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Abstract
Bandits with Knapsacks (BwK), the generalization of the Multi-Armed Bandits problem under global
budget constraints, has received a lot of attention in recent years. It has numerous applications,
including dynamic pricing, repeated auctions, ad allocation, network scheduling, etc. Previous
work has focused on one of the two extremes: Stochastic BwK where the rewards and consumptions
of the resources of each round are sampled from an i.i.d. distribution, and Adversarial BwK where
these parameters are picked by an adversary. Achievable guarantees in the two cases exhibit a
massive gap: No-regret learning is achievable in the stochastic case, but in the adversarial case
only competitive ratio style guarantees are achievable, where the competitive ratio depends either
on the budget or on both the time and the number of resources. What makes this gap so vast is that
in Adversarial BwK the guarantees get worse in the typical case when the budget is more binding.
While “best-of-both-worlds” type algorithms are known (single algorithms that provide the best
achievable guarantee in each extreme case), their bounds degrade to the adversarial case as soon as
the environment is not fully stochastic.

Our work aims to bridge this gap, offering guarantees for a workload that is not exactly stochas-
tic but is also not worst-case. We define a condition, Approximately Stationary BwK, that parame-
terizes how close to stochastic or adversarial an instance is. Based on these parameters, we explore
what is the best competitive ratio attainable in BwK. We explore two algorithms that are oblivious to
the values of the parameters but guarantee competitive ratios that smoothly transition between the
best possible guarantees in the two extreme cases, depending on the values of the parameters. Our
guarantees offer great improvement over the adversarial guarantee, especially when the available
budget is small. We also prove bounds on the achievable guarantee, showing that our results are
approximately tight when the budget is small.
Keywords: Bandits with Knapsacks, Best of both worlds, Adversarial, Approximately Stationary

1. Introduction

Bandits with Knapsacks (BwK) was first introduced in Badanidiyuru et al. (2013) and models a
natural extension of the Multi-Armed Bandit (MAB) problem. In MAB a player repeatedly chooses
one of many actions, each providing an unknown reward. To maximize her total reward, a player
needs to balance exploration and exploitation while picking her actions. In the budgeted version
of the problem (BwK), the player has the same objective but also needs to be mindful of different
resources: each action consumes some amount of each resource; if any resource is depleted the
player cannot get any more rewards. BwK was initially formulated inspired by numerous practical
problems where a player wants to maximize her reward with constraints: participating in repeated
auctions, dynamic pricing, ad allocation, network routing/scheduling, etc.

Previous work on BwK has focused on two extreme cases of the problem. First, in Stochastic
BwK the environment (rewards and consumptions) in each round is sampled from a distribution
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identical and independent of other rounds. Second, in Adversarial BwK the environment is picked
each round by an adversary. Unlike MAB, in BwK there is a clear dichotomy in guarantees between
the two cases. No-regret learning, i.e., additive error sublinear in the total number of rounds, is
achievable in the stochastic case, but not in the adversarial case. Instead, work in Adversarial BwK
focuses on bounding the achievable competitive ratio, i.e., the multiplicative error on the achievable
reward. A line of work that tries to connect the adversarial and stochastic cases is “best-of-both-
worlds” type results, where an algorithm achieves guarantees in both settings, without knowing
if the environment is adversarial or stochastic, e.g., see Castiglioni et al. (2022). However, the
guarantee offered degrades to the adversarial guarantee as soon as the setting is not fully stochastic.

In this work, we aim to bridge this vast gap between Stochastic and Adversarial BwK and offer
performance guarantees that smoothly degrade depending on the deviation from stochasticity, ex-
tending the “best-of-both-words” style guarantees to cases between the two extremes. We call our
framework Approximately Stationary BwK, which offers a natural interpolation between Stochastic
and Adversarial BwK. Adversarial BwK is much harder because of the potential for huge heterogene-
ity of environments between rounds. In the Approximately Stationary BwK problem, we limit this
heterogeneity by assuming that the change in expected rewards and consumptions of any arm is lim-
ited. We assume that the player is not aware of the parameters limiting the change while running the
algorithm. A natural constraint is that if xt is the expected reward of some action in round t, it must
hold that minxt ≥ σmaxxt, with σ limiting the variability of the expectation. In Stochastic BwK it
must hold that σ = 1 (actually, distributions are identical across rounds, not just expectations), and
in Adversarial BwK it can be that σ = 0.

There are multiple settings where the value of σ is neither of the two extremes. Consider re-
peated auctions where every round a budget-limited player bids to win a certain item. If the player’s
value for the item and its price are independently and identically distributed across rounds, then
the setting is completely stochastic, and σ = 1. However, this is rarely the case in practice. The
distribution of values might change across rounds (e.g., seasonal differences) or the price might
be controlled by other players’ bids who change their strategy or by a central entity that lowers or
raises the price. This means that σ < 1, but the values and prices are not adversarial or arbitrary,
i.e., the variability of the price is limited. Our goal is to have an algorithm that will have the best
guarantees given the value of σ, without knowing its actual value. In this paper, we show that it is
possible to achieve performance that degrades gradually depending on the value σ. For the most
interesting range of the player’s budget, we obtain close to optimal performance for all values of σ
without assuming that the player is aware of its value.

Overview of our results. We introduce our model, Approximately Stochastic BwK, in Section 3.
Our model interpolates between Stochastic and Adversarial BwK by having two parameters that
limit how much the expected value of the rewards and consumptions of any action can change
across rounds. More specifically, the parameter σr ∈ [0, 1] limits how much the reward of any
action can fluctuate across rounds: if rt(a) is the expected reward of action a in round t, we re-
quire that mint rt(a) ≥ σrmaxt rt(a) for all actions a. Note that we apply this definition to the
expected reward of an arm since even in Stochastic BwK the observed rewards of a single arm can
range from 0 to 1. Similarly, the parameter σc ∈ [0, 1] limits the consumptions of any action across
rounds: if ct,i(a) is the expected consumption of resource i by action a in round t, we require that
mint ct,i(a) ≥ σcmaxt ct,i(a) for all actions a and resources i. A sequence of rewards and con-
sumptions that satisfy the above constraints is called (σr, σc)-stationary. Aside from this restriction,
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we make no assumptions, so we think that the adversary can be adaptive, i.e., pick the rewards and
consumptions of a round based on the past rounds. We note that in Stochastic BwK the adversary is
(1, 1)-stationary and in Adversarial BwK the adversary is (0, 0)-stationary. Our framework naturally
generalizes “best-of-both-worlds” approaches, offering guarantees not only in fully stochastic and
adversarial environments but also environments between the two extremes. We note that using two
parameters instead of one that constrains both rewards and consumptions is valuable: a small σr has
a much different effect on the achievable guarantees than a small σc.

As is standard we assume without loss of generality that the rewards and consumptions are non-
negative and bounded by 1 and every resource has budget B. In adversarial BwK the best competitive
ratio depends on the player’s average (or per round) budget. We will use ρ = B/T to denote the
player’s per-round budget. Given that the consumptions are bounded by 1 each round, ρ = 1 means
that the player is not budget limited; in more typical cases players have budgets only for a small
fraction of the items available. Our goal is to design algorithms that guarantee a fraction of the
optimal solution when the player’s per-round budget is ρ and the adversary is (σr, σc)-stationary.
We denote this fraction with αρ(σr, σc). There are algorithms that have αρ(1, 1) = 1 and αρ(0, 0) =
ρ, and these are best possible when ρ is a constant independent of the time horizon, but nothing
is known for intermediate values. This effectively means that previous work can only guarantee
αρ(σr, σc) = ρ when σr < 1 or σc < 1. This is an enormous and unnatural gap, especially in
the typical case when ρ is small. We study algorithms that are oblivious to the values of σr and σc
and achieve a fraction αρ(σr, σc) of the optimal solution that is continuous and increasing in both
arguments and satisfies αρ(1, 1) = 1 and αρ(0, 0) = ρ.

All of our guarantees are against an adaptive adversary, an adversary that is restricted to be
(σr, σc)-stationary, but beyond this restriction, is allowed to pick the distributions of rewards and
consumptions of each round based on outcomes in previous rounds. This is in contrast to an oblivi-
ous adversary, who picks all the rewards and consumptions upfront. Allowing an adaptive adversary
is important: it makes our guarantees apply when the algorithm is used in a multi-agent game set-
ting, e.g. in repeated auctions, where prices depend on other agents’ bids, who are all adaptive to
the history of play. All the guarantees we present in this paper are against an adaptive adversary,
which, to the best of our knowledge, are the first such guarantees for Adversarial BwK.

In Section 5 we present our first guarantee. We show that we can achieve a guarantee of
αρ(σr, σc) ≥ ρ + σr(σc − ρ)+ (Theorem 4). The most interesting range of parameters is when
ρ is small (and therefore the gap between Stochastic and Adversarial BwK is biggest) and σrσc is
much bigger than ρ. In this case, our guarantee becomes approximately σrσc. This is in stark con-
trast to the guarantee that previous work would suggest, ρ. An alternate, naive approach would be to
use an algorithm assuming a fully stochastic setting, which would yield a guarantee of ≈ σ2

rσ
2
c (see

Section 5), two orders of magnitude smaller. Our results show that even if the player has a small
budget, as long as the environment is not completely adversarial, good guarantees are achievable.
We note that a small budget is indeed the most common case: Typical budgets are far from suffi-
cient for all items, so ρ is small, and the environment is often less variable and independent of the
player’s budget. For example, in repeated auctions, we expect that expected item prices fluctuate
across rounds but this fluctuation to not depend on the player’s small budget.

In Section 6 we provide a bound on the achievable guarantees any algorithm can get. The upper
bound of Theorem 6 on αρ(σr, σc) is using only one resource and an oblivious adversary. When ρ is
much smaller than σrσ

2
c , Theorem 6 shows that αρ(σr, σc) ⪅ σrσc, making the result of Theorem 4

almost tight in that case. Theorem 6 also shows that when σr = O(ρ) then αρ(σr, σc) ≤ O(ρ),
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making Theorem 4 (and any algorithm with the guarantee αρ(σr, σc) ≥ ρ) tight up to constant
factors. Another interesting corollary of our theorem is that αρ(0, 0) ≤ ρ, i.e., that a ρ fraction
of the optimal reward is the best possible in Adversarial BwK1. The bound of Theorem 6 relies on
that any algorithm needs to conserve its budget because of the uncertainty of the future. Without
knowing the values of σr and σc it is not possible to utilize the reward of the optimal action in the
initial rounds, in fear of the adversary being (0, 0)-stationary.

Our first guarantee in Theorem 4 is close to optimal when σc is much bigger than ρ. When
σc is similar to ρ the guarantee is very small: if σc ≤ ρ the theorem only provides the adversarial
guarantee of αρ(σr, σc) ≥ ρ. In Section 7 we offer better guarantees for the case when σc and ρ
are small, but σr is larger. Our improved guarantee requires an additional condition to approximate
stationarity: the total per-round change of the consumption of any action is sublinear in the total
number of rounds. Under this assumption and (σr, σc)-stationarity, we provide improved bounds
in Theorem 8. The improvement is most impressive when there is only one resource (e.g., money),
σc is close to ρ, and σr is much larger, in which case the guarantee is close to the best possible (see
Theorem 6).

Theorem 4 is based on a simplified version of the algorithm in Castiglioni et al. (2022) (see
Algorithm 1 in Section 4), while to achieve the guarantee of Theorem 8 we need to break the time
horizon into smaller batches and restart the algorithm periodically (see Algorithm 2 in Section 7).
The main technical lemmas leading to the guarantees in both cases follow an interesting and novel
approach. They prove that the rewards of our algorithms have no-regret against the total reward of
any action across all rounds but scaled down to observe the average consumption bound in each
iteration. This property is not useful in Stochastic BwK, where one knows that the optimal arm
has low consumption, or in Adversarial BwK, where the rewards of the optimal arm can become
0 after a certain round. In Approximately Stochastic BwK, where the reward of the optimal arm
cannot become 0 (unless σr = 0) but its consumption can increase, guaranteeing a fraction of the
reward from the entire period is a very useful property. The auxiliary lemma we use to prove the
improved guarantee of Theorem 8 scales down the reward of each round based on the consumption
of the optimal arm in that round. This makes its guarantee stronger when σc is small compared
to the lemma used for Theorem 4 where the reward needs to be scaled down using the maximum
consumption across rounds.

Related work. There is a vast amount of literature on online learning and regret minimization;
we refer the reader to textbooks like Hazan (2016) and Slivkins (2020) for background. The most
commonly used algorithms for MAB are Hedge for full information feedback (Freund and Schapire
(1997)) and EXP3 for bandit feedback (Auer et al. (2002)). A “best-of-both-worlds” type result
providing guarantees for both stochastic and adversarial MAB was first proven in Bubeck and Slivkins
(2012).

The BwK framework was first introduced in Badanidiyuru et al. (2013) in the stochastic set-
ting. Following this work, various extensions have been studied including concave rewards and
convex consumptions (Agrawal and Devanur (2014)), combinatorial semi-bandits with knapsacks
(Sankararaman and Slivkins (2018)), contextual bandits (Badanidiyuru et al. (2014)), and negative
consumptions that replenish the player’s budget (Kumar and Kleinberg (2022)).

1. This bound was previously proven by Balseiro and Gur (2017) when the benchmark used for the optimal solution is
the best sequence of actions. Our bound uses the best distribution of actions which is the standard benchmark in BwK

since the previous one is attainable only in special cases.
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The first guarantees for Adversarial BwK were by Immorlica et al. (2019) and then by Kesselheim
and Singla (2020). The first work guarantees a 1/O(d log T ) fraction of the optimal solution and the
second a 1/O(log d log T ) fraction, where d is the number of resources. The second guarantee is
tight when the average budget is ρ = O(T−ε) for any constant ε > 0. Balseiro and Gur (2017) study
repeated second-price auctions with budgets, a special case of BwK; they assume ρ = Ω(1), and get a
“best-of-both-worlds” guarantee: a constant ρ fraction of the optimal solution in adversarial settings
and no-regret in stochastic ones. They also prove that even in this restricted second-price setting,
their adversarial result is tight when ρ is a constant and the comparator is the best sequence of
actions, an extremely strong benchmark that an algorithm can be competitive against only in special
cases of BwK, like second-price auctions. Castiglioni et al. (2022) generalize the previous “best-of-
both-worlds” guarantee for general BwK. Rangi et al. (2019) study a variant of BwK where there is
no time horizon and only one resource whose consumption is strictly positive; the game stops when
that resource is depleted. Their variant is much easier than general BwK, evident by their guarantees
of poly log T and O(

√
T ) regret bounds for the stochastic and adversarial cases, respectively; in

general BwK these types of guarantees are not achievable.
There have been other models that interpolate between Stochastic and Adversarial MAB. Lyk-

ouris et al. (2018) study Stochastic MAB with Corruptions where the environment is stationary except
for C rounds that are corrupted by an adversary; their no-regret guarantee interpolates between the
stochastic and adversarial guarantees depending on how large C is. In Restless Bandits, e.g., stud-
ied by Tekin and Liu (2012) and Wang et al. (2020), the environment each round is generated by a
Markov Chain whose state changes each round. Algorithms have no-regret when the Markov chain
has size much smaller than T , making the environments of two rounds approximately independent
if they are far enough apart. Both of these models interpolate between the adversarial and stochas-
tic case but in a fundamentally different way than ours: Before round 1 both have an “expected
environment” (the uncorrupted one in Stochastic MAB with Corruptions and the one generated by
the stationary distribution of the Markov chain in Restless bandits) which the environments of most
rounds are “close” to in expectation. Instead, our (σr, σc)-adversary does not have to conform to
this restriction and can vary environments significantly at each time step.

Previous work has considered MAB with close to stationarity constraints similar to ours. Gur et al.
(2014) impose a constraint on the rewards of the actions similar to the one we consider in Section
7: they bound the total per-round change of the reward of any action by a parameter V . They prove
regret bounds of order Θ̃(V 1/3T 2/3) against an oblivious adversary. Besbes et al. (2015) generalize
the previous results for general action spaces and convex reward functions. In contrast, having only
this constraint for both the rewards and consumptions of the actions in BwK, even with V = 1, does
not improve over Adversarial BwK: Theorem 6 satisfies the above constraint with σr = σc = 0
which shows that only a ρ fraction of the optimal solution is achievable.

No-regret guarantees have been studied for BwK under stationarity conditions similar the one
above. Liu et al. (2022) design no-regret algorithms when the reward and consumptions of every
action change slowly over time and remain close to their average value (with known bounds for these
constraints). Concurrently and independently with our work, Slivkins et al. (2023) study stochastic
contextual bandits with linear constraints (a generalization of contextual BwK) and design no-regret
algorithms for this setting. They also consider environments that are mostly stationary with a small
number of changes in the distribution of rewards and consumptions. In this environment, if the
number of changes is not too big, they achieve no-regret against a benchmark similar to the one we
use in Lemma 7 but make no guarantees against the standard benchmark we use in our theorems.
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The results of both Liu et al. (2022) and Slivkins et al. (2023) are incomparable to the ones we
make for Approximately Stationary BwK: even if σr = σc = 1 − ε for some small constant ε, the
variability in the environment can be too high to yield meaningful regret guarantees.

Online allocation problems are similar to BwK except that the player gets to observe the rewards
and consumptions of a round before she picks an action for that round and so the only uncertainty
comes from future rewards and consumptions. Devanur et al. (2019) prove no-regret bounds for
this problem in the stochastic setting. They also study the adversarial case where their algorithm
guarantees no-regret against a specific benchmark as long as their algorithm knows the value of
this benchmark. More specifically, they compare against mint OPTt, where OPTt is the maximum
achievable reward if the rewards and consumptions of all rounds were distributed similarly to those
of round t (which can be adversarially picked). Balseiro et al. (2020) study the same problem
and provide guarantees similar to Castiglioni et al. (2022) in the stochastic and adversarial cases.
Additionally, they study models that interpolate the two extremes, similar to Stochastic MAB with
Corruptions and Restless Bandits. Their results, similar to Devanur et al. (2019), focus on getting
no-regret guarantees in those models.

2. Bandits with Knapsacks

In this section, we formally define the Bandits with Knapsack (BwK) framework. Our notation and
definitions are similar to (Slivkins, 2020, Chapter 10). We introduce some additional notation to
help distinguish between the realized reward/consumptions of an action and their expectation.

There are T rounds, d resources (denoted with [d]), and a budget per resource which w.l.o.g. we
assume is the same for every resource i ∈ [d], B. We denote ρ = B/T . The player has a set of
K actions, [K]. In every round t ∈ [T ] the adversary chooses (d + 1)K random (and potentially
dependent on previous rounds and of each other) variables: Rt, Ct,1, . . . , Ct,d : [K] → [0, 1]. For
an action a ∈ [K], Rt(a) is the reward the player receives on round t if they play action a, and for a
resource i ∈ [d], Ct,i(a) is the consumption of that resource in round t by a. Because consumptions
are upper bounded by 1 we can assume that ρ ≤ 1. As is standard, we also assume that there is an
action, called the null action, with 0 reward and 0 consumption of every resource.

Every round t the player chooses a (potentially randomized) action At ∈ [K] without any
knowledge of the reward or consumptions of that round or their distribution. The game ends either
after round T or in the round that any resource is depleted. We define TA to be the last round the
player receives a reward: TA = max

{
t ∈ [T ] : ∀i ∈ [d],

∑t
τ=1Cτ,i(Aτ ) ≤ B

}
.

We denote with Ht the history up to round t. This includes the realization of the actions of
the player up to round t, A1, . . . , At, as well as the realization of the rewards and consumptions
up to round t, R1, . . . , Rt and {C1,i}i, . . . , {Ct,i}i. We generally assume that the player has bandit
knowledge, i.e., only knows the realization of rewards and consumptions of the actions she took in
previous rounds. As we note later, our results can be improved if the player has full information
knowledge.

If for every round t the distributions of the functions Rt, Ct,1, . . . , Ct,d are independent of Ht−1

(which allows dependence on the algorithm used by the player but not the realization of its actions)
then the adversary is called oblivious; otherwise, the adversary is called adaptive. Additionally, if
the aforementioned functions are not time dependant, the adversary is called stochastic.
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For any action a ∈ [K], we denote with rt(a) the expected reward of action a in round t
conditioned on the history of the previous rounds: rt(a) = E [Rt(a)|Ht−1]. Similarly, we define the
conditional expected cost of action a and resource i: ct,i(a) = E [Ct,i(a)|Ht−1].

3. Approximately Stationary Bandits with Knapsacks

In this section, we present our model, Approximately Stationary BwK. Our model interpolates be-
tween Stationary and Adversarial BwK, providing guarantees that smoothly improve as expectations
change less across time or equivalently as the setting is less adversarial. This generalizes “best-of-
both-worlds” results by providing guarantees for the whole spectrum, not just the extremes.

As we mentioned in the introduction, Adversarial BwK is hard because the rewards and con-
sumptions of an arm can oscillate between extreme values. The issue with Adversarial BwK be-
comes apparent by looking at the impossibility results of Balseiro and Gur (2017) and Immorlica
et al. (2019). Both have similar structure: there is only one action with positive reward every round.
However, even if the player knows which action that is, she cannot fully utilize it, in case some other
action has a much larger reward in a later round. Our model limits these extreme-case examples by
constraining the expectation of the rewards and consumptions the adversary can pick. We focus on
expected rewards and consumptions since even in Stochastic BwK the range of the realized rewards
can be the entire interval [0, 1]. Our definition uses two parameters. The first, σr, bounds the multi-
plicative difference in the maximum and minimum expected reward of any action. The second, σc,
similarly constrains the expected consumption of any resource by any action.

Definition 1 An adversary in BwK is called (σr, σc)-stationary if for any action a, resource i, and
history HT it holds that mint rt(a) ≥ σrmaxt rt(a) and mint ct,i(a) ≥ σcmaxt ct,i(a).

Remark 2 First, note that our definition bounds the relative variation of a sequence and not the
absolute one, e.g., maxt rt(a)−mint rt(a) ≤ ε. Bounding the relative size rather than the absolute
difference makes sense, making the result invariant on the scale of the rewards. Second, we notice
that if σr = σc = 0 then the setting is completely adversarial. If the setting is Stochastic BwK, we
get σr = σc = 1. Third, since the reward constraint is applied to the expected rewards of an action
given the history of the previous rounds, our adversary can be adaptive.

4. Benchmarks and Algorithm

In this section, we present the benchmark that we use to compare the quality of our algorithm, as
well as the algorithm that we use that provides our first guarantee.

Benchmark. The benchmark we use is the standard best-fixed distribution of actions in hindsight.
Its reward OPTFD is equal to the reward of the best distribution of actions A∗ ∈ ∆([K]), up to the
round when it runs out of budget. For simplicity of presentation, we define OPTFD using the expected
rewards and consumptions r, c:

OPTFD = max
T ∗∈[T ]

A∗∈∆([K])

T ∗∑
t=1

E
a∼A∗

[rt(a)]

such that
T ∗∑
t=1

E
a∼A∗

[ct,i(a)] ≤ B, ∀i ∈ [d]

(1)
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We note that in Ea∼A∗ [·] the expectation is taken only over the action a ∼ A∗ and not any choices
the player or adversary make, i.e., Ea∼A∗ [rt(a)] =

∑
a P [A∗ = a] rt(a), where rt(a) is the ex-

pected reward of action a for the actual history of the play, and not for the history of playing action
distribution A∗ each round. This means that OPTFD depends on the realization of the random choices
of the game, i.e., the player’s and adversary’s actions. This is similar to benchmarks in MAB with
an adaptive adversary, where the optimal reward used as a comparator for no-regret depends on the
actions the player takes. We denote with (T ∗, A∗) the solution to the above optimization problem.

Optimization problem (1) is simplified when the expectations of the rewards and consumptions
are the same every round rt(·) = r(·) and ct,i(·) = ci(·) for all t, i. In this case, (1) becomes

max
A∗∈∆([K])

T E
a∼A∗

[r(a)] such that T E
a∼A∗

[ci(a)] ≤ B, ∀i ∈ [d] (2)

where we can drop the dependence on T ∗ because of the null action: For every feasible solution
(T̂ , Â) there is a feasible solution (T, Â′) with the same reward. More specifically, Â′ is the same
distribution as Â with probability T̂ /T and the null action otherwise.

We use REW to denote the total reward of the player: REW =
∑TA

t=1Rt(At). We focus on high-
probability bounds. The player has competitive ratio γ ≥ 1 and regret Reg against OPTFD with
probability 1− δ if P

[
REW ≥ OPTFD−Reg

γ

]
≥ 1− δ.

As mentioned in the related work, in Adversarial BwK the player can guarantee competitive ratio
γ = min{1/ρ,O(log T )} and sublinear regret. Without any additional assumptions, this result is
tight. By assuming that the adversary is (σr, σc)-stationary, we prove greatly improved guarantees
for the competitive ratio γ. Our guarantees provide a smooth interpolation between Adversarial and
Stochastic BwK.

Algorithm based on Lagrangian maximization/minimization. Next, we present a simplified
version of the algorithm of Castiglioni et al. (2022) that achieves a “best-of-both-worlds” guarantee:
competitive ratio of 1 in stochastic environments and 1/ρ in adversarial ones. Our first guarantee
against a (σr, σc)-adversary in Theorem 4 is based on this algorithm and provides a competitive
ratio that ranges between 1 and 1/ρ depending on the values of σr and σc.

The algorithm is inspired by the Lagrangian of (2), L(a,λ) = r(a) +
∑

i∈[d] λi(ρ − ci(a))

where λ ∈ Rd
≥0. The importance of this function can be seen by the fact that in the stochastic case

OPTFD

T
= max

A∈∆([K])
min

λ∈Rd
≥0

E
a∼A

[L(a,λ)] = min
λ∈Rd

≥0

max
A∈∆([K])

E
a∼A

[L(a,λ)] (3)

as shown by by Immorlica et al. (2019). Castiglioni et al. (2022) improve (3) by restricting the
domain of λ: (3) also holds if the minimum is over λ ∈ D where D = {λ ∈ Rd

≥0 :
∑

i λi ≤ 1/ρ}.
Even though the original inspiration comes from Stochastic BwK, previous work designed Ad-

versarial and Stochastic BwK algorithms that aim to find a saddle point of a Lagrangian. However,
the player does not know the expected values of the rewards and consumptions, so their realized
values are used instead. Additionally, since the Lagrangian is linear in λ, similarly to Immorlica
et al. (2019), we replace the domain D with its extreme points: instead of λ the second argument
becomes i ∈ [d] ∪ {0} where i = 0 corresponds to the zero vector and i > 0 corresponds to the
all-zero vector with 1/ρ in its i-th position. Handling this function is easier since it is defined over
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Algorithm 1: BwK Algorithm based on Lagrangian maximization/minimization.
Input: Maximization algorithm Algmax and minimization algorithm Algmin

1 for rounds t = 1, 2, . . . and while budget lasts do
2 Receive At from Algmax and It from Algmin.
3 Play action At.
4 Receive reward Rt(At) and consumptions Ct,1(At), . . . , Ct,d(At).
5 Update Algmax with reward Lt(At, It) = Rt(At) +

1
ρ1 [It ̸= 0] (ρ− Ct,It(At)).

6 Update Algmin with costs Lt(At, i) = Rt(At) +
1
ρ1 [i ̸= 0] (ρ−Ct,i(At)) for i ∈ [d]∪ {0}.

7 end

a discrete set. Putting all of these together, we define for every t ∈ [T ], a ∈ [K], and i ∈ [d] ∪ {0}:

Lt(a, i) = Rt(a) +
1

ρ
1 [i ̸= 0] (ρ− Ct,i(a)).

The algorithms of Immorlica et al. (2019) and Castiglioni et al. (2022) focus on finding a saddle
point of functions similar to the above2. More specifically, they use two online algorithms, one
that tries to maximize Lt(a, i) over a and one that tries to minimize it over i. We follow a similar
approach and since the domain of both arguments of Lt(a, i) is discrete, we use two MAB algorithms
with no-regret guarantees: In round t, Algmax chooses an action At and Algmin chooses a resource
or the number 0, It. Then, Algmax receives reward Lt(At, It) and Algmin incurs cost Lt(At, It). We
note that the choices of At and It are made without knowledge of the rewards and consumptions of
round t. We also note that the player can provide Algmax with bandit information only, i.e., it knows
only L(At, It). In contrast, the player can give Algmin full information since it knows the value of
L(At, i) for all i. Our full algorithm can be found in Algorithm 1.

We will use algorithms Algmax and Algmin that guarantee no-regret with high probability. We
use EXP3.P from Auer et al. (2002) as Algmax which guarantees that for all δ > 0 with probability
at least 1− δ it holds that for all T ′

max
a∈[K]

T ′∑
t=1

Lt(a, It)−
T ′∑
t=1

Lt(At, It) ≤ Regmax(T, δ) := O

(
1

ρ

√
KT log(T/δ)

)
. (4)

Using Hedge from Freund and Schapire (1997) as Algmin guarantees that for all δ > 0 with
probability at least 1− δ it holds that for all T ′

T ′∑
t=1

Lt(At, It)− min
i∈[d]∪{0}

T ′∑
t=1

Lt(At, i) ≤ Regmin(T, δ) := O

(
1

ρ

√
T log(Td/δ)

)
. (5)

For BwK with full information, we can use Hedge for Algmax to get the improved regret guarantee
Regmax(T, δ) = O

(
1
ρ

√
T log(TK/δ)

)
in (4).

2. Castiglioni et al. (2022) use the initial formulation with λ ∈ D. In Immorlica et al. (2019) the second argument of the
function considers only the d non-zero extreme points, i.e., the domain of i is [d] instead of [d] ∪ {0}; even if every
consumption is less than ρ (in which case the algorithm is not budget constrained) the choice of action a still takes
into account the consumptions making potentially sub-optimal choices. They fix this by picking a slightly different
function Lt.

9
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5. Guarantees of Algorithm 1 in Approximately Stationary BwK

In this section, we prove our guarantee for Algorithm 1 against a stationary adversary. For any values
of σr and σc our algorithm achieves the competitive ratio of 1/ρ that is guaranteed in Adversarial
BwK. As σr and σc increase, the competitive ratio of Algorithm 1 smoothly improves and becomes
1 when σr = σc = 1. In the most interesting range of parameters, when ρ is much smaller than
σrσc (which also implies that the gap in guarantees between Stochastic and Adversarial BwK is
largest), our algorithm achieves a close to tight σrσc fraction of the optimal solution. This is a huge
improvement over the ρ fraction that is guaranteed in Adversarial BwK.

We start with a lemma comparing the rewards achieved by Algorithm 1 against a distribution
of actions whose maximum expected consumption of any resource is at most ρ. This lemma is true
for any σr, σc, and adaptive adversary. It also easily proves the two guarantees of Castiglioni et al.
(2022) about Stochastic and Adversarial BwK and extends the second for adaptive adversaries.

Lemma 3 Let A ∈ ∆([K]) be a distribution of actions such that maxi,t Ea∼A [ci,t(a)] ≤ ρ. Then
for any adversary and δ > 0, with probability at least 1− δ Algorithm 1 achieves

REW ≥
T∑
t=1

E
a∼A

[rt(a)]− Regmax(T, δ)− Regmin(T, δ) (6)

Using Lemma 3 it is easy to prove the two guarantees of Castiglioni et al. (2022). First, if
the adversary is stochastic we can prove a 1 competitive ratio and sublinear regret by noticing that
the optimal action A∗ in (2) satisfies the conditions of the lemma. Second, against an adaptive
adversary, we notice that the action distribution that plays with probability ρ the best-fixed unbud-
geted action, and the null action otherwise satisfies Lemma 3. This proves a 1/ρ competitive ratio
against maxa

∑
t rt(a) with high probability, which also proves the same guarantee against OPTFD

as without a budget, the optimal action is fixed.
Proof sketch The lemma’s proof is based on the guarantees of the two algorithms, Algmax and
Algmin, found in (4) and (5), respectively, up to the stopping round of the algorithm, TA. On the
one hand, we compare

∑
t≤TA

Lt(At, It) with mini
∑

t≤TA
Lt(At, i): this lower bounds the reward

of the algorithm, REW, using an additive term that boosts REW as T − TA becomes bigger: if the
algorithm runs out of budget fast, the Ct,i(At) terms in L(At, i) become larger making this bound
better. On the other hand, we compare

∑
t≤TA

Lt(At, It) with
∑

t≤TA Ea∼A [L(a, It)] (where A is
the distribution defined in Lemma 3): this contains the total reward of distribution A up to round TA
and an additive error that is not too high because on expectation Ct,i(a) = ct,i(a) and the second
term is low by the properties of A. We defer the detailed proof to Appendix A.

We now move to the main theorem of this section. Our theorem guarantees a fraction of the
optimal solution with high probability against an adaptive (σr, σc)-stationary adversary.

Theorem 4 Against an adaptive (σr, σc)-stationary adversary, the reward of Algorithm 1 satisfies
for any δ > 0 with probability at least 1− δ

REW ≥
(
ρ+ σr(σc − ρ)+

)
OPTFD − Regmax(T, δ)− Regmin(T, δ).

The proof of the theorem is deferred to Appendix A. The idea is to use Lemma 3. To take
advantage of (6) we need to lower bound the reward of the optimal distribution A∗ after its stopping

10
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time T ∗ and upper bound its maximum consumption. These two quantities depend on T ∗: as T ∗

becomes larger, both the reward of A∗ after T ∗ and the maximum consumption become smaller (the
first depending on σr and the second on σc). Carefully examining these effects and choosing the T ∗

(as a function of ρ, σr, σc) that yields the worst guarantee for the algorithm gets us the theorem.

Remark 5 When σr and σc are much larger than ρ a naive approach would be to use an algorithm
assuming a fully stochastic setting. Such an algorithm would lead to much weaker results. An
algorithm that is based on the classic Arm Elimination algorithm would guarantee only a σ2

rσ
2
c

fraction of OPTFD: it might eliminate an action because it identified it as sub-optimal if it is a
bit worse than the one that it has identified as optimal. However, after that round, an (σr, σc)-
stationary adversary might make the previously optimal action worse by a factor of σrσc and the
sub-optimal one better by the same factor. This would result in a sub-optimality factor of σ2

rσ
2
c .

6. Impossibility results for Approximately Stationary BwK

In this section, we show a bound on the guarantee any algorithm can achieve against an (σr, σc)-
stationary adversary. The bound applies to algorithms that are oblivious to the values of σr and σc
and guarantee a fraction of at least ρ against an oblivious adversary. Additionally, we get this bound
when there is only one resource. Our theorem has many interesting corollaries. First, it proves
that a ρ fraction of OPTFD is the best possible in fully adversarial cases, improving over the result of
Balseiro and Gur (2017) that a ρ fraction of the best sequence of actions is the best possible. Second,
when ρ is much smaller than σrσ

2
c , it makes the guarantee of Theorem 4 approximately tight (in

fact if ρ ≤ σrσ
2
c the two bounds are within a factor of 2 of each other). Third, when σr = O(ρ),

it proves that any algorithm can guarantee at most O(ρ) fraction of OPTFD, making Algorithm 1
optimal up to constant factors.

Theorem 6 Fix any algorithm that achieves sublinear regret and an αρ(σr, σc) fraction of the
optimal solution against an oblivious (σr, σc)-adversary. If the algorithm is oblivious to the values
of σr and σc, ρ = Θ(1), and αρ(0, 0) ≥ ρ (i.e., guarantees at least a ρ fraction of the optimal
solution), then

αρ(σr, σc) ≤


σr + ρ(1− σr), if σr ≤ ρ

2
√
σrρ− σrρ, if ρ ≤ σr ≤ ρ

σ2
c

σrσc + ρ(1/σc − σr), if σr ≥ ρ
σ2
c

In the example we use to prove the theorem, there are K + 1 different outcomes (the oblivious
adversary selects which outcome the algorithm faces). Additionally, the T rounds are divided into
K batches. In outcome q ∈ [K], the optimal action has positive reward only in the rounds of the
q-th batch. The algorithm cannot distinguish if it is facing the q-th outcome on the (q− 1)-th batch,
so it needs to act conservatively and not spend its resources to guarantee a ρ fraction of the optimal
solution. Because of this behavior, any algorithm is guaranteed to miss out on a large part of the
optimal solution in the (K + 1)-instance, which is the one that is (σr, σc)-stationary. The proof of
the theorem is deferred to Appendix B.
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7. Improved guarantee for one resource

In this section, we provide an algorithm that improves the guarantee of Algorithm 1 when σc is
small, that is, the variability in expected consumption is high. The improved guarantee requires an
additional assumption, that the sum of the differences in the expected consumptions of the actions is
sublinear. With this additional guarantee we can ensure sublinear regret. The bound in the previous
section shows that the guarantee of Theorem 4 is close to optimal when ρ and σr are small and σc
is significantly larger. In contrast, when σc ≤ ρ ≤ σr Theorem 4 provides the adversarial guarantee
of ρ while Theorem 6 suggests that much better guarantees may be achievable.

Our improved algorithm uses Algorithm 1 as a subroutine and a parameter Tres. It runs and
restarts Algorithm 1 every Tres rounds. We allocate each run of Algorithm 1 a budget of ρTres− 1.
This way the per-round budget in every run is approximately ρ. It also guarantees that every run of
the algorithm uses at most ρTres of every resource since Algorithm 1 would have terminated when
going above budget and not get the last item; however, when simulating the algorithm and using the
actions it suggests, the player has to know to terminate it herself before it uses more than the desired
budget which we achieve by allocating the algorithm 1 less budget than that.

Algorithm 2: Restarting BwK Algorithm based on Algorithm 1
Input: Inputs needed for Algorithm 1 and parameter Tres

1 Split rounds into ⌈ T
Tres

⌉ disjoint batches [T ] = T1 ∪ . . . ∪ T⌈T/Tres⌉, each batch having Tres
rounds (except maybe for the last one).

2 for each batch j = 1, . . . , ⌈ T
Tres

⌉ do
3 Independently of previous rounds, run Algorithm 1 on rounds Tj with budget ρ|Tj | − 1.
4 end

We now show a lemma for Algorithm 2, which will lead to the promised improved guarantee.
The main ingredient of our guarantee for Algorithm 1 was Lemma 3 that bounds the reward against
a distribution A that satisfies maxi,t Ea∼A [ci,t(a)] ≤ ρ. To ensure this condition for an arbitrary
distribution A, we need to scale it down by playing it only with probability ρ divided by the above
maximum over the whole time horizon, and playing the null action with the remaining probability.
The new lemma is structured similarly to Lemma 3: it shows that the reward of Algorithm 2 is
at least the reward of any action distribution across all rounds but scaled down as a function of the
consumptions of that distribution. In contrast to Lemma 3 however, the deterioration of the reward is
much more fine-grained. Instead of scaling down the whole reward by the maximum consumption,
the reward of each round is scaled down by the consumptions of that round.

Lemma 7 For any A ∈ ∆([k]), Algorithm 2 guarantees reward that for every δ > 0,

P

[
REW ≥

T∑
t=1

E
a∼A

[rt(a)]min

{
1,

ρ

maxi Ea∼A [ct,i(a)]

}
− Reg

]
≥ 1− δ

where using E ≥
∑T−1

t=1 maxi∈[d]
∣∣Ea∼A [ct,i(a)− ct+1,i(a)]

∣∣ we have

Reg =
T

Tres

(
Regmax(Tres, δT/Tres) + Regmin(Tres, δT/Tres)

)
− Tres

ρ
E

12
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Figure 1: The bounds of Theorems 4, 6, and 8 on the fraction of the optimal solution for d = 1 and
small ρ and σc (mentioned above each graph).

If Tres = Θ
(
(ρT/E)

2
3

)
and ignoring dependence on K, d then Reg = O(T

2
3E

1
3 log(T/δ)ρ−

1
3 ).

The proof of the lemma is based on Lemma 3. The reward of Algorithm 2 in each batch j is at
least the reward of distribution A in that batch scaled down by maxi,τ∈Tj Ea∼A [cτ,i(a)]. This factor
can be improved to Ea∼A [ct,i(a)] for any t ∈ Tj by introducing an additive error that depends on
the variance of consumptions on that round. Using the condition on E , this additive error over all
batches is sublinear, which proves the lemma. The full proof can be found in Appendix C.

We now present the main result of this section. Using Lemma 7 we can get a strictly better
bound. Our result is parametric and depends on a parameter x ∈ [ρ, 1].

Theorem 8 Against an adaptive (σr, σc)-stationary adversary, for any δ > 0 with probability at
least 1− δ, Algorithm 2 guarantees at least a αρ(σr, σc) fraction of OPTFD, where

αρ(σr, σc) = min
x∈[ρ,1]

(
max

{
ρ, xσc, σr

x

d+ x

}
+max

{
ρσr

1− x

x
, σrσc(1− x)

})
and regret Reg which is sublinear if E/ρ is sublinear, where Reg and E are defined in Lemma 7.

Remark 9 The bound of Theorem 8 improves the bound of Theorem 4 significantly when there is
only one resource d = 1 and σr is much larger than ρ and σc. For example, if σc ≤ ρ ≪ σr then
the bound of Theorem 8 becomes

αρ(σr, σc) =

{
2σr(

√
ρ− ρ), if σ2

r ≥ ρ

σ2
r + ρ− 2ρσr, if σ2

r ≤ ρ

in which case the bound of Theorem 4 is ρ. We also showcase this improvement in Figure 1 using
some numerical examples, where we compare the bounds of Theorems 4, 6, and 8 for small values
of ρ and σc and arbitrary values of σr.
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Appendix A. Deferred proofs of Section 5

In this sections we present the deferred proofs for the guarantee of Theorem 4. We first present the
proof of Lemma 3.
Proof of Lemma 3 We start the proof by reminding the two no-regret guarantees of Algorithm 1.
(4) and (5), for T ′ = TA, the algorithm’s stopping time imply that for any δ > 0 it holds that

P

[
TA∑
t=1

Lt(At, It) ≥ max
a∈K

TA∑
t=1

Lt(a, It)− Regmax(T, δ)

]
≥ 1− δ. (7)
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and

P

[
TA∑
t=1

Lt(At, It) ≤ min
i∈[d]∪{0}

TA∑
t=1

Lt(At, i) + Regmin(T, δ)

]
≥ 1− δ (8)

We start by analyzing the second bound, (8). For any δ1 > 0, with probability at least 1− δ1,

TA∑
t=1

Lt(At, It)− Regmin(T, δ1) ≤ min
i∈[d]∪{0}

TA∑
t=1

Lt(At, i)

=

TA∑
t=1

Rt(At) + min
i∈[d]∪{0}

{
1 [i > 0]

ρ

TA∑
t=1

(ρ− Ct,i(At))

}

≤ REW− (T − TA) +
1

ρ
(9)

where the last inequality holds by the following case analysis:

• If TA = T , then, by setting i = 0:

min
i∈[d]∪{0}

{
1 [i > 0]

ρ

TA∑
t=1

(ρ− Ct,i(At))

}
≤ 0 = −(T − TA)

• If TA < T , then the algorithm runs out of some resource i′ ∈ [d] on round TA + 1, meaning
that

∑TA+1
t=1 Ct,i′(At) > ρT . By setting i = i′ we get

min
i∈[d]∪{0}

{
1 [i > 0]

ρ

TA∑
t=1

(ρ− Ct,i(At))

}
≤ 1

ρ

TA∑
t=1

(ρ− Ct,i′(At)) =
1

ρ
(TAρ− ρT + 1)

Now, we analyze (7). For any δ2 > 0, with probability at least 1− δ2 it holds that

TA∑
t=1

Lt(At, It) + Regmax(T, δ2) ≥ max
a∈[K]

TA∑
t=1

Lt(a, It)

≥
TA∑
t=1

E
a∼A

[Lt(a, It)]

=

TA∑
t=1

E
a∼A

[Rt(a)] +

TA∑
t=1

1 [It > 0]

ρ
(ρ− E

a∼A
[Ct,It(a)]) (10)

We now prove a high probability lower bound on the last quantity. Towards that end, we define
for every τ ∈ {0} ∪ [T ] and a ∈ [K]

Zτ (a) =

τ∑
t=1

(Rt(a)− rt(a)) +

τ∑
t=1

1 [It > 0]

ρ
(ct,It(a)− Ct,It(A)) .
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We notice that for every a, Zτ (a) is a martingale since

E
[
Zτ (a)− Zτ−1(a)

∣∣Hτ−1

]
= E

[
Rt(a)− rt(a) +

1 [Iτ > 0]

ρ
(cτ,Iτ (a)− Cτ,Iτ (a))

∣∣Hτ−1

]
= 0

where the last equality follows from the definitions of rt and ct,i: for all a and all i it holds that
E
[
Rt(a)− rt(a)

∣∣Hτ−1

]
= 0 as well as E

[
Ct,i(a)− ct,i(a)

∣∣Hτ−1

]
= 0.

Since Zτ (a) is a martingale and |Zτ (a)−Zτ−1(a)| ≤ 1+1/ρ we can use the Azuma-Hoeffding
inequality and the union bound to get that for any δ3 > 0 with probability at least 1− δ3 it holds for
all T ′ ∈ [T ] and all a ∈ [K] that

ZT ′(a)− Z0(a) ≥ −
(
1 +

1

ρ

)√
2T log(TK/δ3) ≥ −Regmax(T, δ3)

Combining the above for T ′ = TA, we can make every Rt(a) and Ct,It(a) in (10) into rt(a) and
ct,It(a), with an additive error of Regmax(T, δ3). This yields that with probability at least 1−δ2−δ3

TA∑
t=1

Lt(At, It) + Regmax(T, δ2) ≥
TA∑
t=1

E
a∼A

[rt(a)] +

TA∑
t=1

1 [It > 0]

ρ
(ρ− E

a∼A
[ct,It(a)])− Regmax(T, δ3)

≥
TA∑
t=1

E
a∼A

[rt(a)]− Regmax(T, δ3)

≥
T∑
t=1

E
a∼A

[rt(a)]− (T − TA)− Regmax(T, δ3) (11)

where in the second inequality we used that maxt,i Ea∼A [ct,i(a)] ≤ ρ and in the last one that
rt(a) ≤ 1.

Combining (9) and (11), using the union bound, and setting δ1 = δ2 = δ3 = δ/3 we get the
desired result with an additive error of 2Regmax(T, δ/3) + Regmin(T, δ/3). This is the same as
the one in the lemma’s statement because asymptotically they are the same and by the definition of
Regmax and Regmin (which are defined using O(·) notation).

Before proving Theorem 4, we prove two lemmas that show the effects of a (σr, σc)-stationary
adversary to the optimal solution.

The first lemma lower bounds the reward of the optimal distribution of distribution A∗ after
its stopping time, T ∗. We need such a bound because we cannot guarantee that the algorithm has
gained a large part of OPTFD before round T ∗, especially when T ∗ is much smaller than T . We prove
a bound that depends on σr and T ∗/T .

Lemma 10 Let (A∗, T ∗) be the optimal solution to (1) and let x = T ∗/T . Then it holds that

T∑
t=T ∗+1

E
a∼A∗

[rt(a)] ≥ σr
1− x

x
OPTFD.

Definition 1 only states that the rewards of each action are stationary but we need this for a
distribution of actions.
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Proof For every a ∈ [K] let p(a) = P [A∗ = a]. We have that

T∑
t=T ∗+1

E
a∼A∗

[rt(a)] =
∑
a∈[K]

p(a)
T∑

t=T ∗+1

rt(a)

≥
∑
a∈[K]

p(a)(T − T ∗)min
t

rt(a)

≥ σr
∑
a∈[K]

p(a)(T − T ∗)max
t

rt(a) (σr-stationarity)

≥ σr
∑
a∈[K]

p(a)
T − T ∗

T ∗

T ∗∑
t=1

rt(a)

= σr
1− x

x
OPTFD (T ∗ = xT )

which proves the lemma.

We proceed to prove the second lemma, for the consumption of the optimal action. In contrast
to the previous lemma, we prove an upper bound on the maximum consumption across all resources
and rounds.

Lemma 11 Let (A∗, T ∗) be the optimal solution to (1) and let x = T ∗/T . Then, for all i ∈ [d],

max
t

E
a∼A∗

[ct,i(a)] ≤
ρ

xσc
.

To prove this lemma we use the fact that by round T ∗ the total consumption of any resource
under action A∗ is at most Tρ. We then bound the maximum consumption using σc-stationarity.
Proof For every a ∈ [K] let p(a) = P [A∗ = a]. Fix a resource i ∈ [d]. We have that

max
t

E
a∼A∗

[ct,i(a)] = max
t

∑
a∈[K]

p(a)ct,i(a)

≤
∑
a∈[K]

p(a)max
t

ct,i(a) (Jensen’s inequality)

≤ 1

σc

∑
a∈[K]

p(a)min
t

ct,i(a) (σc-stationary)

≤ 1

σc

∑
a∈[K]

p(a)
1

T ∗

T ∗∑
t=1

ct,i(a) (minimum less than average)

=
1

σc

1

T ∗

T ∗∑
t=1

E
a∼A∗

[ct,i(a)]

≤ 1

σc

1

T ∗Tρ =
ρ

xσc
(using (1))

This proves the lemma.
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We know prove Theorem 4. The proof combines Lemmas 3, 10, and 11 and guarantees a bound
based on x. By taking the worst case of over x we get the theorem.
Proof of Theorem 4 The theorem trivially holds if σc ≤ ρ, by the competitive ratio guarantee of
1/ρ of the algorithm in purely adversarial settings.

We are going to use Lemma 3 with a carefully chosen distribution of actions. Let (A∗, T ∗) be
the optimal solution to (1). Let x = T ∗/T . We set A to be the arm distribution that plays the
optimal distribution A∗ with probability max{ρ, σcx} and otherwise the null arm. We notice that
for every resource i and round t,

E
a∼A

[ct,i(a)] = max{ρ, σcx} E
a∼A∗

[ct,i(a)] ≤ max{ρ, σcx}min

{
1,

ρ

σcx

}
= ρ

where in the inequality we used Lemma 11 and ct,i(a) ≤ 1. The above allows us to use Lemma 3:
for any δ > 0 with probability at least 1− δ we have

REW+ Regmax(T, δ) + Regmin(T, δ) ≥
T∑
t=1

E
a∼A

[rt(a)] = max {ρ, σcx}
T∑
t=1

E
a∼A∗

[rt(a)]

Combining the above with Lemma 10 we get that, up to the additive term Regmax(T, δ) +
Regmin(T, δ), the algorithm guarantees with high probability the following fraction of OPTFD:

max {ρ, σcx}
(
1 + σr

1− x

x

)
= max

{
ρ+ ρσr

1− x

x
, σrσc + σcx(1− σr)

}
.

The above term is decreasing in x while x ≤ ρ
σc

and increasing afterwards. This means that the
minimizing x is ρ

σc
, which proves the desired competitive ratio.

Appendix B. Deferred proofs of Section 6

In this section, we present the deferred proof of Theorem 6.
Proof of Theorem 6 There is only one resource, d = 1. Let y be a real number such that ρ ≤
y < 1. We create an instance with the null action and another K actions, where K = 1 + ⌈1−y

ρ ⌉.
Additionally, let z = 1−y

K−1 . We are going to pick y that does not depend on T , which entails that K
and z also do not depend on T . We split the rounds into K batches of rounds. The first batch has Ty
rounds and the rest have T (1−y)

K−1 = Tz ≤ Tρ rounds each. We examine K + 1 different outcomes,
indexed by q ∈ [K + 1]. The adversary decides the value of q. We are going to introduce outcome
q = K + 1 later in the proof and initially focus on the first K outcomes.

We now present the reward and consumption of each arm in each batch and outcome, which can
also be found in Table 1. During the rounds of batch i ∈ [K], only the i-th arm can have positive
reward and consumption. Let ε < 1 and let r(q)t (a), c

(q)
t (a) denote the reward and consumption of

arm a in outcome q. The reward and consumption of arm i = 1 are

(
r
(q)
t (1), c

(q)
t (1)

)
=

{(
εK−1, ρy

)
, if t ∈ 1st batch and for any outcome q

(0, 0), otherwise
(12)

20
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and the rewards and costs for every arm 2 ≥ i ≥ K

(
r
(q)
t (i), c

(q)
t (i)

)
=

{(
εK−i, 1

)
, if t ∈ i-th batch and outcome is i ≤ q ≤ K

(0, 0), otherwise

Outcome q Action i = 1, batch i = 1 i = 2 i = 3 3 < i ≤ K

q = 1
(
εK−1, ρy

)
(0, 0) (0, 0) (0, 0)

q = 2
(
εK−1, ρy

)
(εK−2, 1) (0, 0) (0, 0)

q = 3
(
εK−1, ρy

)
(εK−2, 1) (εK−3, 1) (0, 0)

3 < q ≤ K
(
εK−1, ρy

)
(εK−2, 1) (εK−3, 1) (εK−i, 1) if q ≥ i else (0, 0)

Table 1: Rewards and consumptions in the first K outcomes. Each cell shows the tuple of reward
and consumption of an action i during batch i in the q-th outcome. The reward and con-
sumption of action a ̸= i in batch i are both always 0.

The optimal solution for outcome 2 ≤ q ≤ K is at least the reward of playing the q-th arm with
probability 1, resulting in its reward being

OPTq ≥ εK−qTz

Now fix any algorithm which plays the i-th arm on batch i, niT times. Because of the budget
constraints, it must hold that

ρ

y
n1T +

K∑
i=2

niT ≤ Tρ (13)

The reward of the algorithm on the q-th outcome is

REWq =

q∑
j=1

εK−jnjT ≤ εK−q(nq + ε)T

This means that the fraction of the optimal solution the algorithm achieves in the q-th outcome
for q ≥ 2 is

REWq

OPTq
≤ nq

z
+

ε

z

Since ε, ρ,K are constants w.r.t. T , we notice that for every q it must hold that nq = Θ(1);
otherwise, if nq = o(1), in outcome q the algorithm would get a 0 fraction of the optimal solution
as T → ∞. This means that the above two relations are true when T → ∞, in which case any
regret terms disappear. Now we can take ε → 0. Since the algorithm must guarantee a ρ fraction of
the optimal solution this yields for q ≥ 2

nq ≥ ρz
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which makes (13)
n1 ≤ y(1− z(K − 1)) = y2 (14)

where in the last inequality we used the definition of z = 1−y
K−1 .

Now we introduce the (K+1)-th outcome, which is (σr, σc)-stationary. In this outcome, during
the first batch, the rewards and consumptions of the actions are identical to the other outcomes:
only action 1 has positive reward and cost, as defined in (12). All actions have zero rewards and
consumptions on the remaining batches, except for action 1. More specifically, for t > Ty, action
1 has (

r
(K+1)
t (1), c

(K+1)
t (1)

)
=

(
σrϵ

K−1,min

{
1,

ρ

y

1

σc

})
which we notice is (σr, σc)-stationary. Let 1/a = min

{
1, ρy

1
σc

}
.

In this new outcome, the optimal solution is the same as the 1st outcome, i.e., play the 1st arm
with probability 1:

OPTK+1 = OPT1 = εK−1Ty

Because all the outcomes are the same during the first batch, the algorithm cannot distinguish
which batch it is in. This means it must play the first arm during the first batch n1T times, entailing
that the remaining budget after the first batch is

Tρ− n1T
ρ

y

This entails that in the new outcome the number of times the first arm is played after the first
batch is at most (

Tρ− n1T
ρ

y

)
a

which proves that the reward for this outcome is at most

REWK+1 ≤ εK−1n1T + σrε
K−1

(
Tρ− n1T

ρ

y

)
a

= εK−1T

(
ρσra+ n1

(
1− ρσra

y

))
≤ εK−1T

(
ρσra+ y2

(
1− ρσra

y

)) (
using (14) and

ρσra

y
≤ 1

)
= εK−1T

(
ρσra+ y2 − ρyσra

)
making the fraction of the optimal solution that the algorithm gets at most

REWK+1

OPTK+1
≤ ρσra+ y2 − ρyσra

y

= y +
ρσr(1− y)

y
α

= y +
ρσr(1− y)

y
max

{
1,

yσc
ρ

}
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Similar to before, because the above expression does not depend on T , it also holds as T →
∞. This makes any regret terms disappear, making the above the inverse of the competitive ratio.
Minimizing it over y we set

y =


ρ, if σr ≤ ρ
√
ρσr, if ρ ≤ σr ≤ ρ

σ2
c

ρ
σc
, if σr ≥ ρ

σ2
c

which proves the desired bound simply by substituting.

Appendix C. Deferred proofs of Section 7

In this section, we present the deferred proofs of Section 7. We start with Lemma 7.
Proof of Lemma 7 For ease of notation, for the distribution mentioned in the lemma’s statement A,
we use rt(A) = Ea∼A [rt(a)] and ct,i(A) = Ea∼A [ct,i(a)].

Fix a batch j. Let Tj be the rounds of that batch and REWj be the total reward of the algorithm
during it. The per-round budget during batch j is ρTres−1

Tres
= ρ − 1/Tres. We use Lemma 3, in

which we use the distribution of actions that plays A (as defined in the description of Lemma 7)

with probability minimin

{
1, ρ

maxt∈Tj
ct,i(A)

}
− 1/Tres and the null arm otherwise. This proves

that with probability 1− δ,

REWj ≥
(
min
i

min

{
1,

ρ

maxt∈Tj ct,i(A)

}
− 1

)∑
t∈Tj

rt(A)− Regmax(Tres, δ)− Regmin(Tres, δ)

≥ min
i

min

{
1,

ρ

maxt∈Tj ct,i(A)

}∑
t∈Tj

rt(A)− 1− Regmax(Tres, δ)− Regmin(Tres, δ)

= min
i

min

{
1,

ρ

maxt∈Tj ct,i(A)

}∑
t∈Tj

rt(A)− Regmax(Tres, δ)− Regmin(Tres, δ) (15)

where in the last equality we used the fact that Regmin(Tres, δ) is asymptotically bigger than 1.
Let for every i ∈ [d]

Eji = max
t∈Tj

ct,i(A)−min
t∈Tj

ct,i(A).

We are going to prove that for any t ∈ Tj and i ∈ [d] it holds that

min

{
1,

ρ

maxτ∈Tj cτ,i(A)

}
≥ min

{
1,

ρ

ct,i(A)

}
− 1

ρ
Eji (16)

Combining (15) and (16) we get that with probability at least 1− δ

REWj + Regmax(Tres, δ) + Regmin(Tres, δ) ≥
∑
t∈Tj

rt(A)min
i

min

{
1,

ρ

ct,i(A)

}
− Tres

ρ
max

i
Eji

23



FIKIORIS TARDOS

With probability 1− δTres/T the above inequality holds for all j; summing over all j gets us

REW+
T

Tres

(
Regmax(Tres, δ)+Regmin(Tres, δ)

)
≥

T∑
t=1

rt(A)min
i

min

{
1,

ρ

ct,i(A)

}
−Tres

ρ

∑
j

max
i

Eji

which proves what we want by noticing that E ≥
∑

j maxi Eji and substituting δ.
Now we need to prove (16). Fix i and j. We have that

min

{
1,

ρ

maxτ∈Tj cτ,i(A)

}
+

Eji
ρ

= min

{
1,

ρ

minτ∈Tj cτ,i(A) + Eji

}
+

Eji
ρ

Let c = minτ∈Tj cτ,i(A). We notice that the above r.h.s. is increasing in Eji; this is obvious

for ρ > c + Eji and if c + Eji ≥ ρ the derivative is (c+Eji)2−ρ2

ρ(c+Eji) ≥ 0. This means that, because
Eji ≥ 1− c, it holds that

min

{
1,

ρ

c+ Eji

}
+

Eji
ρ

≥ min {1, ρ}+ 1− c

ρ
≥ ρ+ 1− c = (1− c) + c

ρ

c
≥ min

{
1,

ρ

c

}
where in the last inequality we used the fact that the min is less than the weighted average. (16)
follows by noticing that for any t ∈ Tj , c ≤ ct,i(A).

Now we prove Theorem 8.
Proof of Theorem 8 Fix the solution of (1), (A∗, T ∗) and let x = T ∗/T . We are going to use
Lemma 7 by setting A = A∗. To get a bound on the competitive ratio, we need to lower bound

T∑
t=1

E
a∼A∗

[rt(a)]min

{
1,

ρ

maxi Ea∼A∗ [ct,i(a)]

}
(17)

First we prove a bound on mint Ea∼A∗ [rt(a)]. The bound we prove is implicitly proven inside
the proof of Lemma 10, but we include it for completeness:

min
t

E
a∼A∗

[rt(a)] = min
t

K∑
a=1

P [A∗ = a] rt(a)

≥
k∑

a=1

P [A∗ = a] min
t

rt(a)

≥ σr

K∑
a=1

P [A∗ = a] max
t

rt(a)

≥ σr
T ∗

K∑
a=1

P [A∗ = a]
T ∗∑
t=1

rt(a)

=
σr
xT

OPTFD (18)
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Let ct = maxi Ea∼A∗ [ct,i(a)] and c̄ = maxt ct. We focus on the case where c̄ ≥ ρ, as otherwise
(17) is at least OPTFD. We first focus on the sum of (17) for t > T ∗:

T∑
t=T ∗+1

E
a∼A∗

[rt(a)]min

{
1,

ρ

ct

}
≥ ρ

c̄
T (1− x)min

t
E

a∼A∗
[rt(a)] ≥

ρ

c̄
σr

1− x

x
OPTFD (19)

where in the last inequality we used (18).
To analyze the sum in (17) for t ≤ T ∗ we take two cases. First, we have that

T ∗∑
t=1

E
a∼A∗

[rt(a)]min

{
1,

ρ

ct

}
≥ ρ

c̄

T ∗∑
t=1

E
a∼A∗

[rt(a)] =
ρ

c̄
OPTFD (20)

Second, we have that

T ∗∑
t=1

E
a∼A∗

[rt(a)]min

{
1,

ρ

ct

}
≥
(
min
t

E
a∼A∗

[rt(a)]

) T ∗∑
t=1

min

{
1,

ρ

ct

}
≥
(
min
t

E
a∼A∗

[rt(a)]

)
ρT ∗2∑T ∗

t=1max{ρ, ct}
(AM-HM inequality)

≥
(
min
t

E
a∼A∗

[rt(a)]

)
ρT ∗2∑T ∗

t=1(ct + ρ)

≥
(
min
t

E
a∼A∗

[rt(a)]

)
ρT ∗2

dρT + ρT ∗

(
∀i :

T ∗∑
t=1

ct,i(A
∗) ≤ ρT

)

= min
t

E
a∼A∗

[rt(a)]
x2T

d+ x
(T ∗ = xT )

= σr
x

d+ x
OPTFD (using (18)) (21)

Now we combine (19), (20), and (21) to get

T∑
t=1

E
a∼A∗

[rt(a)]min

{
1,

ρ

maxi ct,i(A∗)

}
≥ max

{
ρ

c̄
, σr

x

d+ x

}
OPTFD +

ρ

c̄
σr

1− x

x
OPTFD

using Lemma 11 and that c̄ ≤ 1 it holds that c̄ ≤ min{1, ρ/xσc} which we use to get the desired
bound.
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