main difficulty in this lower bound.
It requires a carefully chosen construction inspired by the quantum skew divergence (Audenaert,
2014) and a fine analysis using Weingarten calculus. We summarize the main result of this section
in the following theorem.

Theorem 1 There is an incoherent ancilla-free algorithm for testing identity to identity in the trace
distance using only N = O

(
d
ε2

)
measurements. Moreover, this algorithm can also solve the testing

1. All the logs of this paper are taken in base e and the information is measured in “nats”.
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identity to identity problem in the diamond distance using only N = O
(

d
ε4

)
measurements. On the

other hand, any incoherent adaptive ancilla-assisted strategy requires, in the worst case, a number
of measurements satisfying N = Ω

(
d
ε2

)
to distinguish between N = id and d⋄(N , id) > ε (or

dTr(N , id) > ε) with a probability at least 2/3.

4. Testing identity to the depolarizing channel

In this section, we move to study the problem of testing identity to the completely depolarizing
channel N0 = D in the diamond distance. Given a precision parameter ε > 0 and an unknown
quantum channel N , we would like to test whether H0 : N = D or H1 : d⋄(N ,D) ≥ ε with a
probability of error at most 1/3. If N = D, the tester should answer the null hypothesis H0 with a
probability at least 2/3 whereas if d⋄(N ,D) ≥ ε, the tester should answer the alternate hypothesis
H1 with a probability at least 2/3. The alternate condition means that

d⋄(N ,D) ≥ ε⇐⇒ ∃ |ϕ⟩ ∈ Sdin×din : ∥iddin ⊗N (|ϕ⟩⟨ϕ|)− iddin ⊗D(|ϕ⟩⟨ϕ|)∥1 ≥ ε.

This inequality implies a lower bound of the 1-norm between the Choi states: ∥JN − JD∥1 ≥ ε
din

.
The simplest idea would be to use this inequality and reduce the problem of testing channels to test-
ing states. Actually, this kind of reduction from channels to states has been used for quantum pro-
cess tomography (Surawy-Stepney et al., 2022) and shadow process tomography (Kunjummen et al.,
2021). The Choi state of the depolarizing channel D is JD = 1

din

∑din
i,j=1 |i⟩ ⟨j| ⊗ Tr(|i⟩ ⟨j|) I

dout
=

Idin⊗Idout
dindout

=
Idindout

dindout
, so by applying the previous inequality, we obtain for a quantum channel N

ε-far from the depolarizing channel D:
∥∥∥JN − I

dindout

∥∥∥
1
≥ ε

din
. Then, we can apply a reduction to

the testing mixedness of quantum states (Bubeck et al., 2020) to design an ancilla-assisted strategy
requiring O

(
d1.5in d1.5out

(ε/din)2

)
= O

(
d3.5in d1.5out

ε2

)
measurements since the dimension of the states JN and

I
dindout

is dindout and the precision parameter is ε
din

. However, this approach has two problems.
First, we need to be able to use an auxiliary system to prepare the Choi state JN , which is an addi-
tional resource. Next, the complexity O

(
d3.5in d1.5out

ε2

)
, as we shall see later, is not optimal. If one tries

to reduce to testing identity of states in the 2-norm (App. E) one obtains a slightly better bound but
still not optimal and requires using an auxiliary system.

Inspired by the testing identity to identity problem (Sec. 3), when we do not know one of the
best input states, we choose it to be random. Let |ϕ⟩ be a Haar random vector. If the input state is
|ϕ⟩⟨ϕ|, the output state under H0 is D(|ϕ⟩⟨ϕ|) = I

dout
and under H1 is N (|ϕ⟩⟨ϕ|). So it is natural to

ask what would be the distance between N (|ϕ⟩⟨ϕ|) and I
dout

. Note that in general, it is much easier
to compute the expectation of the 2-norms than the 1-norms. For this reason, we start by computing
the expectation of the 2-norm between N (|ϕ⟩⟨ϕ|) and I

dout
(see Lem. 13 for a proof).

Lemma 2 Let M = N −D and JM = id⊗M(|Ψ⟩⟨Ψ|). We have:

E|ϕ⟩∼Haar

(
∥M(|ϕ⟩⟨ϕ|)∥22

)
=

∥M(I)∥22 + d2in ∥JM∥22
din(din + 1)

≥ din
din + 1

∥JM∥22 .

We now need to relate the 2-norm between the Choi state of the channel N and the Choi state of
the depolarizing channel ∥JN − JD∥2 with the diamond distance between them d⋄(N ,D). This is
done in the following Lemma whose proof can be found in App. C.1:
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Lemma 3 Let N1 and N2 be two (din, dout)-quantum channels. We have:

∥JN1 − JN2∥2 ≥
d⋄(N1,N2)

din
√
dout

.

Let N be a channel satisfying d⋄(N ,D) ≥ ε and X =
∥∥∥N (|ϕ⟩⟨ϕ|)− I

dout

∥∥∥2
2
, we obtain from

Lem. 2, 3:

E (X) = E|ϕ⟩∼Haar

(∥∥∥∥N (|ϕ⟩⟨ϕ|)− I
dout

∥∥∥∥2
2

)
≥ din
din + 1

∥∥∥∥JN − I
dindout

∥∥∥∥2
2

≥ ε2

2d2indout
. (1)

If we could show that X is larger than Ω(E (X)) with constant probability, then we can reduce our
problem to the usual testing identity of quantum states in the 2-norm (quantum state certification
in App. E) and obtain an incoherent ancilla-free algorithm using O

( √
dout

(ε/din
√
dout)2

)
= O

(
d2ind

1.5
out

ε2

)
measurements. Establishing this turns out to be the most technical part of the proof as is summarized
in the following theorem.

Theorem 4 Let |ϕ⟩ be a Haar distributed vector in Sd (or any 4-design). Let X =∥∥∥N (|ϕ⟩⟨ϕ|)− I
dout

∥∥∥2
2
. We have:

Var(X) = O
(
[E (X)]2

)
.

This Theorem is the most technical part of the paper and we believe that it can be generalized for
any difference of channels with a similar approach. Moreover, applying this inequality along with
the Paley-Zygmund inequality are sufficient for our reduction: we only need to repeat our test O(1)
times to reduce the error probability to 1/3 for testing identity to the depolarizing channel.

Sketch of the proof. We observe first that Var(X) = Var
(
Tr
[
(N (|ϕ⟩⟨ϕ|))2

])
. Then using

Weingarten calculus (Lem. 31,33), we can compute the expectation

E

((
Tr
[
(N (|ϕ⟩⟨ϕ|))2

])2)
=

1

din(din + 1)(din + 2)(din + 3)

∑
α∈S4

F (α)

where for α ∈ S4, F (α) =
∑

i,j,k,l,k′,l′ Trα(A
†
l′ |j⟩ ⟨i|Ak, A

†
kAl, A

†
l |i⟩ ⟨j|Ak′ , A

†
k′Al′) and

Trα(M1, . . . ,Mn) = ΠjTr(Πi∈CjMi) for α = ΠjCj andCj are cycles. Letm =
∥∥∥N (I)− din

dout
I
∥∥∥
2

and η = din

∥∥∥JN − I
dindout

∥∥∥
2
. Next, we upper bound the function F as shown in Table 2. This is the

hardest step of the proof and requires a fine analysis for many of the F (α)′s. A particularly useful
trick we use repeatedly is known as the replica trick and says that if F =

∑d
i,j=1(|i⟩⊗|j⟩)(⟨j|⊗⟨i|)

is the flip operator then we have for all A,B ∈ Cd×d : Tr((A ⊗ B)F) = Tr(AB) and simi-
larly Tr(A ⊗ B) = Tr(A)Tr(B). Moreover, another trick we need frequently is to use the partial
transpose to make appear the positive semi-definite matrices M †M =

∑
k,lA

†
kAl ⊗ A⊤

k Āl and

MM † =
∑

k,lAkA
†
l ⊗ĀkA

⊤
l whereM =

∑
k Ak⊗Āk is defined using the Kraus operators {Ak}k

of the channel N . Furthermore we can prove the approximation
∥∥∥M †M − din

dout
|Ψ⟩⟨Ψ|

∥∥∥
1
≤ 5η2

where |Ψ⟩ = 1√
din

∑din
i=1 |i⟩ ⊗ |i⟩ is the maximally entangled state (see Lem. 17). This is used for

10
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Permutation α Upper bound on F (α) Reference

(13)
(

din
dout

+ η2
)2

id, (132), (314), (24)(13) din/dout+η2

dout
+ η2

dout
+ 5η4 (Lem. 19)

(312), (134)
(

d2in
dout

+m2
)(

din
dout

+ η2
)

(1234)
(

d2in
dout

+m2
)2

(24), (1432)
d2in
d2out

+ 2m2

dout
+ 25η4 (Lem. 20)

(142), (243) din/dout+η2

dout
+ η2

dout
+ 5η4 (Lem. 18)

(14), (12), (23), (34), (1324), d2in
d2out

+ din
dout

η2 + m2

dout
+ 5mη3 (Lem. 22)

(1423), (1243), (1342)

(12)(34), (14)(23), (234), (124)
d3in
d2out

+ 2 din
dout

m2 +m2η2 (Lem. 21)

Table 2: Upper bounds on the function F for different input permutations.

α = (142) and (24). An application of the data processing inequality on the previous approximation
gives:

∥∥∥Tr2(M †M)− 1
dout

I
∥∥∥
1
≤ 5η2 which is used for the permutations α = id and (14) . It turns

out that applying such approximation will not give a sufficiently good upper bound of F ((12)(34))
because it can be written as F ((12)(34)) = Tr

((
MM †)T2 · M(I)⊗2F

)
+

d3in
d2out

+2 din
dout

Tr(M(I)2)
which depends instead on the matrix MM †. In this case we proceed by projecting MM † onto the
hyperplane orthogonal to |Ψ⟩. This can be interpreted using representation theory. In fact, the space
spanned by |Ψ⟩ and its complementary are irreducible representations that decompose the space(
Cd
)⊗2 for the action of U ⊗ Ū where U is a unitary matrix. On the other hand, changing the

Kraus operators Ak ↔ UAk or Ak ↔ AkU in the expression of the channel N does not affect the
variance of X because Haar measure is invariant under left and right multiplication with a unitary
matrix. The detailed proof of these bounds can be found in App. C.3.

We have now the required tools to design and prove the correctness of an algorithm for testing
identity to the depolarizing channel.

Theorem 5 There is an incoherent ancilla-free algorithm requiring a number of measurements
N = O

(
d2ind

1.5
out

ε2

)
to distinguish between N = D and d⋄(N ,D) ≥ ε with a success probability

2/3.

As explained before, our algorithm is a reduction to the testing identity of quantum states. For
the convenience of the reader we include this latter with a proof of its correctness in App. E. Note
that we need to test quantum states in the 2-norm which is different than the usual quantum state
certification (Bubeck et al., 2020). The algorithm for testing identity to the depolarizing channel is
described in Alg. 2.

We remark that Alg. 2 uses the channel only on a constant number of random input states
{|ϕk⟩⟨ϕk|}k. One could think that querying the channel N on more diverse inputs could lead to
a more efficient algorithm. However, it turns out that Alg. 2 is basically optimal as we prove a
matching lower bound up to a poly-logarithmic factor.

11
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Algorithm 2: Testing identity to the depolarizing channel in the diamond norm
M = 2200.
for k = 1 :M do

Sample ϕk a Haar random vector in Sdin .
Test whether h0 : N (|ϕk⟩⟨ϕk|) = I

dout
or h1 :

∥∥∥N (|ϕk⟩⟨ϕk|)− I
dout

∥∥∥
2
≥ ε

2
√
doutdin

using the

testing identity of quantum states Alg. 3, with an error probability δ = 1/(3M), that answers
the hypothesis hik , ik ∈ {0, 1}.

end for
if ∃k : ik = 1 then return N is ε-far from D else return N = D.

Theorem 6 Let ε ≤ 1/32, din ≥ 80 and dout ≥ 10. Any ancilla-assisted non-adaptive algorithm
for testing identity to the depolarizing channel (for both trace and diamond distances) requires, in
the worst case, a number of measurements satisfying:

N = Ω

(
d2ind

1.5
out

log(dindout/ε)2ε2

)
.

This theorem shows that our proposed Alg. 2 is almost optimal in the dimensions (din, dout) and
the precision parameter ε thus the complexity of testing identity to the depolarizing channel is
Θ̃(d2ind

1.5
out/ε

2) which is slightly surprising. Indeed, we can remark that the complexity of test-
ing identity of discrete distributions and quantum states is the square root (for constant ε) of the
complexity of the corresponding learning problems in the same setting. This rule does not apply
for quantum channels since we know from (Surawy-Stepney et al., 2022; Oufkir, 2023) that the
complexity of learning quantum channels in the diamond distance with non-adaptive incoherent
strategies is Θ̃(d3ind

3
out/ε

2).

Sketch of the proof. Under the null hypothesis N = D. Under the alternate hypothesis, we
construct randomly the quantum channel N ∼ P of the form: N (ρ) = D(ρ) + ε

dout∥u∥22
⟨u| ρ |u⟩U

where |u⟩ is a standard Gaussian vector and U has Gaussian entries: for all i ≤ j ∈ [dout], Uj,i =
Ūi,j ∼ 1{i ̸= j}Nc(0, 16/dout) conditioned on the event G = {∥U∥1 ≥ dout, ∥U∥∞ ≤ 32}. Note
that the usual construction applied on the Choi state gives a sub-optimal lower bound in the trace
or diamond distances. Using a concentration inequality of Lipschitz functions of Gaussian random
variables (Wainwright, 2019), we show that with a high probability N is ε-far from D in the trace
and diamond distances. Then we use LeCam’s method to lower bound the TV distance between the
distribution of the observations under the two hypotheses: TV

(
P

I1,...,IN
D

∥∥∥EN∼PP
I1,...,IN
N

)
≥ 1

3

where I1, . . . , IN are the observations the algorithm obtains after the measurements and N is a
sufficient number of measurements for the correctness of the algorithm. We can suppose w.l.o.g.
that the input states are pure ρt = |ψt⟩⟨ψt| and the measurement devices are given by POVMs of
the form Mt = {λtit

∣∣ϕtit〉〈ϕtit∣∣}. Also, we can write

|ψt⟩ = At ⊗ I |Ψdin⟩ ,
∣∣ϕtit〉 = Bt

it ⊗ I |Ψdout⟩ where |Ψd⟩ =
1√
d

d∑
i=1

|ii⟩ .

12
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Then we condition on the event E that u satisfies ∥u∥2 ≥
√

din
6 and

∀t ∈ [N ] : P t
u =

∑
it,jt

λtitλ
t
jt
⟨u|A†

tB
t
it
Bt,†

jt
At |u⟩4

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)
≤ (7 log(N))4d2ind

3
out. (2)

Note that P t
u is a polynomial of degree 8 in the entries of u. We can prove that the event E occurs

with a probability at least 9/10 using a concentration inequality deduced from the Hypercontractiv-
ity of Gaussian polynomials (Aubrun and Szarek, 2017, Corollary 5.49) and a union bound. Observe
that the union bound here adds only a factor of log(N)4 because for a non-adaptive strategy, there
are at most N couples of inputs/measurements. To carry out the analysis, we need to bound the
moments of the random variables:

Zt(U, V ) = ε2Eit

[
Φt,it
u,UΦ

t,it
v,V

]
where Φt,it

u,U =
Tr(Bt,†

it
At |u⟩⟨u|A†

tB
t
it
U)

∥u∥22Tr(B
t,†
it
AtA

†
tB

t
it
)
.

Since Zt is a polynomial of degree 2 (in the entries of U and V ) of expectation 0, the Hypercontrac-
tivity (Aubrun and Szarek, 2017, Proposition 5.48) implies for all k ∈ {1, . . . , N} : E

(
|Zt|k

)
≤

kkE
(
Z2
t

)k/2. Hence, it is sufficient to upper bound the second moment which can be done using

the inequalities (2): E
(
Z2
t

)
≤ O

(
ε4 log(N)4

d4ind
3
out

)
. By a contradiction argument and grouping all these

elements, we can prove that N log(N)2 ≥ Ω
(
d2ind

1.5
out

ε2

)
and finally N ≥ Ω

(
d2ind

1.5
out

log(dindout/ε)2ε2

)
. The

detailed proof can be found in App. D.1.
This proof relies crucially on the non-adaptiveness of the strategy. A natural question arises then,

can adaptive strategies outperform their non-adaptive counterpart? We do not settle completely this
question in this article. Yet, we propose a lower bound for adaptive strategies showing that, if a
separation exists, the advantage would be at most O(

√
dout).

Theorem 7 Let ε ≤ 1/32 and dout ≥ 10. Any incoherent ancilla-assisted adaptive algorithm

for testing identity to the depolarizing channel requires, in the worst case, N = Ω
(
d2indout+d1.5out

ε2

)
measurements.

The proof of this theorem uses the same construction as the one for the non-adaptive lower
bound. The main difference is the use of the KL divergence to compare the observations
(I1, . . . , IN ) under the two hypotheses instead of the TV distance. On the one hand, the data
processing implies that KL

(
P

I1,...,IN
D

∥∥∥EN∼PP
I1,...,IN
N

)
≥ 1

3 log(2). On the other hand, us-
ing Jensen’s inequality and inequalities of the log function we upper bound the KL divergence:
KL
(
P

I1,...,IN
D

∥∥∥EN∼PP
I1,...,IN
N

)
≤ 256Nε2

d2indout
. These two inequalities implies d2indout part of the lower

bound. The d1.5out part of the lower bound follows easily from the hardness of quantum state certifi-
cation (Chen et al., 2022d). The detailed proof can be found in App. D.2.

5. Conclusion and open problems

We have generalized the problem of testing identity to quantum channels. We have in particular
identified the optimal complexity Θ(d/ε2) for testing identity to a unitary channel in the adaptive

13
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setting. Moreover, we have shown that the complexity for testing identity to the depolarizing chan-
nel in the non-adaptive setting is Θ̃(d2ind

1.5
out/ε

2). These results open up several interesting questions:
can the gap between non-adaptive and adaptive strategies for certification of the depolarizing chan-
nel be closed? How to achieve the instance optimality (as in (Valiant and Valiant, 2016; Chen et al.,
2022f))? This would allow to adapt the complexity to the tested process N0. Another interesting
issue deals with the fact that 4-designs can replace Haar distributed unitaries in Alg. 2. But can the
same complexity be achieved for 3 (and lower) designs? Finally, it would be interesting to consider
general strategies allowing entanglement between the uses of the channel, as was done for states in
(O’Donnell and Wright, 2015).
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Appendix A. Deferred proofs of the analysis of testing identity to identity Alg. 1

Lemma 8 Let |ϕ⟩ be a random Haar vector of dimension d. We have

Eϕ [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|))] = 1 + d F(JN , |Ψ⟩⟨Ψ|)
1 + d

.

Proof Using Lem. 31 and Lem. 33, we have

Eϕ [F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|))] =
∑
k

EU

[
⟨0|U †AkU |0⟩⟨0|U †A†

kU |0⟩
]

=
∑
k

(Tr(AkA
†
k) + Tr(Ak)Tr(A

†
k))

d(d+ 1)

=
d+

∑
k |Tr(Ak)|2

d(d+ 1)
=

1 + d F(JN , |Ψ⟩⟨Ψ|)
1 + d

where we use Lem. 9.

Lemma 9 Let N be a quantum channel of Kraus operators {Ak}k. Let S =
∑

k |Tr(Ak)|2. We
can relate the average fidelity and S as follows:

F(JN , |Ψ⟩⟨Ψ|) = S

d2
.

Proof We have:

F(JN , |Ψ⟩⟨Ψ|) = 1

d2

∑
i,j,k,l

⟨ii| id⊗N (|kk⟩ ⟨ll|) |jj⟩ = 1

d2

∑
i,j,k,l

⟨i| I |k⟩ ⟨l| |j⟩ ⟨i| N (|k⟩ ⟨l|) |j⟩

=
1

d2

∑
i,j

⟨i| N (|i⟩ ⟨j|) |j⟩ = 1

d2

∑
i,j,k

⟨i|Ak |i⟩ ⟨j|A†
k |j⟩ =

1

d2

∑
k

|Tr(Ak)|2 =
S

d2
.
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Lemma 10 We have for all quantum channels N :

F(JN , |Ψ⟩⟨Ψ|) ≤ 1− dTr(N , id)2

4d
≤ 1− d⋄(N , id)4

16d
.

Proof The following inequality permits to prove the second inequality (Watrous, 2018, Theorem
3.56, rephrased)

dTr(N , id) ≥ d⋄(N , id)2

2
.

It remains to prove the first inequality. For this, let ε = dTr(N , id) = max|ϕ⟩∈Sd ∥N (|ϕ⟩⟨ϕ|) −
|ϕ⟩⟨ϕ| ∥1. Let |ϕ⟩ be a unit vector satisfying the previous maximization, we show that using
Fuchs–van de Graaf inequality (Fuchs and Van De Graaf, 1999):

⟨ϕ| N (|ϕ⟩⟨ϕ|) |ϕ⟩ = F(N (|ϕ⟩⟨ϕ|), |ϕ⟩⟨ϕ|) ≤ 1− 1

4
∥N (|ϕ⟩⟨ϕ|)− |ϕ⟩⟨ϕ| ∥21 ≤ 1− ε2

4
.

On the other hand, we use the Kraus decomposition to describe the quantum channel N (ρ) =∑
k AkρA

†
k. We can write the previous fidelity in terms of the Kraus operators:

⟨ϕ| N (|ϕ⟩⟨ϕ|) |ϕ⟩ =
∑
k

⟨ϕ|Ak |ϕ⟩⟨ϕ|A†
k |ϕ⟩ =

∑
k

| ⟨ϕ|Ak |ϕ⟩ |2.

Hence: ∑
k

| ⟨ϕ|Ak |ϕ⟩ |2 ≤ 1− ε2

4
. (3)

Let |ϕ1⟩ = |ϕ⟩ and we can complete it to have an ortho-normal basis {|ϕi⟩}di=1. Moreover, we
have F(JN , |Ψ⟩⟨Ψ|) = 1

d2
∑

k |Tr(Ak)|2 (Lem. 9). By applying the Cauchy-Schwarz inequality
and using the inequality (3):

∑
k

|Tr(Ak)|2 =
∑
k

∣∣∣∣∣
d∑

i=1

⟨ϕi|Ak |ϕi⟩

∣∣∣∣∣
2

≤
∑
k,i

d| ⟨ϕi|Ak |ϕi⟩ |2

= d
∑
k

| ⟨ϕ1|Ak |ϕ1⟩ |2 + d

d∑
i=2

∑
k

| ⟨ϕi|Ak |ϕi⟩ |2

≤ d(1− ε2/4) + d(d− 1) = d(d− ε2/4)

because for all i ≥ 2:∑
k

| ⟨ϕi|Ak |ϕi⟩ |2 ≤
∑
k

⟨ϕi|A†
kAk |ϕi⟩ = ⟨ϕi|

∑
k

A†
kAk |ϕi⟩ = 1.

Finally, F(JN , |Ψ⟩⟨Ψ|) = 1
d2
∑

k |Tr(Ak)|2 ≤ 1− ε2

4d .
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Appendix B. Lower bound for testing identity to identity

In this section, we establish a general lower bound for any algorithm (possibly adaptive) for testing
identity to identity using ancilla-assisted strategies.

Theorem 11 Any incoherent adaptive ancilla-assisted strategy requires a number of steps satisfy-
ing:

N = Ω

(
d

ε2

)
to distinguish between N = id and d⋄(N , id) ≥ ε (or dTr(N , id) ≥ ε) with a probability at least
2/3.

This theorem shows that Alg 1 has an optimal complexity.
Proof Under the null hypothesis H0, the quantum channel N = id. Under the alternate hypothesis
H1, we can choose N so that d⋄(N , id) ≥ dTr(N , id) ≥ ε. A difficult to test channel is a channel
sending almost every vector of a basis to itself. With this intuition, we choose V ∈ Haar(d), and
construct the channel NV (ρ) =

1
2ρ+

1
2UV ρU

†
V where UV satisfies:

UV V |l⟩ =


√
1− ε2V |0⟩+ εV |1⟩ if l = 0

√
1− ε2V |1⟩ − εV |0⟩ if l = 1

V |l⟩ otherwise.

Taking a mixture of the identity channel and the unitary channel UV · U †
V in the definition of NV is

crucial in this proof and is inspired by the quantum skew divergence (Audenaert, 2014). We need to
show first that such a channel is ε-far from the identity channel. Indeed, let |ϕ⟩ = V |0⟩, we have:

d⋄(NV , id) ≥ dTr(NV , id) ≥ ∥ NV (|ϕ⟩⟨ϕ|)− id(|ϕ⟩⟨ϕ|)∥1

=

∥∥∥∥12 |ϕ⟩⟨ϕ|+ 1

2
UV |ϕ⟩⟨ϕ|U †

V − |ϕ⟩⟨ϕ|
∥∥∥∥
1

=
1

2

∥∥∥V |0⟩⟨0|V † − UV V |0⟩⟨0|V †U †
V

∥∥∥
1

=
1

2

∥∥∥|0⟩⟨0| − (√1− ε2 |0⟩+ ε |1⟩
)(√

1− ε2 ⟨0|+ ε ⟨1|
)∥∥∥

1

=
1

2

∥∥∥ε2 |0⟩⟨0| − ε
√
1− ε2(|0⟩ ⟨1|+ |1⟩ ⟨0|)− ε2 |1⟩⟨1|

∥∥∥
1
= ε.

Hence a 1/3-correct algorithm should distinguish between the identity channel and NV with at least
a probability 2/3 of success. This algorithm can only choose an input ρt which we can suppose (by
the convexity of the KL divergence) of rank 1, that is ρt = |ψt⟩⟨ψt| at each step t and perform a
measurement using the POVM Mt = {λti

∣∣ϕti〉〈ϕti∣∣}i∈It on the output quantum state id ⊗ N (ρt).
Note that the identity channel id acts on the ancilla space. These choices can depend on the previous
observations, that is, the algorithm can be adaptive. Let I≤N = (I1, . . . , IN ) be the observations
of this algorithm where N is a sufficient number of steps to decide correctly with a probability at
least 2/3. We can compare the distributions of the observations under the two hypotheses using the
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Kullback-Leibler divergence. Let P (resp. Q) be the distribution of (I1, . . . , IN ) under H0 (resp.
H1). The distribution of (I1, . . . , IN ) under H0 is:

P :=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

}
i1,...,iN

=

{
N∏
t=1

λtit |⟨ϕ
t
it |ψt⟩|2

}
i1,...,iN

.

On the other hand, the distribution of (I1, . . . , IN ) under H1 conditioned on V is:

QV :=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉
}

i1,...,iN

.

Moreover, we can write each rank one input state and measurement vector as follows:

|ψt⟩ = At ⊗ I |w⟩ and
∣∣ϕtit〉 = Bt

it ⊗ I |w⟩

where |w⟩ =
∑d

i=1 |ii⟩ and the matrices At ∈ Cdanc×d and Bt
it
∈ Cdanc×d verify:

Tr(AtA
†
t) = 1 and Tr(Bt

itB
t,†
it
) = 1.

Note that we have for all t, for all X ∈ Cdanc×danc we have
∑

it
λtitB

t,†
it
XBt

it
= Tr(X)I. Indeed,

the condition of the POVM Mt implies:

X ⊗ I = X ⊗ I
∑
it

λtit
∣∣ϕtit〉〈ϕtit∣∣ =∑

it

λtitXB
t
it ⊗ I |w⟩⟨w|Bt,†

it
⊗ I

hence by taking the partial trace on the first system we obtain

Tr(X)I =
∑
it,i,j

λtit ⟨j|B
t,†
it
XBt

it |i⟩ |i⟩ ⟨j| .

Finally ∑
it

λtitB
t,†
it
XBt

it = Tr(X)I.

By taking X = I and the partial trace on the second system we obtain∑
it

λtitB
t
itB

t,†
it

= d Idanc .

Recall that for an adaptive strategy, for all t ∈ [N ], ρt and Mt = {λtit
∣∣ϕtit〉〈ϕtit∣∣}it depend on

(i1, . . . , it−1). So, the KL divergence between P and QV can be expressed as follows:

KL(P∥QV ) = Ei∼P (− log)

(
QV,i

Pi

)
=

N∑
t=1

Ei≤N (− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

=
N∑
t=1

Ei≤t(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)
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where we use the notation for t ∈ [N ], Ei≤t(X(i1, . . . , it)) =∑
i1,...,it

∏t
k=1 λ

k
ik

〈
ϕkik

∣∣ ρk ∣∣ϕkik〉X(i1, . . . , it) and the fact that the term

〈
ϕt
it

∣∣∣id⊗NV (ρt)
∣∣∣ϕt

it

〉
〈
ϕt
it

∣∣∣ρt∣∣∣ϕt
it

〉
depends only on (i1, . . . , it).
Let E be the event that the algorithm accepts H0, we apply the Data-Processing inequality on the
KL divergence (see Prop. F.3):

KL(P∥QV ) ≥ KL(P (E) ∥QV (E))

≥ KL

(
2

3

∥∥∥1
3

)
=

2

3
log(2)− 1

3
log(2) =

1

3
log(2)

where KL(p||q) = KL(Bern(p)∥Bern(q)). Hence

EV∼Haar(d)KL(P∥QV ) ≥
1

3
log(2).

Let MV = I−UV and SV = I− 1
2MV . We can write the logarithmic term in the expression of

KL(P∥QV ) as follows:

(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

= (− log)

(〈
ϕtit
∣∣ (12ρt + 1

2(I⊗ UV )ρt(I⊗ U †
V ))

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

= (− log)

(
1−

ℜ(
〈
ϕtit
∣∣ (I⊗MV )ρt

∣∣ϕtit〉)〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 +

1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)

= (− log)

(
1− 1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗ S†

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉 − 1

2

〈
ϕtit
∣∣ (I⊗ SV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)
.

For t ∈ [N ] and i≤t = (i1, . . . , it), define the event G(t, i≤t) ={〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 ≤ ε2

d2
Tr(A†

tB
t
it
Bt,†

it
At)
}

. We can distinguish whether the event G is satisfied
or not:

EV∼Haar(d)KL(P∥QV ) =

N∑
t=1

EV∼Haar(d)Ei≤t(1{G(t, i≤t)}+ 1{Gc(t, i≤t)})(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)
.

Let us first analyze the setting when the event G holds. Fix t ∈ [N ], observe that we have the
inequality:

(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)
= (− log)

(〈
ϕtit
∣∣ (12ρt + 1

2(I⊗ UV )ρt(I⊗ U †
V ))

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

= (− log)

(
1

2
+

〈
ϕtit
∣∣ (12(I⊗ UV )ρt(I⊗ U †

V ))
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)
≤ log(2) ≤ 1.
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Then we can control the expectation under the event G as follows:

EV∼Haar(d)Ei≤t1{G(t, i≤t)}(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)
≤ EV∼Haar(d)Ei≤t−1

∑
it

λtit
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉1{G(t, i≤t)}

≤ EV∼Haar(d)Ei≤t−1

∑
it

λtit

(
ε2

d2
Tr(A†

tB
t
itB

t,†
it
At)

)
1{G(t, i≤t)}

≤ EV∼Haar(d)Ei≤t−1

∑
it

λtit

(
ε2

d2
Tr(A†

tB
t
itB

t,†
it
At)

)

= EV∼Haar(d)Ei≤t−1

(
ε2

d2
Tr(A†

tdAt)

)
= EV∼Haar(d)Ei≤t−1

(
ε2

d

)
=
ε2

d
(4)

where we use the fact that under the event G we have
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 ≤ ε2

d2
Tr(A†

tB
t
it
Bt,†

it
At),

Tr(A†
tAt) = 1 and

∑
it
λtitB

t
it
Bt,†

it
= d I which is an implication of the fact that Mt =

{λti
∣∣ϕti〉〈ϕti∣∣}i∈It is a POVM.

On the other hand under Gc(t, i≤t), we will use instead the inequality

(− log)(x) ≤ (1− x) + (x− 1)2 valid for all x ∈
[1
2
,+∞

)
.

We apply this inequality for x =

〈
ϕt
it

∣∣∣id⊗NV (ρt)
∣∣∣ϕt

it

〉
〈
ϕt
it

∣∣∣ρt∣∣∣ϕt
it

〉 = 1
2 +

〈
ϕt
it

∣∣∣( 12 (I⊗UV )ρt(I⊗U†
V ))

∣∣∣ϕt
it

〉
〈
ϕt
it

∣∣∣ρt∣∣∣ϕt
it

〉 ≥ 1
2 , the

first term of the upper bound is:

(1− x) = 1−
〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

=
1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗ S†

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉 +

1

2

〈
ϕtit
∣∣ (I⊗ SV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

=
ℜ
〈
ϕtit
∣∣ (I⊗MV ) |ψt⟩ ⟨ψt| (I⊗ S†

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

=
ℜ ⟨w| (Bt,†

it
At ⊗MV ) |w⟩ ⟨w| (A†

tB
t
it
⊗ S†

V ) |w⟩
⟨w| (Bt,†

it
At ⊗ I) |w⟩ ⟨w| (A†

tB
t
it
⊗ I) |w⟩

=
ℜTr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
S̄V )

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

(5)
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and by using first the inequality (x + y)2 ≤ 2(x2 + y2) and then the Cauchy Schwarz inequality
applied for the vectors

√
ρt
∣∣ϕtit〉 and

√
ρtM

†
V

∣∣ϕtit〉 we can upper bound the second term as follows:

(x− 1)2 =

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 − 1

)2

=

(
ℜ(
〈
ϕtit
∣∣ (I⊗MV )ρt

∣∣ϕtit〉)〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 − 1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

≤ 2

(
|
〈
ϕtit
∣∣ (I⊗MV )ρt

∣∣ϕtit〉 |〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

+ 2

(
1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

≤ 2

(〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)
+ 2

(
1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

= 2
Tr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
M̄V )

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

+
1

2

(
Tr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
M̄V )

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)2

(6)

Let us compute the expectation of (5). Let M,S such that MV = VMV † and SV = V SV †.
Concretely

M =


1−

√
1− ε2 −ε
ε 1−

√
1− ε2

0

0 0d−2

 and S =


1
2 +

√
1−ε2

2
ε
2

−ε
2

1
2 +

√
1−ε2

2

0

0 Id−2

 .

Note that Tr(M) = 2(1 −
√
1− ε2), Tr(S) = d − 1 +

√
1− ε2, Tr(MS†) = Tr(M †S) = 0 and

MM † = M +M † = M †M . Let ε′ = (1 −
√
1− ε2) = Θ(ε2), we have by Weingarten calculus

(Lem. 31):∣∣∣∣∣EV∼Haar(d)

(
ℜTr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
S̄V )

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)∣∣∣∣∣
=

∣∣∣∣∣ 1

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)
ℜEV∼Haar(d)

(∑
x,y

⟨x|Bt,†
it
AtVM

⊤V † |x⟩ ⟨y|A†
tB

t
itV SV

† |y⟩

)∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)
ℜ
∑

α,β∈S2

∑
x,y

Wg(αβ)Trα(M
⊤, S)Trβ(12)(|x⟩ ⟨y|A

†
tB

t
it , |y⟩ ⟨x|B

t,†
it
At)

∣∣∣∣∣∣
=

∣∣∣∣∣ℜ
(
Tr(MS†)(dTr(A†

tB
t
it
Bt,†

it
At)− |Tr(A†

tB
t
it
)|2) + Tr(M)Tr(S)(d|Tr(A†

tB
t
it
)|2 − Tr(A†

tB
t
it
Bt,†

it
At))

d(d2 − 1)Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)∣∣∣∣∣
=

∣∣∣∣∣ℜ
(
2ε′(d− ε′)(d|Tr(A†

tB
t
it
)|2 − Tr(A†

tB
t
it
Bt,†

it
At))

d(d2 − 1)Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)∣∣∣∣∣
≤ 2ε2

d
+

2ε2Tr(A†
tB

t
it
Bt,†

it
At)

(d2 − 1)Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)
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Recall the notation Ei≤t(X(i1, . . . , it)) =
∑

i1,...,it

∏t
k=1 λ

k
ik

〈
ϕkik

∣∣ ρk ∣∣ϕkik〉X(i1, . . . , it). If we
take the expectation Ei≤t under the event Gc(t, i≤t), we obtain

EV∼Haar(d)Ei≤t1{Gc(t, it)}

(
ℜ
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗ S†

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)

≤ Ei≤t1{Gc(t, it)}

∣∣∣∣∣EV∼Haar(d)

(
ℜ
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗ S†

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)∣∣∣∣∣
≤ Ei≤t1{Gc(t, it)}

(
2ε2

d
+

2ε2Tr(A†
tB

t
it
Bt,†

it
At)

(d2 − 1)Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)

≤ Ei≤t

(
2ε2

d
+

2ε2Tr(A†
tB

t
it
Bt,†

it
At)

(d2 − 1)Tr(Bt,†
it
At)Tr(A

†
tB

t
it
)

)

=
2ε2

d
+ Ei≤t−1

∑
it

λtit
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉× 2ε2Tr(A†

tB
t
it
Bt,†

it
At)

(d2 − 1)
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

=
2ε2

d
+ Ei≤t−1

2ε2

d2 − 1

∑
it

λtitTr(A
†
tB

t
itB

t,†
it
At)

=
2ε2

d
+ Ei≤t−1

2ε2

d2 − 1
Tr(A†

tdAt) ≤
5ε2

d
(7)

where we use
∑

it
λtitB

t
it
Bt,†

it
= d I and Tr(AtA

†
t) = 1. We move to the expectation Ei≤t of the

first term of (6), it is non negative so we can safely remove the condition 1{Gc(t, it)}:

EVEi≤t1{Gc(t, it)}
2
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

≤ EVEi≤t
2
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

= EVEi≤t−1

∑
it

2λtit
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉

= Ei≤t−1EV 2Tr((I⊗MV )ρt(I⊗M †
V ))

= Ei≤t−1EV 2Tr
[ (

I⊗ (MV +M †
V )
)
ρt
]

= Ei≤t−1
8ε′

d
≤ 8ε2

d
(8)

because EVMV = 2(1−
√
1−ε2)
d I ≼ 2ε2

d I.
Concerning the expectation of the second term of (6), we apply again the Weingarten calculus
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(Lem. 31) after denoting C = A†
tB

t
it

:

EV∼Haar(d)
1

2

(
Tr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
M̄V )〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

=
1

2

EV∼Haar(d)Tr(B
t,†
it
AtM

⊤
V )2Tr(A†

tB
t
it
M̄V )

2〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2

=
1

2

∑
x,y,z,t

EV∼Haar(d)Tr(|t⟩ ⟨x|C†VM⊤V † |x⟩ ⟨z|CVMV † |z⟩ ⟨y|C†VM⊤V † |y⟩ ⟨t|CVMV †)〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2

=
1

2
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2

∑
x,y,z,t

∑
α,β∈S4

Wg(αβ)Trβ(M
⊤,M,M⊤,M)Trαγ(|t⟩ ⟨x|C†, |x⟩ ⟨z|C, |z⟩ ⟨y|C†, |y⟩ ⟨t|C)

We can remark that for all α ∈ S4 there is β ∈ S4 such that :∣∣∣∣∣ ∑
x,y,z,t

Trα(|t⟩ ⟨x|C†, |x⟩ ⟨z|C, |z⟩ ⟨y|C†, |y⟩ ⟨t|C)

∣∣∣∣∣ = ∣∣∣Trβ(C†, C, C†, C)
∣∣∣

≤ max{Tr(CC†), |Tr(C)|2}2

where the last inequality is only non trivial for β = (ijk). For instance if β = (123) we have by the
Cauchy Schwarz inequality:

Trβ(C
†, C, C†, C) = Tr(C†CC†)Tr(C) ≤

√
Tr(CC†CC†)Tr(CC†)|Tr(C)|

≤ Tr(CC†)3/2|Tr(C)|
≤ max{Tr(CC†), |Tr(C)|2}3/2max{Tr(CC†), |Tr(C)|2}1/2

= max{Tr(CC†), |Tr(C)|2}2.

Moreover, it is clear that when β is not a 4-cycle, we have |Trβ(M,M⊤,M,M⊤)| ≤ O(ε4) since it
can be written as a product of at least two elements each of them is O(ε2). In the case β is a 4 cycle
we have Tr(MM⊤MM⊤) = Tr(MMM⊤M †) = Tr((M +M⊤)2) = 2(2− 2

√
1− ε2)2 ≤ 8ε4.

On the other hand, we know that for all (α, β) ∈ S2
4, |Wg(αβ)| ≤ 2

d4
(Collins and Śniady, 2006)

so ∑
x,y,z,t

∑
α,β∈S4

Wg(αβ)Trβ(M
⊤,M,M⊤,M)Trαγ(|t⟩ ⟨x|C†, |x⟩ ⟨z|C, |z⟩ ⟨y|C†, |y⟩ ⟨t|C)

≤ O
(
ε4

d4
max{Tr(CC†), |Tr(C)|2}2

)
.

Therefore we have:

EV∼Haar(d)
1

2

(
Tr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
M̄V )〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

≤ O

(
ε4max{Tr(CC†), |Tr(C)|2}2

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2

)
.

Recall that C = A†
tB

t
it

, now, if we take the expectation Ei≤t under the event

Gc(t, i≤t) =

{〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 > ε2

d2
Tr(A†

tB
t
itB

t,†
it
At)

}
=

{
|Tr(C)|2 > ε2

d2
Tr(CC†)

}
,

24



QUANTUM CHANNEL CERTIFICATION

we obtain:

Ei≤t
EV∼Haar(d)1{Gc(t, i≤t)}

1

2

(
Tr(Bt,†

it
AtM

⊤
V )Tr(A†

tB
t
it
M̄V )〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)2

≤ Ei≤t
1{Gc(t, i≤t)}O

(
ε4max{Tr(CC†), |Tr(C)|2}2

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2

)

≤ Ei≤t
1{Gc(t, i≤t)}O

(
ε4|Tr(C)|4

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉2 +

ε4

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 × Tr(CC†)2〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)

= Ei≤t
1{Gc(t, i≤t)}O

(
ε4

d4
+

ε4

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 × Tr(CC†)2

|Tr(C)|2

)

≤ Ei≤t
1{Gc(t, i≤t)}O

(
ε4

d4
+

ε4

d4
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉 × d2Tr(CC†)

ε2

) (
under Gc : |Tr(C)|2 > ε2

d2
Tr(CC†)

)

≤ Ei≤t−1

∑
it

λtit
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉O

(
ε4

d4
+
ε2Tr(A†

tB
t
it
Bt,†

it
At)

d2
〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

≤ Ei≤t−1
O
(
ε4

d4

)
+O

(
ε2
∑

it
λtitTr(A

†
tB

t
it
Bt,†

it
At)

d2

)

≤ Ei≤t−1
O
(
ε4

d4

)
+O

(
ε2Tr(A†

tdAt)

d2

)
= Ei≤t−1

O
(
dε2

d2

)
= O

(
ε2

d

)
(9)

where we use
∑

it
λtitB

t
it
Bt,†

it
= d I and Tr(AtA

†
t) = 1. By adding up (7), (8) and (9), we obtain:

Ei≤t
EV∼Haar(d)1{Gc(t, i≤t)}(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

≤ Ei≤t
EV∼Haar(d)1{Gc(t, i≤t)}

(
ℜ(
〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗ S†

V )
∣∣ϕtit〉)〈

ϕtit
∣∣ ρt ∣∣ϕtit〉 +

1

2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉2〈

ϕtit
∣∣ ρt ∣∣ϕtit〉2

)

+ Ei≤t
EV∼Haar(d)1{Gc(t, i≤t)}

(
2

〈
ϕtit
∣∣ (I⊗MV )ρt(I⊗M †

V )
∣∣ϕtit〉〈

ϕtit
∣∣ ρt ∣∣ϕtit〉

)
= O

(
ε2

d

)
.

Therefore using this upper bound and the upper bound (4) we get an upper bound on the expected
KL divergence:

EV∼Haar(d)KL(P∥QV ) =

N∑
t=1

Ei≤tEV∼Haar(d)(1{G(t, i≤t)}+ 1{Gc(t, i≤t)})(− log)

(〈
ϕtit
∣∣ id⊗NV (ρt)

∣∣ϕtit〉〈
ϕtit
∣∣ ρt ∣∣ϕtit〉

)

≤
N∑
t=1

O
(
ε2

d

)
+O

(
ε2

d

)
= O

(
Nε2

d

)
.

Finally since EV∼Haar(d)KL(P∥QV ) ≥ log(2)
3 we conclude:

N = Ω

(
d

ε2

)
.
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Appendix C. Deferred proofs of the analysis of testing identity to the depolarizing
channel Alg. 2

C.1. Proof of Lem. 3

Lemma 12 Let N1 and N2 be two quantum channels and din (resp. dout) be the dimension of their
input (resp. output) states. We have:

d⋄(N1,N2) ≤ din
√
dout∥JN1 − JN2∥2.

Proof Denote by M = N1 − N2 and J = JM = JN1 − JN2 . Let |ϕ⟩ be a maximizing unit
vector of the diamond norm, i.e., ∥id⊗M(|ϕ⟩⟨ϕ|)∥1 = d⋄(N1,N2). We can write |ϕ⟩ = A⊗ I |Ψ⟩
where |Ψ⟩ = 1√

din

∑din
i=1 |i⟩ ⊗ |i⟩ is the maximally entangled state. |ϕ⟩ has norm 1 so Tr(A†A) =

din ⟨Ψ|A†A⊗ I |Ψ⟩ = din⟨ϕ|ϕ⟩ = din. We can write the diamond distance as follows:

d⋄(N1,N2) = ∥id⊗M(|ϕ⟩⟨ϕ|)∥1 = ∥id⊗M(A⊗ I |Ψ⟩⟨Ψ|A† ⊗ I)∥1
= ∥(A⊗ I)id⊗M(|Ψ⟩⟨Ψ|)(A† ⊗ I)∥1 = ∥(A⊗ I)JM(A† ⊗ I)∥1.

JM is Hermitian so can be written as : JM =
∑

i λi |ψi⟩⟨ψi|. Using the triangle inequality and the
Cauchy Schwarz inequality, we obtain:

∥(A⊗ I)JM(A† ⊗ I)∥1 =

∥∥∥∥∥(A⊗ I)
∑
i

λi |ψi⟩⟨ψi| (A† ⊗ I)

∥∥∥∥∥
1

≤
∑
i

|λi|∥(A⊗ I) |ψi⟩⟨ψi| (A† ⊗ I)∥1 ≤
√∑

i

λ2i

√∑
i

⟨ψi| (A†A⊗ I) |ψi⟩2

≤ ∥J ∥2
√∑

i

⟨ψi| (A†AA†A⊗ I) |ψi⟩ = ∥JM∥2
√

Tr(A†AA†A⊗ I)

= ∥JM∥2
√
doutTr(A†AA†A) ≤ ∥JM∥2

√
dout(Tr(A†A))2 = din

√
dout∥JM∥2.

C.2. Proof of Lem. 2

Lemma 13 Let J = id⊗N (|Ψ⟩⟨Ψ|) be the Choi state corresponding to the channel N .

E

(∥∥∥∥N (|ϕ⟩⟨ϕ|)− I
dout

∥∥∥∥2
2

)
=

(
Tr
(
N (I)− din

dout
I
)2

+ d2in

∥∥∥J − I
dindout

∥∥∥2
2

)
din(din + 1)

≥ din
din + 1

∥∥∥∥J − I
dindout

∥∥∥∥2
2

.
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Proof We write

E

(∥∥∥∥N (|ϕ⟩⟨ϕ|)− I
dout

∥∥∥∥2
2

)
= E

(
Tr(N (|ϕ⟩⟨ϕ|)2)

)
− 1

dout
.

then if we use the Kraus decomposition of the quantum channel N (ρ) =
∑

k AkρA
†
k, we can

compute the following expectation using Weingarten calculus (Lem. 31 and Lem. 33):

E
(
Tr(N (|ϕ⟩⟨ϕ|)2)

)
= E

Tr

(∑
k

Ak |ϕ⟩⟨ϕ|A†
k

)2
 =

∑
k,l

E
(
Tr(Ak |ϕ⟩⟨ϕ|A†

kAl |ϕ⟩⟨ϕ|A†
l )
)

=
1

din(din + 1)

∑
k,l

Tr(A†
kAlA

†
lAk) +

∑
k,l

|Tr(AkA
†
l )|

2


=

1

din(din + 1)

Tr

(∑
k

AkA
†
k

)2

+
∑
k,l

|Tr(AkA
†
l )|

2


=

1

din(din + 1)

Tr(N (I)2) +
∑
k,l

|Tr(AkA
†
l )|

2



Observe that Tr(N (I)2) = Tr
(
N (I)− din

dout
I
)2

+
d2in
dout

. Moreover,

Tr(J 2) = Tr

 1

din

∑
i,j

|i⟩ ⟨j| ⊗ N (|i⟩ ⟨j|)

2

=
1

d2in

∑
i,j

Tr(N (|i⟩ ⟨j|)N (|j⟩ ⟨i|))

=
1

d2in

∑
i,j,k,l

Tr(Ak |i⟩ ⟨j|A†
kAl |j⟩ ⟨i|A†

l ) =
1

d2in

∑
k,l

|Tr(A†
kAl)|2

hence:

E
(
Tr(N (|ϕ⟩⟨ϕ|)2)

)
= E

Tr

(∑
k

Ak |ϕ⟩⟨ϕ|A†
k

)2


=
1

din(din + 1)

(
Tr

(
N (I)− din

dout
I
)2

+
d2in
dout

+ d2inTr(J 2)

)
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Finally,

E

(∥∥∥∥N (|ϕ⟩⟨ϕ|)− I
dout

∥∥∥∥2
2

)
= E

(
Tr(N (|ϕ⟩⟨ϕ|)2)

)
− 1

dout

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout
I
)2

+
d2in
dout

+ d2inTr(J 2)

)
− 1

dout

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout
I
)2

+ d2inTr(J 2)− din
dout

)

=
1

din(din + 1)

(
Tr

(
N (I)− din

dout
I
)2

+ d2in

∥∥∥∥J − I
dindout

∥∥∥∥2
2

)
.

C.3. Proof of Thm 4

Theorem 14 Let |ϕ⟩ be a Haar distributed vector in Sd. Let X =
∥∥∥N (|ϕ⟩⟨ϕ|)− I

dout

∥∥∥2
2
. We have:

Var(X) = O
(
E (X)2

)
.

Proof Recall that X =
∥∥∥N (|ϕ⟩⟨ϕ|)− I

dout

∥∥∥2
2
. We can observe that:

Var(X) = Var

(
Tr (N (|ϕ⟩⟨ϕ|))2 − 1

dout

)
= Var

(
Tr (N (|ϕ⟩⟨ϕ|))2

)
.

We use the Kraus notation N (ρ) =
∑

k AkρA
†
k and d = din. By the Weingarten calculus (Lem. 31

and Lem. 33), we can compute the expectation:

E

((
Tr (N (|ϕ⟩⟨ϕ|))2

)2)
= E

Tr
∑
k,l

Ak |ϕ⟩⟨ϕ|A†
kAl |ϕ⟩⟨ϕ|A†

l

2
=
∑
i,j

∑
k,l,k′,l′

E
(
TrA†

l′ |j⟩ ⟨i|Ak |ϕ⟩⟨ϕ|A†
kAl |ϕ⟩⟨ϕ|A†

l |i⟩ ⟨j|Ak′ |ϕ⟩⟨ϕ|A†
k′Al′ |ϕ⟩⟨ϕ|

)
=
∑
i,j

∑
k,l,k′,l′

1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

Trα(A
†
l′ |j⟩ ⟨i|Ak, A

†
kAl, A

†
l |i⟩ ⟨j|Ak′ , A

†
k′Al′)

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

∑
i,j,k,l,k′,l′

Trα(A
†
l′ |j⟩ ⟨i|Ak, A

†
kAl, A

†
l |i⟩ ⟨j|Ak′ , A

†
k′Al′)

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
α∈S4

F (α)

where for α ∈ S4 we adopt the notation F (α) =∑
i,j,k,l,k′,l′ Trα(A

†
l′ |j⟩ ⟨i|Ak, A

†
kAl, A

†
l |i⟩ ⟨j|Ak′ , A

†
k′Al′) where Trα(M1, . . . ,Mn) =
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ΠjTr(Πi∈CjMi) for α = ΠjCj and Cj are cycles. It is thus necessary to control each of
these 24 terms in order to upper bound the variance. Furthermore, we need to be careful so that our
upper bounds on {F (α)}α∈S4 depend on the actual parameters of the testing problem. Recall that
the expected value of X can be expressed as follows:

E (X) =
1

din(din + 1)

(
Tr

(
N (I)− din

dout
I
)2

+ d2in

∥∥∥∥J − I
dindout

∥∥∥∥2
2

)
.

Let us define M = N − D, m = ∥M(Idin)∥2 =
∥∥∥N (I)− din

dout
I
∥∥∥
2

and η = din

∥∥∥J − I
dindout

∥∥∥
2
.

We state a useful Lemma relating η, M and the Kraus operators {Ak}k:

Lemma 15 Let η = din∥J − I/(dindout)∥2 and M = N −D, we have:

• η2 =
∑

k,l |Tr(A
†
kAl)|2 − din

dout
,

• η2 =
∑din

x,y=1 ∥M(|x⟩ ⟨y|)∥22.

Proof Recall that we use the Kraus representation of the channel N (ρ) =
∑

k AkρA
†
k. We can

express η2:

η2 =

∥∥∥∥dinJ − I
dout

∥∥∥∥2
2

= d2inTr(J 2)− din
dout

= Tr

∑
i,j,k

|i⟩ ⟨j| ⊗Ak |i⟩ ⟨j|A†
k

2

− din
dout

=
∑
i,j,k,l

Tr(Ak |i⟩ ⟨j|A†
kAl |j⟩ ⟨i|A†

l )−
din
dout

=
∑
k,l

|Tr(A†
kAl)|2 −

din
dout

.

We move to the second point, we have J − I/(dindout) = JN −JD = JM = id⊗M(|Ψ⟩⟨Ψ|) so

η2 = d2inTr(id⊗M(|Ψ⟩⟨Ψ|))2 = Tr(id⊗M(din |Ψ⟩⟨Ψ|))2 = Tr

(∑
x,y

|x⟩ ⟨y| ⊗M(|x⟩ ⟨y|)

)2

=
∑
x,y

Tr(M(|x⟩ ⟨y|)M(|y⟩ ⟨x|)) =
∑
x,y

∥M(|x⟩ ⟨y|)∥22.

On the other hand, when dealing with some F (α)’s, we will need to have some properties of the
matrix

∑
k Ak ⊗ Āk.

Lemma 16 LetM =
∑

k Ak⊗Āk. Let {λi}i be the set of the eigenvalues ofM †M (in a decreasing
order) corresponding to the eigenstates {|ϕi⟩}i. We have:

•
∑

i λi =
din
dout

+ η2,

• λ1 ≥ din
dout

,
∑

i>1 λi ≤ η2,

• d2in
d2out

(1− |⟨ϕ1|Ψ⟩|2) ≤ 2m2η2

din
+ 2η4,
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• ⟨Ψ|MM † |Ψ⟩ = din
dout

.

Proof We have
∑

i λi = Tr(M †M) =
∑

k,l Tr(A
†
kAl)Tr(A

⊤
k Āl) =

∑
k,l |Tr(A

†
kAl)|2 = din

dout
+η2

by Lem. 15. Recall the definition of the unnormalized maximally entangled state
√
din |Ψ⟩ =∑

i |i⟩ ⊗ |i⟩, we can compute its image by the matrix M †M :

M †M(
√
din |Ψ⟩) =

∑
i,k,l

A†
kAl |i⟩ ⊗A⊤

k Āl |i⟩ =
∑

x,y,i,k,l

⟨x|A†
kAl |i⟩ ⟨y|A⊤

k Āl |i⟩ |xy⟩

=
∑

x,y,i,k,l

⟨x|A†
kAl |i⟩ ⟨i|A†

lAk |y⟩ |xy⟩ =
∑
x,y,k

⟨x|A†
kN (I)Ak |y⟩ |xy⟩

therefore

⟨Ψ|M †M |Ψ⟩ = 1

din

∑
i,k

⟨i|A†
kN (I)Ak |i⟩ =

Tr(N (I)2)
din

≥ d2in
dindout

=
din
dout

where we used the Cauchy-Schwarz inequality. This implies that the largest eigenvalue verifies
λ1 ≥ din

dout
thus

∑
i>1 λi =

din
dout

+ η2 − λ1 ≤ η2.

We move to prove the third point. Recall the notation M(ρ) = (N − D)(ρ) =
∑

k AkρA
†
k −

Tr(ρ) I
dout

. We have on the one hand:

M †M(
√
din |Ψ⟩) =

∑
x,y,k

⟨x|A†
kN (I)Ak |y⟩ |xy⟩ =

∑
x,y

Tr(N (I)N (|y⟩ ⟨x|)) |xy⟩

=
∑
x,y

Tr(N (I)M(|y⟩ ⟨x|)) |xy⟩+
∑
x,y

Tr(N (I)D(|y⟩ ⟨x|)) |xy⟩

=
∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩+
∑
x

1

dout
Tr(N (I)I) |xx⟩

=
∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩+ din
dout

√
din |Ψ⟩ .

On the other hand, using the spectral decomposition of M †M , we can write:

∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩+ din
dout

√
din |Ψ⟩ =M †M(

√
din |Ψ⟩) =

∑
i

λi
√
din⟨ϕi|Ψ⟩ |ϕi⟩ .

Therefore

λ1⟨ϕ1|Ψ⟩ |ϕ1⟩ −
din
dout

|Ψ⟩ = 1√
din

∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩ −
∑
i>1

λi⟨ϕi|Ψ⟩ |ϕi⟩ .
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Taking the 2-norm squared on both sides, then applying the triangle inequality, the fact (x+ y)2 ≤
2(x2 + y2) and the Cauchy-Schwarz inequality we obtain:

λ21|⟨ϕ1|Ψ⟩|2 + d2in
d2out

− 2
din
dout

λ1|⟨ϕ1|Ψ⟩|2

=

∥∥∥∥∥ 1√
din

∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩ −
∑
i>1

λi⟨ϕi|Ψ⟩ |ϕi⟩

∥∥∥∥∥
2

2

≤

∥∥∥∥∥ 1√
din

∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i>1

λi⟨ϕi|Ψ⟩ |ϕi⟩

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥ 1√
din

∑
x,y

Tr(M(I)M(|y⟩ ⟨x|)) |xy⟩

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∑
i>1

λi⟨ϕi|Ψ⟩ |ϕi⟩

∥∥∥∥∥
2

2

≤ 2

din

∑
x,y

|Tr(M(I)M(|y⟩ ⟨x|))|2 + 2
∑
i>1

λ2i

≤ 2

din

∑
x,y

∥M(I)∥22∥M(|y⟩ ⟨x|)∥22 + 2

(∑
i>1

λi

)2

≤ 2m2η2

din
+ 2η4.

Observe that the LHS can be lower bounded as follows:

λ21|⟨ϕ1|Ψ⟩|2 + d2in
d2out

− 2
din
dout

λ1|⟨ϕ1|Ψ⟩|2 =
(
λ1 −

din
dout

)2

|⟨ϕ1|Ψ⟩|2 + d2in
d2out

− d2in
d2out

|⟨ϕ1|Ψ⟩|2

≥ d2in
d2out

(1− |⟨ϕ1|Ψ⟩|2).

Finally, we deduce from the two previous inequalities:

d2in
d2out

(1− |⟨ϕ1|Ψ⟩|2) ≤ 2m2η2

din
+ 2η4.

We move to the fourth point. We have:

MM †(
√
din |Ψ⟩) =

∑
i,k,l

AkA
†
l |i⟩ ⊗ ĀkA

⊤
l |i⟩ =

∑
x,y,i,k,l

⟨x|AkA
†
l |i⟩ ⟨y| ĀkA

⊤
l |i⟩ |xy⟩

=
∑

x,y,i,k,l

⟨x|AkA
†
l |i⟩ ⟨i|AlA

†
k |y⟩ |xy⟩ =

∑
x,y

⟨x| N (I) |y⟩ |xy⟩

=
∑
x,y

⟨x|M(I) |y⟩ |xy⟩+ din
dout

√
din |Ψ⟩ .

Hence:

⟨Ψ|MM † |Ψ⟩ = 1

din

∑
x

⟨x|M(I) |x⟩+ din
dout

⟨Ψ|Ψ⟩ = 1

din
Tr(M(I)) +

din
dout

=
din
dout

.
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The first and fourth points will be used in the proof of Lemma 21. The first three points imply that
the matrix M †M (when normalized) is close to the maximally entangled state in the 1-norm.

Lemma 17 Let M =
∑

k Ak ⊗ Āk and |Ψ⟩ = 1√
din

∑din
i=1 |i⟩ ⊗ |i⟩. We have:∥∥∥∥M †M − din

dout
|Ψ⟩⟨Ψ|

∥∥∥∥
1

≤ 5η2.

Proof Let |ϕ1⟩ the eigenvector of M †M corresponding to the largest eigenvalue. Using the
Fuchs–van de Graaf inequality (Fuchs and Van De Graaf, 1999) and Lem. 16:

∥ |ϕ1⟩⟨ϕ1| − |Ψ⟩⟨Ψ| ∥1 ≤ 2
√

1− |⟨ϕ1|Ψ⟩|2 ≤ 2
dout
din

√
2m2η2

din
+ 2η4 ≤ 4

dout
din

η2

where we use the Cauchy Schwarz inequality and Lem. 15:

m2 = Tr(M(I)2) =
∑
i,j

Tr(M(|i⟩⟨i|)M(|j⟩⟨j|))

≤
∑
i,j

Tr(M(|i⟩⟨i|)2) = din
∑
i

Tr(M(|i⟩⟨i|)2) ≤ dinη
2.

By the triangle inequality and Lem. 16 we deduce:∥∥∥∥M †M − din
dout

|Ψ⟩⟨Ψ|
∥∥∥∥
1

≤
∥∥∥∥M †M − din

dout
|ϕ1⟩⟨ϕ1|

∥∥∥∥
1

+
din
dout

∥∥ |ϕ1⟩⟨ϕ1| − |Ψ⟩⟨Ψ|
∥∥
1

≤ λ1 −
din
dout

+
∑
i>1

λi + 4η2 = 5η2.

This Lemma will be used in the proofs of Lemmas 18, 20, 19 and 22. We move now to upper bound
different values of the function F .

Lemma 18 We can upper bound F ((142)) and F ((243)) as follows:

F ((142)) = F ((243)) ≤ din/dout + η2

dout
+

η2

dout
+ 5η4.

Proof Recall the notation M(ρ) = (N − D)(ρ) =
∑

k AkρA
†
k − Tr(ρ) I

dout
. We will first write

F ((142)) as a sum of an ideal term reflecting the null hypothesis (N = D) and an error term
reflecting the difference between N and D. The ideal term is computed exactly and depends on
dimensions din and dout. The error term can also be splited to a simple error depending on η
and dout and a more involved term that depends on the Kraus operators {Ak}k and the difference
of channels M. To control this latter error, we first write it in a closed form in terms of M,
M =

∑
k Ak ⊗ A†

k and the flip operator F. Then we can use the spectral decomposition of the
matrix M †M − din

dout
|Ψ⟩⟨Ψ| in order to decompose this error term into a combination of negligible

elements. The final step requires to control the ℓ1 norm of the coefficients of this combination which
is done using Lemma 17.
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We have:

F ((142)) =
∑

k,l,k′,l′

Tr(AkA
†
k′Al′A

†
kAlA

†
l′Ak′A

†
l ) =

∑
k,l

Tr(N (A†
lAk)N (A†

kAl))

=
∑
k,l

Tr(M(A†
lAk)N (A†

kAl)) + Tr(D(A†
lAk)N (A†

kAl))

=
∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) + Tr(D(A†
lAk)N (A†

kAl)) + Tr(M(A†
lAk)D(A†

kAl))

=
∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) +
Tr(A†

lAk)

dout
Tr(N (A†

kAl)) +
Tr(A†

kAl)

dout
Tr(M(A†

lAk))

=
∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) +
Tr(A†

lAk)

dout
Tr(A†

kAl)

=
∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) +
η2 + din/dout

dout
.

It remains to control the sum
∑

k,l Tr(M(A†
lAk)M(A†

kAl)) . Let T2 : X ⊗ Y 7→ X ⊗ Y ⊤ be the
partial transpose operator andM =

∑
lAl⊗Āl. Let F =

∑d
i,j=1(|i⟩⊗|j⟩)(⟨j|⊗⟨i|) be the flip op-

erator, we have Tr(A⊗BF) =
∑

i,j,k,lAi,jBk,lTr(|i⟩ ⟨j|⊗|k⟩ ⟨l|F) =
∑

i,j,k,lAi,jBk,lTr(|i⟩ ⟨l|⊗
|k⟩ ⟨j|) =

∑
i,j Ai,jBj,i = Tr(AB) which is known as the replica trick. We have using the replica

trick:

∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) =
∑
k,l

Tr(M(A†
lAk)⊗M(A†

kAl)F)

= Tr

M⊗M

∑
k,l

A†
lAk ⊗A†

kAl

F


= Tr

M⊗M◦ T2

∑
k,l

A†
lAk ⊗A⊤

l Āk

F


= Tr
(
M⊗M◦ T2(M

†M)F
)
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Let |ϕ⟩ be a unit vector, we can write |ϕ⟩ =
∑

x,y ϕx,y |x⟩ ⊗ |y⟩ then we can express:

|Tr (M⊗M◦ T2(|ϕ⟩⟨ϕ|)F) | =

∣∣∣∣∣ ∑
x,y,z,t

ϕx,yϕ̄z,tTr (M⊗M◦ T2(|x⟩ ⟨z| ⊗ |y⟩ ⟨t|)F)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
x,y,z,t

ϕx,yϕ̄z,tTr (M⊗M(|x⟩ ⟨z| ⊗ |t⟩ ⟨y|)F)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
x,y,z,t

ϕx,yϕ̄z,tTr (M(|x⟩ ⟨z|)⊗M(|t⟩ ⟨y|)F)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
x,y,z,t

ϕx,yϕ̄z,tTr (M(|x⟩ ⟨z|)M(|t⟩ ⟨y|))

∣∣∣∣∣
≤
√∑

x,y,z,t

|ϕx,yϕ̄z,t|2
∑
x,y,z,t

|Tr (M(|x⟩ ⟨z|)M(|t⟩ ⟨y|)) |2

=

√∑
x,y,z,t

∥M(|x⟩ ⟨z|)∥22∥M(|t⟩ ⟨y|)∥22 = η2

where we use the Cauchy Schwarz inequality and Lem. 15. On the other hand, we can compute:

Tr(M⊗M◦ T2(|Ψ⟩⟨Ψ|)F) = 1

din

∑
i,j

Tr(M⊗M◦ T2(|ii⟩ ⟨jj|)F)

=
1

din

∑
i,j

Tr(M(|i⟩ ⟨j|)M(|j⟩ ⟨i|)) = η2

din
.

Then, we can decompose the Hermitian matrix M †M − din
dout

|Ψ⟩⟨Ψ| =
∑

i µi |ψi⟩⟨ψi|. Hence
Lem. 17 implies:∑

k,l

Tr(M(A†
lAk)M(A†

kAl)) = Tr
(
M⊗M◦ T2(M

†M)F
)

=
din
dout

Tr (M⊗M◦ T2(|Ψ⟩⟨Ψ|)F) +
∑
i

µiTr (M⊗M◦ T2(|ψi⟩⟨ψi|)F)

≤ η2

dout
+
∑
i

|µi|η2 =
η2

dout
+Tr

∣∣∣∣M †M − din
dout

|Ψ⟩⟨Ψ|
∣∣∣∣ η2 ≤ η2

dout
+ 5η4.

Finally,

F ((142)) =
∑
k,l

Tr(M(A†
lAk)M(A†

kAl)) +

din
dout

+ η2

dout
≤

din
dout

+ η2

dout
+

η2

dout
+ 5η4.
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Lemma 19 We can upper bound F (id), F ((132)), F ((314)) and F ((24)(13)) as follows:

F (id) = F ((132)) = F ((314)) = F ((24)(13)) ≤ din/dout + η2

dout
+

η2

dout
+ 5η4.

Proof For the identity permutation, the function F can be expressed as follows:

F (id) =
∑

k,l,k′,l′

Tr(AkA
†
l′Ak′A

†
l )Tr(A

†
k′Al′)Tr(A

†
kAl)

=
∑

k,l,k′,l′

∑
i,j

Tr(|j⟩ ⟨i|A†
l′Ak′A

†
lAk |i⟩ ⟨j|A†

kAl)Tr(A
†
k′Al′)

=
∑
k′,l′

∑
i,j

Tr(N (|j⟩ ⟨i|A†
l′Ak′)N (|i⟩ ⟨j|))Tr(A†

k′Al′)

=
∑
k′,l′

∑
i,j

Tr(N (|j⟩ ⟨i|A†
l′Ak′)M(|i⟩ ⟨j|))Tr(A†

k′Al′) +
∑
k′,l′

∑
i,j

Tr(N (|j⟩ ⟨i|A†
l′Ak′)D(|i⟩ ⟨j|))Tr(A†

k′Al′)

=
∑
k′,l′

∑
i,j

Tr(N (|j⟩ ⟨i|A†
l′Ak′)M(|i⟩ ⟨j|))Tr(A†

k′Al′) +
∑
k′,l′

∑
i

1

dout
Tr(N (|i⟩ ⟨i|A†

l′Ak′))Tr(A
†
k′Al′)

=
∑
k′,l′

∑
i,j

Tr(N (|j⟩ ⟨i|A†
l′Ak′)M(|i⟩ ⟨j|))Tr(A†

k′Al′) +
∑
k′,l′

1

dout
Tr(A†

l′Ak′)Tr(A
†
k′Al′)

=
∑
k′,l′

∑
i,j

Tr(M(|j⟩ ⟨i|A†
l′Ak′)M(|i⟩ ⟨j|))Tr(A†

k′Al′) +
din/dout + η2

dout
(because M is a trace less channel)

=
∑
i,j

Tr(M(|j⟩ ⟨i|N)M(|i⟩ ⟨j|)) + din/dout + η2

dout

where N =
∑

k,l Tr(A
†
kAl)A

†
lAk. Let us introduce Ñ = N − I

dout
=
∑

i µx |ψx⟩⟨ψx| (this is
possible because N is Hermitian) so that we can write using Lem. 15:∑
i,j

Tr(M(|j⟩ ⟨i|N)M(|i⟩ ⟨j|)) =
∑
i,j

Tr(M(|j⟩ ⟨i| Ñ)M(|i⟩ ⟨j|)) + 1

dout

∑
i,j

Tr(M(|j⟩ ⟨i|)M(|i⟩ ⟨j|))

=
∑
i,j,x

µxTr(M(|j⟩ ⟨i| |ψx⟩⟨ψx|)M(|i⟩ ⟨j|)) + η2

dout

=
∑
i,j,x

µx⟨i|ψx⟩Tr(M(|j⟩ ⟨ψx|)M(|i⟩ ⟨j|)) + η2

dout

=
∑
i,j,x,k

µxTr(⟨i|ψx⟩M(|j⟩ ⟨k|)⟨ψx|k⟩M(|i⟩ ⟨j|)) + η2

dout

≤ 1

2

∑
i,j,x,k

|µx|(∥⟨i|ψx⟩M(|j⟩ ⟨k|)∥22 + ∥⟨ψx|k⟩M(|i⟩ ⟨j|)∥22) +
η2

dout

= Tr|Ñ |η2 + η2

dout
.
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We can see the matrix N =
∑

k,l Tr(A
†
kAl)A

†
lAk as a partial trace of M †M :

Tr2(M
†M) = Tr2

∑
k,l

A†
lAk ⊗A⊤

l Āk

 =
∑
k,l

Tr(A⊤
l Āk)A

†
lAk

=
∑
k,l

Tr(AlA
∗
k)A

†
lAk = N.

Moreover I
din

= Tr2(|Ψ⟩⟨Ψ|) so by the data processing inequality (the partial trace is a valid quan-
tum channel) and Lem. 17, we deduce:

Tr|Ñ | =
∥∥∥∥Tr2(M †M)− din

dout
Tr2(|Ψ⟩⟨Ψ|)

∥∥∥∥
1

≤
∥∥∥∥M †M − din

dout
|Ψ⟩⟨Ψ|

∥∥∥∥
1

≤ 5η2.

Finally,

F (id) =
∑
i,j

Tr(M(|j⟩ ⟨i|N)M(|i⟩ ⟨j|)) + din/dout + η2

dout
≤ din/dout + η2

dout
+

η2

dout
+ 5η4.

Lemma 20 We can upper bound F ((24)) and F ((1432)) as follows:

F ((24)) = F ((1432)) ≤ d2in
d2out

+
2m2

dout
+ 25η4.
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Proof Recall that ⟨Ψ|M †M |Ψ⟩ = Tr(N (I)2)
din

= din
dout

+ m2

din
. We use the fact that Tr(X)Tr(Y ) =

Tr(X ⊗ Y ):

F ((24)) =
∑

k,l,k′,l′

Tr(A†
kAlA

†
k′Al′)Tr(AkA

†
l′Ak′A

†
l )

=
∑

k,l,k′,l′

Tr(A†
kAlA

†
k′Al′ ⊗A†

lAkA
†
l′Ak′)

= Tr

∑
k,l

A†
kAl ⊗A†

lAk

∑
k,l

A†
kAl ⊗A†

lAk


= Tr

∑
k,l

A†
kAl ⊗A⊤

k Āl

T2
∑

k,l

A†
kAl ⊗A⊤

k Āl

T2

= Tr(M †M)T2(M †M)T2 = Tr(M †M)(M †M)

= Tr

(
M †M − din

dout
|Ψ⟩⟨Ψ|

)
M †M +

din
dout

Tr(|Ψ⟩⟨Ψ|M †M)

= Tr

(
M †M − din

dout
|Ψ⟩⟨Ψ|

)(
M †M − din

dout
|Ψ⟩⟨Ψ|

)
+

din
dout

⟨Ψ|
(
M †M − din

dout
|Ψ⟩⟨Ψ|

)
|Ψ⟩+ d2in

d2out
+
m2

dout

≤
(
Tr

∣∣∣∣M †M − din
dout

|Ψ⟩⟨Ψ|
∣∣∣∣)2

+
d2in
d2out

+
2m2

dout

≤ d2in
d2out

+
2m2

dout
+ 25η4

where we have used the fact that Tr
(
AT2BT2

)
= Tr(AB) and Lem. 17.

Lemma 21 We can upper bound F ((12)(34)), F ((14)(23)), F ((234)) and F ((124)) as follows:

F ((12)(34)) = F ((14)(23)) = F ((234)) = F ((124)) ≤ d3in
d2out

+ 2
din
dout

m2 + η2m2.
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Proof Using the expression of F (α) for the permutation α = (12)(34) and the fact that∑
k A

†
kAk = I, we have:

F ((12)(34)) =
∑

k,l,k′,l′

Tr(AkA
†
kAlA

†
l′Ak′A

†
k′Al′A

†
l ) =

∑
k,l

Tr(A†
lN (I)AlA

†
kN (I)Ak)

=
∑
k,l

Tr(A†
lM(I)AlA

†
kN (I)Ak) +

din
dout

∑
k,l

Tr(A†
lAlA

†
kN (I)Ak)

=
∑
k,l

Tr(A†
lM(I)AlA

†
kM(I)Ak) +

din
dout

∑
k,l

Tr(A†
lM(I)AlA

†
kAk) +

din
dout

∑
k

Tr(A†
kN (I)Ak)

=
∑
k,l

Tr(A†
lM(I)AlA

†
kM(I)Ak) +

din
dout

Tr(M(I)N (I)) +
din
dout

Tr(N (I)2)

=
∑
k,l

Tr(A†
lM(I)AlA

†
kM(I)Ak) +

d3in
d2out

+ 2
din
dout

Tr(M(I)2)

Then, if we focus on the first term,

we can use the replica trick again to obtain:

∑
k,l

Tr(A†
lM(I)AlA

†
kM(I)Ak) =

∑
k,l

Tr(AkA
†
lM(I)⊗AlA

†
kM(I)F)

= Tr

∑
k,l

AkA
†
l ⊗AlA

†
k · M(I)⊗2F

 = Tr

T2

∑
k,l

AkA
†
l ⊗ ĀkA

⊤
l

 · M(I)⊗2F


= Tr

((
MM †

)T2

· M(I)⊗2F

)
= Tr

((
(I− |Ψ⟩⟨Ψ|)MM †(I− |Ψ⟩⟨Ψ|)

)T2

· M(I)⊗2F

)
+Tr

((
MM † |Ψ⟩⟨Ψ|

)T2

· M(I)⊗2F

)
+Tr

((
|Ψ⟩⟨Ψ|MM †

)T2

· M(I)⊗2F

)
− Tr

((
|Ψ⟩⟨Ψ|MM † |Ψ⟩⟨Ψ|

)T2

· M(I)⊗2F

)
.

We can simplify the latter terms. First we have |Ψ⟩⟨Ψ|T2 = F and F2 = I so

Tr

((
|Ψ⟩⟨Ψ|MM † |Ψ⟩⟨Ψ|

)T2

· M(I)⊗2F

)
= ⟨Ψ|MM † |Ψ⟩Tr

(
(|Ψ⟩⟨Ψ|)T2 · M(I)⊗2F

)
= ⟨Ψ|MM † |Ψ⟩Tr

(
FM(I)⊗2F

)
= ⟨Ψ|MM † |Ψ⟩Tr

(
M(I)⊗2

)
= ⟨Ψ|MM † |Ψ⟩Tr (M(I))2 = 0.
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Next by Lem. 16 we have MM † |Ψ⟩ = 1√
din

∑
x,y ⟨x| N (I) |y⟩ |xy⟩ so

Tr

((
MM † |Ψ⟩⟨Ψ|

)T2

· M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr
(
(|xy⟩ ⟨zz|)T2 · M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr
(
|x⟩ ⟨z| ⊗ |z⟩ ⟨y| · M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr (|x⟩ ⟨z|M(I) |z⟩ ⟨y|M(I))

=
1

din

∑
x,y

⟨x| N (I) |y⟩Tr (|x⟩Tr(M(I)) ⟨y|M(I)) = 0.

Similarly we prove:

Tr

((
|Ψ⟩⟨Ψ|MM †

)T2

· M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr
(
(|zz⟩ ⟨xy|)T2 · M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr
(
|z⟩ ⟨x| ⊗ |y⟩ ⟨z| · M(I)⊗2F

)
=

1

din

∑
x,y,z

⟨x| N (I) |y⟩Tr (|z⟩ ⟨x|M(I) |y⟩ ⟨z|M(I))

=
1

din

∑
x,y

⟨x| N (I) |y⟩ ⟨y|M(I) |x⟩Tr(M(I)) = 0.

Now the matrix (I − |Ψ⟩⟨Ψ|)MM †(I − |Ψ⟩⟨Ψ|) is Hermitian and positive semi-definite so can
be written as (I − |Ψ⟩⟨Ψ|)MM †(I − |Ψ⟩⟨Ψ|) =

∑
i λi |ϕi⟩⟨ϕi|, and for each i, we can write the
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Schmidt’s decomposition of |ϕ⟩ =
∑

x,y ϕx,y |xy⟩. Therefore

∑
k,l

Tr(A†
lM(I)AlA

†
kM(I)Ak) = Tr

((
(I− |Ψ⟩⟨Ψ|)MM †(I− |Ψ⟩⟨Ψ|)

)T2

· M(I)⊗2F

)
=
∑
i

λiTr
(
T2 (|ϕi⟩⟨ϕi|) · M(I)⊗2F

)
=
∑
i

∑
x,y,z,t

λiϕx,yϕ̄z,tTr
(
T2 (|xy⟩ ⟨zt|) · M(I)⊗2F

)
=
∑
i

∑
x,y,z,t

λiϕx,yϕ̄z,tTr
(
|x⟩ ⟨z| ⊗ |t⟩ ⟨y| · M(I)⊗2F

)
=
∑
i

∑
x,y,z,t

λiϕx,yϕ̄z,tTr (|x⟩ ⟨z|M(I)⊗ |t⟩ ⟨y|M(I)F)

=
∑
i

∑
x,y,z,t

λiϕx,yϕ̄z,tTr (|x⟩ ⟨z|M(I) |t⟩ ⟨y|M(I))

=
∑
i

∑
x,y,z,t

λiϕx,yϕ̄z,t ⟨z|M(I) |t⟩ ⟨y|M(I) |x⟩

≤
∑
i

∑
x,y,z,t

λi|ϕx,y|2| ⟨z|M(I) |t⟩ |2 +
∑
i

∑
x,y,z,t

λi|ϕz,t|2| ⟨y|M(I) |x⟩ |2

≤
∑
i

∑
x,y,z,t

λi|ϕx,y|2| ⟨z|M(I) |t⟩ |2 +
∑
i

∑
x,y,z,t

λi|ϕz,t|2| ⟨y|M(I) |x⟩ |2

= Tr
∣∣∣(I− |Ψ⟩⟨Ψ|)MM †(I− |Ψ⟩⟨Ψ|)

∣∣∣Tr(M(I)2)

By Lem. 16 we have ⟨Ψ|MM † |Ψ⟩ = din
dout

and Tr(MM †) = din
dout

+ η2 so we have:

Tr
∣∣∣(I− |Ψ⟩⟨Ψ|)MM †(I− |Ψ⟩⟨Ψ|)

∣∣∣ = Tr(I− |Ψ⟩⟨Ψ|)MM †(I− |Ψ⟩⟨Ψ|) = η2.

Finally

F ((12)(34)) ≤ d3in
d2out

+ 2
din
dout

m2 + η2m2.

This concludes the proof for F ((12)(34)).

Lemma 22 We can upper bound F ((14)), F ((12)), F ((23)) and F ((34)) as follows:

F ((14)) = F ((12)) = F ((23)) = F ((34)) ≤ d2in
d2out

+
din
dout

η2 +
m2

dout
+ 5mη3.

Proof Recall the notation N =
∑

k,l Tr(AkA
†
l )A

†
kAl. We can write the spectral decomposition of

the Hermitian matrix:

N − I
dout

= Tr2

∑
k,l

A†
lAk ⊗A⊤

l Āk −
din
dout

|Ψ⟩⟨Ψ|

 =
∑
i

λi |ϕi⟩⟨ϕi| .
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Then using the triangle inequality and the fact that
∑

k A
†
kAk = I:

F (14) =
∑

k,l,k′,l′

Tr(A†
kAl)Tr(A

†
lAkA

†
k′Al′A

†
l′Ak′) =

∑
k′

Tr(NA†
k′N (I)Ak′)

=
∑
k′

Tr(NA†
k′M(I)Ak′) +

din
dout

Tr(N) = Tr(N (N)M(I)) +
din
dout

Tr(N)

= Tr(M(N)M(I)) +
din
dout

Tr(N) = Tr

(
M
(
N − I

dout

)
M(I)

)
+

Tr(M(I)2)
dout

+
din
dout

Tr(N)

=
din
dout

(
din
dout

+ η2
)
+

Tr(M(I)2)
dout

+
∑
i

λiTr(M(|ϕi⟩⟨ϕi|)M(I))

≤ din
dout

(
din
dout

+ η2
)
+

Tr(M(I)2)
dout

+
∑
i

|λi|∥M(|ϕi⟩⟨ϕi|)∥2∥M(I)∥2

≤ din
dout

(
din
dout

+ η2
)
+
m2

dout
+mη

∑
i

|λi| =
din
dout

(
din
dout

+ η2
)
+
m2

dout
+mη · Tr

∣∣∣∣N − I
dout

∣∣∣∣
because for all unit vector |ϕ⟩ =

∑
i ϕi |i⟩ we have using the Cauchy Schwarz inequality, the

AM-GM inequality, and Lem. 15:

∥M(|ϕ⟩⟨ϕ|)∥22 =
∑
i,j,k,l

ϕiϕ̄jϕkϕ̄lTr (M(|i⟩ ⟨j|)M(|k⟩ ⟨l|)) ≤
∑
i,j,k,l

|ϕiϕ̄jϕkϕ̄l|∥M(|i⟩ ⟨j|)∥2∥M(|k⟩ ⟨l|)∥2

≤ 1

2

∑
i,j,k,l

|ϕi|2|ϕj |2∥M(|k⟩ ⟨l|)∥22 +
1

2

∑
i,j,k,l

|ϕk|2|ϕl|2∥M(|i⟩ ⟨j|)∥22 = η2.

Moreover, using the data processing inequality and Lem. 17 :

Tr

∣∣∣∣N − I
dout

∣∣∣∣ = Tr

∣∣∣∣∣∣Tr2
∑

k,l

A†
lAk ⊗A⊤

l Āk −
din
dout

|Ψ⟩⟨Ψ|

∣∣∣∣∣∣
≤ Tr

∣∣∣∣∣∣
∑
k,l

A†
lAk ⊗A⊤

l Āk −
din
dout

|Ψ⟩⟨Ψ|

∣∣∣∣∣∣ = Tr

∣∣∣∣M †M − din
dout

|Ψ⟩⟨Ψ|
∣∣∣∣ ≤ 5η2.

This concludes the proof.

For the remaining permutations, we can obtain a closed form for the function F . For the transposi-
tion (13), the image of the function F can be expressed as follows:

F ((13)) =
∑

i,j,k,l,k′,l′

Tr(A†
l′ |j⟩ ⟨i|AkA

†
l |i⟩ ⟨j|Ak′)Tr(A

†
kAl)Tr(A

†
k′Al′)

=
∑

k,l,k′,l′

Tr(Ak′A
†
l′)Tr(AkA

†
l )Tr(A

†
kAl)Tr(A

†
k′Al′)

=

∑
k,l

|Tr(AkA
†
l )|

2

2

=

(
din
dout

+ η2
)2

.
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Then, we remark that the permutations (312) and (134) have the same image:

F ((312)) = F ((134)) =
∑

i,j,k,l,k′,l′

Tr(A†
l |i⟩ ⟨j|Ak′A

†
l′ |j⟩ ⟨i|AkA

†
kAl)Tr(A

†
k′Al′)

=
∑

k,l,k′,l′

Tr(Ak′A
†
l′)Tr(AkA

†
kAlA

†
l )Tr(A

†
k′Al′)

=
∑
k,l

Tr(AkA
†
kAlA

†
l )
∑
k,l

|Tr(AkA
†
l )|

2

= Tr(N (I)2)
(
din
dout

+ η2
)

=

(
d2in
dout

+m2

)(
din
dout

+ η2
)
.

Next, the image of the cycle (1234) has also a closed expression:

F ((1234)) =
∑

i,j,k,l,k′,l′

Tr(A†
l′ |j⟩ ⟨i|AkA

†
kAlA

†
l |i⟩ ⟨j|Ak′A

†
k′Al′)

=
∑

k,l,k′,l′

Tr(AkA
†
kAlA

†
l )Tr(Ak′A

†
k′Al′A

†
l′)

= (Tr(N (I)2))2 =
(
d2in
dout

+m2

)2

.

To sum up, we have proved so far that:

Lemma 23 Let m = ∥M(I)∥2 = ∥N (I)−D(I)∥2 and η = din

∥∥∥J − I
dindout

∥∥∥
2
. We have:

Permutation α Upper bound on F (α) Reference

(13)
(

din
dout

+ η2
)2

id, (132), (314), (24)(13) din/dout+η2

dout
+ η2

dout
+ 5η4 (Lem. 19)

(312), (134)
(

d2in
dout

+m2
)(

din
dout

+ η2
)

(1234)
(

d2in
dout

+m2
)2

(24), (1432)
d2in
d2out

+ 2m2

dout
+ 25η4 (Lem. 20)

(142), (243) din/dout+η2

dout
+ η2

dout
+ 5η4 (Lem. 18)

(14), (12), (23), (34), (1324), d2in
d2out

+ din
dout

η2 + m2

dout
+ 5mη3 (Lem. 22)

(1423), (1243), (1342)

(12)(34), (14)(23), (234), (124)
d3in
d2out

+ 2 din
dout

m2 +m2η2 (Lem. 21)
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Therefore we have the following upper bound on the second moment using the inequalitym2 ≤ dη2:

E
((

Tr(N (|ϕ⟩⟨ϕ|)2)
)2)

=
1

din(din + 1)(din + 2)(din + 3)

∑
α∈S4

F (α)

≤ d4out + 6d3in + 2d2indoutm
2 + 2d2indoutη

2 + 11d2in + 10dindoutm
2 + 10dindoutη

2

d2outdin(din + 1)(din + 2)(din + 3)

+
6din + d2outm

4 + 2d2outη
2 + 12doutm

2 + 40d2outmη
3 + 81d2outη

4 + 12doutη
2

d2outdin(din + 1)(din + 2)(din + 3)

Recall that for the random variable X = Tr
(
N (|ϕ⟩⟨ϕ|)− I

dout

)2
= Tr (N (|ϕ⟩⟨ϕ|))2 − 1

dout
we

have:

E (X) =

(
Tr
(
N (I)− din

dout
I
)2

+ d2in

∥∥∥J − I
dindout

∥∥∥2
2

)
din(din + 1)

=
1

din(din + 1)

(
Tr(M(I)2) + η2

)
=

m2 + η2

din(din + 1)
.

Since Var(X) = Var
(
X + 1

dout

)
, it can be upper bounded as follows:

Var(X) = E
((

Tr(N (|ϕ⟩⟨ϕ|)2)
)2)− (E (Tr(N (|ϕ⟩⟨ϕ|)2)

))2
≤ d4out + 6d3in + 2d2indoutm

2 + 2d2indoutη
2 + 11d2in + 10dindoutm

2 + 10dindoutη
2

d2outdin(din + 1)(din + 2)(din + 3)

+
6din + d2outm

4 + 2d2outη
2 + 12doutm

2 + 40d2outmη
3 + 81d2outη

4 + 12doutη
2

d2outdin(din + 1)(din + 2)(din + 3)
−
(

m2 + η2

din(din + 1)
+

1

dout

)2

≤
(
80d2inη

4 + 10d2inm
2η2 + 40d2inη

3m

d2in(din + 1)2(din + 2)(din + 3)

)
.

Therefore the upper bound on the variance becomes using the inequalities (m2 + η2)2 ≥ 4m2η2

and (m2 + η2)2 ≥ 2mη3 (successive AM-GM):

Var(X)

E (X)2
≤
(
80d2inη

4 + 10d2inm
2η2 + 40d2inη

3m

(din + 2)(din + 3)(η2 +m2)2

)
≤ 80

d2inη
4

d2inη
4
+ 10

d2inm
2η2

4d2inm
2η2

+ 40
d2inη

3m

2d2inmη
3
≤ 105.

Theorem 24 There is an incoherent ancilla-free algorithm using a number of measurements satis-
fying

N = O
(
d2ind

1.5
out

ε2

)
to distinguish between N = D or d⋄(N ,D) > ε with a probability of success at least 2/3.
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Proof Complexity. We start by showing that Alg. 2 uses O(d2ind
1.5
out/ε

2) measurements. Note that
Alg. 3 requires O(

√
dout log(3M)/η2) to test whether a dout-dimensional quantum state ρ satisfies

ρ = I
dout

or
∥∥∥ρ− I

dout

∥∥∥
2
≥ η with an error probability 1/(3M). We apply this test for the state

N (|ϕ⟩⟨ϕ|) , which is a dout-dimensional quantum state, and η = ε
2
√
doutdin

. So the testing identity
of states algorithm will use a number of measurements O(d2ind

1.5
out log(3M)/ε2). Since we repeat

this test a number of M = O(1) times, the total number of measurements is O(d2ind
1.5
out/ε

2).

Correctness. It remains to show that Alg. 2 is 1/3-correct. For this, we need to control two error
probabilities. The first one, under the null hypothesis H0, the channel N = D so for all k ∈ [M ],
N (|ϕk⟩⟨ϕk|)) = I

dout
. Hence, for all the quantum states test we are under the null hypothesis h0.

Therefore

PH0(error) = PH0(∃k ∈ [M ] : ik = 1)

≤
M∑
k=1

Ph0(ik = 1) ≤
M∑
k=1

1

3M
=

1

3
.

The second error probability concerns the alternate hypothesis H1. In this case, the channel N is
ε-far from the depolarizing channel D. For a given k ∈ [M ], let us lower bound the probability of

being under h1 at step k of the algorithm. Let Xk =
∥∥∥N (|ϕk⟩⟨ϕk|)− I

dout

∥∥∥2
2
. Recall that Thm. 4

says:

Var(Xk) ≤ 105E (Xk)
2

Therefore, the Paley-Zygmund inequality implies

P

(
Xk ≥ 1

2
E (Xk)

)
≥ 1− 1

1
4
E(Xk)

2

Var(Xk)
+ 1

≥ 1− 1
1

8×105 + 1
≥ 10−3.

Recall also that E (Xk) = E
(∥∥N (|ϕk⟩⟨ϕk|)− I

d

∥∥2
2

)
≥ ε2

2d2indout
(Ineq. 1). Therefore, with a prob-

ability at least 10−3, we have
∥∥∥N (|ϕk⟩⟨ϕk|)− I

dout

∥∥∥
2
≥ ε

2din
√
dout

which means we are under the

alternate hypothesis h1. Denote the good event of Ek =
{∥∥∥N (|ϕk⟩⟨ϕk|)− I

dout

∥∥∥
2
≥ ε

2din
√
dout

}
,
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the probability of error under H1 can be controlled as follows:

PH1(error) = PH1(∀k ∈ [M ] : ik = 0) =
M∏
k=1

PH1(ik = 0)

≤
M∏
k=1

(
PH1(ik = 0|Ek)P (Ek) + PH1(ik = 0|Ēk)P

(
Ēk

))
≤

M∏
k=1

(
Ph1(ik = 0)P (Ek) + P

(
Ēk

))
≤

M∏
k=1

(PH1(ik = 0|Ek)P (Ek) + 1− P (Ek))

=
M∏
k=1

(1− P (Ek)Ph1(ik = 1|Ek))

≤
(
1− 10−3 ·

(
1− 1

3M

))M

≤
(
1− 10−3

2

)M

≤ 1

3

for M = 2200 = O(1). This concludes the correctness of Alg. 2.

Appendix D. Lower bounds for testing identity to the depolarizing channel

D.1. Proof of Thm. 6

Theorem 25 Let ε ≤ 1/32, din ≥ 80 and dout ≥ 10. 2 Any incoherent ancilla-assisted non-
adaptive algorithm for testing identity to the depolarizing channel (in both the trace and diamond
distances) requires, in the worst case, a number of measurements

N = Ω

(
d2ind

1.5
out

log(dindout/ε)2ε2

)
.

Proof Construction. Under the null hypothesis H0 the quantum channel is N (ρ) = D(ρ) =
Tr(ρ) I

dout
. Under the alternate hypothesis H1, we choose the quantum channel N ∼ P of the form:

N (ρ) = Tr(ρ)
I
dout

+
ε

dout
⟨w̄| ρ |w̄⟩U

where |w⟩ =W |0⟩, W ∼ Haar(din), and U satisfies{
Ux,x = 0 for all x ∈ [dout],

Uy,x = Ūx,y ∼ Nc(0, σ
2) = N (0, σ2/2) + iN (0, σ2/2) for all x < y ∈ [dout],

where the parameter σ would be chosen later and we condition on the event

G = {∥U∥1 ≥ dout, ∥U∥∞ ≤ 32}.

2. We didn’t try to optimize these conditions.
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We call this distribution P and use the notation (w,U) ∼ P . If we don’t condition on the event G,
the distribution of U is denoted P0 and we write U ∼ P0. Random constructions with Gaussian
random variables were used for proving lower bounds by Chen et al. (2022d,e). Note that N is trace
preserving since Tr(U) = 0. In order to prove that N is a quantum channel, it remains to show that
N is completely positive which is equivalent to show that the corresponding Choi matrix is positive
semi-definite. For this we can express the Choi state of the channel N :

JN =
I

dindout
+

ε

dindout

din∑
i,j=1

|i⟩ ⟨j| ⊗ ⟨0|W⊤ |i⟩ ⟨j| W̄ |0⟩U

=
I

dindout
+

ε

dindout

∑
i,j

|i⟩ ⟨j| ⊗ ⟨i|W |0⟩ ⟨0|W † |j⟩U

=
I

dindout
+

ε

dindout
W |0⟩ ⟨0|W † ⊗ U

=
I
D

+
ε

D
|w⟩ ⟨w| ⊗ U

where D = dindout.
Observe that ∥ |w⟩⟨w| ⊗ U∥∞ = ∥U∥∞ ≤ 32 thus JN ≥ 0 if ε ≤ 1/32. So under the event G, the
map N is a quantum channel. The parameter σ should be chosen so that d⋄(N ,D) ≥ ε. Recall that
|w⟩ =W |0⟩, the definition of the diamond distance implies

d⋄(N ,D) ≥ dTr(N ,D) = max
ρ

∥(N −D)(ρ)∥1

≥ ∥(N −D)(|w̄⟩⟨w̄|)∥1 =
ε

dout
∥U∥1 ≥ ε

where we use the fact that under the event G we have ∥U∥1 ≥ dout. Note that the lower bound we
prove in this theorem holds for the stronger condition given by the trace distance.
Now we move to show that the event G occurs with high probability.

Lemma 26 There is a constant c > 0 such that we have:

P (|∥U∥1 − E (∥U∥1) | > s) ≤ exp

(
− cs2

doutσ2

)
Proof The function U 7→ ∥U∥1 is

√
dout-Lipschitz w.r.t. the Hilbert-Schmidt norm. Indeed, by the

triangle inequality and the Cauchy Schwarz inequality |∥U∥1 −∥V ∥1| ≤ ∥U −V ∥1 ≤
√
dout∥U −

V ∥2. The concentration of Lipschitz functions of Gaussian random variables (Wainwright, 2019,
Theorem 2.26) yields exactly the desired statement.

Next, we need a lower bound on the expectation of ∥U∥1. By the Hölder’s inequality:

E (∥U∥1) ≥

√√√√E
(
∥U∥22

)3
E
(
∥U∥44

) ≥

√
(d2outσ

2)3

4d3outσ
4

=
dout

√
doutσ

2
.

It is sufficient to choose σ = 4√
dout

so thatE (∥U∥1) ≥ 2dout and by Lem. 26, we have ∥U∥1 ≥ dout

with a probability 1−exp(−Ω(d2out)). It remains to see that, for this choice of σ = 4√
dout

, the event
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{∥U∥∞ ≤ 32} also occurs with high probability. Indeed, let S be a 1/4-net of Sdout of size at most
8dout . By the union bound:

P (∥U∥∞ > 32) = P
(
∃ϕ ∈ Sdout : ⟨ϕ|U |ϕ⟩ = ∥U∥∞, ∥U∥∞ > 32

)
≤ P

(
∃ϕ ∈ S : ⟨ϕ|U |ϕ⟩ > 1

2
∥U∥∞, ∥U∥∞ > 32

)
≤ |S|P (⟨ϕ|U |ϕ⟩ > 16) ≤ 8doute−8dout ≤ e−4dout .

Finally, with a probability at least 1− exp(−Ω(d2out))− exp(−Ω(dout)) the event G is satisfied and
we have a quantum channel N that is ε-far in the diamond distance from the depolarizing channel
D. A 1/3-correct algorithm A should distinguish between the channels N and D with a probability
of error at most 1/3. Let N be a sufficient number of measurements for this task and I1, . . . , IN be
the observations of the algorithm A. The Data-Processing inequality applied on the TV-distance
gives LeCam’s method (LeCam, 1973):

TV
(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1

)
≥ TV (Bern(PH0(A = 1))∥Bern(PH1(A = 1)))

≥ TV(Bern(1/3)∥Bern(2/3)) = 1

3
.

Now, we need to upper bound this TV distance with an expression involving N, din, dout and ε.
Upper bound on the TV distance. The non-adaptive algorithm A would choose at step t the

input ρt and the measurement device Mt = {λti
∣∣ϕti〉〈ϕti∣∣}i∈It . Observe that we can always reduce

w.l.o.g. to such a POVM. Under the null hypothesis H0, the quantum channel N = D so the
probability distribution of the outcomes is exactly:

P
I1,...,IN
H0

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗D(ρt)

∣∣ϕtit〉
}

i1,...,iN

.

On the other hand, under the alternate hypothesis H1, the probability of the outcomes is exactly:

P
I1,...,IN
H1

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗N (ρt)

∣∣ϕtit〉
}

i1,...,iN

Recall that D = dindout and

JD =
I
D

and JN =
I
D

+
ε

D
|w⟩⟨w| ⊗ U.

We can suppose w.l.o.g. that each input state is pure because of the convexity of the TV distance.
That is, for t ∈ [N ], we write ρt = |ψt⟩⟨ψt|. Moreover, we can write each rank one input state and
measurement vector as follows:

|ψt⟩ = At ⊗ I |Ψdin⟩ and
∣∣ϕtit〉 = Bt

it ⊗ I |Ψdout⟩

where |Ψd⟩ = 1√
d

∑d
i=1 |ii⟩ and the matrices At ∈ Cdanc×din and Bt

it
∈ Cdanc×dout verify:

Tr(AtA
†
t) = din and Tr(Bt

itB
t,†
it
) = dout.
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Note that we have for all t, for all X ∈ Cdanc⊗danc wa have
∑

it
λtitB

t,†
it
XBt

it
= doutTr(X)Idout .

Indeed, the condition of the POVM Mt implies:

X ⊗ I = X ⊗ I
∑
it

λtit
∣∣ϕtit〉〈ϕtit∣∣ =∑

it

λtitXB
t
it ⊗ I |Ψdout⟩⟨Ψdout |B

t,†
it

⊗ I

hence by taking the partial trace

Tr(X)I =
1

dout

∑
it,i,j

λtit ⟨j|B
t,†
it
XBt

it |i⟩ |i⟩ ⟨j| .

Finally ∑
it

λtitB
t,†
it
XBt

it = doutTr(X)Idout .

By taking X = I and the partial trace on the second system we have∑
it

λtitB
t
itB

t,†
it

= d2outIdanc .

Now we can re-write the distribution of the observations under the null hypothesis as follows:

P
I1,...,IN
H0

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗D(ρt)

∣∣ϕtit〉
}

i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)JD(A

†
tB

t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit
D

⟨Ψdout | (B
t,†
it
AtA

†
tB

t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit
Ddout

Tr(Bt,†
it
AtA

†
tB

t
it)

}
i1,...,iN

,

and under the alternate hypothesis as follows:

P
I1,...,IN
H1

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗N (ρt)

∣∣ϕtit〉
}

i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)JN (A†

tB
t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)

(
I
D

+
ε

D
|w⟩⟨w| ⊗ U

)
(A†

tB
t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

(
λtit

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it) +

ελtit
D

⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it ⊗ U) |Ψdout⟩

)}
i1,...,iN
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So, we can express the TV distance as follows:

2TV
(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1

)
=

∑
i1,...,iN

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
λtit

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it) +

ελtit
D

⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it ⊗ U) |Ψdout⟩

)

−
N∏
t=1

λtit
Ddout

Tr(Bt,†
it
AtA

†
tB

t
it)

∣∣∣∣∣
= E≤N

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
1 + εdout

⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it
⊗ U) |Ψdout⟩

Tr(Bt,†
it
AtA

†
tB

t
it
)

)
− 1

∣∣∣∣∣
= E≤N

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
1 + ε ·

Tr(Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U)

Tr(Bt,†
it
AtA

†
tB

t
it
)

)
− 1

∣∣∣∣∣
where we use the notationE≤N (X(i1, . . . , iN )) =

∑
i1,...,iN

(∏N
t=1

λt
it

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it
)

)
X(i1, . . . , iN ).

Let u be a standard Gaussian vector such that |w⟩ = |u⟩
∥u∥2 . We condition on the event E that u

satisfies:

1. ∥u∥2 ≥
√

1
6din and

2. ∀t ∈ [N ] : P t
u ≤ (7 log(N))4

d4indout

where P t
u is defined as

P t
w =

∑
it,jt

λtitλ
t
jt

D2d2out

(
| ⟨w|A†

tB
t
it
Bt,†

jt
At |w⟩ |4

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)

P t
u =

∑
it,jt

λtitλ
t
jt

D2d2outd
4
in

(
| ⟨u|A†

tB
t
it
Bt,†

jt
At |u⟩ |4

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)
.

Note that under the event E , we have P t
w ≤ 64P t

u. We claim that for din ≥ 80, we have with
probability at least 9/10, the event E is satisfied. The proof of this claim is deferred to Lemma 27.
Now, we can distinguish whether the event E is verified or not in the TV distance. Let

Ψi,w,U =

N∏
t=1

(
1 + ε · Φt,it

w,U

)
where Φt,it

w,U =
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U)

Tr(Bt,†
it
AtA

†
tB

t
it
)

.

By the triangle inequality:

E≤N

∣∣∣∣∣E(w,U)∼P

N∏
t=1

(
1 + ε ·

Tr(Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U)

Tr(Bt,†
it
AtA

†
tB

t
it
)

)
− 1

∣∣∣∣∣
≤ E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣+ E≤N

∣∣E(w,U)∼P
[
1{Ē}(Ψi,w,U − 1)

]∣∣
≤ E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣+ E≤NE(w,U)∼P

[
1{Ē}(Ψi,w,U + 1)

]
= E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣+ 2P

(
Ē
)
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where we use the fact that
∑

it
λtitB

t,†
it
XBt

it
= doutTr(X)I and

E≤NΨi,w,U =
∑

i1,...,iN

(
N∏
t=1

λtit
Ddout

· Tr(Bt,†
it
AtA

†
tB

t
it)

)
N∏
t=1

(
1 + ε ·

Tr(Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U)

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

=
N∏
t=1

∑
it

(
λtit

Ddout
· Tr(Bt,†

it
AtA

†
tB

t
it) +

ελtit
Ddout

· Tr(Bt,†
it
At |w⟩⟨w|A†

tB
t
itU)

)

=
N∏
t=1

(
1 +

ε

D
· Tr(At |w⟩⟨w|A†

t)Tr(U)
)
= 1.

It remains to upper bound the expectationE≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣. For this, we follow

(Bubeck et al., 2020) and apply the Cauchy Schwarz inequality and Hölder’s inequality:(
E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣)2 + P (E)2

≤ E≤N

(
E(w,U)∼P [1{E(w)}(Ψi,w,U − 1)]

)2
+ P (E)2

= E≤NE(w,U)∼PE(z,V )∼P1{E(w)}Ψi,w,U1{E(z)}Ψi,z,V

≤ E(w,U)∼P1{E(w)}E(z,V )∼P1{E(z)}
N∏
t=1

Eit

(
1 + ε · Φt,it

w,U

)(
1 + ε · Φt,it

z,V

)
= E(w,U)∼P1{E(w)}E(z,V )∼P1{E(z)}

N∏
t=1

(
1 + ε2 · EitΦ

t,it
w,UΦ

t,it
z,V

)
( because EitΦ

t,it
w,U = 0)

≤ max
1≤t≤N

E(w,U)∼P1{E(w)}E(z,V )∼P1{E(z)}
(
1 + ε2 · EitΦ

t,it
w,UΦ

t,it
z,V

)N
≤ 1

P (G)2
max
1≤t≤N

EU,V∼P0Ew,z1{E(w)}1{E(z)}
(
1 + ε2 ·

∣∣∣EitΦ
t,it
w,UΦ

t,it
z,V

∣∣∣)N
≤ 1

(1− e−Ω(dout))2
max
1≤t≤N

EU,V∼P0Ew,z1{E(w)}1{E(z)}
(
1 + ε2 ·

∣∣∣EitΦ
t,it
w,UΦ

t,it
z,V

∣∣∣)N
Note that at the last two inequalities, we don’t require anymore that U satisfies ∥U∥∞ ≤ 32 and
∥U∥1 ≥ dout. This is possible because the integrand is positive and P (G) ≥ 1− e−Ω(dout).

For t ∈ [N ], let Zt be the polynomial in {Ui,j , Vi,j}douti,j=1 defined as follows:

Zt = ε2EitΦ
t,it
w,UΦ

t,it
z,V

= ε2
∑
it

(
λtit

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it)

)(
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U)

Tr(Bt,†
it
AtA

†
tB

t
it
)

)(
Tr(Bt,†

it
At |z⟩⟨z|A†

tB
t
it
V )

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

= ε2
∑
it

(
λtit

Ddout

)(
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U)Tr(Bt,†

it
At |z⟩⟨z|A†

tB
t
it
V )

Tr(Bt,†
it
AtA

†
tB

t
it
)

)
Note that Zt is a polynomial of degree 2 of expectation 0. The Hypercontractivity (Aubrun and

Szarek, 2017, Proposition 5.48) implies for all k ∈ {1, . . . , N}:

E
(
|Zt|k

)
≤ kkE

(
Z2
t

)k/2
.
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This means that we only need to control the second moment of Zt. We have:

EU,V (Z
2
t ) = ε4EU,V

[∑
it,jt

λtitλ
t
jt

D2d2out

(
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U)Tr(Bt,†

it
At |z⟩⟨z|A†

tB
t
it
V )

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

·

(
Tr(Bt,†

jt
At |w⟩⟨w|A†

tB
t
jt
U)Tr(Bt,†

jt
At |z⟩⟨z|A†

tB
t
jt
V )

Tr(Bt,†
jt
AtA

†
tB

t
jt
)

)]
.

Let Ξit,jt(w) = EU

[
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U)Tr(Bt,†

jt
At |w⟩⟨w|A†

tB
t
jt
U)
]
, we have :

EU,V (Z
2
t ) = ε4

∑
it,jt

λtitλ
t
jt

D2d2out

(
Ξit,jt(w)Ξit,jt(z)

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)

For given it, jt, we can upper bound the expectation Ξit,jt :

Ξit,jt(w) = EU

[
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
itU)Tr(Bt,†

jt
At |w⟩⟨w|A†

tB
t
jtU)

]
=

∑
x,y,x′,y′

E
(
Ux,yUx′,y′

)
Tr(Bt,†

it
At |w⟩⟨w|A†

tB
t
it |x⟩ ⟨y|)Tr(B

t,†
jt
At |w⟩⟨w|A†

tB
t
jt

∣∣x′〉 〈y′∣∣)
≤ 16

dout

∑
x,y

⟨w|A†
tB

t
it |x⟩⟨x|B

t,†
jt
At |w⟩ ⟨w|A†

tB
t
jt |y⟩⟨y|B

t,†
it
At |w⟩

=
16

dout
⟨w|A†

tB
t
itB

t,†
jt
At |w⟩ ⟨w|A†

tB
t
jtB

t,†
it
At |w⟩

=
16

dout
| ⟨w|A†

tB
t
itB

t,†
jt
At |w⟩ |2

Therefore we can upper bound the expectation of Z2
t as follows:

EU,V (Z
2
t ) = ε4

∑
it,jt

λtitλ
t
jt

D2d2out

(
Ξit,jt(w)Ξit,jt(z)

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)

= ε4
(
162

d2out

)∑
it,jt

λtitλ
t
jt

D2d2out

(
| ⟨w|A†

tB
t
it
Bt,†

jt
At |w⟩ |2| ⟨z|A†

tB
t
it
Bt,†

jt
At |z⟩ |2

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)
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This implies an upper bound for every moment, that is for k = 1, . . . , N , we have:

Ew,z1{E(w)}1{E(z)}EU,V (|Zt|k)

≤ Ew,z1{E(w)}1{E(z)}kk
[
ε4
(
162

d2out

)∑
it,jt

λtitλ
t
jt

D2d2out

(
| ⟨w|A†

tB
t
it
Bt,†

jt
At |w⟩ |2| ⟨z|A†

tB
t
it
Bt,†

jt
At |z⟩ |2

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)]k/2

≤ kkEw,z1{E(w)}1{E(z)}

[
ε4
(
162

d2out

)∑
it,jt

λtitλ
t
jt

D2d2out

(
| ⟨w|A†

tB
t
it
Bt,†

jt
At |w⟩ |4 + | ⟨z|A†

tB
t
it
Bt,†

jt
At |z⟩ |4

2Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)]k/2

= kkEw,z1{E(w)}1{E(z)}

[
ε4
(
162

d2out

)
(P t

w + P t
z)

2

]k/2

≤ kkEw,z1{E(w)}1{E(z)}

[
ε4
(
162 · 64

d2out

)
(P t

u + P t
v)

2

]k/2

≤ kkEw,z1{E(w)}1{E(z)}

[
ε4
(
162 · 64

d2out

)(
(7 log(N))4

d4indout

)]k/2
≤ kk

[
Cε4 log(N)4

d4ind
3
out

]k/2
where C > 0 is a universal constant and we used that we are under the events E(w) and E(z).
Now, grouping the lower bound and upper bounds on the TV distance, we obtain:

(1− e−Ω(dout))2
(

72

152
+

92

102

)
≤ (1− e−Ω(dout))2

[(
2TV

(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1

)
− 2P

(
Ē
))2

+ P (E)2
]

≤ (1− e−Ω(dout))2
[(
E≤N

∣∣E(w,U)∼P [1{E}(Ψi,w,U − 1)]
∣∣)2 + P (E)2

]
≤ max

t
E
(
(1 + |Zt|)N

)
≤ max

t

N∑
k=0

(
N

k

)
kk
(
Cε4 log(N)4

d4ind
3
out

)k/2

≤
N∑
k=0

(
C ′Nε2 log(N)2

d2ind
1.5
out

)k

where we used
(
N
k

)
≤ Nkek

kk
and C ′ =

√
Ce. If N log(N)2 ≤ d2ind

1.5
out

101C′ε2 the RHS is upper bounded

by
∑

k≥0
1

101k
= 1.01 but the LHS is at least (1− e−Ω(dout))2

(
72

152
+ 92

102

)
≥ 1.02 for dout ≥ Ω(1)

which is a contradiction. Hence N log(N)2 ≥ d2ind
1.5
out

101C′ε2 and finally:

N ≥ Ω

(
d2ind

1.5
out

log(dindout/ε)2ε2

)
.

We move to prove our claim:

Lemma 27 Let din ≥ 80. We have with probability at least 9/10, the event E is satisfied.

Proof Fix t ∈ [N ], denote (i, j) = (it, jt), Xi = B†
iAt and recall that |w⟩ = |u⟩

∥u∥2 such that u is a
standard Gaussian vector. Recall that the event E is u satisfies:
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1. ∥u∥2 ≥ 1
2

√
2
3din and

2. ∀t ∈ [N ] : P t
u ≤ (7 log(N))4

d4indout

where P t
u is defined as

P t
u =

∑
it,jt

λtitλ
t
jt

D2d2outd
4
in

(
| ⟨u|A†

tB
t
it
Bt,†

jt
At |u⟩ |4

Tr(Bt,†
it
AtA

†
tB

t
it
)Tr(Bt,†

jt
AtA

†
tB

t
jt
)

)
=
∑
i,j

λiλj
D2d2outd

4
in

(
| ⟨u|X†

iXj |u⟩ |4

∥Xi∥22∥Xj∥22

)

First note that with high probability ∥u∥2 ≥ 1
2

√
2
3din. Indeed, the function u 7→ ∥u∥2 is Lipschitz

so P (∥u∥2 ≤ E (∥u∥2)− s) ≤ e−s2/2 (Wainwright, 2019, Theorem 2.26). On the other hand we

have by Hölder’s inequality E (∥u∥2) ≥
√

E(∥u∥22)
3

E(∥u∥42)
=

√
d3in

d2in+2din
≥
√

2
3din hence

P

(
∥u∥2 ≤

1

2

√
2

3
din

)
≤ P

(
∥u∥2 − E (∥u∥2) ≤ −1

2

√
2

3
din

)
≤ e−din/32.

For the second point in the event E , we can see that Pu is a Gaussian polynomial in the entries of
u of degree 8. So we can use the concentration inequality of Gaussian polynomials (Aubrun and
Szarek, 2017, Corollary 5.49), for any s > (2e)1/4 we have:

P
(
|P − E (P ) | ≥ s

√
Var(P )

)
≤ exp

(
−4

e
s1/4

)
so with probability at least 1− 1

N2 we have:

P ≤ E (P ) + (e log(N)/2)4
√

Var(P ) ≤ 5 log4(N)
√
E (P 2).

Let us control the expectation of P 2 = P 2
u , recall that we denote (i, j) = (it, jt) and Xi = B†

iAt,

E
(
P 2
)
= E

[(∑
i,j

λiλj
D2d2outd

4
in

(
∥Xi∥−2

2 ∥Xj∥−2
2 | ⟨u|X†

iXj |u⟩ |4
))2]

= E

[ ∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

(
∥Xi∥−2

2 ∥Xj∥−2
2 ∥Xk∥−2

2 ∥Xl∥−2
2 | ⟨w|X†

iXj |w⟩ |4| ⟨w|X†
kXl |w⟩ |4

)]
E
(
∥u∥162

)
≤
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

·
∑

α∈S8
Trα(X

†
iXj , X

†
jXi, X

†
iXj , X

†
jXi, X

†
kXl, X

†
lXk, X

†
kXl, X

†
lXk)

(din + 7)![(din − 1)!]−1∥Xi∥22∥Xj∥22∥Xk∥22∥Xl∥22
· d8in

≤ max
α∈S8

∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

·
|Trα(X†

iXj , X
†
jXi, X

†
iXj , X

†
jXi, X

†
kXl, X

†
lXk, X

†
kXl, X

†
lXk)|

∥Xi∥22∥Xj∥22∥Xk∥22∥Xl∥22

Then we claim that:
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Lemma 28 Let A = X†
iXj and B = X†

kXl, we have for all α ∈ S8,

|Trα(A,A†, A,A†, B,B†, B,B†)|1/2

≤ max{|Tr(A)|4,Tr(AA†)2}max{|Tr(B)|4,Tr(BB†)2}
≤ ∥Xi∥22∥Xj∥22∥Xk∥22∥Xl∥22.

Sketch of the proof. The strategy to prove this lemma depends on α, we can give an outline:

• Traces containing one element remain unchanged.

• If we have two successive A (or B) in a trace term, we upper bound this trace with a 2-norm
Tr(AA†) times the operator norm of the remaining elements. Then we can upper bound the
operator norms with the 2-norms.

• Otherwise, we have successive (A,B) (with possible adjoint) inside the trace term. We can
apply a Cauchy Schwarz inequality then we find two successiveA orB and apply the previous
strategy.

For instance we have for α = (1)(5372648):

Tr(A)Tr(BABA†B†A†B†) ≤ |Tr(A)|Tr(BB†)∥ABA†B†A†∥∞
≤ |Tr(A)|Tr(BB†)∥BB†∥∞∥AA†∥3/2∞

≤ |Tr(A)|Tr(BB†)Tr(BB†)Tr(AA†)3/2

≤ max{|Tr(A)|4,Tr(AA†)2}max{|Tr(B)|4,Tr(BB†)2}.

Another example for α = (15372648):

Tr(ABABA†B†A†B†) ≤ Tr(ABABB†A†B†A†)1/2Tr(BABAA†B†A†B†)1/2

≤ Tr(BB†)∥AA†∥2∞∥BB†∥∞ ≤ Tr(BB†)2Tr(AA†)2.

Using Lemma 28, we have:

E
(
P 2
)
≤ max

α∈S8

∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

·
|Trα(X†

iXj , X
†
jXi, X

†
iXj , X

†
jXi, X

†
kXl, X

†
lXk, X

†
kXl, X

†
lXk)|

∥Xi∥22∥Xj∥22∥Xk∥22∥Xl∥22

≤ max
α∈S8

∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

·
√

|Trα(X†
iXj , X

†
jXi, X

†
iXj , X

†
jXi, X

†
kXl, X

†
lXk, X

†
kXl, X

†
lXk)|

≤
∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

·max{|Tr(X†
iXj)|2,Tr(X†

iXjX
†
jXi)}max{|Tr(X†

kXl)|2,Tr(X†
kXlX

†
lXk)}

So we have 4 cases to consider, two of them are similar. Let us define four subsets of indices:

C1 = {(i, j, k, l) : |Tr(X†
iXj)|2 > Tr(X†

iXjX
†
jXi), |Tr(X†

kXl)|2 > Tr(X†
kXlX

†
lXk)},

C2 = {(i, j, k, l) : |Tr(X†
iXj)|2 ≤ Tr(X†

iXjX
†
jXi), |Tr(X†

kXl)|2 ≤ Tr(X†
kXlX

†
lXk)},

C3 = {(i, j, k, l) : |Tr(X†
iXj)|2 > Tr(X†

iXjX
†
jXi), |Tr(X†

kXl)|2 ≤ Tr(X†
kXlX

†
lXk)},

C4 = {(i, j, k, l) : |Tr(X†
iXj)|2 ≤ Tr(X†

iXjX
†
jXi), |Tr(X†

kXl)|2 > Tr(X†
kXlX

†
lXk)}.
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For the first case where the indices (i, j, k, l) ∈ C1, we have:

∑
i,j,k,l∈C1

8!λiλjλkλl
D4d4outd

8
in

·max{|Tr(X†
iXj)|2,Tr(X†

iXjX
†
jXi)}max{|Tr(X†

kXl)|2,Tr(X†
kXlX

†
lXk)}

≤
∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

· |Tr(X†
iXj)|2Tr(X†

kXl)|2

=
∑
i,j,k,l

∑
x,y,x′,y′

8!λiλjλkλl
D4d4outd

8
in

· ⟨x|X†
iXj |x⟩ ⟨y|X†

jXi |y⟩
〈
x′
∣∣X†

kXl

∣∣x′〉 〈y′∣∣X†
lXk

∣∣y′〉
=

∑
x,y,x′,y′

8!

D4d4outd
8
in

· d4outTr[Tr(At |x⟩ ⟨y|A†
t)IdoutTr(At |y⟩ ⟨x|A†

t)Idout ]

· Tr[Tr(At

∣∣x′〉 〈y′∣∣A†
t)IdoutTr(At

∣∣y′〉 〈x′∣∣A†
t)Idout ]

=
∑

x,y,x′,y′

8!

D4d4outd
8
in

· d6out ⟨y|A
†
tAt |x⟩ ⟨x|A†

tAt |y⟩
〈
y′
∣∣A†

tAt

∣∣x′〉 〈x′∣∣A†
tAt

∣∣y′〉
=

8!

D4d4outd
8
in

· d6outTr(A
†
tAtA

†
tAt)

2 ≤ 8!

D4d4outd
8
in

· d6outTr(A
†
tAt)

4

=
8!

D4d4outd
8
in

· d6outd4in =
8!

d8ind
2
out

because
∑

i λiXiMX†
i =

∑
i λiB

†
iAtMA†

tBi = doutTr(AtMA†
t)Idout and Tr(AtA

†
t) = din.

For the second case where the indices (i, j, k, l) ∈ C2, we have:

∑
i,j,k,l∈C2

8!λiλjλkλl
D4d4outd

8
in

·max{|Tr(X†
iXj)|2,Tr(X†

iXjX
†
jXi)}max{|Tr(X†

kXl)|2,Tr(X†
kXlX

†
lXk)}

≤
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

· Tr(X†
iXjX

†
jXi)Tr(X

†
kXlX

†
lXk)

=
8!

D4d4outd
8
in

Tr(AtA
†
t)

2Tr(I)Tr(AtA
†
t)

2Tr(I)d4out

=
8!

D4d4outd
8
in

d4ind
6
out =

8!

d8ind
2
out

.
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For the third case where the indices (i, j, k, l) ∈ C3, we have:∑
i,j,k,l∈C3

8!λiλjλkλl
D4d4outd

8
in

·max{|Tr(X†
iXj)|2,Tr(X†

iXjX
†
jXi)}max{|Tr(X†

kXl)|2,Tr(X†
kXlX

†
lXk)}

≤
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

· |Tr(X†
iXj)|2Tr(X†

kXlX
†
lXk)

=
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

·
∑
x,y

⟨x|X†
iXj |x⟩ ⟨y|X†

jXi |y⟩Tr(X†
kXlX

†
lXk)

=
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

·
∑
x,y

d3out ⟨y|A
†
tAt |x⟩ ⟨x|A†

tAt |y⟩ d2outTr(AtA
†
t)

2Tr(I)

≤
∑
i,j,k,l

λiλjλkλl
D4d4outd

8
in

· d6outTr(AtA
†
t)

4 =
8!

D4d4outd
8
in

d6outd
4
in =

8!

d8ind
2
out

.

The fourth case, where the indices (i, j, k, l) ∈ C4, is similar to the previous one.
To sum up, we have

E
(
P 2
)
≤
∑
i,j,k,l

8!λiλjλkλl
D4d4outd

8
in

·max{|Tr(X†
iXj)|2,Tr(X†

iXjX
†
jXi)}max{|Tr(X†

kXl)|2,Tr(X†
kXlX

†
lXk)}

≤ 4× 8!

d8ind
2
out

.

So by the union bound, we have with probability at least 1− 1
N − e−din/32 ≥ 9

10 , for all t ∈ [N ]:

Pu ≤ 5 log4(N)4
√
E (P 2

u ) ≤ 5 log4(N)

√
4× 8!

d8ind
2
out

≤ (7 log(N))4

d4indout

and ∥u∥2 ≥
√
din/6, that is the event E is satisfied.

D.2. Proof of Thm. 7

Theorem 29 Any incoherent ancilla-assisted adaptive algorithm for testing identity to the depolar-
izing channel requires, in the worst case,

N = Ω

(
d2indout + d1.5out

ε2

)
measurements.

Proof We use the same construction as in the proof of Thm. 6. Mainly, under the null hypothesisH0

the quantum channel is N (ρ) = D(ρ) = Tr(ρ) I
dout

. Under the alternate hypothesis H1, a quantum
channel N ∼ P has the form:

N (ρ) = Tr(ρ)
I
dout

+
ε

dout
⟨w| ρ |w⟩U
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where |w⟩ = W |0⟩ and W ∼ Haar(din) and for all i, j ∈ [dout], Uj,i = Ui,j ∼ 1{i ̸=
j}Nc

(
0, σ2 = 16

dout

)
and we condition on the event G = {∥U∥1 ≥ dout, ∥U∥∞ ≤ 32}. We call

this distribution P and use the notation (w,U) ∼ P . Recall that P (G) ≥ 1 − exp(−Ω(dout)) −
exp(−Ω(d2out)) and under G, the map N is a valid quantum channel ε-far from the quantum channel
D.

Now, given a set of observations i<t = (i1, . . . , it−1). The adaptive algorithm A would choose
at step t the input ρi<t

t and the measurement device Mi<t
t =

{
λt,i<t

it

∣∣∣ϕt,i<t

it

〉〈
ϕt,i<t

it

∣∣∣}
it∈It

.

Under the null hypothesis H0, the quantum channel N = D so the probability of the outcomes
is exactly:

P
I1,...,IN
H0

=

{
N∏
t=1

λt,i<t

it

〈
ϕt,i<t

it

∣∣∣ id⊗D(ρi<t
t )

∣∣∣ϕt,i<t

it

〉}
i1,...,iN

.

On the other hand, under the alternate hypothesis H1, the probability of the outcomes is exactly:

P
I1,...,IN
H1,(w,U) =

{
N∏
t=1

λt,i<t

it

〈
ϕt,i<t

it

∣∣∣ id⊗N(w,U)(ρ
i<t
t )

∣∣∣ϕt,i<t

it

〉}
i1,...,iN

Recall that

JD =
I
D

and JN =
I
D

+
ε

D
|w⟩⟨w| ⊗ U.

We can suppose w.l.o.g. that each input state is pure because of the convexity of the KL divergence.
For t ∈ [N ] and i<t, let ρi<t

t =
∣∣∣ψi<t

t

〉〈
ψi<t
t

∣∣∣. Moreover, we can write each rank one input state
and measurement vector as follows:∣∣∣ψi<t

t

〉
= Ai<t

t ⊗ I |Ψdin⟩ and
∣∣∣ϕt,i<t

it

〉
= Bi<t

it
⊗ I |Ψdout⟩

where |Ψd⟩ = 1√
d

∑d
i=1 |ii⟩ and the matrices Ai<t

t ∈ Cdanc×din and Bi<t

it
∈ Cdanc×dout verify:

Tr(Ai<t
t Ati<t, †) = din and Tr(Bi<t

it
Biti<t, †) = dout.

Note that we have for all t,
∑

it
λt,i<t

it
Bi<t,†

it
XBi<t

it
= doutTr(X)I. Indeed, the condition of the

POVM Mt implies:

X ⊗ I = X ⊗ I
∑
it

λtit
∣∣ϕtit〉〈ϕtit∣∣ =∑

it

λtitXB
t
it ⊗ I |Ψdout⟩⟨Ψdout |B

t,†
it

⊗ I

hence by taking the partial trace

Tr(X)I =
1

dout

∑
it,i,j

λtit ⟨j|B
t,†
it
XBt

it |i⟩ |i⟩ ⟨j| .

Finally ∑
it

λtitB
t,†
it
XBt

it = doutTr(X)I.
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Now we can re-write the distribution of the observations under the null hypothesis as:

P
I1,...,IN
H0

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗D(ρt)

∣∣ϕtit〉
}

i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)JD(A

†
tB

t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit
D

⟨Ψdout | (B
t,†
it
AtA

†
tB

t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit
Ddout

Tr(Bt,†
it
AtA

†
tB

t
it)

}
i1,...,iN

,

and under the alternate hypothesis as:

P
I1,...,IN
H1

=

{
N∏
t=1

λtit
〈
ϕtit
∣∣ id⊗N (ρt)

∣∣ϕtit〉
}

i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)JN (A†

tB
t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

λtit ⟨Ψdout | (B
t,†
it
At ⊗ I)

(
I
D

+
ε

D
|w⟩⟨w| ⊗ U

)
(A†

tB
t
it ⊗ I) |Ψdout⟩

}
i1,...,iN

=

{
N∏
t=1

(
λtit

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it) +

ελtit
D

⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it ⊗ U) |Ψdout⟩

)}
i1,...,iN

We can express the KL divergence as follows:

KL
(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1,(w,U)

)
=

∑
i1,...,iN

N∏
t=1

λtit
Ddout

Tr(Bt,†
it
AtA

†
tB

t
it)

× log


∏N

t=1

λt
it

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it
)∏N

t=1

(
λt
it

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it
) +

ελt
it

D ⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it
⊗ U) |Ψdout⟩

)


=
N∑
t=1

E≤N (− log)

1 +

ελt
it

D ⟨Ψdout | (B
t,†
it
At |w⟩⟨w|A†

tB
t
it
⊗ U) |Ψdout⟩

λt
it

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it
)


=

N∑
t=1

E≤N (− log)

(
1 + ε

Tr((Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

)
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where we use the notationE≤N (X(i1, . . . , iN )) =
∑

i1,...,iN

(∏N
t=1

λt
it

Ddout
Tr(Bt,†

it
AtA

†
tB

t
it
)

)
X(i1, . . . , iN ).

Using the inequality (− log(1 + x)) ≤ −x+ x2 valid for x ≥ −1/2 and since for ε ≤ 64, we have

ε
Tr((Bt,†

it
At|w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it

AtA
†
tB

t
it
)

≥ −1/2, we can upper bound the previous integrand as follows:

(− log)

(
1 + ε

Tr((Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

≤ ε
Tr((Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

+ ε2
Tr((Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U))2

Tr(Bt,†
it
AtA

†
tB

t
it
)2

.

Observe that the first term vanishes under the expectation:

E≤N

(
ε
Tr((Bt,†

it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

= E≤t−1

∑
it

λtit
Ddout

Tr(Bt,†
it
AtA

†
tB

t
it) · ε

Tr((Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

= E≤t−1

∑
it

λtit
Ddout

· εTr((Bt,†
it
At |w⟩⟨w|A†

tB
t
itU))

= E≤t−1
ε

D
Tr(At |w⟩⟨w|A†

t)Tr(U) = 0

where we used
∑

it
λtitB

t,†
it
XBt

it
= doutTr(X)I. For the second term, we will instead upper bound

its expectation under U . Observe that this term is nonnegative, so we can safely remove the con-
dition on the event G and then we compute the expectation under Haar distributed vector w and
Gaussians {Ui,j}.

E

(
ε2

Tr((Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U))2

Tr(Bt,†
it
AtA

†
tB

t
it
)2

)
≤ 32

dout
ε2E

(
⟨w|A†

tB
t
it
Bt,†

it
At |w⟩

2

Tr(Bt,†
it
AtA

†
tB

t
it
)2

)

≤ 64ε2

doutd2in
·
Tr(A†

tB
t
it
Bt,†

it
At)

2

Tr(Bt,†
it
AtA

†
tB

t
it
)2

=
64ε2

d2indout
.

Therefore

E(w,U)∼P KL
(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1,(w,U)

)
≤

N∑
t=1

E≤NE(w,U)∼P(− log)

(
1 + ε

Tr((Bt,†
it
At |w⟩⟨w|A†

tB
t
it
U))

Tr(Bt,†
it
AtA

†
tB

t
it
)

)

≤
N∑
t=1

E≤N
64ε2

d2indout
=

64Nε2

d2indout
.

On the other hand, the Data-Processing inequality applied on the KL divergence (see Prop. F.3)
writes:

E(w,U)∼P KL
(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1,(w,U)

)
≥ E(w,U)∼P KL(PH0 (A = 0) ∥PH1,(w,U) (A = 0))

≥ KL(2/3∥1/3) = 2

3
log(2)− 1

3
log(2) =

1

3
log(2).
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Grouping the lower and upper bounds on the KL divergence:

128Nε2

d2indout
≥ E(w,U)∼P KL

(
P

I1,...,IN
H0

∥∥∥PI1,...,IN
H1,(w,U)

)
≥ 1

3
log(2)

which yields the lower bound:

N = Ω

(
d2indout
ε2

)
.

Appendix E. Testing identity of quantum states

In this section, we show how to reduce testing quantum states to testing discrete distributions. The
same result with another proof can be found in (Chen et al., 2022f). For a POVM M and a quantum
state ρ, let ρ(M) denotes the classical probability distribution {Tr(ρMi)}i. The following lemma
captures the main ingredient of the reduction:

Lemma 30 For all δ > 0, let l = 1
4 log(2/δ) and U1, U2, . . . , U l ∈ Cd×d be Haar -random

unitary matrices of columns
{∣∣∣U j

i

〉}
1≤i≤d,1≤j≤l

, M =
{

1
l

∣∣∣U j
i

〉〈
U j
i

∣∣∣}
i,j

is a POVM and for all

quantum states ρ and σ we have with a probability at least 1− δ:

TV(ρ(M), σ(M)) ≥ ∥ρ− I/d∥2
20

.

A similar statement can be found in (Matthews et al., 2009) where the authors analyze the uniform
POVM and a POVM defined by a spherical 4-designs. However, for our reduction, it is important
to minimize the number of outcomes of the POVM.
Proof Let ξ = ρ−σ, we have U |ei⟩ = |Ui⟩ and we use Weingarten Calculus 31 and 32 to calculate

E
[
⟨Ui| ξ |Ui⟩2

]
= E [⟨Ui| ξ |Ui⟩ ⟨Ui| ξ |Ui⟩] = E [Tr(ξ |Ui⟩⟨Ui| ξ |Ui⟩⟨Ui|)]

= E [Tr(ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗)] = E [Tr(U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|)]

=
∑

α,β∈S2

Wg(βα−1, d)Trβ−1(ξ, ξ)Trα(|ei⟩⟨ei| , |ei⟩⟨ei|) =
1

d(d+ 1)
Tr(ξ2).

Similarly

E
[
⟨Ui| ξ |Ui⟩4

]
= E [⟨Ui| ξ |Ui⟩ ⟨Ui| ξ |Ui⟩ ⟨Ui| ξ |Ui⟩ ⟨Ui| ξ |Ui⟩]

= E [Tr(ξ |Ui⟩⟨Ui| ξ |Ui⟩⟨Ui| ξ |Ui⟩⟨Ui| ξ |Ui⟩⟨Ui|)]
= E [Tr(ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗)]

= E [Tr(U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|U∗ξU |ei⟩⟨ei|)]

=
∑

α,β∈S4

Wg(βα−1, d)Trβ−1(ξ, ξ, ξ, ξ)Trα(|ei⟩⟨ei| , |ei⟩⟨ei| , |ei⟩⟨ei| , |ei⟩⟨ei|)

=
1

d(d+ 1)(d+ 2)(d+ 3)
(6Tr(ξ2)2 + 6Tr(ξ4)).

≤ c′

d(d+ 1)(d+ 2)(d+ 3)
Tr(ξ2)2.

60



QUANTUM CHANNEL CERTIFICATION

We can now conclude by Hölder’s inequality:

2E [TV(ρ(M), σ(M))] =

d∑
i=1

E [| ⟨Ui| ξ |Ui⟩ |] ≥
d∑

i=1

√√√√√√
(
E
[
⟨Ui| ξ |Ui⟩2

])3
E
[
⟨Ui| ξ |Ui⟩4

]
≥

d∑
i=1

√
(d−1(d+ 1)−1Tr(ξ2))3

c′d−1(d+ 1)−1(d+ 2)−1(d+ 3)−1Tr(ξ2)2

≥
d∑

i=1

c

√
Tr(ξ2)

d
≥ c
√
Tr(ρ− σ)2.

Let f(U) = TV(ρ(M), σ(M)), we first show that f is Lipschitz by using the triangle and
Cauchy Schwarz inequalities:

2|f(U)− f(V )| =

∣∣∣∣∣∣
∑

1≤i≤d,1≤j≤l

1

l
|Tr(

∣∣∣U j
i

〉〈
U j
i

∣∣∣ ξ)| − |Tr(
∣∣∣V j

i

〉〈
V j
i

∣∣∣ ξ)|
∣∣∣∣∣∣

≤
∑

1≤i≤d,1≤j≤l

1

l

∣∣∣Tr((∣∣∣U j
i

〉〈
U j
i

∣∣∣− ∣∣∣V j
i

〉〈
V j
i

∣∣∣)ξ)∣∣∣
≤

∑
1≤i≤d,1≤j≤l

1

l

√
Tr(ξ2)

√
Tr((

∣∣∣U j
i

〉〈
U j
i

∣∣∣− ∣∣∣V j
i

〉〈
V j
i

∣∣∣)2)
≤
√
d

l

√
Tr(ξ2)

√ ∑
1≤i≤d,1≤j≤l

Tr((
∣∣∣U j

i

〉〈
U j
i

∣∣∣− ∣∣∣V j
i

〉〈
V j
i

∣∣∣)2)
≤
√
d

l

√
Tr(ξ2)

√ ∑
1≤j≤l

Tr((U j − V j)2)

≤
√
d

l

√
Tr(ξ2)∥U − V ∥2,HS,

hence f is L =
√

d
2l

√
Tr(ξ2)-Lipschitz, therefore by Thm. 34:

P
(
|f(U)− E (f(U))| > c

2

√
Tr(ξ2)

)
≤ e−

dc2Tr(ξ2)

48L2 = e−lc2/24 = δ/2,

for l = 24 log(2/δ)/c2. Finally with high probability (at least 1− δ/2) we have

TV(ρ(M), σ(M)) ≥ E (TV(ρ(M), σ(M)))− |TV(ρ(M), σ(M))− E (TV(ρ(M), σ(M))) |

≥ c
√

Tr(ξ2)− c

2

√
Tr(ξ2) ≥ c

2

√
Tr(ξ2).

Let η = ∥ρ − I/d∥2. Under the alternative hypothesis H2, the TV distance between P and
Un can be lower bounded by TV(P,Un) ≥ 1

20∥ρ − I/d∥2. So Lem. 30 gives a POVM for which

61



FAWZI FLAMMARION GARIVIER OUFKIR

our problem reduces to testing identity: P = Un vs TV(P,Un) ≥ η
20 with high probability, where

n = 1
4d log(2/δ) and P = M(ρ). Therefore we can apply the classical testing uniform result of

(Diakonikolas et al., 2017) to obtain a copy complexity:

O

(√
d log(1/δ)

η2

)
.

Algorithm 3: Testing identity of quantum states in the 2-norm with an error probability at most
δ.
l = 1

4 log(2/δ).
Sample U1, U2, . . . , U l ∈ Cd×d from Haar(d) distribution.
Let

{∣∣∣U j
i

〉}
1≤i≤d,1≤j≤l

be the columns of the unitary matrices U1, U2, . . . , U l

Measure the quantum state ρ using the POVM M =
{

1
l

∣∣∣U j
i

〉〈
U j
i

∣∣∣}
i,j

and observe

O
(√

d log(1/δ)/η2
)

samples from ρ(M).
Test whether h0 : ρ(M) = Uld or h1 : TV(ρ(M), Uld) ≥ η/20 using the testing identity
of discrete distributions of (Diakonikolas et al., 2017), with an error probability δ, and answer
accordingly.

Appendix F. Technical lemmas

In this section, we group technical lemmas useful for the previous proofs of this article.

F.1. Weingarten Calculus

Since we use generally a uniform POVM, which consists in sampling a Haar -unitary matrix, we
need some facts from Weingarten calculus in order to compute Haar -unitary integrals. If π a
permutation of [n], let Wg(π, d) denotes the Weingarten function of dimension d. The following
lemma is crucial for our results.

Lemma 31 (Gu, 2013) Let U be a d×dHaar -distributed unitary matrix and {Ai, Bi}i a sequence
of d× d complex matrices. We have the following formula

E (Tr(UB1U
∗A1U . . . UBnU

∗An))

=
∑

α,β∈Sn

Wg(βα−1, d)Trβ−1(B1, . . . , Bn)Trαγn(A1, . . . , An),

where γn = (12 . . . n) and Trσ(M1, . . . ,Mn) = ΠjTr(Πi∈CjMi) for σ = ΠjCj and Cj are cycles.

We need also some values of Weingarten function:

Lemma 32

• Wg((1), d) = 1
d ,

• Wg((12), d) = −1
d(d2−1)

,
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• Wg((1)(2), d) = 1
d2−1

,

• Wg((123), d) = 2
d(d2−1)(d2−4)

,

• Wg((12)(3), d) = −1
(d2−1)(d2−4)

,

• Wg((1)(2)(3), d) = d2−2
d(d2−1)(d2−4)

.

In particular it is known that the sum of the Weingarten function has a closed expression:

Lemma 33 (Collins et al., 2012) Let d, k ∈ N∗. We have∑
α∈Sk

Wg(α, d) =
1

d(d+ 1) · · · (d+ k − 1)
.

F.2. Concentration inequalities for Haar-random unitary matrices

The following concentration inequality is important for our results.

Theorem 34 (Meckes et al., 2013) Let M = U(d)k endowed by the L2-norm of Hilbert-Schmidt
metric. If F :M → R is L-Lipschitz, then for any t > 0

P (|F (U1, . . . , Uk)− E (F (U1, . . . , Uk)) | ≥ t) ≤ e−dt2/12L2
,

where U1, . . . , Uk are independent Haar-distributed unitary matrices.

F.3. Kullback-Leibler divergence

Definition 35 (Kullback Leibler divergence) The Kullback Leibler divergence is defined for two
distributions P and Q on [d] as

KL(P∥Q) =
d∑

i=1

Pi log

(
Pi

Qi

)
.

We denote by KL(p∥q) = KL(Bern(p)∥Bern(q)).

Kullback-Leibler’s divergence is non-negative and satisfies the Data-Processing property:

Proposition 36 ((Van Erven and Harremos, 2014)) Let P, P ′, Q and Q′ distributions on [d], we
have

• Non negativity KL(P∥Q) ≥ 0.

• Data processing Let X a random variable and g a function. Define the random variable
Y = g(X), we have

KL
(
PX∥QX

)
≥ KL

(
P Y ∥QY

)
.
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