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Abstract
A classical result in online learning characterizes the optimal mistake bound achievable by determin-
istic learners using the Littlestone dimension (Littlestone ’88). We prove an analogous result for
randomized learners: we show that the optimal expected mistake bound in learning a class H equals
its randomized Littlestone dimension, which we define as follows: it is the largest d for which there
exists a tree shattered by H whose average depth is 2d. We further study optimal mistake bounds in
the agnostic case, as a function of the number of mistakes made by the best function in H, denoted
by k. Towards this end we introduce the k-Littlestone dimension and its randomized variant, and use
them to characterize the optimal deterministic and randomized mistake bounds. Quantitatively, we
show that the optimal randomized mistake bound for learning a class with Littlestone dimension d is
k + Θ(

√
kd + d) (equivalently, the optimal regret is Θ(

√
kd + d)). This also implies an optimal

deterministic mistake bound of 2k + O(
√
kd + d), thus resolving an open question which was

studied by Auer and Long [’99].
As an application of our theory, we revisit the classical problem of prediction using expert

advice: about 30 years ago Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth
studied prediction using expert advice, provided that the best among the n experts makes at most k
mistakes, and asked what are the optimal mistake bounds (as a function of n and k). Cesa-Bianchi,
Freund, Helmbold, and Warmuth [’93, ’96] provided a nearly optimal bound for deterministic
learners, and left the randomized case as an open problem. We resolve this question by providing an
optimal learning rule in the randomized case, and showing that its expected mistake bound equals
half of the deterministic bound, up to negligible additive terms. This improves upon previous works
by Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [’93, ’97], by Abernethy,
Langford, and Warmuth [’06], and by Brânzei and Peres [’19], which handled the regimes k ≪ log n
or k ≫ log n. In contrast, our result applies to all pairs n, k, and does so via a unified analysis using
the randomized Littlestone dimension.

In our proofs we develop and use optimal learning rules, which can be seen as natural variants
of the Standard Optimal Algorithm (SOA) of Littlestone: a weighted variant in the agnostic case,
and a probabilistic variant in the randomized case. We conclude the paper with suggested directions
for future research and open questions.
Keywords: Online learning, Online prediction, Randomized algorithms.
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1. Introduction

A recurring phenomenon in learning theory is that different notions of learnability are captured
by combinatorial parameters. Notable examples include the Vapnik–Chervonenkis (VC) dimen-
sion which characterizes PAC learnability (Vapnik and Chervonenkis, 1974; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989) and the Littlestone dimension which characterizes online learnabil-
ity (Littlestone, 1988; Ben-David, Pál, and Shalev-Shwartz, 2009). Other examples include the
Daniely–Shalev-Shwartz and Natarajan dimensions in multiclass PAC learning (Natarajan, 1989;
Daniely and Shalev-Shwartz, 2014; Brukhim, Carmon, Dinur, Moran, and Yehudayoff, 2022), the
star number, disagreement coefficient, and inference dimension in interactive learning (Hanneke,
2014; Hanneke and Yang, 2015; Kane, Lovett, Moran, and Zhang, 2017), the statistical query di-
mension in learning with statistical queries (Feldman, 2017), the representation dimension, one-way
communication complexity, and Littlestone dimension in differentially private learning (Feldman
and Xiao, 2015; Beimel, Nissim, and Stemmer, 2019; Alon, Bun, Livni, Malliaris, and Moran, 2022),
and others.

One of the simplest and most appealing characterizations is that of online learnability by the
Littlestone dimension. In his seminal work, Nick Littlestone proved that the optimal mistake-bound
in online learning a class H is exactly the Littlestone dimension of H (Littlestone, 1988). Thus, not
only does the Littlestone dimension qualitatively captures online learnability, it also provides an exact
quantitative characterization of the best possible mistake bound. This distinguishes the Littlestone
dimension from other dimensions in learning theory, which typically only provide asymptotic bounds
on the learning complexity.

However, the exact quantitative characterization of the optimal mistake bound by the Littlestone
dimension applies only in the noiseless realizable setting and only for deterministic learners. In
particular, it does not apply in the more general and well-studied setting of agnostic online learning.
The reason it does not apply is twofold: (i) because the agnostic setting allows for non-realizable
sequences, and (ii) because randomized learners are in fact necessary.1 This suggests the following
question, which guides this work:

Is there a natural dimension which captures the optimal expected mistake bound in learning a
class H using randomized learners? How about the agnostic setting when there is no h ∈ H

which is consistent with input data?

The main contribution of this work formalizes and proves affirmative answers to these questions.

Organization. In the next section we present the main results of this work. Then, in Section 3
we provide a short technical overview, where we outline the main ideas we use in our proofs. The
remaining sections contain the complete proofs.

1. Randomized learners are necessary in the following sense: any agnostic online learner for a class H must be
randomized, provided that H contains at least two functions (Cover, 1965), see also (Shalev-Shwartz and Ben-David,
2014, Chapter 21.2).
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2. Main results

This section assumes familiarity with standard definitions and terminology from online learning. We
refer the unfamiliar reader to Section A, which introduces the online learning model and related basic
definitions in a self-contained manner.

2.1. Realizable Case

In his seminal work from 1988, Nick Littlestone studied the optimal mistake bound in online learning
an hypothesis class H by deterministic learning rules in the realizable setting (Littlestone, 1988);
that is, under the assumption that the input data sequence is consistent with a function h ∈ H.

Littlestone dimension. Let X be the domain, and let H be a class of “X → {0, 1}” predictors.
The Littlestone dimension of H, denoted L(H), is the maximal depth of a binary complete decision
tree T which is shattered by H. That is, a decision tree T whose nodes are associated with points
from X and whose edges are associated with labels from {0, 1} such that each of the branches
(root-to-leaf paths) in T is realized by some h ∈ H.

Littlestone proved that the optimal mistake bound achievable by deterministic learners equals
the Littlestone dimension. Littlestone further described a natural deterministic learning rule, which
he dubbed the Standard Optimal Algorithm (SOA), that makes at most L(H) mistakes on every
realizable input sequence.

Randomized Littlestone dimension. Our first main result shows that a natural probabilistic variant
of the Littlestone dimension characterizes the optimal expected mistake bound for randomized
learners.

Definition 1 (Randomized Littlestone Dimension) Let T be binary tree, and consider a
random walk on T that starts at the root, goes to the left or right child with probability 1/2,
and continues recursively in the same manner until reaching a leaf. Let ET denote the
expected length of a random branch which is produced by this process.
The randomized Littlestone dimension of a class H, denoted by RL(H), is defined by

RL(H) =
1

2
sup

T shattered
ET .

To compare the randomized Littlestone dimension with the Littlestone dimension, notice that
the Littlestone dimension is equal to sup {mT : T shattered}, where mT is the minimum length of a
branch in T . Thus, the difference is that in RL(H) we take the expected depth rather than the minimal
depth, and multiply by a factor of 1/2.2

2. From a learning theoretic perspective it is easy to see that RL(H) ≤ L(H), because randomized learners are more
general than deterministic ones. Interestingly, this inequality is less obvious from a combinatorial perspective: indeed,
for every fixed tree T we have that ET ≥ mT (because the expected length of a branch is at least the minimal length),
but it is not a priori clear why the inequality is reversed when ET is replaced by ET /2 and we take supremum over all
shattered trees. See Section C.3.2 for further discussion.
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Theorem 2 (Main Result (i): Randomized Mistake Bound) The optimal randomized
mistake bound in online learning H in the realizable setting is equal to its randomized
Littlestone dimension, RL(H).

We also provide an optimal randomized learning rule which can be seen as a probabilistic
adaptation of Littlestone’s classical SOA algorithm. See Section 3.1 for a brief overview, and
Section B.1.1 for the proof.

The connection between online learning problems and random walks was identified in the online
learning literature (Abernethy, Warmuth, and Yellin, 2008; Luo and Schapire, 2014a; Gravin, Peres,
and Sivan, 2016). Abernethy et al. (2008) asked, conceptually, how general is this connection. Our
results show that it is indeed quite general, in the sense that it yields the optimal algorithm for every
hypothesis class.

2.2. Agnostic Case

We next consider the agnostic setting, in which we no longer assume that the input sequence of
examples is consistent with H. Our second main result characterizes the optimal expected mistake
bound in this setting.

A common approach for handling the agnostic case is to assume a bounded horizon and analyze
the regret. That is, it is assumed that the length of the input sequence (called the horizon) is a given
parameter T ∈ N, and the goal is to design learning rules whose mistake bound is competitive with
that of the best h ∈ H up to an additive term which is negligible in T (this term is called the regret
of the algorithm).

The bounded horizon assumption simplifies the design of learning rules, by allowing them to
depend on T. A notable example is the celebrated Multiplicative Weights (MW) learning rule, whose
learning rate depends on T. This assumption can then be lifted by standard doubling tricks.3

The k-realizable setting. In this work we consider an alternative approach: instead of assuming
a bound T on the horizon, we assume a bound k on the number of mistakes made by the best
function in the class. Notice that this assumption can also be lifted by suitable doubling tricks as we
demonstrate in Section 2.4, where we also extend our results to the bounded-horizon setting.

The upshot of this approach is that it allows for a precise combinatorial characterization of the
optimal mistake bound via a natural generalization of the Littlestone dimension.

2.2.1. k-LITTLESTONE DIMENSION

Let H be an hypothesis class, and let k ∈ N. A sequence of examples S = {(xi, yi)}ti=1 is k-
realizable by H if there exists h ∈ H such that h(xi) ̸= yi for at most k indices i. In the k-realizable
setting we assume that the input sequence given to the learner is k-realizable. Notice that the case
k = 0 amounts to realizability by H. We say that a decision tree is k-shattered by H if every branch
is k-realizable by H. The corresponding deterministic and randomized k-Littlestone dimensions of a
class H are

Lk(H) = sup
T k-shattered

mT and RLk(H) =
1

2
sup

T k-shattered
ET .

3. E.g. start by running the algorithm with T = 2, and double T when reaching the (T+ 1)’st example.
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Theorem 3 (k-Littlestone Dimension) Let H be an hypothesis class.

1. The optimal deterministic mistake bound in online learning H in the k-realizable setting equals
its k-Littlestone dimension, Lk(H).

2. The optimal randomized mistake bound in online learning H in the k-realizable setting equals
its k-randomized Littlestone dimension, RLk(H).

We also provide optimal learning rules which can be seen as weighted variants of Littlestone’s
classical SOA algorithm. See Section 3.1 for a brief overview and Section E for the proof.

As a consequence of this perspective, we prove the following theorem which provides tight regret
bounds in terms of the Littlestone dimension.

Theorem 4 (Main Result (ii): Optimal Regret Bounds for Littlestone Classes) Let H
be an hypothesis class and let k ∈ N. Then

RLk(H) = k +Θ
(√

k · L(H) + L(H)
)
.

In particular, the optimal regret in online learning H is Θ
(√

k · L(H) + L(H)
)

, where k is
the number of mistakes made by the best function in H.

This improves and refines over results by (Auer and Long, 1999; Alon, Ben-Eliezer, Dagan,
Moran, Naor, and Yogev, 2021). The work by Alon et al. (2021) determined an optimal regret bound
of Θ

(
L(H) +

√
T · L(H)

)
, where T is the time horizon. The above bound refines it by replacing T

with k ≤ T . The work by Auer and Long (1999) studies the optimal deterministic mistake bound
in online learning H in the k-realizable setting. Theorem 4 implies that the deterministic mistake
bound is at most

2RLk(H) = 2k +O
(√

k · L(H) + L(H)
)
. (see Proposition 30)

This improves over (Auer and Long, 1999, Theorem 4.4) which gives an upper bound of (2+2.5ϵ)k+
O
(
1
ϵ log

1
ϵ

)
L(H) for every 0 < ϵ ≤ 1/20. See Section E.4 for the proof of Theorem 4.

2.3. Prediction Using Expert Advice

In this section, we consider the problem of prediction using expert advice (Vovk, 1990; Littlestone
and Warmuth, 1994). This problem studies a repeated guessing game between a learner and an
adversary. In each round of the game, the learner needs to guess the label that the adversary chooses.
In order to do so, the learner can use the advice of n experts. Formally, each round i in the game
proceeds as follows:

(i) The experts present predictions ŷ(1)i , . . . , ŷ
(n)
i ∈ {0, 1}.

(ii) The learner predicts a value pi ∈ [0, 1].

(iii) The adversary reveals the true answer yi ∈ {0, 1}, and the learner suffers the loss |yi − pi|.
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We focus here on the k-realizable setting, which was suggested by (Cesa-Bianchi, Freund,
Helmbold, and Warmuth, 1996; Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth,
1997) and further studied by (Abernethy, Langford, and Warmuth, 2006; Mukherjee and Schapire,
2010; Brânzei and Peres, 2019). Here, the adversary must choose the answers so that at least one of
the experts makes at most k mistakes. That is, there must exist an expert j such that yi ̸= ŷ

(j)
i for at

most k many indices i.

The goal is to determine the optimal loss of the learner as a function of n and k. Let M⋆D(n, k)
denote the optimal loss of a deterministic learner and M⋆(n, k) denote the optimal loss of a (possibly)
randomized learner.4

The starting point is the basic fact5 that

M⋆D(n, k)

2
≤ M⋆(n, k) ≤ M⋆D(n, k). (1)

In their seminal work, Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth (1997)
exhibited a randomized algorithm which witnesses that in the regime when k ≫ log n or k ≪ log n,
the lower bound in Equation 1 is tight up to a relative factor of o(1), (See their Theorem 4.4.3).

In a follow up work, Cesa-Bianchi, Freund, Helmbold, and Warmuth (1996) aimed to find optimal
deterministic and randomized algorithms. They found a nearly optimal deterministic algorithm called
binomial weights, and left as a main open problem whether there is a randomized learner witnessing
that the lower bound in Equation 1 is tight for every n, k, perhaps up to a negligible additive term. In
fact, they even suggested that the negligible term might be a universal numerical constant; below we
show that it cannot.

Nearly 10 years later, Abernethy, Langford, and Warmuth (2006) showed that M⋆(n, k) ≤
M⋆D(n, k)/2 + C for every k and every n ≥ N(k), where C is a universal constant (independent
of n, k), thus showing that in the regime when k = O(1) the additive negligible term is indeed a
universal constant (independent of n, k).

More recently, Brânzei and Peres (2019) showed that M⋆(n, k) ≤ (12 + o(1))M⋆D(n, k) for k =
o(log n), while quantitatively improving upon the bounds given by (Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmuth, 1997) in this regime.

In the next theorem we show that the lower bound in Equation 1 is nearly tight for all n ≥ 2 and
k ≥ 0, thus fully resolving the question raised by (Cesa-Bianchi, Freund, Helmbold, and Warmuth,
1996).6 Moreover, we show that the negligible term tends to infinity when n = 2. The latter shows
that the result by (Abernethy, Langford, and Warmuth, 2006) does not apply for general n, k.

4. Note that we assume here that k is known to the learner and that the horizon (i.e. number of rounds in the game) might
be unbounded. In Section 2.4.2 below we explain how to extend our results to the complementing cases.

5. One might be tempted to interpret these inequalities as implying that M⋆(n, k) and M⋆
D(n, k) are nearly the same.

However, the multiplicative gap of 1/2 can be significant. For example, a randomized learner with a non-trivial error
rate of 25% corresponds to a deterministic learner with 50% error-rate. The latter is trivially achieved by a random
guess. For the same reason, sublinear regret guarantees can only be achieved by randomized learners, although they
are “just” a factor of 1/2 better than deterministic learners, see e.g. (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz,
2012; Hazan, 2019).

6. When n = 1, M⋆(1, k) = M⋆
D(1, k) = k.
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Theorem 5 (Main Result (iii): Bounds for Randomized Predictors) Let M⋆(n, k) denote
the optimal expected mistake bound for prediction using expert advice in the k-realizable
setting when there are n experts, and let M⋆D(n, k) denote the optimal mistake bound for
deterministic learners. For all n ≥ 2 and k ≥ 0,

M⋆(n, k) =
(1
2
+ o(1)

)
M⋆D(n, k).

Furthermore, the error term cannot be improved to O(1) for n = 2:

M⋆(2, k) =
M⋆D(2, k)

2
+ Ω

(√
M⋆D(2, k)

)
.

We prove the upper bound in Section F.2, and the lower bound in Section F.3. Both bounds
are proved using the randomized k-Littlestone dimension. A special case of Theorem 4 states that
M⋆(n, k) = k + Θ

(√
k log n+ log n

)
, where the upper bound in this quantitative bound was first

proved in (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997). In Section F.6
we prove that any optimal learning rule must necessarily be improper, in the sense that it cannot
always predict using convex combinations of the n experts.

Additional Related Work. Different variants of the experts problem have been extensively studied
in the past 30 years and various techniques for bounding the optimal regret and mistake bounds were
developed throughout the years, such as sequential Rademacher complexity (Rakhlin, Shamir, and
Sridharan, 2012; Rakhlin and Sridharan, 2014), drifting games (Mukherjee and Schapire, 2010; Luo
and Schapire, 2014b), and the Hedge setting (Abernethy, Warmuth, and Yellin, 2008; Freund and
Schapire, 1997). However, those techniques are seemingly tailored for randomized proper learners
(i.e., learners that predict using a distribution over the experts which is updated at the end of each
round), and proper learners are inherently suboptimal for the experts problem, even in the realizable
case, as proven in Section F.6. Abernethy et al. (2008) identified the optimal proper algorithm, using
a random walk analysis, which is similar to our characterization results. It will be interesting to
investigate whether variations of these techniques can reproduce or even improve the bounds in this
work.

2.4. Variations

2.4.1. BOUNDED HORIZON

Consider learning H in the k-realizable setting, and let M⋆k = M⋆k(H) denote the optimal expected
mistake bound. In particular, this means that the adversary can force M⋆k mistakes in expectation
on any randomized learner. This would be tolerable if in order to do so the adversary must use
many examples, say 1000M⋆k. Indeed, this would mean that the learner makes only one mistake per a
thousand examples (amortized), which is rather good.

This raises the question to what extent does M⋆k capture the optimal mistake bound under the
additional assumption that the horizon is bounded by a given T ∈ N. A bounded horizon is often
assumed in the online learning literature, and in fact this question was explicitly asked by (Cesa-
Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997) in the special case of prediction
using expert advice.

7



FILMUS HANNEKE MEHALEL MORAN

Let M⋆k(T) denote the optimal expected mistake bound in the k-realizable setting with horizon
bounded by T. The following result shows that M⋆k provides an excellent approximation of M⋆k(T); in
particular, the scenario described above is impossible.

Theorem 6 (Main Result (v): Bounded vs Unbounded Horizon) Let H be an hypothesis
class. Let M⋆k denote the optimal expected mistake bound in online learning H in the k-
realizable setting, and let M⋆k(T) denote the optimal expected mistake bound under the
additional assumption that the input sequence has length at most T. Then,

1. Long horizon. If T > 2M⋆k then

M⋆k −
√
8M⋆k lnM

⋆
k − 1 ≤ M⋆k(T) ≤ M⋆k.

2. Short Horizon. If T ≤ 2M⋆k then

T

2
−

√
8T lnT− 1 ≤ M⋆k(T) ≤ T

2
,

and if T ≤ M⋆k then M⋆k(T) = T
2 .

The upper bounds in Theorem 6 follow from basic facts: indeed, M⋆k(T) ≤ M⋆k holds because
assuming a bounded horizon restricts the adversary, and M⋆k(T) ≤ T

2 follows by guessing each label
uniformly at random. The lower bounds are more challenging, and our proofs of them relies heavily
on the randomized Littlestone dimension.

Our proof of Theorem 6 appears in Section D.3. The proof relies on a simple extension of our
characterization to this setting: consider the following modification of the Littlestone dimension and
its randomized variant:

Lk(H,T) = sup
T shattered

depth(T )≤T

mT and RLk(H,T) =
1

2
sup

T shattered
depth(T )≤T

ET .

The bounded randomized Littlestone dimension gives the precise mistake bound in this setting:

Theorem 7 (Optimal Mistake Bounds: Bounded Horizon) Let H be an hypothesis class.

1. The optimal deterministic mistake bound in online learning H in the k-realizable setting with
horizon T equals its bounded k-Littlestone dimension, Lk(H,T).7

2. The optimal randomized mistake bound in online learning H in the k-realizable setting with
horizon T equals its bounded k-randomized Littlestone dimension, RLk(H,T).

We prove Theorem 7 in Section D.1.

Prediction using Expert Advice. Also the problem of prediction using expert advice is often
considered when the number of rounds is bounded (e.g. (Cesa-Bianchi, Freund, Haussler, Helmbold,

7. Trivially, Lk(H,T) = min{T, Lk(H)}.
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Schapire, and Warmuth, 1997)). Let M⋆(n, k,T) be the optimal loss of the learner when the number
of rounds is T. By a simple reduction to Theorem 7 we show that

M⋆(n, k,T) ≈

{
M⋆(n, k) if T ≥ 2M⋆(n, k),
T
2 if T < 2M⋆(n, k).

The exact bounds are as in Theorem 7 when replacing M⋆(n, k,T) and M⋆(n, k) with M⋆k(T) and M⋆k.

2.4.2. ADAPTIVE ALGORITHMS

The analysis in much of this work considers the case where the learning algorithm may depend
explicitly on a bound k on the number of mistakes of the best hypothesis (or expert). However,
it is also desirable to study mistake bounds achievable adaptively: that is, by a single algorithm
that applies to all k. We present here one simple approach to obtaining such an algorithm, with
a corresponding mistake bound. However, the bound we obtain may likely be improvable, and
generally we leave the question of obtaining a tightest possible adaptively-achievable mistake bound
as an open problem.

Theorem 8 There is an adaptive algorithm (i.e., which has no knowledge of k⋆) such that, for every
k⋆-realizable sequence for H, its expected number of mistakes is at most

M⋆k⋆ +O

(√
M⋆k⋆ log

(
(k⋆ + 1) log M⋆k⋆

))
.

In the special case of the general experts setting, since we know that M⋆(n, k⋆) = Ω(k⋆+log(n)),
we obtain the following bound on the expected number of mistakes:

M⋆(n, k⋆) +O
(√

M⋆(n, k⋆) log M⋆(n, k⋆)
)
= (1 + o(1))M⋆(n, k⋆).

In particular, combining this with Theorem 5, we find that this algorithm adaptively still achieves an
expected number of mistakes

(
1
2 + o(1)

)
M⋆D(n, k

⋆).
On the other hand, in the case of concept classes H with a bounded Littlestone dimension L(H),

we know from Theorem 4 that M⋆k⋆ ≤ k⋆ + O
(√

k⋆L(H) + L(H)
)

. Theorem 8 implies that the
adaptive procedure nearly preserves the form of this upper bound, guaranteeing a slightly larger
bound of the form k⋆ +O

(√
k⋆L(H) log(k⋆ log L(H)) + L(H)

)
.

Our proof of Theorem 8 appears in Section E.5. The adaptive technique we propose involves
using an experts algorithm of (Koolen and van Erven, 2015) named Squint, with experts defined by
the optimal randomized algorithm for the k-realizable setting, for all values of k.

3. Technical Overview

In its greatest generality, online prediction is a game involving two randomized parties, an adversary
who is producing examples, and a learner who is trying to correctly predict the labels of all or most
of these examples. In the realizable case, the adversary is moreover constrained by an hypothesis
class which must be adhered to.

9
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Various techniques are used in the literature to analyze this sophisticated setting. On the one
hand, learning rules show which hypothesis classes lend themselves to learning, and on the other
hand, strategies for the adversary put limitations on what can be learned, and at what cost.

In this work, we identify the combinatorial core behind many settings of online learning. In this,
we follow up on Nick Littlestone’s classical work on deterministic online learning, as well as on other
classical work in learning theory such as that the foundational work of Vapnik and Chervonenkis.

Reducing the messy probabilistic setting of online learning to the clean combinatorial setting of
shattered trees enables us to tackle open questions about prediction using expert advice, which are
hard to approach directly.

3.1. Combinatorial Characterizations

The Littlestone dimension of an hypothesis class H is the maximal depth of a complete binary tree
which is shattered by H. A tree of depth D easily translates into a strategy for the adversary which
forces the learner to make D mistakes. In other words, a tree shattered by H is an obvious obstacle
to learning H.

The magic of Littlestone dimension is the opposite direction: Littlestone’s SOA learning rule
makes at most L(H) mistakes, showing that trees shattered by H are the only obstacle for learning H.
This is a common phenomenon in mathematics: an obvious necessary condition turns out to be (less
obviously) sufficient.

Defining the randomized Littlestone dimension. In order to motivate the definition of the
randomized Littlestone dimension, let us first examine the (deterministic) Littlestone dimension.
Given a tree T shattered by H, the adversary executes the following strategy, starting at the root: At
an internal node labeled x, ask the learner for the label of x, and follow the opposite edge. This
strategy follows a branch of T , and forces the learner to make a mistake in each round. The total
number of mistakes which the adversary can guarantee is precisely mT , the minimum length of a
branch in T . The resulting input sequence is realizable by H since T is shattered by H.

The definition of the randomized Littlestone dimension follows a similar approach, but uses a
different strategy for the adversary: At an internal node labeled x, ask the learner for the label of
x, and follow a random edge. This strategy also follows a branch of T , and it forces the learner to
make half a mistake in each round, in expectation.8 The total expected number of mistakes is ET /2,
where ET is the expected length of a random branch of T .

We define the randomized Littlestone dimension by considering all such adversary strategies:
RL(H) = 1

2 supT shattered ET . The supremum is not always achieved, even if we allow infinite trees,
as we demonstrate in Section B.3.

Extending the Standard Optimal Algorithm. Littlestone’s Standard Optimal Algorithm (SOA)
makes at most L(H) mistakes on any realizable input sequence. The algorithm is very simple. It
maintains a subset V of H which consists of all hypotheses which are consistent with the data seen
so far. Given a sample x, one of the following must hold, where Vx→y is the subset of V consisting
of all hypotheses assigning to x the label y:

1. L(Vx→0) < L(V ). The learner predicts ŷ = 1.

8. Recall that we model a randomized learner as a learner which makes a “soft” prediction p ∈ [0, 1]; if the true label
is y, then the learner’s loss is |p− y|. When we choose the label y at random, the expected loss is E[|p− y|] = 1

2

regardless of p.
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2. L(Vx→1) < L(V ). The learner predicts ŷ = 0.

One of these cases must hold, since otherwise we could construct a tree of depth L(V ) + 1 shattered
by V . Each time that the learner makes a mistake, L(V ) decreases by 1, and so the learner makes at
most L(H) mistakes.

Our randomized extension of SOA, which we call RandSOA, follows a very similar strategy. It
maintains V in the same way. Given a sample x, we want to make a prediction p which “covers all
bases”, that is, results in a good outcome for the learner whatever the correct label y is. Given a
prediction p, the adversary can guarantee a loss of max{p+ RL(Vx→0), 1− p+ RL(Vx→1)}. For the
optimal choice of p, this quantity is at most RL(V ), as we show in Section B.1.1.

The k-realizable setting and weighted SOA. The k-realizable setting is handled similarly. In
the definition of randomized Littlestone dimension, instead of requiring the tree to be shattered, it
suffices for it to be k-shattered, since the adversary need only produce an input sequence which is
k-realizable.

The main novelty in this setting is a weighted analog of the SOA learning rule. This weighted
SOA rule relates to the classical SOA in a similar way like the Weighted Majority algorithm relates
to Halving. In particular, it keeps track, for each hypothesis, how many more mistakes are allowed.
Accordingly, we consider the more generalized setting of weighted hypothesis classes. These are
hypothesis classes in which each hypothesis has a “mistake budget”. The definition of randomized
Littlestone dimension extends to this setting, and allows us to generalize RandSOA to the randomized
agnostic setting.

3.2. Quasi-balanced Trees

Given an hypothesis class H, how does an optimal strategy for the adversary look like? Such a
strategy must make the analysis of RandSOA tight, and in particular, if the first sample it asks is x,
then RL(H) = p+ RL(Hx→0) = 1− p+ RL(Hx→1), where p is the prediction of the learner.9

The strategy of the adversary naturally corresponds to a tree which is shattered by H: the root
is labeled x, and the edge labeled y leads to a tree corresponding to an optimal strategy for Hx→y.
Suppose that we further assign weights to the edges touching the root: the 0-edge gets the weight p,
and the 1-edge gets the weight 1− p. If we assign weights to the remaining edges recursively then
the resulting tree satisfies the following property:

Every branch has the same total weight RL(H).

More generally, a tree T is quasi-balanced if we can assign non-negative weight to its edges such
that (i) the weights of the two edges emanating from a vertex sum to 1, and (ii) all branches have
the same total weight (which must be ET /2). If a tree is quasi-balanced then the weight assignment
turns out to be unique.

A tree in which all branches have the same depth is quasi-balanced, but the class of quasi-balanced
trees is a lot richer, including for example the path appearing in Figure 4.

There is a simple criterion for quasi-balancedness:

9. Strictly optimal strategies do not always exist, and even when they do, they might require an unbounded number of
rounds. For the sake of exposition we gloss over these difficulties.

11



FILMUS HANNEKE MEHALEL MORAN

A tree T is quasi-balanced if and only if it is monotone: if w is a descendant of v then
ETw ≤ ETv , where Tu is the subtree rooted at u.

Since the loss guaranteed by an adversary following the strategy corresponding to a tree T is
ET /2, it is clear that the best strategy is always monotone. This argument shows that RL(H) =
1
2 supT shattered, monotone ET . In other words, it suffices to consider only quasi-balanced trees when
defining the randomized Littlestone dimension. This is the randomized counterpart of a trivial
property of the Littlestone dimension: in order to define the Littlestone dimension, it suffices to
consider balanced trees, that is, trees in which all branches have the same length. We can view
quasi-balancedness as a relaxation of strict balancedness.

Concentration of expected branch length. The randomized Littlestone dimension is defined
in terms of the expected branch length. However, several of our results require knowledge of the
distribution of the branch length.

For example, Theorem 6 states that 2RL(H) + O(
√
RL(H) log(RL(H)/ϵ)) rounds are needed

in order for the adversary to guarantee a loss of RL(H)− ϵ. The number of rounds corresponds to
the depth of the tree, and so the natural way to prove such a result would be to start with a tree T
satisfying ET /2 = RL(H), and prune it to depth 2RL(H) +O(

√
RL(H) log(RL(H)/ϵ)). We would

like to say that this does not reduce the expected branch length by much, since the length of most
branches does not exceed ET by much. Other applications such as prediction using expert advice
need concentration from the other side (the length of most branches does not fall behind ET by
much).

It is possible to construct trees for which the length of a random branch isn’t concentrated around
its expectation. For example, we can take an infinite path which, every so often, splits into a deep
complete binary tree. If we are careful, we can guarantee that the expected branch length is finite but
its variance is infinite.

At this point, quasi-balancedness comes to the rescue. The monotonicity property of quasi-
balanced trees implies that the choice of an edge at every step of a random branch does not affect
the final length by much. Consequently, Azuma’s inequality (a version of Chernoff’s inequality
for martingales) shows that for quasi-balanced trees, the length of a random branch is strongly
concentrated around its expectation. This simple observation drives several of our strongest results.

3.3. Prediction using Expert Advice

At first, the setting of prediction using expert advice looks similar, but not identical, to our setting.
However, it turns out that it is actually a special case of our setting, for a specific hypothesis class
known as the universal hypothesis class Un.

The class Un contains n different hypotheses, which correspond to the experts. For each possible
set of predictions ŷ(1), . . . , ŷ(n) there is a corresponding element in the domain. In other words, the
domain is X = {0, 1}n, and the hypotheses in Un are the n projections hi(x1, . . . , xn) = xi.

With this equivalence in place, we can apply the theory we have developed so far to analyze
prediction using expert advice. Our main result concerning this setting, Theorem 5, consists of an
upper bound on M⋆(n, k), and a lower bound on M⋆(2, k).

We start with the upper bound on M⋆(n, k). In view of the equivalence above, we want to bound
the expected branch length of any tree T which is k-shattered by Un. We can assume that T is quasi-

12



OPTIMAL PREDICTION USING EXPERT ADVICE AND RANDOMIZED LITTLESTONE DIMENSION

balanced, and so the length of a random branch of T is roughly ET . If T were strictly balanced, then
a random branch would be k-realizable by Un with probability at most n

(
ET
≤k

)
/2ET . Cesa-Bianchi,

Freund, Helmbold, and Warmuth (1996) have shown that the largest value of ET for which this
quantity is at least 1, which we denote by D(n, k), satisfies M⋆D(n, k) = (1− o(1))D(n, k). Since T
is only quasi-balanced, we get a slightly worse bound.

A nice proof of the lower bound on M⋆(2, k) is given by identifying the optimal tree. Intuitively,
it seems obvious that rounds in which both experts make the same prediction are “wasteful”, and we
can show this formally. By symmetry, we can assume that the first expert always predicts 0 and that
the second expert always predicts 1. We can construct the corresponding tree explicitly, and conclude
that M⋆(2, k) = k + (k + 1/2)

(
2k
k

)
/4k.
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Appendix A. Background and Basic Definitions

Unless stated otherwise, our logarithms are base 2.

Online Learning. Let X be a set called the domain, and Y be a set called the label set. In this work
we focus on binary classification, and thus Y = {0, 1}. A pair (x, y) ∈ X × Y is called an example,
and an element x ∈ X is called an instance or an unlabeled example. A function h : X → Y is called
a hypothesis or a concept. A hypothesis class, or a concept class, is a set H ⊂ YX . A sequence of
examples S = {(xi, yi)}ti=1 is said to be realizable by H if there exists h ∈ H such that h(xi) = yi
for all 1 ≤ i ≤ t.

Online learning (Shalev-Shwartz and Ben-David, 2014; Cesa-Bianchi, Freund, Haussler, Helm-
bold, Schapire, and Warmuth, 1997) is a repeated game between a learner and an adversary. Each
round i in the game proceeds as follows:

(i) The adversary sends the learner an unlabeled example xi ∈ X .

(ii) The learner predicts a value pi ∈ [0, 1] and reveals it to the adversary.

(iii) The adversary reveals the true label yi, and the learner suffers the loss |yi − pi|.

The value pi should be understood as the probability (over the learner’s randomness) of predict-
ing yi = 1. Notice that the adversary only gets to see pi, which reflects the assumption that the
adversary does not know the learner’s internal randomness. Notice also that the suffered loss |yi−pi|
exactly captures the probability that the learner makes a mistake. The above is a standard way to
model randomized learners in online learning, see e.g. (Shalev-Shwartz, 2012). If pi ∈ {0, 1} for
all i, then the learner is deterministic, in which case |yi − pi| is the binary indicator for whether the
learner made a mistake.

We model learners as functions Lrn : (X × Y)⋆ ×X → [0, 1]. Given a learning rule Lrn and an
input sequence of examples S = (x1, y1), . . . , (xt, yt), we denote the (expected) number of mistakes
Lrn makes on S by

M(Lrn;S) =
t∑

i=1

|yi − pi|,
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where pi = Lrn((x1, y1), . . . , (xi−1, yi−1), xi) is the prediction of the learner on the i’th example.
An hypothesis class H is online learnable (or learnable) if there exists a finite bound M and

a learning rule Lrn such that for any input sequence S which is realizable by H it holds that
M(Lrn;S) ≤ M . We define the optimal randomized mistake bound of H to be

M⋆(H) = inf
Lrn

sup
S
M(Lrn;S) (2)

where the infimum is taken over all learning rules, and the supremum is taken over all realizable
input sequences S.

We denote by M⋆D(H) the optimal deterministic mistake bound of H. That is, M⋆D(H) is defined
in the same way as M⋆(H), with the additional restriction that Lrn must be deterministic (that is, the
output must be in {0, 1}).

When H = ∅, the set of realizable input sequences is empty, and therefore the supremum is not
defined. It is technically convenient to deal with this special case by defining M⋆D(∅) = M⋆(∅) = −1.
When the context is clear, we may sometimes refer to the deterministic or randomized mistake
bound as the accumulating loss of the learner through the entire game, or simply as the learner’s loss
through the entire game.

Decision Trees and the Littlestone Dimension. In this paper, a tree T refers to a finite full rooted
ordered binary tree (that is, a rooted binary tree where each node which is not a leaf has a left child
and a right child), equipped with the following information:

1. Each internal node v is associated with an instance x ∈ X .

2. For every internal node v, the left outgoing edge is associated with the label 0, and the right
outgoing edge is associated with the label 1.

We stress that by default, the trees we consider are finite and their vertices are labeled. Whenever
we consider infinite trees or unlabeled trees, we specifically mention these attributes.

The tree is directed from the root towards the leaves.
A prefix of the tree T is any path that starts at the root. In this paper, a path is defined by

a sequence of consecutive vertices. If a path is not empty, we may refer it by the sequence of
consecutive edges corresponding with the sequence of consecutive vertices defining it. A prefix
v0, v1, . . . , vt defines a sequence of examples (x1, y1), . . . , (xt, yt) in a natural way: for every i ∈ [t],
xi is the instance corresponding to the node vi−1, and yi is the label corresponding to the edge
vi−1 → vi. A prefix is called maximal if it is maximal with respect to containment, that is, there
is no prefix in the tree that strictly contains it. This is equivalent to requiring that vt be a leaf. A
maximal prefix is called a branch, and the set of branches of T is denoted by B(T ). The length of a
prefix is the number of edges in it (so, the length is equal to the size of the corresponding sequence
of examples).

A prefix in the tree is said to be realizable by H if the corresponding sequence of examples is
realizable by H. A tree T is shattered by H if all branches in T are realizable by H. The Littlestone
dimension of an hypothesis class H, denoted by L = L(H), is the maximal depth of a complete (also
known as perfect, or balanced) binary tree (that is, a tree in which all branches have the same depth)
shattered by H if H ̸= ∅, and −1 when H = ∅. If the maximum does not exist, then L = ∞.
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Littlestone Dimension ≡ Optimal Deterministic Mistake Bound. In his seminal work from 1988,
Nick Littlestone proved that the optimal mistake bound of a deterministic learner is characterized by
the Littlestone dimension:

Theorem 9 (Optimal Deterministic Mistake Bound (Littlestone, 1988)) Let H be an hypothesis
class. Then, H is online learnable if and only if L(H) < ∞. Further, the optimal deterministic
mistake bound satisfies M⋆D(H) = L(H).

Doob’s Exposure Martingales. Let f : {0, 1}N → R. Consider the random variable X = f(b),
where b is sampled uniformly at random. Define a sequence L0, L1, L2, . . . , each defined by
Li = E[X|b1, . . . , bi−1] (so L0 = E[X]). The sequence L0, L1, L2, . . . is called an exposure
martingale. It is well-known that an exposure martingale is indeed a martingale (Doob, 1953).

Appendix B. Randomized Littlestone Dimension and Optimal Expected Mistake
Bound

In this section we study the randomized Littlestone dimension. We start with Section B.1, in which we
define the randomized Littlestone dimension and prove that it characterizes the optimal randomized
mistake bound exactly.

The randomized Littlestone dimension is defined using trees, which correspond to strategies
of the adversary. We study a special class of trees, quasi-balanced trees, in Section C.1. We show
that they give optimal strategies for the adversary. Several applications of quasi-balanced trees are
presented in Section C.3; more applications are found throughout the paper. We close this section by
showing how to accommodate infinite trees (Section B.2), and by briefly discussing the issue of trees
attaining the randomized Littlestone dimension exactly (Section B.3); more discussion on the latter
issue appears in Section E.

B.1. Main Result and Proof

The first main contribution of this paper is a characterization of the optimal randomized mistake
bound in terms of a combinatorial parameter we call the randomized Littlestone dimension and
denote by RL = RL(H).

We define RL(H) using a natural distribution on the branches of trees (a branch is a root-to-leaf
path). Given a tree T , a random branch is chosen by starting at the root, and at each step, picking an
edge leaving the current vertex uniformly at random, until reaching a leaf. We denote the expected
length of a random branch by ET . It is given explicitly by the formula

ET =
∑

b∈B(T )

|b| · 2−|b|,

where B(T ) is the set of branches of T . If we think of a random branch as a distribution over B(T ),
then ET is its entropy.

It is convenient to define the length of the empty branch to be −1. With this convention, the
expected branch length in T satisfies the recursion

ET = 1 +
ET0 + ET1

2
, (3)

where T0, T1 are the subtrees of the root of T , which are empty when T is a leaf.
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Definition 10 (Randomized Littlestone Dimension) Let H be an hypothesis class. The random-
ized Littlestone dimension of H, denoted by RL(H), is defined by

RL(H) =
1

2
sup

T shattered
ET .

In the special case when H = ∅, define RL(H) = −1.

To compare RL(H) with L(H), let us consider the following equivalent way of defining L(H):

L(H) = sup
T shattered

mT ,

where mT is the minimum length of a branch in T . Thus, the difference is that in RL(H) we take the
expected depth rather than the minimal depth, and multiply by a factor of 1/2.

Theorem 11 (Optimal Randomized Mistake Bound) Let H be an hypothesis class. Then,

M⋆(H) = RL(H).

We prove the theorem in Subsection B.1.1 using randomized SOA, a randomized adaptation of
Littlestone’s classical SOA algorithm. This shows that the infimum in Equation (2) is realized by a
minimizer.

B.1.1. PROOF OF THEOREM 11

The case H = ∅ holds by definition. Therefore we assume that H ≠ ∅. The lower bound “RL(H) ≤
M⋆(H)” boils down to the following lemma:

Lemma 12 Let H be an hypothesis class, and let T be a finite tree which is shattered by H. Then,
for every learning rule Lrn there exists a realizable sequence S so that M(Lrn;S) ≥ ET /2. Moreover,
there exists such a sequence S which corresponds to one of the branches of T .

Proof The proof is given by a simple probabilistic argument. Suppose that we pick a random branch
in the tree according to the random branch distribution: begin at the root, pick a random child of
the root uniformly at random, and recursively pick a random branch in the corresponding subtree.
Consider the random variable

LT = M(Lrn;S),

where S is the sequence of examples corresponding to a random branch drawn as above. It suffices
to show that E[LT ] = ET /2. We prove this by induction on the depth of T .

In the base case, T is a single leaf, and there are no internal nodes. Hence S is always the empty
sequence, and E[LT ] = 0 = ET /2, as required.

For the induction step, let T0 and T1 be the left and right subtrees of T , respectively. The expected
loss of Lrn on the first example in S is 1/2, because the label y ∈ {0, 1} is chosen uniformly at
random, independently of the learner’s prediction (formally, |0−p|+|1−p|

2 = 1/2 for all p ∈ [0, 1]).
Therefore, by linearity of expectation,

E[LT ] =
1 + E[LT0 ] + E[LT0 ]

2
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=
1 + ET0/2 + ET1/2

2
(by the induction hypothesis)

= ET /2, (by Eq. (3))

as required.

By applying Lemma 12 on every shattered tree and taking the supremum, we conclude the lower
bound:

Corollary 13 (Lower bound) For every hypothesis class H it holds that M⋆(H) ≥ RL(H).

We now turn to prove the upper bound “RL(H) ≥ M⋆(H)”. This is achieved via the RandSOA
learning rule, described in Figure 1.

We begin with the following useful property of RL:

Observation 14 Let H be a non-empty hypothesis class. Then,

RL(H) =
1

2
sup
x∈X

(
1 + RL(Hx→0) + RL(Hx→1)

)
.

Proof Observation 14 follows from Equation (3): let S(H) denote the set of trees that are shattered
by H, and for x ∈ X , let Sx(H) ⊆ S(H) denote the set of trees that are shattered by H whose root
is labeled by x. Then,

RL(H) =
1

2
sup

T∈S(H)
ET =

1

2
sup
x

sup
T∈Sx(H)

ET .

By Equation (3),

sup
T∈Sx(H)

ET = 1 +
supT1∈S(Hx→1)ET1 + supT0∈S(Hx→0)ET0

2
= 1 + RL(Hx→1) + RL(Hx→0),

which finishes the proof.

Notice that the classical Littlestone dimension satisfies a similar recursion:

L(H) = sup
x∈X

(
1 + min{L(Hx→1), L(Hx→0)}

)
.

The following lemma is the crux of the analysis: it guides the choice of the prediction pi in each
round.

Lemma 15 (Optimal prediction for each round) Let H be an hypothesis class, and let x ∈ X .
Then there exists p ∈ [0, 1] so that

p+ RL(Hx→0) ≤ RL(H) and (1− p) + RL(Hx→1) ≤ RL(H).
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RandSOA: RANDOMIZED SOA

Input: An hypothesis class H.
Initialize: Let V (1) = H.

For i = 1, 2, . . .

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0

)
, 1− pi + RL

(
V

(i)
xi→1

)}
(4)

is minimized, where V
(i)
xi→b = {h ∈ V (i) : h(xi) = b}.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 1: The randomized SOA is a variation of SOA that finds an optimal randomized prediction
in every round. SOA is the name of the original deterministic algorithm by Littlestone
(1988), and it stands for “Standard Optimal Algorithm”.
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Proof [Proof of Lemma 15] If RL(H) = ∞ then the lemma is trivial. Therefore we assume that
RL(H) < ∞. Assume first that |RL(Hx→0)− RL(Hx→1)| > 1. If RL(Hx→0) + 1 < RL(Hx→1),
then by choosing p = 1 and applying the fact that RL(H′) ≤ RL(H) if H′ ⊆ H we get

p+ RL(Hx→0) = 1 + RL(Hx→0) < RL(Hx→1) ≤ RL(H),

1− p+ RL(Hx→1) = RL(Hx→1) ≤ RL(H),

as desired. The case RL(Hx→1) + 1 < RL(Hx→0) is treated similarly.
It remains to handle the case when |RL(Hx→0)− RL(Hx→1)| ≤ 1. Set

p :=
1 + RL(Hx→1)− RL(Hx→0)

2
.

By assumption, p ∈ [0, 1], and also

p+ RL(Hx→0) = 1− p+ RL(Hx→1)

=
1 + RL(Hx→0) + RL(Hx→1)

2
≤ RL(H). (Observation 14)

Lemma 16 (Upper bound) Let H be an hypothesis class. Then the RandSOA learner described
in Figure 1 has expected mistake bound

M(RandSOA;S) ≤ RL(H)

for every realizable input sequence S.

Proof The proof is by induction on the length of the input sequence. Let S = (x1, y1), . . . , (xt, yt)
be a realizable sequence. In the base case t = 0 we have M(RandSOA;S) = 0 ≤ RL(H). For the
induction step, assume that t ≥ 1, and let S′ = (x2, y2), . . . , (xt, yt) be the input sequence without
the first example. In the first round, the learner predicts p1 ∈ [0, 1] as defined in step 2 of RandSOA.
Thus, the learner’s expected accumulated loss on S is

M(RandSOA;S) = |p1 − y1|+ M(RandSOA;S′). (5)

By the induction hypothesis we have

M(RandSOA;S′) ≤ RL(Hx1→y1). (6)

Also, by Lemma 15 it holds that p1 + RL(Hx1→0) ≤ RL(H) and 1 − p1 + RL(Hx1→1) ≤ RL(H),
which is equivalent to

|p1 − y1|+ RL(Hx1→y1) ≤ RL(H). (7)

Therefore, overall we get that

M(RandSOA;S) = |p1 − y1|+ M(RandSOA;S′) (Eq. (5))

≤ |p1 − y1|+ RL(Hx1→y1) (Eq. (6))

≤ RL(H), (Eq. (7))

as required.
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1

2

3

0

0

1

1

1

Figure 2: An infinite tree with finite expected branch length 2.

B.2. Infinite Trees

So far we have been considering only finite trees. However, in the sequel it will be useful to also
allow infinite trees. In this short subsection, we extend the definition of ET to infinite trees, and show
that the formula for RL holds even when allowing infinite trees.

In this section, whenever we refer to trees, we mean full ordered binary trees, which are possibly
infinite. A tree is shattered by an hypothesis class H if every (possibly infinite) path starting at the
root is realizable by H.

We define a random path in the same way that we defined a random branch in the finite case:
start at the root, and at each internal vertex, choose a random child at uniform, stopping if a leaf is
reached. The result is either a (finite) branch or an infinite path.

We define ET as the expected length of a random path. If the random path is finite almost surely,
then ET is given using the same formula as in the finite case:

ET =
∑

b∈B(T )

|b| · 2−|b|.

Figure 2 gives an example of such a tree. If the random path is infinite with positive probability, then
ET = ∞. It can also happen that ET = ∞ if the random path is finite almost surely.

The formula in Definition 10 holds even if we allow infinite trees.

Lemma 17 For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered
ET ,

where the supremum is taken over possibly infinite trees.

The proof of the lemma uses a straightforward truncation argument.
Proof Substituting the definition of RL(H), we need to prove that

1

2
sup

T shattered, finite
ET =

1

2
sup

T shattered
ET .

The left-hand side is clearly at most the right-hand side. We show that they coincide by constructing,
for each infinite shattered tree T , a sequence of finite shattered trees TD such that

ET = lim
D→∞

ETD
. (8)
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The tree TD is simply the truncation of T to depth D (that is, all branches of TD have length
at most D). To prove Equation (8), let Λ ∈ N ∪ {∞} be the length of a random path in T , and let
ΛD ∈ {0, . . . , D} be the length of a random path in TD. We can couple the random paths so that
ΛD = min(Λ, D).

If Λ is almost surely finite then

ET =
∑
ℓ∈N

ℓPr[Λ = ℓ].

Equation (8) holds because on the one hand, ETD
≤ ET , and on the other hand,

ETD
≥
∑
ℓ≤D

ℓPr[Λ = ℓ]
D→∞−−−−→ ET .

In contrast, if p := Pr[Λ = ∞] > 0 then Pr[ΛD = D] ≥ p and so ETD
≥ pD → ∞, hence

Equation (8) again holds.

B.3. Trees Maximizing the Expected Branch Length

The sequence of trees (Ti)
∞
i=1 described in Example 32 suggests that for “well-behaved classes”, the

supremum in Theorem 11 is attained by a specific tree. We show that this is true for finite classes.

Proposition 18 Let H be a finite hypothesis class. Then there exists a tree shattered by H such that

RL(H) =
1

2
ET .

Proof Let T be a tree shattered by H. We can label each branch of T by an hypothesis realizing it.
Each branch must be labeled by a different hypothesis, hence the number of branches is at most |H|.
Consequently, there are only finitely many shattered trees, and so the supremum in the definition of
RL(H) is trivially achieved.

There are also classes for which the maximum is not attained, even if we allow infinite trees.

Example 19 (Maximum is not necessarily attained for infinite classes) We construct an hypoth-
esis class H over the domain X = {(i, j) ∈ N2 : 1 ≤ i ≤ j}. For each (i, j) ∈ X , the hypothesis
class H contains the function

hi,j(I, J) =

{
1 if J ̸= j,

1[i = I] if J = j.

Let us start by computing L(H). Consider any tree T shattered by H which is not a leaf. Suppose
that the root is labeled by (i, j). Let T0 be the subtree rooted at the branch of the root labeled 0.
Since no hypothesis in H gives 0 to inputs with different second parts, all vertices in T0 must be
labeled by (i′, j). Since no hypothesis in H gives 0 to (i, j) and 1 to two different (i′, j), we see that
the minimum branch length in T0 is at most 1, and so the minimum branch length in T is at most 2.
Hence L(H) ≤ 2. It is easy to construct a tree showing that L(H) = 2.
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The subtree T0 contains at most j branches, and each edge labeled 1 terminates at a leaf. A simple
induction on j shows that the expected branch length of such a tree is strictly less than 2. Indeed,
denoting the expected branch length for a given value of j ≥ 2 by Aj , we have A2 = 1 = 2− 22−2

and Aj = 1 +Aj−1/2 = 1 + 1
2(2− 22−j+1) = 2− 22−j .

Let js be the number of leaves in the subtree rooted at the vertex obtained by starting at the root
of T , taking s times the outgoing edge labeled 1, and then the outgoing edge labeled 0 (if such a
vertex exists). Thus

ET =

S∑
s=0

2−s−1(s+ 1 +Ajs) <

S∑
s=0

2−s−1(s+ 3) ≤ 4,

where S is the maximal value for which js is defined (possibly S = ∞).
On the other hand, we can construct a tree T shattered by H for which ET is arbitrarily close

to 4. Start with an infinite right path (that is, a path in which all edges are labeled 1) labeled
with (1,K), (1,K + 1), (1,K + 2) and so on, for some parameter K. The left branch of a vertex
labeled (1, J) is labeled using (2, J), . . . , (J − 1, J) to construct a tree T ′

J shattered by H with
J − 1 branches, as described in Figure 3. This tree satisfies js = K + s− 1, and so

ET =
∞∑
s=0

2−s−1(s+ 3− 21−K−s)) = 4−O(2−K),

which is arbitrarily close to 4. Thus RL(H) = 2, but every (possibly infinite) tree T shattered by H
satisfies ET /2 < 2.

Appendix C. Quasi-balanced Trees

C.1. Definition and Basic Properties

The classical definition of the Littlestone dimension of a class H is the maximum depth of a
balanced (or complete) shattered tree. In contrast, the randomized Littlestone dimension is defined
via quantifying over all shattered trees. Further, in the deterministic case, balanced trees naturally
describe optimal deterministic strategies for the adversary which force any learner to make a mistake
on every example along a branch of the tree.

It is therefore natural to ask whether there is a type of shattered trees, analogous to balanced
trees, which can be used to define the randomized Littlestone dimension. In this subsection, we
show that such an analog exists: a type of trees which we call quasi-balanced; roughly speaking,
quasi-balanced trees can be seen as a fractional relaxation of balanced trees. We further use this
section to prove some useful properties of these trees, which will be used later on.

Informally, quasi-balanced trees are balanced under some weight function defined on the edges.
To formally define quasi-balanced trees, we need to define weight functions for trees.

Let T be a non-empty tree with edge set E. Let W = W(T ) be the set of all functions w : E →
[0, 1], such that for every internal node with outgoing edges e0, e1 it holds that w(e0) + w(e1) = 1.
Each function in W is called a weight function for T .

For every branch b ∈ B(T ) defined by a sequence of consecutive edges, define the weight of the
branch b with respect to w by w(b) =

∑
e∈bw(e).

The expected weight of a random branch is always half the expected length of a random branch,
as a simple inductive argument shows.
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(1, J)

(2, J)

(3, J)

...

(J − 1, J)

. . .

0

0

0

0

0 1

1

1

1

1

Figure 3: The tree T ′
J defined in Example 19.

1
8

1
4

1
2

1
2

3
4

7
8

Figure 4: A quasi-balanced tree. The edges are labeled with the unique weights. The sum of weights
in each branch is 7

8 , which is half the expected branch length 7
4 .
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Lemma 20 For every non-empty tree T and every weight function w ∈ W(T ), the expected weight
of a random branch is ET /2.

Proof The proof is by induction on the depth of the tree. If T is a leaf then the expected weight of a
random branch is 0 = ET /2. If T is not a leaf, let e0, e1 be the edges emanating from the root, and
let T0, T1 be the corresponding subtrees. Applying the inductive hypothesis, the expected weight of a
random branch in T under w is

w(e0) + ET0/2

2
+

w(e1) + ET1/2

2
=

1 + ET0/2 + ET1/2

2
= ET /2,

using w(e0) + w(e1) = 1 and Equation (3).

This lemma prompts the following definition.

Definition 21 A tree T is quasi-balanced if it is non-empty and there is a weight function w ∈ W(T )
under which all branches have weight ET /2.

We call ET /2 the weight of the tree, and denote it by λT .

Lemma 22 If a tree T is quasi-balanced then there is a unique weight function w under which all
branches have the same weight. Explicitly, if T ′ is a subtree of T whose root is connected via edges
e0, e1 to the subtrees T0, T1, then

w(e0) =
1 + λT1 − λT0

2
and w(e1) =

1 + λT0 − λT1

2
.

Proof The trees T ′, T0, T1 are necessarily quasi-balanced, and in particular

w(e0) + λT0 = w(e1) + λT1 .

Since w(e0) + w(e1) = 1, we can solve for w(e0), w(e1), obtaining the claimed formula.

Quasi-balanced trees are a generalization of balanced trees: every tree T which is balanced is
also quasi-balanced with weight λT = d/2, where d is the depth of T . This weight is realized by the
(unique) constant weight function that gives weight 1/2 to all edges. The family of quasi-balanced
trees is, however, much broader than the family of balanced trees. (Figure 5 gives an example of a
quasi-balanced tree which is not balanced).

Recall the definition of the randomized Littlestone dimension of the class H:

RL(H) =
1

2
sup

T shattered
ET .

It turns out that in this definition, it suffices to take the supremum only over quasi-balanced trees.
This will be easier to see through the characterization of quasi-balanced trees as monotone trees.

Definition 23 (Monotone Trees) A non-empty tree T is weakly monotone if

ET ≥ max{ET0 , ET1},

where T0 and T1 are the subtrees rooted at the children of the root of T . A tree is monotone if it is
non-empty and all of its subtrees are weakly monotone.
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It is not hard to see that non-monotone trees need not be considered when computing the
randomized Littlestone dimension.

Lemma 24 For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered, monotone
ET .

Proof Consider a tree T shattered by H which is not monotone. Then there exists a vertex v such
that ETv < ETw , where Tw is a tree rooted at a child of v. If we replace the subtree rooted at v with
the subtree Tw, we get a tree which is also shattered by H, and has higher expected branch length.

Repeating this process finitely many times, for each tree T shattered by H we obtain a monotone
tree T ′ shattered by H satisfying ET ′ ≥ ET , and the lemma follows.

The following theorem asserts that monotone and quasi-balanced trees are indeed equivalent.

Theorem 25 A tree is quasi-balanced if and only if it is monotone.

Corollary 26 For any non-empty hypothesis class H,

RL(H) =
1

2
sup

T shattered, quasi-balanced
ET .

To prove Theorem 25, we use the following simple observation.

Observation 27 Let T be a non-empty tree. Then T is weakly monotone if and only if |ET0−ET1 | ≤
2, where T0 and T1 are the subtrees rooted at the children of the root of T .

Proof Equation (3) states that 2ET = 2+ET0+ET1 , and so ET0 ≤ ET is equivalent to ET0−ET1 ≤
2. Similarly, ET1 ≤ ET is equivalent to ET1 − ET0 ≤ 2. Hence T is weakly monotone iff
|ET0 − ET1 | ≤ 2.

Proof [Proof of Theorem 25] An empty tree is neither quasi-balanced nor monotone. Suppose there-
fore that we are given a non-empty tree T . We prove the equivalence by proving both implications
separately.

Monotone =⇒ Quasi-balanced. The proof is by induction on the depth of the tree. A tree of
depth 0 (the base case) is quasi-balanced with weight ET /2 = 0. For the induction step, let T0, T1

be the subtrees rooted at the root’s children. They are clearly monotone, and so by induction, there
are weight functions w0 ∈ W(T0) and w1 ∈ W(T1) under which all branches in T0 have weight
λT0 = ET0/2 and all branches in T1 have weight λT1 = ET1/2.

Let e0, e1 be the edges connecting the root of T to the roots of T0, T1, respectively. Define a
weight function w ∈ W(T ) by defining w(e) = w0(e) if e ∈ T0, w(e) = w1(e) if e ∈ T1,

w(e0) =
1 + λT1 − λT0

2
, and w(e1) =

1 + λT0 − λT1

2
.

Clearly w(e0) + w(e1) = 1. Observation 27 implies that w(e0), w(e1) ∈ [0, 1], and so indeed
w ∈ W(T ). Since w(e0) + λT0 = w(e1) + λT1 , the weight function w shows that T is quasi-
balanced.
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Quasi-balanced =⇒ Monotone. The proof is by induction on the depth of the tree. A tree
of depth 0 is monotone. For the induction step, we first observe that every proper subtree of T is
quasi-balanced, and so monotone by the inductive hypothesis. Hence it suffices to show that T is
weakly monotone.

Let w be the unique weight function for T under which each branch has weight λT . Let e0, e1 be
the edges connecting the root of T to the two subtrees T0, T1. According to Lemma 22, the weights
of these edges are

w(e0) =
1 + λT1 − λT0

2
and w(e1) =

1 + λT0 − λT1

2
.

Since the weights are non-negative, we deduce that |λT0 − λT1 | ≤ 1, and so |ET0 −ET1 | ≤ 2. We
conclude that T is weakly monotone by Observation 27.

C.2. A Concentration Lemma for Quasi-Balanced Trees

Another interesting property of quasi-balanced trees is that the length of a random branch concentrates
around its expectation. This property will be important for deriving tight bounds in Section F.

Proposition 28 (Concentration of branch lengths) Let T be a quasi-balanced tree, and let X be
the length of a random branch. Then for any ϵ > 0,

Pr[X < (1− ϵ)ET ] ≤ exp(−ϵ2ET /4) and Pr[X > (1 + ϵ)ET ] ≤ exp(−ϵ2ET /4(1 + ϵ)).

Proof If T is a single leaf then the result trivially holds since there is a single random branch.
Therefore we can assume that T is not a single leaf, and in particular, ET ≥ 1.

Let b0, b1, b2, . . . be an infinite sequence of random coin tosses. We can choose a random branch
of T as follows. Let v0 be the root of T . For i ∈ N, if vi is not a leaf, then vi+1 is obtained by
following the edge labeled bi. Otherwise, we define vi+1 = vi. The resulting random branch has
exactly the same distribution that we have been considering so far.

Let Li be the expected length of the branch given b0, . . . , bi−1. This is an exposure martingale,
as defined in Section A.

In order to apply Azuma’s inequality, we need to bound the random difference |Li − Li+1|. If vi
is a leaf, then Li+1 = Li. Otherwise, let T ′ be the subtree rooted at vi, and let T ′

0, T
′
1 be the subtrees

rooted at the children of vi. Thus Li+1 is either λ0 := i+ 1+ET ′
0

or λ1 := i+ 1+ET ′
1
, depending

on the value of bi. Moreover, Li = (λ0 + λ1)/2 is the average of these two values.
Theorem 25 shows that T ′ is weakly monotone, and so Observation 27 shows that |ET ′

0
−ET ′

1
| ≤

2. Consequently,

|Li − Li+1| =
1

2
|λ0 − λ1| ≤ 1.

The definition of Li implies that Lβ = X for all β ≥ X . In particular, if X < (1− ϵ)ET then
L⌈ET ⌉ < (1− ϵ)ET . Applying Azuma’s inequality and using L0 = ET , it follows that

Pr[X < (1− ϵ)ET ] ≤ Pr[L⌈ET ⌉ − ET < −ϵET ] ≤ exp

(
−ϵ2E2

T

2⌈ET ⌉

)
≤ exp(−ϵ2ET /4),

where the final inequality uses ⌈ET ⌉ ≤ ET + 1 ≤ 2ET .
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The definition of Li also implies that Lβ ≥ β whenever β ≤ X . In particular, if X > (1 + ϵ)ET

then L⌈(1+ϵ)ET ⌉ ≥ ⌈(1 + ϵ)ET ⌉. Therefore

Pr[X > (1+ϵ)ET ] ≤ Pr[L⌈(1+ϵ)ET ⌉−ET > ϵET ] ≤ exp

(
−ϵ2E2

T

2⌈(1 + ϵ)ET ⌉

)
≤ exp(−ϵ2ET /4(1+ϵ)),

using (1 + ϵ)ET ≥ 1 as before.

C.3. Applications of Quasi-Balanced Trees

We now give two applications of quasi-balanced trees. In Section C.3.1 we show that they can be
used to give explicit strategies for the adversary. In Section C.3.2 we provide an alternative proof for
the folklore inequality M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H), which appears implicitly in (Ben-David, Pál,
and Shalev-Shwartz, 2009).

C.3.1. OPTIMAL ONLINE ADVERSARIAL STRATEGIES

Lemma 12 states that for every learning rule Lrn there exists a realizable sequence S so that
M(Lrn;S) ≥ ET /2. In the proof we showed that if S is chosen according to a random branch, then
E[M(Lrn;S)] ≥ ET /2.

Quasi-balanced trees allow us to explicitly describe strategies which approach ET /2.

Lemma 29 Let H be a non-empty hypothesis class, and let T be a quasi-balanced tree shattered
by H, as witnessed by w ∈ W(T ). Let Lrn be an arbitrary learning rule. Consider the following
strategy for the adversary, which traverses T from the root to a leaf, and acts as follows at step i,
when at a node vi with outgoing edges e0, e1:

1. Send the learner the label xi of vi, receiving the answer pi ∈ [0, 1].

2. If pi ≥ w(e0) then set the true label to 0 and proceed accordingly.

3. Otherwise set the true label to 1 and proceed accordingly.

Then the resulting sequence S of examples is realizable by H and satisfies M(Lrn;S) ≥ ET /2.

Proof It is clear that S is realizable. If pi ≥ w(e0) then the loss incurred by the learner at step i is
|pi − 0| ≥ w(e0). Otherwise, it is |1− pi| ≥ |1−w(e0)| = w(e1). Since every path in T has weight
exactly ET /2, it follows that the loss of the learner is at least ET /2.

An example can be found in Figure 5.

C.3.2. DETERMINISTIC VS RANDOMIZED ONLINE LEARNING

Quasi-balanced trees can be used to give an alternative proof for the following well-known relation
between the randomized and deterministic mistake bounds.

Proposition 30 ((Ben-David, Pál, and Shalev-Shwartz, 2009)) Let H ̸= ∅ be an hypothesis class.
Then

M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H).
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Tree T (q)

x1

x2

0, w = 1/4

0, w = 1/2 1, w = 1/2

1, w = 3/4

Figure 5: The tree T (q) is a quasi-balanced tree with weight λT (q) = 3/4 = ET (q)/2, which is
realized by the weight function w written on the edges. The internal nodes are associated
with instances x1, x2. The function w guides the adversary’s strategy: Determine x1 to
be the instance in the first round. If p1 ≤ 1/4, determine y1 = 1 and finish the game.
Otherwise, set y1 = 0, determine the instance in the second round to be x2, and finish the
game after the second round. Either way, the learner will suffer a loss of at least 3/4 in
total.

Proof [Classic proof] It is obvious that M⋆(H) ≤ M⋆D(H), because a deterministic learner is also a
special case of a randomized learner.

The inequality M⋆D(H) ≤ 2M⋆(H) follows by a simple derandomization which transforms any
randomized learner Lrn to a deterministic learner LrnD whose mistake bound is at most twice as
large. Specifically, LrnD is defined as follows. Let S be an input sequence of examples, and let pi
denote the prediction of Lrn on the i’th example in S. LrnD predicts 0 if pi ≤ 1/2 and 1 otherwise.
Notice that whenever LrnD makes a mistake, the loss of Lrn increases by at least 1/2. Thus, the total
number of mistakes made by LrnD is at most twice the loss of Lrn.

Using Theorem 11 we can give an alternative proof of Proposition 30, which uses the original
characterization for the deterministic setting from (Littlestone, 1988). Specifically, we can formulate
Proposition 30 in terms of the Littlestone and randomized Littlestone dimensions, and prove it
directly using properties of quasi-balanced trees.

The heart of the proof is the following simple lemma, showing that the expected branch length of
a quasi-balanced tree is at most twice the minimum branch length.

Proposition 31 If T is a quasi-balanced tree then ET ≤ 2mT , where mT is the minimum length of
a branch of T .

Proof The proof is by induction on the depth of T . If T consists of a single vertex then ET = mT = 0.
Otherwise, let T0, T1 be the subtrees rooted at the children of the root of T . Applying Equation (3),
we get

ET = 1 + ET0/2 + ET1/2 = 1 +min(ET0 , ET1) + |ET0 − ET1 |/2.

Observation 27 shows that |ET0 −ET1 |/2 ≤ 1, and so applying the inductive hypothesis, we see that

ET ≤ 2 + 2min(mT0 ,mT1) = 2mT ,

which completes the proof.
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The tree T (nq)

Figure 6: The minimal branch in T (nq) is of length 2, while ET (nq) = 3.5. Therefore it holds that
ET (nq) is at most twice the minimal branch length. Since every proper subtree of T (nq) is
complete, this also holds for all proper subtrees. Nevertheless, T (nq) is not quasi-balanced,
since it is not monotone.

We can now give the alternative proof of Proposition 30.
Proof [Alternative proof of Proposition 30] Since M⋆(H) = RL(H) by Theorem 11 and M⋆D(H) =
L(H) by Theorem 9, it suffices to prove that

RL(H) ≤ L(H) ≤ 2RL(H).

The inequality L(H) ≤ 2RL(H) easily follows from the definitions:10

L(H) = sup
T shattered

mT and RL(H) =
1

2
sup

T shattered
ET .

Indeed, the expected depth of a random branch is always at least the minimum depth of a branch.
In order to prove the inequality RL(H) ≤ L(H), we use Corollary 26, which allows us to restrict

the trees in the definition of RL(H) to be quasi-balanced. The inequality then immediately follows
from Proposition 31.

Unlike Theorem 25, the property of quasi-balanced trees proved in Proposition 31 is not a
characterization of quasi-balanced trees. Figure 6 gives an example for a tree that satisfies this
property but is not quasi-balanced.

Both inequalities in Proposition 30 can be tight, as the following examples demonstrate.

Example 32 (class H1 with RL(H1) = L(H1)) Let H1 be the class of singletons over N. That is,
X = N and H1 = {hi : i ∈ N}, where hi(j) = 1 if and only if i = j. Any tree shattered by H1

has minimum branch length 1 (since no hypothesis satisfies h(i) = h(j) = 1 for i ̸= j), hence

10. Notice that in the classic proof, the other inequality is the trivial one.
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Figure 7: The tree Ti defined in Example 32.

L(H1) = 1. In contrast, the tree Ti in Figure 7 is shattered by H1 and has expected branch length
2− 2−(i−1), and so RL(H1) ≥ 1.

In Section B.2 we show how to extend the definition of randomized Littlestone dimension to
infinite trees. We can then replace the trees Ti with a single infinite tree T∞ shattered by H1 whose
expected branch length is exactly 2.

Example 33 (Class H2 with RL(H2) = L(H2)/2) Let X = {1} and let H2 = {h0, h1}, where
hℓ(1) = ℓ. There are only two non-empty trees shattered by H2: a leaf, and the complete binary tree
of depth 1 whose root is labeled 1. Hence L(H2) = 1 and RL(H2) = 1/2.

Appendix D. Bounded Horizon

So far we have not put any restrictions on the number of rounds. However, in many circumstances
we are interested in the online learning game when the number of rounds is bounded. We model this
by assuming that the learner knows an upper bound on the number of rounds. We define M⋆(H,T)
to be the optimal randomized mistake bound when the number of rounds is at most T.

We can generalize Theorem 11 to this setting. The required notion of randomized Littlestone
dimension is

RL(H,T) =
1

2
sup

T shattered
depth(T )≤T

ET .

The bounded randomized Littlestone dimension gives the precise mistake bound in this setting.

Theorem 34 (Optimal Randomized Mistake Bound with Finite Horizon) Let H be an hypoth-
esis class, and let T ∈ N. Then,

M⋆(H,T) = RL(H,T).

We prove Theorem 34 in Section D.1. This theorem immediately suggests the following ques-
tions:
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BoundedRandSOA: BOUNDED RANDOMIZED SOA

Input: An hypothesis class H and number of rounds T.
Initialize: Let V (1) = H.

For i = 1, 2, . . . ,T

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0,T− i

)
, 1− pi + RL

(
V

(i)
xi→1,T− i

)}
is minimized, where V

(i)
xi→b = {h ∈ V (i) : h(xi) = b}.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 8: BoundedRandSOA is a bounded variant of RandSOA.

1. How many rounds are needed in order for the adversary to guarantee that the loss of the learner
is at least RL(H)− ϵ?
We prove in Section D.2 that 2RL(H) + O(

√
RL(H) log(RL(H)/ϵ)) rounds always suffice,

and O(log(1/ϵ)) rounds suffice as long as ϵ is small enough. We discuss the optimality of
these bounds in Section D.4.

2. What can we say about the loss of the learner when there are fewer than 2RL(H) rounds?
A trivial upper bound on RL(H,T) is T/2. In Section D.3 we show that this bound is nearly
optimal when T ≤ 2RL(H).

The proofs of these results use concentration bounds on the depth of quasi-balanced trees, which
we prove in Section C.2.

D.1. Proof of Theorem 34

In this section we indicate how to generalize the proof of Theorem 11 to the finite horizon setting,
proving Theorem 34.

The lower bound RL(H,T) ≤ M⋆(H,T) follows directly from the statement of Lemma 12, since
the length of S is at most depth(T ).

For the upper bound, we use a straightforward modification of algorithm RandSOA, which
appears in Figure 8.

We start by extending Observation 14: if H is a non-empty hypothesis class and T > 0 then

RL(H,T) =
1

2
max
x∈X

(
1 + RL(Hx→0,T− 1) + RL(Hx→1,T− 1)

)
.
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The proof is identical. Since there are only finitely many unlabeled trees of depth at most T, we can
replace the supremum with a maximum.

The next step is to generalize Lemma 15, which now states that for every hypothesis class H,
instance x ∈ X , and T > 0, there exists p ∈ [0, 1] so that

p+ RL(Hx→0,T− 1) ≤ RL(H,T) and (1− p) + RL(Hx→1,T− 1) ≤ RL(H,T).

The proof is identical, using the generalized Observation 14.
Finally, we prove the following generalization of Lemma 16: for every hypothesis class H, any

parameter T, and any realizable input sequence S of length at most T,

M(BoundedRandSOA;S) ≤ RL(H,T).

The proof is identical, using the generalized Lemma 15.

D.2. Approaching RL(H)

As a simple consequence of the concentration bound proved in Proposition 28, we show that we can
approach RL(H) using relatively shallow trees, quantified as follows.

Proposition 35 Let H be a non-empty hypothesis class with finite randomized Littlestone dimension
RL(H).

For every ϵ > 0 there is a tree T shattered by H satisfying ET /2 ≥ RL(H)− ϵ whose depth is at
most

2RL(H) +O

(√
RL(H) log

RL(H)

ϵ
+ log

1

ϵ

)
= 2RL(H) +O

(√
RL(H) log

RL(H)

ϵ

)
.

Given Lemma 29, this means that the adversary can force the learner to suffer a loss of RL(H)− ϵ
after only 2RL(H)+O(

√
RL(H) log(RL(H)/ϵ)+log(1/ϵ)) rounds. In contrast, at least 2RL(H)−2ϵ

rounds are clearly needed, since a learner who predicts 1/2 at each round suffers a loss of R/2 after
R rounds.

We prove Proposition 35 via the following technical estimate.

Lemma 36 Let T be a monotone tree, and let T≤k result from truncating it to the first k levels (all
branches in T≤k have length at most k). If k ≥ ET then

ET≤k ≥ ET − 15
√
ET exp

(
−(k − ET )

2

8ET

)
− 10 exp

(
−k − ET

8

)
.

Proof Let X be the length of a random branch of T . Using X , we can express the difference between
ET≤k and ET explicitly:

ET − ET≤k =
∞∑
t=k

Pr[X > t].

Applying Proposition 28, we deduce that the difference is at most

∆ :=
∞∑
t=k

exp

(
−(t− ET )

2

4t

)
≤ exp

(
−(k − ET )

2

4k

)
+

∫ ∞

k
exp

(
−(t− ET )

2

4t

)
dt.
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If k ≤ 2ET then

∆ ≤ exp

(
−(k − ET )

2

4k

)
+

∫ 2ET

k
exp

(
−(t− ET )

2

8ET

)
dt+

∫ ∞

2ET

exp

(
− t− ET

8

)
dt

≤ 5
√

ET exp

(
−(k − ET )

2

8ET

)
+ 8 exp

(
−ET

8

)
≤ 15

√
ET exp

(
−(k − ET )

2

8ET

)
,

using the well-known Gaussian tail bound,∫ ∞

k
e−(t−µ)2/2σ2

dt =
√
2πσ2 Pr[N(µ, σ) > k] ≤

√
2πσ2e−(k−µ)2/2σ2

(k ≥ µ),

to bound the first integral.
If k ≥ 2ET then

∆ ≤ exp

(
−k − ET

8

)
+

∫ ∞

k
exp

(
− t− ET

8

)
dt ≤ 9 exp

(
−k − ET

8

)
.

This completes the proof.

We can now prove Proposition 35.
Proof [Proof of Proposition 35] Applying Lemma 24, we can find a monotone tree T shattered by H
such that 2RL(H)− ϵ/2 ≤ ET ≤ 2RL(H). Let

k = ET +

√
8ET log

60
√
ET

ϵ
+ 8 log

20

ϵ
= ET +O

(√
ET log

ET

ϵ
+ log

1

ϵ

)
.

Lemma 36 implies that ET≤k ≥ ET − ϵ/2, and so ET≤k ≥ 2RL(H)− ϵ.

We discuss the optimality of Proposition 35 in Section D.4.

D.3. Mistake Bound for Few Rounds

Another truncation argument allows us to estimate RL(H,T) for small T.

Proposition 37 Let H be a non-empty hypothesis class with finite randomized Littlestone dimension
RL(H).

If T ≤ RL(H) then RL(H,T) = T/2.
If T ≤ 2RL(H) then

T

2
−O(

√
T logT) ≤ RL(H,T) ≤ T

2
.

Furthermore, if T ≤ 2RL(H)−
√
8RL(H) ln RL(H) then

T

2
− 1 < RL(H,T) ≤ T

2
,

and if T ≥ 2RL(H)−
√
8RL(H) ln RL(H) then

RL(H)−O
(√

RL(H) log RL(H)
)
≤ RL(H,T) ≤ RL(H).
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Proof A learner that always predicts 1/2 suffers a loss of exactly 1/2 each round, showing that
RL(H,T) ≤ T/2 for each T. In contrast, if T is a tree shattered by H then Theorem 34 shows that
RL(H,T) ≥ ET≤T/2, and we will use this to give lower bounds on RL(H,T).

Suppose first that T ≤ RL(H). Proposition 31 shows that mT ≥ ET /2. If ET is close enough
to 2RL(H) then mT ≥ RL(H) (since mT is an integer), and so T≤T is a complete tree of depth T.
This shows that RL(H,T) ≥ T/2.

In order to prove the remaining results, suppose that T ≤ 2RL(H), and consider a tree T shattered
by H satisfying ET = 2RL(H)− δ ≥ T. Proposition 28 shows that a random branch of T≤T has
depth T with probability at least 1− exp

(
− (ET−T)2

4ET

)
, and so

RL(H,T) ≥
(
1− exp

(
−(ET −T)2

4ET

))
· T
2

−→
(
1− exp

(
−(2RL(H)−T)2

8RL(H)

))
· T
2
,

where the limit is taken along a sequence of trees shattered by H and satisfying ET → 2RL(H).
If T ≤ T0 := 2RL(H)−

√
8RL(H) ln RL(H) then this gives

RL(H,T) ≥
(
1− 1

RL(H)

)
· T
2

>
T

2
− 1.

If T0 ≤ T ≤ 2RL(H) then

RL(H,T) ≥ RL(H,T0) ≥
T0 − 2

2
≥ T− 2

2
−
√
8RL(H) ln RL(H) ≥ T

2
−O(

√
T logT).

Finally, if we only assume that T ≥ T0 then

RL(H,T) ≥ RL(H,T0) ≥
T0 − 2

2
≥ RL(H)−

√
8RL(H) ln RL(H)− 1.

This completes the proof.

D.4. Lower Bounds

Let H by an hypothesis class. If there exists a (finite) tree T shattered by H and satisfying ET /2 =
RL(H), then Proposition 35 is not tight. Proposition 18 shows that such a tree always exists when H
is finite. Conversely, when H is infinite, we can show that an additive factor proportional to log(1/ϵ)
is necessary in Proposition 35.

We start by showing that RL(H) ≥ 1 if H is infinite.

Lemma 38 Let H be an hypothesis class. If |H| ≥ k then there is a tree T shattered by H such that
ET ≥ 2− 22−k. In particular, if H is infinite then RL(H) ≥ 1.

Proof The proof is by induction on k. If k = 1 then there is nothing to prove. Otherwise, |H| ≥ 2,
and so there exists an instance x such that Hx→0,Hx→1 ̸= ∅. If |Hx→y| = ky, then using the
induction hypothesis, we construct a tree T shattered by H such that

ET ≥ 1 +
2− 22−k0

2
+

2− 22−k1

2
.
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By convexity, the right-hand side is minimized when k0 = 1 and k1 = k− 1, and so ET ≥ 2− 22−k.

We can now show that when H is infinite, the O(log(1/ϵ)) term in Proposition 35 is necessary.

Proposition 39 Let H be an infinite hypothesis class such that RL(H) < ∞.
If T is a tree shattered by H such that ET /2 ≥ RL(H)− ϵ, then depth(T ) ≥ log(1/ϵ).

Proof Construct a branch v0, . . . , vℓ in T such that for each i, the set of hypotheses H(vi) consistent
with the path from v0 to vi is infinite. This is possible since if H(vi) is infinite and vi is labeled x,
then at least one of H(vi)x→0,H(vi)x→1 is infinite.

Applying Lemma 38, we can extend T to another tree T ′ shattered by H by hanging from vℓ a
tree whose expected branch length is arbitrarily close to 2. This shows that

RL(H) ≥ ET ′/2 ≥ ET /2 + 2−ℓ ≥ ET /2 + 2−depth(T ),

and completes the proof.

This proposition is tight for the hypothesis class consisting of all h : N → {0, 1} such that
|h−1(1)| ≤ 1.

We now identify a family of hypothesis classes for which we can improve the lower bound from
Ω(log(1/ϵ)) to 2RL(H) + Ω(log(1/ϵ)).

Definition 40 (Strongly Infinite Hypothesis Class) An hypothesis class H is strongly infinite if it
is infinite and for every (x1, y1), . . . , (xn, yn) ∈ X × Y , the hypothesis class Hx1→y1,...,xn→yn is
either infinite or contains at most one hypothesis.

For example, the hypothesis class consisting of all h : N → {0, 1} such that |h−1(1)| ≤ k is
strongly infinite for all k ≥ 1.

For such classes, we can strengthen Proposition 39.

Proposition 41 Let H be a strongly infinite hypothesis class such that RL(H) < ∞.
For every ϵ > 0, any tree T shattered by H and satisfying ET /2 ≥ RL(H)− ϵ has depth at least

2RL(H) + Ω(log(1/ϵ)).

Proof Let T be a tree shattered by H and satisfying ET /2 ≥ RL(H)− ϵ.
We can associate each vertex v in T with the example sequence S(v) = (x1, y1), . . . , (xr, yr)

leading to it. We define H(v) = Hx1→y1,...,xr→yr .
If v is a leaf of T such that H(v) is infinite, then we can find an instance xv such that S(v), (xv, 0)

and S(v), (xv, 1) are both realizable by H. Let T ′ be the extension of T obtained by labelling each
such leaf v by xv and adding two leaves. The tree T ′ is also shattered by H, and so RL(H) ≥ ET ′/2.
On the other hand, RL(H) ≤ ET /2 + ϵ.

In order to relate ET ′ to ET , let v0, . . . , vL be a random branch in T . Then

ET ′ = ET + Pr[H(vL) is infinite].
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Since ET ′/2 ≤ RL(H) ≤ ET /2 + ϵ, this shows that

1

2
Pr[H(vL) is infinite] ≤ ϵ. (9)

In order to complete the proof, we relate the depth of T to the probability above.
If i < L and H(vi) is infinite then H(vi+1) is infinite with probability at least 1/2. Therefore for

every ℓ ∈ N,

Pr[H(vL) is infinite] ≥ Pr[L ≥ ℓ and H(vℓ) is infinite]
2depth(T )−ℓ

.

If L > ℓ then |H(vℓ)| ≥ 2, and so H(vℓ) is infinite since H is strongly infinite. Therefore

Pr[H(vL) is infinite] ≥ Pr[L > ℓ]

2depth(T )−ℓ
. (10)

We can lower bound Pr[L > ℓ] using Markov’s inequality:

Pr[L > ℓ] = 1− Pr[depth(T )− L ≥ depth(T )− ℓ] ≥ 1− depth(T )− ET

depth(T )− ℓ
.

Choosing ℓ = ⌊2ET − depth(T )⌋, this probability is at least 1/2, and so Eq. (10) gives

Pr[H(vL) is infinite] ≥ 1

22depth(T )−2ET+2
≥ 1

22depth(T )−4RL(H)+4ϵ+2
.

Substituting this in Eq. (9) and rearranging, we conclude that

2depth(T )− 4RL(H)− 4ϵ+ 3 ≥ log(1/ϵ),

from which the proposition immediately follows.

Appendix E. Mistake Bounds in the k-Realizable Setting

So far we have considered online learning when the adversary is restricted to choose labels which
are consistent with one of the hypotheses in the hypothesis class, a setting known as the realizable
setting. This is a quite restrictive assumption, and there are many ways to relax it.

In this section we concentrate on the k-realizable setting, in which the answers of the adversary
are consistent with one of the hypotheses in the class up to at most k mistakes. Our goal is to
characterize the optimal mistake bounds in this setting, for both deterministic and randomized
learners, generalizing Theorems 9 and 11. Our characterizations are based on k-shattered trees, in
which each branch is consistent with one of the hypotheses in the class up to at most k mistakes.

If all instances in a sequence of examples are distinct, then the sequence is k-realizable by
H if and only if it is realizable by the k-expansion of H, consisting of all hypotheses h′ which
disagree with some hypothesis h ∈ H on at most k instances. However, this need not be the case.
For example, the sequence (x, 0), (x, 1) is 1-realizable by the hypothesis class H consisting of all
constant functions.

Nevertheless, the arguments in this section are very similar to their counterparts in the realizable
setting.

To complete the picture, we briefly discuss the Perceptron algorithm in this setting in Section E.7.
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E.1. Weighted Hypothesis Classes

While we are interested mainly in the k-realizable setting, we consider a more general setting in
which the number of allowed mistakes can depend on the hypothesis. This will be useful in the
subsequent proofs.

A weighted hypothesis class W is a collection of pairs (h,w), where h : X → Y is an hypoth-
esis and w ∈ N is the allowed number of mistakes (possibly zero). Furthermore, all hypotheses
are distinct (that is, W cannot contain two different pairs (h,w1), (h,w2)). An input sequence
(x1, y1), . . . , (xt, yt) is realizable by a weighted hypothesis class W if there exists (h,w) ∈ W such
that h(xi) ̸= yi for at most w many examples in the sequence. A tree is shattered by W if each of its
branches is realized by W .

Given an hypothesis class H, a learning rule which observes the labeled example (x, y) can
restrict itself to Hx→y = {h ∈ H : h(x) = y}. The corresponding operation for weighted hypothesis
classes is

Wx→y = {(h,w) : (h,w) ∈ W, h(x) = y} ∪ {(h,w − 1) : (h,w) ∈ W, h(x) ̸= y, w > 0}.

In words, we decrease the allowed number of mistakes for each hypothesis inconsistent with the
given example (x, y), removing hypotheses which has zero mistakes left.

For every weighted hypothesis class W , we define its Littlestone dimension and its randomized
Littlestone dimension by

L(W) = sup
T shattered

mT and RL(W) =
1

2
sup

T shattered
ET ,

where the supremum is taken over all trees shattered by W . As in the realizable setting, we define
L(∅) = RL(∅) = −1 for convenience.

Our main results in this section extend Theorems 9 and 11 to this more general setting.

Theorem 42 (Optimal Deterministic Mistake Bound) Let W be a weighted hypothesis class.
Then,

M⋆D(W) = L(W).

Theorem 43 (Optimal Randomized Mistake Bound) Let W be a weighted hypothesis class. Then,

M⋆(W) = RL(W).

We prove these theorems in the following subsections, making use of the following fundamental
observation, which follows directly from the definitions:

Observation 44 Let W be a weighted hypothesis class. The sequence (x1, y1), . . . , (xt, yt) is
realizable by W iff the sequence (x2, y2), . . . , (xt, yt) is realizable by Wx1→y1 .

Similarly, let T is a tree whose root is labeled by x, and let T0, T1 be the subtrees rooted at the
children of the root. Then T is realizable by W iff T0 is realizable by Wx→0 and T1 is realizable by
Wx→1.

When the weighted hypothesis class is finite, the randomized Littlestone dimension is achieved
exactly by some (potentially infinite) tree, as we show in Section E.6.
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The k-realizable setting. Let H be an hypothesis class, and let k ∈ N. A sequence of examples
S = {(xi, yi)}ti=1 is k-realizable by H if there exists h ∈ H such that h(xi) ̸= yi for at most k
indices i. We denote the corresponding mistake bounds by M⋆(H, k),M⋆D(H, k). These are defined
just as in the realizable setting, the only difference being that the sequence of examples provided by
the adversary need only be k-realizable by H.

We say that a tree is k-shattered by H if every branch is k-realizable by H. The corresponding
deterministic and randomized k-Littlestone dimension of a class H are

Lk(H) = sup
T k-shattered

mT and RLk(H) =
1

2
sup

T k-shattered
ET .

If we define WH,k = {(h, k) : h ∈ H}, then a sequence of examples is k-realizable by H if it is
realizable by WH,k. In other words, the k-realizable setting is a special case of weighted hypothesis
classes, where all weights are equal to k. Therefore we immediately conclude the following theorems,
by applying the preceding theorems to WH,k:

Theorem 45 (Optimal Deterministic Mistake Bound) Let H be an hypothesis class, and let k ∈
N. Then,

M⋆D(H, k) = Lk(H).

Theorem 46 (Optimal Randomized Mistake Bound) Let H be an hypothesis class, and let k ∈ N.
Then,

M⋆(H, k) = RLk(H).

Using the classic lower bounds of (Littlestone and Warmuth, 1994; Ben-David, Pál, and Shalev-
Shwartz, 2009) and recent results of (Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev, 2021), we
can bound the optimal mistake bound in terms of the realizable Littlestone dimension:

Theorem 47 Let H be an hypothesis class with at least two hypotheses, and let k ∈ N. Then,

M⋆(H, k) = k +Θ
(√

k · L(H) + L(H)
)
.

We prove this result in Section E.4. Note that since L(H) and RL(H) differ by at most a constant
factor, the theorem still holds if we replace L(H) by RL(H).

Using the experts algorithm of (Koolen and van Erven, 2015), we can construct an algorithm
which works in the adaptive setting, that is, without knowledge of k:

Theorem 48 Let H be an hypothesis class. There is an algorithm Squint such that for every input
sequence S which is k⋆-realizable by H,

M(Squint;S) ≤ M⋆(H, k⋆) +O
(√

M⋆(H, k) log((k⋆ + 1) log M⋆(H, k⋆))
)
.

Furthermore, Squint is adaptive, that is, it has no knowledge of k⋆.

We describe and analyze the algorithm in Section E.5.
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WeightedSOA

Input: A weighted hypothesis class W .
Initialize: Let V (1) = W .

for i = 1, 2, . . .

1. Receive xi.

2. Predict
ŷi = argmax

b∈Y
L
(
V

(i)
xi→b

)
.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 9: The weighted version of SOA.

E.2. Proof of Optimal Deterministic Mistake Bound

The case W = ∅ holds by definition. Therefore we assume that W ̸= ∅. The lower bound
“L(W) ≤ M⋆D(W)” boils down to the following lemma:

Lemma 49 Let W be a weighted hypothesis class, and let T be a finite tree which is shattered
by W . Then, for every deterministic learning rule Lrn there exists a realizable sequence S so that
M(Lrn;S) ≥ mT . Furthermore, S corresponds to one of the branches in T .

Proof We construct the sequence S by traversing T , starting at the root v1. At step i, we send Lrn
the instance xi labelling vi. If the learner predicts ŷi, we set the true label to yi = 1− ŷi, and let vi+1

be the vertex obtained from vi by following the leaf labeled yi. We stop once the process reaches a
leaf.

By construction, S corresponds to one of the branches of T , and the number of mistakes is
|S| ≥ mT . Since T is shattered by W , then S is realizable by W .

By applying the lemma on every shattered tree and taking the supremum, we conclude the lower
bound:

Corollary 50 (Lower bound) For every weighted hypothesis class W it holds that M⋆D(W) ≥
L(W).

We now turn to prove the upper bound “L(W) ≥ M⋆D(W)”. This is achieved via the WeightedSOA
learning rule, depicted in Figure 9.

Lemma 51 (Upper bound) Let W be a non-empty weighted hypothesis class. The WeightedSOA
learner described in Figure 9 has the mistake bound

M(WeightedSOA;S) ≤ L(W)
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WeightedRandSOA

Input: A weighted hypothesis class W .
Initialize: Let V (1) = W .

for i = 1, 2, . . .

1. Receive xi.

2. Predict pi ∈ [0, 1] such that the value

max
{
pi + RL

(
V

(i)
xi→0

)
, 1− pi + RL

(
V

(i)
xi→1

)}
is minimized.

3. Receive true label yi.

4. Update V (i+1) = V
(i)
xi→yi .

Figure 10: The weighted version of RandSOA.

for every input sequence S realizable by W .

Proof We will show that each time that WeightedSOA makes a mistake, the Littlestone dimension
drops by at least 1. That is, if ŷi ̸= yi then L(V (i+1)) < L(V (i)). Since the Littlestone dimension is
always non-negative, it follows that WeightedSOA makes at most L(W) mistakes.

Suppose that ŷi ̸= yi yet L(V (i+1)) = L(V (i)). The choice of ŷi shows that L(V (i)
xi→0) =

L(V
(i)
xi→1) = L(V (i)). This is, however, impossible. Indeed, take trees T0, T1 shattering V

(i)
xi→0, V

(i)
xi→1

with mT0 = mT1 = L(V (i)). Observation 44 shows that the tree T whose root is labeled xi and in
which T0, T1 are the subtrees of the root’s children is shattered by V (i). Since mT = L(V (i)) + 1,
we reach a contradiction.

E.3. Proof of Optimal Randomized Mistake Bound

The proof of the optimal mistake bound in the randomized setting, Theorem 43, is very similar to the
proof of its counterpart in the realizable setting, Theorem 11.

The proof of the lower bound “RL(W) ≤ M⋆(W)” is virtually identical to the proof of Lemma 12.
The proof of the upper bound “RL(W) ≥ M⋆(W)” uses WeightedRandSOA, the weighted

counterpart of RandSOA, which appears in Figure 10. The proof of Lemma 16 extends, with
virtually no changes, to show that M(WeightedRandSOA;S) ≤ RL(W) for every input sequence S
realizable by W .
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E.4. Explicit Bounds in Terms of Littlestone Dimension

Here we prove Theorem 47, which bounds M⋆(H, k) in terms of k and L(H) (or RL(H)). In the proof,
we use the notation M⋆(H, k,T) for the optimal mistake bound in the k-realizable setting when the
number of rounds is bounded by T, and the notation M⋆Agn(H,T) for the optimal mistake bound
when the number of rounds is bounded by T, but there is no limitation on the number of mistakes
made by the best hypothesis in H.

We first prove the upper bound. Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021)
have shown that, for any time horizon T, we always have M⋆(H, k,T) ≤ k +O

(√
T · L(H)

)
. By

Proposition 35, time horizon T = O(M⋆(H, k)) suffices to guarantee M⋆(H, k) ≤ M⋆(H, k,T) + 1.
Plugging this time horizon into the result of (Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev,
2021) reveals that

M⋆(H, k) ≤ k +O
(√

M⋆(H, k) · L(H)
)
.

Solving this quadratic inequality in
√
M⋆(H, k) yields the upper bound claimed in the theorem.

We now turn to prove the lower bound. We consider two cases. If k ≤ L(H), it suffices to
prove a lower bound of k +Ω(L(H)). The lower bound k + L(H)/2 of (Littlestone and Warmuth,
1994) establishes that. In the complementary case, suppose that k > L(H). Therefore, we only
need to prove a lower bound of k + Ω

(√
k · L(H)

)
. This follows from the following adaptation

of the classic regret bound of (Ben-David, Pál, and Shalev-Shwartz, 2009). They showed that
M⋆Agn(H,T) ≥ b + Ω

(√
L(H) ·T

)
, where b is the minimal number of mistakes made by a best

hypothesis h⋆ ∈ H. To adapt this bound to our setting, first play the game for T = k rounds,
forcing a loss of at least b+Ω

(√
k · L(H)

)
on the learner. Now, as we prove in Theorem 58,11 the

adversary can further force the learner a loss arbitrarily close to k− b, using an input sequence which
is (k − b)-realizable by h⋆. Overall, the input sequence is k-realizable by h⋆, and we get the desired
lower bound k +Ω

(√
k · L(H)

)
.

E.5. Adapting to k

This section presents our proof of Theorem 48, showing that it is possible to adapt to the value of k
without sacrificing too significantly in the expected mistake bound.

The adaptive technique we propose uses an experts algorithm of (Koolen and van Erven, 2015)
named Squint, with experts defined by the optimal randomized algorithm for the k-realizable setting,
for all values of k ∈ N (including k = 0).

The experts algorithm Squint accepts an input sequence S = (x1, y1), . . . , (xn, yn) and a list
of learners Lrnk, each with an associated weight πk. The weights πk should form a probability
distribution. With an appropriate choice of parameters, Squint has the following guarantee (Koolen
and van Erven, 2015, Theorem 3):

M(Squint;S) ≤ min
k

{
M(Lrnk;S) +O

(√
Vk log

log Vk

πk
+ log

1

πk

)}
, (11)

11. We prove this result in the setting of prediction with expert advice, but it holds for general hypothesis classes (as long
as the domain is non-empty).

44



OPTIMAL PREDICTION USING EXPERT ADVICE AND RANDOMIZED LITTLESTONE DIMENSION

where Vk is an uncentered variance term given by

Vk =
n∑

i=1

(|Squint(x1, y1, . . . , xi−1, yi−1, xi)− yi| − |Lrnk(x1, y1, . . . , xi−1, yi−1, xi)− yi|)2.

Since both absolute values are in the range [0, 1], we have

Vk ≤
n∑

i=1

|Squint(x1, y1, . . . , xi−1, yi−1, xi)− yi|+
n∑

i=1

|Lrnk(x1, y1, . . . , xi−1, yi−1, xi)− yi|

= M(Squint;S) + M(Lrnk;S).

For any given k, if M(Squint;S) > M(Lrnk;S), then we have Vk ≤ 2M(Squint;S), so that (11)
implies

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Squint;S) log
log M(Squint;S)

πk
+ log

1

πk

 .

This inequality trivially holds as well in the case M(Squint;S) ≤ M(Lrnk;S) due to the first term on
the right hand side. Moreover, this inequality further implies

M(Squint;S) = O

(
M(Lrnk;S) + log

1

πk
+ 1

)
.

To see this, note that were it not the case, we could upper bound each M(Lrnk;S) and log 1
πk

on
the right hand side by M(Squint;S)/c for some large constant c, making the right hand side strictly
less than M(Squint;S): a contradiction. Plugging in this upper bound on M(Squint;S) into the
log log M(Squint;S) term and simplifying with elementary inequalities reveals

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Squint;S) log
log M(Lrnk;S)

πk
+ log

1

πk

 .

This is a quadratic inequality in
√
M(Squint;S). Solving the quadratic for the range of M(Squint;S)

where the inequality holds, we have

M(Squint;S) ≤ M(Lrnk;S) +O

√M(Lrnk;S) log
log M(Lrnk;S)

πk
+ log

log M(Lrnk;S)

πk

 .

Since this holds for any k, we conclude that

M(Squint;S) ≤ min
k

M(Lrnk;S) +O

√M(Lrnk;S) log
log M(Lrnk;S)

πk
+ log

log M(Lrnk;S)

πk

 .

(12)
We instantiate Squint with algorithm WeightedRandSOA of Figure 10. Namely, for every k, we

let Lrnk be the instantiation of WeightedRandSOA with WH,k. We use the weights πk = 1
(k+1)(k+2) .
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Since πk = 1
k+1 − 1

k+2 , they indeed constitute a probability distribution. Since WeightedRandSOA
achieves the optimal mistake bound (see Section E.3), Eq. (12) shows that if S is k⋆-realizable by H
then

M(Squint;S) ≤ M⋆(H, k⋆)+O

(√
M⋆(H, k⋆) log

(
(k⋆ + 1) log M⋆(H, k⋆)

)
+ log

(
(k⋆ + 1)M⋆(H, k⋆)

))
.

Since M⋆(H, k⋆) ≥ k⋆/2, the term log
(
(k⋆ + 1)M⋆(H, k⋆)

)
can be swallowed by the preceding term.

E.6. Finite Classes

The randomized Littlestone dimension is defined as a supremum. The supremum is not always
achieved even in the realizable case, as Example 19 shows. However, if the hypothesis class is finite,
then Proposition 18 shows that the randomized Littlestone dimension is achieved by a finite tree.

In this section, we extend the latter result to the setting of weighted hypothesis classes, using
infinite trees. The trees that we construct will furthermore be “nonredundant”, in the following sense.

Definition 52 (Nonredundant trees) Let W be a non-empty weighted hypothesis class, and let T
be a non-empty tree shattered by it. The tree T is weakly nonredundant for W if one of the following
holds:

1. T is a leaf.

2. The root of T is labeled by an instance x such that either Wx→0 ̸= W or Wx→1 ̸= W .

3. W is a singleton (that is, |W| = 1).

A non-empty tree T is nonredundant for W if this holds recursively. In detail, if T is a leaf, then
it is always nonredundant. Otherwise, let x be the label of the root, leading to the two subtrees T0, T1.
The tree T is nonredundant for W if it is weakly nonredundant for W , the tree T0 is nonredundant
for Wx→0, and tree T1 is nonredundant for Wx→1.

If the root of T is labeled by an instance x such that Wx→0 = W , then this corresponds to an
adversarial strategy in which by predicting 0, the learner can guarantee that either her prediction
is correct, or all experts are wrong. Intuitively, there is no reason for the adversary to ask such a
question. We prove this formally below.

Proposition 53 Let W be a finite weighted hypothesis class. There exists a (possibly infinite) tree
T∞ shattered by W such that

RL(W) =
1

2
ET∞ .

Moreover, T∞ is monotone and nonredundant for W .

Proof We start by showing that if we are able to construct a (possibly infinite) tree T∞ shattered by
W such that RL(W) = ET∞/2, then it is automatically monotone.

If T∞ is a leaf then it is monotone. Otherwise, suppose that the root is labeled by x ∈ X , and
let the two subtrees of the root be T∞,0, T∞,1. The subtree T∞,b must be shattered by Wx→b and
satisfy RL(Wx→b) = ET∞,b

/2. Clearly RL(Wx→b) ≤ RL(W), since any tree shattered by Wx→b is
also shattered by W . Therefore ET∞,b

≤ ET∞ .
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The proof of the rest of the proposition is by induction on the total weight of hypotheses in W . If
RL(W) = 0 then there is nothing to prove. Otherwise, considering all possible roots and using the
formula RL(W) = supT ET /2, where the supremum is over all trees shattered by W , we see that

RL(W) =
1

2
+ sup

x∈X

RL(Wx→0) + RL(Wx→1)

2
.

Since W is finite, there are only finitely many possible pairs (Wx→0,Wx→1). This shows that the
supremum is achieved by some instance x, which satisfies

RL(W) =
1

2
+

RL(Wx→0) + RL(Wx→1)

2
.

If Wx→0,Wx→1 ̸= W then we can apply the induction hypothesis to construct (possibly infinite)
nonredundant trees T∞,0, T∞,1 shattered by Wx→0,Wx→1 (respectively) such that RL(Wx→0) =
ET∞,0/2 and RL(Wx→1) = ET∞,1/2. The tree T∞ comprising a root labeled x leading to the
subtrees T∞,0, T∞,1 then satisfies all the requirements of the proposition.

Suppose next that Wx→0 = Wx. Calculation shows that

RL(W) = 1 + RL(Wx→1).

We can apply the induction hypothesis to construct a (possibly infinite) nonredundant tree S∞
shattered by Wx→1) such that ES∞/2 = RL(Wx→1). We will show that we can attach to each leaf v
of S∞ a tree Tv satisfying ETv = 2 such that the resulting tree T∞ is nonredundant and shattered by
W . Since ET∞/2 = 1 + ES∞/2 = 1 + RL(Wx→1) = RL(W), this will complete the proof.

Let v be a leaf of S∞, let (x1, y1), . . . , (xℓ, yℓ) be the path leading to it, and let Wv =
Wx1→y1,...,xℓ→yℓ . Since Wv = {(h,w + 1) : (h,w) ∈ Wx→1} and Wx→1 is non-empty by
construction, we see that Wv is also non-empty.

Therefore, there exists (h,w) ∈ Wv so that w ≥ 1. Let x be an arbitrary instance, and suppose
for concreteness that h(x) = 0. We construct a tree Tv which is an infinite left-leaning path (as
in Figure 2) in which all vertices are labeled x. The length of a random branch has distribution
Geom(1/2), and so ETv = 2.

Proposition 53 doesn’t necessarily hold if we restrict ourselves to finite trees. To see this, consider
the weighted hypothesis class W = {(h0, 1)} over the domain N, in which h0(n) = 0 for all n ∈ N.
All canonical trees shattered by W are truncations of the infinite path depicted in Figure 2. The
infinite path has expected branch length 2, yet its truncation to depth k has expected branch length
2− 21−k.

E.7. The Perceptron

We close this section by considering the classical Perceptron algorithm (Rosenblatt, 1958) in the
k-realizable setting, showing that its finite mistake-bound guarantee is retained in the k-realizable
setting, namely when there exists a linear separator which correctly classifies (with margin) all but k
of the examples in the input sequence.

Let us first quickly recall the Perceptron algorithm: its input is a sequence

S = (x1, y1), . . . , (xt, yt),
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where xi ∈ Rn is the instance and yi ∈ {±1} is the label. The Perceptron maintains a linear predictor
wi ∈ Rn, initialized to w1 = 0. Then, at each step i, the Perceptron predicts ŷi = sign(⟨wi, xi⟩). In
case of a mistake, i.e. ŷi ̸= yi, the Perceptron updates its linear predictor by setting wi+1 = wi+yi ·xi.
Notice that the Perceptron is mistake-driven, that is, it changes its predictor only when it makes a
mistake.

Proposition 54 (Perceptron: k-Realizable Mistake Bound) Assume an input sequence S = (x1, y1), . . . , (xt, yt)
which is k-realizable in the sense that there exists w ∈ Rn such that yi⟨w, xi⟩ ≥ 1 for at least t− k
indices i. Let

B := min{∥w∥ : yi⟨w, xi⟩ ≥ 1 for at least t− k indices i} and R := max
i

∥xi∥.

Then, the number of mistakes the Perceptron makes on S is at most B2R2 + 2k(BR+ 1).

Proof The proof is a simple adaptation of the standard analysis. Let M denote the number of
mistakes, and let w⋆ = argmin{∥w∥ : yi⟨w, xi⟩ ≥ 1 for at least t− k indices i}, so that ∥w⋆∥ = B.
Notice that whenever the Perceptron makes a mistake, it sets wi+1 by adding yixi to wi, where
⟨yixi, wi⟩ = yi⟨xi, wi⟩ ≤ 0. Thus, the added vector yixi is negatively correlated with wi, and hence

∥wi+1∥2 ≤ ∥wi∥2 + ∥yixi∥2 ≤ ∥wi∥2 +R2.

Consequently, the final predictor wt satisfies

∥wt∥ ≤
√
MR. (13)

We proceed by lower-bounding ⟨wt, w
⋆⟩: consider a step u at which the predictor wi is being updated

(i.e. ŷi ̸= yi). If yi⟨w⋆, xi⟩ ≥ 1 then the standard argument holds:

⟨wi+1, w
⋆⟩ − ⟨wi, w

⋆⟩ = ⟨yixi, w⋆⟩ = yi⟨xi, w⋆⟩ ≥ 1.

Otherwise, we use the trivial bound

⟨wi+1, w
⋆⟩ − ⟨wi, w

⋆⟩ = yi⟨xi, w⋆⟩ ≥ −∥xi∥∥w⋆∥ ≥ −BR.

Crucially, notice that by k-realizability, the second case (in which yi⟨w⋆, xi⟩ < 1) happens for at
most k steps. Summing up over all the M steps at which there was an update, we get:

⟨wt, w
⋆⟩ ≥ (M − k) · 1− k ·BR. (14)

Combining Equations (13) and (14), we get

√
MR ≥ ∥wt∥ ≥ 1

∥w⋆∥
⟨wt, w

⋆⟩ ≥ M − k − kBR

B
.

The latter inequality implies that M satisfies
√
MBR ≥ M − k(BR + 1). Squaring, we see that

MB2R2 ≥ M2 − 2k(BR+ 1)M , and so M ≤ B2R2 + 2k(BR+ 1), as required.
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Appendix F. Prediction using Expert Advice

In this section, we consider the problem of prediction using expert advice, which was raised in (Vovk,
1990; Littlestone and Warmuth, 1994). Specifically, we consider the k-realizable setting, which was
suggested in (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996; Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmuth, 1997) and further studied in (Abernethy, Langford, and Warmuth,
2006; Mukherjee and Schapire, 2010; Brânzei and Peres, 2019).

The problem concerns a repeated game which has the same flavor as the online learning game of
Section A. The game is between a learner and an adversary. Additionally, there are n experts. Each
round i in the game proceeds as follows:

(i) The experts present predictions ŷ(1)i , . . . , ŷ
(n)
i ∈ {0, 1}.

(ii) The learner predicts a value pi ∈ [0, 1].

(iii) The adversary reveals the true answer yi ∈ {0, 1}, and the learner suffers the loss |yi − pi|.

The adversary must choose the answers so that at least one of the experts makes at most k
mistakes. That is, there must exist an expert j such that yi ̸= ŷ

(j)
i for at most k many indices i. We

call such an adversary k-consistent.
The goal is to determine the optimal loss of the learner as a function of n and k. We denote the

optimal loss of the learner by M⋆(n, k), and the optimal loss when the learner is constrained to output
predictions in {0, 1} by M⋆D(n, k).

The game underlying prediction using expert advice is quite similar to the online learning game.
In fact, we can relate the two.

Let Xn = {0, 1}n, and consider the hypothesis class Un on the domain Xn consisting of the
projection functions hi(x1, . . . , xn) = xi. We can simulate the game of prediction using expert
advice by the online learning game as follows: whenever the experts predict x1, . . . , xn, the adversary
sends the instance (x1, . . . , xn). The adversary in the original game is k-consistent if and only if the
sequence (xi, yi) is k-realizable by Un.

This simulation goes both ways, and so the two games are actually equivalent. The upshot is that
we can express M⋆(n, k) and M⋆D(n, k) in terms of quantities we have already considered:

M⋆(n, k) = M⋆(Un, k) = RLk(Un) and M⋆D(n, k) = M⋆(Un, k) = Lk(Un).

The equivalence above shows that Un is the “hardest” hypothesis class of size n, in the sense that
it maximizes both M⋆(H, k) and M⋆D(H, k) over all hypothesis classes H of size n. Indeed, M⋆(H, k)
and M⋆D(H, k) are equal to the optimal loss in the game of prediction using expert advice when the
answers of the experts must belong to {(h1(x), . . . , hn(x)) : x ∈ X}, where H = {h1, . . . , hn} has
domain X .

Bounded horizon. Prediction using expert advice is often considered when the number of rounds
is bounded. Let M⋆(n, k,T) be the optimal loss of the learner when the number of rounds is T.

Clearly M⋆(n, k,T) ≤ M⋆(n, k). In view of Theorem 34, Proposition 35 shows that M⋆(n, k,T) ≥
M⋆(n, k)−ϵ already for T = 2M⋆(n, k)+O(

√
M⋆(n, k) log(M⋆(n, k)/ϵ)). In contrast, since a learner

can always guarantee a loss of at most 1/2 per round by predicting 1/2, we have M⋆(n, k,T) ≤ T/2,
and so M⋆(n, k,T) ≥ M⋆(n, k)− ϵ requires T ≥ 2M⋆(n, k)− 2ϵ.

(The deterministic case is not interesting, since trivially M⋆D(n, k,T) = min{T,M⋆D(n, k)}.)
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F.1. Optimal Mistake Bounds

For every n ≥ 1 and k ≥ 0, let

D(n, k) = max

{
d : d ≤ log n+ log

(
d

≤ k

)}
.

The value of D(n, k) plays a central role in the problem of prediction using expert advice: (Cesa-
Bianchi, Freund, Helmbold, and Warmuth, 1996) showed that M⋆D(n, k) ≤ D(n, k) using the
Binomial Weights learning rule, and complemented this with an asymptotically matching lower bound
M⋆D(n, k) ≥ D(n, k) − o(D(n, k)). (More details in Appendix H.1.) The lower bound is proved
by constructing a k-covering code of size n that simulates the experts. When k is fixed and n is
large enough, it can be further improved to M⋆D(n, k) ≥ D(n, k) − 1, as shown in (Cesa-Bianchi,
Freund, Helmbold, and Warmuth, 1996). (More details in Appendix H.3.) We describe asymptotic
approximations to D(n, k) in Section F.5.

Cesa-Bianchi, Freund, Helmbold, and Warmuth (1996) leave open the problem of determining
M⋆(n, k). An extension of Proposition 30 shows that M⋆(n, k) ≤ M⋆D(n, k) ≤ 2M⋆(n, k). Cesa-
Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth (1997) showed that M⋆(n, k) ≤
M⋆D(n, k)/2 + o(M⋆D(n, k)) whenever k = o(log n) or k = ω(log n).12 Abernethy, Langford, and
Warmuth (2006) showed that for large enough n (as a function of k), M⋆(n, k) ≤ M⋆D(n, k)/2+O(1).
Brânzei and Peres (2019) showed that for k = o(log n), M⋆(n, k) ≤ (1 + o(1))M⋆D(n, k)/2 even in
the multiclass setting where the experts’ predictions are chosen from some finite set {1, . . . , d}. In
this section, we remove any assumptions on n, k, proving the following theorem:

Theorem 55 Let n ≥ 2 and k ≥ 0. Then

M⋆(n, k) ≤ D(n, k)/2 +O(
√
D(n, k)) = M⋆D(n, k)/2 + o(M⋆D(n, k)).

(The latter equation follows directly from the asymptotic estimate M⋆D(n, k) = D(n, k)− o(D(n, k))
due to (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996).)

The error term is tight for n = 2:

Theorem 56 Let k ≥ 0. Then

M⋆(2, k) = D(2, k)/2 + Ω(
√
D(2, k)).

We are able to improve the upper bound for small k values:

Theorem 57 Let n ≥ 2, and suppose that k ≤ c log n for some c < 1/2. Then there exists a
constant C, depending only on c, such that

M⋆(n, k) ≤ D(n, k)/2 + C logD(n, k).

12. More precisely, they showed that M⋆(n, k) ≤ k+ logn
2

+
√
k lnn. Together with the bound M⋆

D(n, k) ≥ 2k+⌊logn⌋
of (Littlestone and Warmuth, 1994), this implies that M⋆(n, k) ≤ M⋆

D(n, k)/2 + o(M⋆
D(n, k)) whenever k = o(logn)

or k = ω(logn).

50



OPTIMAL PREDICTION USING EXPERT ADVICE AND RANDOMIZED LITTLESTONE DIMENSION

All of our bounds are attained using the randomized k-Littlestone dimension of Un. Note that as
a special case of Theorem 47, one can also derive the bounds M⋆(n, k) = k +Θ

(√
k log n+ log n

)
,

using L(Un) = ⌊log n⌋. The upper bound was proved by (Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth, 1997). We prove the upper bounds in Section F.2, and the lower bound in
Section F.3. We determine M⋆(2, k) exactly in Section F.4. We close the section by proving that even
in the case k = 0 the optimal learning rule is necessarily improper in Section F.6.

All results we stated so far concern n ≥ 2. The case n = 1 is different, and much simpler:

Theorem 58 Let k ≥ 0. Then

M⋆(1, k) = M⋆D(1, k) = D(1, k) = k.

Proof According to the definition, D(1, k) is the maximum d such that 2d ≤
(

d
≤k

)
. Since

(
d
≤d

)
= 2d

whereas
(
d+1
≤d

)
< 2d+1, we see that D(1, k) = k.

The complete tree of depth k, labeled arbitrarily, is k-shattered by U1. In contrast, a tree of depth
k + 1 cannot be k-shattered by U1, since there exists a branch on which the unique hypothesis makes
k + 1 mistakes. Therefore M⋆D(1, k) = k.

For the randomized case, according to Proposition 53 there is an infinite tree Tk such that
M⋆(1, k) = RLk(U1) = ETk

/2. Denote the unique hypothesis in U1 by h. By possibly switching
the order of children, we can assume that all vertices in Tk are labeled by an instance x such that
h(x) = 0. We can then identify vertices of Tk with binary strings.

Since Tk is optimal, it contains all strings which contain at most k many 1s. A string is a leaf it it
contains exactly k many 1s and it ends with 1. The length of a random branch has the distribution of
a sum of k many Geom(1/2) random variables, and so M⋆(1, k) = ETk

/2 = k.

In contrast, (Littlestone and Warmuth, 1994) shows that M⋆D(n, k) ≥ 2k + ⌊log n⌋ for n ≥ 2,
highlighting the difference between n = 1 and n > 1. This immediately implies the following
corollary, which will be useful in the sequel:

Corollary 59 Let n ≥ 2 and k ≥ 0. Then D(n, k) ≥ 2k + 1.

Proof Clearly D(n, k) ≥ D(2, k). Theorem 61 shows that D(2, k) ≥ M⋆
D(2, k), which is at least

2k + 1 by the result of (Littlestone and Warmuth, 1994).

F.2. Proofs of the Upper Bounds on M⋆(n, k)

We start by proving a probabilistic version of the sphere packing bound for covering codes (Cohen,
Honkala, Litsyn, and Lobstein, 1997).

Lemma 60 Let H be a finite hypothesis class of size n ≥ 1. Let t ≥ k ≥ 0, and let T be a tree
whose minimum depth is at least t.

Let S = (x1, y1), . . . , (xt, yt) be the random prefix of length t, consisting of the first t steps in a
random branch of T . The probability that S is k-realizable by H is at most

n

(
t

≤ k

)
/2t.
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Proof For each hypothesis h ∈ H and set of indices I ⊆ [t], the probability that yi ̸= h(xi) for all
indices in I and yi = h(xi) for all indices outside of I is 2−t.

The sequence S is k-realizable by H if the event above happens for some h ∈ H and some I of
size at most k. Applying the union bound, we get that the probability is at most n

(
t

≤k

)
/2t.

As a warm-up, we use this lemma together with the k-Littlestone dimension to reprove the upper
bound M⋆D(n, k) ≤ D(n, k), first proved in (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996).

Theorem 61 Let n ≥ 1 and k ≥ 0. Then M⋆D(n, k) ≤ D(n, k).

Proof Since M⋆D(n, k) = Lk(Un), it suffices to bound Lk(Un).
Let T be a tree satisfying mT = Lk(Un) which is k-shattered by Un. A random prefix of length

Lk(Un) is k-realizable by Un, and so 2Lk(Un) ≤ n
(
Lk(Un)
≤k

)
by Lemma 60. Taking the logarithm, we

deduce that Lk(Un) ≤ D(n, k) by the definition of D(n, k).

We now prove Theorem 55 and Theorem 57. The main tools are concentration of the random
branch length in quasi-balanced trees (Lemma 28), and the following lemma.

Lemma 62 Let H be a finite hypothesis class of size n ≥ 1. Let D = D(n, k), and let T be a tree
of minimum depth at least (1 + ϵ)D, where 0 < ϵ < 1/3. The probability that a random prefix of
length (1 + ϵ)D is k-realizable by H is at most

21−ϵ2D/9.

Furthermore, if k ≤ cD for some constant c < 1/2 then the probability is at most

21−c′ϵD,

where c′ > 0 is a constant depending only on c.

The proof of this lemma will require some elementary estimates on binomial coefficients,
summarized in the following technical lemma.

Lemma 63 Let D ≥ k ≥ 1 and ϵ > 0. Then(
(1 + ϵ)D

≤ k

)
≤ 2ϵD·log(D/(D−k)) ·

(
D

≤ k

)
.

If furthermore k ≤ D/2 and ϵ ≤ 1/3 then(
(1 + ϵ)D

≤ k

)
≤ 2ϵD−ϵ2k/3 ·

(
D

≤ k

)
.

We prove this lemma in Subsection F.2.1.
Proof [Proof of Lemma 62] We start by observing that

n

(
D

≤ k

)
/2D ≤ 2, (15)
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Indeed, the maximality of D shows that

1 > n

(
D + 1

≤ k

)
/2D+1 ≥ 1

2
n

(
D

≤ k

)
/2D,

from which Eq. (15) immediately follows.
Denote by p the probability we wish to bound. Lemma 60 shows that

p ≤ n

(
(1 + ϵ)D

≤ k

)
/2(1+ϵ)D =

((1+ϵ)D
≤k

)(
D
≤k

) · 2−ϵD · n
(

D

≤ k

)
/2D ≤ 21−ϵD ·

((1+ϵ)D
≤k

)(
D
≤k

) ,

using Eq. (15). It remains to estimate the ratio using Lemma 63.
We start by proving the “furthermore” part. By assumption, we have k ≤ cD. Applying

Lemma 63, we deduce that
p ≤ 21−(1−log(D/(D−k)))ϵD.

Since
c′ = 1− log

D

D − k
= 1− log

1

1− k/D
≥ 1− log

1

1− c
> 0,

this completes the proof of the “furthermore” part.
In order to prove the main part of the lemma, we distinguish between two cases. If k ≤ D/3

then the “furthermore” bound shows that

p ≤ 21−c′ϵD,

where c′ = log(4/3). Since ϵ ≤ 1/3, we have c′ϵ ≥ ϵ2/9, completing the proof in this case.
Otherwise, k ≥ D/3. In this case, noting that k ≤ D/2 by Corollary 59, we apply the

“furthermore” part of Lemma 63 to obtain

p ≤ 21−ϵ2k/3 ≤ 21−ϵ2D/9.

This completes the proof.

We can now prove the upper bounds on M⋆(n, k). The idea is simple. Let T be a tree which is
k-shattered by Un. Using Proposition 53 , we can assume that T is quasi-balanced, and so the length
of a random branch is concentrated around ET .

This implies that T realizes almost all sequences of size (1 − ϵ)ET . These sequences are
k-realized by Un, and we obtain an upper bound on ET via Lemma 62.
Proof [Proof of Theorem 55] Since M(n, k) = RLk(Un), we bound the latter. Proposition 53 shows
that there is an infinite tree T which is k-shattered by Un and satisfies ET /2 = RLk(Un). Furthermore,
T is monotone, and so Proposition 28 applies to it (while the proposition is formulated for finite
quasi-balanced trees, the proof actually directly uses monotonicity, and is valid for infinite trees).

In order to bound ET , we will show that for small enough ϵ > 0, the assumption (1 + ϵ)D ≤
(1− ϵ)ET leads to a contradiction.

Extend T arbitrarily to a tree T ′ of minimum depth (1 + ϵ)D, and let S be a random prefix of T ′

of length (1 + ϵ)D. If S lies completely within T then it is k-realizable by Un, and so

Pr[S lies within T ] ≤ Pr[S is k-realizable by Un].
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The probability that S lies within T is precisely the probability that a random branch of T has
length at least (1 + ϵ)D. Since we assume that (1 + ϵ)D ≤ (1− ϵ)ET , this probability is at least
1− e−ϵ2ET /4 by Proposition 28, and so at least 1− e−ϵ2D/4.

In contrast, the probability that S is k-realizable by Un is at most 21−ϵ2D/9 by Lemma 62.
Therefore

1 ≤ e−ϵ2D/4 + 21−ϵ2D/9.

Let ϵ = C/
√
D. As C → ∞, the right-hand side tends to 0, and in particular, we obtain a

contradiction for some constant C > 0.
It follows that (1 + ϵ)D > (1− ϵ)ET for ϵ = C/

√
D, and so

ET <
1 + ϵ

1− ϵ
D = (1 +O(1/

√
D))D = D +O(

√
D),

which completes the proof.

The proof of Theorem 57 is similar, and uses the “furthermore” clause of Lemma 62.
Proof [Proof of Theorem 57] We closely follow the proof of Theorem 55, and we only indicate the
part which is different.

We start by assuming that (1 + ϵ)D ≤ (1− ϵ)ET for some ϵ > 0. The assumption k ≤ c log n
implies k ≤ cD since D ≥ log n by definition of D. Therefore we can use the “furthermore” clause
of Lemma 62, and so for some constant c′ > 0 depending on c,

1 ≤ e−ϵ2D/4 + 2e−c′ϵD.

Let ϵ = C lnD/D, where C = 2/c′. Since ϵ2D/4 = Θ(ln2D/D), we can find C ′ such that if
D ≥ C ′ then ϵ2D/4 ≤ 1. Since e−x ≤ 1− x+ x2/2 ≤ 1− x/2 for 0 ≤ x ≤ 1, this shows that

1 ≤ 1− ϵ2D

8
+

2

D2
= 1− C2 ln2D

8D
+

2

D2
,

which fails for D ≥ C ′′, where C ′′ ≥ C ′ depends only on c.
We conclude that if D ≥ C ′′ then

ET <
1 + ϵ

1− ϵ
D = (1 +O(logD/D))D = D +O(logD).

If D < C ′′, then this follows from the bound ET ≤ 2M⋆(n, k) ≤ 2M⋆D(n, k) ≤ 2D, where we used
an appropriate extension of Proposition 30 together with Theorem 61.

F.2.1. PROOF OF TECHNICAL ESTIMATE

In this section we complete the proofs of Theorem 55 and Theorem 57 by proving Lemma 63.
We start with estimates on the ratio of individual binomial coefficients.

Lemma 64 Let D ≥ ℓ ≥ 1 and ϵ > 0. Then(
(1 + ϵ)D

ℓ

)
≤ 2ϵD·log(D/(D−ℓ)) ·

(
D

ℓ

)
.

If furthermore ℓ ≤ D/2 and ϵ ≤ 1/3 then(
(1 + ϵ)D

ℓ

)
≤ 2ϵD·log(D/(D−ℓ))−ϵ2ℓ/3 ·

(
D

ℓ

)
.
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Proof We can calculate the ratio between the binomials explicitly:

Rℓ :=

(
(1 + ϵ)D

ℓ

)/(
D

ℓ

)
=

ℓ−1∏
r=0

(1 + ϵ)D − r

D − r
=

ℓ−1∏
r=0

(
1 +

ϵD

D − r

)
.

Applying the well-known estimate ln(1 + x) ≤ x, we obtain

lnRℓ ≤
ℓ−1∑
r=0

ϵD

D − r
≤ ϵD ·

∫ D

D−ℓ

dx

x
= ϵD · ln D

D − ℓ
,

and so
Rℓ ≤ 2ϵD·log(D/(D−ℓ)).

Now suppose that ℓ ≤ D/2 and ϵ ≤ 1/3. For r ∈ {0, . . . , ℓ− 1} we have
ϵD

D − r
≤ ϵD

D − ℓ
=

ϵ

1− ℓ/D
≤ 2ϵ ≤ 2/3.

Since 1 + x ≤ ex−x2/3 for x ≤ 0.787, we can improve the estimate on Rℓ:

lnRℓ ≤ ϵD · ln D

D − ℓ
− 1

3

ℓ−1∑
r=0

ϵ2D2

(D − r)2
≤ ϵD · ln D

D − ℓ
− 1

3
ϵ2ℓ,

and complete the proof.

We can now prove Lemma 63.
Proof [Proof of Lemma 63] The ratio between

((1+ϵ)D
≤k

)
and

(
D
≤k

)
is clearly at most max(R0, . . . , Rk),

where Rℓ is the ratio between the binomials in Lemma 64.
If we only assume that D ≥ ℓ ≥ 1 and ϵ > 0, then Lemma 64 states that

logRℓ ≤ ϵD · log D

D − ℓ
,

which is clearly monotone increasing in ℓ. Therefore

logmax(R0, . . . , Rk) ≤ ϵD · log D

D − k
.

If we furthermore assume that k ≤ D/2 and ϵ ≤ 1/3, then Lemma 64 states that

logRℓ ≤ ϵD · log D

D − ℓ
− 1

3
ϵ2ℓ.

The derivative of the upper bound with respect to ℓ is
ϵD

D − ℓ
− 1

3
ϵ2 ≥ ϵ− 1

3
ϵ2 > 0,

since ϵ ≤ 1/3. Therefore the upper bound is maximized at ℓ = k, and we conclude that

logmax(R0, . . . , Rk) ≤ ϵD · log D

D − k
− 1

3
ϵ2k.

Since k ≤ D/2, we can further estimate

log
D

D − k
= log

1

1− k/D
≤ log 2 = 1.

This completes the proof.
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F.3. Lower bounding M⋆(2, k)

We prove Theorem 56 by applying the lower bound of Theorem 47. In Section F.4, we show how our
techniques can be used to determine the exact value of M⋆(2, k).
Proof [Proof of Theorem 56] Since L(U2) = 1, Theorem 47 implies that

M⋆(2, k) = RLk(U2) = k +Ω(k).

On the other hand, it is easy to see that D(2, k) = 2k + 1. Indeed, if d ≥ 2k + 1 then

log 2 + log

(
d

≤ k

)
≤ log 2 + log 2d−1 = d,

with equality if and only if d = 2k + 1. Therefore D(2, k) = 2k + 1.

F.4. Determining M⋆(2, k)

We are able to determine M⋆(2, k) and M⋆D(2, k) exactly.

Theorem 65 For all k ≥ 0,

M⋆(2, k) = k +
(k + 1/2)

(
2k
k

)
4k

and M⋆D(2, k) = D(2, k) = 2k + 1.

Results in the same spirit were previously proved. Interestingly, by using a random walk analysis,
Abernethy, Warmuth, and Yellin (2008) showed that the optimal loss of a proper algorithm in the
case of two experts is M⋆(2, k) + 1. In the bounded horizon setting, Cover (1965) showed that the

optimal regret in the case of two experts is
√

T
2π where T is the horizon. Later, Gravin, Peres, and

Sivan (2016) identified a connection between this result and one-dimensional random walks.13

Proof [Proof of Theorem 65] According to Proposition 53, there is a nonredundant infinite tree T
which is k-shattered by U2 and satisfies M⋆(2, k) = RLk(U2) = ET /2. We will show that without
loss of generality, all vertices in T are labeled (0, 1). This will allow us to determine T exactly, and
so to compute M⋆(2, k).

If there is a vertex labeled (1, 0), we can switch its label to (0, 1) and switch its two children.
The resulting tree is also k-shattered by U2 and has the same expected branch length.

If a vertex is labeled (0, 0), then by nonredundancy, only one hypothesis is “still in play” (that
is, all branches passing through the vertex are realized by the same hypothesis), say the first one.
Therefore if we change its label to (0, 1) then the resulting tree is also k-shattered by U2.

Concluding, we can assume without loss of generality that all vertices in T are labeled (0, 1).
Such a tree is k-shattered by U2 if every prefix (path starting at the root) contains at most k many
0-edges or at most k many 1-edges. Identifying vertices in the tree by the strings formed from the
labels of the edges leading to them from the root, the labels of all vertices must contain at most k
many 0s or at most k many 1s. We call such strings legal.

Since the tree T is optimal, its leaves correspond to legal strings s such that either s0 or s1 is
illegal. If s terminates with 0 then it is a leaf if it either contains at least k + 1 many 1s and exactly k

13. In a one-dimensional random walk, a particle chooses whether to go left or right in each step.
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many 0s (in which case s0 is illegal), or if it contains exactly k many 1s and exactly k + 1 many 0s
(in which case s1 is illegal). This defines T completely, and we can calculate

ET = 2
∞∑

t=k+1

(t+ k)

(
t+k−1
k−1

)
2t+k

+ 2 · (2k + 1)

(
2k
k

)
22k+1

= 2k
∞∑

t=k+1

(
t+k
k

)
2t+k

+
(2k + 1)

(
2k
k

)
4k

.

The infinite series is the probability that if we toss an unbiased coin, then eventually both sides show
up at least k + 1 many times (if the last toss was heads then t is the number of tails, and vice versa).
Therefore

ET = 2k +
(2k + 1)

(
2k
k

)
4k

.

The formula for M⋆(2, k) immediately follows.

All leaves in T have depth at least 2k + 1, and so

M⋆D(2, k) = Lk(U2) ≥ mT = 2k + 1.

We showed that D(2, k) = 2k + 1 in the course of the proof of Theorem 56. Recall that (Cesa-

Bianchi, Freund, Helmbold, and Warmuth, 1996) showed that M⋆D(2, k) ≤ D(2, k), which finishes
the proof.

F.5. Approximations of D(n, k)

The quantity D(n, k) appears in the bounds on both M⋆(n, k) and M⋆D(n, k). In the literature on
prediction using expert advice, some papers obtain bounds in terms of D(n, k) or variations of
it (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996; Mukherjee and Schapire, 2010), while
others give explicit bounds (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth,
1997; Brânzei and Peres, 2019). In this brief section, we describe simple asymptotic approximations
of D(n, k). The notation a(n, k) ≈ b(n, k) means that lim(n+k)→∞

a(n,k)
b(n,k) = 1 where a, b are

functions of n, k. Using this notation, (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996)
showed that M⋆D(n, k) ≈ D(n, k), and so the asymptotic expansions below apply to M⋆D(n, k) as
well.

For n = 1, we know that D(1, k) = k (Theorem 58). For n ≥ 2, we have the following known
bounds:

2k + ⌊log n⌋ ≤ D(n, k) ≤ 2k + log n+ 2
√
k lnn.

The lower bound is since M⋆D(n, k) ≥ 2k + ⌊log n⌋ due to (Littlestone and Warmuth, 1994) and
D(n, k) ≥ M⋆D(n, k) due to (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996) (and this work).
The upper bound follows from (Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996; Cesa-Bianchi,
Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997). Using those bounds, it is straightforward
that D(n, k) ≈ log n when k = o(log n), and that D(n, k) ≈ 2k when k = ω(log n).

The intermediate case is a bit more involved. Suppose that k = logn
c for some constant c. Let

d⋆(n, k) be the solution of the equation

d = log n+ dh(k/d),
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Regime Approximation

k = o(log n) D(n, k) ≈ log n

k = logn
c for constant c D(n, k) ≈ k/f−1(c)

k = ω(log n) D(n, k) ≈ 2k

Table 1: Approximations of D(n, k) in various regimes

0 1 2 3 4 5
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0.4

0.5

c

f
−
1
(c
)

Figure 11: Plot of f−1(c), where f(p) = (1− h(p))/p

where h(p) = −p log p− (1−p) log(1−p) is the binary entropy function. After rearranging, we get

1− h(k/d)

k/d
= c.

Therefore, if we define

f(p) =
1− h(p)

p

then

d⋆(n, k) =
k

f−1 (c)
,

where we take the branch of the inverse which lies in (0, 1/2]. The results of (Cesa-Bianchi, Freund,
Helmbold, and Warmuth, 1996) imply that d⋆(n, k) ≈ D(n, k) (more details can be found in
Appendix H.2). Therefore we deduce

D(n, k) ≈ k

f−1 (c)
.

The approximations are summarized in Table 1. The function f−1(c) is plotted in Figure 11.
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F.6. Proper Learners are Sub-Optimal

It is natural to ask for a learning rule to be proper.

Definition 66 (Online proper learners (Hanneke, Livni, and Moran, 2021)) Let H be a concept
class. An online learning rule Lrn is proper for H if for every realizable input sequence S, the
function hS : X → [0, 1] given by

hS(x) = Lrn(S, x)

is a convex combination of hypotheses from H, that is, there are coefficients αh such that

hS(x) =
∑
h∈H

αhh(x).

When the learner is deterministic, the function hS is {0, 1}-valued, and so the learner is proper if
hS ∈ H for every realizable input sequence S.

We can adapt this definition to the setting of prediction using expert advice (with k = 0) by
requiring that at all times, the learner picks a convex combination of the experts before seeing their
current advice. In other words, each round of the game is played as follows:

(i) The algorithm chooses a convex combination of the experts.

(ii) The adversary chooses both the advice of the experts and the correct label.

This can also be expressed in the language of game theory: in each round, the first player (the learner)
picks a mixed strategy (a convex combination of experts), and then the second player (the adversary)
picks a pure strategy (the true label). The payoff is the probability that the learner’s random strategy
agrees with the adversary’s pure strategy. The optimal proper algorithm was found in Abernethy et al.
(2008) via a random walk analysis, similarly to our algorithms.

For an hypothesis class H we define the optimal randomized mistake bound for proper learners
M⋆p(H) by restricting the learners to be proper:

M⋆p(H) = inf
Lrnp

sup
S
M(Lrnp;S),

where the infimum is taken over all proper learning rules, and the supremum is taken over all
realizable sequences.

We can similarly define the analogous notion for prediction using expert advice, namely M⋆p(n) =
M⋆p(Un).

We can solve the problem of prediction using expert advice optimally with the learning rule
RandSOA. This learning rule is improper, a property it shares with Littlestone’s SOA algorithm
that it is based on. In this section, we show that any proper learning rule makes more mistakes than
RandSOA when used to solve this problem.

Theorem 67 (Mistake bound of a proper learner) For every n ≥ 1, the optimal mistake bound
for proper randomized learners solving prediction using expert advice is

M⋆p(n) = Hn − 1 = lnn− (1− γ) + o(1),

where Hn is the harmonic number 1 + 1/2 + · · ·+ 1/n.
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In contrast, we have ⌊log4 n⌋ ≤ M⋆(n) ≤ log4 n (Brânzei and Peres, 2019, Theorem 6).
We prove Theorem 67 by proving a lower bound. A matching upper bound can be found e.g. in

(Karlin and Peres, 2017, Section 18.1), and we prove it here as well for completeness. We start with
the lower bound.

Lemma 68 Consider prediction using expert advice with n experts. For any proper learner Lrnp
there exists a strategy for the adversary under which the loss of the learner is at least Hn − 1.
Consequently,

M⋆p(n) ≥ Hn − 1.

Proof We will run the prediction game for n − 1 rounds. At the i’th round, let Gi be the set of
experts which are consistent with the examples seen so far, and let Bi be the remaining experts.

We set the true label to 0. All experts in Bi predict 1. An expert in Gi maximizing µi also
predicts 1, and all other experts in Gi predict 0. Clearly |Gi+1| = |Gi|− 1, and the loss of the learner
is

µi(Bi) +
µi(Gi)

|Gi|
=

1

|Gi|
+

|Gi| − 1

|Gi|
µi(Bi) ≥

1

|Gi|
.

After n− 1 rounds, there is precisely one expert left, and the loss of the learner is at least

n∑
i=2

1

i
= Hn − 1.

This completes the proof.

The matching upper bound is given by a natural “follow the leader” algorithm.

Lemma 69 Consider prediction using expert advice with n experts. Let FTL be the algorithm which
chooses a random expert among those who have not made any mistake so far. The loss of FTL on
any realizable sequence is at most Hn − 1. Consequently,

M⋆p(n) ≤ Hn − 1.

Proof As in the proof of Lemma 68, let Gi be the set of experts which have not made any mistake
before round i. Thus |G1| = n, and at all times, |Gi| ≥ 1. The loss of FTL in the i’th round is
precisely

|Gi| − |Gi+1|
|Gi|

=

|Gi|∑
j=|Gi+1|+1

1

|Gi|
≤

|Gi|∑
j=|Gi+1|+1

1

j
.

Therefore the total loss of the learner across all rounds is

∞∑
i=1

|Gi| − |Gi+1|
|Gi|

≤
∞∑
i=1

|Gi|∑
j=|Gi+1|+1

1

j
≤

n∑
j=2

1

j
,

which completes the proof.
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Appendix G. Open Questions

Our work naturally raises directions for future work.

General Questions

Multiclass setting. Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015) extended the definition
of Littlestone dimension to the multiclass setting, and showed that it gives the exact mistake bound
for deterministic algorithm. Can we extend the definition of randomized Littlestone dimension to
this setting?

A potential application is the problem of prediction using expert advice when the predictions are
non-binary, a setting studied in (Brânzei and Peres, 2019).

For more recent work on multiclass classification which involves various combinatorial di-
mensions, see (Brukhim, Carmon, Dinur, Moran, and Yehudayoff, 2022; Kalavasis, Velegkas, and
Karbasi, 2022).

Proper learning of arbitrary hypothesis classes. In Section F.6 we show that improper learning
algorithms outperform proper learning algorithm in online learning of the hypothesis class Un. What
can we say about arbitrary hypothesis classes, and in particular, about the ratio M⋆p(H)/M⋆(H)?

Mistake Bounds

Adaptive algorithms. Algorithm WeightedRandSOA gives the optimal mistake bound, but re-
quires knowledge of k. Theorem 48 gives an algorithm which doesn’t require knowledge of k, and
has a regret bound of Õ(

√
M⋆(H, k) · log k) (this is the loss beyond M⋆(H, k)). What is the optimal

regret bound?

Speed of convergence to the mistake bound. Given an hypothesis class H, how many rounds
are needed in order to guarantee a loss of RL(H)− ϵ? Proposition 35 shows (via Theorem 34) that
the answer is at most 2RL(H) +O(

√
RL(H) log(RL(H/ϵ) + log(1/ϵ)). Is this tight whenever H is

infinite?
Proposition 41 shows that this bound is fairly good when H is “strongly infinite”, and Proposi-

tion 39 gives a lower bound of log(1/ϵ) for all infinite H.

A related question concerns the regime in which the number of rounds is less than 2RL(H). For
every T it clearly holds that RL(H,T) ≤ T/2, and when T ≤ 2RL(H)− ω(

√
T logT), this is tight

up to an o(1) additive term, as the proof of Proposition 37 shows. For larger T, the error term in the
proposition gets larger, reaching O(

√
T logT) for T close to 2RL(H). What is the optimal bound

on T/2− RL(H,T) for the entire range T ≤ 2RL(H)?

Characterizing the equality cases of M⋆(H) ≤ M⋆D(H) ≤ 2M⋆(H). In Section C.3.2 we gave
two examples showing that both inequalities can be tight. Can we characterize the two families of
classes for which each inequality is tight? For example, it can be shown that every class H satisfying
M⋆(H) = M⋆D(H) must be infinite, but not vice versa.

Prediction using Expert Advice

Quantitative bounds. The first part in Theorem 5 asserts that M⋆(n, k) ≤ 1
2M

⋆
D(n, k)+o(M⋆D(n, k)).

It will be interesting to get quantitative bounds on the o(M⋆D(n, k)) term. By the second part of
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Theorem 5 we know that in some cases (n = 2) it is Ω(
√
M⋆D(n, k)). Does an upper bound of

M⋆(n, k) ≤ 1

2
M⋆D(n, k) +O

(√
M⋆D(n, k)

)
hold for all n, k?

In addition, it will be interesting to find explicit bounds on M⋆(n, k),M⋆D(n, k); by Theorem 4,
we know that when k ≫ log n then14

M⋆(n, k) = k +Θ
(√

k log n
)
.

How about for other values of n, k? Brânzei and Peres (2019) have the state-of-the-art bounds in
the regime k ≪ log n, but we are not aware of any results in other regimes, e.g. when k = Θ(log n).
As a matter of fact, to the best of our knowledge, even the leading asymptotic terms in the regime
k = Θ(log n) (described in Section F.5) were unknown prior to this work.

Proper predictions and repeated game playing. Consider the prediction using the expert advice
problem, when the learner is restricted to predict with a convex combination of the experts. That
is, at the beginning of each round (before seeing the advice of the n experts), the learner picks a
convex combination of the experts and predicts accordingly. What is the optimal expected number of
mistakes in this game?15

The optimal algorithm for this problem was identified in (Abernethy, Warmuth, and Yellin, 2008).
We comment that this game can also be presented in the language of game theory: assume a repeated
zero-sum game with 0/1 values, where each round is played as follows: player (i) chooses a (mixed)
strategy and reveals it to player (ii), who then replies with a strategy of his own. What is the optimal
accumulated payoff that player (i) can guarantee provided that she has n strategies and that the
sequence of strategies chosen by player (ii) is such that player (i) has a pure strategy that loses to
at most k of them? Proper predictions in the prediction with expert advice setting are equivalent to
mixed strategies here.

Prediction using expert advice with different budgets. Section F considers prediction using
expert advice in the k-realizable setting. The goal is to determine Lk(Un) and RLk(Un). One can
ask more generally for the deterministic and randomized Littlestone dimensions of the weighted
hypothesis class Uk1,...,kn = {(h1, k1), . . . , (hn, kn)}, where h1, . . . , hn are the hypotheses in Un.
In particular, which parameter determines the ratio RL(Uk)/L(Uk)?

In the case of two experts, the arguments in Theorem 65 can be extended to give an exact formula
for both quantities:

RL(Uk,ℓ) =
k
(
k+ℓ+1
≥ℓ+1

)
+ ℓ
(
k+ℓ+1
≥k+1

)
+ (k + ℓ+ 1)

(
k+ℓ
k

)
2k+ℓ+1

and L(Uk,ℓ) = k + ℓ+ 1.

Roughly speaking, RL(Uk,ℓ) ≈ max(k, ℓ),16 and so

RL(Uk,ℓ)

L(Uk,ℓ)
≈ max(k, ℓ)

k + ℓ
.

14. The upper bound is also given in (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997).
15. We answer this question only for the case k = 0 in Section F.6.
16. This follows from the formula RL(Uk,l) = 2E[max

(
Bin(k + 1, 1

2
),Bin(ℓ+ 1, 1

2
)
)
]− 1.
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Experiments suggest that more generally, if k1, k2 are the two largest elements in k, then

RL(Uk)

L(Uk)
≈ max(k1, k2)

k1 + k2
.

Efficient implementation of WeightedRandSOA. It can be shown that RandSOA(Un) has an
efficient implementation. Can WeightedRandSOA be implemented efficiently on Un for k ≥ 1, say
in time poly(n, k)?

(Abernethy, Langford, and Warmuth, 2006; Brânzei and Peres, 2019) observed that the only
information relevant to the adversary’s choice of expert predictions is the state of each round, which
is indicated by a (k + 1)-ary vector specifying how many experts have i ∈ {0, . . . , k} mistakes left.
Using this observation, it is straightforward to derive an algorithm that calculates the randomized
Littlestone dimension of every possible state in time complexity O(n2k), and then uses these values
to determine the optimal prediction in each round efficiently. Can we improve this?

Appendix H. Results of Cesa-Bianchi, Freund, Helmbold and Warmuth

The foundational work of Cesa-Bianchi, Freund, Helmbold, and Warmuth (1996) (henceforth, Cesa-
Bianchi et al.) implies several inequalities involving the quantities M⋆D(n, k) and D(n, k). These
inequalities follow directly from results in Cesa-Bianchi et al., but are not stated explicitly in their
work. In this short appendix, we show how to derive these results from their work.

The first two results use the notation on+k(1), which stands for a quantity tending to zero as
n+ k tends to infinity.

H.1. A proof of M⋆D(n, k) ≥ (1− o(1))D(n, k)

For n = 1, we prove in this paper that M⋆D(1, k) = D(1, k) = k for all k ≥ 0 (Theorem 58). For
n ≥ 2, we will prove the inequality M⋆D(n, k) ≥ (1−on+k(1))D(n, k) using results of Cesa-Bianchi
et al.

Let n ≥ 2 and k ≥ 0. Cesa-Bianchi et al. define the function

up(n, k, β) =
log n+ k log 1

β

log 2
1+β

in Equation (4). Then, in Theorem 2 they show that for all β ∈ [0, 1] and for all non-negative n, k,

D(n, k) ≤ up(n, k, β).

In Theorem 3, Cesa-Bianchi et al. define a function Low(n, k) and show that

M⋆D(n, k) ≥ Low(n, k).

In Theorem 4, they show that for every n, k, the value of β ∈ [0, 1] can be chosen to be some
β⋆ = β⋆(n, k) such that

lim
n+k→∞

Low(n, k)

up(n, k, β⋆)
= 1,

and so
Low(n, k) = (1− on+k(1)) up(n, k, β

⋆).

Putting everything together, we can now deduce

M⋆D(n, k) ≥ Low(n, k) = (1− on+k(1)) up(n, k, β
⋆) ≥ (1− on+k(1))D(n, k).
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H.2. A proof of d⋆(n, k) = (1 + o(1))D(n, k)

Let d⋆ = d⋆(n, k) be the unique solution to the equation d = log n + dh(k/d). The results of
Cesa-Bianchi et al. imply that d⋆(n, k) = (1 + on+k(1))D(n, k), as we now indicate. The argument
will employ the functions up and Low and the parameter β⋆ mentioned in Appendix H.1.

In Lemma 1 (attributed to Vovk (Vovk, 1990)), Cesa-Bianchi et al. show that d⋆(n, k) is the
minimum value of up(n, k, β). We also have the bound D(n, k) ≤ up(n, k, β) for all β from their
Theorem 2, and therefore d⋆(n, k) ≥ D(n, k). It remains to show d⋆(n, k) ≤ (1 + o(1))D(n, k).

Theorem 4 of Cesa-Bianchi et al. shows that

lim
n+k→∞

Low(n, k)

up(n, k, β⋆)
= 1.

Since d⋆(n, k) ≤ up(n, k, β⋆), it follows that

d⋆(n, k) ≤ (1 + on+k(1)) Low(n, k).

Since Low(n, k) ≤ M⋆D(n, k) ≤ D(n, k), this completes the proof.

H.3. A proof of M⋆D(n, k) ≥ D(n, k)− 1 for constant k

In this section we show that for every constant k, the inequality M⋆D(n, k) ≥ D(n, k)− 1 holds for
large enough n.

Denote by BW(n, k) the maximal number of mistakes that the Binomial Weights algorithm
of Cesa-Bianchi et al. makes with parameters n, k. Theorem 5 in Cesa-Bianchi et al. states that
for every k there is nk such that M⋆D(n, k) ≥ BW(n, k) − 1 for every n > nk. As we show
below, their proof actually shows that M⋆D(n, k) ≥ D(n, k)− 1. (This is a stronger inequality since
BW(n, k) ≤ D(n, k) by their Theorem 1.)

We now explain how to derive the bound M⋆D(n, k) ≥ D(n, k)− 1, for large enough n, from the
proof of Theorem 5. Fix an integer k ≥ 0. Cesa-Bianchi et al. define the function

J(k, q) = 2q
/( q

≤ k

)
.

Cesa-Bianchi et al. prove the existence of an integer nk such that if n > nk and J(k, q) ≤ n <
J(k, q + 1) then M⋆D(n, k) ≥ q − 1.

The inequality J(k, q) ≤ n < J(k, q + 1) is equivalent to q ≤ log n + log
(

q
≤k

)
and q + 1 >

log n+ log
(
q+1
≤k

)
, and so q = D(n, k) by definition, completing the proof.
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