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Abstract
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand

what structural conditions and algorithmic principles lead to sample-efficient learning guarantees,
and how these considerations change as we move from few to many agents. We study this question
in a general framework for interactive decision making with multiple agents, encompassing Markov
games with function approximation and normal-form games with bandit feedback. We focus on equi-
librium computation, in which a centralized learning algorithm aims to compute an equilibrium by
controlling multiple agents that interact with an (unknown) environment. Our main contributions are:

• We provide upper and lower bounds on the optimal sample complexity for multi-agent deci-
sion making based on a multi-agent generalization of the Decision-Estimation Coefficient, a
complexity measure introduced by Foster et al. (2021) in the single-agent counterpart to our
setting. Compared to the best results for the single-agent setting, our upper and lower bounds
have additional gaps. We show that no “reasonable” complexity measure can close these gaps,
highlighting a striking separation between single and multiple agents.

• We show that characterizing the statistical complexity for multi-agent decision making is
equivalent to characterizing the statistical complexity of single-agent decision making, but with
hidden (unobserved) rewards, a framework that subsumes variants of the partial monitoring
problem. As a consequence of this connection, we characterize the statistical complexity for
hidden-reward interactive decision making to the best extent possible.

Building on this development, we provide several new structural results, including 1) conditions
under which the statistical complexity of multi-agent decision making can be reduced to that of
single-agent, and 2) conditions under which the so-called curse of multiple agents can be avoided.

* Work done in part while interning at Microsoft Research.

© 2023 D.J. Foster, D.P. Foster, N. Golowich & A. Rakhlin.
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1. Introduction

Many of the most exciting frontiers for artificial intelligence are game-theoretic in nature, and involve
multiple agents with differing incentives interacting and making decisions in dynamic environments,
either in cooperation or in competition. Numerous recent approaches, adopting the framework of
multi-agent reinforcement learning (MARL), have achieved human-level performance in multi-agent
game-playing domains (Silver et al., 2016; Brown and Sandholm, 2018; Perolat et al., 2022; Kramár
et al., 2022; Bakhtin et al., 2022), and while there is great potential to apply MARL further in domains
such as cybersecurity (Malialis and Kudenko, 2015), autonomous driving (Shalev-Shwartz et al.,
2016), and economic policy (Zheng et al., 2022), sample-efficiency and reliability are obstacles for
real-world deployment. Consequently, a central question is to understand what modeling assumptions
and algorithm design principles lead to robust, sample-efficient learning guarantees. This issue is
particularly salient in domains with high-dimensional feedback and decision spaces, where the use
of flexible models such as neural networks is critical.

For reinforcement learning in single-agent settings, an extensive line of research identifies
modeling assumptions (or, structural conditions) under which sample-efficient learning is possible
(Russo and Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Du et al., 2021;
Jin et al., 2021a; Foster et al., 2021). Notably, Foster et al. (2021, 2022b, 2023) provide a notion
of statistical complexity, the Decision-Estimation Coefficient (DEC), which is both necessary and
sufficient for low sample complexity, and leads to unified principles for algorithm design. For
multi-agent reinforcement learning, structural conditions for sample-efficient learning have also
received active investigation (Chen et al., 2022b; Li et al., 2022; Xie et al., 2020; Jin et al., 2022;
Huang et al., 2021; Zhan et al., 2022; Liu et al., 2022), drawing inspiration from the single agent
setting. However, insights from single agents do not always transfer to multiple agents in intuitive
ways (Daskalakis et al., 2022), and development has largely proceeded on a case-by-case basis. As
such, the problem of developing a unified understanding or necessary conditions for sample-efficient
multi-agent reinforcement learning remained open.

Contributions. We consider a general framework, Multi-Agent Decision Making with Structured
Observations (MA-DMSO), which generalizes the single-agent DMSO framework of Foster et al.
(2021) and subsumes multi-agent reinforcement learning with general function approximation, as well
as normal-form games with bandit feedback and structured action spaces. We focus on centralized
equilibrium computation, where a centralized learning algorithm with control of all agents aims to
compute an equilibrium by interacting with the (unknown) environment. Our main results are:

• Complexity of multi-agent decision making. We introduce a new complexity measure, the
Multi-Agent Decision-Estimation Coefficient, generalizing the Decision-Estimation Coefficient
of Foster et al. (2021, 2023), and show that it leads to upper and lower bounds on the optimal
sample complexity for multi-agent decision making. Compared to the best results for the
single-agent setting (Foster et al., 2023), our upper and lower bounds have additional gaps,
which we show that no (reasonable) complexity measure can close.

• Complexity of hidden-reward decision making. We show that characterizing the statistical
complexity for multi-agent decision making is equivalent to characterizing the statistical com-
plexity of single-agent decision making, but with hidden (unobserved) rewards, a framework
that we refer to as Hidden-Reward Decision Making with Structured Observations (HR-DMSO).
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Leveraging this connection, we characterize the statistical complexity of the HR-DMSO frame-
work, which encompasses PAC variants of the stochastic partial monitoring problem (Bartók
et al., 2014), to the best extent possible (for any reasonable complexity measure).

• Additional insights for multiple agents. Building on the results above, we provide a number
of new structural results and algorithmic insights for multi-agent decision making and RL,
including 1) general conditions under which the complexity of multi-agent decision making
can be reduced to that of single agent decision making, and 2) general conditions under which
the so-called curse of multiple agents (Jin et al., 2021b) can be removed.

Organization. Due to space constraints, the main body presents an informal overview of our
results, with detailed statements deferred to Part I of the appendix. Examples are given in Part II.
See Appendix A for an overview of appendix organization.

1.1. Multi-agent interactive decision making (MA-DMSO)

We introduce a multi-agent generalization of the Decision Making with Structured Observations
framework of Foster et al. (2021), which we refer to as Multi-Agent Decision Making with Structured
Observations (MA-DMSO). The framework consists of T rounds of interaction between K agents
and the environment. For each round t = 1, 2, . . . , T :

1. The agents collectively select a joint decision πt ∈ Π, where Π is the joint decision space.

2. Each agent k ∈ [K] receives a reward rtk ∈ R ⊆ R and a pure observation ot◦ ∈ O◦ sampled
via (rt1, . . . , r

t
K , o

t
◦) ∼M?(πt), where M? : Π→ ∆(RK ×O◦) is the underlying model. We

refer to R as the reward space and to O◦ as the pure observation space. We call the tuple
(rt1, . . . , r

t
K , o

t
◦) consisting of all information revealed to agents on round t the full observation.

After the T rounds of interaction, the agents collectively output a joint decision π̂ ∈ Π, which may be
chosen in an arbitrary fashion based on the data observed over the T rounds, and may be randomized
according to a distribution p ∈ ∆(Π). Their goal, which we formalize in the sequel, is to choose π̂
to be an equilibrium (e.g., Nash or CCE) for the average reward function induced by M?. The model
M?, which is formalized as a probability kernel from decisions to full observations (Appendix B), is
unknown to the agents, and is to be interpreted as the underlying environment.

The DMSO framework captures most online decision making problems in which a single agent
interacts with an unknown environment, and the MA-DMSO framework further generalizes it to
capture a wide variety of problems in multi-agent reinforcement learning. Examples include learning
in normal-form games with bandit feedback (Rakhlin and Sridharan, 2013; Foster et al., 2016; Heliou
et al., 2017; Wei and Luo, 2018; Giannou et al., 2021), where M? represents the distribution over
rewards for each entry in the game, and learning in Markov games with function approximation
(Chen et al., 2022b; Li et al., 2022; Xie et al., 2020; Jin et al., 2022; Huang et al., 2021; Zhan et al.,
2022; Liu et al., 2022), where M? represents the underlying Markov game. Additional examples
include normal-form games with structured (e.g., convex-concave) rewards and high-dimensional
action spaces (Bravo et al., 2018; Maheshwari et al., 2022; Lin et al., 2021).

Realizability. While the model M? is unknown, we make a standard realizability assumption.

Assumption 1.1 (Realizability for MA-DMSO). The agents have access to a model class M
consisting of probability kernels M : Π→ ∆(RK ×O◦) that contains the true model M?.
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For normal-form games, the classM encodes structure in the rewards (e.g., linearity or convexity)
or decision space, and for Markov games it encodes structure in transition probabilities or value
functions. See Part II of the appendix for examples, as well as Foster et al. (2021) for with K = 1.

1.1.1. EQUILIBRIA

The goal of the agents in the MA-DMSO framework is to produce an equilibrium for the underlying
game/model M?. We formalize the notion of equilibrium in a general fashion which encompasses
several standard game-theoretic equilibria. To keep notation compact, we define O := RK ×O◦ to
be the full observation space, and will write ot := (rt1, . . . , r

t
K , o

t
◦) to denote the (full) observation.

For M ∈M and π ∈ Π, let EM,π[·] denote expectation under the process (r1, . . . , rK , o◦) ∼M(π);
in light of our notation O = RK ×O◦, we will sometimes denote this process as o ∼ M(π). For
each k ∈ [K] and M ∈M, define the mapping fMk : Π→ R by fMk (π) = EM,π[rk], which denotes
agent k’s expected reward under M when the joint decision π is played.

For each agent k, we assume they are given a deviation space Π′k, together with a switching
function, Uk : Π′k × Π → Π. Given a joint decision π ∈ Π, each agent k can choose a deviation
π′k ∈ Π′k, which will have the effect that the joint policy played by agents is Uk(π′k, π) instead of π.
We aim for the output policy π̂ ∼ p produced in the MA-DMSO setup to have the property that no
agent can significantly increase their value by deviating. We quantify this via

Risk(T ) := Eπ̂∼p

[
K∑
k=1

sup
π′k∈Π′k

fM
?

k (Uk(π
′
k, π))− fM?

k (π)

]
. (1)

For M ∈M and π ∈ Π, we abbreviate hM(π) =
∑K

k=1 supπ′k∈Π′k
fMk (Uk(π

′
k, π))− fMk (π), so that

Risk(T ) := Eπ̂∼p[hM
?
(π̂)]. The quantity hM(π) measures the sum of players’ incentives to deviate

from the joint decision π under M ; we say that π is an equilibrium for M if hM(π) = 0.
The notion (1) captures standard notions of equilibria, including Nash equilibria, correlated

equilibria (CE), and coarse correlated equilibria (CCE). As we have strived to make the setup in
this section as general as possible, we make two regularity assumptions to rule out other, potentially
pathological notions of equilibria.

Assumption 1.2 (Existence of equilibria). For all M ∈M, there exists π ∈ Π with hM(π) = 0.

Assumption 1.3 (Monotonicity of the optimal deviation). For any model M ∈M, agent k ∈ [K],
and joint decision π ∈ Π, there is some deviation π′k ∈ Π′k such that fMk (Uk(π

′
k, π)) ≥ fMk (π).

Assumption 1.3 implies that, up to a factor of K, the notion of risk in (1) is equivalent to the
maximal gain any agent can achieve by deviating. Both assumptions are satisfied by Nash equilibria,
CE, and CCE (see Definitions 1.1, 1.2 and G.1).

Summarizing, the MA-DMSO framework captures the problem of equilibrium computation: the
agents aim to find an (ε-approximate) equilibrium π̂ so that Risk(T ) ≤ ε, but the underlying game
is unknown, so they must gather information by interacting with it and exploring. We refer to the
tuple M = (M,Π,O, {Π′k}k, {Uk}k) as an instance for the MA-DMSO framework. The instance
M specifies all information known a-priori to the agents before the learning process begins.

Remark 1.1. As described, the MA-DMSO framework allows centralized learning protocols, in
which a single learning algorithm may control all agents in a centralized fashion (equivalently,
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unlimited communication and coordination is permitted amongst agents throughout the learning
process). Lower bounds against centralized learning algorithms certainly apply to decentralized
algorithms, being a special case of the former. However, in general there may be gaps between the
minimax sample complexity for centralized and decentralized algorithms, and we leave a detailed
investigation of decentralized multi-agent interactive decision-making for future work.

Remark 1.2. Our presentation of the MA-DMSO framework captures settings in which (multi-agent)
learning algorithms are evaluated only on the proximity of output decision π̂ to equilibrium, as
opposed to, say, the average proximity to equilibrium for the decisions played throughout the T
rounds of learning. In the single-agent setting, such guarantees are often referred as PAC (Probability
Approximately Correct) guarantees, as opposed to regret guarantees (Foster et al., 2023). It is fairly
straightforward to extend many of our results to the regret setting.

1.1.2. EXAMPLES OF INSTANCES FOR MA-DMSO

We now highlight basic multi-agent bandit and MARL problems captured by the MA-DMSO frame-
work. We describe how to capture concrete notions of equilibria, then give examples of instances M .

Examples of equilibria. In Definitions 1.1 and 1.2 below, we specify the decision spaces, deviation
spaces, and switching functions that can be used to capture Nash equilibria and coarse correlated
equilibria (CCE); see Appendix G.1 for further examples, including correlated equilibria (CE) and
variants of CCE and CCE which have been studied in the context of Markov games.

Definition 1.1 (Nash equilibrium instance). An MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k)
is a Nash equilibrium (NE) instance if the following holds:

1. For sets Π1, . . . ,ΠK , we have Π = Π1 × · · · ×ΠK . For each k ∈ [K], we have Π′k = Πk.

2. For each k ∈ [K], π ∈ Π, and π′k ∈ Π′k, it holds that Uk(π′k, π) = (π′k, π−k).1

We say that the NE instance M is a two-player zero-sum NE instance if K = 2, and for all
M ∈M, π ∈ Π, it holds that fM1 (π) + fM2 (π) = 0.

The notion of Nash equilibrium in Definition 1.1 encompasses, but goes well beyond the standard
notion of mixed Nash equilibria in normal-form games (e.g., (Nisan et al., 2007)). In particular,
Definition 1.1 does not assume that the decision spaces Πk are distributions over a pure action space
of player k. Therefore, it captures refined solution concepts including pure Nash equilibria in normal-
form games (Daskalakis and Papadimitriou, 2006) and Markov Nash equilibria in Markov games
(Example 1.2). As a result of this generality, an NE instance per Definition 1.1 is not guaranteed to
satisfy Assumption 1.2, i.e., to have equilibria; nevertheless, we will ensure that all examples of NE
instances we consider are constructed in such a way so that Assumption 1.2 is satisfied.

Definition 1.2 (Coarse correlated equilibrium instance). An instance M = (M,Π,O, {Π′k}k, {Uk}k)
for MA-DMSO is a coarse correlated equilibrium (CCE) instance if the following holds:

1. For some sets Σ1, . . . ,ΣK (called pure decisions), we have Π = ∆(Σ1 × · · · × ΣK). We will
write Σ := Σ1 × · · · × ΣK . For each k ∈ [K], we have Π′k = Σk ∪ {⊥}.

1. We adopt the convention that π−k = (π1, . . . , πk−1, πk+1, . . .) and (πk, π−k) = (π1, . . . , πk, . . . , πK).
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2. For each π ∈ Π and M ∈ M, it holds that M(π) = Eσ∼π[M(σ)]. Further, there is a
measurable function ϕ : O → Σ so that Po∼M(σ)(ϕ(o) = σ) = 1 for each M ∈ M and
σ ∈ Σ (i.e., M(σ) reveals σ).2

3. For each k ∈ [K], π ∈ Π, and π′k ∈ Π′k, it holds that

Uk(π
′
k, π) =

{
Iπ′k × π−k : π′k 6=⊥
π : π′k =⊥

,

where Iπ′k × π−k ∈ Π denotes the product distribution whereby agent k plays π′k and the other
agents play according to their joint marginal under π ∈ Π.

In Definition 1.2, the inclusion of ⊥∈ Π′k corresponds to player k choosing not to deviate. This
is necessary to satisfy Assumption 1.3 since there can be distributions π ∈ Π so that if player k
deviates to any fixed option in Σk, their value decreases.3 We also remark that Definition 1.2 captures
the notion of CCE in normal-form games (with pure action sets Σk); in Appendix G.1 we give an
example of an instance capturing a slightly different notion of CCE in Markov games.

Examples of equilibria. We now provide concrete examples for the NE and CCE instances in
Definitions 1.1 and 1.2; see Appendix G for additional examples (including CE) and discussion.

Example 1.1 (Learning Nash, and CCE in normal-form games). We begin by describing the problem
of learning in normal-form games with bandit feedback. Suppose that each player k ∈ [K] has a finite
action setAk, with joint action set denoted byA = A1×· · ·×AK . Upon playing a joint action profile
a ∈ A, the (unknown) ground truth model M? samples (r1, . . . , rK) ∼ M?(a), where rk denotes
the reward received by player k. The goal is to compute a distribution over joint action profiles which
is some type of equilibrium of the game whose payoffs are given by expected rewards under M?.

• To express the problem of Nash equilibrium computation, set Πk := ∆(Ak) for each k, let
Π = Π1 × · · ·ΠK be the space of product distributions on A, and define Π′k, Uk as in Defini-
tion 1.1. Moreover, letR = [0, 1] and O◦ = A, O = RK ×O◦. LetM be the class of models so
that: (a) for all singleton distributions Ia = Ia1 × · · · × IaK ∈ Π, M(Ia) ∈ ∆(RK)× {Ia}, and
(b) for all π ∈ Π, M(π) = Ea∼π[M(Ia)]. In words, M(π) samples an action profile a ∼ π (in
particular, ak ∼ πk for each k), reveals the action profile a sampled,4 as well as K [0, 1]-valued
rewards drawn from an arbitrary distribution. Then the instance M = (M,Π,O, {Π′k}k, {Uk}k)
is an NE instance per Definition 1.1. For π̂ ∈ Π, hM?

(π̂) measures the sum of the players’ incen-
tives to deviate from π̂ under the true model M?; in particular, hM?

(π̂) = 0 if and only if π̂ is a
Nash equilibrium of the game whose payoff functions are given by a 7→ fM

?

k (a) := EM?,a[rk].

• To express the problem of CCE computation, set Π = ∆(A1 × · · · × AK), and define Π′k, Uk
as in Definition 1.2 with Σk = Ak for each k. Moreover, let R = [0, 1], and O◦ = A,

2. When clear from context, we associate singleton distributions Iσ with the element σ the distribution places its mass on.
3. In some contexts, CCE are defined without such an option ⊥∈ Π′k; in settings where the only goal is to establish

upper bounds, the addition of ⊥ does not make a material difference (since its only effect is to guarantee that the
suboptimality of a decision is non-negative), but since we aim to prove lower bounds as well, it is crucial to have the
option ⊥∈ Π′k.

4. We assume that the model reveals the action profile played for technical reasons (see Assumption E.1); this is a very
mild assumption, satisfied in essentially all (centralized) settings, since agents know which action they play.

6



COMPLEXITY OF MULTI-AGENT DECISION MAKING

O = RK ×O◦. LetM be the class of models so that: (a) for all singleton distributions Ia ∈ Π,
M(Ia) ∈ ∆(RK)× {Ia}, and (b), for π ∈ Π, M(π) = Ea∼π[M(Ia)]. Then the instance M :=
(M,Π,O, {Π′k}k, {Uk}k) is a CCE instance per Definition 1.2. For π̂ ∈ Π, hM?

(π̂) measures the
sum of players’ incentives to deviate from π̂ under the true model M?; in particular, hM?

(π̂) = 0 if
and only if π̂ is a CCE of the game whose payoff functions are given by a 7→ fM

?

k (a) := EM?,a[rk].

In the most basic (“finite-action”) version of the normal-form game setup, we allow M?(a) to be
arbitrary, subject to the constraint that rk ∈ [0, 1], but assume thatAk := |Ak| <∞ for all k. Beyond
finite-action normal-form games, the MA-DMSO framework captures structured normal-form games
with bandit feedback (equivalently, multi-agent variants of the structured bandit problem), in which
the players’ action spaces are large or infinite, but rewards have additional structure. Examples
include linear, convex, or concave payoffs (generalizing bandit convex optimization) (Bravo et al.,
2018; Maheshwari et al., 2022; Lin et al., 2021), and many others (Cui et al., 2022). /

Example 1.2 (Learning Nash equilibria in Markov games). For reinforcement learning, each model
M ∈ M is a Markov game M = (H, {Sh}h∈[H], {Ak}k∈[K], {PM

h }h∈[H], {RM
k,h}k∈[K],h∈[H], d1),

where H ∈ N denotes the horizon, Sh denotes the state space for layer h, Ak denotes the action
space for player k, A := A1 × · · · × AK denotes the joint action space, PM

h : Sh ×A → ∆(Sh+1)
denotes the probability transition kernel for layer h, RM

k,h : Sh × A → ∆(R) denotes player k’s
reward distribution for layer h, and d1 ∈ ∆(S1) denotes the initial state distribution. Each agent’s
decision space Πk is the space of their randomized Markov policies πk = (πk,1, . . . , πk,H), where
πk,h : Sh → ∆(Ak), and the joint decision space is Π = Π1 × · · · × ΠK . Given a joint decision
π ∈ Π, an observation is drawn from M(π) according to the following process, called an episode.
First, an initial state is drawn according to s1 ∼ d1. Then, for h ∈ [H], the state evolves via:

1. ak,h ∼ πk,h(sh), and rk,h ∼ RM
k,h(sh, (a1,h, . . . , aK,h)) ∀k ∈ [K]. 2. sh+1 ∼ PM

h (·|sh, (a1,h, . . . , aK,h))

The distribution of (r1, . . . , rK , o◦) ∼M(π) is given by o◦ = {(sh, (a1,h, . . . , aK,h), (r1,h, . . . , rK,h)}h∈[H]

and rk =
∑H

h=1 rk,h. With Π′k, Uk defined as in Definition 1.1, M := (M,Π,O, {Π′k}k, {Uk}k)
is an NE instance of MA-DMSO, and hM?

(π̂) = 0 if and only if π̂ is a Markov Nash equilibrium
of M? (e.g., Daskalakis et al. (2022)). By restrictingM appropriately, this formulation captures
complex settings with function approximation (Chen et al., 2022b; Li et al., 2022; Xie et al., 2020;
Jin et al., 2022; Huang et al., 2021; Zhan et al., 2022; Liu et al., 2022); see Appendix G. /

1.2. MA-DMSO: Overview of results

We provide upper and lower bounds on the minimax sample complexity for the MA-DMSO frame-
work using a new complexity measure, the Multi-Agent Decision-Estimation Coefficient, which
generalizes the Constrained Decision-Estimation Coefficient introduced by Foster et al. (2023) in
the single agent setting.

The Multi-Agent Decision-Estimation Coefficient. For measures P and Q with a common

dominating measure ν, define squared Hellinger distance by D2
H(P,Q) =

∫ (√
dP
dν −

√
dQ
dν

)2
dν.

Consider an instance M = (M,Π,O, {Π′k}k, {Uk}k) for the MA-DMSO framework, as well as
a reference model M : Π → ∆(O).5 For a scale parameter ε > 0, the Multi-Agent Decision-

5. The reference model M may be arbitrary, and is not required to lie inM.
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Estimation Coefficient for the instance M with reference model M at scale ε is defined by

decε(M ,M) := inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[hM(π)] | Eπ∼q[D2

H

(
M(π),M(π)

)
] ≤ ε2

}
; (2)

whenever the setHq,ε(M) := {M ∈M | Eπ∼q[D2
H

(
M(π),M(π)

)
] ≤ ε2} is empty, we adopt the

convention that decε(M ,M) = 0. In addition, we define decε(M ) := supM∈co(M) decε(M ,M),
where co(M) denotes the convex hull of the classM.

The interpretation of the definition (2), which is a min-max game, is as follows. The model
M ∈ M selected by max-player represents a worst-case choice for the underlying model. The
joint distributions p, q ∈ ∆(Π) selected by the min-player represent strategies for a centralized
learning algorithm controlling all agents. The distribution q ∈ ∆(Π) is an exploration distribution
which acts as a strategy for acquiring information, with the quantity Eπ∼q[D2

H

(
M(π),M(π)

)
]

acting as their average “information gain” (that is, the amount information that allows to distinguish
between M ∈ M and the reference model M ). The distribution p ∈ ∆(Π) is an exploitation
distribution which aims to be near equilibrium for the model M ∈M selected by the max-player,
with Eπ∼p[hM(π)] representing the distance from equilibrium. Thus, to summarize, the value (2)
captures, for a best-case choice of p, q ∈ ∆(Π), the worst-case distance to equilibrium for p for
models M ∈M that are “close” to M in the sense that their information gain under q is small.

For familiar readers, we recall that the (single-agent) constrained DEC generalizes the earlier
offset DEC of Foster et al. (2021) (which acts as a Lagrangian relaxation), and always leads to tighter
guarantees (Foster et al., 2023). Our definition (2) generalizes the so-called PAC variant of the
constrained DEC in Foster et al. (2023), as opposed the regret variant, which restricts to p = q.

Main results. The first of our results gives upper and lower bounds on the minimax sample complex-
ity for the MA-DMSO framework based on the Multi-Agent Decision-Estimation Coefficient. To state
the result in the simplest form, we assume that |M| <∞; see Appendix D for more general results.

Theorem 1.1 (Informal version of Corollaries D.1 and D.2). For any instance M = (M,Π,O, {Π′k}k, {Uk}k)
for the MA-DMSO framework and T ∈ N:

• Upper bound: Under Assumption 1.1, there exists an algorithm that achieves

E[Risk(T )] ≤ Õ(1) · decε(T )(M ), where ε(T ) ≤ Θ̃
(√

log|M|/T
)
. (3)

• Lower bound: For a worst-case model M ∈M, any algorithm must have

E[Risk(T )] ≥ Ω̃(1) · decε(T )(M ), where ε(T ) solves decε(M ) ≥ Ω̃
(
ε2KT

)
. (4)

This result shows that the MA-DEC is a fundamental limit for equilibrium computation in
the MA-DMSO framework, and is sufficient for low sample complexity whenever log|M| < ∞.
The upper bound is an immediate corollary of an upper bound given by Foster et al. (2023) in the
single-agent setting, while the lower bound requires a new approach; this is due to fundamental
differences between the single and multiple agents, which we highlight in the sequel.

To build intuition, let us start with a basic example. Suppose that M is a CCE instance consisting
of two-player A1×A2 normal-form games (that is, |A1| = A1 and |A2| = A2) with bandit feedback
(Example 1.1) and Bernoulli noise. In this case, one can show that decε(M ) ∝ ε ·

√
A1 +A2, so that

8
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the upper bound (3) gives E[Risk(T )] .
√

(A1+A2) log|M|
T , or equivalently, (A1+A2) log|M|

ε2
rounds

of interaction are sufficient to find an ε-CCE. For this class, one can take log|M| . Õ(A1 · A2).
We give more refined results (Appendix F) which allow one to replace log|M| by maxk log|Π′k| .
log(A1 +A2), so that we achieve sample complexity Õ

(
A1+A2
ε2

)
, which is optimal.

Turning to lower bounds, for the same normal-form game instance M , one can choose ε(T ) &√
A1+A2
T , so that (4) gives E[Risk(T )] & A1+A2

T , or equivalently, Ω̃
(
A1+A2

ε

)
rounds of interaction

are necessary to find an ε-CCE. Comparing the upper and lower bounds, there are two gaps. The first
is the term log|M| appearing in the upper bound, which represents the sample complexity required
to perform statistical estimation with the classM, and in general scales poorly with the number of
agents. This can be refined (cf. Appendix F), but is not possible to completely remove in general,
even in the single-agent setting; see Foster et al. (2021, 2023) and Appendix D for further discussion.

The second gap is the difference between the values ε(T ) and ε(T ) appearing in the upper
and lower bound; we set ε(T ) ∝ 1/

√
T , while ε(T ) is chosen to solve the fixed-point equation

decε(M ) ≥ Ω̃
(
ε2T

)
(we focus on the case of constant K in this discussion). For normal-form

games, this causes the lower bound to scale with 1
ε instead of 1

ε2
. This gap is not present in the

single-agent setting (Foster et al., 2023), where the best upper and lower bounds based on the
constrained DEC have ε(T ) ≈ ε(T ) (up to dependence on log|M|). We show (Proposition D.1) that
for most parameter regimes,

decε(T )(M ) .
(
K2 log|M| · decε(T )(M )

)1/2
,

i.e., the gap between the upper and lower bounds is no worse than quadratic generically. This gap
turns out to be fundamental: We show (Propositions D.2 and D.3) that there exist instances for which
each bound (upper and lower) is tight, and—somewhat surprisingly—the following result shows
that no complexity measure satisfying fairly general conditions can fully characterize the sample
complexitymaking beyond a quadratic gap, even when log|M| = Õ(1).

Theorem 1.2 (Informal version of Theorem D.4). For any ε ∈ N, there exist two-player zero-sum
Nash equilibrium MA-DMSO instances M1 = (M1,Π,O, {Π′k}k, {Uk}k) and M2 = (M2,Π,O, {Π′k}k, {Uk}k)
with log|M1| = log|M2| = Õ(1) and a one-to-one mapping E :M1 →M2 satisfying:

1. For all M ∈M1, fMk ≡ f
E (M)

k for all k ∈ [2].

2. For all M,M ′ ∈M1 and all π ∈ Π, D2
H(M(π),M ′(π)) = D2

H(E (M)(π),E (M ′)(π)).

3. There exists an algorithm that finds an ε-NE for any model in M1 using Õ
(

1
ε

)
rounds, yet any

algorithm requires Ω̃
(

1
ε2

)
rounds to find an ε-NE for a worst-case model in M2.

Informally, this result states that if a complexity measure depends on the instance M only
through 1) reward functions and 2) pairwise Hellinger distances for models inM, then it cannot
characterize the optimal sample complexity for every instance beyond the gap in the prequel. In
addition, the full result is not limited to Hellinger distance, and applies to general f -divergences
including KL- and χ2-divergence. This rules out tighter guarantees based on various variants of the
DEC, as well as most other general-purpose complexity measures; see Appendix D.2.2 for details.6

6. Directly applying Theorem 1.2 to the constrained DEC presents complications due to M ∈ co(M); see App. D.2.2.
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We emphasize a fundamental separation between the single and multi-agent frameworks. In the
single-agent setting, the constrained DEC characterizes, up to logarithmic factors, the optimal number
of samples required to learn an ε-optimal decision, as long as log|M| = Õ(1) (Foster et al., 2023).
For two or more agents, Theorem 1.2 and Propositions D.2 and D.3 rule out such a characterization.

1.3. Hidden-reward interactive decision making (HR-DMSO)

To prove the results in the prequel, we establish a certain equivalence between the MA-DMSO frame-
work and another single-agent setting we refer to as Hidden-Reward Decision Making with Structured
Observations (HR-DMSO), which generalizes the single-agent DMSO framework (MA-DMSO with
K = 1) by allowing rewards to be hidden from the agent. This setting is of interest in its own right,
and can be thought of as a stochastic, PAC variant of the partial monitoring problem (Bartók et al.,
2014). In what follows, we introduce the framework, then show that 1) MA-DMSO can be viewed
as a special case of the HR-DMSO framework via a simple reduction, and 2) a converse holds, thus
showing a sort of equivalence. We then discuss implications for minimax rates in both frameworks.

Formally, the HR-DMSO framework proceeds in T rounds, where for each round t = 1, 2, . . . , T :

1. The learner selects a decision πt ∈ Π, where Π is the decision space, and gains (but does not
observe) reward fM?

(πt).

2. The learner receives an observation ot ∈ O sampled via ot ∼M?(πt), whereM? : Π→ ∆(O)
is the underlying model. We refer to O as the observation space.

After this process finishes, the learner uses the data collected throughout the T rounds of interaction
to produce an output decision π̂ ∈ Π, which may be randomized according to a distribution
p ∈ ∆(Π). The learner’s goal is to choose the decision π̂ so as to maximize its (unobserved)
reward fM?

(π̂). Formally, writing πM := arg maxπ∈Π f
M(π), we define the risk of an algorithm as:

Risk(T ) := Eπ̂∼p[fM
?
(πM?)− fM?

(π̂)].
We assume that every model M is associated a (known) function fM : Π → R, where fM(π)

specifies the learner’s value under decision π ∈ Π when the underlying model is M . We make the
following realizability assumption, analogous to Assumption 1.1.

Assumption 1.4 (Realizability for HR-DMSO). The learner has access to a model classM consist-
ing of probability kernels M : Π→ ∆(O) that contains the true model M?.

We refer to the tuple H = (M,Π,O, {fM(·)}M∈M) as an instance for the HR-DMSO frame-
work. We extend the constrained Decision-Estimation Coefficient of Foster et al. (2023) to HR-DMSO
as follows. For an instance H = (M,Π,O, {fM(·)}M ), reference model M : Π → ∆(O), and
scale parameter ε > 0, the constrained Decision-Estimation Coefficient is given by7

decε(H ,M) = inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[fM(πM)− fM(π) | Eπ∼q[D2

H

(
M(π),M(π)

)
] ≤ ε2

}
. (5)

We define the Decision-Estimation Coefficient (DEC) of the instance H at scale ε to be decε(H ) =
supM∈co(M) decε(H ,M). This definition is identical to the constrained PAC DEC (Foster et al.,
2023); this is natural, as the only difference between the HR-DMSO framework and the DMSO
framework (Foster et al., 2023) is that we relax the constraint that the agent observes its reward.

7. Note that we use the same notation for the DEC in the HR-DMSO and MA-DMSO settings; we will typically use the
letter H to denote HR-DMSO instances and M to denote MA-DMSO instances to avoid ambiguity.
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Remark 1.3. The HR-DMSO framework is related to the partial monitoring problem (Bartók et al.,
2014), which typically considers regret guarantees; in contrast, we consider PAC guarantees.

1.4. HR-DMSO: Overview of results

It is fairly immediate to see that the HR-DMSO framework generalizes the MA-DMSO framework.
For any MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k) satisfying Assumption 1.3 and
Assumption 1.2, by choosing the value function fM(·) = −hM(·), the instance of the HR-DMSO
framework specified by the tuple H = (M,Π,O, {fM}M ) (recalling that O = O◦ × RK) is
statistically equivalent to M .8 In particular, letting M(M , T ) denote the minimax risk for an
instance M in the MA-DMSO framework, and let M(H , T ) denote the minimax risk for the
corresponding HR-DMSO instance H (see Appendix B for formal definitions), we have:

1. For all M and ε > 0, decε(H ,M) = decε(M ,M). 2. For all T , M(H , T ) = M(M , T ).

It is natural to ask whether the HR-DMSO framework is strictly more general than the MA-
DMSO framework. Indeed, by allowing rewards to be hidden, one might imagine that HR-DMSO
can capture problems outside of MA-DMSO, which forces rewards to be observed. The next result
shows that this is not the case: any HR-DMSO instance can be embedded in a two-player zero-sum
NE instance for MA-DMSO, with minimal increase in statistical complexity.

Theorem 1.3 (Informal version of Theorem C.2). Consider any HR-DMSO instance specified by
the tuple H = (M,Π,O, {fM(·)}M). For any δ > 0, there exists a two-player zero-sum NE
MA-DMSO instance M = (M̃, Π̃, Õ,Π′k, Uk) (Definition 1.1) such that:

1. For all ε > 0, decε(H ) ≤ decε(M ) ≤ δ + decε+δ(H ).

2. For all T ∈ N, it holds that M(H , T ) ≤M(M , T ) ≤M(H , T ) + δ.

3. IfM is finite, then log |M̃| ≤ log |M|+ polylog(T, δ−1).

This result establishes that the MA-DMSO and HR-DMSO frameworks satisfy a sort of equiva-
lence, and shows that characterizing the minimax sample complexity for MA-DMSO is no easier than
characterizing the minimax sample complexity for the HR-DMSO framework. The proof proceeds
by embedding a given instance for the HR-DMSO framework into a two-player game: the first of the
two agents in the game plays the role of the HR-DMSO agent, and the second agent selects actions
to ensure that optimal actions for the original HR-DMSO instance are Nash equilibria for the new
instance, and vice-versa. The key idea is that even though rewards in the game are observed, by
making the game polynomially large, we can ensure that discovering them requires a prohibitively
large amount of exploration, rendering them effectively hidden.

HR-DMSO: Minimax rates. To prove the multi-agent minimax rates in Theorems 1.1 and 1.2,
we first prove analogous bounds for the HR-DMSO framework, then use the equivalence above to
extend them to MA-DMSO. These results can be found in Theorems D.1 to D.3 in Appendix D.

8. It is essential for this reduction that the rewards in H be hidden, since it is in general impossible to simulate a reward
whose mean is −hM(π) using samples from M(π).
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1.5. MA-DMSO: Additional results

Beyond minimax rates, we provide a number of structural results for the MA-DMSO framework,
including: (1) conditions under which the multi-agent DEC can be controlled by the single-agent
DEC, and (2) conditions under which the so-called curse of multiple agents can be avoided.

From multi-agent to single-agent. We show that it is generically possible to upper bound the
MA-DEC in terms of the single-agent DEC for each player k. This result is most easily stated in
terms of a multi-agent analogue of the offset version of the DEC introduced in Foster et al. (2021).
Specifically, we consider a regret variant of the offset DEC that restricts p = q, coupling exploration
and exploitation: For an instance M , reference model M , and scale parameter γ > 0, we define

r-deco
γ(M ,M) := inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[hM(π)]− γ · Eπ∼p[D2

H

(
M(π),M(π)

)
]
}
. (6)

It follows immediately from the results of Foster et al. (2023) (see Proposition E.1) that decε(M ,M) ≤
infγ>0

{
r-deco

γ(M ,M) ∨ 0 + γε2
}

, so upper bounds on r-deco
γ(M ) yield upper bounds on decε(M ),

which can in turn be inserted into Theorem 1.1 to yield upper bounds on minimax risk. While it is also
possible to directly upper bound decε(M ,M) without going through r-deco

γ(M ,M), using r-deco
γ(·)

is more convenient and does not lead to any significant quantitative loss in the resulting upper bounds.
We prove an upper bound on the multi-agent DEC of the instance M , in terms of the (single-

agent) DEC of K different model classes M̃k, defined in terms of M . To define these model classes,
for M ∈ M and k ∈ [K], we first define an induced single-agent model M |k as follows: a pure
observation drawn from M |k(π) has the distribution of the pure observation o◦ when o◦ ∼M(π),
and the reward drawn from M |k(π) has the distribution of rk when (r1, . . . , rK) ∼ M(π). In
short, the model M |k is identical to M but simply ignores the rewards of all agents except k.
Next, the model class M̃k is defined to have policy space Πk, so that models in M̃k are mappings
M̃ : Πk → ∆(R × O◦). Finally, we define the class M̃k, which is indexed by Π−k ×M, via
M̃k = {πk 7→M |k(πk, π−k) : π−k ∈ Π−k, M ∈M}.

Theorem 1.4. Let M = (M,Π,O, {Π′k}k, {Uk}k) be a NE MA-DMSO instance satisfying Assump-
tion E.1. Then for any γ > 0, it holds that9

sup
M∈co(M)

r-deco
γ(M ,M) ≤

K∑
k=1

sup
Mk∈co(M̃k)

r-deco
γ/K(M̃k,Mk).

This result allows us to bound the MA-DEC using standard bounds on the single-agent DEC
(Foster et al., 2021). For example, for normal-form games, where each player has Ak actions, it
yields r-deco

γ(M ,M) . K ·
∑K

k=1
Ak
γ . See Appendix E for refinements concerning Markov games.

The proof of Theorem E.1 employs a novel fixed-point argument: For each agent k, if all other
agents commit to some joint distribution, this induces a single-agent DMSO instance, and it is natural
for k to play the strategy that minimizes the single-agent DEC for this instance. Using Kakutani’s
fixed point theoerem, we show that it is possible for allK agents to apply this strategy simultaneously.

9. Here, the notation r-decoγ/K(M̃k,Mk) refers to the single-agent DEC for the model class M̃k; see Appendix B.
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On the curse of multiple agents. In multi-agent reinforcement learning, the curse of multiple
agents refers to the situation in which the sample complexity required to learn an equilibrium scales
exponentially in the number of players (Jin et al., 2021b). In general, our upper bounds on sample
complexity for the MA-DMSO framework (Theorem 1.1) suffer from the curse of multiple agents due
to the presence of the estimation complexity term log|M|. For example, in a K-player normal-form
game with A actions per player, one has log|M| ≈ AK (using an appropriate discretization of
M). Our final result shows that it is possible to avoid the curse of multiple agents by replacing the
estimation complexity log|M| with the maximum size maxk log|Π′k| for each player’s deviation set,
which is usually polynomial in the number of agents; the tradeoff is that the result scales with the
MA-DEC for the MA-DMSO instance in which the model classM is convexified viaM← co(M).

Theorem 1.5 (Informal version of Theorem F.1). Let M = (M,Π,O, {Π′k}k, {Uk}k) be a CCE
instance (Definition 1.2) or a CE instance (Definition G.1) of the MA-DMSO framework. Then, for
any T ∈ N, Algorithm 1 outputs π̂ ∈ Π such that with probability at least 1− δ,

Risk(T ) = hM
?
(π̂) ≤ Õ(K) · inf

γ>0

{
r-deco

γ(co(M )) +
γ

T
· log

(
maxk |Π′k|

δ

)}
,

where we adopt the convention that co(M ) ≡ (co(M),Π,O, {Π′k}k, {Uk}k).

In normal-form games with K players and A actions per player, we have deco
γ(co(M )) . A

γ

and maxk log|Π′k| = log(A), so this result gives Risk(T ) .
√

poly(K)A/T . More broadly,
Theorem 1.5 shows that it is generically possible to avoid the curse of multiple agents for convex
classes, including structured classes of normal-form games with bandit feedback such as games
with linear or convex payoffs. In general though, it does not lead to tight guarantees for non-convex
classes such as Markov games, and is best thought of as complementary to results for this setting
(Jin et al., 2021b; Song et al., 2021; Mao and Basar, 2022). The result is proven by adapting the
powerful exploration-by-optimization algorithm from the single-agent setting (Lattimore, 2022;
Foster et al., 2022b) so as to exploit the unique feedback structure of the multi-agent setting. We
refer to Appendix F for details, as well as additional results which highlight settings in which the
curse of multiple agents cannot be avoided in the sense of Theorem 1.5.
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Part I

Main results
Appendix A. Organization of appendix

Part I of the appendix presents our main results, with preliminaries in Appendix B. In particular,
Appendix C and Appendix D present our main sample complexity guarantees for the MA-DMSO
and HR-DMSO frameworks.

• Appendix C establishes a certain equivalence between the MA-DMSO and HR-DMSO frame-
works.

• Appendix D establishes upper and lower bounds on the minimax rates for both frameworks
based on the Decision-Estimation Coefficient, and highlights barriers to obtaining sharper
guarantees analogous to those found in the single-agent, reward-observed DMSO framework
(Foster et al., 2023).

Appendix E and Appendix F present additional results concerning the MA-DMSO framework.

• Appendix E gives general conditions under which it is possible to bound the MA-DEC in
terms of the single-agent DEC.

• Appendix F gives conditions under which one can obtain sample complexity guarantees in the
MA-DMSO framework that avoid the so-called curse of multiple agents.

Part II provides examples (instances, as well as upper and lower bounds on the DEC and minimax
rates) and discussion for the MA-DMSO framework, and Part III contains proofs for all results.

Appendix B. Preliminaries

Below we provide additional technical preliminaries which will be used throughout our proofs.

Probability kernels. For probability spaces (X ,X ) and (Y,Y ), a probability kernel P (·|·) from
(X ,X ) to (Y,Y ) is a mapping P : Y × X → [0, 1] which satisfies (1) for all x ∈ X , P (·|x) is a
probability measure on (Y,Y ), and (2) for all Y ∈ Y , the mapping x 7→ P (Y |x) is measurable
with respect to X . To simplify notation we often denote probability kernels as P : X → ∆(Y).

MA-DMSO framework. We adopt the same formalism for probability spaces as in Foster et al.
(2021, 2023). Decisions are associated with a measure space (Π,P), and observations are associated
with the measure space (O,O). In the MA-DMSO framework, pure observations are associated
with the measure space (O◦,O◦) and rewards are associated with a measure space (R,R), and
furthermore, we have O = O◦ × RK and O = O◦ ⊗ R⊗K . Formally, a model M(· | ·) is a
probability kernel from (Π,P) to (O,O). We denote the set of all models asM+. Note thatM+

depends on the measure spaces (Π,P), (O,O); when we wish to make this dependence explicit, we
will writeM+

Π,O. The history up to time t is given by Ht = (π1, o1), . . . , (πt, ot). We define

Ωt =

t∏
i=1

(Π×O), F t =

T⊗
i=1

(P ⊗ O),
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so that Ht is associated with the space (Ωt,F t).
We assume throughout the paper thatR = [0, 1] (which implies in particular that hM(π) ∈ [0,K]

for all M,π) unless otherwise stated. To simplify notation, for each π ∈ Π and M ∈M, we write
hMk (π) := supπ′k∈Πk

fMk (Uk(π
′
k, π))− fMk (π), so that hM(π) =

∑K
k=1 h

M
k (π).

Remark B.1 (Notation for MA-DMSO framework). We use the following convention throughout the
paper: When convenient, we associate any singleton distribution with the element that the distribution
places its mass on. For instance, for a pure decision σ = (σ1, . . . , σK) ∈ Σ1 × · · · × ΣK in the
context of Definition 1.2, we will denote its corresponding singleton distribution Iσ ∈ ∆(Σ) = Π as
just σ ∈ Π. In addition, when possible, we use the convention that Σ denotes a pure decision set,
whereas Π denotes a decision set that may be pure or mixed (this will be clear from context).

The canonical single-agent instance. Given a decision space Π, an observation space O =
O◦ ×R, and a model classM ⊂ (Π → ∆(O)), there is a canonical single-agent instance M =
(M,Π,O, {Π′k}k, {Uk}k) corresponding to the model classM: we take Π′1 = Π and U1(π′1, π) =
π′1, which ensures that hM(π) = maxπ′∈Π f

M(π′) − fM(π) for all π ∈ Π,M ∈ M. The single-
agent instance M of the 1-player MA-DMSO framework exactly captures the DMSO framework
in Foster et al. (2021, 2023) for the model class M. Furthermore, for any model M , we will
write decε(M,M) = decε(M ,M) (and similarly we will write r-deco

γ(M,M) = r-deco
γ(M ,M)

for regret variant of the offset DEC introduced in Appendix E); the quantity decε(M,M) =
decε(M ,M) is identical to the constrained (PAC) DEC of the model classM as defined in Foster
et al. (2023), and the quantity r-deco

γ(M,M) = r-deco
γ(M ,M) is identical to the offset (regret)

DEC of the model classM as defined in Foster et al. (2021).

HR-DMSO framework. As in the MA-DMSO framework, decisions are associated with a measure
space (Π,P), observations are associated with the measure space (O,O), and models M(· |
·) are probability kernels from (Π,P) to (O,O). The history up to time t is given by Ht =
(π1, o1), . . . , (πt, ot), and is associated with the space (Ωt,F t) given by

Ωt =

t∏
i=1

(Π×O), F t =

T⊗
i=1

(P ⊗ O).

We denote the set of all models asM+. Unless stated otherwise, we will assume throughout that
fM(π) ∈ [0, 1] for all M ∈M+ and π ∈ Π.

For a model M and decision π ∈ Π, EM,π[·] denotes expectation under the process o ∼
M(π). To simplify notation, we often abbreviate gM(π) := fM(πM)− fM(π), so that Risk(T ) =
Eπ̂∼p[gM

?
(π̂)].

Remark B.2 (Alternative formulation for HR-DMSO). An equivalent formulation of the HR-DMSO
framework would be to consider models M : Π→ ∆(O ×R) that specify joint distributions over
observations and rewards and define fM(π) = EM,π[r], but only allow o to be observed by the
learner under (o, r) ∼M(π).

Remark B.3 (Contrast with reward-free DMSO). Despite the similar name, the HR-DMSO frame-
work is distinct from the “reward-free” DMSO framework considered in the recent work of Chen et al.
(2022a); in the latter framework, which is specialized to Markov decision processes, a reward-function
is given to the learner explicitly, but only after the learning process ends.
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Density ratios. For both the MA-DMSO and HR-DMSO, we define

V (M) := sup
M,M ′∈M

sup
π∈Π

sup
A∈O

{
M(A | π)

M ′(A | π)

}
∨ e. (7)

Finiteness of V (M) is not necessary for our results to hold, but improves several of our bounds by a
log(T ) factor.

Divergences. Total variation distance is given by

DTV(P,Q) = sup
A∈F
|P(A)−Q(A)| = 1

2

∫
|dP− dQ|,

and the Kullback Leibler divergence is given by

DKL(P ‖Q) =

{ ∫
log
(
dP
dQ
)
dP, P� Q,

+∞, otherwise.

Minimax sample complexity. Formally, for T ∈ N, an algorithm (for either the HR-DMSO or MA-
DMSO frameworks) is a collection of probability kernels (p, q) =

(
p(· | ·), {qt(· | ·)}Tt=1

)
, where

each qt : Ωt−1 → ∆(Π) is a probability kernel from (Ωt−1,F t−1) to (Π,P), and p : ΩT → ∆(Π)
is a probability kernel from (ΩT ,F T ) to (Π,P). We let PM,(p,q) denote the law of (HT , π̂) under
the process:

πt ∼ qt(· | Ht−1), ot ∼M(· | πt), ∀t ∈ [T ], π̂ ∼ p(· | HT ),

and we use EM,(p,q) to denote the corresponding expectation. Our main goal is to characterize the
minimax PAC sample complexity of an instance M = (M,Π,O, {Π′k}k, {Uk}k) of the MA-DMSO
framework or H = (M,Π,O, {fM(·)}M) of the HR-DMSO framework. The minimax sample
complexities for both cases are defined in an identical manner, spelled out below:

M(M , T ) := inf
(p,q)

sup
M?∈M

EM?,(p,q)Eπ̂∼p(·|HT )

[
K∑
k=1

sup
π′k∈Π′k

fMk (Uk(π
′
k, π̂))− fMk (π̂)

]
,

M(H , T ) := inf
(p,q)

sup
M?∈M

EM?,(p,q)Eπ̂∼p(·|HT )[f
M?

(πM?)− fM?
(π̂)].

Additional notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For a set X , we
let ∆(X ) denote the set of all probability distributions over X . For x ∈ X , we use Ix ∈ ∆(X ) to
denote the distribution which places probability mass 1 on x. We adopt standard big-oh notation,
and write f = Õ(g) to denote that f = O(g · max{1, polylog(g)}). We use . only in informal
statements to emphasize the most relevant aspects of an inequality. For a set X , let P(X ) denote the
power set of i.e., the set of all subsets of X .

Appendix C. Equivalence of MA-DMSO and HR-DMSO frameworks

In this section, which forms the starting point for our main results, we show that the MA-DMSO and
HR-DMSO frameworks satisfy a certain statistical equivalence. First, in Theorem C.1, we formalize
the trivial direction of this equivalence: namely, any instance of the MA-DMSO framework can be
viewed as an instance of the HR-DMSO framework. To state the result, recall that per our convention,
the full observation space in a MA-DMSO instance is denoted by O = O◦ ×RK .
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Theorem C.1 (Reducing MA-DMSO to HR-DMSO). Consider any instance of the MA-DMSO frame-
work satisfying Assumption 1.3 and Assumption 1.2 and specified by the tuple M = (M,Π,O, {Π′k}k, {Uk}k).
Then for some choice of value functions f̃M , the instance of the HR-DMSO framework specified by
the tuple H = (M,Π,O, {f̃M}M), satisfies:

1. For all models M and ε > 0, decε(H ,M) = decε(M ,M).

2. For all T ∈ N, M(H , T ) = M(M , T ).

This result proceeds by choosing the value function f̃M(π) = K − hM(π). Note that for this
reduction to be admissible, it is critical that rewards are hidden: the function hM(π) is not observed
directly in the MA-DMSO framework, and as we will see, this is a source of fundamental hardness.

Theorem C.1 is a fairly immediate result, and it is natural to imagine that the HR-DMSO
framework might truly be more general than the MA-DMSO framework, especially since rewards are
observed in the latter. The following result, which is the formal version of Theorem 1.3, shows that
if one allows for small approximation, any instance of the HR-DMSO framework can be embedded
in a two-player, zero-sum NE instance for MA-DMSO with minimal increase in complexity.

Theorem C.2 (Reducing HR-DMSO to MA-DMSO). Consider any instance of the HR-DMSO
framework specified by the tuple H = (M,Π,O, {fM(·)}M). Then for any V ∈ N, there is a two-
player zero-sum NE instance M = (M̃, Π̃, Õ,Π′k, Uk) for the MA-DMSO framework (Definition 1.1)
such that:

1. For all ε > 0, decε(M ) ≤ decε(H ) ≤ 6/
√
V + decε+(6/V )−1/2(M ).

2. For all T ∈ N, it holds that M(M , T ) ≤M(H , T ) ≤M(M , T ) +O((T log(T )/V )1/4).

3. M̃ is indexed by tuples (M, i) ∈ M × [V ]. In particular, if M is finite, then log |M̃| =
log |M|+ log V .

The main consequence of this result is that characterizing the minimax sample complexity for
the MA-DMSO is no easier than characterizing the minimax sample complexity for the HR-DMSO
framework; this will allow us to restrict our attention to the latter task for the results that follow. Let
us make some additional remarks.

• As we increase the parameter V , the approximation to the minimax rate in Theorem C.2
improves. Choosing V = poly(T ) suffices for all settings of interest, the only tradeoff is that
the size of the model classM increases from log|M| to log|M|+ log V . For the results we
consider in subsequent sections, this increase will be inconsequential (beyond log(T ) factors).

• Beyond preserving the minimax risk, both reductions preserve the value of the Decision-
Estimation Coefficient, which is a consequence of preserving rewards and Hellinger distances
for models in the class. This will become relevant for our results in the sequel (Appendix D),
where we show that the DEC is closely connected to minimax risk, yet not completely
equivalent.

• Both reductions are algorithmic in nature. For example, suppose that we start with a HR-
DMSO instance H and produce a MA-DMSO instance M via the reduction in Theorem C.2.
Then any algorithm that achieves low risk for every model in M can be efficiently lifted to an
algorithm for the original class H .
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Theorem C.2 is proven by embedding a given instance H for the HR-DMSO framework into a
two-player zero game instance M , where the first of the two agents plays the role of the HR-DMSO
agent. The key properties of the embedding are that:

1. The second agent selects actions to ensure that near-optimal decisions for the original HR-
DMSO instance form Nash equilibria for the new instance, and vice-versa.

2. Even though rewards in the game instance M are observed, by increasing the size of the game
(as a function of the parameter V ), we can ensure that discovering an action with non-zero
reward requires a prohibitively large amount of exploration, rendering them hidden (up to
small approximation error).

Appendix D. Upper and lower bounds on minimax rates

This section presents our results regarding minimax rates for the MA-DMSO and HR-DMSO
frameworks. We work in the HR-DMSO framework for the majority of the section, and give
implications for the MA-DMSO at the end, using the equivalence from Appendix C. In more detail:

• In Appendix D.1, we give upper and lower bounds on the minimax rates for interactive decision
making in the HR-DMSO framework, which scale with the constrained DEC.

• Next, we establish in Appendix D.2 that, under mild regularity assumptions on the constrained
DEC, the upper and lower bounds on the minimax rate are separated by at most a polynomial
factor (ignoring the estimation error term); for most parameter regimes, the gap between the
bounds is at most quadratic. We then show—perhaps surprisingly—that neither the upper or
lower bounds can be improved, in that there are instances where each is nearly tight. In other
words, in contrast to the DMSO framework (Foster et al., 2023), in the HR-DMSO framework,
the constrained DEC cannot not give a characterization of the minimax sample complexity
which is tight beyond a quadratic factor. We show further that this gap is not limited to the
constrained DEC, and in fact holds for an entire family of complexity measures based on
pairwise f -divergences between models. As a result, any characterization of the minimax rate
for HR-DMSO which is tight up to polylogarithmic factors must use a complexity measure
substantially different from those considered in recent works (Foster et al., 2021, 2022b, 2023).

• Finally, using the equivalence shown in the previous section, we establish (Appendix D.3) that
all of the results above hold verbatim in the MA-DMSO framework.

All of the results in this section are presented in a general form. We refer to Part II of the appendix
for applications to specific instances of interest.

D.1. HR-DMSO: Upper and lower bounds on minimax rates

We now give upper and lower bounds on the minimax risk for the HR-DMSO framework. We obtain
upper bounds as an immediate corollary of regret bounds for the Estimation-to-Decisions+ (E2D+ for
PAC) algorithm from recent work of Foster et al. (2023). The E2D+ for PAC algorithm was introduced
in the (single-agent/non-hidden-reward) DMSO framework, where it leads to tight upper bounds
on minimax risk based on the constrained DEC (Foster et al., 2023). We observe that it provides
identical guarantees for the more general HR-DMSO framework without modification; this can be
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seen by inspecting the proof of correctness of the E2D+ for PAC algorithm in Foster et al. (2023) and
noting that it does not make use of the fact that the learning agent observes the rewards r1, . . . , rT .
Further background on the algorithm may be found in Appendix J.1.

Our main upper bound is stated for the case in whichM is finite (|M| < ∞); more general
guarantees for infinite classes are given in Appendix J.1.

Theorem D.1 (Minimax upper bound for HR-DMSO (Foster et al., 2023)). Fix δ ∈
(
0, 1

10

)
and

T ∈ N, and consider any instance H = (M,Π,O, {fM(·)}M). Suppose that Assumption 1.4 holds.

Letting ε(T ) := 16

√
dlog 2/δe

T · log |M|δ , the E2D+ for PAC algorithm, when configured appropriately,
guarantees that with probability at least 1− δ,

Risk(T ) ≤ decε(T )(H ).

In addition, if fM(·) ∈ [0, R] for all M ∈M and some R > 0, then the expected risk is bounded
as E[Risk(T )] ≤ decε(T )(H ) + δR.

Before interpreting this result, we complement it with our main lower bound, Theorem D.2,
which shows that the minimax risk for any algorithm is lower bounded by the constrained DEC for
an appropriate choice of the scale parameter ε > 0. The statement of this result uses the definition
C(T ) := log(T ∧ V (M)). In addition, we recall that gM(π) := fM(πM)− fM(π).

Theorem D.2 (Minimax lower bound for HR-DMSO). Consider any instance H = (M,Π,O, {fM(·)}M)
and write R := supπ∈Π,M∈M gM(π). Given T ∈ N, let ε(T ) > 0 be chosen as large as possible
such that

ε(T )2 · C(T ) ·R · T ≤ 1

8
· decε(T )(H ). (8)

Then for any algorithm, there exists a a model inM for which

E[Risk(T )] ≥ 1

6
· decε(T )(H ).

Understanding the bounds. We now give a sense for the behavior of the lower bound of Theo-
rem D.2 and the upper bound of Theorem D.1 through several examples. For simplicity we consider
the case that R = supπ∈Π,M∈M gM(π) = 1 (in the context of Theorem D.2).

•
√
T -rates. Most of the classes studied in the literature on bandits and reinforcement learning

have the property that the optimal rate is O(
√
T ). Many of these problems have the property

that rewards are observed (i.e., they lie in the DMSO framework), but such rates also arise
for problems in HR-DMSO for which rewards are not observed; a notable example is locally
observable finite partial monitoring problems (Bartók et al., 2014). For such classes, it holds
that decε(H ) ∝ ε ·

√
Cprob, for some problem-dependent constant Cprob > 0 reflecting the

complexity of the model classM (see Foster et al. (2021, 2023) for examples). In this case,
by choosing a failure probability of δ = 1/T , we have ε(T ) .

√
log(T ) log(T |M|)/T , so

that Theorem D.1 gives an upper bound of

E[Risk(T )] ≤ Õ

(√
Cprob log |M|

T

)
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on the minimax risk. For lower bounds, if decε(H ) ∝ ε ·
√
Cprob, then the solution to the

fixed point equation (8) is ε(T ) &
√
Cprob/(T · C(T )). This translates, via Theorem D.2,

into a lower bound of

E[Risk(T )] ≥ Ω̃

(
Cprob

T

)
on the minimax risk, which differs from the upper bound by a quadratic factor (ignoring the
log |M| factor). By the results of Foster et al. (2023), for the special case where rewards are

observed (i.e., the DMSO framework), the upper bound of Õ
(√

Cprob log |M|
T

)
is the correct

rate (up to the log |M| factor and log T factors). We will show in the sequel that for general
settings where rewards are not observed, this is not necessarily the case, and the lower bound
can be tight.

• Nonparametric rates. For nonparametric model classes, for which the optimal regret is
ω(
√
T ), it is typically the case that decε(H ) ∝ ε1−ρ for some ρ ∈ (0, 1). For such prob-

lems, Theorem D.1 yields an upper bound of E[Risk(T )] ≤ Õ
(
(log |M|/T )(1−ρ)/2

)
on

the minimax risk. In contrast, the best possible solution to the fixed point equation in
(8) is ε(T ) & 1/(T · C(T ))

1
1+ρ , which translates, via Theorem D.2, into a lower bound

of E[Risk(T )] ≥ Ω̃
(

1/T
1−ρ
1+ρ

)
on the minimax risk. Here the lower bound is off from

the upper bound (ignoring the log |M| factor) by a power of 2
1+ρ ≤ 2. By the results of

Foster et al. (2023), for the special case where rewards are observed, the upper bound of
Õ
(
(log |M|/T )(1−ρ)/2

)
is the correct rate (up to the log |M| factor and log T factors).

We refer to Foster et al. (2023) for concrete examples exhibiting the growth rates sketched above for
the special case where rewards are observed (DMSO), and to Part II of the appendix for examples
arising from MA-DMSO.

D.2. HR-DMSO: Gaps between bounds and impossibility of tight characterizations

We now investigate the nature of the gap between the upper and lower bounds in Theorems D.1
and D.2. We first give a generic bound on the gap, then show that it is not possible—in a fairly strong
sense—to close the gap further.

D.2.1. ON THE GAP BETWEEN THE UPPER AND LOWER BOUNDS

Ignoring constant factors, the only difference between the upper and lower bounds of Theorems D.1
and D.2 is the scale ε at which the DEC is computed. The upper bound of Theorem D.1 uses

scale ε(T ) = 8

√
dlog 2/δe

T · log|M|, whereas the lower bound of Theorem D.2 (with R = 1) uses
the scale ε(T ), which is defined implicitly to be as large as possible subject to the constraint
ε(T )2 · C(T ) · T ≤ 1

8 · decε(T )(H ). Thus, the size of the gap between ε(T ) and ε(T ) controls the
degree of tightness of these upper and lower bounds. In what follows, we give a bound on the size of
this gap that holds whenever the constrained DEC satisfies the following regularity assumption.

Assumption D.1 (Regularity). An instance H (of either HR-DMSO or MA-DMSO) is said to satisfy
the regularity condition with constants Creg, creg > 1 at scale ε ∈ (0, 2) if

decε(H ) ≤ c2
reg · decε/Creg

(H ).
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Most natural classes satisfy Assumption D.1 for some constants creg, Creg (in particular, the
condition is satisfied whenever decε(H ) ∝ εp for p < 2). We note that a similar assumption used in
Foster et al. (2023) to give upper bounds on the optimal rates attainable in the DMSO framework.

Under Assumption D.1, the following result shows that our upper bound on minimax risk, which
scales with decε(T )(H ), is bounded above by a quantity that is a polynomial of our lower bound,
namely decε(T )(H ).

Proposition D.1. Suppose that an instance H (for either HR-DMSO or MA-DMSO) satisfies
Assumption D.1 for some values Creg > creg > 1 and for all ε ∈ (ε(T ) · cregCreg

, ε(T )). Choose any

β ≥ log creg
log(Creg/creg) . Then for any T ∈ N,

decε(T )(H ) ≤ (C log 1/δ · log|M| · C(T ) · Creg/creg)
β

1+β · decε(T )(H )
1

1+β .

We remark that Proposition D.1 is a purely algebraic fact that makes no use of the structure of the
DEC, and in particular holds for instances of both the HR-DMSO and MA-DMSO frameworks. To
make the result concrete, we consider, we revisit each of the situations we discussed in Appendix D.1,
and describe how applying Proposition D.1 allows us to conclude that our upper and lower bounds
are related by a polynomial factor.

•
√
T -rates. Suppose that decε(H ) ∝ ε ·

√
Cprob, for some problem-dependent constant

Cprob > 0. Then, for any constant β > 1, there is a sufficiently large absolute constant
Creg > 1 so that, for all ε > 0, decε(H ) ≤ Cβreg · decε/Creg

(H ). It follows that Assumption

D.1 is satisfied with the constants Creg and creg := C
β/2
reg (which satisfy β ≥ log creg

log(Creg/creg) ),
and Proposition D.1 gives that

decε(T )(H ) ≤ Õ(log|M|)
β

1+β · decε(T )(H )
1

1+β .

Disregarding the estimation error and taking β → 1, we conclude that decε(T )(H ) .

decε(T )(H )1/2−o(1), i.e., there is a (roughly) quadratic gap between our upper and lower
bounds.

• Nonparametric rates. Suppose that decε(H ) ∝ ε1−ρ for some ρ ∈ (0, 1). Then for any
constant β > 1−ρ

1+ρ , there is a sufficiently large constant Creg > 1 so that, for all ε > 0,

decε(H ) ≤ C
β(1+ρ)
reg · decε/Creg

(H ). Thus, Assumption D.1 is satisfied with the constants

Creg and creg := C
β(1+ρ)/2
reg , which satisfy β ≥ log creg

log(Creg/creg) , and Proposition D.1 gives that

decε(T )(H ) ≤ Õ(log|M|)
β

1+β · decε(T )(H )
1

1+β .

Disregarding the estimation error and taking β → 1−ρ
1+ρ (so that 1

1+β →
1+ρ

2 ), we conclude

that decε(T )(H ) . decε(T )(H )
1+ρ
2
−o(1), i.e., the gap between the upper and lower bounds is

smaller than quadratic.

Of course, the arguments in Appendix D.1 already allowed us to draw these conclusions directly; the
purpose here is to exhibit how this conclusion can obtained as a special case of the more general
Proposition D.1.
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D.2.2. ON TIGHT CHARACTERIZATIONS FOR THE MINIMAX RISK

It is natural to wonder whether the polynomial gap between our upper and lower bounds can be
tightened to give a characterization of the minimax risk up that is only loose by polylogarithmic
factors. In this section, we show that this is not possible in several senses.

Tightness of the upper and lower bounds. In Propositions D.2 and D.3, we give two instances
H1 H2, so that, up to log 1

ε factors, we have both decε(H1) � ε and decε(H2) � ε. Despite having
the same behavior for the DEC, the minimax rates for the instances are different: For the instance
H1, the upper bound from Theorem D.1 is tight (M(H1, T ) & 1/

√
T ), yet for H2, the lower bound

from Theorem D.2 is tight (M(H2, T ) . log(T )/T ).

Proposition D.2 (An instance where the upper bound is tight). For any sufficiently L,A ∈ N, there is
an instance H1 = (M,Π,O, {fM(·)}M) with log |M| ≤ log(LA) and which satisfies the following
properties:

1. For all T ≤ 2L/2, the minimax rate for H1 is given by M(H1, T ) = Θ(
√
A/T ).

2. For all ε ∈ (2−L, 1/
√
A), it holds that c · ε

√
A ≤ decε(H1) ≤ C · ε

√
A, for some constants

c, C > 0.

The instance H1 in Proposition D.2 has model class given by a subclass of multi-armed bandit
problems with A arms and Bernoulli rewards, and the bounds in the proposition are an immediate
consequence of prior work. We provide a proof in Appendix D.2 for completeness.

Proposition D.3 (An instance where the lower bound is tight). For any sufficiently large L ∈ N and
any Cprob ≥ 1, there exists an instance H2 = (M,Π,O, {fM(·)}M) with log |M| ≤ L2, satisfying
the following properties:

1. For all T ≤ 2L, the minimax rate for the instance H2 is bounded as M(H2, T ) ≤ 8C2
prob log T

T .

2. For all ε ≥
√

2
Cprob·2L

, we have Cprob√
8·L · ε ≤ decε(H2) ≤ 2Cprob · ε. In particular, ε(T ) ≥

Ω
(

Cprob

T log(T )·L

)
as long as T ≤ 2L/L3.

In particular, for any T ∈ N, by choosing L = 100 log T , we have that for all ε ≥ Ω
(

1
Cprob·T 100

)
,

the instance H2 satisfies, Ω(ε · Cprob/ log 1
ε ) ≤ decε(H2) ≤ O(ε · Cprob), yet the minimax risk is

bounded as M(H2, T ) ≤ O(C2
prob log(T )/T ).

Let us compare the instances for Proposition D.2 and Proposition D.3. First, note that for both
instances, the estimation complexity log|M| scales as Õ(1). Thus:

• Theorem D.1, using the radius ε(T ), yields an upper bound on the minimax risk of Õ(1/
√
T ),

which is tight for H1.

• Theorem D.2, using the radius ε(T ), yields a lower bound on the minimax risk of Ω̃(1/T ),
which is tight for H2.
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That is, the instance H1 establishes that our upper bound cannot be improved to use the radius
ε(T ), and the instance H2 establishes that our lower bound cannot be improved to use the radius
ε(T ). More generally, since decε(H1) and decε(H2) have the same behavior, yet H1 and H2 have
different minimax rates, the constrained DEC cannot give a tight characterization of the minimax
risk for the HR-DMSO framework. This contrasts the situation for the (reward-observed) DMSO
framework in Foster et al. (2023), where the constrained DEC characterizes the minimax rates up to
logarithmic factors whenever log|M| = Õ(1).

We remark in passing that the instances constructed in Propositions D.2 and D.3 satisfy the
regularity condition of Assumption D.1 for Creg, creg ≤ O(log T ) and all ε ≥ ε(T ). Thus, the
regularity condition is not sufficient to close the gap between the upper and lower bounds.

Ruling out more general characterizations. We now show that the gaps highlighted above are
not limited to the DEC, and are in fact intrinsic to a broad class of complexity measures. Our main
result, Theorem D.3 shows that for any f -divergence D(· ‖ ·) satisfying a mild assumption, it is
possible to construct two HR-DMSO instances H1 and H2 for which the minimax risk differs by a
polynomial factor, yet 1) the value functions associated with H1 and H2 are identical, and 2) the
pairwise D(· ‖ ·)-divergences between all models in H1 and H2 are identical. In other words:

It is impossible to obtain a tight characterization for minimax risk that depends only on value
functions and pairwise f -divergences.

Definition D.1 gives our main technical assumption regarding f -divergences: roughly speaking, it
states that the function defining the f -divergence exhibits at most polynomial growth near 0 and∞.

Definition D.1 (Bounded f -divergence). Consider a convex function φ : [0,∞)→ [0,∞] so that
φ(1) = 0 and φ(x) is finite for all x > 0, and let

Dφ(P ‖ Q) := EQ

[
φ

(
dP
dQ

)]
(9)

denote the associated f -divergence for probability measures P and Q with P� Q. For constants
α, β ≥ 0, we say that φ is (α, β)-bounded if, for all x ≥ 1,

φ(1/x) +
φ(x)

x
≤ β · xα.

In such a case, we say that the f -divergence Dφ is (α, β)-bounded.

Essentially all commonly used f -divergences satisfy Definition D.1 for small values of α and β.
For the Hellinger divergence, we have φ(x) = (

√
x− 1)2, so that D2

H(·, ·) is (0, 2)-bounded; for the
KL-divergence, we have φ(x) = x ln(x) + 1− x, so that DKL(· ‖ ·) is (0, 2)-bounded; and for the
χ2-divergence, we have φ(x) = (x− 1)2, so that Dχ2(·, ·) is (1, 1)-bounded.

Remark D.1 (Non-negativity of φ). We remark that often, when f -divergences are presented, it
is assumed that the function φ maps to [−∞,∞] (as opposed to [0,∞]). Assuming that φ maps to
[0,∞] is without loss of generality, for the following reason. It is well-known that for any c ∈ R,
and for any convex function φ satisfying φ(1) = 0, letting φ̃(x) = φ(x) + c · (x − 1), we have
Dφ = D

φ̃
. Thus, given any φ : [0,∞) → [−∞,∞], we may choose any c ∈ −∂φ(1), so that

0 ∈ ∂(φ(x) + c · (x− 1)), which in particular implies that φ(x) + c · (x− 1) ≥ 0 for all x, and the
f -divergence induced by φ(x) + c · (x− 1) is equivalent to Dφ.
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Theorem D.3. For some constants α, β ≥ 0, suppose Dφ is an (α, β)-bounded f -divergence. Then
for any T ∈ N, ε ∈ (0, 1), and Cprob ≥ 1, there are instances H1 = (M1,Π1,O1, {fM1 (·)}M∈M1

),
H2 = (M2,Π2,O2, {fM2 (·)}M∈M2

) of the HR-DMSO framework, so that Π1 = Π2, O1 = O2, and
there is a one-to-one mapping E :M1 →M2 satisfying:

1. For all M ∈M1, fM1 ≡ f
E (M)

2 .

2. For all M,M ′ ∈M1, and π ∈ Π1, Dφ(M(π) ‖M ′(π)) = Dφ(E (M)(π) ‖ E (M ′)(π)).

3. There is some constant Cφ depending only on φ so that for all T ′ with T ≤ T ′ ≤ T 3/2−2ε ·
(CφC

1/2+ε
prob lnT )−1, it holds that

M(H1, T
′) ≤ 1

T
+ 2 ·

(
Cprob

T

)1/2+ε/(2α)

, M(H2, T
′) ≥ 2−2−2/ε ·

(
Cprob

T

)1/2

.

In the event that α = 0, the quantity (Cprob/T )1/2+ε/(2α) in the statement of Theorem D.3 is to
be interpreted as 0. In particular, if D(· ‖ ·) is the Hellinger divergence or the KL divergence, then
we have M(H1, T

′) ≤ 1/T in Item 3, giving a quadratic separation. If D(· ‖ ·) is the χ2-divergence,
then we have M(H1, T

′) ≤ O(1/T 1/2+ε/2), which leads to a smaller, yet still polynomial separation
for any choice of the constant ε > 0.

Several variants of the DEC and related complexity measures depend only on the value func-
tions fM(·) (for M ∈ M) and pairwise f -divergences between models in the classM, and thus
cannot provide a characterization for minimax risk in the HR-DMSO framework that is tight up to
polylogarithmic factors. Below, we highlight a few notable examples.

• The distributional offset DEC (Foster et al., 2021; Chen et al., 2022a; Foster et al., 2023), is
defined for H = (M,Π,O, {fM(·)}M) as:10

deco,rnd
γ (H ) = sup

ν∈∆(M)
inf

p,q∈∆(Π)
sup
M∈M

Eπ∼p[fM(πM)− fM(π)]− γ · Eπ∼q
[
EM∼ν

[
D2

H

(
M(π),M(π)

)]]
.

Clearly, this definition depends only on value functions {fM}M∈M and pairwise Hellinger
distances for models inM, and hence can only characterize minimax risk up to a quadratic
factor.

• The offset DEC (Foster et al., 2021, 2023) is defined for H = (M,Π,O, {fM(·)}M) as:

deco
γ(H ) = sup

M∈co(M)

inf
p,q∈∆(Π)

sup
M∈M

Eπ∼p[fM(πM)− fM(π)]− γ · Eπ∼q[D2
H

(
M(π),M(π)

)
].

Note that deco
γ(H ) depends on the divergence between models inM and those in co(M),

which is not covered by Theorem D.3. However, Foster et al. (2023, Proposition D.2) show that
deco

γ(H ) ≤ deco,rnd
γ/4 (H ) ≤ deco

γ/4(H ) (that is, deco
γ(H ) and deco,rnd

γ (H ) are equivalent
up to constant factors), so it follows from the previous bullet point that this complexity measure
can only characterize minimax risk up to a quadratic factor.

10. We consider the PAC variant of the offset DEC here (Foster et al., 2023), but it is clear that our argument applies
identically to the regret version of the DEC (Foster et al., 2021).
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• Foster et al. (2021, 2023) consider variants of the DEC that are applied to localized subsets
of the model class M. In particular, the following two notions of localization have been
considered in Foster et al. (2021): for some localization radius α > 0, a model classM, and a
reference model M ,

Mα(M) :={M ∈M : fM(πM) ≤ fM(πM) + α}, and

M∞α (M) :=
{
M ∈M :

∣∣∣(fM(πM)− fM(π))− (fM(πM)− fM(π))
∣∣∣ ≤ α ∀π ∈ Π

}
.

Since these definitions only depend on the value functions {fM}M∈M, Theorem D.3 implies
that incorporating localization into the variants of the DEC considered above cannot help to
provide a characterization of the minimax risk.

• The information ratio (Russo and Van Roy, 2014, 2018; Lattimore and György, 2021) was
introduced to bound the Bayesian regret for posterior sampling and a more general algorithm
known as information-directed sampling. The information ratio of a model classM is closely
related to the DEC of the convex hull of M; in particular, Foster et al. (2022b) showed
that a parametrized version of the information ratio ofM is equivalent to the DEC of the
convex hull ofM, up to constant factors. As the DEC of co(M) involves pairwise Hellinger
distances between models in the convex hull ofM, Theorem D.3 does not definitively rule
it out as providing a characterization of minimax risk. However, the DEC of co(M) is
known to be exponentially larger than the minimax risk for many natural examples (e.g.,
tabular reinforcement learning (Foster et al., 2022b)), so it seems unlikely to provide a tight
characterization.

There are also variants of the information ratio which Theorem D.3 does rule out: given a
reference model M ∈M and a distribution µ ∈ ∆(M), one can define (Foster et al., 2021)

I(H ,M, µ) := arg min
p,q∈∆(Π)

(Eπ∼pEM∼µ[fM(πM)− fM(π)])2

Eπ∼qEM∼µ[DKL

(
M(π) ‖M(π)

)
]
.

As this definition depends only on value functions and pairwise KL-divergences for models in
M, Theorem D.3, no function of I(H ,M, µ) (such as a worst-case version of the informa-
tion ratio defined by maxM∈Mmaxµ∈∆(M) I(H ,M, µ)) can provide a characterization of
minimax risk.

• Note that in general, the constrained DEC decε(H ) = supM∈co(M) decε(H ,M) depends
on Hellinger divergences between models inM and those in co(M), so Theorem D.3 does
not directly rule out a characterization in terms of decε(H ). However, we have already ruled
out such a characterization separately in Propositions D.2 and D.3. Of course, the variant
supM∈M decε(H ,M), which restricts to M ∈M, only depends on the value functions and
pairwise Hellinger divergences of models inM, and hence is covered by Theorem D.3.

Let us remark that one complexity measure not currently ruled out by our results is the generalized
information ratio considered in the work of Lattimore (2022) on adversarial partial monitoring, which
uses an unnormalized KL-like divergence based on the logarithmic barrier, and cannot be written in
terms of f -divergences. The upper and lower bounds on regret given by Lattimore (2022) are loose
by poly(|Π|) factors, and as such we find it to be unlikely that this complexity measure can give tight
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guarantees in the “large decision-space/model class” regime where T � min{|M|, |Π|}, which is
the focus of our work.

Remark D.2. While this is out of scope for the present paper, we remark that it is possible to
establish similar impossibility results for the regret (as opposed to PAC) framework.

D.3. Implications for MA-DMSO framework

Up to this point, all of the results in this section concerned the HR-DMSO framework. Using
Theorems C.1 and C.2, we can immediately derive analogous results for the MA-DMSO framework.
In what follows, we state these analogues (in particular, upper and lower bounds on minimax risk,
and impossibility of tighter results), all of which are corollaries the results in the prequel. We refer to
Part II of the appendix for applications of these results.

Upper and lower bounds on minimax risk. We begin by stating upper and lower bounds for
the minimax risk for instance of MA-DMSO in terms of the Multi-Agent DEC; these results are
corollaries of Theorems D.1 and D.2.

Corollary D.1 (Minimax upper bound for MA-DMSO). Fix δ ∈
(
0, 1

10

)
and T ∈ N, and consider

any K-player MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k). Suppose that fMk (·) ∈ [0, 1]

for all k ∈ [K] and M ∈M, and let ε(T ) := 16

√
dlog 2/δe

T · log |M|
δ . Then we have

M(M , T ) ≤ decε(T )(M ) +Kδ. (10)

Proof of Corollary D.1. Given an instance M of MA-DMSO, consider the instance H =
(M,Π,O, {f̃M}M) as per Theorem C.1. We have that hM(·) ∈ [0,K] for all M ∈ M, meaning
that f̃M(·) ∈ [−K + 1, 1] for all M ∈M under the construction in the proof of Theorem C.1. By
rescaling f̃M(·), the guarantee from Theorem D.1 ensures that M(H , T ) ≤ decε(T )(H ) + Kδ,
from which (10) follows using Theorem C.1. We have also used here that both M(H , T ) and
decε(H ) scale linearly under rescaling of the value functions f̃M(·).

As we discuss further in Remark J.1, the high-probability guarantee from Theorem J.1 applies
also in the MA-DMSO setting, i.e., in the contex of Corollary D.1.

Corollary D.2 (Minimax lower bound for MA-DMSO). Consider any instance M = (M,Π,O, {Π′k}k, {Uk}k)
for the MA-DMSO framework with R = [0, 1]. Given T ∈ N, let ε(T ) > 0 be chosen as large as
possible such that ε(T )2 · C(T ) ·K · T ≤ 1

8 · decε(T )(M ). Then

M(M , T ) ≥ 1

6
· decε(T )(M ).

Corollary D.2. Given an instance M of MA-DMSO, consider the instance H = (M,Π,O, {f̃M}M)
as per Theorem C.1. By definition of f̃M , we have that supπ∈Π,M∈M supπ′∈Π f̃

M(π′)−f̃M(π) ≤ K.
Then we have M(M , T ) = M(H , T ) ≥ 1

6 · decε(T )(H ) = 1
6 · decε(T )(M ), where the two equali-

ties use Theorem C.1 and the inequality uses Theorem D.2.
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As we have already remarked, Proposition D.1, which bounds the gap between our upper and
lower bounds based on the DEC, already applies to instances of MA-DMSO whenever Assumption
D.1 is satisfied. In particular, this means that whenever decε(M ) ∝ ε1−ρ for ρ ∈ [0, 1), we have

decε(T )(M ) ≤ Õ(K
1−ρ
1+ρ log

1−ρ
2 |M|) · decε(T )(M )

1+ρ
2 .

Tightness of the gaps. Next, we provide analogues of Propositions D.2 and D.3 for the MA-DMSO.
The results construct MA-DMSO instances M1 (Proposition D.4) and M2 (Proposition D.5) that
exhibit the same DEC behavior, in that decε(M1) � ε and decε(M2) � ε, yet have minimax rates:
M(M1, T ) & 1/

√
T and M(M2, T ) . log(T )/T . In particular, Proposition D.4 below shows that

in the upper bound Corollary D.1, the scale ε(T ) cannot be decreased, and Proposition D.5 below
shows that in the lower bound Corollary D.2, the scale ε(T ) cannot be increased.

Proposition D.4. For any sufficiently largeL,A ∈ N, there is an instance M1 = (M,Π,O, {Π′k}k, {Uk}k)
with log |M| ≤ log(LA) and which satisfies the following properties:

1. For all T ≤ 2L/2, the minimax rate for the instance M1 is given by M(M1, T ) = Θ(
√
A/T ).

2. For all ε ∈ (2−L, 1/
√
A), it holds that c · ε

√
A ≤ decε(M1) ≤ C · ε

√
A, for some constants

c, C > 0.

Proof of Proposition D.4. We observe that the instance H = (M,Π,O, {fM(·)}M) used to
prove Proposition D.2 immediately yields the 1-player instance of MA-DMSO given by M1 =
(M,Π,O,Π′1, U1), with Π′1 = Π and U1(π′1, π) = π′1, since rewards are observed under all models
inM. The result then follows immediately from Proposition D.2.

Proposition D.5. For any sufficiently large L ∈ N and any Cprob ≥ 1, there exists an instance
M2 = (M,Π,O, {Π′k}k, {Uk}k) with log |M| ≤ O(L2 + logCprob), satisfying the following
properties:

1. For all T ≤ 2L, the minimax rate for the instance M2 is bounded as M(M2, T ) ≤ 8C2
prob log T

T .

2. For all ε ≥
√

2
Cprob·2L

, we have Cprob√
8·L · ε ≤ decε(M2) ≤ 2Cprob · ε. In particular, ε(T ) ≥

Ω
(

Cprob

T log(T )·L

)
as long as T ≤ 2L/L3.

Proof of Proposition D.5. Given L and Cprob, let H = (M,Π,O, {fM(·)}M) be the instance
given per Proposition D.3. Next, let M2 = (M̃, Π̃, Õ, {Π′k}k, {Uk}k) be the instance constructed
per Theorem C.2 for the instance H with V = 100 · C2

prob · 22L. We have log |M̃| = log |M| +
log V ≤ O(L2 + logCprob). Using the guarantees of Proposition D.3 and Theorem C.2, we have

M(M2, T ) ≤ M(H , T ) ≤ 8C2
prob log T

T for T ≤ 2L, and for all ε ≥ 2
Cprob·2L

(which ensures that

ε−
√

6/V ≥
√

2
Cprob·2L

),

Cprob√
8 · L

·
(
ε−

√
6/V

)
≤ decε−(6/V )−1/2(H )− 6/

√
V ≤ decε(M2) ≤ decε(H ) ≤ 2Cprob · ε.

Since ε ≥ 1
Cprob·2L

implies that
√

6/V ≤ ε/2, it follows that Cprob

2
√

8L
· ε ≤ decε(M2) ≤ 2Cprob · ε.
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Ruling out more general characterizations. Finally, we state an analogue of Theorem D.3 for the
MA-DMSO framework, which shows that any complexity measure that dependence on the instance
M only through value functions and pairwise f -divergences can only characterize the minimax risk
up to polynomial factors.

Theorem D.4. For some constants α, β ≥ 0, suppose that Dφ is an (α, β)-bounded f -divergence
(Definition D.1). Then for any T ∈ N, ε > 0, and Cprob ≥ 1, there are instances M1 =
(M1,Π,O, {Π′k}k, {Uk}k), M2 = (M2,Π,O, {Π′k}k, {Uk}k) of the MA-DMSO framework, so
that there is a one-to-one mapping E :M1 →M2 satisfying:

1. For all M ∈M1, fM1 ≡ f
E (M)

2 .

2. For all M,M ′ ∈M1, and π ∈ Π, Dφ(M(π) ‖M ′(π)) = Dφ(E (M)(π) ‖ E (M ′)(π)).

3. There is some constant Cφ depending only on φ so that for all T ′ with T ≤ T ′ ≤ T 3/2−2ε ·
(CφC

1/2+ε
prob lnT )−1, it holds that

M(M1, T
′) ≤ 1

T
+ 2 ·

(
Cprob

T

)1/2+ε/(2α)

, yet M(M2, T
′) ≥ 2−3−2/ε ·

(
Cprob

T

)1/2

.

The proof uses the equivalence of Theorem C.2 to translate the construction of HR-DMSO
instances in Theorem D.3 to the MA-DMSO framework. Since Theorem D.3 makes a claim about
pairwise f -divergences as opposed to the constrained DEC of the instance, decε(H ), we cannot
apply Theorem C.2 in an entirely black-box manner, yet most of the reasoning from the proof of
Theorem C.2 carries over.

Appendix E. MA-DMSO: From Multi-Agent to Single-Agent

Having established upper and lower bounds on the minimax risk for the MA-DMSO framework
based on the Multi-Agent Decision-Estimation Coefficient, we spend the remainder of the paper
providing structural results which can be used to apply our main risk bounds to concrete settings of
interest. To this end, in section we provide generic results which allow the conditions under which
the multi-agent DEC can be controlled by the single-agent DEC, thereby allowing one to lift the
plethora of existing results for the single-agent setting (Foster et al., 2021, 2023) to multiple agents.

Induced single-agent model classes. Consider a Nash equilibrium instance M = (M,Π,O, {Π′k}k, {Uk}k)
for the MA-DMSO framework (Definition 1.1), recalling that Π = Π1 × · · · ×ΠK . We will prove
upper bounds on the multi-agent DEC of the instance M in terms of the single-agent DEC for a
collection of induced single-agent model classes M̃k defined based on M . To define the model
classes M̃k, for M ∈M and k ∈ [K], we first define a single-agent model M |k as follows: a pure
observation drawn from M |k(π) has the distribution of the pure observation o◦ when o◦ ∼M(π),
and the reward drawn from M |k(π) has the distribution of rk when (r1, . . . , rK) ∼M(π). In other
words, the model M |k is identical to M but ignores the rewards of all agents except k.

The single-agent model class M̃k is defined to have policy space Πk, so that models in M̃k are
mappings M̃ : Πk → ∆(O◦ × R). In addition, M̃k is indexed by Π−k ×M and its models are
given as follows:

M̃k = {πk 7→M |k(πk, π−k) : π−k ∈ Π−k, M ∈M} . (11)
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The intuition behind this definition is that for each agent k, if other agents commit to playing π−k,
this induces a “single-agent” environment for k. If M ∈ M is the original environment, then the
modelM |k(·, π−k) ∈ M̃k is precisely the induced single-agent environment for k (in a decentralized
protocol in which each agent observes its own reward but not the reward of other agents).

Offset Decision-Estimation Coefficient. The results in this section are most naturally stated in
terms of the offset variant of the DEC introduced in Foster et al. (2021)—specifically, the regret
variant which restricts to p = q (that is, exploration and exploitation are coupled). For an instance
M , reference model M , and scale parameter γ > 0, we define

r-deco
γ(M ,M) := inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[hM(π)]− γ · Eπ∼p[D2

H

(
M(π),M(π)

)
]
}
. (12)

We remark, via Foster et al. (2023), that this notion can be related to the constrained (PAC) DEC as
follows.

Proposition E.1 (Foster et al. (2023)). For all M ∈M+ and ε > 0,

decε(M ,M) ≤ inf
γ>0

{
r-deco

γ(M ,M) ∨ 0 + γε2
}
. (13)

Proposition E.1 suffices to derive tight bounds on the constrained DEC for all of the examples
we will consider. It is also possible to relate the two complexity measures in the opposite direction,
but this can lead to loose results (Foster et al., 2023); this will not be necessary for our purposes.

E.1. Bounding the MA-DEC for convex decision spaces

Our first result considers a general class of instances in which agents’ decision spaces Πk satisfy a
convexity property, formally stated as Assumption E.1.

Assumption E.1 (Convexity of decision spaces). For each k ∈ [K], there is a finite set Ak (called
the pure decision set) so that Πk = ∆(Ak). Furthermore, the following holds:

1. Each M ∈ M is linear in π, i.e., for π ∈ Π, M(π) = Eak∼πk∀k[M(a)], where we write
a = (a1, . . . , aK).

2. There is a measurable functionϕ : O → A so that, for all a ∈ A andM ∈M, Po∼M(a)(ϕ(o) =
a) = 1, i.e., M(a) reveals a.

This assumption is quite mild, and is satisfied whenever players 1) are allowed to randomize
their actions, and 2) observe the resulting actions that are sampled at each round. In particular, this
encompasses (structured) normal-form games with bandit feedback (see examples in Appendix G.3).
To simplify notation, we will write A = A1 × · · · × AK and A−k =

∏
k′ 6=kAk′ .

Our main result for this subsection, Theorem E.1, shows that for any M ∈ ∆(M), we can bound
the multi-agent DEC r-deco

γ(M ,M) in terms of the single-agent DECs r-deco
γ/K(M̃k,Mk), of the

K model classes M̃k and reference models Mk.

Theorem E.1 (Restatement of Theorem 1.4). Suppose that M = (M,Π,O, {Π′k}k, {Uk}k) is an
NE instance of the MA-DMSO framework satisfying Assumption E.1. Then for any γ > 0, it holds
that

sup
M∈co(M)

r-deco
γ(M ,M) ≤

K∑
k=1

sup
Mk∈co(M̃k)

r-deco
γ/K(M̃k,Mk).
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This result is quite intuitive: It shows that the complexity of centralized equilibrium computation
is no larger than the complexity required for each agent to optimize their own reward in the face of a
worst-case environment induced by the other players. It is proven using the following fixed-point
argument: For a given agent k, if all other agents commit to a joint distribution, this induces a
single-agent DMSO class M̃k, and it is natural for agent k to play the strategy that minimizes the
single-agent DEC for this class. This is not enough to bound the MA-DEC as-is, because we need
to specify a strategy for all agents, but by applying Kakutani’s fixed point theoerem, we show that
it is possible for all K agents to simultaneously minimize their respective single-agent DECs with
respect to the other agents’ strategies. Furthermore, we remark that an immediate consequence of
Theorem E.1 is that the same upper bound on r-deco

γ(M ) holds also when M is a CCE or a CE
instance, since Nash equilibria are always (coarse) correlated equilibria (see Appendix G.3).

As a concrete example, for the multi-armed bandit problem withA actions, we have r-deco
γ(M) ≤

O
(
A
γ

)
(Foster et al., 2021). Using Theorem E.1, it follows that if M is the class of K-player normal-

form games with bandit feedback and Ak actions per player, then

sup
M∈co(M)

r-deco
γ(M ,M) ≤ O(K) ·

∑K
k=1Ak
γ

.

Using Proposition E.1, we conclude that decε(M ) ≤ O
(
ε ·
√
K
∑K

k=1Ak

)
. We refer to Ap-

pendix G.3 for details, as well as additional examples, including structured normal-form games with
linear or concave payoffs. For many of these examples, the application of Theorem E.1 leads to
nearly tight bounds on r-deco

γ(M ). However, this is not always true: In Proposition G.11 (Appendix
G.3.5), we show that there are instances M for which r-deco

γ(M̃k) is much larger than r-deco
γ(M ).

E.2. Bounding the MA-DEC for Markov games

While Assumption E.1 is quite general, and holds for most standard normal-form game setups, a
notable setting that it does not capture is that of Markov games, where the joint decision space Π
consists of randomized non-stationary policies (formalized in Assumption E.2 below).11 In this
section, we provide an analogous result specialized to this general, non-convex setting.

Assumption E.2 (Markov game instance). The instance M = (M,Π,O, {Π′k}k, {Uk}k) is such
that for some H ∈ N, finite state space S, and finite joint action space A =

∏K
k=1Ak, each model

M ∈M is a K-player, horizon-H Markov game with state space S and joint action space A (see
Example 1.2). In addition, for each k, the class Πk consists of non-stationary, randomized Markov
policies, i.e.,

Πk = {(πk,1, . . . , πk,H) | πk,h : S → ∆(Ak) ∀h ∈ [H]} .

The finiteness of S and A in Assumption E.2 is made for technical reasons, so as to enable the
application of fixed point theorems; our bounds in this section will not depend quantitatively on |S|
or |A|, and we anticipate that this assumption can be relaxed.

11. One might try to satisfy Assumption E.1 by convexifying each agent’s decision space Πk; however, in the setting of
Markov games, this will lead the model classes M̃k defined in (11) to be prohibitively large, since the policies π−k
will now be mixtures of non-stationary Markov policies. In particular, the DEC of the induced model classes M̃k that
result will in general scale with the DEC of the class of mixtures of MDPs, which is exponential even in the tabular
setting (Foster et al., 2022b).
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Under Assumption E.2, we provide the following analogue of Theorem E.1.

Theorem E.2. There is a constant C > 0 so that the following holds. Suppose that M =
(M,Π,O, {Π′k}k, {Uk}k) is an NE instance of the MA-DMSO framework satisfying Assumption
E.2. Then for any γ > 0, it holds that

sup
M∈M

r-deco
γ(M ,M) ≤ CKH logH

γ
+

K∑
k=1

sup
Mk∈M̃k

r-deco
γ/(CKH logH)(M̃k,Mk).

As an example, for whenM is a class of tabular MDPs with |S| = S and |A| = A, we have
r-deco

γ(M) ≤ poly(S,A,H)
γ (Foster et al., 2021). Theorem E.2 then implies that for tabular Markov

games with |S| ≤ S and |Ak| ≤ A, we have supM∈M r-deco
γ(M ,M) ≤ poly(S,A,H,K)

γ and via (13),

sup
M∈M

decε(M ,M) ≤ ε ·
√

poly(S,A,H,K).

We remark that while Theorem E.1 allows for improper reference models M ∈ co(M), Theorem E.2
is restricted to proper reference models M ∈ M, and hence is mainly useful in settings (such as
tabular MGs) in which proper estimators are available. See Appendix G.3 examples, as well as
further details.

Appendix F. MA-DMSO: On the Curse of Multiple Agents

A nuisance encountered frequently in the study of multi-agent reinforcement learning is poor scaling
of sample complexity with respect to the number of agentsK. In particular, algorithms which directly
estimate the model M? or agents’ Q-value functions typically incur sample complexity exponential
in K, due to the fact that both the model and agents’ Q-value functions require at least exp(K)
parameters to specify; this phenomenon has been called the curse of multiple agents (Jin et al.,
2021b). In this section, we investigate the curse of multiple agents in the MA-DMSO framework
through the lens of the Multi-Agent Decision-Estimation Coefficient.

We first remark that the upper bound on the minimax risk in terms of the DEC in our upper
bound, Theorem D.1 (as well as the more general version, Theorem J.1), does indeed suffer from
the curse of multiple agents: even for very simple model classes such as K-player normal-form
games, the estimation error log|M| in Theorem D.1 will scale exponentially in K (see examples in
Appendix G.3 for details and discussion), and therefore the upper bound in Theorem D.1 will also
scale exponentially in K, even though the MA-DEC is not itself exponential. Note that our lower
bound (Theorem D.2) does not have exponential dependence on K, since (a) the DEC typically
scales as decε(M ) � Cprob · ε, where the problem-dependent constant Cprob depends only on the
size of agents’ individual action sets, thus avoiding scaling exponential in K, and (b) the bound of
Theorem D.2 does not include any term involving model estimation error (in particular, it does not
multiply the scale ε(T ) at which the DEC is evaluated).12

12. We recall that even in the single-agent setting, the appearance of the estimation error term in the upper bound, but not
in the lower bound, leads to a gap between them. Foster et al. (2023) emphasize that narrowing this gap is an important
open problem.
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Evading the curse of multiple agents. Celebrated results in multi-agent (bandit) learning imply
that the curse of multiple agents is not necessary, at least for multi-player normal-form games with
bandit feedback: if each player runs an adversarial bandit no-regret algorithm, then the empirical
average of their joint action profiles over T time steps approaches a (coarse) correlated equilibrium
for the game at a rate of poly(K,maxk Ak)/

√
T (e.g., Rakhlin and Sridharan (2013)), where Ak

is the number of actions for player k. Furthermore, a sequence of recent works has extended these
results to the setting of Markov games (Jin et al., 2021b; Song et al., 2021; Mao and Basar, 2022).

It is natural to wonder if it is possible to capture these results, which avoid exponential scaling
with K, through our framework and the Multi-Agent Decision-Estimation Coefficient. In light of
the discussion above, this question translates to asking whether the log |M| term in Theorem D.1
(more generally, the term EstH(T ) in Theorem J.1, which can be controlled in terms of covering
numbers), which results from estimation error, can be decreased. Note that in general, as observed in
Foster et al. (2021), the estimation error term log|M| appearing in Theorem D.1 cannot be removed
completely, even in single-agent settings, but one might hope to replace it with a weaker quantity.
One possible avenue, if possible, would be to replace log|M| with log |FM|, where FM denotes the
induced class of value functions; this approach was explored for the single-agent setting in (Foster
et al., 2022a), where it leads to tighter guarantees for model-free reinforcement learning settings.
However, this approach is insufficient for the purpose of avoiding the curse of multiple agents, since
(an ε-cover of) the value function class F typically has size whose logarithm scales exponentially in
K, even for normal-form games with bandit feedback (Example 1.1).

In light of this discussion, perhaps most promising approach for evading the curse of multiple
agents is to aim for bounds that are analogous to Theorem D.1, but replace the factor log|M| with the
logarithm of the size of the agents’ decision sets. Indeed, the logarithm of the size of the joint (pure)
decision set typically does not scale exponentially in K. For instance, for K-player normal-form
games in which each player has A actions, the number of pure action profiles is AK , so its logarithm
is only linear in K; equivalently, one can look for bounds which scale as the sum of the logarithms
of the agents’ individual decision sets. In the single-agent DMSO setting, Foster et al. (2021, 2022b)
indeed obtain bounds that scale with log |Π|, as opposed to log |M|. There is a cost to pay for this
improvement, however: the upper bounds of Foster et al. (2021, 2022b) that replace log|M| with
log |Π| depend on the DEC of the convex hull ofM, as opposed to the DEC ofM itself.

Our upper bound. In Theorem F.1 below, we provide an upper bound that replaces the factor
log|M| appearing in Theorem D.1 with maxk log |Π′k|, at the cost of scaling with the MA-DEC for a
convexified version of the instance M . The quantity maxk log |Π′k| is equal to maxk log(|Σk|+1) in
the special case of CCE instances (Definition 1.2), but is also small for CE instances (Definition G.1),
as well as the following more general notion of correlated equilibrium, which we refer to as a
“generalized correlated equilibrium”.

Assumption F.1 (Generalized correlated equilibrium). We say that an MA-DMSO instance M =
(M,Π,O, {Π′k}k, {Uk}k) satisfies the generalized correlated equilibrium assumption if the following
holds: we have Π = ∆(Σ1 × · · · × ΣK), for finite sets Σ1, . . . ,ΣK , called pure decision sets.
Furthermore, writing Σ := Σ1 × · · · × ΣK , the instance M satisfies:

1. Each M ∈M is linear in π, i.e., for π ∈ Π, M(π) = Eσ∼π[M(σ)].

2. The deviation functions Uk respect linearity in the sense that for all k ∈ [K], M ∈ M, and
π ∈ Π, π′k ∈ Π′k, we have fMk (Uk(π

′
k, π)) = Eσ∼π[fMk (Uk(π

′
k, σ))].
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It is straightforward to check that both CCE instances (Definition 1.2) and CE instances (Defini-
tion G.1) satisfy Assumption F.1 as long as the pure decision sets Σk are all finite.

To state our result, for an instance M = (M,Π,O, {Π′k}k, {Uk}k) of the MA-DMSO frame-
work, we define the convex hull of the instance M to be the instance co(M ) := (co(M),Π,O, {Π′k}k, {Uk}k).
We with the results in the previous section, our guarantees are most naturally stated in terms of the
regret variant of the MA-DEC (r-deco

γ ; cf. (12)).

Theorem F.1. Suppose that M = (M,Π,O, {Π′k}k, {Uk}k) is an MA-DMSO instance satisfying
Assumption F.1. Then, for any T ∈ N and δ ∈ (0, 1), there exists an algorithm (MAExO; Algorithm 1
in Appendix L) which produces π̂ ∈ Π such that with probability at least 1− δ,

Risk(T ) = hM
?
(π̂) ≤ O(K) · inf

γ>0

{
r-deco

γ(co(M )) +
γ

T
· log

(
K ·maxk |Π′k|

δ

)}
.

We view this result as extending guarantees that replace log|M| by log|Π| in the single-agent
setting (Foster et al., 2021, 2022b); as with those prior results, the cost is that the DEC is applied to
the convex hull of the instance. For the problem of computing CCE in normal form games with K
players and A actions per player, we have deco

γ(co(M )) . A
γ and maxk log|Π′k| = log(A), so this

result gives

Risk(T ) .

√
poly(K) ·A

T
;

see Appendix G.3 for details and further examples. Theorem F.1 shows that it is possible to avoid the
curse of multiple agents for convex classes, and leads to tight guarantees for structured classes of
normal-form games with bandit feedback, such as games with linear or convex payoffs. In general
though, it does not lead to tight guarantees non-convex classes such as Markov games. We prove the
result by adapting the powerful exploration-by-optimization algorithm from the single-agent setting
(Lattimore, 2022; Foster et al., 2022b) in a way that exploits the unique feedback structure of the
multi-agent setting. One might wonder how the guarantee of Theorem F.1 compares to what one
would obtain by having each agent k run the (single-agent) exploration-by-optimization algorithm
of Foster et al. (2022b) separately (applied to the model class M̃k defined in (11)) and using the
resulting regret bound of Foster et al. (2022b) for each agent to obtain an approximate CCE. As we
show in Proposition G.11, the guarantee of Theorem F.1 can be arbitrarily better than this alternative
approach, since it involves the multi-agent DEC, r-deco

γ(co(M )), which can be arbitrarily smaller
than the DEC for the single-agent classes, r-deco

γ(co(M̃k)).

Extending the result to infinite decision sets. We next explain how to extend the guarantee of
Theorem F.1 to the setting where the pure decision sets Σk and deviation sets Π′k are not finite.
We will focus on CCE instances: consider a MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k)
satisfying Assumption F.1. Consider subsets Σ̃k ⊆ Σk and Π̃′k ⊆ Π′k for each k, and write
Π̃ = ∆(Σ̃1 × · · · × Σ̃K) ⊂ Π. (As an example, if M is a CCE instance, we will often take
Π̃′k = Σ̃k ∪ {⊥}.) It is straightforward to see that the instance M̃ = (M, Π̃,O, {Π̃′k}k, {Uk}k)
satisfies Assumption F.1 (with pure decision sets Σ̃k). We now define a sense in which the instance
M̃ is a good cover for M .
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Definition F.1. Let M , M̃ be defined as above. For ε ≥ 0, we say that that M̃ is an ε-decision
space cover for M if

∀M ∈M, ∀k ∈ [K], ∀π̃ ∈ Π̃, ∃π̃′k ∈ Π̃′k s.t. max
π′k∈Π′k

fMk (Uk(π
′
k, π̃))− fMk (Uk(π̃

′
k, π̃)) ≤ ε

K
.

We let NΠ(M , ε) := maxk∈[K] |Π̃′k| denote the size of the largest deviation set in the smallest such
cover, and define, for T ∈ N,

estΠ(M , T ) = inf
ε≥0
{logNΠ(M , ε) + εT} .

Let M̃ = (M̃, Π̃,O, {Π̃′k}k, {Uk}k) be an ε-decision space cover for M . Note that, for any
π̂ ∈ Π̃, it follows from Definition F.1 that

hM(π̂) =
K∑
k=1

max
π′k∈Π′k

fMk (Uk(π
′
k, π̂))− fMk (π̂) ≤

K∑
k=1

max
π̃′k∈Π̃k

fMk (Uk(π̃
′
k, π̂))− fMk (π̂) + ε.

Therefore, applying the algorithm of Theorem F.1 to an appropriate decision space cover for the
instance M (for an appropriate choice of ε), we get the following result as an immediate corollary:

Corollary F.1. Suppose that M = (M,Π,O, {Π′k}k, {Uk}k) is a MA-DMSO instance satisfying
Assumption F.1. Then, for any T ∈ N and δ ∈ (0, 1), there exists an algorithm which produces
π̂ ∈ Π such that with probability at least 1− δ,

Risk(T ) = hM
?
(π̂) ≤ O(K) · inf

γ>0

{
r-deco

γ(co(M )) +
γ

T
· (estΠ(M , T ) + log(K/δ))

}
.

Lower bounds for Nash equilibrium instances. Theorem F.1 relies on the assumption that M is
a generalized correlated equilibrium instance (Assumption F.1). To close the section, we complement
this result by showing that it is not possible to achieve analogous guarantees for Nash equilibria.
First, in Proposition F.1 we show such an impossibility result for K-player NE instances: We give
an instance for which the upper bound in Theorem F.1 is polynomial in K, yet the minimax risk is
exponential in K.

Proposition F.1. There is a constant c0 > 0 so that the following holds. For any K ∈ N, there is a
K-player NE instance M = (M,Π,O, {Π′k}k, {Uk}k) so that:

1. maxk |Π′k| = 2.

2. For all γ > 0, r-deco
γ(co(M )) ≤ O(K/γ).

3. There is no algorithm that adaptively draws 2o(K) samples and outputs a policy with expected
risk at most c0 ·K.

For the instance M in Proposition F.1, we have |Π′k| = O(1) so a bound of the form in
Theorem F.1 would imply that Õ(poly(K)/ε2) samples suffice to learn an ε-approximate Nash
equilibrium; the lower bound on sample complexity of 2Ω(K) from Proposition F.1 rules this out. The
proof of Proposition F.1 follows directly from well-known lower bounds on the query complexity of
K-player Nash equilibria (Rubinstein, 2016; Babichenko, 2016; Chen et al., 2017).

For our last result Theorem F.2, we go even further, and show that the impossibility of proving
any variant of Theorem F.1 for NE instances persists even in the case when K = 2 and the game is
zero-sum.
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Theorem F.2. There is a constant C0 > 0 so that the following holds. Fix any N ∈ N with N ≥ C0

and ε ∈ (1/N, 1). There is a two-player zero-sum NE instance M = (M,Π,O, {Π′k}k, {Uk}k)
such that the following holds:

1. max{|Π′1|, |Π′2|} ≤ |Π| ≤ C0 ·N2/ε2.

2. For all γ ≥ C0, r-deco
γ(co(M )) ≤ ε.

3. There is no algorithm that adaptively draws
√
N/C0 samples and outputs a policy with

expected risk at most 1/C0.

Observe that for the instance M in Theorem F.2, we have log|Π| . log(N/ε), so a bound of the
form in Theorem F.1 would imply that roughly log(N/ε)

ε samples suffice to learn an ε-approximate
equilibrium. The lower bound on sample complexity in Theorem F.2, which shows that Ω(

√
N)

samples are required, thus rules out a guarantee of this type in a fairly strong sense.
We remark that the instance M constructed in Theorem F.2, while an NE instance per Defini-

tion 1.1, does not correspond to the standard notion of mixed Nash equilibrium in normal-form games
(see the discussion following Definition 1.1). Since the marginals of coarse correlated equilibria in
two-player zero-sum games constitute mixed Nash equilibria, Theorem F.1 rules out a strengthening
of Theorem F.2 which constructs an NE instance corresponding to the standard notion of mixed Nash
equilibrium.

The proof of Theorem F.2 is significantly more challenging (given prior work) than that of
Proposition F.1. It uses the classical support estimation problem (e.g., Paninski (2008); Canonne
(2020)) to construct an instance for which the DEC is small but the minimax risk is large. This
idea is natural, because the support estimation problem has large model-estimation error, and the
upper bound of Theorem J.1, which involves the model estimation error, must be respected by the
instance M . Using the support estimation problem as a building block, we construct a class of
two-player zero-sum games, which bears some resemblance to the construction used in the proof
of Theorem C.2. However, the construction in the latter result does not ensure that r-deco

γ(co(M ))
remains small, necessitating a more sophisticated approach. To ensure that r-deco

γ(co(M )) is small
while maintaining a lower bound on minimax risk, we need to embed a few additional components in
the construction, namely the composition of a Reed-Solomon code and a randomness extractor. We
refer the reader to Appendix M for further details.

Part II

Examples
Appendix G. MA-DMSO: Examples of instances

In this section of the appendix, we give examples of instances for the MA-DMSO framework, and
apply our results to derive upper and lower bounds on the minimax risk.

• In Appendix G.1 we give additional examples equilibria that can be captured in the MA-DMSO
framework, focusing on correlated equilibria and variants.
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• In Appendix G.2 we give detailed examples of MA-DMSO instances, including normal-form
games with linear or concave payoffs (Appendix G.2.1) and Markov games (Appendix G.2.2).

• Finally, in Appendix G.3, we give bounds on the Multi-Agent Decision-Estimation Coefficient
and minimax risk for variance instances, including finite-action normal-form games (Appendix
G.3.1), structured normal-form games (Appendix G.3.2, Appendix G.3.3), and tabular Markov
games (Appendix G.3.4). In addition, in Appendix G.3.5, we give an instance which shows
that the multi-agent to single-agent reduction in Theorem E.1 can be loose in general.

G.1. Additional examples of equilibria

Definition G.1 below shows how we can use the MA-DMSO framework to capture the problem of
(normal-form) correlated equilibrium computation in games. The definition is similar to that of CCE
instances (Definition 1.2), except players’ deviation sets consist of mappings from their pure decision
set to itself; these mappings describe how the player deviates as a function of their pure decision.

Definition G.1 (Correlated equilibrium instance). We say that an MA-DMSO instance M =
(M,Π,O, {Π′k}k, {Uk}k) is a correlated equilibrium (CE) instance if the following holds:

1. For some finite sets Σ1, . . . ,ΣK (called pure decisions), we have Π = ∆(Σ1× · · · ×ΣK). We
write Σ = Σ1 × · · · × ΣK .

2. For each π ∈ Π and M ∈M, it holds that M(π) = Eσ∼π[M(σ)].

3. For k ∈ [K], we have Π′k = ΣΣk
k , i.e., Π′k is the set of functions φ : Σk → Σk.

4. For each k ∈ [K], π ∈ Π, and φ ∈ Π′k, Uk(φ, π) ∈ ∆(Σ) is the distribution whose probability
mass function is given as follows:

∀σ ∈ Σ, Uk(φ, π)(σ) = π
({

(σ′k, σ−k) ∈ Σ : φ(σ′k) = σk
})
.

In words, Uk(φ, π) is the distribution of (φ(σk), σ−k), for σ ∼ π.

Our next example considers notions of equilibria specialized to Markov games. Recall that
Definitions 1.2 and G.1 describe instances that capture the notions of (coarse) correlated equilibria
in normal-form games, in which the pure actions belong to Σ = Σ1 × · · · × ΣK . In the setting of
Markov games, often a slightly different notion of (coarse) correlated equilibrium is used, whch we
show is captured by Example G.1 below.

Example G.1 (Markov (coarse) correlated equilibria in Markov games). In Example 1.2, We will
show how to capture the problem of computing Markov coarse correlated equilibria (CCE) and
Markov correlated equilibria (CE) (e.g., Bai et al. (2020); Liu et al. (2021); Daskalakis et al. (2022))
in the MA-DMSO framework, generalizing the notion of Markov Has equilibrium from Example 1.2.
As in Example 1.2, we assume that the class M consists of finite-horizon Markov games with
horizon H ∈ N, state spaces Sh for h ∈ [H], action spaces Ak for k ∈ [K], and distribution
d1 ∈ ∆(S1), all of which are identical across all models in the model class. The pure observation
space O◦ consists of trajectories, and the reward space is R = [0, 1]. For both Markov CE and
Markov CCE, the joint decision space is the set Π of Markov correlated policies, namely policies
π = (π1, . . . , πH), where each πh : Sh → ∆(A1 × · · · × AK) specifies a mapping from states to
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joint distributions over actions. For a modelM and a joint decision π ∈ Π, an observation (trajectory)
o = {(sh, (a1,h, . . . , aK,h), (r1,h, . . . , rK,h))}h∈[H] is drawn as follows: first, s1 ∼ d1, and then for
h ∈ [H]:

• (a1,h, . . . , aK,h) ∼ πh(sh) and rk,h ∼ RM
k (sh, (a1,h, . . . , aK,h)).

• sh+1 ∼ PM
h (·|sh, (a1,h, . . . , aK,h)).

It remains to specify the deviation sets Π′k and switching functions Uk:

• For the case of Markov CCE, for each k ∈ [K], the deviation set Π′k is the set of deterministic
Markov policies for player k, which take the form π′k = (π′k,1, . . . , π

′
k,H), where π′k,h : Sh →

Ak. For a joint policy π ∈ Π, Uk(π′k, π) ∈ Π is the Markov correlated policy where player k
plays according to π′k,h at each state and all other players play according to π. In particular,
denoting π̃ := Uk(π

′
k, π), we have that π̃h(sh) = π′k,h(sh) × π−k,h(sh), where π−k,h(sh)

denotes the marginal of πh(sh) on the actions of all players but k. Summarizing, for the
MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k), we have that π̂ ∈ Π, hM?

(π̂) = 0 if
and only if π̂ is a Markov CCE of M?.

• For the case of Markov CE, for each k ∈ [K], the deviation set Π′k is simply the set of tuples
φ = (φk,h,s)h∈[H],s∈Sh , where each φk,h,s : Ak → Ak is a function from Ak to itself. For a
joint policy π ∈ Π, Uk(φ, π) is the Markov correlated policy π̃ defined as follows: the joint
action distribution of π̃ at step h and state sh ∈ Sh is the distribution given by:

π̃h(s)(a) = πh(s)({(a′k, a−k) ∈ A : φ(a′k) = ak}),

for joint actions a ∈ A. In words, π̃h(s) is the distribution of (φ(a′k), a−k), for a ∼ πh(s).
Summarizing, for the MA-DMSO instance M = (M,Π,O, {Π′k}k, {Uk}k) , we have that
π̂ ∈ Π, hM?

(π̂) = 0 if and only if π̂ is a Markov CE of M?.

Note that the instances constructed above are not special cases of the CCE or CE instances (
Definitions 1.2 and G.1) we consider for normal-form games. This is because the notions of Markov
(C)CE discussed above are more restrictive, forcing the joint decision π̂ to be a (joint) Markov policy,
as opposed to an arbitrary distribution over joint policies. Nevertheless, as Example G.1 shows, the
MA-DMSO framework is sufficiently general to capture all of these notions of equilibria. /

G.2. Additional examples of instances

In this section, we give additional examples of instances that capture standard equilibrium learning
problems found in the literature. We begin by describing examples of structured normal-form games
in Appendix G.2.1, and then consider multi-agent reinforcement learning problems in Appendix
G.2.2.

G.2.1. INSTANCES FOR BANDITS

In this section, we describe several instances of structured normal-form games, which may be thought
of as multi-agent generalization of structured bandit problem found in the single-agent setting. For
each example we consider, the models will have the following common structure (paralleling that of
Example 1.1).
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• Each agent k ∈ [K] will have a set Ak, referred to as its pure action set, and the joint
policy space Π will be a subset of ∆(A) = ∆(A1 × · · · × AK) which contains all singleton
distributions Ia.

• We will takeR := [−1, 1] as the reward space and O◦ := A as the pure observation space.

• Let a class of mean reward functions F ⊆ (A → RK) be given. We define the model class
MF as the set of models M : Π→ ∆(RK ×O◦) for which there is some (f1, . . . , fK) ∈ F
so that: (a) for all singleton distributions Ia ∈ Π, the distribution of (r1, . . . , rK , o◦) ∼M(Ia)
satisfies o◦ = a a.s. and EM,Ia [rk] = fM(Ia) = fk(a), and (b) for all π ∈ Π, M(π) =
Ea∼π[M(Ia)].

In words,MF consists of models M where (i) value functions fMk (·) are given by some element of
F , and (ii) observations reveal the action played (via the pure observation).

First, in Example G.2, we consider a normal-form game with linearly structured rewards, gen-
eralizing the single-agent linear bandit problem (Dani et al., 2007; Abernethy et al., 2008; Bubeck
et al., 2012). This example generalizes Example 1.1, which can be thought of as the special case
where each player’s action set is the set of standard unit vectors.

Example G.2 (Normal-form games with linear rewards). Fix K ∈ N; for each player k ∈ [K],
Ak ⊂ Rdk for some dk ∈ N. Write d = d1d2 · · · dK . Suppose that Θ1, . . . ,ΘK ⊂ Rd are convex
sets so that |〈a1⊗· · ·⊗aK , θk〉| ≤ 1 for all a1 ∈ A1, . . . , aK ∈ AK , k ∈ [K], and θk ∈ Θk. Define
F ⊂ (A → RK) by F = {(a1, . . . , aK) 7→ (〈a1⊗· · ·⊗aK , θk〉)k∈[K] : θ1 ∈ Θ1, . . . , θK ∈ ΘK}.
We can now consider the instances corresponding to finding Nash equilibria, CE, and CCE for the
class of games whose payoffs are given by functions in F :

• We first treat Nash equilibria: suppose we set Πk = ∆(Ak) for each k ∈ [K] and Π =
Π1 × · · · × Πk, and define Π′k, Uk as in Definition 1.1. We define M = MF . Then the
instance M = (M,Π,O, {Π′k}k, {Uk}k) captures the problem of finding Nash equilibria in
an unknown linear bandit game.

• Next we treat (C)CE: we set Π = ∆(A1 × · · · × AK) and define Π′k, Uk as in Defini-
tion G.1 (respectively, Definition 1.2). We define M = MF , so that the instance M =
(M,Π,O, {Π′k}k, {Uk}k) captures the problem of finding (coarse) correlated equilibria in an
unknown linear bandit game.

/

Next, Example G.3 treats the setting of concave games (with bandit feedback), which has received
extensive attention in the game theory literature (Rosen, 1965; Even-Dar et al., 2009), as well as
machine learning (Bravo et al., 2018; Maheshwari et al., 2022; Lin et al., 2021). It can also be viewed
as a generalization of the problem of single-player concave bandits (Kleinberg, 2004; Flaxman et al.,
2005; Bubeck et al., 2017; Lattimore, 2020).13

13. Often referred to as convex bandits, or zeroth-order convex optimization, since it is typically phrased in the form of
loss minimization, whereas we consider reward maximization.
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Example G.3 (Concave games). Given K ∈ N, for each k ∈ [K], let dk ∈ N and Ak ⊂ Rdk be
a convex and compact subset with nonempty interior. Set A := A1 × · · · × AK ⊂ Rd, where
d = d1 + · · ·+ dK . Define F ⊂ (A → RK) by

F =
{
f : A → [0, 1]K | ∀k ∈ [K], ∀a−k ∈ A−k, Ak 3 ak 7→ fk(ak, a−k) is concave and 1-Lipschitz

}
.

Above, 1-Lipschitzness is with respect to the `2 norm. We consider the following Nash and CCE
instances:

• We first consider Nash equilibria: define Π′k, Uk as in Definition 1.1, and set Π = A,M =
MF . Then the instance M = (M,Π,O, {Π′k}k, {Uk}k) captures the problem of finding
Nash equilibria in concave games, a classical problem (Rosen, 1965). In the two-player zero-
sum case (namely, when K = 2 and f1(a) + f2(a) = 0 for all a ∈ Π), the problem of bandit
feedback which we cover has received extensive attention (Bravo et al., 2018; Maheshwari
et al., 2022; Lin et al., 2021).

• We next consider coarse correlated equilibria. Define Π := ∆(A1 × · · · × AK), namely the
space of Borel measures on the compact setA1×· · ·×AK ⊂ Rd, and setM =MF . Further-
more define Π′k, Uk as in Definition 1.2. Then the instance M = (M,Π,O, {Π′k}k, {Uk}k)
captures the problem of finding coarse correlated equilibria in concave games; this has received
less attention than Nash equilibria in concave games.

Since the action setsAk are infinite in this setting, it is not particularly natural to define a CE instance
in the sense of Definition G.1. /

G.2.2. INSTANCES FOR MULTI-AGENT REINFORCEMENT LEARNING

We now give concrete examples of Markov game classesM. The first example considers the special
case of the instances for computing Markov Nash equilibria and Markov (coarse) correlated equilibria
described in Examples 1.2 and G.1 in which the Markov game under consider is tabular (i.e., has
finite states and actions).

Example G.4 (Equilibria in tabular Markov games). Fix parameters K,H ∈ N representing the
number of players and the horizon, finite action spaces Ak (of size Ak ∈ N) for each player k ∈ [K],
and finite state spaces Sh (each of size S ∈ N) at each step h ∈ [H]. The instances for each of the
three types of equilibria (Nash, CE, CCE) share the same observation space O: in particular, their
pure observation space is O◦, the space of all possible H-step trajectories over the state and action
spaces S1, . . . ,SH and A, and the reward space isR = [0, 1].

We refer to the tabular setting as the model class M parametrized by all possible K-player
Markov games with horizonH , state spaces Sh, and action spacesAk, so that the sum of each player’s
rewards is bounded in [0, 1] on any positive-probability trajectory.14 Then for the deviation and switch-
ing functions Π′k, Uk as described in Example 1.2, the instance M = (M,Π,O, {Π′k}k, {Uk}k)
captures the problem of computing Markov Nash equilibrium in an unknown tabular Markov game,
and for Π′k, Uk as described in Example G.1 corresponding to the notions of Markov CCE or Markov
CE, respectively, the instance M = (M,Π,O, {Π′k}k, {Uk}k) captures the problem of computing
Markov CCE or Markov CE, respectively, in an unknown tabular Markov game. /

14. This assumption allows us to takeR = [0, 1].
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A key question in (multi-agent) online reinforcement learning is to understand what structural
properties of the model classM permit efficient learnability. In the simplest case (known as the
tabular case), the state and action spaces Sh,A are all finite, andM consists of all models specified
by arbitrary transitions PM

h and reward distributions RM
k,h with uniformly bounded support. By

restricting M, our formulation also captures a more complex settings that incorporate function
approximation (Chen et al., 2022b; Li et al., 2022; Xie et al., 2020; Jin et al., 2022; Huang et al.,
2021; Zhan et al., 2022; Liu et al., 2022). In what follows, we give one such example.

Example G.5 (Equilibria in linear mixture Markov games). Fix parameters K,H ∈ N representing
the number of players and the horizon, finite action spacesAk for each k ∈ [K], and finite state spaces
Sh for each h ∈ [H]. For a dimension parameter d ∈ N, we are given mappings φh : S×A×S → Rd,
ψk,h : S ×A → Rd such that for all h ∈ [H] and k ∈ [K]∑

sh+1∈Sh+1

φh(sh+1|sh, a) = 1 ∈ Rd, and ‖ψk,h(sh, a)‖2 ≤ 1

for all sh ∈ Sh, a ∈ A, sh+1 ∈ Sh+1.15 The instances we construct have pure observation space O◦
given by the set of all possible H-step trajectories over the action and state spaces A and Sh, and
have reward spaceR = [0, 1].

For some B ∈ N, the set of linear mixture Markov games is the model classM consisting of all
K-player Markov games M with horizon H , state spaces Sh, and action spaces Ak, for which there
are vectors θMh ∈ Rd satisfying ‖θMh ‖2 ≤ B and

PM
h (sh+1|sh, a) = 〈θMh , φh(sh+1|sh, a)〉, RM

k,h(sh, a) = 〈θMh , ψk,h(sh, a)〉

for all h ∈ [H], k ∈ [K], sh ∈ Sh, a ∈ A, sh+1 ∈ Sh+1, and for which under any positive-probability
trajectory,

∑H
h=1 rk,h ∈ [0, 1].

For the deviation and switching functions Π′k, Uk as described in Example 1.2, the instance M =
(M,Π,O, {Π′k}k, {Uk}k) captures the problem of computing Markov Nash equilibrium in an un-
known linear mixture Markov game, and for Π′k, Uk as described in Example G.1 corresponding to the
notions of Markov CCE or Markov CE, respectively, the instance M = (M,Π,O, {Π′k}k, {Uk}k)
captures the problem of computing Markov CCE or Markov CE, respectively, in an unknown linear
mixture Markov game.

/

G.3. Computing bounds on the DEC and minimax risk of multi-agent instances

In this section, we apply our results from Appendices D to F to (a) give bounds on the DEC of various
MA-DMSO instances, and (b) use these bounds on the DEC to derive bounds on the minimax risk
for learning equilibria in multi-agent interactive decision making.

G.3.1. NORMAL-FORM GAMES WITH FINITE ACTION SPACES

We begin with perhaps the simplest example: finite-action normal-form games with bandit feedback.
We consider Nash, CE, and CCE instances, as described in Example 1.1. Let us fix K ∈ N along
with action sets A1, . . . ,AK for each of the K players, with joint action set A := A1 × · · · × AK .

15. The values of φH(sh+1|sh, a) will not matter, so we may take SH+1 to be, e.g., the set consisting of single state.
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We write Ak := |Ak| for k ∈ [K]. Let M NE,M CE,M CCE denote the NE, CE, and CCE instances,
respectively, constructed in Example 1.1. In this section, we bound the DEC of these instances; we
begin with an upper bound on the offset DEC, which immediately yields an upper bound on the
constrained DEC via Proposition E.1.

Proposition G.1. For any γ > 0, the instances M NE,M CE,M CCE defined above satisfy

r-deco
γ(M CCE) ≤ r-deco

γ(M CE) ≤ r-deco
γ(M NE) ≤

K ·
∑K

k=1Ak
γ

.

Proof of Proposition G.1. Note that the instances M NE,M CE,M CCE share the same observation
space O, i.e., they have pure observation space O◦ = A and reward space R = [0, 1].16 Thus, let
us write M NE = (M,ΠNE,O, {(Π′k)NE}k, {UNE

k }k), M CE = (M,ΠCE,O, {(Π′k)CE}k, {UCE
k }k),

and M CCE = (M,ΠCCE,O, {(Π′k)CCE}k, {UCCE
k }k). To distinguish between the three different

settings, we augment the functions fM(·) and hM(·) with the superscripts NE/CE/CCE. For example,
for the instance M NE, we have, for M ∈M, π ∈ ΠNE,

fM,NE

k (π) := EM,π[rk], and hM,NE(π) =
K∑
k=1

max
π′k∈(Π′k)NE

fM,NE

k (UNE
k (π′k, π))− fM,NE

k (π).

The functions hM,CE : ΠCE → R and hM,CCE : ΠCCE → R are defined analogously.
It holds that ΠCE = ΠCCE; furthermore, for any M ∈ M and π ∈ ΠCE = ΠCCE, we have that

hM,CCE(π) ≤ hM,CE(π). It immediately follows that r-deco
γ(M CCE) ≤ r-deco

γ(M CE). Next, note
that ΠNE ⊂ ΠCE, and for any π ∈ ΠNE and M ∈ M, we have that hM,NE(π) = hM,CE(π). Hence,
for M ∈ co(M),

r-deco
γ(M NE,M) = inf

p∈∆(ΠNE)
sup
M∈M

Eπ∼p
[
hM,NE(π)− γ ·D2

H

(
M(π),M(π)

)]
≥ inf
p∈∆(ΠCE)

sup
M∈M

Eπ∼p
[
hM,CE(π)− γ ·D2

H

(
M(π),M(π)

)]
= r-deco

γ(M CE,M).

This establishes that

r-deco
γ(M CCE) ≤ r-deco

γ(M CE) ≤ r-deco
γ(M NE).

It remains to upper bound r-deco
γ(M NE). For k ∈ [K], we write Πk := ∆(Ak) and Π−k :=∏

k′ 6=k Πk′ . For each k ∈ [K], define the model class M̃k ⊂ (Πk → ∆(R×O◦)) as in Eq. (11); in
particular:

M̃k = {πk 7→M |k(πk, π−k) : π−k ∈ Π−k,M ∈M}.

Next define the model classM′k ⊂ (Ak → ∆(R× {⊥})) by

M′k = {M : M(ak) ∈ ∆(R× {⊥}) ∀ak ∈ Ak},

16. Technically, the model class for the instance M NE only acts on product distributions in ΠNE = ∆(A1)×· · ·×∆(AK),
as opposed to ΠCCE = ΠCE = ∆(A) ⊃ ΠNE; we will formally interpret the domain ofM for the instance M NE as
ΠNE to avoid cluttering notation.
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i.e., M(ak) is allowed to be an arbitrary distribution overR× {⊥} for each ak. Proposition 5.2 of
Foster et al. (2021) shows that r-deco

γ(M′k) ≤
Ak
γ . Next, fixM ∈ co(M̃k), and letM ′ ∈ co(M′k) be

the unique model so that the reward r ∼M ′(ak) is distributed identically to the reward r ∼M(ak)
for all ak ∈ Ak. Then we have

r-deco
γ(M̃k,M)

= inf
p∈∆(Πk)

sup
M∈M,π−k∈Π−k

Eπk∼p

[
max
π′k∈Πk

fM,NE

k (π′k, π−k)− f
M,NE

k (πk, π−k)− γ ·D2
H

(
M(πk, π−k),M(πk)

)]

≤ inf
p∈∆(Ak)

sup
M∈M,π−k∈Π−k

Eak∼p

[
max
a′k∈Ak

fM,NE

k (a′k, π−k)− f
M,NE

k (ak, π−k)− γ ·D2
H

(
M(ak, π−k),M(ak)

)]

≤ inf
p∈∆(Ak)

sup
M ′∈M′k

Eak∼p

[
max
a′k∈Ak

fM
′

k (a′k)− fM
′

k (ak)− γ ·D2
H

(
M ′(ak),M

′(ak)
)]

= r-deco
γ(M′k,M ′),

where the first inequality follows since Ak ⊂ Πk (by identifying each action ak ∈ Ak with its
indicator distribution Iak ∈ Πk), and the second inequality follows since for any M ∈ M, π−k ∈
Π−k, there is a model M ′ ∈ M′k so that for all ak ∈ Ak, the distribution of the reward r ∼
M(ak, π−k) is identical to the distribution of r ∼M ′(ak). Note that in the display above we have
associated actions ak ∈ Ak with their singleton distribution Iak ∈ Πk, per our convention. It follows
that r-deco

γ(M̃k) ≤ r-deco
γ(M′k) for all γ > 0. Finally, by Theorem E.1 applied to the instance

M NE, we have that

r-deco
γ(M NE) ≤

K∑
k=1

r-deco
γ/K(M̃k) ≤

K∑
k=1

r-deco
γ/K(M′k) ≤

K ·
∑K

k=1Ak
γ

.

Note that our application of Theorem E.1 is valid since Assumption E.1 is satisfied by the definition
of M NE in Example 1.1 (in particular, our assumption that M(Ia) ∈ ∆(RK)× {Ia}, i.e., that M
reveals a, satisfies the second point of Assumption E.1).

Using Proposition G.1, we now bound the minimax rates for the instances M NE,M CE,M CCE.
To simplify matters slightly, we consider slightly simplified special cases of these instances in which
the model class is constrained to models which output rewards according to the Bernoulli distribution
(i.e., the rewards are {0, 1}-valued).17 Furthermore, we assume for simplicity that Ak ≥ 2 for all k.
We denote the corresponding MA-DMSO instances with Bernoulli rewards by M NE

0 ,M CE
0 ,M CCE

0 .
First, we bound the minimax rate for M NE

0 :

Proposition G.2. There is an algorithm for the instance M NE
0 which guarantees that with probability

at least 1− δ, Risk(T ) ≤
√

(maxk Ak) ·A · T−1 · polylog(T,A, δ−1), where A = A1A2 · · ·AK .

It is evident that the same upper bound on risk for M NE
0 in Proposition G.2 applies to M CE

0 ,M CCE
0

since for any decision π̂ ∈ ΠNE ⊂ ΠCE = ΠCCE, we have hM,CCE(π̂) ≤ hM,CE(π̂) ≤ hM,NE(π̂)
(recall the definition of hM,NE, hM,CE, hM,CCE in the proof of Proposition G.1).

17. This restriction of the model class is essentially without loss of generality: given any model class with general
reward distributions in [0, 1], we can simulate samples from a model class with the same value functions fM

k (·) and
Bernoulli reward distributions by, upon receiving rewards (r1, . . . , rK) ∼ M(π), replacing each rk with a sample
r′k ∼ Ber(rk).
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Proof of Proposition G.2. The combination of Proposition G.1 and Proposition E.1 yields that

decε(M NE
0 ) ≤ ε · 2

√
K ·

∑K
k=1Ak. Since, |O| ≤ 2KA (as rewards are assumed to be Bernoulli),

the class M satisfies Assumption J.2 with B = 2KA, and therefore Proposition J.1 gives that
EstH(T, δ) = O(est(M, T ) + log δ−1) ·K2 · log2(maxk Ak). Finally, by discretizing the reward
means into multiples of ε2, we see that N (M, ε) ≤ (1/ε2)AK , which implies that est(M, T ) ≤
O(AK ·log(T )). Therefore, Theorem J.1 combined with Theorem C.1 gives that there is an algorithm
with

Risk(T ) ≤
√
K(A1 + · · ·+AK) ·

√
EstH(T, δ)

T
· polylog(T, 1/δ) ≤

√
maxk Ak ·A

T
· polylog(T, 1/δ,A).

Note that the upper bound of Proposition G.2 suffers from the curse of multiple agents: the number
of joint action profiles A is exponential in the number of agents K. It is a well-known result that such
exponential dependence on K is necessary for learning (e.g., Rubinstein (2016); see Proposition F.1),
while it is not necessary for learning (coarse) correlated equilibria. We next show that our results in
Appendix F allow us to recover this improved (polynomial) bound for (coarse) correlated equilibria:

Proposition G.3. Fix any T ∈ N, δ ∈ (0, 1). There is an algorithm for the instance M CE
0 which

produces π̂ ∈ ΠCE such that with probability at least 1− δ,

Risk(T ) ≤

√
K4 maxk A

2
k

T
· polylog

(
K,max

k
Ak, δ

−1

)
.

Furthermore, there is an algorithm for the instance M CCE
0 which produces π̂ ∈ ΠCCE such that with

probability at least 1− δ,

Risk(T ) ≤

√
K3
∑K

k=1Ak
T

· polylog

(
K,max

k
Ak, δ

−1

)
.

Proof of Proposition G.3. The statement of the proposition is an immediate consequence of
Theorem F.1. For the instance M CCE

0 , we have that r-deco
γ(co(M CCE

0 )) ≤ r-deco
γ(co(M CCE)) =

r-deco
γ(M CCE) ≤ K

∑K
k=1 Ak
γ , where we have used that the model classM is convex and Proposi-

tion G.1. Therefore, Theorem F.1 gives that there is an algorithm achieving

Risk(T ) ≤O

(
K · inf

γ>0

{
K
∑K

k=1Ak
γ

+
γ

T
· log

(
K ·maxk Ak

δ

)})

≤

√
K3
∑K

k=1Ak
T

· polylog

(
K,max

k
Ak, δ

−1

)
.

Next, for the instance M CE
0 , the same upper bound on the DEC of co(M CE

0 ) holds, but the deviation
sets are larger: we have maxk |Π′k| = maxk |AAkk |, and so Theorem F.1 gives

Risk(T ) ≤O

(
K · inf

γ>0

{
K
∑K

k=1Ak
γ

+
γ

T
· log

(
K ·maxk A

Ak
k

δ

)})

≤

√
K4 maxk A

2
k

T
· polylog

(
K,max

k
Ak, δ

−1

)
.
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Lower bounds. Next we discuss lower bounds for the instances M CCE
0 ,M CE

0 ,M NE
0 . It is straight-

forward to see that each of them embeds an instance of single-player maxk Ak-armed bandits, by
restricting the model classM to models for which the reward distribution depends only on the action
taken by any single player k. It then follows from the proof of Proposition 5.3 of Foster et al. (2021)
that decε(M NE

0 ) ≥ decε(M CE
0 ) ≥ decε(M CCE

0 ) ≥ Ω(ε
√

maxk Ak) for ε > 0; in fact, these lower
bounds are obtained by subclasses ofM which have C(T ) = log(T ∧ V (M)) = O(1). Therefore,
Theorem D.2 (with ε(T ) = c

√
maxk Ak
KT , for sufficiently small c > 0) together with Theorem C.1

gives that for any of the instances M CCE
0 ,M CE

0 ,M NE
0 , and any algorithm, there is a model for which

E[Risk(T )] ≥ Ω(maxk Ak/(KT )) under any of these three instances.
For the instance M CCE

0 , in the learnable regime T > maxk Ak, this lower bound is off from
the upper bound of Proposition G.3 by a factor of

√
T/maxk Ak · poly(K,maxk logAk, log T );

for M CE
0 , the gap increases to

√
T/maxk Ak ·maxk

√
Ak · poly(K,maxk logAk, log T ), and for

M NE
0 , the gap increases further to

√
T/maxk Ak ·

√
A · polylog(T,A). In all these cases, the factor

of
√
T in the gap is due to the impossibility results discussed in Appendix D.2.2, and the remaining

terms are due to model estimation error appearing in the upper bound but not the lower bound. In
particular (up to a O(K) factor), there is no gap in the upper and lower bounds we have computed
on the MA-DEC for these instances.

G.3.2. NORMAL-FORM GAMES WITH LINEAR PAYOFFS

In this section we bound the DEC and minimax regret for the linearly structured normal-form game
instances defined in Example G.2. In particular, fix action sets Ak ⊂ Rdk for each k ∈ [K], as well
as convex sets Θ1, . . . ,ΘK ⊂ Rd (with d = d1 · · · dK) so that |〈a1 ⊗ · · · ⊗ aK , θk〉| ≤ 1 for all
(a1, . . . , aK) ∈ A1 × · · · × AK , k ∈ [K], θk ∈ Θk. Let M NE,M CE,M CCE denote the NE, CE,
and CCE instances constructed given the sets Ak,Θk as in Example G.2. The below proposition
bounds the (regret) offset DEC of these instances:

Proposition G.4. For any γ > 0, the instances M NE,M CE,M CCE defined above satisfy

r-deco
γ(M CCE) ≤ r-deco

γ(M CE) ≤ r-deco
γ(M NE) ≤

K ·
∑K

k=1 dk
γ

.

Proof of Proposition G.4. The proof is essentially identical to that of Proposition G.1, except that
each induced model class M̃k can be viewed as a single-agent linear bandit problem in d dimensions,
allowing us to use Proposition 6.1 of Foster et al. (2021) to bound the DEC for (single-player) linear
bandits.
Using Proposition G.4, we now bound the minimax rates for the instances M NE,M CE,M CCE. As
in the previous subsection, to simplify matters, we restrict the instances so that the model class
is constrained to models which output (random) rewards that take values in {−1, 1} (recall that,
for the linear bandit instances defined in Example G.2, fMk (a) ∈ [−1, 1] for all M ∈ M, a ∈ A).
Furthermore, we assume that for each k, dk ≥ 2 and all θk ∈ Θk satisfy ‖θk‖2 ≤ D and all
ak ∈ Ak satisfy ‖ak‖2 ≤ D for some D > 0. It follows that ‖a1 ⊗ · · · ⊗ aK‖2 ≤ DK for all
a1 ∈ A1, . . . , ak ∈ Ak; our bounds depend only logarithmically on D. We denote the corresponding
MA-DMSO instances with {−1, 1}-valued rewards by M NE

0 ,M CE
0 ,M CCE

0 . First, we bound the
minimax rate for M NE

0 :
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Proposition G.5. For any T ∈ N, δ ∈ (0, 1), there is an algorithm for the instance M NE
0 which guar-

antees that with probability at least 1− δ, Risk(T ) ≤
√

(maxk dk) · d · T−1 · polylog(T, d, δ−1),
where d = d1d2 · · · dK .

Proof of Proposition G.5. Analogous to our notation for finite-action normal-form games, let
us write M NE

0 = (M,ΠNE,O, {(Π′k)NE}k, {UNE
k }k). The combination of Proposition G.1 and

Proposition E.1 yields that decε(M NE
0 ) ≤ 2ε ·

√
K ·

∑K
k=1 dk. For any π ∈ ΠNE ⊂ ∆(A), the

distribution on O = RK ×O◦ = RK ×A defined by ν(·|π) := Unif({−1, 1}K)× π verifies that
M satisfies Assumption J.2 with B = 2K , and therefore Proposition J.1 gives that EstH(T, δ) =
O(est(M, T )+log δ−1) ·K2. Finally, note that a product of ε2/DK-covers of Θk, for k ∈ [K], with
respect to the Euclidean norm yields a ε-model class cover ofM in the sense of Definition J.1. Since
each Θk has a ε2/DK-cover of size O(DK+1/ε2)d, it follows that N (M, ε) ≤ (DK+1/ε2)Kd,
which implies that est(M, T ) ≤ O(K2d · log(TD)). Therefore, Theorem J.1 combined with
Theorem C.1 gives that there is an algorithm with

Risk(T ) ≤
√
K(d1 + · · ·+ dK) ·

√
EstH(T, δ)

T
· polylog(T, 1/δ) ≤

√
maxk dk · d

T
· polylog(T, 1/δ, d).

As in the case of finite-action normal-form games, the upper bound in Proposition G.5 (which
also applies to the instances M CE

0 ,M CCE
0 ) suffers from the curse of multiple agents. For the

instance M CCE
0 , we obtain improved bounds with minimax risk scaling only polynomially with K

by appealing to our results in Appendix F.

Proposition G.6. For any T ∈ N, δ ∈ (0, 1), there is an algorithm for the instance M CCE
0 which

guarantees that with probability at least 1− δ,

Risk(T ) ≤
√
K5 ·maxk{dk}

T
· log(KDT/δ).

One might wonder whether a similar bound can be established for the instance M CE
0 . According

to our definition of M CE
0 (which is a CE instance per Definition G.1) we have |Π′k| = |Ak||Ak| for

each k, meaning that the upper bound of Theorem F.1 would yield a risk bound with polynomial
dependence on |Ak|, which is unacceptable in the linear bandit setting since Ak is often taken to be
exponentially large or infinite. Even if we were to attempt to use Corollary F.1 to decrease the size
of the deviation sets, the only choice of deviation set that works generically is Π̃′k := Σ̃Σ̃k

k , which
has logarithm scaling exponentially in the dimension dk. A more promising avenue is to consider
notions of equilibria between CCE and CE (sometimes known as Φ-equilibria), as in, e.g., Gordon
et al. (2008); Anagnostides et al. (2022); Mansour et al. (2022); we leave this direction for future
work.
Proof of Proposition G.6. The proposition follows as a consequence of Corollary F.1. Paralleling
our notation for normal-form games, let us write M CCE

0 = (M,ΠCCE,O, {(Π′k)CCE}k, {UCCE
k }k).

Let us write A1 ⊗ · · · ⊗ AK := {a1 ⊗ · · · ⊗ aK : a1 ∈ A1, . . . , aK ∈ AK}. For each k ∈ [K],
there is an ε/(KDK)-cover with respect to the `2-norm of Ak of size at most O(KDK+1/ε)dk .
Let us denote such a cover by Ãk ⊆ Ak. Let us write Ã = Ã1 × · · · × ÃK , Π̃CCE = ∆(Ã), and
(Π̃′k)

CCE := Ãk ∪ {⊥} for each k ∈ [K]. Consider any model M ∈M. Note that, for any k ∈ [K],
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and ak ∈ Ak, there is some ã′k ∈ Ãk so that for all ã ∈ Ã,

|fMk (Uk(ak, ã))− fMk (Uk(ã
′
k, ã))| =|〈ã1 ⊗ · · · ⊗ ak ⊗ · · · ⊗ ãK , θMk 〉 − 〈ã1 ⊗ · · · ⊗ ã′k ⊗ · · · ⊗ ãK , θMk 〉|

≤‖θMk ‖2 ·DK−1 · ‖ãk − ã′k‖2 ≤ ε/K,

which in particular implies that the instance M̃ CCE
0 := (M, Π̃CCE,O, {(Π̃′k)CCE}k, {UCCE

k }k) is a
ε-decision space cover for M CCE (per Definition F.1). It therefore follows that estΠ(M CCE

0 , T ) ≤
K·maxk{dk}·log(KDT ). We have r-deco

γ(co(M CCE
0 )) ≤ r-deco

γ(co(M CCE)) = r-deco
γ(M CCE) ≤

K·
∑K
k=1 dk
γ by Proposition G.4 and convexity of the classM, which follows since the sets Θk are

convex. By Corollary F.1, we have that there is an algorithm with

Risk(T ) ≤O(K) · inf
γ>0

{
K ·

∑K
k=1 dk
γ

+
γ

T
·K ·max

k
{dk} · log(KDT/δ)

}

≤
√
K5 ·maxk{dk}

T
· log(KDT/δ).

Lower bounds. We now derive lower bounds for the instances M CCE
0 ,M CE

0 ,M NE
0 under the

assumption that Ak,Θk contain the unit `2 ball in their respective spaces.18 It follows from the
proof of Proposition 6.2 of Foster et al. (2021) that decε(M NE

0 ) ≥ decε(M CE
0 ) ≥ decε(M CCE

0 ) ≥
Ω(ε
√

maxk dk) for ε > 0, using the fact that each of these instances embeds an instance of single-
player linear bandits in dimension maxk dk. Therefore, Theorem D.2 (with ε(T ) = c

√
maxk dk
KT ,

for sufficiently small c > 0) together with Theorem C.1 gives that for any of the instances
M CCE

0 ,M CE
0 ,M NE

0 , and any algorithm, there is a model for which E[Risk(T )] ≥ Ω(maxk dk/(KT ))
under any of these three instances. Similar considerations apply to the gaps between the upper and
lower bounds as discussed in Appendix G.3.1.

G.3.3. CONCAVE (BANDIT) GAMES

We now bound the DEC and minimax regret for the normal-form games wth concave rewards given
in Example G.3. Fix setsAk ⊂ Rdk and the class F ⊂ (A → RK) as described in Example G.3. We
assume that ‖a‖2 ≤ D for all a ∈ A, for someD > 0.; our bounds depend only logarithmically onD.
Let M NE = (M,ΠNE,O, {(Π′k)NE}k, {UNE

k }k) denote the NE instance constructed in Example G.3,
and let M CCE = (M,ΠCCE,O, {(Π′k)CCE}k, {UCCE

k }k) denote the CCE instance constructed in
Example G.3.19 The below proposition bounds the (regret) offset DEC of these instances:

Proposition G.7. For any γ > 0, the instances M NE,M CCE defined above satisfy

r-deco
γ(M CCE) ≤ r-deco

γ(M NE) ≤
K ·

∑K
k=1 d

4
k

γ
· polylog

(
max
k
{dk}, D, γ

)
.

18. Analogous lower bounds can be obtained under alternative action and parameter sets; for instance, ifAk each contains
the `1 ball and Θk each contains the `∞ ball, then we can embed the normal-form game setting from the previous
subsection.

19. As we have done previously, we use the model classM for both instances M NE,M CCE, where it is understood that
models have domain appropriate for each instance.
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Proof of Proposition G.7. The fact that r-deco
γ(M CCE) ≤ r-deco

γ(M NE) follows from the fact that
ΠNE may be identified as a subset of ΠCCE (namely, ΠNE consists of singleton distributions in ΠCCE),
in a similar manner to the proof of Proposition G.1. To prove the second upper bound, we will use
Theorem E.1 applied to the instance M NE, which gives that r-deco

γ(M NE) ≤
∑K

k=1 r-deco
γ/K(M̃k),

for M̃k defined as in (11). In turn, to bound the DEC of M̃k, we define the model classM′k ⊂
(Ak → ∆(R × {⊥}), byM′k = {M : fM(·) is concave}. Since, for any k ∈ [K], M ∈ MNE,
a−k ∈ A−k, there is a model M ′k ∈ M′k so that, for all ak ∈ Ak, the distribution of r ∼ M ′k(ak)

is the same as the distribution of rk ∼M(ak, a−k), it holds that r-deco
γ/K(M̃k) ≤ r-deco

γ/K(M′k).
Finally, Proposition 6.3 of Foster et al. (2021) (which is a restatement of Theorem 3 of Lattimore
(2020)) gives that, for all γ′ > 0, r-deco

γ′(M′k) ≤
d4k
γ · polylog(dk,diam(Ak), γ), which yields that

r-deco
γ(M NE) ≤ K

∑K
k=1 d

4
k

γ · polylog (maxk{dk}, D, γ).

We now turn our attention to bounding the minimax risk. The model classesMNE,MCCE for
our concave game instances are extremeley large: any cover of MNE or MCCE in the sense of
Definition J.1 must have logarithm exponential in the dimensions dk, so the model-based guarantee
from Theorem J.1 is not particularly interesting, even in the case where K is small. Therefore, we
turn directly to the policy-based guarantees given in Appendix F, and will prove a minimax risk
upper bound for the instance M CCE. It turns out that such an upper bound will immediately imply
upper bounds for the instance M NE, under the following assumption, specializing Even-Dar et al.
(2009).

Assumption G.1 (Zero-sum socially concave). We say that a model classM is zero-sum socially
concave if for all M ∈ M, k ∈ [K] and ak ∈ Ak, the mapping A−k 3 a−k 7→ fMk (ak, a−k) is a
convex function and for all a ∈ A,

∑K
k=1 f

M
k (a) = 0.

In the special case that the model M is a two-player zero-sum concave game (i.e., fM1 +fM2 ≡ 0),
zero-sum social concavity necessarily holds.

Proposition G.8. Then for any T ∈ N, δ ∈ (0, 1), there is an algorithm for the instance M CCE

which guarantees that with probability at least 1− δ,

Risk(T ) ≤
K2 ·maxk{d2.5

k }√
T

· polylog

(
D,T, γ,max

k
{dk},K, 1/δ

)
. (14)

Suppose further that the model classM is zero-sum socially concave (i.e., it satisfies Assumption
G.1). Then there is an algorithm for the instance M NE which guarantes the same upper bound on
risk in Eq. (14) with probability at least 1− δ.

Proof of Proposition G.8. For each k ∈ [K], there is an ε-cover with respect to the `2-norm of Ak
of size at most O(D/ε)dk . Let us denote such a cover by Ãk ⊂ Ak. Write Ã := Ã1 × · · · × ÃK .
Let Π̃CCE := ∆(A), and (Π̃′k)

CCE := Ãk ∪{⊥}. Note that, for any M ∈M, k ∈ [K], and ak ∈ Ak,
there is some ã′k ∈ Ãk so that for all ã ∈ Ã,

|fMk (Uk(ak, ã))− fMk (Uk(ã
′
k, ã))| = |fMk (ak, ã−k)− fMk (ã′k, ã−k)| ≤ ‖ak − ã′k‖2 ≤ ε,

where the first inequality uses 1-Lipschitzness of fMk (·). Hence, the CCE instance M̃ CCE :=

(M, Π̃CCE,O, {(Π̃′k)CCE}k, {UCCE
k }k) is an ε-decision space cover for M CCE (per Definition F.1).

It follows that estΠ(M CCE, T ) ≤ maxk{dk} · log(DT ).
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Next, we have r-deco
γ(co(M CCE)) = r-deco

γ(M CCE) ≤ K·
∑K
k=1 d

4
k

γ · polylog(maxk{dk}, D, γ)
by Proposition G.7 and convexity of the classM (which follows since the convex combination of
concave and 1-Lipschitz functions is concave and 1-Lipschitz). By Corollary F.1, for any T ∈ N and
δ > 0, there is an algorithm which outputs π̂ ∈ ΠCCE so that with probability at least 1− δ,

Risk(T ) ≤K · inf
γ>0

{
K ·

∑K
k=1 d

4
k

γ
+
γ

T
·max

k
{dk}

}
· polylog

(
D,T, γ,max

k
{dk},K, 1/δ

)
≤
K2 ·maxk{d2.5

k }√
T

· polylog

(
D,T, γ,max

k
{dk},K, 1/δ

)
.

Next we prove the upper bound for M NE. As we have done previously in this section, for π̂ ∈ ΠCCE

and M ∈ M, we write hM,CCE(π̂) to denote the suboptimality of π̂ with respect to the instance
M CCE, and for π̂ ∈ ΠNE, we write hM,NE(π̂) to denote the suboptimality of π̂ with respect to the
instance M NE. Given π̂ ∈ ΠCCE, define â := Ea∼π̂[a] ∈ A. For each k ∈ [K] and M ∈ M, we
have that

hM,NE(â) =
K∑
k=1

max
a′k∈Ak

fMk (a′k, â−k)− fMk (â)

≤
K∑
k=1

max
a′k∈Ak

Ea−k∼π̂[fMk (a′k, a−k)]− fMk (â)

=
K∑
k=1

max
a′k∈Ak

Ea−k∼π̂[fMk (a′k, a−k)]− Ea∼π̂[fMk (a)] = hM,CCE(π̂),

where the first inequality follows from social concavity and the second equality follows from the fact
that

∑K
k=1 f

M
k (â) = 0 =

∑K
k=1 Ea∼π̂[fMk (a)]. Thus, given a decision π̂ output by our algorithm for

the instance M CCE, we may simply output â = Ea∼π̂[a], which yields the same upper bound on risk.

Lower bounds. Assume that A = A1 × · · · × AK contains the unit `2-ball. Then the instances
M CCE,M NE each embed a single-player linear bandit instance with dimension maxk dk (namely,
by taking the subclass of F to consist of linear functions in ak only), and so the lower bounds from
Appendix G.3.2 give decε(M NE) ≥ decε(M CCE) ≥ Ω(ε

√
maxk dk) and a minimax risk lower

bound of Ω(maxk dk/(KT )). In this setting, even the DEC lower bound (in the single-agent setting)
is off from the upper bound implied by Proposition G.7 and Proposition E.1 (Foster et al., 2021).

G.3.4. TABULAR MARKOV GAMES

We next give bounds on minimax risk for the instances corresponding to Markov Nash equilibria,
Markov CE, and Markov CCE in tabular Markov games, as described in Example G.4. Given H ∈ N,
state spaces Sh each of size S, action spaces Ak of size Ak := Ak, and an initial distribution d1 ∈
∆(S1), let M NE = (M,ΠNE,O, {(Π′k)NE}k, {UNE

k }k), M CE = (M,ΠCE,O, {(Π′k)CE}k, {UCE
k }k),

and M CCE = (M,ΠCCE,O, {(Π′k)CCE}k, {UCCE
k }k) be the MA-DMSO instances corresponding to

Markov Nash equilibria, Markov CE, and Markov CCE as defined in Example G.4. Technically, the
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model classM for M NE acts on policies in ΠNE, whereas the model classM for M CE and M CCE

acts on policies in ΠCE = ΠCCE 6= ΠNE; we will write the model class for each instance asM and
formally interpret its domain as the appropriate decision space, to avoid cluttering notation.

In Proposition G.9 below, we begin with an upper bound on their offset DEC, which immediately
yields an upper bound on the constrained DEC via Proposition E.1.

Proposition G.9. For any γ > 0, and any M ∈M, the instances M NE,M CE,M CCE defined above
satisfy

r-deco
γ(M CCE,M) ≤ r-deco

γ(M CE,M) ≤ r-deco
γ(M NE,M) ≤

27KH3 log(H)S
∑K

k=1Ak
γ

.

Proof of Proposition G.9. As in the proof of Proposition G.1, we augment the functions fM(·) and
hM(·) with the superscripts NE/CE/CCE to distinguish between the value functions for models in the
three different instances. For example, for the instance M NE, we have, for M ∈M, π ∈ ΠNE,

fM,NE

k (π) := EM,π
[
H∑
h=1

rk,h

]
, hM,NE(π) =

K∑
k=1

max
π′k∈(Π′k)NE

fM,NE

k (UNE
k (π′k, π))− fM,NE

k (π).

The functions hM,CE : ΠCE → R and hM,CCE : ΠCCE → R are defined similarly.
We have ΠCE = ΠCCE; furthermore, for any M ∈ M and π ∈ ΠCE = ΠCCE, we have

that hM,CCE(π) ≤ hM,CE(π). Thus r-deco
γ(M CCE,M) ≤ r-deco

γ(M CE,M). Next, note that we
may identify ΠNE as a subset of ΠCE as follows: for π = (π1, . . . , πK) ∈ ΠNE, we associate it
to the joint Markov policy π̃ = (π̃1, . . . , π̃H) ∈ ΠCE where π̃h(sh) is the product distribution
π̃h(sh) := π1,h(sh) × · · · × πK,h(sh). It is straightforward to see that, for such π and any model
M ∈ M, the distributions of M(π) and M(π̃) are identical. Accordingly, with slight abuse of
notation, for π ∈ ΠNE, we denote its corresponding policy in ΠCE as π as well. Thus we have
hM,NE(π) = hM,CE(π), and for any M ∈M, we have

r-deco
γ(M NE,M) = inf

p∈∆(ΠNE)
sup
M∈M

Eπ∼p
[
hM,NE(π)− γ ·D2

H

(
M(π),M(π)

)]
≥ inf
p∈∆(ΠCE)

sup
M∈M

Eπ∼p
[
hM,CE(π)− γ ·D2

H

(
M(π),M(π)

)]
= r-deco

γ(M CE,M).

It remains to upper bound r-deco
γ(M NE). For k ∈ [K], let Πk be the class of randomized Markov

policies of player k (so that ΠNE = Π1 × · · · × ΠK). For each k ∈ [K], define the model class
M̃k ⊂ (Πk → ∆(R×O◦)) as in (11):

M̃k = {πk 7→M |k(πk, π−k) : π−k ∈ Π−k, M ∈M} .

DefineM′k to be the model class consisting of all horizon-H Markov decision processes with action
set Ak and state spaces S1, . . . ,SH , and so that the sum of rewards under any trajectory that occurs
with positive probability is bounded in [0, 1]. Formally, the pure observation space ofM′k is the
spaceO′◦ of trajectories {(sh, ak,h, rk,h)}h∈[H], with sh ∈ Sh, ak,h ∈ Ak, rk,h ∈ R, its reward space
is R = [0, 1], and its decision space is Πk. ThusM′k ⊂ (Πk → ∆(R×O′◦)). Proposition 5.4 of
Foster et al. (2021) shows that for all M ∈M′k, r-deco

γ(M′k,M) ≤ 26H
2SAk
γ .

Next, fix M̃ ∈ M̃k. By definition of M̃k, we can find M ∈ M and π−k ∈ Π−k so that
M̃(πk) = M |k(πk, π−k) for all πk ∈ Πk. LetM ′ ∈M′k be the unique model so that for all πk ∈ Πk,
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the marginal distribution of {(sh, ak,h, rk,h)}h∈[H] for a trajectory drawn from M̃(πk) is identical to
the distribution of the pure observation drawn from M ′(πk). Such a model exists, since for each state
sh ∈ Sh and action ak,h ∈ Ak, the transition distribution PM′

h (·|sh, ak,h) ∈ ∆(Sh+1) is defined as
Eak′,h∼πk′,h(sh) ∀k′ 6=k[P

M
h (·|sh, (ak,h, a−k,h))] and the reward distribution RM′

k,h(sh, ak,h) ∈ ∆(R) is
defined as Eak′,h∼πk′,h(sh) ∀k′ 6=k[R

M
h (sh, (ak,h, a−k,h))]. We now compute

r-deco
γ(M̃k, M̃) (15)

= inf
p∈∆(Πk)

sup
M∈M,π−k∈Π−k

Eπk∼p

[
max
π′k∈Πk

fM,NE

k (π′k, π−k)− f
M,NE

k (π)− γ ·D2
H

(
M(πk, π−k), M̃(πk)

)]

≤ inf
p∈∆(Πk)

sup
M ′∈M′k

Eπk∼p

[
max
π′k∈Πk

fM
′

k (π′k)− fM
′

k (πk)− γ ·D2
H

(
M ′(πk),M

′(πk)
)]

= r-deco
γ(M′k,M ′),

where the inequality follows since, via the same argument used to construct M ′, for any M ∈
M, π−k ∈ Π−k, there is some M ′ ∈ M′k so that for any πk ∈ Πk, the marginal distribution of
{(sh, ak,h, rk,h)}h∈[H] for a trajectory drawn from M(πk, π−k) is the same as the distribution of a
trajectory drawn from M ′(πk). In addition, we have applied the data processing inequality for the
Hellinger distance to conclude that D2

H

(
M(πk, π−k), M̃(πk)

)
is an upper bound for the squared

Hellinger distance between the marginal distributions of {(sh, ak,h, rk,h)}h∈[H] under M(πk, π−k)

and M̃(πk). Finally, by Theorem E.2 applied to the instance M NE, we have that

sup
M∈M

r-deco
γ(M NE,M) ≤CKH logH

γ
+

K∑
k=1

sup
M̃k∈M̃k

r-deco
γ/(CKH logH)(M̃k, M̃k)

≤CKH logH

γ
+

K∑
k=1

sup
M ′k∈M

′
k

r-deco
γ/(CKH logH)(M

′
k,M

′
k)

≤CKH logH

γ
+

K∑
k=1

26H2SAk ·
CKH logH

γ

≤
27KH3 log(H)S

∑K
k=1Ak

γ
.

Using Proposition G.9, we now bound the minimax rates for the instances M NE,M CE,M CCE. To
simplify matters, we assume that reward distributions are known. Formally, we fix some functions
R?k,h : Sh ×A → ∆(R) (for k ∈ [K], h ∈ [H]) and restrict the model classM to models M ∈M
for which R?k,h(sh, a) ≡ RM

k,h(sh, a) ∈ ∆([0, 1/H]) for all M ∈ M. We also assume that Ak ≥ 2

for all k. With the functionsR?k,h fixed, let us denote the resulting instances by M NE
0 ,M CE

0 ,M CCE
0 .20

20. Essentially the same argument in Proposition G.10 allows us to upper bound the minimax risk for the original instances
M NE,M CE,M CCE, for which rewards are not known, but doing so requires a renormalization argument (and the
loss of a factor of H) to ensure rewards are always bounded in [0, 1], which we omit for brevity.
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Proposition G.10. There is an algorithm for each of the instances M NE
0 ,M CE

0 ,M CCE
0 which guar-

antees that with probability at least 1− δ, Risk(T ) ≤
√

maxk Ak·AS3H4

T · polylog(T, δ−1, A, S,H).

Proof of Proposition G.10. Note that it suffices to bound the minimax risk for the instance
M NE

0 , since for any π̂ ∈ ΠNE ⊂ ΠCE = ΠCCE, we have that hM,CCE(π̂) ≤ hM,CE(π̂) ≤ hM,NE(π̂).
(Recall the definition of hM,CCE, hM,CE, hM,NE in the proof of Proposition G.9.) The combination of
Proposition G.9 and Proposition E.1 yields that, for any M ∈M,

decε(M
NE
0 ,M) ≤ O

ε ·
√√√√KH3 log(H)S

K∑
k=1

Ak

.
Because of the constraint that M ∈M in the DEC upper bound, we need a proper estimation

algorithm, i.e., one with M̂ =M (in the context of Assumption J.1). To do so, we use the approach
of layer-wise estimators from Foster et al. (2021). Note that the model classM has the product
structureM =M1×· · ·×MH , where eachMh is the set of transition kernels Sh×A → ∆(Sh+1),
which is a convex set, thus satisfying Assumption 7.2 of Foster et al. (2021). Furthermore, by gridding
the transition densities into multiples of ε2, we have that N (Mh, ε) ≤ (1/ε2)S

2A, and therefore, by
Proposition 7.1 and Lemma A.16 of Foster et al. (2021), there is an estimation algorithm AlgEst

with M̂ = M and which has estimation error EstH(T, δ) ≤ O(S2AH) · polylog(S,H, δ−1, T ).
Therefore, Theorem J.1 combined with Theorem C.1 gives that there is an algorithm with

Risk(T ) ≤

√√√√KH3 log(H)S
K∑
k=1

Ak ·
√

EstH(T, δ)

T
· polylog(T, 1/δ)

≤
√

maxk Ak ·AS3H4

T
· polylog(T, δ−1, A, S,H).

Lower bounds. It is straightforward to see that for any k, each of the instances M NE,M CE,M CCE

embeds an instance corresponding the class of single-player MDPs on state spaces Sh, action space
Ak, and horizon H: in particular, take the subclass of M whose transitions and rewards only
depend on player k’s action at each step. Then it follows from the proof of Proposition 5.8 of Foster
et al. (2021) that decε(M NE) ≥ decε(M CE) ≥ decε(M CCE) ≥ Ω(ε

√
SH ·maxk Ak). Therefore,

Theorem D.2 (with ε(T ) = c
√
SH·maxk Ak
KT log T , for sufficiently small c > 0) together with Theorem C.1

gives that for any of the instances M CCE,M CE,M NE, and any algorithm, there is a model for which
E[Risk(T )] ≥ Ω̃(SH ·maxk Ak/(KT )).

G.3.5. A SEPARATION BETWEEN MULTI-AGENT DEC AND SINGLE-AGENT DEC

In the previous subsections, we bounded the multi-agent DEC, and thereby the minimax risk (via an
application of Theorem J.1 and Theorem C.1), for several bandit problems. In all cases, our upper
bound on the multi-agent DEC (for CCE, CE, and Nash instances) followed via an application of
Theorem E.1 to upper bound the multi-agent DEC by the single-agent DEC of the model classes M̃k

defined in Eq. (11). The next (straightforward) proposition shows that this approach is not tight in
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general, indicating that the multi-agent DEC represents a fundamental complexity measure that is
distinct from existing ones.

Proposition G.11. For any K,A ∈ N, there is a K-player MA-DMSO NE instance M =
(M,Π,O, {Π′k}k, {Uk}k) so that r-deco

γ(M ) = 0 but r-deco
γ(M̃k) ≥ Ω(A/γ) for all γ > 0,

where M̃k are defined as in (11).

Proof of Proposition G.11. FixK,A ∈ N, and set Πk = {0, 1, . . . , A} for each k. LetR := [−1, 1]
and O◦ := A. Define F ⊆ (Π→ RK) to be the class of all tuples (f1, . . . , fK) with fk : Π→ RK
with the property that for all π ∈ Π, if there is any k so that πk = 0, then fk′(π) = 0 for all k′ ∈ [K].
SetM :=MF , and define Π′k, Uk as in Definition 1.1.

Define π0 = (0, . . . , 0). Since hM(π0) = 0 for all M ∈ M, it follows that r-deco
γ(M ) = 0.

On the other hand, it is straightforward to see that each class M̃k embeds a standard multi-armed
bandit instance with A arms, meaning that by Proposition 5.3 of Foster et al. (2021), we have that
r-deco

γ(M̃k) ≥ Ω(A/γ) for all γ > 0.

Part III

Proofs
Appendix H. Technical tools

H.1. Information theory

In this section we collect several technical lemmas which are used in our proofs.

Lemma H.1. Let (X ,X ), (I,I ) be measure spaces. Suppose that for each i ∈ I, there are
distributions Pi, P ′i ∈ ∆(X ), and Q ∈ ∆(I). Suppose further that there is a measurable function
ϕ : X → I so that, for each i ∈ I, Px∼Pi(ϕ(x) = i) = Px∼P ′i (ϕ(x) = i) = 1. Then for any
f -divergence D(· ‖ ·), it holds that

D
(
Ei∼Q[Pi] ‖ Ei∼Q[P ′i ]

)
= Ei∼Q[D

(
Pi ‖ P ′i

)
].

Proof of Lemma H.1. That D(Ei∼Q[Pi] ‖ Ei∼Q[P ′i ]) ≤ Ei∼Q[D(Pi ‖ P ′i )] follows from convexity
of D(· ‖ ·). To establish the opposite direction, our assumption on the function ϕ together with the
data processing inequality yields

D
(
Ei∼Q[Pi] ‖ Ei∼Q[P ′i ]

)
≥D

(
Ei∼Q[Ii × Pi] ‖ Ei∼Q[Ii × P ′i ]

)
= Ei∼Q[D

(
Pi ‖ P ′i

)
],

where the final inequality follows from, e.g., Polyanskiy and Wu (2014).

Lemma H.2 (e.g., Polyanskiy and Wu (2014)). Let (X ,X ) and (Y,Y ) be measure spaces, and
let X × Y be equipped with the product sigma-algebra X ⊗ Y . Let (x, y) be a pair of random
variables on X × Y , distributed according to some distribution Px,y. For any f -divergence D(· ‖ ·),
it holds that

Ex∼Px
[
D
(
Py|x ‖ Py

)]
= Ey∼Py

[
D
(
Px|y ‖ Px

)]
.
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Lemma H.3 (Lemma B.5 of Foster et al. (2022b)). Let P,Q be probability distributions on a measure
space (X ,X ). For any α ≥ 1, let Gα := {g : X → R : ‖g‖∞ ≤ α}. Then

1

2
D2

H(P,Q) ≤ sup
g∈Gα

{
1− EP[eg] · EQ[e−g]

}
+ 4e−α.

Lemma H.4 (e.g., Foster et al. (2022b)). Consider measure spaces (X ,X ), (Y,Y ), and let (x, y)
be a pair of random variables distributed according to some distribution Px,y on (X × Y,X ⊗ Y ).
Then

Ex∼Px
[
D2

H

(
Py|x,Py

)]
≤ 4 · inf

Q∈∆(Y)
Ex∼Px

[
D2

H

(
Py|x,Q

)]
.

Proof of Lemma H.4. Consider any Q ∈ ∆(Y). Using the fact that the Hellinger distance satisfies
the triangle inequality, we have

Ex∼Px
[
D2

H

(
Py|x,Py

)]
≤Ex∼Px

[
2 ·D2

H

(
Py|x,Q

)
+ 2 ·D2

H(Q,Py)
]

≤2 · Ex∼Px
[
D2

H

(
Py|x,Q

)]
+ 2 ·D2

H

(
Q,Ex∼Px [Py|x]

)
≤4 · Ex∼Px

[
D2

H

(
Py|x,Q

)]
,

where the final inequality follows from convexity of the squared Hellinger distance.

Lemma H.5 (Donsker-Varadhan; see Polyanskiy and Wu (2014)). Let (X ,X ) be a measure space,
and let P,Q be probability measures on (X ,X ). Then

DKL(P ‖Q) = sup
h:X→R

{EX∼P[h(X)]− logEX∼Q[exp(h(X))]} ,

where the supremum is over all (measurable) functions h : X → R satisfying EX∼Q[exp(h(X))] <
∞.

Lemma H.6. Let P,Q be probability measures on some probability space (Ω,F ). Consider some
event E ∈ F so that P(E) ≥ 1− δ, for some δ ∈ (0, 1). Suppose also that for all events F ∈ F , we
have P(E ∩ F) = Q(E ∩ F). Then DTV(P,Q) ≤ δ.

Proof of Lemma H.6. Choosing E ′ = Ω gives Q(E) = P(E) ≥ 1− δ. Then for any event F ∈ F ,
we have

|P(F)−Q(F)| ≤|P(F ∩ E)−Q(F ∩ E)|+ |P(F ∩ Ec)−Q(F ∩ Ec)|
=|P(F ∩ Ec)−Q(F ∩ Ec)| ≤ δ.

H.2. Concentration inequalities

Lemma H.7 (Lemma A.4 of Foster et al. (2021)). Let (Xt)t∈[T ] be any sequence of real-valued
random variables adapted to a filtration F t. Then with probability at least 1− δ,

T∑
t=1

Xt ≤
T∑
t=1

log
(
E
[
eXt |F t−1

])
+ log(1/δ).
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H.3. Topological lemmas

The below lemma is a special case of the Berge maximum theorem.

Lemma H.8. Let U ,V be compact subsets of Euclidean space, and consider any continuous function
G : U × V → R. Define C : V → P(U) by C(v) := arg minu∈U{G(u, v)}. Then C is upper
hemicontinuous.

Proof of Lemma H.8. Consider any sequences un → u ∈ U , vn → v ∈ V so that un ∈ C(vn)
for all n. We wish to show that u ∈ C(v), i.e., G(u, v) ≤ G(u′, v) for all u′ ∈ U (which suffices to
prove upper hemicontinuity by compactness of V; see (Beer, 1993, Lemma 6.2.6)). To do so, fix
any u′ ∈ U and ε > 0. There exists N so that for n ≥ N , we have |G(un, vn)−G(u, v)| ≤ ε and
|G(u′, vn)−G(u′, v)| ≤ ε, by continuity of G. Then

G(u, v) ≤ G(un, vn) + ε ≤ G(u′, vn) + ε ≤ G(u′, v) + 2ε,

and by taking ε→ 0 we get that G(u, v) ≤ G(u′, v).

The next lemma is a straightforward consequence of Kakutani’s fixed point theorem. In its
statement, we write X−k :=

∏
k′ 6=k Xk′ and X =

∏
k∈[K]Xk.

Lemma H.9. Suppose that X1, . . . ,XK are nonempty, compact, and convex subsets of Euclidean
space. Suppose that for each k ∈ [K] we are given an upper hemicontinuous function Fk : X →
P(Xk) so that, for all x ∈ X , Fk(x) is nonempty, closed, and convex. Then there is some x ∈ X so
that

x ∈ F1(x)× · · · × FK(x).

Proof of Lemma H.9. Define F : X → P(X ) by F (x) := F1(x) × · · · × FK(x). It is evident
that for each x ∈ X , F (x) is nonempty, closed, and convex. Furthermore, we claim that F is upper
hemicontinuous. To see this, consider any sequences xn → x and yn → y so that yn ∈ F (xn)
for each n ∈ N. Writing yn = (yn,1, . . . , yn,K) and y = (y1, . . . , yK), by the product structure
of F (xn), we have that yn,k ∈ Fk(xn) for each k ∈ [K]. By upper hemicontinuity of Fk and the
fact that yn,k → yk, it holds that yk ∈ Fk(x). Thus y ∈ F (x). By Kakutani’s fixed point theorem
(Osborne and Rubinstein, 1994, Lemma 20.1), it holds that F has a fixed point, namely some x ∈ X
so that x ∈ F (x).

H.4. Minimax theorem

Theorem H.1 (Sion’s minimax theorem). Let X ,Y be convex subsets of topological vector spaces,
with X compact. Let F : X × Y → R be a function such that (a) the mapping y 7→ F (x, y) is
concave and upper semicontinuous for all x ∈ X , and (b) the mapping x 7→ F (x, y) is convex and
lower semicontinuous for all y ∈ Y . Then

inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y).
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Appendix I. Proofs for Appendix C

Proof of Theorem C.1. Consider an instance M = (M,Π,O◦,R, {Π′k}k, {Uk}k) of the MA-
DMSO framework.

For all models M and decisions π ∈ Π, define21

f̃M(π) := K − hM(π) = K −
K∑
k=1

sup
π′k∈Π′k

{
fMk (Uk(π

′
k, π))− fMk (π)

}
.

Now fix any M ∈ M. By Assumption 1.2, there is some π? ∈ Π so that hM(π?) = 0. By
Assumption 1.3, it holds that hM(π) ≥ 0 for all π ∈ Π. Then

sup
π′∈Π

f̃M(π′)− f̃M(π) = K − (K − hM(π)) = hM(π). (16)

Note that the instance H = (M,Π,O, {f̃M}M ) is well-defined since models in M are probability
kernels M : Π→ O = O◦ ×RK , and the observation space in the instance H is by definition O.
Thus, the first claimed point is follows from (16) since for any M , we have:

decε(M ,M) = inf
p,q∈∆(Π)

sup
M∈Hq,ε(M)

Eπ∼p[hM(π)] (17)

= inf
p,q∈∆(Π)

sup
M∈Hq,ε(M)

Eπ∼p
[

sup
π′∈Π

f̃M(π′)− f̃M(π)

]
= decε(H ,M).

Finally, we note that since the decision and (full) observation spaces of H ,M are identical, the
space of algorithms (p, q) and distributions PM?,(p,q) are identical in the two frameworks. It follows
from the definitions of M(H , T ) and M(M , T ) that they are equal.

Proof of Theorem C.2. Consider an instance H = (M,Π,O, {fM(·)}M) and some V ∈ N. We
first specify the instance M by defining each of its components:

• Define Σ1 = Π and Σ2 = {0, 1, . . . , V }, Π̃k = ∆(Σk) for k ∈ {1, 2}, and Π̃ := Π̃1 × Π̃2.

• We define Π′k, Uk for k ∈ [2] in the standard fashion for NE instances, per Definition 1.1; in
particular, set Π′k = Π̃k = ∆(Σk) for each k and Uk(π′k, π) = (π′k, π−k).

• Define O◦ := O ∪ {⊥},R = [−1, 1], and set Õ = O◦ ×R2.

• The model class M̃ is indexed by tuples (M,v) ∈ M × {1, 2, . . . , V } = M× [V ]. In
particular, for each such tuple (M, v), we have a model M̃M,v ∈ M̃, which is defined as
explained below. As the instance M we are constructing corresponds to that of computing
mixed Nash equilibria in a game whose pure action sets are Σ1,Σ2, we call elements of
Σ1 × Σ2 pure decisions.

– For pure decisions of the form (σ1, 0) ∈ Σ1 × Σ2, the distribution of (o◦, r1, r2) ∼
M̃M,v((σ1, 0)) is given by:

o◦ ∼M(σ1) ∈ O ⊂ O◦, r1 = r2 = 0.

21. The addition of K in the definition of f̃M(π) is for convenience, so as to ensure that if hM(π) ∈ [0,K] for all M,π,
then the same holds for f̃M(π).
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– For pure decisions of the form (σ1, i) ∈ Σ2 × Σ2 with i > 0, the distribution of
(o◦, r1, r2) ∼ M̃M,v((σ1, i)) is given by:

o◦ =⊥, r2 = −r1 =

{
−1 : i 6= v

gM(σ1) : i = v.

– For general decisions π ∈ Π̃, we can write π = π1×π2 for πk ∈ ∆(Σk) for k ∈ [2]. Then
the distribution M̃M,v(π) is the distribution of M̃M,v(σ), for σ = (σ1, σ2) is distributed
as: σk ∼ πk for k ∈ [2].

For reference later in the proof, we state a basic technical lemma, which is an immediate
consequence of the construction of M̃.

Lemma I.1. For any π = π1 × π2 ∈ Π̃, and any M ′ = M̃M,v ∈ M̃, it holds that

hM
′
(π) ≥ π2(Σ2\{v}) · Eσ1∼π1 [gM(σ1)] + π2(Σ2\{0, v}).

Proof of Lemma I.1. By considering the deviation π′2 = v, we have

hM
′
(π) ≥ sup

π′2∈Π′2

{fM′2 (U2(π′2, π))− fM′2 (π)}

≥fM′2 (π1 × Iv)− fM
′

2 (π1 × π2)

=Eσ1∼π1 [gM(σ1)] + π2(Σ2\{0, v})− π2(v) · Eσ1∼π1 [gM(σ1)]

=π2(Σ2\{v}) · Eσ1∼π1 [gM(σ1)] + π2(Σ2\{0, v}).

Bounding M(H , T ) by M(M , T ). Consider any algorithm (p̃, q̃) which achieves M(M , T ).
We have p̃ :

∏T
t=1(Π̃× Õ)→ ∆(Π̃) and q̃ = (q̃1, . . . , q̃T ), with each q̃t :

∏t−1
i=1(Π̃× Õ)→ ∆(Π̃)

(we refer to Appendix B for background on how algorithms in the MA-DMSO framework and
HR-DMSO framework are formalized).

Given (p̃, q̃), we define an algorithm (p, q) for the instance H as follows. For any model
M ∈M, the algorithm attempts to simulate the interaction of (p̃, q̃) with M̃M,v by only interacting
with M ∈M. The algorithm will store internal state, denoted by (π̃i, (õi, ri1, r

i
2)), for each i ∈ [T ],

which store the “simulated” decisions and observations taken with respect to M̃M,v. As a result
of this internal state, our description below does not explicitly identify the probability kernels
p(·|·), qt(·|·). Since these kernels take as input the entire history, there exist kernels p(·|·), qt(·|·)
which produce exactly the same distribution over trajectories as the below algorithm, but writing
them down explicitly is somewhat cumbersome.

In particular, the distributions qt (for t ∈ [T ]) and p are defined (implicitly) as follows:

1. For t = 1, 2, . . . , T :

(a) Draw π̃t ∼ q̃t(·|(π̃1, (õ1, r11, r
t
2)), . . . , (π̃t−1, (õt−1, rt−1

1 , rt−1

2 ))), so that πt ∈ Π̃.

(b) Draw (σt1, σ
t
2) ∼ π̃t.
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(c) The distribution qt is defined (implicitly) by taking the decision σt1 ∈ Σ1 = Π.

(d) For use in choosing future decisions: as a function of the observation ot received after σt1
is played, define

(õt, rt1, r
t
2) =

{
(ot, 0, 0) : σt2 = 0

(⊥, 1,−1) : σt2 > 0.

2. Finally, the distribution p is defined as the distribution of σ̂1, where π̂ ∼ p̃(·|(π̃1, (õ1, rt1, r
t
2)), . . . , (π̃T , (õT , rT1 , r

T
2 )))

and σ̂1 ∼ π̂1.

To analyze this algorithm, for each M ∈M, we introduce a model M̃M,0 which is defined identically
to M̃M,v for any v ∈ [V ] except that M̃M,0((σ1, i)) outputs (⊥, 1,−1) a.s. for any σ1 ∈ Σ1, i ∈ [V ].
It is straightforward to see that if there is some underlying model M ∈M so that ot ∼M(σt1) when
the algorithm (p, q) defined above is used, then the distribution of {(π̃t, (õt, rt1, rt2))}Tt=1 defined
above is exactly the distribution of the history under PM̃M,0,(p̃,q̃). We next appeal to the following
claim, which states that we can pass from this distribution to the distribution PM̃M,v? ,(p̃,q̃) for some
v? ∈ [V ]:

Lemma I.2. There is an absolute constant C > 0 so that for any choice of algorithm (p̃, q̃) and
model M ∈M, there exists v? ∈ [V ] so that:

1. DTV

(
PM̃M,0,(p̃,q̃),PM̃M,v? ,(p̃,q̃)

)
≤ C

√
T log(T )/V .

2. EM̃M,v? ,(p̃,q̃)Eπ̂∼p̃[π̂2(v?)] ≤ C
√
T log(T )/V .

The proof of Lemma I.2 is provided following in the sequel. Let δ := C
√
T log(T )/V , where C

is the constant from Lemma I.2. If δ > 1, then it is immediate that M(H , T ) ≤M(M , T ) +O(δ),
so we may assume henceforth that δ ≤ 1. We then have:

EM,(p,q)Eσ̂1∼p[g
M(σ̂1)] = EM̃M,0,(p̃,q̃)Eπ̂∼p̃Eσ̂1∼π̂1 [gM(σ̂1)]

≤ EM̃M,v? ,(p̃,q̃)Eπ̂∼p̃Eσ̂1∼π̂1 [gM(σ̂1)] + δ

≤ EM̃M,v? ,(p̃,q̃)Eπ̂∼p̃

[
min

{
h
M̃
M,v? (π̂)

1− π̂2(v?)
, 1

}]
+ δ

≤ (1 +
√
δ) · EM̃M,v? ,(p̃,q̃)Eπ̂∼p̃[h

M̃
M,v? (π̂)] + 2

√
δ

≤ EM̃M,v? ,(p̃,q̃)Eπ̂∼p̃[h
M̃
M,v? (π̂)] + 6

√
δ,

where the first inequality follows from the first point of Lemma I.2, the second inequality follows
from Lemma I.1, the second-to-last inequality uses the second point of Lemma I.2 together with
Markov’s inequality to conclude that PM̃M,v? ,(p̃,q̃)(π̂2(v?) ≥

√
δ) <

√
δ, and the final inequality uses

that hM′(π) ≤ 4 for all M ′ ∈ M̃, π ∈ Π̃.
Taking a supremum over all models M ∈M, we conclude that

sup
M∈M

EM,(p,q)Eσ̂1∼p[g
M(σ̂1)] ≤ sup

M̃∈M̃
EM̃,(p̃,q̃)Eπ̂∼p̃[hM̃(π̂)] + 6

√
δ.
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Bounding M(M , T ) by M(H , T ). Consider any algorithm (p, q) which achieves M(H , T ).
We have p :

∏T
t=1(Π×O)→ ∆(Π), and q = (q1, . . . , qT ), with each qt :

∏t−1
i=1(Π×O)→ ∆(Π).

We define an algorithm (p̃, q̃) for the instance M as follows. Given πt ∈ Õ, ot ∈ O◦, rt1, rt2 ∈ R
for each t ∈ [T ], we define

p̃(·|(π1, (o1, r11, r
1
2)), . . . , (πT , (oT , rT1 , r

T
2 ))) ∈ ∆(Π̃)

to be the distribution obtained by sampling (σt1, σ
t
2) ∼ πt for each t, and taking the pure decision

(σ̂, 0), where σ̂ is distributed according to p(·|(σ1
1, o

1), . . . , (σT1 , o
T )). Similarly, define

q̃t(·|(π1, (o1, r11, r
1
2)), . . . , (πt−1, (ot−1, rt−1

1 , rt−1

2 ))) ∈ ∆(Π̃)

to be the distribution obtained by sampling (σi1, σ
i
2) ∼ πi for each i < t, and taking the pure

decision (σt1, 0), where σt1 is distributed according to qt(·|(σ1
1, o

1), . . . , (σt−1

1 , ot−1)). Since each
q̃t is supported only on (pure) decisions in Σ1 × {0}, for any model M ∈ M and any v ∈ [V ],
letting M ′ = M̃M,v, the distribution of {(σt1, ot))}

T
t=1 under PM′,(p̃,q̃) is the same as the distribution

of {(πt, ot)}Tt=1 under PM,(p,q). Thus, we have

EM,(p,q)Eπ̂∼p [gM(π̂)] =EM′,(p̃,q̃)E(σ̂1,0)∼p̃[g
M(σ̂1)]

=EM′,(p̃,q̃)E(σ̂1,0)∼p̃

[
sup
π′2∈Π′2

{fM′2 (U2(π′2, (σ̂1, 0)))− fM′2 ((σ̂1, 0))}

]
=EM′,(p̃,q̃)E(σ̂1,0)∼p̃

[
hM
′
((σ̂1, 0))

]
,

where above we have shortened p = p(·|(π1, o1), . . . , (πT , oT )) to denote the random variable under
PM,(p,q) and p̃ = p̃(·|(π1, (o1, r11, r

1
2)), . . . , (πT , (oT , rT1 , r

T
2 ))) to denote the random variable under

PM′,(p̃,q̃). This establishes that M(H , T ) ≤M(M , T ).

Bounding decε(H ) by decε′(M ). Consider any reference model M ∈ co(M). Given ε > 0,
set ε′ := ε+

√
6/V . We will upper bound decε(H ,M) by decε′(M , M̃) for some M̃ ∈ co(M̃).

For some distribution ν ∈ ∆(M), we can write M(π) = EM∼ν [M(π)] for all π ∈ Π. Define
µ := ν × Unif([V ]) ∈ ∆(M× [V ]), and M̃(π) := E(M,v)∼µ[M̃M,v(π)] for all π ∈ Π. Choose
some p̃, q̃ ∈ ∆(Π̃) so that

decε′(M , M̃) = sup
M ′∈M̃

{
Eπ∼p̃[hM

′
(π)] | Eπ∼q̃

[
D2

H

(
M ′(π), M̃(π)

)]
≤ (ε′)2

}
.

Define p ∈ ∆(Π) to be the distribution of σ1 where π = π1 × π2 ∼ p̃ and σ1 ∼ π1. Similarly define
q ∈ ∆(Π) to be the distribution of σ1 where π = π1 × π2 ∼ q̃ and σ1 ∼ π1. Now choose v? ∈ [V ]
as follows:

v? := arg min
v∈[V ]

{
Eπ∼p̃[π2(v)] + Eπ∼q̃[π2(v)]

}
,

where we have used the convention that π = π1 × π2 above. Then we have

Eπ∼p̃[π2(v?)] + Eπ∼q̃[π2(v?)] ≤ 2

V
.
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Consider any model M ∈M, and let M ′ := M̃M,v? . We now compute

Eσ1∼p[gM(σ1)] =Eπ∼p̃Eσ1∼π1 [gM(σ1)]

≤Eπ∼p̃
[
min

{
hM
′
(π)− π2(Σ2\{0, v?})
π2(Σ2\{v?})

, 1

}]
≤2V −1/2 + Eπ∼p̃

[
hM
′
(π)

1− V −1/2

]
≤2V −1/2 + (1 + 2V −1/2) · Eπ∼p̃[hM

′
(π)],

where the first inequality uses Lemma I.1 and the second-to-last inequality uses Markov’s inequality
to conclude that Pπ∼p̃[π2(v?) > V −1/2] ≤ 2V −1/2. Furthermore, we have

Eπ∼q̃
[
D2

H

(
M ′(π), M̃(π)

)]
≤Eπ∼q̃

[
E(σ1,σ2)∼π

[
D2

H

(
M ′((σ1, σ2)), M̃((σ1, σ2))

)]]
≤Eπ∼q̃

[
π2(0) · Eσ1∼π1

[
D2

H

(
M ′((σ1, 0)), M̃((σ1, 0))

)]]
+ Eπ∼q̃

[
π2(v?) · Eσ1∼π1

[
D2

H

(
M ′((σ1, v

?)), M̃((σ1, v
?))
)]]

+ Eπ∼q̃
[
π2(Σ\{0, v?}) ·D2

H(Ber(0),Ber(1/V ))
]

≤Eσ1∼q
[
D2

H

(
M ′((σ1, 0)), M̃((σ1, 0))

)]
+ 2 · Eπ∼q̃[π2(v?)] + 2/V

≤Eσ1∼q
[
D2

H

(
M(π),M(π)

)]
+ 6/V,

where the first equality uses convexity of the squared hellinger distance, the second inequal-
ity uses that M̃ is a mixture of M̃M,v with v ∼ Unif([V ]), and the third inequality uses that
D2

H(Ber(0),Ber(1/V )) ≤ 2 ·DTV(Ber(0),Ber(1/V )) = 2/V . Thus, it follows that

decε(H ,M) ≤ sup
M∈M

{
Eσ1∼p[gM(π)] | Eσ1∼q

[
D2

H

(
M(σ1),M(σ1)

)]
≤ ε2

}
≤ sup
M ′∈M̃

{
2V −1/2 + (1 + 2V −1/2) · Eπ∼p̃[hM

′
(π)] | Eπ∼q̃

[
D2

H

(
M ′(π), M̃(π)

)]
≤ ε2 + 6/V

}
≤2V −1/2 + (1 + 2V −1/2) · decε+(6/V )−1/2(M , M̃)

≤6V −1/2 + decε+(6/V )−1/2(M , M̃).

Bounding decε(M ) by decε(H ). Next consider any reference model M̃ ∈ co(M̃). We will
upper bound decε(M , M̃) by decε(H ,M) for some M ∈ co(M). For some distribution µ ∈
∆(M× [V ]), we have M̃(π) = E(M,v)∼µ[M̃M,v(π)] for all π ∈ Π̃. Define M by letting ν ∈ ∆(M)

to be the marginal of µ overM, and then: M(π) := EM∼ν [M(π)] for each π ∈ Π. Choose some
p, q ∈ ∆(Π) so that

decε(H ,M) = sup
M∈M

{
Eπ∼p[gM(π)] | Eπ∼q[D2

H

(
M(π),M(π)

)
] ≤ ε2

}
.
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Let p̃ ∈ ∆(Π̃) be the distribution of (σ1, 0) where σ1 ∼ p, and q̃ ∈ ∆(Π̃) be the distribution of
(σ1, 0) where σ1 ∼ q. By definition of the models M̃M,v, for any M ′ = M̃M,v ∈ M̃, we have:

Eπ∼p̃[hM
′
(π)] =Eπ∼p̃

[
sup
π′1∈Π′1

{fM′1 (U1(π′1, π))− fM′1 (π)}+ sup
π′2∈Π′2

{fM′2 (U2(π′2, π))− fM′2 (π)}

]

=Eπ∼p̃

[
sup
π′2∈Π′2

{fM′2 (U2(π′2, π))}

]
=Eσ1∼p[gM(σ1)].

Furthermore, since q̃ is supported entirely on Σ1 × {0} and all models in M̃ have r1 = r2 = 0
a.s. under such policies, it holds that

Eπ∼q̃
[
D2

H

(
M ′(π), M̃(π)

)]
= Eσ1∼q

[
D2

H

(
M(π),M(π)

)]
,

which certifies that

decε(M , M̃) ≤ sup
M ′∈M̃

{
Eπ∼p̃[hM

′
(π)] | Eπ∼q̃

[
D2

H

(
M ′(π), M̃(π)

)]
≤ ε2

}
≤ decε(H ,M).

for each π ∈ Π, M(π) to be the distribution of o◦ when (o◦, r1, r2) ∼ M̃M,v((π, 0)) and
(M,v) ∼ µ.

Proof of Lemma I.2. We denote a history drawn according to any of the distributions M̃M,v (for v ≥
0) by {(π̃t, (õt, rt1, rt2))}Tt=1. Furthermore, we abbreviate q̃t = q̃t(·|(π̃1, (õ1, rt1, r

t
2)), . . . , (π̃t−1, (õt−1, rt−1

1 , rt−1

2 )))

and p̃ = p̃(·|(π̃1, (õ1, rt1, r
t
2)), . . . , (π̃T−1, (õT−1, rT−1

1 , rT−1

2 )))). Define M ′ := M̃M,0 and choose

v? := arg min
v∈[V ]

{
T∑
t=1

EM′,(p̃,q̃)Eπ̃t∼q̃t [π̃t2(v)] + T · EM′,(p̃,q̃)Eπ̂∼p̃[π̂2(v)]

}
.

Then the choice of v? together with the fact that all π ∈ Π̃ satisfy
∑V

v=1 π2(v) ≤ 1 ensures that

T∑
t=1

EM′,(p̃,q̃)Eπ̃t∼q̃t [π̃t2(v?)] + T · EM′,(p̃,q̃)Eπ̂∼p̃[π̂2(v?)] ≤ 2T

V
. (18)
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Write M ′′ = M̃M,v? . Next, using (Foster et al., 2021, Lemma A.13),22 we have:

D2
H

(
PM′,(p̃,q̃),PM′′,(p̃,q̃)

)
=O(log T ) · EM′,(p̃,q̃)

[
T∑
t=1

D2
H

(
M ′(π̃t),M ′′(π̃t)

)]

≤O(log T ) · EM′,(p̃,q̃)
[

T∑
t=1

E(σt1,σ
t
2)∼π̃t [D

2
H

(
M ′((σt1, σ

t
2)),M ′′((σt1, σ

t
2))
)
]

]

≤O(log T ) · EM′,(p̃,q̃)
[

T∑
t=1

E(σt1,σ
t
2)∼π̃t [2 · I {σt2 = v?}]

]

≤O
(
T log T

V

)
,

where the final inequality uses (18). Since total variation distance is bounded above by Hellinger
distance, it follows that DTV

(
PM′,(p̃,q̃),PM′′,(p̃,q̃)

)
≤ C

√
T log(T )/V for some constant C > 0.

Using this fact together with (18), we see that

EM′′,(p̃,q̃)Eπ̂∼p̃[π̂2(v?)] ≤ EM′,(p̃,q̃)Eπ̂∼p̃[π̂2(v?)] + C
√
T log(T )/V ≤ 2T/V + C

√
T log(T )/V ,

where the second inequality above uses (18).

Appendix J. Proofs for Appendix D

J.1. Proofs from Appendix D.1

J.1.1. FURTHER DETAILS FOR UPPER BOUND

The upper bound from Theorem D.1 is derived by appealing to the E2D+ for PAC algorithm from
Foster et al. (2023). In what follows, we give some background on the algorithm, as well as a more
general upper bound. In brief, the E2D+ for PAC algorithm proceeds as follows: The algorithm uses
an online estimation oracle, denoted by AlgEst (defined formally in Assumption J.1), which is given
as input a model classM and attempts to estimate the true model M? ∈M given data obtained from
playing various decisions under M?. To generate each successive datapoint at iteration t, which will
be fed to the estimation oracle AlgEst, the E2D+ for PAC algorithm solves the minimax problem in
(5) to compute distributions pt, qt, where the model M is set to be the output of the estimation oracle
from the previous iteration. Then, a decision πt is sampled from qt, and we observe the resulting
observation ot ∼M?(πt). The tuple (πt, ot) is then be fed to the estimation oracle, which produces
its next estimate M̂ t+1. The algorithm’s output after T iterations is given by a sample from one of
the distributions pt? , where t? ∼ [T ] is uniform. See Foster et al. (2023) for further background.

Assumption J.1 (Estimation oracle forM). For each time t ∈ [T ], an online estimation oracle
AlgEst for the classM takes as input Ht−1 = (π1, o1), . . . , (πt−1, ot−1) where oi ∼ M?(πi) and
πi ∼ qi, for arbitrary (adaptive) choices of the distributions qi ∈ ∆(Π). Then, for some class

22. In particular, we apply this lemma to the sequence X1, . . . , X2T , where, for odd values of t we have Xt = π̃t,
Xt+1 = (õt, rt1, r

t
2), and use that the conditional distribution of π̃t given the history up to step t− 1 is the same under

the distributions PM′,(p̃,q̃) and PM′′,(p̃,q̃) since the algorithm (p̃, q̃) is the same.
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M̂ ⊆ co(M), the oracle AlgEst returns an estimator M̂ t ∈ M̂. We assume that if M? ∈ M, the
estimators produced by the algorithm satisfy

EstH(T ) :=
T∑
t=1

Eπt∼qt
[
D2

H

(
M?(πt), M̂ t(πt)

)]
≤ EstH(T, δ),

with probability at least 1− δ, where EstH(T, δ) is a known upper bound.

For most estimation oracles, the class M̂ in Assumption J.1 will be co(M), though in some
cases it is possible to take it to be smaller (see Proposition G.10 for an example).

Theorem J.1 (Foster et al. (2023), Theorem 3.1; Upper bound for HR-DMSO). Fix δ ∈
(
0, 1

10

)
and T ∈ N, and consider any instance H = (M,Π,O, {fM(·)}M). Suppose that Assump-
tions 1.4 and J.1 hold for the model class M and some class M̂ ⊆ co(M), and let EstH :=

EstH

(
2T

dlog 2/δe ,
δ

4dlog 2/δe

)
. Letting ε(T ) := 8

√
dlog 2/δe

T ·EstH, E2D+ for PAC, with access to the
oracle AlgEst, guarantees that with probability at least 1− δ,

Risk(T ) ≤ sup
M∈M̂

decε(T )(H ,M) ≤ decε(T )(H ).

If further fM(·) ∈ [0, R] for all M ∈ M and some R > 0, then the expected risk is bounded as
E[Risk(T )] ≤ decε(T )(H ) +Rδ.

We remark that Theorem J.1 is only stated in Foster et al. (2023) for the case M̂ = co(M), but
an inspection of the proof shows that the same guarantee holds for an arbitrary subclass M̂ ⊆ co(M)
in which AlgEst produces its predictions (with no modifications to the proof being necessary).

Theorem D.1 follows from Theorem J.1 by noting that there exists an estimation oracle with
EstH(T, δ) ≤ 2 log(|M|/δ) for finite classes (Foster et al., 2023).

Remark J.1 (Analogue for MA-DMSO). Using the transformation of Theorem C.1 (which does
not change the model class of the instance, and therefore preserves estimation error guarantees),
there is an analogue of Theorem J.1 for the multi-agent setting. In particular, for any instance M
of MA-DMSO, under Assumptions 1.1 and J.1, there is an algorithm that ensures with probability
1− δ, Risk(T ) ≤ decε(T )(M ).

Infinite model classes. As some of our applications in Appendix G involve infinite model classes
M, we next describe a simple way to bound the estimation error EstH(T, δ) for such classes,
following the approach in Foster et al. (2021).

Definition J.1 (Model class cover; Foster et al. (2021), Definition 3.2). A model classM′ ⊆ M
is an ε-cover forM if for all M ∈M, there is M ′ ∈M′ so that supπ∈ΠD

2
H(M(π),M ′(π)) ≤ ε2.

Let N (M, ε) denote the size of the smallest such coverM′, and define

est(M, T ) := inf
ε≥0

{
logN (M, ε) + ε2T

}
.

We will bound the estimation error EstH(T, δ) for a model class in terms of the quantity
est(M, T ); to do so, we need the following mild assumption.
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Assumption J.2. Suppose that there is a kernel ν from (Π,P) to (O,O) so that M(π) � ν(π)
for all M ∈ M, π ∈ Π, and let mM(·|π) denote the density of M(·|π) with respect to ν(·|π).
Furthermore, suppose there is a constant B ≥ e so that

1. ν(O|π) ≤ B for all π ∈ Π.

2. supπ∈Π supo∈Om
M(o|π) ≤ B for all M ∈M.

Proposition J.1 below shows that the estimation error EstH(T, δ) scales with logB. This
quantity is typically small: for instance, it is a constant for standard multi-armed bandit problems
(e.g., Bernoulli bandits and Gaussian bandits), and is polylogarithmic in the size of the state and
action spaces for reinforcement learning problems with finite state and action spaces.

Proposition J.1 (Lemma A.16 of Foster et al. (2021)). Suppose Assumption J.2 holds. Fix T ∈
N, δ ∈ (0, e−1), and write bT = log(2B2T ). Then there is an algorithm AlgEst that guarantees
that, with probability 1− δ, we have

EstH(T ) ≤ O(bT · est(M, T ) + b2T log(δ−1)),

i.e., we can take EstH(T, δ) = C · (bT · est(M, T ) + b2T log(δ−1)) for some universal constant C.

J.1.2. PROOF OF THEOREM D.2

Proof of Theorem D.2. Fix T ∈ N and an algorithm (p, q) = {qt(·|·), p(·|·)}Tt=1. For each model
M ∈M+, we use the abreviation PM ≡ PM,(p,q), and write EM for the corresponding expectation.
We also define

pM = EM [p(·|HT )], qM = EM
[

1

T

T∑
t=1

qt(·|Ht−1)

]
.

Choose ε(T ) as in the theorem statement, and write ε = ε(T ). Choose M ∈ co(M) so that
decε(M) = decε(M,M).23 We will prove a lower bound on the expected risk in terms of
decε(M,M). Define

M := arg max
M∈M

{
Eπ∼pM [gM(π)] | Eπ∼qM [D2

H

(
M(π),M(π)

)
] ≤ ε2

}
,

where we recall that C(T ) := log(T ∧ V (M)). Note that if theHqM ,ε(M) = ∅, then by definition
decε(M,M) = 0 and the result follows. Thus, we may assume thatHqM ,ε(M) 6= ∅, and hence the
choice of M above is well-defined. Furthermore, the choice of M ensures that

Eπ∼pM [gM(π)] ≥ decε(M,M) = decε(M). (19)

By Lemma A.13 in Foster et al. (2021), we have24

D2
H

(
PM ,PM

)
≤ C(T ) · T · Eπ∼qM [D2

H

(
M(π),M(π)

)
] ≤ C(T ) · T · ε2.

23. If the supremum over M is not achievable, then we may apply the argument that follows for a sequence that achieves
the supremum.

24. In order to apply this result, we need to ensure that for all measurable sets E ⊆ O and all π ∈ Π, we have
M(E|π)
M(E|π) ≤ V (M). This follows from the definition of V (M) in (7) and the fact that M ∈ co(M).
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Using the data processing inequality, it follows that

D2
H(pM , pM) ≤ C(T ) · T · ε2 ≤ 1

8R
· decε(M), (20)

where the second inequality follows from the choice of ε = ε(T ).
Next, using Lemma A.11 in Foster et al. (2021) and the fact that gM(π) ∈ [0, R] for all π, we

have

Eπ∼pM [gM(π)] ≤3 · Eπ∼pM [gM(π)] + 4R ·D2
H(pM , pM).

Combining the above display with (19) and (20) and rearranging, we see that

1

6
· decε(M) ≤ Eπ∼pM [gM(π)] = EMEπ∼p(·|HT )[g

M(π)] = EM [Risk(T )],

which gives the desired lower bound on expected risk.

J.2. Proofs from Appendix D.2

J.2.1. PROOF OF PROPOSITION D.1

Proof of Proposition D.1. Define ∆ :=
decε(T )(M)

8·ε(T )2·C(T )·T . If ∆ ≥ 1, then we have ε(T ) ≥ ε(T ), so
we may assume from here on that ∆ < 1. Choose

α =

⌈
log 1/∆

2 log(Creg/creg)

⌉
≥ 1,

which in particular is the smallest positive integer so that (C2
reg/c

2
reg)α ≥ 1/∆. Such α is well-

defined by our assumption that Creg > creg and since 1/∆ > 1. Applying Assumption D.1 to
ε = ε(T ) · (creg/Creg)j for 0 ≤ j < α, it follows that

decε(T )(M) ≤c2α
reg · decε(T )/Cαreg

(M)

≤∆ · C2α
reg · decε(T )/Cαreg

(M)

≤decε(T )(M) ·
decε(T )/Cαreg

(M)

8 · (ε(T )/Cαreg)2 · C(T ) · T
.

Hence ε(T ) ≥ ε(T )/Cαreg, and so

decε(T )(M) ≥ decε(T )/Cαreg
(M) ≥ 1

c2α
reg

· decε(T )(M).

The definition of α and ε(T ) gives that(
Creg

creg

)2α

≤Creg

creg
· 1

∆
≤ Creg

creg
· 83 · dlog 2/δe ·EstH · C(T )

decε(T )(M)
.

Our definition of β ensures that c2α
reg ≤ ((Creg/creg)2α)β , meaning that, for some constant C,

decε(T )(M) ≤ c2α
reg · decε(T )(M) ≤ (C · Creg/creg)β · logβ 1/δ ·EstβH · C(T )β · decε(T )(M)−β · decε(T )(M),
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and rearranging yields:

decε(T )(M) ≤
(
C log 1/δ ·EstH · C(T ) · Creg/creg

) β
1+β · decε(T )(M)

1
1+β .

J.2.2. PROOF OF PROPOSITION D.2 AND PROPOSITION D.3

Proof of Proposition D.2. We set Π = [A] and O = {0, 1}. For each δ > 0, we define a
model classMδ ⊂ (Π → ∆(O)), as follows: Mδ = {Mδ,a : a ∈ [A]}, and define Mδ,a(π) =

Ber(1/2 + δI {π = a}). We now setM =
⋃L
i=2M2−i , from which it follows that |M| ≤ LA.

Define fM(π) = EM,π[r], where r ∼M(π). Finally set H = (M,Π,O, {fM(·)}M). Note that the
instance H is actually a standard (non-hidden reward) DMSO instance in the sense of Foster et al.
(2021).

Since the model classM is a subclass of the class of all A-armed bandit problems, we have from
Proposition 5.1 of Foster et al. (2021) and Proposition E.1 (which applies identically to HR-DMSO
instances in addition to MA-DMSO instances) that decε(H ) ≤ O(ε

√
A). Furthermore, we have

M(H , T ) ≤ O(
√
TA) (Audibert and Bubeck, 2009) (up to logarithmic factors, this bound is also a

consequence of, e.g., Theorem D.1).
For each δ > 0, write Hδ := (Mδ,Π,O, {fM(·)}M). Also write M δ = 1

A

∑A
a=1Mδ,a ∈

co(Mδ). Since for all π ∈ Π and a ∈ [A], D2
H

(
M δ(π),Mδ,a(π)

)
≤ 4δ2, it is straightforward to see

that dec4δ/
√
A(Hδ) ≥ dec4δ/

√
A(Hδ,M δ) ≥ Ω(δ). Since increasing the size of the model class can-

not decrease the DEC, it follows that, for all ε satisfying 1/
√
A > ε > 2−L, decε(H ) ≥ Ω(ε

√
A).

Finally, since the rewards are observed in the instance H , we can use Theorem 2.1 of Foster
et al. (2023) to conclude that for A at least some sufficiently large constant, and T ≤ 2L/2,
M(H , T ) ≥ Ω(

√
A/T ).

Proof of Proposition D.3. Fix L to be larger than some universal constant (whose value will be
specified below), and consider any value for a constant Cprob ≥ 1. We define the following instance
H = (M,Π,O, {fM(·)}M∈M), with the individual components defined as follows:

• For 1 ≤ ` ≤ L, define α` := 1/L, N` = 2`, and δ` = 1
(CprobN`)2

.

• Let V :=
∏L
`=1[N`], and set Π := V .

• Let O =
∏L
`=1([N`] ∪ {⊥`}). For ease of notation we write O` := [N`] ∪ {⊥`}.

• For o` ∈ O` and v` ∈ [N`], define

Pv`(o`) :=


1− δ(N` − 1) : o` =⊥`
δ` : o` ∈ [N`]\{v`}
0 : o` = v`.

Then Pv` ∈ ∆(O`).
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• The classM is indexed by tuples v ∈ V; in particular, for each v = (v1, . . . , v`) ∈ V , there
is a model Mv, defined as follows. For π ∈ Π, Mv(π) ∈ ∆(O) is the following distribution
which does not depend on π: for o = (o1, . . . , oL) ∈ O,

Mv(π)(o) =
L∏
`=1

Pv`(o`).

Since the distribuiton Mv(π) does not depend on π, we will often drop the argument π
and simply write Mv ∈ ∆(O). Accordingly, the Hellinger distance between observation
distributions of two models M,M ′ ∈ co(M) will be denoted by D2

H(M,M ′).

• For all v ∈ V and π = (π1, . . . , πL) ∈ Π, the value function f : Π → [0, 1] is defined as
follows:

fMv(π) :=

L∑
`=1

α` · (1− I {π` = v`}) .

For convenience we write fMv` (π) := (1− I {π` = v`}), so that fMv(π) =
∑L

`=1 α` · f
Mv
` (π).

It is clear that for all v ∈ V there is some π (namely, any π so that π` 6= v` for all `) for which
fMv(π) = 1, meaning that gMv(π) = 1− fMv(π).

Upper bounding the minimax sample complexity. Fix some T ∈ N; we next upper bound
M(H , T ). Since the distribution over observations for all models in the classM does not depend
on the decision, to specify an algorithm (p, q) we need only to specify the distribution p, which is a
mapping from T -tuples of observations to distributions over decisions. To define p, we first define
mappings p` : OT` → [N`], as follows:

p`(o`,1, . . . , o`,T ) :=

{
Unif(Π) : o`,1 = · · · = o`,T =⊥`,
Io`,t : t := arg min{s ∈ [T ] | o`,s 6=⊥`} exists.

In particular, p` outputs the first index of an observation which is not ⊥`; if no such index exists, then
p` outputs the uniform distribution over [N`]. Now we define

p(o1, . . . , oT ) := (p`(o`,1, . . . , o`,T ))L`=1 ,

where we have written ot = (o1,t, . . . , oL,t) for each T ∈ [T ].
We now upper bound the risk of the algorithm p. We abbreviate the distribution over histories

under a given model Mv ∈M by PMv(·), and write EMv [·] for the corresponding expectation. For
each ` ∈ [L], we have, for all Mv ∈M,

EMvEπ∼p(o1,...,oT )

[
1− fMv` (π)

]
≤ (1− δ`(N` − 1))T · 1

N`
,

since the probability that there is no t ∈ [T ] so that o`,t 6=⊥` is (1 − δ`(N` − 1))T , and on the
complement of this event (so that such t exists), p`(o1, . . . , oT ) puts all its mass on such o`,t 6= v`,
so that fMv` (π) = 1. Hence

EMvEπ∼p(o1,...,oT )[g
Mv(π)] ≤

L∑
`=1

α`
N`
· (1− δ`(N` − 1))T ≤

L∑
`=1

α`
N`
·

(
1− 1

2C2
probN`

)T
.
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Given T ≤ NL, choose `? = `?(T ) ∈ [L] as large as possible so that T ≥ 2 log(N`?) · 2C2
probN`? ,

which gives

EMvEπ∼p(o1,...,oT )[g
Mv(π)] ≤

`?∑
`=1

α`
N`
· exp

(
−2 logN`?

T

)T
+

L∑
`=`?+1

α`
N`

≤
`?∑
`=1

α`
N`
· 1

N2
`?

+
L∑

`=`?+1

α`
N`
≤ 1

N`?

≤
8C2

prob log T

T
,

where the final inequality uses that our choice of `? gives that N`? ≥ T
8C2

prob log T
,

Lower bounding the DEC. By the tensorization property of the squared Hellinger distance, we
have, for any two models Mv,Mu ∈M,

1− 1

2
D2

H(Mu,Mv) =

L∏
`=1

(
1− 1

2
D2

H(Pv` , Pu`)

)
=

L∏
`=1

(
1− 1

2
· I {u` 6= v`} · 2δ`

)
≥ 1−

L∑
`=1

δ` · I {u` 6= v`} ,

which implies that D2
H(Mu,Mv) ≤ 2

∑L
`=1 δ` · I {u` 6= v`}. Let v := (1, 1, . . . , 1) ∈ V , and set

M := Mv.
Now consider any 2 ≥ ε ≥

√
2δL. Choose `? = `?(ε) to be the smallest possible value of

` ∈ [L] so that ε2 ≥ 2δ`. For each i ∈ [N`? ], define vi ∈ V by:

vi` =

{
v` : ` 6= `?

i : ` = `?,

and write M i := Mvi . Then for all i ∈ [N`? ], we have D2
H

(
M,M i

)
≤ 2δ`? ≤ ε2. For any

distribution p ∈ ∆(Π), there must be some i? ∈ [N`? ] so that

Eπ∼p[1− fM
i?

`? (π)] = Pπ∼p(π`? = i?) ≥ 1/N`? .

Therefore,

decε(M,M) ≥ α`?

N`?
= α`?Cprob

√
δ`? ≥

α`?Cprob√
8

· ε =
Cprob√

8 · L
· ε, (21)

where the final inequality uses that ε2 ≤ 8δ` since δ`+1 = δ`/4 for all ` < L and ε ≤ 2.

Upper bounding the DEC. Next we upper bound decε(M) for ε ∈ (0, 2); while not necessary
for lower bounding ε(T ), an upper bound on the decε(M) serves to ensure that the classM satisfies
the regularity condition of Assumption D.1. This certifies that the instance H we construct satisfies
the assumptions that we use to upper and lower bounding minimax risk in terms of the DEC.

Consider any M ∈ co(M). We can write M = Ev∼µ[Mv] for some distribution µ ∈
∆(V). For each ` ∈ [L], let µ` ∈ ∆([N`]) be the marginal of µ on [N`] (recall that V =∏L

`=1[N`]). Since D2
H(Pu` , Pv`) = 2δ` for u` 6= v`, any two distinct values v`, v′` ∈ [N`] satis-

fying D2
H(Eu`∼µ` [Pu` ], Pv`) ≤ ε2 and D2

H

(
Eu`∼µ` [Pu` ], Pv′`

)
≤ ε2 must in turn satisfy

2δ` = D2
H

(
Pv` , Pv′`

)
≤ 2 ·D2

H(Eu`∼µ` [Pu` ], Pv`) + 2 ·D2
H

(
Eu`∼µ` [Pu` ], Pv′`

)
≤ 4ε2. (22)
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Now consider any ε ∈ (
√
δL, 2). Define ` = `(ε) to be the largest possible value of ` ∈ [L] so that

ε2 < δ`/2. By (22) it follows that for all ` ≤ `, there is at most a single value of v` ∈ [N`] so that
D2

H(Eu`∼µ` [Pu` ], Pv) ≤ ε2. Denote this value of v` by v` if such a v` exists; if not, choose v` ∈ [N`]
arbitrarily.

By the data processing inequality, for any v ∈ V and each ` ∈ [L], it holds that D2
H

(
M,Mv

)
≥

D2
H(Eu`∼µ` [Pu` ], Pv`). Thus, for each Mv ∈ M so that D2

H

(
M,Mv

)
≤ ε2, we must have that

v` = v` for all ` ≤ `.
Now choose any v? ∈ V so that v?` 6= v` for all ` ≤ `, and define p? ∈ ∆(Π) as follows:

p? := Unif
({
v ∈ V | v` = v?` ∀` ≤ `

})
.

We may now compute:

decε(M,M) ≤ sup
M∈M

{
Eπ∼p? [gM(π)] | D2

H

(
M,M

)
≤ ε2

}
≤

L∑
`=`+1

α`
N`
≤ 1

N`+1

≤ 2Cprobε,

where the final inequality uses that ε2 ≥ δ`/8 by definition of ` and the fact that ε ≥
√
δL.

Bounding ε(T ). Consider any T ≤ NL/L
3, which ensures that (for sufficiently large L),

Cprob

8
√

8 · L · C(T ) · T
≥

√
2

Cprob ·NL
=
√

2δL, (23)

where we have used that C(T ) ≤ C0 · log(T ) for some universal constant C0. Recall that ε(T ) is
defined to be as large as possible so that ε(T )2 · C(T ) · T ≤ 1

8 · decε(T )(M). Set

ε0 :=
Cprob

8
√

8 · L · C(T ) · T
≥ Ω

(
Cprob

T log(T ) · L

)
,

which, using (23) and (21), satisfies ε2
0 · C(T ) · T ≤ 1

8 · decε0(M), and thus ε(T ) ≥ ε0.

J.2.3. PROOF OF THEOREM D.3

Proof of Theorem D.3. Given anyCprob ≥ 1, fixN = d
√
T/Cprobe. For real numbers δ, β ∈ (0, 1),

we will define instances H δ,β of the HR-DMSO framework. We will later choose H1,H2 to be such
instances for certain choices of δ, β. For some model classesMδ,β , each of size N , we will have, for
all δ, β, H δ,β = (Mδ,β,Π,O, {fM(·)}M), i.e., the instances H δ,β share the same decision space,
observation space, and value functions. We next define these components:

• Π = [N ] and O = [N ] ∪ {⊥}.

• For all δ, β, we haveMδ,β = {M δ,β
1 , . . . ,M δ,β

N }. For i ∈ [N ] and π ∈ Π, M δ,β
i (π) ∈ ∆(O)

is the following distribution, which does not depend on π:

M δ,β
i (π)(j) =


1− δ(N − 1)− β : j =⊥
δ : j ∈ [N ]\{i}
β : j = i.

Since the distribution M δ,β
i (π) does not depend on π, we will often drop the argument π and

simply write M δ,β
i ∈ ∆(O).
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• For all δ, β and for all π ∈ Π, i ∈ [N ], the value function fM
δ,β
i : Π → [0, 1] is defined as

follows:

fM
δ,β
i (π) := 1− I {i = π} .

Since the above value function does not depend on δ, β, we will simply write f i(π) :=

fM
δ,β
i (π) and gi(π) := gM

δ,β
i (π) = I {i = π}.

In the model M δ,β
i , all decisions except decision i are optimal. Furthermore, we will always have

β < δ, meaning that, under M δ,β
i , it is more likely to observe any given index in [N ]\{i} than it is

to observe i.

Upper bounding the minimax risk. Next, for T ∈ N, we upper bound M(H δ,β, T ). Since the
distribution over observations for all models in the classesMδ,β does not depend on the decision,
to specify an algorithm (p, q) we need only to specify the distribution p, which is a mapping from
T -tuples of observations to distributions over decisions. Furthermore, to specify the distribution over
histories under a given model M δ,β

i , we write EM
δ,β
i [·]. Now consider the algorithm p defined by:

p(o1, . . . , oT ) :=

{
Unif(Π) : o1 = · · · = oT =⊥
Iot : t := arg min {s ∈ [T ] | os 6=⊥} , exists.

(24)

In particular, p outputs the index of the first observation which is not ⊥; if no such index exists, then
p outputs the uniform distribution over decisions. To upper bound the expected risk of p, note that,
for any model M δ,β

i , we have

EM
δ,β
i Eπ∼p(o1,...,oT )[g

i(π)] ≤(1− δ(N − 1)− β)T

N
+

β

β + δ(N − 1)
≤ (1− δ(N − 1))T

N
+

β

δ(N − 1)
,

(25)

where the first term on the right-hand side accounts for the case that o1 = · · · = oT =⊥, and the
second term gives the probability that, given that there exists s such that os 6=⊥, the index t of the
first such observation satisfies ot = i.

Lower bounding the minimax risk. We next lower bound the minimax risk for the instances
H δ,β in the following lemma; the proof is provided at the end of the section.

Lemma J.1. Fix any real numbersC ≥ 1 and ε ∈ (0, 1), suppose δ ≤ 1/N , and write β = δ/C. The
minimax risk for the instance H δ,β is bounded below as follows: for S ≤ 1/δ1−ε, M(H δ,β, S) ≥

1
2NC2/ε .

Computing Dφ. It is now straightforward to compute the Dφ-divergence between any two models
inMδ,β . In particular, for i ∈ [N ], we have:

Dφ(M δ,β
i ‖M δ,β

j ) =

{
0 : i = j

β · φ(δ/β) + δ · φ(β/δ) : i 6= j.
(26)
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Choosing δ, β. Let ε ∈ (0, 1) and T ∈ N be as in the theorem statement. Since φ is assumed to be
(α, β)-bounded, we have that

φ(N ε/α) ·N−ε/α + φ(N−ε/α)

φ(2)/2 + φ(1/2)
≤ β ·N ε

φ(2)/2 + φ(1/2)
≤ β′ ·N ε, (27)

where we have written β′ := max
{

1, β
φ(2)/2+φ(1/2)

}
.

For some constant C0 > 0 to be specified below, we choose

δ1 =
C0 lnT

(N − 1)T
, β1 =

δ1

N ε/α
; δ2 =

φ(N ε/α) ·N−ε/α + φ(N−ε/α)

φ(2)/2 + φ(1/2)
· δ1, β2 =

δ2

2
. (28)

The choices of δ1, β1, δ2, β2 ensure that

β1 · φ(δ1/β1) + δ1 · φ(β1/δ1) = β2 · φ(δ2/β2) + δ2 · φ(β2/δ2), (29)

which, together with (26), ensures that for all i, j ∈ [N ],Dφ(M δ1,β1
i ‖M δ1,β1

j ) = Dφ(M δ2,β2
i ‖M δ2,β2

j ).

Wrapping up. We set H1 = H δ1,β1 and H2 = H δ2,β2 , and correspondingly setM1 =Mδ1,β1

andM2 =Mδ2,β2 . We define the one-to-one mapping E :M1 →M2 by the mapping that sends
M δ1,β1
i 7→ M δ2,β2

i for all i ∈ [N ]. It is clear that these definitions satisfy Item 1 and Item 2 of the
proposition statement.

From (25), the expected risk of p against a worst-case model inMδ1,β1 is bounded above as
follows:

sup
M?∈Mδ1,β1

EM?,p[Risk(T )] ≤
(

1− C0 lnT

T

)T
+

β1

δ1 · (N − 1)

≤ exp

(
−C0 lnT

T

)T
+

2

N1+ε/α

≤T−1 + 2 ·
(
Cprob

T

)1/2+ε/(2α)

,

where the final inequality holds as long as we choose C0 = 1; recall that N := d
√
T/Cprobe. The

above display establishes the upper bound of Item 3.
Next, for the lower bound, recall that (27) gives that δ2 ≤ β′ ·N ε · δ1, so

1

δ1−ε
2

≥ 1

(β′N ε · δ1)1−ε ≥
(N1−εT )1−ε

2β′C0 lnT
≥ N1−4ε · T

2β′C0Cεprob lnT
≥ T 3/2−2ε

2β′C0C
1/2+ε
prob lnT

,

where the second-to-last inequality uses that T ε ≤ N2ε · Cεprob. Thus, from Lemma J.1 with

(δ, β) = (δ2, β2) (so that C = 2), we have that for all T ′ ≤ T 3/2−2ε

2β′C0C
1/2+ε
prob lnT

,

M(H δ2,β2) ≥ 1

21+2/ε
· 1

N
≥ 1

22+2/ε
·

√
T

Cprob
.
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Thus, taking Cφ = 2β′C0, the above inequality verifies the lower bound of Item 3.

Proof of Lemma J.1. Consider any algorithm p : OS → Π. Note that the distributions of
M δ,δ

1 , . . . ,M δ,δ
N are all identical. Thus, there is some i ∈ [N ] so that

EM
δ,δ
i Eπ∼p(o1,...,oS)[I {π = i}] = EM

δ,δ
i Eπ∼p(o1,...,oS)[g

i(π)] ≥ 1/N.

For λ ≥ 0, define

Sλ :=
{

(o1, . . . , oS) ∈ OS : |{t ∈ [S] : ot = i}| > λ
}
.

Then the probability that (o1, . . . , oS) ∈ Sλ is bounded above as follows:

PM
δ,δ
i ((o1, . . . , oS) ∈ Sλ) ≤

(
S

λ

)
· δλ ≤ (Sδ)λ ≤ δελ.

Choosing λ = 2/ε yields δελ = δ2 ≤ 1/N2, meaning that

EM
δ,δ
i Eπ∼p(o1,...,oS)

[
I
{

(o1, . . . , oS) 6∈ S2/ε

}
· I {π = i}

]
≥ 1/N − 1/N2 ≥ 1/(2N).

For any (o1, . . . , oS) 6∈ Sλ, we have that

M δ,β
i ((o1, . . . , oS))

M δ,δ
i ((o1, . . . , oS))

≥ (β/δ)λ ≤ 1/Cλ.

Thus,

EM
δ,β
i Eπ∼p(o1,...,oS)[g

i(π)] ≥ EM
δ,β
i Eπ∼p(o1,...,oS)[I {π = i} · I

{
(o1, . . . , oS) 6∈ S2/ε

}
]

≥ EM
δ,δ
i Eπ∼p(o1,...,oS)[I {π = i} · I

{
(o1, . . . , oS) 6∈ S2/ε

}
] · 1/C2/ε

≥ 1

2NC2/ε
.

J.3. Proofs from Appendix D.3

Proof of Theorem D.4. Given Cprob ≥ 1, fix N = d
√
T/Cprobe. Recall the definition of the

instances H δ,β = (Mδ,β,Π,O, {fM(·)}M ) (for δ, β ∈ (0, 1)) of the HR-DMSO framework defined
in the proof of Theorem D.3, where we have Π = [N ] and O = [N ] ∪ {⊥}. For each δ, β, we
now define M δ,β = (M̃δ,β, Π̃, Õ, {Π′k}k, {Uk}k) to be the instance of the (2-player) MA-DMSO
framework constructed given the instance H δ,β per the construction in the proof of Theorem C.2
with a value of V to be specified below. In particular, Π̃, Õ,Π′k, Uk do not depend on δ, β. For clarity,
we explicitly write out the definition of the components of M δ,β in terms of the components of
H δ,β:

• Define Σ1 = Π = [N ] and Σ2 = {0, 1, . . . , V }, Π̃k = ∆(Σk) for k ∈ {1, 2}, and Π̃ =
Π̃1 × Π̃2.
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• Define Π′k, Uk for k ∈ [2] so that M δ,β is an NE instance (Definition 1.1); in particular,
Π′k = Π̃k for each k and Uk(π′k, π) = (πk, π−k).

• Define the pure observation space to be O◦ := O ∪ {⊥̃}, the reward space to beR = [−1, 1],
and the full observation space to Õ := O◦ × R2.

• The model class M̃δ,β is indexed by tuples (M,v) ∈ Mδ,β × {1, 2, . . . , V } =Mδ,β × [V ].
(Thus |M̃δ,β| = NV .) In particular, for each such tuple (M, v), we have a model M̃M,v, which
is defined as follows:

– For pure decisions of the form (σ1, 0) ∈ Σ1 × Σ2 the distribution of (o◦, r1, r2) ∼
M̃M,v((σ1, 0)) is given by:

o◦ ∼M(σ1) ∈ O ⊂ O◦, r1 = r2 = 0.

– For pure decisions of the form (σ1, i) ∈ Σ1 × Σ2 with i > 0, the distribution of
(o◦, r1, r2) ∼ M̃M,v((σ1, i)) is given by:

o◦ = ⊥̃, r2 = −r1 =

{
−1 : i 6= v

gM(σ1) : i = v,
(30)

where we recall that gM(σ1) = maxσ′1∈Σ1
{fM(σ′1)} − fM(σ1).

– For general decisions π ∈ Π̃, we can write π = π1 × π2 for πk ∈ Π̃k for k ∈ [2]. Then
the distribution M̃M,v(π) is the distribution of M̃M,v(σ) where σ = (σ1, σ2) is distributed
as: σk ∼ πk for k ∈ [2].

Next, let δ1, δ2 be defined given T,N, ε, φ, α, as in the proof of Theorem D.3 (in particular, they
are specified in (28)). We write M1 = M δ1,β1 and M2 = M δ2,β2 , and correspondingly write
M1 = M̃δ1,β1 and M2 = M̃δ2,β2 . Moreover, we define the mapping E : M1 → M2 in an
analogous manner to the definition in the proof of Theorem D.3. In particular, for each δ, β, we
haveMδ,β = {M δ,β

1 , . . . ,M δ,η
N }. First define E0 : Mδ1,β1 → Mδ2,β2 by E0(M δ1,β1

i ) = M δ2,β2
i ,

for i ∈ [N ] (exactly as was done in the proof of Theorem D.3. Then for each model of the form
M̃M,v ∈ M̃ δ1,β1 =M1 (so that M ∈Mδ1,β1 , v ∈ [V ]), define E (M̃M,v) := M̃E0(M),v. We are now
ready to verify the individual claims of the theorem:

Proof of Item 1. Consider any M̃M,v ∈ M̃δ1,β1 (so that M ∈ Mδ1,β1 , v ∈ [V ]). For any
(σ1, σ2) ∈ Σ1 × Σ2, we have, by definition of E ,

f
M̃M,v

2 (σ1, σ2) = f
E (M̃M,v)

2 (σ1, σ2) =


0 : σ2 = 0

−1 : σ2 ∈ [V ]\{v}
gM(σ1) : σ2 = v,

which establishes Item 1 since all instances are 2-player 0-sum instances.
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Proof of Item 2. Consider any two models M̃M,v, M̃M′,v′ ∈ M̃δ1,β1 (so that M,M ′ ∈ Mδ1,β1 ,
and v, v′ ∈ [V ]). For any π1 ∈ Π1, we have that

Dφ(M̃M,v(π1, 0) ‖ M̃M′,v′(π1, 0)) = Dφ(M(π1) ‖M ′(π1))

=Dφ(E0(M)(π1) ‖ E0(M ′)(π1)) = Dφ(M̃E0(M),v(π1, 0) ‖ M̃E0(M
′),v′(π1, 0))

=Dφ(E (M̃M,v)(π1, 0) ‖ E (M̃M′,v′)(π1, 0)), (31)

where the first and third equalities follow by definition of M̃δ,β above, the second equality follows
by Item 2 of Theorem D.3 and the fact that our choice of δ1, β1, δ2, β2 is identical to that in the proof
of Theorem D.3 (cf. Eq. (28) and Eq. (29)), and the fourth equality follows from definition of E .

Next, for any σ1 ∈ Σ1 and σ2 ∈ Σ2\{0}, note that the distributions M̃M,v(σ1, σ2) and
E (M̃M,v)(σ1, σ2) = M̃E0(M),v(σ1, σ2) are identical: the pure observation under both these distribu-
tions is ⊥̃ a.s., and the rewards are given by (30), where we have noted that gM(σ1) = gE0(M)(σ1) for
all σ1 ∈ Σ1. It follows that for any π1 ∈ Π1 and σ2 ∈ ∆(Σ2\{0}), the distributions M̃M,v(π1, π2)

and E (M̃M,v)(π1, π2) are identical. In a similar manner, we have that for any such π1, π2, the
distributions M̃M′,v′(π1, π2) and E (M̃M′,v′)(π1, π2) are identical. Therefore,

Dφ(M̃M,v(π1, π2) ‖ M̃M′,v′(π1, π2)) = Dφ(E (M̃M,v)(π1, π2) ‖ E (M̃M′,v′)(π1, π2)). (32)

Now consider any joint decision (π1, π2) ∈ Π1×Π2. Let us write π2 = π2(0) · I0 + (1−π2(0)) ·π′2,
where π′2 ∈ ∆(Σ2\{0}). Since, for any model M̃ ∈ M̃δ,β (for any δ, β), the distributions M̃(π1, 0)

and M̃(π1, π
′
2) have disjoint support (namely, under the second, the pure observation is always ⊥̃,

and under the first, the pure observation is never ⊥̃), it follows from Lemma H.1 that for any two
models M̃, M̃ ′ ∈Mδ,β ,

Dφ(M̃(π1, π2) ‖ M̃ ′(π1, π2)) =π2(0) ·Dφ(M̃(π1, 0) ‖ M̃ ′(π1, 0))

+ (1− π2(0)) ·Dφ(M̃(π1, π
′
2) ‖ M̃ ′(π1, π

′
2)). (33)

Then for the decision (π1, π2) ∈ Π1 ×Π2, with π′2 defined as above, we have

Dφ(M̃M,v(π1, π2) ‖ M̃M′,v′(π1, π2))

=π2(0) ·Dφ(M̃M,v(π1, 0) ‖ M̃M′,v′(π1, 0)) + (1− π2(0)) ·Dφ(M̃M,v(π1, π
′
2) ‖ M̃M′,v′(π1, π

′
2))

=π2(0) ·Dφ(E (M̃M,v)(π1, 0) ‖ E (M̃M′,v′)(π1, 0)) + (1− π2(0)) ·Dφ(E (M̃M,v)(π1, π
′
2) ‖ E (M̃M′,v′)(π1, π

′
2))

=Dφ(E (M̃M,v)(π1, π2) ‖ E (M̃M′,v′)(π1, π2)),

where the first and third equalities use (33), and the second equality uses (31) and (32). The above
display verifies Item 2.

Proof of Item 3. For each δ, β ∈ (0, 1), the construction of M δ,β given H δ,β according to the
construction in the proof of Theorem C.2, together with the conclusion of Theorem C.2, gives that,
for all T ′ ∈ N,

M(M δ,β, T ′) ≤M(H δ,β, T ′) ≤M(M δ,β, T ′) +O((T ′ log(T ′)/V )1/4). (34)
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Then Item 3 of Theorem D.3, together with our choice of δ1, β1, δ2, β2 to mimic that in the proof of
Theorem D.3, yields that for all T ′ with T ≤ T ′ ≤ T 3/2−2ε · (CφC

1/2+ε
prob lnT )−1

M(M1, T
′) = M(M δ1,β1 , T ′) ≤M(H δ1,β1 , T ′) ≤ 1

T
+ 2 ·

(
Cprob

T

)1/2+ε/(2α)

(35)

M(M2, T
′) = M(M δ2,β2 , T ′) ≥M(H δ2,β2 , T ′)−O((T ′ log(T ′)/V )1/4)

≥2−2−2/ε ·
(
Cprob

T

)1/2

−O((T ′ log(T ′)/V )1/4).

Choosing V = T 100 · 28+8/ε ensures that

M(M2, T
′) ≥ 2−3−2/ε ·

(
Cprob

T

)1/2

. (36)

Together (35) and (36) verify Item 3.

Appendix K. Proofs for Appendix E

Throughout this section, we consider an instance M = (M,Π,O, {Π′k}k, {Uk}k) of MA-DMSO
which is an NE instance (Definition 1.1). It follows in particular that for any M ∈ M, π ∈ Π, we
have

hM(π) =
K∑
k=1

hMk (π) =
K∑
k=1

sup
π′k∈Πk

fMk (π′k, π−k)− fMk (π).

K.1. Bounds for general games with convex decision spaces

Proof of Theorem E.1. For each k ∈ [K] and π−k ∈ Π−k, define

M̃k(π−k) := {πk 7→M |k(πk, π−k) : M ∈M}.

It is straightforward from the definition of M̃k in (11) that for each k ∈ [K], M̃k =
⋃
π−k∈Π−k

M̃k(π−k),

and therefore that
⋃
π−k∈Π−k

co(M̃k(π−k)) ⊆ co(M̃k). For any π−k ∈ Π−k and M ∈ co(M), we

denote the corresponding element of co(M̃k(π−k)) by (M,π−k). (In particular, (M,π−k) is the
model that sends πk 7→M |k(πk, π−k).) It then suffices to prove the following stronger result: for
each M ∈ co(M),

r-deco
γ(M ,M) ≤

K∑
k=1

sup
π−k∈Π−k

r-deco
γ/K(M̃k, (M,π−k)). (37)

Next, note that for any M ∈M, π−k ∈ Π−k, the value function for the model πk 7→M |k(πk, π−k)
is given by fM|k(πk) = fMk (πk, π−k), for π ∈ Π (this holds since the distribution of the reward
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under M |k(πk, π−k) is simply the distribution of agent k’s reward under M(πk, π−k)). Then for any
M ∈ co(M), π−k ∈ Π−k, we have

r-deco
γ/K(M̃k, (M,π−k))

= inf
pk∈∆(Πk)

sup
M∈M

π−k∈Π−k

Eπk∼pk

[
max
π′k∈Πk

fMk (π′k, π−k)− fMk (πk, π−k)−
γ

K
·D2

H

(
M(πk, π−k),M(πk, π−k)

)]

≥ inf
pk∈∆(Πk)

sup
M∈M

π−k∈Π−k

Eπk∼pk
ak∼πk

[
max
π′k∈Πk

fMk (π′k, π−k)− fMk (ak, π−k)−
γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]

= inf
πk∈Πk

sup
M∈M

π−k∈Π−k

Eak∼πk

[
max
π′k∈Πk

fMk (π′k, π−k)− fMk (ak, π−k)−
γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
,

(38)

where the inequality uses joint convexity of the squared Hellinger distance, and the final inequality
uses the fact that any distribution pk ∈ ∆(Πk) may be replaced by the singleton distribution for the
decision π̃k := Eπk∼pk [πk], without changing the value of the expression.

Thus

r-deco
γ/K(M̃k, (M,π−k)) ≥ inf

πk∈Πk
sup
M∈M

π−k∈Π−k

Eak∼πk
[
hMk (ak, π−k)−

γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
.

Existence of fixed points. For each k ∈ [K], define the set-valued function Ck : Π→ P(Πk) by

Ck(π) := arg min
πk∈Πk

sup
M∈M,π−k∈Π−k

Eak∼πk
[
hMk (ak, π−k)−

γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
.

Further, for π−k ∈ Π−k,M ∈M, define the function GM,π−k : Πk ×Π−k → R by

GM,π−k(πk, π−k) = Eak∼πk
[
hMk (ak, π−k)−

γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
.

Assumption E.1 gives that for all ak, the map π−k 7→M(ak, π−k) is linear. It follows by the domi-
nated convergence theorem that for allM,π−k, ak, the function π−k 7→ D2

H

(
M(ak, π−k),M(ak, π−k)

)
is continuous. Hence GM,π−k(πk, π−k) is continuous in (πk, π−k), and the function

G̃k(πk, π−k) := sup
M∈M,π−k∈Π−k

GM,π−k(πk, π−k)

is also continuous in (πk, π−k). Furthermore, since, for each π−k, the function GM,π−k(πk, π−k) is
linear in πk (Assumption E.1), G̃k(πk, π−k) is convex in πk. It follows that Ck(π) = arg minπk∈Πk

{G̃k(πk, π−k)}
is a closed, nonempty, and convex subset of Πk for all π. Furthermore, by continuity of G̃k and
Lemma H.8, we have that Ck(π) is upper hemicontinuous. By Lemma H.9, it follows that the mapping
π 7→ C1(π)× · · · × CK(π) has a fixed point, namely some π ∈ Π so that π ∈

∏
k∈[K] Ck(π).
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Applying the fixed point strategy. Let π ∈
∏
k∈[K] Ck(π) be a fixed point of C1× · · · × CK . Then

r-deco
γ(M ,M) ≤ sup

M∈M

{
hM(π)− γ ·D2

H

(
M(π),M(π)

)}
= sup
M∈M

{
K∑
k=1

hMk (π)− γ ·D2
H

(
M(π),M(π)

)}

≤
K∑
k=1

sup
M∈M

{
hMk (π)− γ

K
·D2

H

(
M(π),M(π)

)}
≤

K∑
k=1

sup
M∈M,π−k∈Π−k

{
hMk (πk, π−k)−

γ

K
·D2

H

(
M(πk, π−k),M(πk, π−k)

)}
=

K∑
k=1

sup
M∈M,π−k∈Π−k

Eak∼πk
[
hMk (ak, π−k)−

γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
=

K∑
k=1

inf
πk∈Πk

sup
M∈M,π−k∈Π−k

Eak∼πk
[
hMk (ak, π−k)−

γ

K
·D2

H

(
M(ak, π−k),M(ak, π−k)

)]
≤

K∑
k=1

decγ/K(M̃k, (M,π−k)).

Above, we have used the following facts:

1. The second equality uses Assumption E.1 to conclude that for all ak, πk, π−k,M,M ,

Po∼M(ak,π−k)(ϕ(o) = ak) = 1, Po∼M(ak,π−k)(ϕ(o) = ak) = 1,

thus allowing us to apply Lemma H.1 to give that

D2
H

(
M(πk, π−k),M(πk, π−k)

)
= Eak∼πk

[
D2

H

(
M(ak, π−k),M(ak, π−k)

)]
.

2. The third equality follows from the fact that πk ∈ Ck(π) for all k ∈ [K].

3. The final inequality follows from (38).

K.2. Bounds for Markov games

Here, we prove Theorem E.2. The proof uses a number of technical lemmas which are stated and
proven in the sequel.
Proof of Theorem E.2. As in the proof of Theorem E.1, for each k ∈ [K] and π−k ∈ Π−k, we
define

M̃k(π−k) := {πk 7→M |k(πk, π−k) : M ∈M}.
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For any π−k ∈ Π−k and M ∈ M, we denote the corresponding element of M̃k(π−k) ⊆ M̃k by
(M,π−k). We will prove the following stronger result: there is some constant C ′ > 0 so that for
each M ∈M,

r-deco
γ(M ,M) ≤ C ′KH logH

γ
+

K∑
k=1

sup
π−k∈Π−k

r-deco
γ/(C′KH logH)(M̃k, (M,π−k)). (39)

Fix any ε > 0. For each k ∈ [K], let Πε
k be a finite ε-cover of Πk in the sense that for all πk ∈ Πk,

there is some element πεk ∈ Πε
k so that, for all M ∈M, π−k ∈ Π−k,

D2
H(M(πk, π−k),M(πεk, π−k)) ≤ ε2.

Furthermore, we require that the mapping πk 7→ πεk is measurable with respect to the Borel σ-algebra
on Πk. By finiteness of S,Ak, it is straightforward to see that such a finite cover Πε

k exists. The
size of the cover Πε

k may depend on |S|, |A|, but this will not matter as |Πε
k| will not enter into our

final bounds. (We introduce discretization here only to ensure that Πε
k is compact when applying

Lemma H.8.)
We collect a few basic properties of Πε

k in the below lemma, proved at the end of the section:

Lemma K.1. For any πk ∈ Πk, there is some πεk ∈ Πε
k so that the following holds. For any

M,M ∈M, π−k ∈ Π−k,

D2
H

(
M(πεk, π−k),M(πεk, π−k)

)
≥1

3
·D2

H

(
M(πk, π−k),M(πk, π−k)

)
− 2ε2

|hMk (πk, π−k)− hMk (πεk, π−k)| ≤ε.

Existence of fixed points. LetC > 0 be the constant of Lemma K.4, and write γ′ = γ/(CKH logH).
For each k ∈ [K], define the function Ck : Π→ ∆(Πε

k) by

Ck(π) = arg min
pk∈∆(Πεk)

sup
M∈M,π−k∈Π−k

Eπk∼pk
[
hMk (πk, π−k)− γ′ ·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
+ ε · ‖pk‖22,

where ‖pk‖22 denotes the squared `2 norm of pk, interpreted as a vector in the Euclidean space R|Πεk|.
Further, for π−k ∈ Π−k, M ∈M, define the function GM,π−k : ∆(Πk)×Π−k → R by

GM,π−k(pk, π−k) = Eπk∼pk
[
hMk (πk, π−k)− γ′ ·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
.

We may view π−k as an element of ∆(Ak)S×[H], which is a subset of Euclidean space (since Ak,S
are assumed to be finite). Since there are finitely many states and actions, it follows from the domi-
nated convergence theorem that for allM,πk, π−k, the function π−k 7→ D2

H

(
M(πk, π−k),M(πk, π−k)

)
is continuous. Hence GM,π−k(pk, π−k) is continuous in (pk, π−k). Hence the function

G̃k(pk, π−k) := sup
M∈M,π−k∈Π−k

GM,π−k(pk, π−k) + ε · ‖pk‖22

is also continuous. Furthermore, GM,π−k(pk, π−k) is linear in pk (for fixed π−k), so G̃k(pk, π−k) is
strongly convex in pk (for fixed π−k). Thus Ck(π) = arg minpk∈∆(Πεk){G̃k(pk, π−k)} is a singleton

for all π. Furthermore, by continuity of G̃k, compactness of ∆(Πε
k) and Π−k, and Lemma H.8,
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we have that Ck(π) is upper hemicontinuous, which means, by single-valuedness, it is actually
continuous.

Given M ∈ M, π−k ∈ Π−k, note that the pure observation distribution of the model πk 7→
M(πk, π−k) is exactly that of an MDP, which we denote by Mπ−k : it has horizon H , state space
S, action space Ak, and rewards and transitions given by those of M when each agent k′ 6= k acts
according to πk′,h(·|s) at each state s and step h (to be precise, the rewards of Mπ−k are given by
the rewards of agent k in M ). Note that the space of randomized nonstationary policies of Mπ−k is
Πk (using Assumption E.2).

Since we do not assume convexity of Πk, elements pk ∈ ∆(Πε
k) may not belong to Πk. We

next introduce a set of decisions in Πk which are “equivalent” to pk given a reference model M
and a reference decision π−k. In particular, for M ∈ M, π−k ∈ Π−k, and pk ∈ ∆(Πε

k), let
Π?
M,π−k

(pk) ⊂ Πk be the set of all policies π?k ∈ Πk which satisfy Eq. (44) of Lemma K.2 for pk and

πk 7→ M(πk, π−k). Note that Π?
M,π−k

(pk) is a nonempty convex set: as a subset of ∆(Ak)S×[H],
it is a product of sets (one for each factor of ∆(Ak)), each of which is either a singleton or all of
∆(Ak). It is straightforward from the definition that the map (pk, π−k) 7→ Π?

M,π−k
(pk) is upper

hemicontinuous. Then Lemma K.4 gives that, for any M and π−k and pk, if π?k ∈ Π?
M,π−k

(pk) is the
corresponding policy in (44), then for γ > 0,

sup
M∈M, π−k∈Π−k

{
hMk (π?k, π−k)−

γ

K
·D2

H

(
M(π?k, π−k),M(π?k, π−k)

)}
≤ 1

γ′
+ sup
M∈M,π−k∈Π−k

Eπk∼pk
[
hMk (πk, π−k)− γ′ ·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
. (40)

Since the mapping π 7→ Ck(π) ∈ ∆(Πε
k) is continuous, the composition C?k(π) := Π?

M,π−k
(Ck(π))

is upper hemicontinuous. Thus, by Kakutani’s fixed point theorem (Osborne and Rubinstein, 1994,
Lemma 20.1), the set-valued mapping C?(π) := C?1(π)× · · · × C?K(π) has a fixed point.
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Applying the fixed point strategy. Let π ∈ Π be a fixed point for C?, so that πk ∈ C?k(π) for each
k ∈ [K]. Then

r-deco
γ(M ,M)

≤ sup
M∈M

{
K∑
k=1

hMk (π)− γ ·D2
H

(
M(π),M(π)

)}

≤
K∑
k=1

sup
M∈M

{
hMk (πk, π−k)−

γ

K
·D2

H

(
M(πk, π−k),M(πk, π−k)

)}
≤

K∑
k=1

sup
M∈M, π−k∈Π−k

{
hMk (πk, π−k)−

γ

K
·D2

H

(
M(πk, π−k),M(πk, π−k)

)}
≤ 1

γ′
+

K∑
k=1

sup
M∈M,π−k∈Π−k

Eπk∼Ck(π)

[
hMk (πk, π−k)− γ′ ·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
(41)

≤ 1

γ′
+

K∑
k=1

ε+ inf
pk∈∆(Πεk)

sup
M∈M,π−k∈Π−k

Eπk∼pk
[
hMk (πk, π−k)− γ′ ·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
(42)

≤ 1

γ′
+

K∑
k=1

2ε+ γ′ · 2ε2 + inf
pk∈∆(Πk)

sup
M∈M,π−k∈Π−k

Eπk∼pk

[
hMk (πk, π−k)−

γ′

3
·D2

H

(
M(πk, π−k),M(πk, π−k)

)]
.

(43)

where (41) uses Eq. (40) and the fact that πk ∈ C?k(π) = Π?
M,π−k

(Ck(π)) for each k, and (42) uses

the definition of Ck(π). Finally, (43) uses Lemma K.1, as follows: given any distribution pk ∈ ∆(Πk),
we consider the distribution pεk ∈ ∆(Πε

k) which is given by pushing forward pk through the map
πk 7→ πεk (here we use that πk 7→ πεk is measurable to ensure that pekp is well-defined). Then by
Lemma K.1, for all M ∈M, π−k ∈ Π−k, π−k ∈ Π−k, we have

Eπk∼pεk [hMk (πk, π−k)] ≤Eπk∼pk [hMk (πk, π−k)] + ε

−γ′ · Eπk∼pεk [D2
H

(
M(πk, π−k),M(πk, π−k)

)
] ≤− γ′

3
· Eπk∼pk [D2

H

(
M(πk, π−k),M(πk, π−k)

)
] + γ′ · 2ε2.

By taking ε→ 0, we obtain that, for some constant C > 0,

r-deco
γ(M ,M) ≤CKH logH

γ
+

K∑
k=1

r-deco
γ/(CKH logH)(M̃k, (M,π−k))

≤CKH logH

γ
+

K∑
k=1

sup
π̃−k∈Π−k

r-deco
γ/(CKH logH)(M̃k, (M, π̃−k)),

thus verifying (39).
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K.2.1. SUPPORTING LEMMAS

Proof of Lemma K.1. To establish the first property, we use the definition of Πε
k and the triangle

inequality for Hellinger distance to conclude that

D2
H

(
M(πk, π−k),M(πk, π−k)

)
≤3 ·

(
D2

H(M(πεk, π−k),M(πk, π−k)) +D2
H

(
M(πεk, π−k),M(πk, π−k)

)
+D2

H

(
M(πεk, π−k),M(πεk, π−k)

))
≤3 ·

(
D2

H(M(πεk, π−k),M(πk, π−k)) + 2ε2
)
,

and rearranging gives the first claimed inequality of the lemma.

To prove the second inequality, we note that for each πk ∈ Πk, the cover element πεk ∈ Πε
k

satisfies the following: for all M ∈M, π−k ∈ Π−k

|hMk (πk, π−k)− hMk (πεk, π−k)| = |fMk (πk, π−k)− fMk (πεk, π−k)| ≤DH(M(πk, π−k),M(πεk, π−k)) ≤ ε.

The following lemma shows that for any MDP M and distribution p ∈ ∆(ΠRNS), there exists a
corresponding randomized policy in ΠRNS which induces identical occupancies in M .

Lemma K.2. Consider any finite-horizon MDP M = (S, H,A, P,R, µ) with finite state and
action spaces S,A. Let ΠRNS denote the set of randomized nonstationary policies of M . Suppose
p ∈ ∆(ΠRNS) is a distribution over ΠRNS with finite support. Consider any policy π? ∈ ΠRNS so
that:

∀a ∈ A, s ∈ S s.t.
∑

π′∈ΠRNS

p(π′) · dM,π′

h (s) > 0 : π?h(a|s) =
∑

π∈ΠRNS: p(π)>0

p(π) · dM,π

h (s)∑
π′∈ΠRNS

p(π′) · dM,π′

h (s)
· πh(a|s).

(44)

Then for all states s ∈ S, dM,π?

h (s) =
∑

π∈ΠRNS
p(π) · dM,π

h (s), and for all (s, a) ∈ S × A,
dM,π?

h (s, a) =
∑

π∈ΠRNS
p(π) · dM,π

h (s, a).

As a consequence, it follows that VM,π?

1 =
∑

π∈ΠRNS
p(π) · VM,π

1 .

Proof of Lemma K.2. We drop the superscript M in all relevant quantities throughout the proof.
We use induction on h, noting that the base case h = 1 is immediate since dπ1 is identical for all
π ∈ ΠRNS. Fix p ∈ ∆(ΠRNS), and let π? be chosen as in Eq. (44). Assuming that the statement of
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the lemma holds at step h− 1, we compute

dπ
?

h (s) =
∑
s′,a′:

dπ
?

h−1(s′)>0

dπ
?

h−1(s′) · π?h−1(a′|s′) · Ph−1(s|s′, a′)

=
∑
s′,a′:

dπ
?

h−1(s′)>0

(∑
π′

p(π′) · dπ′h−1(s′)

)
·
∑
π

p(π) · dπh−1(s′)∑
π′ p(π

′) · dπ′h−1(s)
· πh−1(a′|s′) · Ph−1(s|s′, a′)

=
∑
π

p(π) ·
∑
s′,a′:

dπ
?

h−1(s′)>0

dπh−1(s′) · πh−1(a′|s′) · Ph−1(s|s′, a′)

=
∑
π

p(π) ·
∑
s′,a′

dπh−1(s′) · πh−1(a′|s′) · Ph−1(s|s′, a′)

=
∑
π

p(π) · dπh(s),

where the second-to-last inequality follows since if dπ
?

h−1(s′) = 0, then (using the inductive hypothe-
sis) for all π, p(π) · dπh−1(s′) = 0. The above chain of equalities then completes the inductive step.
It then follows immediately from the definition of π? that dπ

?

h (s, a) =
∑

π∈ΠRNS
p(π) · dπh(s, a).

The final statement regarding the value functions follows since, for all policies π,

V π
1 =

H∑
h=1

∑
(s,a)∈S×A

dπh(s, a) · rh(s, a).

The remaining lemmas establish certain technical properties for the policy π? ∈ ΠRNS con-
structed in Lemma K.2.

Lemma K.3. There is a constant C > 0 so that the following holds. Consider any finite-horizon
MDP M = (S, H,A, PM , RM , µM) with finite state and action spaces S,A. Let ΠRNS denote
the set of randomized nonstationary policies of M , and let p ∈ ∆(ΠRNS) be a distribution of
finite support. Consider any policy π? ∈ ΠRNS satisfying Eq. (44) for p. Then for any MDP
M = (S, H,A, PM , RM , µM),

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≤ CH logH ·D2

H

(
M(π?),M(π?)

)
.

Proof of Lemma K.3. For any π ∈ ΠRNS, a full observation (r, o◦) ∼ M(π) consists of the
trajectory (s1, a1, r1, . . . , sH , aH , rH), where s1 ∼ µM , sh+1 ∼ PM

h (sh, ah) for h ∈ [H − 1],
rh ∼ RM

h (sh, ah) for h ∈ [H], and ah ∼ πh(sh) for h ∈ [H]. We use the notation τ1:h to denote the
portion of a trajectory consisting of (s1, a1, r1, . . . , sh, ah, rh).

We use PM,π to denote the distribution of the trajectory τH ∼ M(π), and PM,π to denote the
distribution of the trajectory τH ∼M(π). We use EM,π[·] and EM,π[·] to denote the corresponding
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expectations. By Lemma A.13 of Foster et al. (2021), it holds that, for some constant C > 0,

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≤C log(H) · Eπ∼pEM,π

[
H∑
h=1

D2
H

(
PM,π(sh|τ1:h−1),PM,π(sh|τ1:h−1)

)]

+ C log(H) · Eπ∼pEM,π

[
H∑
h=1

D2
H

(
PM,π(rh|τ1:h−1, sh, ah),PM,π(rh|τ1:h−1, rh, ah)

)]

=C log(H) ·D2
H

(
µM , µM

)
+ C log(H) · Eπ∼pEM,π

[
H−1∑
h=1

D2
H

(
PM
h (sh, ah), PM

h (sh, ah)
)]

+ C log(H) · Eπ∼pEM,π

[
H∑
h=1

D2
H

(
RM
h (sh, ah), RM

h (sh, ah)
)]

. (45)

By Lemma K.2 and the definition of π?, for each h ∈ [H], s ∈ S, a ∈ A, it holds that

Eπ∼p
[
dM,π

h (s, a)
]

= dM,π?

h (s, a).

Thus, we may replace the expectation over π ∼ p, (sh, ah) ∼M(π) in (45) with (sh, ah) ∼M(π?),
and obtain

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≤C log(H) ·

(
D2

H

(
µM , µM

)
+ EM,π?

[
H−1∑
h=1

D2
H

(
PM
h (sh, ah), PM

h (sh, ah)
)]

+EM,π?

[
H∑
h=1

D2
H

(
RM
h (sh, ah), RM

h (sh, ah)
)])

.

By Foster et al. (2021, Lemma A.9) and the data processing inequality, we have that:

EM,π?

[
H−1∑
h=1

D2
H

(
PM
h (sh, ah), PM

h (sh, ah)
)]
≤4H ·D2

H

(
M(π?),M(π?)

)
,

EM,π?

[
H∑
h=1

D2
H

(
RM
h (sh, ah), RM

h (sh, ah)
)]
≤4H ·D2

H

(
M(π?),M(π?)

)
,

D2
H

(
µM , µM

)
≤D2

H

(
M(π?),M(π?)

)
.

It then follows that, for some constant C > 0,

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≤ C ·H log(H) ·D2

H

(
M(π?),M(π?)

)
,

as desired.
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Lemma K.4. There is a constant C > 0 so that the following holds. Consider any model classM
consisting of MDPs of fixed horizon H , finite state space S, finite action space A, and cumulative
rewards bounded by [0, 1]. Let ΠRNS be the class of randomized nonstationary policies. Consider
any M ∈ M and finite-support distribution p ∈ ∆(ΠRNS), and let π? ∈ ΠRNS denote any policy
satisfying Eq. (44) for M and p. Then for any γ > 0,

sup
M∈M

{
fM(πM)− fM(π?)− γ ·D2

H

(
M(π?),M(π?)

)}
≤CH logH

γ
+ sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ

CH logH
·D2

H

(
M(π),M(π)

)]
. (46)

An immediate consequence of Lemma K.4 is that

inf
π∈ΠRNS

sup
M∈M

{
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)}
≤CH logH

γ
+ inf
p∈∆(ΠRNS)

sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ

CH logH
·D2

H

(
M(π),M(π)

)]
.

Proof of Lemma K.4. Consider any M ∈M, finite-support p ∈ ∆(ΠRNS), and let π? be defined
as in the statement of the lemma. Lemma K.2 gives that fM(π?) = Eπ∼p

[
fM(π)

]
. Let C be the

constant from Lemma K.3, and let C ′ = C + 1
2 . Then for any γ > 0,

sup
M∈M

fM(πM)− fM(π?)− C ′H logH · γ ·D2
H

(
M(π?),M(π?)

)
≤ sup
M∈M

fM(πM)− fM(π?)− C ′H logH · γ ·D2
H

(
M(π?),M(π?)

)
+

1

2γ
+
γ

2
·D2

H

(
M(π?),M(π?)

)
= sup
M∈M

fM(πM)− fM(π?)− CH logH · γ ·D2
H

(
M(π?),M(π?)

)
+

1

2γ

≤ sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
+

1

2γ
(47)

≤ sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)
+

1

2γ
+
γ

2
·D2

H

(
M(π),M(π)

)]
+

1

2γ

= sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ

2
·D2

H

(
M(π),M(π)

)]
+

1

γ
. (48)

where (47) uses Lemma K.3. The statement of the proposition follows by replacing γ with
γ · C ′H logH .

Appendix L. Proofs for upper bounds from Appendix F

In this section we prove Theorem F.1, which gives an upper bound for learning equilibria for CCE
and CE instances in the MA-DMSO framework in a way that avoids the curse of multiple agents, i.e.,
avoids exponential scaling with the number of playersK. In Appendix L.1, we describe the algorithm
(Algorithm 1) used to prove Theorem F.1, which is based on the idea of exploration-by-optimization,
used previously in Foster et al. (2022b); Lattimore and György (2021). In Appendices L.2 to L.4
we prove Theorem F.1; our proofs roughly follow those of Foster et al. (2022b), but require some
subtle modifications to account for the multi-agent nature of our problem, as well as the more general
notion of deviation sets Π′k that we study.
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L.1. The multi-agent exploration-by-optimization objective

We begin by describing the algorithm, Multi-Agent Exploration-by-Optimization (MAExO; Algo-
rithm 1) used to prove Theorem F.1. The algorithm is a multi-agent counterpart to the exploration-
by-optimization (ExO+) algorithm given Foster et al. (2022b). At a high level, MAExO (as well as
its precursor ExO+) is a variant of EXP3, which applies the exponential weights algorithm to a se-
quence of reward estimators which act as importance-weighted estimates for the true reward function.
However, unlike EXP3 and ExO+, MAExO does not apply exponential weights to agents’ pure policies
themselves, but rather to their potential deviations Π′k.

In particular, MAExO operates over T rounds of interaction with the environment. At each round
t ∈ [T ], the algorithm first computes, for each player k, a reference distribution qtk ∈ ∆(Π′k) over
their deviation space Π′k, according to an exponential weights update given a sequence of vectors
f̂ 1
k , . . . , f̂

t−1

k constructed by the algorithm in previous rounds (Line 4). Roughly speaking, for
s ≤ t− 1, the entries f̂ sk(π

′
k), π′k ∈ Π′k, of these vectors can be interpreted as the potential gain in

value that agent k could receive by deviating to π′k, given adversarial choices of the other agents’
decisions. Accordingly, the reference distribution qtk will put more mass on deviations which lead to
larger gains in value.

Next, in Line 5, the players jointly solve an optimization problem. To define this optimization
problem, we introduce some notation. For each k ∈ [K], let Gk denote the set of all functions
gk : Π′k ×Σ×O → R, and let G = G1 × · · · × GK . Given q ∈

∏K
k=1 ∆(Π′k), η > 0, π ∈ Π, g ∈ G,

π? = (π?1, . . . , π
?
K) ∈

∏K
k=1 Π′k, and M ∈M, define

Γq,η(π, g;π?,M) :=Eσ∼π

[
K∑
k=1

fMk (Uk(π
?
k, σ))− fMk (σ)

]
(49)

+
1

η
·
K∑
k=1

Eσ∼π,o∼M(σ)Eπ′k∼qk

[
exp

(
η

π(σ)
·
(
gk(π

′
k;σ, o)− gk(π?k;σ, o)

))
− 1

]
.

With this definition, the optimization problem solved in Line 5 of MAExO is as follows:

(πt, gt)← arg min
π∈Π,g∈G

sup
M∈M,π?∈

∏K
k=1 Π′k

Γqt,η(π, g;π?,M). (50)

The interpretation of the objective (49) and the optimization problem (50) is as follows. Roughly
speaking, for each k ∈ [K], π′k ∈ Π′k, σ ∈ Σ, o ∈ O, the value gk(π′k;σ, o) for g ∈ Gk can
be interpreted as an estimate of player k’s gain in value by deviating to π′k under joint decision
profile σ, under an unknown model M which is “consistent with” the decision-observation pair
(σ, o). Then, by solving (50), the algorithm wishes to find a joint decision πt ∈ Π and estimator
gt = (gt1, . . . , g

t
K) ∈ G, which, for each player k ∈ [K], satisfies the following two properties:

• First, corresponding to the first term in (49), for a worst-case unknown model M and an
unknown deviation π?k, it should not be possible for player k to gain much value by deviating
to π?k given the policy πt. Here π?k should be interpreted as the best deviation in hindsight at
the termination of the algorithm.

• Second, corresponding to the second term in (49): πt and gtk should be chosen so that with
high probability under σ ∼ πt, gtk does not underestimate the value gain in deviating to π?k
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as compared to a sample π′k from the reference distribution qtk. The second term in (49) can
be viewed as a term that regularizes the adversarial choice of π?k, analogously to the term
subtracting squared Hellinger distance in the offset DEC (see (6)): in particular, if π?k has
significantly high value under the estimate gk, then this term will be very negative, canceling
out the (potentially large) first term.

Given (πt, gt) computed in Eq. (50), Algorithm 1 samples a decision σt ∼ πt and receives an
observation ot from the true model. Finally, in Line 7, players construct their reward estimators f̂ tk (to
be used in future iterations t′ > t to construct qt′k ) using gtk(·;σt, ot). Once all T rounds conclude,
the algorithm outputs the joint decision π̂ which is the uniform average over the T pure decisions
σ1, . . . , σT . We remark that Algorithm 1 is different from having each player run the exploration-
by-optimization algorithm of Foster et al. (2022b): in the latter, agents each individually optimize
their own objective, in contrast to the optimization problem in (50), which is solved for all agents
simultaneously. This feature of MAExO allows us to obtain a guarantee scaling with r-deco

γ(co(M )),
which can be arbitrarily smaller than what one obtains by using the approach of Foster et al. (2022b)
(see Proposition G.11).

In Definition L.1 below, we formalize the value of the minimax objective (50) computed in the
course of Algorithm 1.

Algorithm 1 Multi-Agent Exploration by Optimization (MAExO)
1: parameters: Learning rate η > 0.

2: Initialize f̂ 0
k(π′k) := 0 for all k ∈ [K], π′k ∈ Π′k.

3: for t = 1, 2, . . . T do
4: For each agent k ∈ [K], define qtk ∈ ∆(Π′k) via exponential weights update: for π′k ∈ Π′k,

qtk(π
′
k) :=

exp
(
η
∑t−1

i=1 f̂
i
k(π
′
k)
)

∑
π′′k∈Π′k

exp
(
η
∑t−1

i=1 f̂
i
k(π
′′
k)
) .

5: Define qt = qt1 × · · · × qtK . The players jointly solve the following objective: // Eq. (49)

(πt, gt)← arg min
π∈Π,g∈G

sup
M∈M,π?∈Π′

Γqt,η(π, g;π?,M).

6: Sample σt ∼ πt, play σt, and observe ot ∼M?(σt).

7: Each player k ∈ [K] constructs their reward estimator f̂ tk as follows: for π′k ∈ Π′k,

f̂ tk(π
′
k) =

gtk(π
′
k;σ

t, ot)

πt(σt)
.

8: return joint decision π̂ := 1
T

∑T
t=1 Iσt .
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Definition L.1 (Exploration-by-optimization objective). Consider any instance M = (M,Π,O, {Π′k}k, {Uk}k)
satisfying Assumption F.1. For any scale parameter η > 0 and distribution q ∈

∏K
k=1 ∆(Π′k), define

exoη(M , q) = inf
π∈Π,g∈G

sup
M∈M,π?∈

∏K
k=1 Π′k

Γq,η(π, g;π?,M),

and let exoη(M ) := supq∈
∏K
k=1 ∆(Π′k) exoη(M , q).

To prove Theorem F.1, we first (Appendix L.2) bound the performance of Algorithm 1 in terms
of exoη(M ). Following this, in Appendix L.3 and Appendix L.4, we will upper bound exoη(M )
by deco

γ(M ) for an appropriate choice of γ, using a quantity we call the multi-agent (parametrized)
information ratio as an intermediary. Finally, in Appendix L.5, we put these pieces together and
prove Theorem F.1.

L.2. Bounding the performance of Algorithm 1

The following result bounds the performance of Algorithm 1 (namely, the quantity hM?
(π̂)) in terms

of exoη(M ).

Lemma L.1. For any η > 0, Algorithm 1 ensures that for all δ > 0, with probability at least 1− δ,

hM
?
(π̂) =

K∑
k=1

max
π′k∈Π′k

fM
?

k (Uk(π
′
k, π̂))− fM?

k (π̂) ≤ exoη(M ) +
2

Tη
·
K∑
k=1

log

(
K · |Π′k|

δ

)
.

Proof of Lemma L.1. For any π?k ∈ Π′k and player k ∈ [K], we define player k’s regret with
respect to the deviation π?k ∈ Π′k as follows:

Regk(π
?
k) =

T∑
t=1

Eσt∼πt [fM
?

k (Uk(π
?
k, σ

t))− fM?

k (σt)] = T ·
(
fM

?

k (Uk(π
?
k, π̂))− fM?

k (π̂)
)
,

where the second equality above uses the definition of π̂ in Line 8 of Algorithm 1 and the second
property in Assumption F.1. Hence, it suffices to bound 1

T ·
∑K

k=1 maxπ?k∈Π′k
Regk(π

?
k) to establish

the statement of the lemma.
Throughout the proof we use the following convention: for functions fk : Π′k → R (for instance,

the reward estimators f̂ tk defined in Line 7 of Algorithm 1), we will view fk as a vector in R|Π′k|,
whose coordinates are the values of fk(π′k), for π′k ∈ Π′k. Furthermore, for each π′k ∈ Π′k, we write
eπ′k ∈ R|Π′k| to denote the corresponding unit vector whose π′k-th entry is 1 and all other entries are 0.

By adding and subtracting
∑T

t=1〈eπ?k , f̂
t
k〉, we obtain

Regk(π
?
k) =

T∑
t=1

Eσt∼πt [fM
?

k (Uk(π
?
k, σ

t))− fM?

k (σt)]

=

T∑
t=1

Eσt∼πt [fM
?

k (Uk(π
?
k, σ

t))− fM?

k (σt)] +
T∑
t=1

〈eπ?k , f̂
t
k〉 −

T∑
t=1

〈eπ?k , f̂
t
k〉. (51)
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By Lemma L.2 and the definition of the multiplicative weights updates for qtk in Line 4 of Algorithm 1,
it holds that

T∑
t=1

〈eπ?k , f̂
t
k〉

≤
T∑
t=1

〈qt+1

k , f̂ tk〉 −
1

η

T∑
t=1

DKL

(
qt+1

k ‖ q
t
k

)
+

1

η
DKL

(
eπ?k ‖ q

1
k

)
≤

t∑
t=1

〈qt+1

k , f̂ tk〉 −
1

η

T∑
t=1

DKL

(
qt+1

k ‖ q
t
k

)
+

log |Π′k|
η

. (52)

By Lemma H.5, we have that for each t ∈ [T ],

〈qt+1

k , f̂ tk〉 −
1

η
DKL

(
qt+1

k ‖ q
t
k

)
≤ 1

η
log

 ∑
π′k∈Π′k

qtk(π
′
k) · exp(η · f̂ tk(π′k))

 .

Using the above together with (52) and (51), we obtain

Regk(π
?
k) ≤

T∑
t=1

Eσt∼πt [fM
?

k (Uk(π
?
k, σ

t))− fM?

k (σt)] +
1

η
log

 ∑
π′k∈Π′k

qtk(π
′
k) · exp(η · f̂ tk(π′k))


+

log |Π′k|
η

−
T∑
t=1

〈eπ?k , f̂
t
k〉. (53)

Let F t denote the σ-algebra generated by (σ1, o1, . . . , σt, ot) (where the random variables σs, os are
drawn as in Algorithm 1). Note that F t is a filtration, and write Et[·] = E[·|F t]. For each π?k ∈ Π′k,
we define a sequence of random variables, denoted {Xt(π

?
k)}t∈[T ], by

Xt(π
?
k) := log

 ∑
π′k∈Π′k

qtk(π
′
k) · exp(η · f̂ tk(π′k))

− 〈eπ?k , η · f̂ tk〉.
By Lemma H.7 and the union bound, with probability at least 1− δ/K, it holds that for all π?k ∈ Π′k,

T∑
t=1

Xt(π
?
k) ≤

T∑
t=1

logEt−1[eXt(π
?
k)] + log

(
K · |Π′k|

δ

)
. (54)
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Note that πt, qt are both measurable with respect to F t−1. Then, for any π?k ∈ Π′k and any t ∈ [T ],
we may compute

logEt−1[eXt(π
?
k)]

= logEt−1

exp

log

 ∑
π′k∈Π′k

qtk(π
′
k) · exp(ηf̂ tk(π

′
k))

− ηf̂ tk(π?k)


= logEσt∼πtEot∼M(σt)

[
Eπ′k∼qtk

[
exp(ηf̂ tk(π

′
k))
]
· exp(−ηf̂ tk(π?k))

]
= logEσt∼πtEot∼M(σt)

[
Eπ′k∼qtk

[
exp

(
η

πt(σt)
· gtk(π′k;σt, ot)

)]
· exp

(
− η

πt(σt)
· gtk(π?k;σt, ot)

)]
≤ Eσt∼πtEot∼M(σt)Eπ′k∼qtk

[
exp

(
η

πt(σt)
·
(
gtk(π

′
k;σ

t, ot)− gtk(π?k;σt, ot)
))]
− 1, (55)

where the final inequality uses that log(x) ≤ x− 1 for all x > 0.
By (53), (54), and (55), and a union bound over k ∈ [K], it follows that with probability at least

1− δ, for all π?1 ∈ Π′1, . . . , π
?
K ∈ Π′K , letting π? = (π?1, . . . , π

?
K),

K∑
k=1

Regk(π
?
k)

≤
K∑
k=1

 log |Π′k|
η

+
log
(
K·|Π′k|
δ

)
η

+
T∑
t=1

K∑
k=1

Eσt∼πt
[
fM

?

k (Uk(π
?
k, σ

t))− fM?

k (σt)
]

+
T∑
t=1

K∑
k=1

1

η

(
Eσt∼πtEot∼M(σt)Eπ′k∼qtk

[
exp

(
η

πt(σt)
·
(
gtk(π

′
k;σ

t, ot)− gtk(π?k;σt, ot)
))]
− 1

)

≤ 2

η
·
K∑
k=1

log

(
K · |Π′k|

δ

)
+

T∑
t=1

Γqt,η(π
t, gt;π?,M?)

≤ 2

η
·
K∑
k=1

log

(
K · |Π′k|

δ

)
+

T∑
t=1

sup
π̃?∈Π′,M̃∈M

Γqt,η(π
t, gt; π̃?, M̃)

≤ 2

η
·
K∑
k=1

log

(
K · |Π′k|

δ

)
+ T · exoη(M ),

where the second inequality uses the definition of Γqt,η(π
t, gt;π?,M?) in (49), and the final equality

follows since πt, gt are chosen so as to minimize the multi-agent exploration-by-optimization objec-
tive (Line 5 of Algorithm 1).

Lemma L.2. Consider any d ∈ N, and let f 1, . . . , fT ∈ Rd be an arbitrary sequence of vectors. For
η > 0, let q1, . . . , qT ∈ ∆d denote the exponential weights update iterates with step size η when the
reward vectors are given by f 1, . . . , fT ; in particular, for t ∈ [T ]:

qt(i) =
exp(η

∑
s≤t f

s(i))∑d
j=1 exp(η

∑
s≤t f

s(j))
. (56)

96



COMPLEXITY OF MULTI-AGENT DECISION MAKING

Then for any q ∈ ∆d,

T∑
t=1

〈q, f t〉 ≤
T∑
t=1

〈qt+1, f t〉 − 1

η

T∑
t=1

DKL(qt+1 ‖ qt) +
1

η
DKL(q ‖ q1).

Proof of Lemma L.2. By rearranging and telescoping, it suffices to show that, for each t ∈ [T ],

〈q − qt+1, f t〉 =
1

η
· (DKL(q ‖ qt)−DKL(q ‖ qt+1)−DKL(qt+1 ‖ qt)) .

To establish this inequality, we note that the multiplicative weight updates (56) are equivalent to the
following mirror descent updates with the negative entropy regularizer Φ(q) :=

∑d
i=1 qi · log qi:

∇Φ(pt+1) = ∇Φ(qt) + η · f t, qt+1 =
pt+1

〈1, pt+1〉
,

where 1 ∈ Rd denotes the all-ones vector. Using the fact that for all x, y, z ∈ ∆d (Eq. (4.1) of
Bubeck (2015))

〈∇Φ(y)−∇Φ(x), x− z〉 = DKL(z ‖ y)−DKL(z ‖x)−DKL(x ‖ y)

with z = q, y = qt, x = qt+1, we obtain

1

η
· (DKL(q ‖ qt)−DKL(q ‖ qt+1)−DKL(qt+1 ‖ qt)) =

1

η
· 〈∇Φ(qt)−∇Φ(qt+1), qt+1 − q〉

=
1

η
· 〈∇Φ(qt)−∇Φ(pt+1), qt+1 − q〉

=〈f t, q − qt+1〉,

where in the second equality we have used that∇Φ(qt+1) = ∇Φ(pt+1)− log (〈1, pt+1〉) · 1.

L.3. The multi-agent parametrized information ratio

In this section, we introduce a multi-agent version of the parametrized information ratio of (Foster
et al., 2022b, Definition 3.1), and upper bound this information ratio by the DEC of the convex hull
of M . In the following section, we will upper bound exoη(M ) by this information ratio.

We first introduce some notation. We will wish to reason about the space of probability measures
onM× Π′1 × · · · × Π′K . Since |M| may be infinite, to avoid measure-theoretic issues, we will
slightly abuse notation by letting ∆(M× Π′1 × · · · × Π′K) denote the set of finitely supported
probability measures onM× Π′1 × · · · × Π′K . This convention ensures that for any function h :
M×Π′1×· · ·×Π′K → R and any µ ∈ ∆(M×Π′1×· · ·×Π′K), E(M,π′1,...,π

′
K)∼µ[h(M,π′1, . . . , π

′
K)]

is well-defined.
Consider any k ∈ [K], a distribution µ ∈ ∆(M×Π′1×· · ·×Π′K), and a distribution π ∈ ∆(Σ).

Let P denote the law of the process (M,π?1, . . . , π
?
K) ∼ µ, σ ∼ π, and o ∼M(σ). We introduce the

following distributions, depending on µ and k:

• Define the distribution µkpr ∈ ∆(Π′k) by µkpr(π
′
k) = P(π?k = π′k), for π′k ∈ Π′k.
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• For each σ ∈ Σ and o ∈ O, define the distribution µkpo ∈ ∆(Π′k) by µkpo(π′k;σ, o) = P(π?k =
π′k|(σ, o)), for π′k ∈ Π′k.

The distribution µkpr should be thought of as a prior distribution over the deviation π?k, and the
distribution µkpo(·;σ, o) should be thought of as a posterior distribution over π?k after observing the
pure decision σ together with an observation o ∼M(σ).

Definition L.2 (Multi-agent information ratio). Given an instance M = (M,Π,O, {Π′k}k, {Uk}k)
which is a generalized correlated equilibrium instance, the parametrized multi-agent information
ratio of the instance M is defined as

infrγ(M ) := sup
µ∈∆(M×Π′1×···×Π′K)

inf
π∈Π

Eσ∼πE(M,π?1 ,...,π
?
K)∼µ

[
K∑
k=1

fMk (Uk(π
?
k, σ))− fMk (σ)

]

− γ · Eσ∼πEo|σ

[
K∑
k=1

D2
H

(
µkpo(·;σ, o), µkpr(·)

)]
.

In the above expression, when we write Uk(π?k, σ) and fMk (σ), we view σ ∈ Σ as an element of Π by
associating it with the singleton distribution on σ, recalling that Π = ∆(Σ).

Lemma L.3 upper bounds the multi-agent information ratio in terms of the multi-agent offset
DEC of the convex hull of a given instance.

Lemma L.3. Consider any instance M = (M,Π,O, {Π′k}k, {Uk}k) which satisfies Assumption
F.1, and for which co(M ) satisfies Assumption 1.3. Then for all γ > 0,

infrγ(M ) ≤ K · r-deco
γ(co(M )).

Proof of Lemma L.3. We denote the pure decision sets of the instance M by Σ1, . . . ,ΣK , and
the joint decision set as Σ = Σ1 × · · · × ΣK . Fix a prior µ ∈ ∆(M× Π′1 × · · · × Π′K) and
a distribution π ∈ ∆(Σ). Recall our notation from above: let P denote the law of the process
σ ∼ π, (M,π?1, . . . , π

?
K) ∼ µ, o ∼ M(σ). For each k ∈ [K], let µkpr(π

′
k) = P(π?k = π′k) and

µkpo(π′k;σ, o) = P(π?k = π′k|(σ, o)).
Consider the value of the multi-agent information ratio given the choices for µ, π:

Eσ∼πE(M,π?1 ,...,π
?
K)∼µ

[
K∑
k=1

fMk (Uk(π
?
k, σ))− fMk (σ)

]
− γ · Eσ∼πEo|σ

[
K∑
k=1

D2
H

(
µkpo(·;σ, o), µkpr(·)

)]
.

For each k ∈ [K], π′k ∈ Π′k, and π ∈ Π, define Mk
π′k

(π) := Eµ[M(π)|π?k = π′k]. Further define

M(π) = Eµ[M(π)]. Note that Mk
π′k

(σ) = Po|σ,π′k and M(σ) = Po|σ.
To proceed, note that for each fixed σ ∈ Σ,

Eo|σ
[
D2

H

(
µkpo(·;σ, o), µpr(·)

)]
=Eo|σ

[
D2

H

(
Pπ?k|σ,o,Pπ?k

)]
=Eo|σ

[
D2

H

(
Pπ?k|σ,o,Pπ?k|σ

)]
=Eπ?k∼µ

[
D2

H

(
Po|σ,π?k ,Po|σ

)]
=Eπ?k∼µ

[
D2

H

(
Mk

π?k
(σ),M(σ)

)]
, (57)
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where the second equality follows since σ ∼ π and (π?1, . . . , π
?
K) ∼ µ are (marginally) independent,

and the third equality holds by Lemma H.2. Furthermore, we have that

E(M,π?1 ,...,π
?
K)∼µEσ∼π [fMk (Uk(π

?
k, σ))− fMk (σ)] =Eσ∼πEπ?k∼µEµ [fMk (Uk(π

?
k, σ))− fMk (σ)|π?k]

=Eσ∼πEπ?k∼µ
[
f
Mk
π?
k

k (Uk(π
?
k, σ))− f

Mk
π?
k

k (π)

]
≤Eπ?k∼µ max

π′k∈Π′k

Eσ∼π
[
f
Mk
π?
k

k (Uk(π
′
k, σ))− f

Mk
π?
k

k (σ)

]
.

(58)

Next, for any M1 ∈ co(M), we have, for γ > 0,

r-deco
γ(co(M ),M1)

= inf
p∈∆(Π)

sup
M∈co(M)

Eπ∼p

[
K∑
k=1

(
max
π′k∈Π′k

fMk (Uk(π
′
k, π))− fMk (π)

)
− γ ·D2

H

(
M(π),M1(π)

)]

= inf
p∈∆(Π)

sup
M∈co(M)

Eπ∼p

[
K∑
k=1

max
π′k∈Π′k

Eσ∼π
[
fMk (Uk(π

′
k, σ))− fMk (σ)

]
− γ ·D2

H

(
Eσ∼π[M(σ)],Eσ∼π[M1(σ)]

)]

≥ inf
p∈∆(Π)

sup
M∈co(M)

Eπ∼p

[
K∑
k=1

max
π′k∈Π′k

Eσ∼π
[
fMk (Uk(π

′
k, σ))− fMk (σ)

]
− γ · Eσ∼π[D2

H

(
M(σ),M1(σ)

)
]

]

≥ inf
p∈∆(Π)

sup
M∈co(M)

K∑
k=1

max
π′k∈Π′k

Eπ∼pEσ∼π
[
fMk (Uk(π

′
k, σ))− fMk (σ)

]
− γ · Eπ∼pEσ∼π

[
D2

H

(
M(σ),M1(σ)

)]
≥ inf
π∈∆(Σ)

sup
M∈co(M)

K∑
k=1

max
π′k∈Π′k

Eσ∼π
[
fMk (Uk(π

′
k, σ))− fMk (σ)

]
− γ · Eσ∼π

[
D2

H

(
M(σ),M1(σ)

)]
,

where the second equality follows from Assumption F.1, the first inequality follows from convexity
of squared Hellinger distance, the second inequality follows from Jensen’s inequality, and the final
inequality follows by replacing any p ∈ ∆(Π) with the decision π := Eπ∼p[π] ∈ ∆(Σ) = Π.

By the above display, the following holds: for any M1 ∈ co(M), there is some π ∈ Π so that,
for each M2 ∈ co(M),

K∑
k=1

max
π′k∈Π′k

Eσ∼π
[
f
M2
k (Uk(π

′
k, σ))− fM2

k (σ)
]
− γ · Eσ∼π

[
D2

H

(
M2(σ),M1(σ)

)]
≤ r-deco

γ(co(M )).

(59)

Since we have assumed that co(M ) satisfies Assumption 1.3, the following holds: for each k ∈ [K],
π ∈ Π, and M1 ∈ co(M), we have (again using Assumption F.1)

max
π′k∈Π′k

Eσ∼π
[
f
M1
k (Uk(π

′
k, σ))− fM1

k (σ)
]

= max
π′k∈Π′k

f
M1
k (Uk(π

′
k, π))− fM1

k (π) ≥ 0. (60)
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Then, by (60) and (59), for each k ∈ [K], we have that for any M1 ∈ co(M), there is π ∈ Π so that
for each M2 ∈ co(M),

max
π′k∈Π′k

Eσ∼π
[
f
M2
k (Uk(π

′
k, σ))− fM2

k (σ)
]
− γ · Eσ∼π

[
D2

H

(
M2(σ),M1(σ)

)]
≤ r-deco

γ(co(M )).

(61)

Next, choose π ∈ Π, given M1 = M to ensure that (59) holds for all M2 ∈ co(M). Then for
each k ∈ [K] and each π?k ∈ Π′k, choosing M2 = Mk

π?k
in (61),

max
π′k∈Π′k

Eσ∼π
[
f
Mk
π?
k

k (Uk(π
′
k, σ))− f

Mk
π?
k

k (σ)

]
− γ · Eσ∼π

[
D2

H

(
Mk

π?k
(σ),M(σ)

)]
≤ r-deco

γ(co(M )).

Taking expectation over π?k ∼ µ and using (57) and (58), we obtain

E(M,π?k)∼µEσ∼π [fMk (Uk(π
?
k, σ))− fMk (σ)]− γ · Eσ∼πEo|σ

[
D2

H

(
µkpo(·;σ, o), µpr(·)

)]
≤Eπ?k∼µ

[
max
π′k∈Π′k

Eσ∼π
[
f
Mk
π?
k

k (Uk(π
′
k, σ))− f

Mk
π?
k

k (σ)

]
− γ · Eσ∼π

[
D2

H

(
Mk

π?k
(σ),M(σ)

)]]
≤r-deco

γ(co(M )).

Note that the choice of π depends only on M , and in particular it does not depend on k. Therefore,
we may sum the above display over k ∈ [K], to obtain

E(M,π?1 ,...,π
?
K)∼µEσ∼π

[
K∑
k=1

fMk (Uk(π
?
k, σ))− fMk (σ)

]
− γ · Eσ∼πEo|σ

[
K∑
k=1

D2
H

(
µkpo(·;σ, o), µpr(·)

)]
≤K · r-deco

γ(co(M )).

Using that the choice of µ ∈ ∆(M× Π′1 × · · · × Π′K) is arbitrary, we obtain that infrγ(M ) ≤
r-deco

γ(co(M )), as desired.

L.4. Relating the multi-agent information ratio and exploration-by-optimization objective

In this section, we prove the following result, which upper bounds exoη(M ) by the multi-agent
information ratio of M , at scale 1/(8η).

Lemma L.4. Consider any instance M = (M,Π,O, {Π′k}k, {Uk}k) satisfying Assumption F.1.
Then for all η > 0,

exoη(M ) ≤ infr1/(8η)(M ).

Proof of Lemma L.4. Throughout the proof, we will denote the (finite) pure decision sets, as
guaranteed by Assumption F.1, by Σ1, . . . ,ΣK , and the joint decision set by Σ := Σ1 × · · · × ΣK .
Additionally, we write Π′ :=

∏k
k=1 Π′k to denote the product of the deviation sets Π′k. We can write

exoη(M ) = sup
q∈

∏K
k=1 ∆(Π′k)

inf
π∈∆(Σ), g∈G

sup
µ∈∆(M×Π′)

E(M,π?)∼µ [Γq,η(π, g;π?,M)] .
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For α ≥ max{1, 1/η} and ε ∈ (0, 1), define

Gα = {(g1, . . . , gk) ∈ G : ‖gk‖∞ ≤ α ∀k ∈ [K]}, Pε = {π ∈ Π : π(σ) ≥ ε|Σ|−1 ∀σ}.

We will now use Sion’s minimax theorem (Theorem H.1), with X = Pε ×Gα and Y = ∆(M×Π′),
to interchange the infπ∈Π,g∈G and the supµ∈∆(M×Π′) in the definition ot exoη(M ) above. We first
check that its preconditions hold:

• Let the set Pε have the standard topology induced from Π, so that Pε is compact, and let
Gα have the product topology. Tychanoff’s theorem yields that Gα is compact, and thus
X = Pε × Gα is compact. It is also clearly convex.

• Let us give Y = ∆(M×Π′) (which we recall is the space of finitely supported distributions on
M×Π′) the weak topology, which is the coarsest topology so that the functional µ 7→

∫
φdµ

is continuous for all bounded functions φ :M×Π′ → R.

• To establish the remaining preconditions, we need that the mapping (π, g, µ) 7→ E(M,π?)∼µ[Γq,η(π, g;π?,M)]
is uniformly bounded for (π, g) ∈ Pε × Gα and µ ∈ ∆(M×Π′). This follows immediately
from the definition of Γq,η(π, g;π?,M) and the domains Pε and Gα.

• Clearly, the map µ 7→ E(M,π?)[Γq,η(π, g;π?,M)] is linear, and thus concave, for each π, g.
Moreover, it is continuous by boundedness of Γq,η(π, g;π?,M), and the fact that ∆(M×Π′)
has the weak topology.

• By Lemma L.5, the map (π, g) 7→ E(M,π?)∼µ[Γq,η(π, g;π?,M)] is convex in (π, g) for any
fixed µ. Furthermore, it is continuous by definition of the product topology and since π(σ) is
uniformly bounded below for π ∈ Pε.

Having verified all of the conditions for Theorem H.1 to apply, we now have:

exoη(M ) ≤ sup
q∈

∏K
k=1 ∆(Π′k)

inf
π∈Pε,g∈Gα

sup
µ∈∆(M×Π′)

E(M,π?)∼µ[Γq,η(π, g;π?,M)]

= sup
q∈

∏K
k=1 ∆(Π′k)

sup
µ∈∆(M×Π′)

inf
π∈Pε,g∈Gα

E(M,π?)∼µ [Γq,η(π, g;π?,M)] , (62)

where the inequality follows since we are restricting to smaller sets Gα ⊂ G and Pε ⊂ Π in the
infimum, and the equality uses Theorem H.1. Given q ∈

∏K
k=1 ∆(Π′k), µ ∈ ∆(M× Π′), π ∈ Pε,
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consider the value of

inf
g∈Gα

E(M,π?)∼µ[Γq,η(π, g;π?,M)]

=E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]

+
1

η
inf
g∈Gα

K∑
k=1

E(M,π?)∼µEσ∼π,o∼M(σ)Eπ′k∼qk

[
exp

(
η

π(σ)
·
(
gk(π

′
k;σ, o)− gk(π?k;σ, o)

))
− 1

]

=E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]

+
1

η

K∑
k=1

inf
gk∈Gk,α

E(M,π?)∼µEσ∼π,o∼M(σ)Eπ′k∼qk

[
exp

(
η

π(σ)
·
(
gk(π

′
k;σ, o)− gk(π?k;σ, o)

))
− 1

]
,

(63)

where we have used Gk,α to denote {gk ∈ Gk : ‖gk‖∞ ≤ α}, so that Gα = G1,α × · · · × GK,α.
Let P be the law of the process (M,π?) ∼ µ, σ ∼ π, o ∼ M(σ), and define, for k ∈ [K],

µkpr(π
′
k) = P(π?k = π′k), and µkpo(π′k;σ, o) = P(π?k = π′k|(σ, o)). For each k ∈ [K], the term

corresponding to agent k in the second term of (63) above can be rewritten as follows, using the
definition of the posterior distribution µkpo(π′k;σ, o):

inf
gk∈Gk,α

E(M,π?)∼µEσ∼π,o∼M(σ)Eπ′k∼qk

[
exp

(
η

π(σ)
·
(
gk(π

′
k;σ, o)− gk(π?k;σ, o)

))
− 1

]
= inf
gk∈Gk,α

Eσ∼πEo|σ
[
Eπ′k∼qk

[
exp

(
η ·

gk(π
′
k;σ, o)

π(σ)

)]
· Eπ?k∼µkpo(·;σ,o)

[
exp

(
−η ·

gk(π
?
k;σ, o)

π(σ)

)]
− 1

]
.

Given any gk ∈ Gk,ηα, we have that (π′k, σ, o) 7→
π(σ)
η · gk(π′k;σ, o) and (π?k, σ, o) 7→

π(σ)
η ·

gk(π
?
k;σ, o) both belong to Gk,α, meaning that the above quantity is upper bounded by

inf
gk∈Gk,ηα

Eσ∼πEo|σ
[
Eπ′k∼qk

[
exp(gk(π

′
k;σ, o))

]
· Eπ?k∼µkpo(·;σ,o)[exp(−gk(π?k;σ, o))]− 1

]
.

This expression is equal to

Vk(π, q, µ) := Eσ∼πEo|σ inf
gk:Π′k→R,‖gk‖∞≤αη

{
Eπ′k∼qk [exp(gk(π

′
k))] · Eπ?k∼µkpo(·;σ,o)[exp(−gk(π?k))]− 1

}
.

By Lemma H.3, we have that for all π, q, µ,

Vk(π, q, µ) =− Eσ∼πEo|σ sup
gk:Π′k→R,‖gk‖∞≤αη

{
−Eπ′k∼qk [exp(gk(π

′
k))] · Eπ?k∼µkpo(·;σ,o)[exp(−gk(π?k))] + 1

}
≤− 1

2
· Eσ∼πEo|σ

[
D2

H

(
µkpo(·;σ, o), qk

)]
+ 4e−αη. (64)
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Combining (62), (63), and (64), we obtain the following upper bound:

exoη(M ) ≤ sup
q∈

∏K
k=1 ∆(Π′k)

sup
µ∈∆(M×Π′)

inf
π∈Pε

{
E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]

− 1

2η

K∑
k=1

Eσ∼πEo|σ
[
D2

H

(
µkpo(·;σ, o), qk

)]
+

4K

η
· e−αη

}
.

Since fMk ∈ [0, 1] for all k,M and D2
H(·, ·) ∈ [0, 2], it follows that we may replace the infπ∈Pε in

the above expression with infπ∈Π and pay an additive cost of Kε · (1 + 1/η), and so

exoη(M ) ≤ sup
q∈

∏K
k=1 ∆(Π′k)

sup
µ∈∆(M×Π′)

inf
π∈Π

{
E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]

− 1

2η

K∑
k=1

Eσ∼πEo|σ
[
D2

H

(
µkpo(·;σ, o), qk

)]
+

4

η
· e−αη +Kε · (1 + 1/η)

}
.

Since the above holds for any ε ∈ (0, 1) and α ≥ max{1, 1/η}, we may take the limits ε→ 0, α→
∞ to get

exoη(M ) ≤ sup
q∈

∏K
k=1 ∆(Π′k)

sup
µ∈∆(M×Π′)

inf
π∈Π

{
E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]

− 1

2η

K∑
k=1

Eσ∼πEo|σ
[
D2

H

(
µkpo(·;σ, o), qk

)]}
.

Next, for any choice of qk ∈ ∆(Π′k), we have

Eσ∼πEo|σ
[
D2

H

(
µkpo(·;σ, o), µkpr

)]
=Eσ∼πEo|σ

[
D2

H

(
µkpo(·;σ, o),Eσ∼πEo|σ[µpo(·;σ, o)]

)]
≤4 · Eσ∼πEo|σ

[
D2

H

(
µkpo(·;σ, o), qk

)]
,

where the equality uses that, for π′k ∈ Π′k, µkpr(π
′
k) = Eσ∼πEo|σ[µpo(π′k;σ, o)] (by Bayes’ rule), and

the inequality uses Lemma H.4.
Hence, we have

exoη(M ) ≤ sup
µ∈∆(M×Π′)

inf
π∈Π

{
E(M,π?)∼µEσ∼π

[
K∑
k=1

fMk (U(π?k, σ))− fMk (σ)

]
− 1

8η

K∑
k=1

Eσ∼πEo|σ
[
D2

H

(
µkpo(·;σ, o), µkpr

)]}
=infr1/(8η)(M ),

as desired.

Lemma L.5. For any fixed η > 0, q ∈
∏K
k=1 ∆(Π′k), M ∈ M and π? ∈ Π′, the map (π, g) 7→

Γq,η(π, g;π?,M) is jointly convex with respect to (π, g) ∈ Π× G.

103



FOSTER FOSTER GOLOWICH RAKHLIN

Proof of Lemma L.5. Fix any η, q,M, π? as in the statement of the lemma. Recall the definition of
Γq,η(π, g;π?,M) in (49). Since convexity is preserved under summation, it suffices to show that, for
each k, the map from Π× Gk → R, given by

(π, gk) 7→Eσ∼π [fMk (Uk(π
?
k, σ))− fMk (σ)]

+
1

η
· Eσ∼π,o∼M(σ)Eπ′k∼qk

[
exp

(
η

π(σ)
· (gk(π′k;σ, o)− gk(π?k;σ, o))

)
− 1

]
is convex. This follows directly from Lemma C.1 of Foster et al. (2022b).

L.5. Putting everything together: Proof of Theorem F.1

The proof of Theorem F.1 is a straightforward consequence of the lemmas proven previously in this
section.
Proof of Theorem F.1. Consider an instance M as in the statement of Theorem F.1. By Lemma L.3
and Lemma L.4, we have that, for any η > 0,

exoη(M ) ≤ infr1/(8η)(M ) ≤ K · r-deco
1/(8η)(co(M )).

On the other hand, Lemma L.1 gives that for any η, δ > 0, Algorithm 1 run with the value η gives
that with probability at least 1− δ,

Risk(T ) = hM
?
(π̂) ≤ exoη(M ) +

2K

Tη
· log

(
K ·maxk |Π′k|

δ

)
.

Minimizing over η > 0 and substituting γ = 1/(8η) yields that there is a value of η for which
Algorithm 1 yields risk upper bounded as

Risk(T ) = hM
?
(π̂) ≤ K · inf

γ>0

{
r-deco

γ(co(M )) +
16γ

T
· log

(
K ·maxk |Π′k|

δ

)}
,

which yields the claimed statement of Theorem F.1.

Appendix M. Proofs for lower bounds from Appendix F

M.1. Proof of Proposition F.1

Proof of Proposition F.1. Fix K ∈ N, and consider the K-player NE instance M of Example 1.1,
where Ak = {1, 2} for each k ∈ [K]. Certainly we have |Π′k| = |Ak| = 2 for all k. By Proposi-
tion G.1, we have r-deco

γ(M NE) ≤ O(K/γ) for all γ > 0. Finally, Rubinstein (2016) implies that
there is no algorithm which draws 2o(K) samples (each of which requires querying the true payoff
function a 7→ (fM

?

1 (a), . . . , fM
?

K (a)) once) and outputs a c0-approximate Nash equilibrium with
probability at least 2/3, where c0 > 0 is a sufficiently small universal constant; this yields the third
claimed statement of Proposition F.1.
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M.2. Proof of Theorem F.2

In this section, we prove Theorem F.2. Before proving the result, we introduce some notation that
will be useful in the remainder of the section.

• For integers N ≥ N ′ ≥ 0, we let
([N ]
N ′

)
denote the set of all subsets of [N ] = {1, 2, . . . , N} of

size N ′.

• For positive integers n ≤ n′ let [n, n′] = {n, n+ 1, . . . , n′}.

• For sets X ,Y , X t Y denotes the disjoint union of X and Y; it is formally defined as
{(x, 0) : x ∈ X} ∪ {(y, 1) : y ∈ Y}.

• For finite sets X ,Y , we let XY denote the set of all functions φ : Y → X . Note that, in the
case of Y = [n] for some n ∈ N, the sets X n (which is the n-fold product of X ) and X [n] are
in bijection. We will at times slightly abuse notation by identifying these two sets.

• For a finite set X , let Unif(X ) denote the uniform distribution over X .

Proof of Theorem F.2. Fix ε > 0 and N ∈ N; by increasing the constant C0 in the statement of
the theorem, it is without loss of generality to assume that N is a multiple of 3. Set N1 = N/3 and
N2 = 2N/3 = N −N1. Define

k = N, q = n =
2k

ε
=

2N

ε
, (65)

which ensures that qk ≥
(
N
N1

)
for sufficiently large N . We write T1 :=

([N ]
N1

)
and T2 :=

([N ]
N2

)
. We

will now define a random function Φ̃ : T1 ∪T2 → [q][n] t [q + 1, 2q][n+1,2n] so that Φ̃ maps T1 to
[q][n] and T2 to [q + 1, 2q][n+1,2n]. We will show that with positive probability, Φ̃ satisfies certain
conditions.

1. First, let Γ : T1 ∪T2 → [q]k t [q]k denote a random function, defined as follows: Γ maps T1

to the first copy of [q]k (uniformly at random), and T2 to the second copy of [q]k (uniformly at
random). In particular, for each S ∈ T1 ∪ T2, Γ(S) are independent and chosen uniformly
over their respective copies of [q]k.

2. We next define a mapping Σ : [q]kt [q]k → [q][n]t [q+1, 2q][n+1,2n] which maps the first copy
of [q]k into [q][n] and the second copy of [q]k into [q + 1, 2q][n+1,2n] according to the Reed-
Solomon code of Lemma M.6. (Here we have identified each of [q][n] and [q + 1, 2q][n+1,2n]

with [q]n in the natural way.)

3. We then set Φ̃ = Σ ◦ Γ.

We next argue that there is some choice of Γ for which the resulting Φ̃ satisfies the following
Conditions M.1 and M.2.

Condition M.1. For each i ∈ {1, 2}, for all sets T , T ′ ∈ Ti with T 6= T ′, it holds that
dHam(Φ̃(T ), Φ̃(T ′)) ≥ q − k + 1.
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Condition M.2. For any subset Q ⊂ [N ] with |Q| ≤
√
N ,

∀a1 ∈ [n], a2 ∈ [q], PT ∼Unif(T1)

(
Φ̃(T )(a1) = a2|Q ⊂ T

)
≤ 2/q (66)

∀a1 ∈ [n+ 1, 2n], a2 ∈ [q + 1, 2q], PT ∼Unif(T2)

(
Φ̃(T )(a1) = a2|Q ⊂ T

)
≤ 2/q. (67)

To see that there exists such a choice for Γ, we make the following observations.

1. Since qk > 10 ·
(
N
N1

)2
whenever N is sufficiently large (by Eq. (65)), with probability at least

1−
(
N
N1

)2
/qk > 9/10, the function Γ is injective. Conditioned on being injective, Lemma M.6

gives that Condition M.1 holds, since the action of Σ on each of the copies of [q]k is defined to
be that of a Reed-Solomon code. Thus, Condition M.1 holds with probability at least 9/10
over the choice of Γ.

2. Consider any fixed choice of T ∈ T1. Note that, for each coordinate a1 ∈ [n], the mapping
T 7→ Φ̃(T )(a1) = Σ(Γ(T ))(a1), for T ∈ T1, is distributed as a uniformly random function
from T1 → [q] (with respect to the randomness in Γ). This fact follows from the final
sentence of Lemma M.6 and the fact that Γ is a uniformly random function. Thus, by
Lemma M.7 withN0 = N1 and a union bound over all n possible values of a1, with probability

1−n·N
√
N+1 ·2−(5N/6N/6 )/(Cq2) over the choice of Γ, for any subsetQ ⊂ [N ] of size |Q| ≤

√
N ,

Eq. (66) holds. Similarly, an application of Lemma M.7 with N0 = N2 yields that with

probability 1− n ·N
√
N+1 · 2−(5N/6N/6 )/(Cq2) over the choice of Γ, for any subset Q ⊂ [N ] of

size |Q| ≤
√
N , Eq. (67) holds. Note that our choices of q,N, ε ensure that, for the constant

C in Lemma M.7, as long as N is sufficiently large,

3 log q ≤ 6 log(N/ε) ≤ 12 log(N) ≤ N/6− C ≤ log

(
5N/6

N/6

)
− C,

meaning that it is valid to apply Lemma M.7. Finally, let us note that our choices for N, q
ensure that as long as N is sufficiently large,(

5N/6

N/6

)
> Cq2 ·

(
log(2n) + log(N

√
N+1) + 5

)
,

and therefore, (66) and (67) hold for all Q ⊂ [N ] with |Q| ≤
√
N , with probability at least

1− 2−5. In particular, Condition M.2 holds with probability at least 1− 2−5 over the random
choice of Γ.

Summarizing the above points, with probability at least 1− 1/10− 2−5 > 0 over the choice of Γ,
Conditions M.1 and M.2 both hold. We pick any such Γ for which both conditions hold, and set
Φ = Σ ◦ Γ.

We are now ready to define the 2-player instance M = (M,Π,O, {Π′k}k, {Uk}k).

Policy space. Let Π1 = {1, 2, . . . , 2n} and Π2 = {0, 1, . . . , 2q}, and write Π = Π1 × Π2 to
denote the joint policy space.

Deviation sets and switching functions. The deviation sets Π′k and switching function Uk are set
as in Definition 1.1 to make M a 2-player NE instance. To be concrete, we have Π′k = Πk for each
k, and Uk(π′k, π) = (π′k, π−k).
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Model classM. The classM is indexed by T1 ∪ T2. Given a set T ∈ T1 ∪ T2, we write the
corresponding model as MT . We will often consider the decompositionM =M1 tM2, where
M1 := {MT : T ∈ T1} andM2 := {MT : T ∈ T2}. For each MT ∈ M, we need to specify
the distributions o = (r1, r2, o◦) ∼ MT (π), for each π ∈ Π. To do so, we first define a mapping
B? : T1 ∪ T2 → P([2n]× [2q]) ⊂ P(Π), as follows: recall that Φ maps T1 to [q][n] and T2 to
[q + 1, 2q][n+1,2n]. Then for T ∈ T1 ∪T2, define B?(T ) ⊂ [2n]× [2q] ⊂ Π by

B?(T ) =

{
{(i,Φ(T )(i)) : i ∈ [n]} : MT ∈M1

{(i,Φ(T )(i)) : i ∈ [n+ 1, 2n]} : MT ∈M2.

Note that here we view, for each set T in the domain of Φ, Φ(T ) as a function mapping either
[n]→ [q] (for MT ∈M1) or [n+ 1, 2n]→ [q + 1, 2q] (for MT ∈M2).

We set the reward space to beR = [0, 1], and the pure observation space to be O◦ = [N ]. Now,
for each MT ∈M and π ∈ Π, the full observation o = (r1, r2, o◦) ∼MT (π) is drawn as follows:

• The pure observation o◦ ∈ O◦ is simply a uniformly random element of the set T .

• The rewards are deterministic, i.e., we have rk = f
MT
k (π) for each k ∈ [K], a.s. Moreover,

we define

f
MT
1 (π) = −fMT2 (π) =


0 : π ∈ Π1 × {0}
1 : π ∈ (Π1 × {1, 2, . . . , 2q})\B?(T )

−δ : π ∈ B?(T ),

(68)

where we set δ := 10−3.

Establishing the claimed statements. It is immediate from definition of Π that |Π| = 2n · (2q +
1) = O(N2/ε2), thus establishing the first claimed statement of the theorem. Next, Lemma M.1
below bounds r-deco

γ(co(M )), establishing the second claimed statement.

Lemma M.1. For any γ > 0, It holds that r-deco
γ(co(M )) ≤ ε.

The proof of Lemma M.1 uses that Φ satisfies Condition M.1. Finally, the third claimed statement
is established by the following lemma.

Lemma M.2. There is a constant C > 0 so that the following holds. For any algorithm that has at
most T ≤

√
N/C rounds of interaction, there is some model M? ∈M so that

EM?
[Risk(T )] = EM? [

hM
?
(π̂)
]
> δ/100 = 10−5.

Recall that above π̂ denotes the output policy of the algorithm.

The proof of Lemma M.2 uses that Φ satisfies Condition M.2. It remains to prove Lemmas M.1
and M.2; we do so in the remainder of this section.

Proof of Lemma M.1. For M ∈ co(M) and i ∈ [N ], let M [i] ∈ [0, 1] denote the probability
P(r1,r2,o◦)∼M(π)[o◦ = i], for an arbitrary decision π ∈ Π (note that the choice of decision does
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not affect the distribution over the pure observation o◦). For any M ∈ co(M), we define the set
T (M) ⊂ [N ] as follows:

T (M) :=
{
i ∈ [N ] : M [i] ≥ 1/N

}
,

Now fix any M ∈ co(M). Define p? ∈ ∆(Π) as follows, as a function of M :

p? =

{
Unif({(1, 0), . . . , (n, 0)}) : |T (M)| ≥ N/2
Unif({(n+ 1, 0), . . . , (2n, 0)}) : |T (M)| < N/2.

We have that

r-deco
γ(co(M ),M) ≤ sup

M∈co(M)
Eπ∼p?

[
hM(π)− γ ·D2

H

(
M(π),M(π)

)]
= sup
M∈co(M)

Eπ∼p?
[

2∑
k=1

max
π′k∈Πk

fMk (π′k, π−k)− fMk (π)− γ ·D2
H

(
M(π),M(π)

)]

= sup
M∈co(M)

Eπ∼p?
[

max
π′2∈Π2

fM2 (π1, π
′
2)− fM2 (π)− γ ·D2

H

(
M(π),M(π)

)]
,

(69)

where the final equality follows because for all M ∈ co(M) and all π in the support of p?,
maxπ′1∈Π1

fM1 (π′1, π2) = 0 = fM1 (π).
Fix ν ∈ ∆(M) so that M = Mν(π) := EM∼ν [M(π)] attains the supremum in Eq. (69). We

consider the following possibilities:

Case 1. Suppose first that |T (M)| ≥ N/2. We consider the following sub-cases:

1. First suppose that ν(M1) ≤ 1
1+δ , where we recall that δ := 10−3 (Eq. (68)). Then for all

π1 ∈ [n] and π2 ∈ [2q], it holds that

fMν
2 ((π1, π2)) ≤ 1

1 + δ
· δ −

(
1− 1

1 + δ

)
= 0, (70)

since fMT2 ((π1, π2)) is only positive when π ∈ B?(T ), which happens with probability at
most 1

1+δ under MT ∼ ν, as π1 ∈ [n]; moreover, when it is positive, it is δ, and when it is
not positive, it is −1. Using (70), since for all decisions π in the support of p? (which have
π1 ∈ [n] in this sub-case), the expression in (69) is bounded above by 0.

2. Next suppose that there is some model MT ∈ M1 so that ν(MT ) ≥ 14/15. Thus, we must
have

∑
j∈T (M)\T Mν [j] ≤

∑
j∈[N ]\T Mν [j] ≤ 1

15 . On the other hand, since |T (M)| ≥ N/2,
we have

∑
j∈T (M)\T M [j] ≥ 1

N ·
N
6 = 1/6. Thus, for any decision π ∈ Π,

D2
H

(
Mν(π),M(π)

)
≥ (DTV

(
Mν(π),M(π)

)
)2 ≥ (1/6− 1/15)2 = 1/100,

Thus, as long as γ ≥ 100, since fM2 (π1, π
′
2) ≤ 1 for all π1, π

′
2, if we recall that M = Mν is

chosen to maximize the expression in (69), we have that this expression is bounded above by
0.
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3. In the remaining case, we must have ν(M1) ≥ 1
1+δ , yet for eachMT ∈M1, ν(MT ) < 14/15.

Suppose for the purpose of contradiction that

Eπ∼p?
[

max
π′2∈Π2

fMν
2 (π1, π

′
2)− fMν

2 (π)

]
= Eπ∼p?

[
max
π′2∈Π2

fMν
2 (π1, π

′
2)

]
> ε. (71)

Write I = {π1 ∈ [n] : maxπ′2∈Π2
fMν

2 (π1, π
′
2) ≥ 0}; since maxπ′2∈Π2

fMν
2 (π1, π

′
2) ≤ 1 for

all π1, (71) tells us that |I| ≥ εn. By construction, for each π1 ∈ I, there is at most one value
of π2 ∈ [q] so that fMν

2 (π1, π2) ≥ 0; let this value of π2 be denoted by π?2(π1), if such π2

exists given π1, and otherwise set π?2(π1) = −1.

Note that if fMν
2 (π1, π2) ≥ 0 for any π1 ∈ Π1 , then we must have that ν({MT ∈ M1 :

Φ(T )(π1) = π2}) ≥ 1
1+δ > 1− δ. Therefore, for all π1, if π?2(π1) > 0, then

ν({MT ∈M1 : Φ(T )(π1) = π?2(π1)}) > 1− δ. (72)

For each MT ∈M1, define

ζ(T ) := |{π1 ∈ I : Φ(T )(π1) 6= π?2(π1)}| .

We have that

|I| −
∑

MT ∈M1

ν(MT )ζ(T ) =
∑
π1∈I

∑
MT ∈M1

ν(MT ) · I {Φ(T )(π1) = π?2(π1)} ≥ |I| · (1− δ),

where the inequality uses (72). Thus, by Markov’s inequality, for some subsetM′1 ⊂M1, it
holds that ν(M1\M′1) ≤

√
δ and for all MT ∈M′1, ζ(T ) ≤ |I| ·

√
δ. Since ν(M1) ≥ 1− δ,

it follows that ν(M′1) ≥ 1− δ −
√
δ ≥ 1− 2

√
δ. Since 1− 2

√
δ > 14/15 by our choice of

δ = 10−3, there must be at least two distinct elements ofM′1, which we denote by MT1 and
MT2 .

To proceed, by definition ofM′1, it holds that

|{π1 ∈ I : Φ(T1)(π1) = Φ(T2)(π1) = π?2(π1)}| ≥ |I| · (1− 2
√
δ) ≥ |I|/2 ≥ nε/2.

It follows that dHam(Φ(T1),Φ(T2)) ≤ n− nε/2 = n(1− ε/2), which contradicts Condition
M.1, since n(1− ε/2) = 2N

ε · (1− ε/2) < 2N
ε −N + 1 = q − k+ 1. Thus, (71) is false, and

therefore the expression in (69) corresponding to choosing M = Mν is bounded above by ε.

Case 2. Now suppose that |T (M)| < N/2. In this case an argument symmetric to that in the case
that |T (M)| ≥ N/2 may be applied to establish the same upper bound on the multi-agent DEC. (In
particular, the roles ofM1,M2 are swapped; the symmetry arises from the fact that sets in T1 have
size N/3 = N/2−N/6 whereas sets in T2 have size 2N/3 = N/2 +N/6.) Below we expand on
the details for completeness.

1. If ν(M2) ≤ 1
1+δ , then for all π1 ∈ [n + 1, 2n] and π2 ∈ [2q], fMν

2 ((π1, π2)) ≤ 0, meaning
that, since for all decisions π in the support of p?, π2 ∈ [n+ 1, 2n], the expression in (69) is
non-positive.
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2. Next suppose there is some model MT ∈ M2 so that ν(MT ) ≥ 14/15. We must have that∑
j∈T \T (M)M [j] ≤ |T \T (M)| · 1

N . On the other hand, since for each i ∈ T we have
MT [i] = 3/(2N), we have

∑
j∈T \T (M)Mν [j] ≥ 14

15 ·
3

2N · |T \T (M)| ≥ 7
5N · |T \T (M)|.

Thus, for any π ∈ Π, since |T (M)| ≤ N/2 and |T | = 2N/3 (as MT ∈M2),

D2
H

(
Mν(π),M(π)

)
≥
(
DTV

(
Mν(π),M(π)

))2 ≥ (|T \T (M)| ·
(

7

5N
− 1

N

))2

≥
(
N

6
·
(

7

5N
− 1

N

))2

=
1

225
.

Thus, as long as γ ≥ 225, since fM2 (π1, π
′
2) ≤ 1 for all π1, π

′
2, the expression in (69) for

M = Mν is bounded above by 0.

3. In the remaining case, we must have ν(M2) ≥ 1
1+δ , yet for eachMT ∈M2, ν(MT ) < 14/15.

In this case, the expression in (69) for M = Mν is bounded above by ε, via an argument
identical to the one in Item 3 above where one replaces all intances ofM1 withM2.

Summarizing, we have shown that (69) is bounded above by ε for an arbitrary choice of M , which
completes the proof of the lemma.

Proof of Lemma M.2. Fix any T ≤
√
N/C (for a constant C to be specified below), and

consider any algorithm (p, q) = {(qt(·|·), p(·|·)}Tt=1. Recall that, for any model M , HT denotes
the history of interaction between the algorithm (p, q) and the model M , and is defined by HT =
(π1, o1), . . . , (πT , oT ). HT is associated with the measure space (ΩT ,F T ). For each model M ∈M,
we use the abbreviate PM ≡ PM,(p,q) as the law of HT , and write EM for the corresponding expectation.
We will show the stronger statement that the algorithm (p, q) has large risk for a uniformly random
model M? ∈M; in particular,

EM?∼Unif(M)EM
? [
hM

?
(π̂)
]
> δ/100. (73)

Clearly (73) implies the statement of Lemma M.2.
In order to prove Lemma M.2, we first prove a few intermediate results. To start, we define an

additional model M0: the distribution of (r1, r2, o◦) ∼M0(π) are as follows:

• The rewards r1, r2 are given as in (68) with B? = ∅; in particular, rk = f
M0
k (π) are determin-

istic with

f
M0
1 (π) = −fM0

2 (π) =

{
0 : π ∈ Π1 × {0}
1 : π ∈ Π2 × {1, 2, . . . , 2q}.

• The pure observation o◦ ∈ [N ] is a uniformly random element of [N ].

Next, recall that we write, for π ∈ Π, k ∈ {1, 2},M ∈M, hMk (π) = maxπ′k∈Π′k
fMk (Uk(π

′
k, π))−

fMk (π).
Lemma M.3 below shows that for each i ∈ {1, 2}, under the model M0, with constant probability

either all models inM1 or all models inM2 have high risk with respect to the algorithm’s output
policy π̂.
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Lemma M.3. There is some i ∈ {1, 2} (depending on the algorithm (p, q)) so that

PM0 (∀M ∈Mi : hM(π̂) ≥ δ) ≥ 1

2
.

The proof of Lemma M.3 is provided at the end of this section. SinceM0 is not inM, Lemma M.3
is not enough to prove Lemma M.2; we will next use a series of change-of-measure arguments to
reason about the history of interaction when the true model is a uniformly random model in M . In
particular, for each model MT ∈ M, we define an intermediate model MT ,0: the distribution of
(r1, r2, o◦) ∼MT ,0(π) is as follows:

• The rewards (r1, r2) are given identically to the rewards under M0(π) (in particular, they are
deterministic).

• The pure observation o◦ is a uniformly random element of T .

Lemma M.4 below shows that under a history drawn from MT ,0 for a uniformly random T ∼
Unif(Ti), with high probability the algorithm will not query any decision belonging to B?(T ) ⊂ Π;
furthermore, the distribution of the history HT is close under M0 and under MT ,0, again for a
uniformly random T ∼ Unif(Ti):

Lemma M.4. For each i ∈ {1, 2}, the following holds:

ET ∼Unif(Ti)E
MT ,0 [I {{π1, . . . , πT} ∩ B?(T ) 6= ∅}] ≤ 2T

q
+

1

100
. (74)

Furthermore, for any measurable subset F ∈ F T of histories,∣∣EM0 [I {HT ∈ F}]− ET ∼Unif(Ti)E
MT ,0 [I {HT ∈ F}]

∣∣ ≤ 1

100
. (75)

The proof of Lemma M.4 is provided at the end of this section.
Next, Lemma M.5 shows that if, for some model MT , the algorithm does not query any decision

in B?(T ) with high probability, then the distribution of histories under PMT ,0 and PMT are close.

Lemma M.5. Fix some model MT ∈ M so that PMT ,0({π1, . . . , πT} ∩ B?(MT ) 6= ∅) ≤ η for
some η > 0. Then DTV(PMT ,0 ,PMT ) ≤ η.

The proof of Lemma M.5 is provided at the end of this section. Given the above lemmas, we
now establish (73). Suppose for the purpose of contradiction that EM∼Unif(M)EM [hM(π̂)] ≤ δ/100.
Then by Markov’s inequality, EM∼Unif(M)EM [I {hM(π̂) ≥ δ}] ≤ 1/100. Since Unif(M) is the
uniform average of Unif(M1) and Unif(M2), it follows that for each i ∈ {1, 2},

EM∼Unif(Mi)E
M [I {hM(π̂) ≥ δ}] ≤ 1/50. (76)

We next note that Lemma M.3 gives that for some i? ∈ {1, 2},

PM0 (∀M ∈Mi? : hM(π̂) ≥ δ) ≥ 1

2
.

By the conclusion (75) of Lemma M.4, it follows that

ET ∼Unif(Ti? )EMT ,0 [I{∀M ∈Mi? : hM(π̂) ≥ δ}] ≥ 1/2− 1/100. (77)
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Next, by the statement (74) of Lemma M.4 and using that 2T ≤
√
N and

√
N/q ≤ 1/

√
N ≤

1/100 for sufficiently large N ,

ET ∼Unif(Ti? )EMT ,0 [I {{π1, . . . , πT} ∩ B?(MT ) 6= ∅}] ≤
√
N

q
+

1

100
≤ 1

50
. (78)

Now, for η = 1/7, let us write χ(T ) := I {EMT ,0 [I{{π1, . . . , πT} ∩ B?(MT ) 6= ∅}] > η} ∈
{0, 1}; Eq. (78) together with Markov’s inequality give that ET ∼Unif(Ti? )[χ(T )] ≤ 1/7.

Next, Lemma M.5 gives that, for all T ∈ T1 ∪T2,

PMT (∀M ∈Mi? : hM(π̂) ≥ δ) ≥ PMT ,0 (∀M ∈Mi? : hM(π̂) ≥ δ)− χ(T )− η,

and taking expectation over T ∼ Unif(Ti?) and using that ET ∼Unif(Ti? )[χ(T )] ≤ 1/7 and the
choice of η = 1/7 gives that

PT ∼Unif(Ti? )EMT [I {∀M ∈Mi? : hM(π̂) ≥ δ}]
≥PT ∼Unif(Ti? )EMT ,0 [I {∀M ∈Mi? : hM(π̂) ≥ δ}]− 2/7 ≥ 1/2− 1/100− 2/7,

where the final inequality follows by Eq. (77). In particular, using that MT ∈Mi? if T ∈ Ti? , we
have

ET ∼Unif(Ti? )EMT [I {hMT (π̂) ≥ δ}] ≥ 1/2− 1/100− 2/7 > 1/5,

which contradicts Eq. (76), thus completing the proof.

Proof of Lemma M.3. We write Π̃ := Π1 × (Π2 \ {0}) = Π1 × {1, 2, . . . , 2q} ⊂ Π. First, we
claim that for all π ∈ Π̃, and all M ∈M, it holds that hM(π) = hM1 (π) + hM2 (π) ≥ δ. To see this,
consider any M = MT ∈M, and we consider the following two cases:

• If π 6∈ B?(T ), then fM2 ((π1, 0))− fM2 (π) = 0− (−1) = 1.

• If π ∈ B?(T ), then there must be some π′1 ∈ Π1 with (π′1, π2) 6∈ B?(T ), and so fM1 ((π′1, π2))−
fM1 (π) = 1− (−δ) = 1 + δ.

Next, note that

max
{
PM0

(
π̂ ∈ Π̃ ∪ ([n]× {0})

)
,PM0

(
π̂ ∈ Π̃ ∪ ([n+ 1, 2n]× {0})

)}
≥ 1/2.

Let us first suppose that PM0

(
π̂ ∈ Π̃ ∪ ([n]× {0})

)
≥ 1/2. Note that if M = MT ∈ M1 and

π ∈ [n]×{0}, then hM(π) ≥ hM2 (π) = fM2 ((π1,Φ(T )(π1)))− fM2 (π) = δ− 0 = δ. Moreover, the
two bullet points above establish that if π̂ ∈ Π̃, then hM(π̂) ≥ 1 > δ. Thus, in this case, we have
established that PM0 (∀M ∈M1, h

M(π̂) ≥ δ) ≥ 1/2.
In the other case, where PM0

(
π̂ ∈ Π̃ ∪ ([n+ 1, 2n]× {0})

)
≥ 1/2, it follows inb a symmetric

manner that, PM0 (∀M ∈M2, h
M(π̂) ≥ δ) ≥ 1/2.

Proof of Lemma M.4. Fix any i ∈ {1, 2}. For a model M ∈ {M0} ∪
⋃
T ∈Ti

{MT ,0}, consider
a draw of HT = (π1, (r11, r

1
2, o

1
◦), . . . , π

T , (rT1 , r
T
2 , o

T
◦ )) ∼ PM , where we have written out the full
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observations ot = (rt1, r
t
2, o

t
◦). Since the distribution of the pure observations ot◦ ∼M(π) does not

depend on the policy π, the distribution of HT is identical to the following one: first, o1◦, . . . , o
T
◦

are drawn i.i.d. from M(π0) (for an arbitrary decision π0), and then the decisions πt are chosen
adaptively, πt ∼ qt(·|Ht−1), with the rewards rt1, r

t
2 being determined by πt.

For any T ∈ Ti, and for any t, t′ ∈ [T ] with t 6= t′, we have PMT ,0 [ot◦ = ot
′
◦ ] = 1/|T | ≤ 3/N .

Thus

PMT ,0
(
∃t 6= t′ : ot◦ = ot

′
◦

)
≤ T 2 · 3/N ≤ 1/100, (79)

where the final inequality follows since T ≤
√
N/300 (as long as the constant C in the statement of

Lemma M.2 is sufficiently large). Let E ∈ F T denote the event that for all t 6= t′, ot◦ 6= ot
′
◦ . The

inequality (79) gives that

ET ∼Unif(Ti)E
MT ,0 [I {E}] ≥ 1− 1/100. (80)

In a similar manner, we also have that

EM0 [I {E}] ≥ 1− 1/100. (81)

Now, we may compute

ET ∼Unif(Ti)E
MT ,0 [I {πt ∈ B?(T )} | E ]

=
∑
T ∈Ti

1

|Ti|
∑

ω1,...,ωT∈[N ]

PMT ,0 (o1:T◦ = ω1:T | E) · EMT ,0 [I {πt ∈ B?(T )} | o1:T◦ = ω1:T ]

=
∑
T ∈Ti

1

|Ti|
∑

ω1,...,ωT∈T
distinct

1

Ni(Ni − 1) · · · (Ni − T + 1)
· EM0 [I {πt ∈ B?(T )} | o1:T◦ = ω1:T ]

=
∑

ω1,...,ωT∈[N ]
distinct

1

N(N − 1) · · · (N − T + 1)
ET ∼Unif(Ti)E

M0 [I {πt ∈ B?(T )} | o1:T◦ = ω1:T , {ω1, . . . , ωT } ⊂ T ]

(82)

≤2/q,

where:

• The second equality uses that the distribution of HT conditioned on o1:T is identical under PM0

and PMT ,0 .

• The third equality switches the order of summation and uses that 1/|Ti| =
(
N
Ni

)−1
=

Ni!
N(N−1)···(N−Ni+1) , as well as the fact that the number of sets T containing any tuple

ω1, . . . , ωT ∈ [N ] of distinct integers is (N−T )(N−T−1)···(N−Ni+1)
(Ni−T )! .

• The final inequality uses the fact that, for fixed ω1, . . . , ωT , the distribution of T ∼ Unif(Ti)|{ω1, . . . , ωT } ⊂
T is independent of the distribution of HT ∼ PM0 |o1:T◦ = ω1:T . Moreover, the definition of
B?(T ) in terms of Φ(T ) and the fact Φ satisfies Condition M.2 means that, for any fixed
π = (π1, π2) ∈ Π with π1 > 0,

PT ∼Unif(Ti)(π ∈ B
?(T )|{ω1, . . . , ωT } ⊂ T ) = PT ∼Unif(Ti)(Φ(T )(π1) = π2|{ω1, . . . , ωT } ⊂ T ) ≤ 2/q,
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where we take Φ(T )(π1) = −1 if π1 is not in the domain of Φ(T ). (Here we have also
used that T ≤

√
N .) In particular, the above inequality holds with the random choice of

πt ∼ PM0 |o1:T◦ = ω1:T replacing π.

Taking a union bound over all T values of t ∈ [T ] and applying (80), the first claim (74) of the lemma
follows.

To show the second claim (75) of the lemma, we note that for any fixed subset F ∈ F T (not
depending on T ) the chain of equalities ending in (82) implies that

ET ∼Unif(Ti)E
MT ,0 [I {HT ∈ F} | E ] = EM0 [I {HT ∈ F} | E ],

Eq. (75) follows from the above equality combined with (80) and (81).

Proof of Lemma M.5. Let E denote the event that {π1, . . . , πT} ∩ B?(MT ) = ∅. Consider any
subset F ⊂ F T of histories. Then

PMT ,0(E ∩ F) = PMT (E ∩ F),

which follows since for any decition π 6∈ B?(MT ), the distribution over the full observation
o ∼ MT (π) and o ∼ MT ,0(π) is identical. The statement of the lemma then follows from
Lemma H.6.

M.3. Supplementary lemmas

The following lemma, which is an elementary fact from coding theory, states the dimension and
distance properties of the Reed-Solomon code. To present it, we recall the definition of Hamming
distance: for q, n ∈ N, and w,w′ ∈ [q]n, we let dHam(w,w′) = |{i ∈ [n] : wi 6= w′i}| to be the
number of positions at which w,w′ differ.

Lemma M.6 (Reed-Solomon code; Section 5.2 of Guruswami et al. (2022)). Fix any integers n, q, k
satisfying q ≥ k. Then there is a mapping Φ : [q]k → [q]n so that for any two vectors v, v′ ∈ [q]k

with v 6= v′, it holds that dHam(Φ(v),Φ(v′)) ≥ n− k + 1.
Furthermore, Φ may be chosen so that if X ∈ [q]k is uniformly random, then for each i ∈ [n],

the value Φ(X)i ∈ [q] is uniformly random.

Lemma M.7 below shows that a certain type of randomness extractor exists.

Lemma M.7. There is a sufficiently large constant C ≥ 1 so that the following holds. Consider
any positive integers N,N0, R, q with N0 ≤ 2N/3, R ≤ N/6 ≤ N0 − N/6, and 3 log q ≤
log
(5N/6
N/6

)
− C. Let Ψ :

([N ]
N0

)
→ [q] be a uniformly random function. Then with probability at least

1−NR+1 · 2−(5N/6N/6 )/(Cq2) over the choice of Ψ, for all subsets Q ⊂ [N ] of size |Q| ≤ R, and all
j ∈ [q],

PT ∼Unif ([N ]
N0

) (Ψ(T ) = j|Q ⊂ T ) ≤ 2

q
.
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We clarify that the distribution of the uniformly random function Ψ :
([N ]
N0

)
→ [q] in the above

lemma statement is given as follows: for each S ∈
([N ]
N0

)
, Ψ(S) is an independent random variable,

distributed uniformly on [q].
Proof of Lemma M.7. Since R ≤ N/6 ≤ N0 −N/6 and N0 ≤ 2N/3, for any subset Q ⊂ [N ]

of size |Q| ≤ R, the distribution of T ∼ Unif
([N ]
N0

)
|Q ⊂ T puts mass at most 1/

(5N/6
N/6

)
on

any subset T (such a distribution is known as a flat k-source for some k ≥ log
(5N/6
N/6

)
). By

Vadhan (2012, Proposition 6.12) with ε = 1/q, for a sufficiently large constant C, as long as

3 log q ≤ log
(5N/6
N/6

)
− C, with probability at least 1− 2

−(5N/6N/6 )/(Cq2) over the choice of Ψ, it holds

that, for any fixed Q of size at most R, the distribution of Ψ(T ), with T ∼ Unif
([N ]
N0

)
|Q ⊂ T , is

1/q-close (in total variation distance) to uniform on [q], which in particular implies that Ψ(T ) = j

with probability at most 2/q for any j ∈ [q] (again under T ∼ Unif
([N ]
N0

)
|Q ⊂ T ).

Taking a union bound over all
∑R

r=0

(
N
R

)
≤ NR+1 possible sets Q, we obtain that Ψ satisfies

the desired property with probability at least 1−NR+1 · 2−(5N/6N/6 )/(Cq2).
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