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Abstract
A foundational problem in reinforcement learning and interactive decision making is to understand
what modeling assumptions lead to sample-efficient learning guarantees, and what algorithm design
principles achieve optimal sample complexity. Recently, Foster et al. (2021) introduced the Decision-
Estimation Coefficient (DEC), a measure of statistical complexity which leads to upper and lower
bounds on the optimal sample complexity for a general class of problems encompassing bandits and
reinforcement learning with function approximation. In this paper, we introduce a new variant of the
DEC, the Constrained Decision-Estimation Coefficient, and use it to derive new lower bounds that
improve upon prior work on three fronts:
• they hold in expectation, with no restrictions on the class of algorithms under consideration.

• they hold globally, and do not rely on the notion of localization used by Foster et al. (2021).

• most interestingly, they allow the reference model with respect to which the DEC is defined to
be improper, establishing that improper reference models play a fundamental role.

We provide upper bounds on regret that scale with the same quantity, thereby closing all but one
of the gaps between upper and lower bounds in Foster et al. (2021). Our results apply to both the
regret framework and PAC framework, and make use of several new analysis and algorithm design
techniques that we anticipate will find broader use.

1. Introduction

Sample efficiency in reinforcement learning and decision making is a fundamental challenge. State-
of-the-art algorithms (Lillicrap et al., 2015; Mnih et al., 2015; Silver et al., 2016) often require
millions of rounds of interaction to achieve human-level performance, which is prohibitive in practice
and constitutes a barrier to reliable deployment. For continued progress on challenging real-world
domains where the agent must navigate high-dimensional state and observation spaces, it is critical
to design algorithms that can take advantage of users’ domain knowledge (via modeling and function
approximation) to enable generalization and improved sample efficiency. As such, a foundational
question is to understand what modeling assumptions lead to sample-efficient learning guarantees,
and what algorithms achieve optimal sample complexity.

The non-asymptotic theory of reinforcement learning is rich with sufficient conditions under
which sample-efficient learning is possible (Dean et al., 2020; Yang and Wang, 2019; Jin et al., 2020;
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Modi et al., 2020; Ayoub et al., 2020; Krishnamurthy et al., 2016; Du et al., 2019; Li, 2009; Dong
et al., 2019; Zhou et al., 2021), as well as structural properties that aim to unify these conditions
(Russo and Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Du et al., 2021; Jin
et al., 2021), but conditions that are necessary have generally been elusive. Recently though, Foster
et al. (2021) introduced the Decision-Estimation Coefficient (DEC), a unified notion of statistical
complexity that leads to both upper and lower bounds on the optimal sample complexity in a general
decision making framework. The results of Foster et al. (2021) show that the DEC plays a role for
interactive decision making analogous to that of the VC dimension and its relatives in statistical
learning, but leave room for tighter quantitative guarantees. In this paper, we introduce a new variant
of the DEC, the Constrained Decision-Estimation Coefficient, and use it to close several gaps between
the upper and lower bounds in Foster et al. (2021).

1.1. Interactive Decision Making

We consider the Decision Making with Structured Observations (DMSO) framework of Foster et al.
(2021), a general setting for interactive decision making that encompasses bandit problems (including
structured and contextual bandits) and reinforcement learning with function approximation.

The protocol consists of T rounds. For each round t = 1, . . . , T :

1. The learner selects a decision πt ∈ Π, where Π is the decision space.

2. The learner receives a reward rt ∈ R ⊆ R and observation ot ∈ O sampled via (rt, ot) ∼
M?(πt), where M? : Π→ ∆(R×O) is the underlying model.

We refer to R as the reward space and O as the observation space. The model M?, which we
formalize as a conditional distribution, plays the role of the underlying environment, and is unknown
to the learner. However, the learner is assumed to have access to a model class M ⊂ (Π →
∆(R×O)) that contains M?.

Assumption 1.1 (Realizability). The learner has access to a classM containing the true model M?.

The model classM represents the learner’s prior knowledge of the underlying environment. For
structured bandit problems, where models correspond to reward distributions, it encodes structure
in the reward landscape (smoothness, linearity, convexity, etc.), and for reinforcement learning
problems, where models correspond to Markov decision processes (MDPs), it typically encodes
structure in the transition probabilities or value functions. In more detail:

• Bandits. In bandit problems,M is a reward distribution, πt is referred to as an action or arm
and Π is referred to as the action space; there are no observations beyond rewards (O = {∅}).
By choosingM so that the mean reward function fM has appropriate structure, one can capture
bandit problems with continuous or infinite action spaces and structured rewards, including
linear bandits (Dani et al., 2007; Abernethy et al., 2008; Bubeck et al., 2012), bandit convex
optimization, and nonparametric bandits (Kleinberg, 2004; Bubeck et al., 2011; Magureanu
et al., 2014).

• Reinforcement learning. In episodic reinforcement learning, each model M ∈M specifies a
non-stationary horizon-H Markov decision processM =

{
{Sh}Hh=1,A, {PM

h }Hh=1, {RM
h }Hh=1, d1

}
,

where Sh is the state space for layer h, A is the action space, PM
h : Sh ×A → ∆(Sh+1) is the
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probability transition kernel for layer h, RM
h : Sh ×A → ∆(R) is the reward distribution for

layer h, and d1 ∈ ∆(S1) is the initial state distribution. Decisions π = {πh : Sh → ∆(A)}Hh=1

are policies (mappings from states to actions). Given a policy π, an episode proceeds as fol-
lows (beginning from s1 ∼ d1). For h = 1, . . . ,H: ah ∼ πh(sh), rh ∼ RM

h (sh, ah), and
sh+1 ∼ PM

h (· | sh, ah). This process leads to (r, o) ∼ M(π), where r =
∑H

h=1 rh is the
cumulative reward in the episode, and the observation o = (s1, a1, r1), . . . (sH , aH , rH) is
the episode’s trajectory (sequence of observed states, actions, and rewards). By choosingM
appropriately, one can encompass standard classes of MDPs (e.g., tabular MDPs or linear
systems) Dean et al. (2020); Yang and Wang (2019); Jin et al. (2020); Modi et al. (2020);
Ayoub et al. (2020); Krishnamurthy et al. (2016); Du et al. (2019); Li (2009); Dong et al.
(2019), as well as more general structural conditions (Jiang et al., 2017; Sun et al., 2019; Wang
et al., 2020; Du et al., 2021; Jin et al., 2021).

For a model M ∈ M, EM,π[·] denotes expectation under the process (r, o) ∼ M(π), fM(π) :=
EM,π[r] is the mean reward function, and πM := arg maxπ∈Π f

M(π) is the optimal decision.
We consider two types of guarantees for interactive decision making: regret guarantees and PAC

(Probably Approximately Correct) guarantees. For regret guarantees, we are concerned with the
cumulative suboptimality given by

RegDM(T ) :=

T∑
t=1

Eπt∼pt
[
fM

?
(πM?)− fM?

(πt)
]
, (1)

where pt is the learner’s randomization distribution (conditional distribution over πt) for round t.
For PAC guarantees, we are only concerned with final suboptimality. After rounds t = 1, . . . , T
complete, the learner can use all of the data collected to select a final decision π̂ (which may be
randomized according to a distribution p ∈ ∆(Π)), and we measure performance via

RiskDM(T ) := Eπ̂∼p
[
fM

?
(πM?)− fM?

(π̂)
]
. (2)

1.2. Background: Decision-Estimation Coefficient

To motivate our results, let us first recall the Decision-Estimation Coefficient of Foster et al. (2021);
for this discussion, we restrict our attention to regret guarantees. Define the squared Hellinger
distance for probability measures P and Q with a common dominating measure ν by

D2
H(P,Q) =

∫ (√
dP
dν
−
√
dQ
dν

)2

dν. (3)

For a model class M, reference model M : Π → ∆(R × O), and scale parameter γ > 0, the
Decision-Estimation Coefficient is given by

r-deco
γ(M,M) = inf

p∈∆(Π)
sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
. (4)

Here, we depart slightly from the notation in Foster et al. (2021) and append the prefix r- (indicating
“regret”) and the superscript “o” (indicating “offset”) to distinguish from other variants that will be
introduced shortly.

Foster et al. (2021) (see also Foster et al. (2022b)) use the DEC to provide upper and lower
bounds on the optimal regret for interactive decision making:
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• On the upper bound side, there exists an algorithm (Estimation-to-Decisions) that obtains

E[RegDM(T )] . inf
γ>0

{
sup

M∈co(M)

r-deco
γ(M,M) · T + γ ·EstH(T )

}
, (5)

where co(M) denotes the convex hull of the classM. Here, the term EstH(T ) represents the
sample complexity required to perform online statistical estimation with the class, and has
EstH(T ) ≤ log|M| for the special case of finite classes.

• On the lower bound side, any algorithm must have

E[RegDM(T )] & sup
γ>0

{
sup
M∈M

r-deco
γ(M′γ ,M) · T

}
, (6)

whereM′γ is a certain “localized” subclass ofM (informally, models with ‖fM−fM‖∞ . γ
T ).

While the results of Foster et al. (2021) show that the DEC characterizes learnability for various
classes of models (for instance, convex classes with low “estimation complexity”), the quantitative
rates leave room for improvement. The aim of this paper is to address the following gaps:

• The lower bound (6) restricts to a localized subclass ofM′γ ⊆ M, which may have lower
complexity than the original class. This yields reasonable results for many special cases, but
can be arbitrarily loose in general.1

• The lower bound (6) restricts to reference models M ∈ M, yet the upper bound (5) maxi-
mizes over reference models M ∈ co(M), potentially leading to larger regret. For example,
Proposition 3.1 of Foster et al. (2021) gives a model classM for which this distinction leads
to an arbitrarily large gap between the upper and lower bounds.

A third gap, which we do not address, is the presence of the estimation complexity EstH(T ) in Eq.
(5), which is not present in the lower bound. See Foster et al. (2021, 2022a) for further discussion
around this issue.

1.3. Constrained Decision-Estimation Coefficient and Overview of Results

To address the issues in the prequel, we introduce a new complexity measure, the Constrained
Decision-Estimation Coefficient. For a reference model M : Π→ ∆(R×O), define

r-decc
ε(M,M) = inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)] | Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

(7)

with the convention that the value above is zero whenever the set

Hp,ε(M) :=
{
M ∈M | Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
(8)

1. We remark that Foster et al. (2021) provides additional lower bounds that hold with low probability (as opposed to in
expectation) and allow slightly larger localized model classes.
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is empty; the superscript “c” indicates “constrained”, and distinguishes from the offset counterpart.
Our main quantity of interest is

r-decc
ε(M) = sup

M∈co(M)

r-decc
ε(M∪ {M},M). (9)

The constrained and offset DEC differ only in how the quantity Eπ∼p
[
D2

H

(
M(π),M(π)

)]
,

representing information gain, is incorporated. The constrained DEC places a hard constraint on the
information gain, while the offset DEC treats the information gain as a penalty for the max-player,
amounting to a soft constraint. At first glance, one might expect these quantities to be equivalent
via Lagrangian duality. It is indeed the case that the offset DEC upper bounds the constrained DEC:
r-decc

ε(M,M) ≤ infγ{r-deco
γ(M,M)∨ 0 + γε2} ∀M , but strong duality fails, and the complexity

measures are not equivalent in general; detailed discussion is given in Appendix D.

Main results for regret framework. The constrained DEC possesses a number of useful properties
not shared by the offset DEC, including implicitly enforcing a form of localization in an adaptive fash-
ion (cf. Appendix D). Leveraging these properties, we provide improved lower and upper bounds that
close all but one of the gaps between the bounds in Foster et al. (2021). Our main result is as follows.

Theorem (informal version of Theorems C.1 and C.2). For any model classM:

• Lower bound: For a worst-case model inM, any algorithm must have

E[RegDM(T )] ≥ Ω̃(1) · r-decc
ε(T )(M) · T

for ε(T ) = Θ̃
(√

1/T
)
.

• Upper bound: There exists an algorithm (Estimation-to-Decisions+) that achieves

E[RegDM(T )] ≤ Õ(1) · r-decc
ε(T )(M) · T

for ε(T ) = Θ̃
(√

EstH(T )/T
)
≤ Θ̃

(√
log|M|/T

)
.

In the above theorem, Ω̃(·), Θ̃(·), Õ(·) hide logarithmic factors. This lower and upper bound are
always tighter than the respective bounds in prior work, and the lower bound in particular improves
upon Foster et al. (2021) on two fronts:

• It holds globally, and removes the notion of localization used by Foster et al. (2021). In addition,
it holds in expectation, with no restriction on the class of algorithms under consideration.

• More interestingly, it scales with r-decc
ε(M) = supM∈co(M) r-decc

ε(M∪{M},M) as opposed
to, say, supM∈M r-decc

ε(M,M), showing (in tandem with the upper bound) that improper
reference models M ∈ co(M) play a fundamental role, and are not simply an artifact of the
upper bounds in Foster et al. (2021).

Together, our upper and lower bounds form an important step toward building a simple, user-friendly,
and unified theory for interactive decision making based on the Decision-Estimation Coefficient.
The only gap our results leave open is the role of the estimation error EstH(T ), a deep issue that
necessitates future research.
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On the technical side, our lower bounds make use of several new analysis techniques and
structural results that depart sharply from previous approaches (Foster et al., 2021, 2022b). Our
upper bounds build upon the Estimation-to-Decisions paradigm introduced in Foster et al. (2021), but
the design and analysis are substantially more sophisticated, as certain properties of the constrained
DEC that aid in proving lower bounds lead to non-trivial challenges in deriving upper bounds. We
anticipate that our techniques will find broader use, and to this end we provide user-friendly tools
for working with the constrained DEC in Appendix D. In particular, Appendix D.1 establishes
relationships between the offset and constrained DEC, Appendix D.2 elaborates on the relationship
between the constrained DEC and the notion of localization introduced in Foster et al. (2021), and
Appendix D.4 investigates the relationship between different choices for improper estimators M
with respect to the (offset and constrained) DEC.

Remark 1.1. At this point, the reader may wonder why the definition (9) incorporates the set
M∪ {M}, where M may lie outside the classM. We show in Appendix D.3 that this modification,
despite not being required for the offset DEC, plays a central role for the constrained DEC.

Main results for PAC framework. Moving from the regret framework to PAC, we work with the
following PAC counterparts to the offset and constrained DEC:

p-deco
γ(M,M) = inf

p,q∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)]− γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]}
p-decc

ε(M,M) = inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)] | Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

(10)

with the convention that the value in Eq. (10) is zero when Hq,ε(M) = ∅. These definitions
parallel (4) and (7), but allow the min-player to select a separate exploration distribution q un-
der which the information gain (Hellinger distance) is evaluated, and exploitation distribution
p under which regret is evaluated. Since one can always choose p = q, it is immediate that
p-deco

γ(M,M) ≤ r-deco
γ(M,M), and likewise p-decc

ε(M,M) ≤ r-decc
ε(M,M). Defining2

p-decc
ε(M) = supM∈co(M) p-decc

ε(M,M), we show that the PAC DEC leads to the following
lower and upper bounds on PAC sample complexity.

Theorem (informal version of Theorems 2.1 and 2.2). For any model classM:

• Lower bound: For a worst-case model inM, any PAC algorithm with T rounds of interaction
must have

E[RiskDM(T )] ≥ Ω̃(1) · p-decc
ε(T )(M)

for ε(T ) = Θ̃
(√

1/T
)
.

• Upper bound: There exists an algorithm (Estimation-to-Decisions+) that achieves

E[RiskDM(T )] ≤ Õ(1) · p-decc
ε(T )(M)

for ε(T ) = Θ̃
(√

EstH(T )/T
)
≤ Θ̃

(√
log|M|/T

)
.

2. Compared the definition of the constrained DEC for regret, the definition p-decc
ε(M) = supM∈co(M) p-decc

ε(M,M)

does not apply the DEC to the classM∪ {M}. See Appendix D.3 for a detailed explanation.
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Organization. In what follows (Section 2), we formally present our main lower and upper bounds
for the PAC framework. Due to space constraints, our guarantees for regret, as well as additional
results, are deferred to Part I of the appendix: Appendix C presents lower and upper bounds for
regret. Appendix D establishes structural results for the constrained DEC, and Appendix E provides
a detailed comparison to bounds from prior work. Additional examples are given in Appendix F.

Related work. Concurrent work of Chen et al. (2022) independently discovered the offset variant
of the PAC Decision-Estimation Coefficient, and used it to give upper and lower bounds for PAC
sample complexity by adapting the techniques of Foster et al. (2021). Our guarantees for both regret
and PAC are always tighter than these results, analogous to the improvement we obtain over Foster
et al. (2021) (see Appendix D.4), but our techniques are otherwise complementary.
Additional notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For a set Z , we let
∆(Z) denote the set of all probability distributions over Z , and let Zc denote the complement. We
adopt standard big-oh notation, and write f = Õ(g) to denote that f = O(g · max{1, polylog(g)}).
We use . only in informal statements to emphasize the most notable elements of an inequality.

We assume throughout the paper that R = [0, 1] unless otherwise stated. The history up to
time t is denoted by Ht = (π1, r1, o1), . . . , (πt, rt, ot). For the class M, we define V (M) :=

supM,M ′∈M supπ∈Π supE∈R⊗O

{ M(E|π)
M ′(E|π)

}
∨ e, where R,O denote sigma-algebras for the spaces

R,O, respectively (see Appendix B). Finiteness of V (M) is not necessary for our any of our
results, but improves our lower bounds (Theorems 2.1 and C.1) by a log(T ) factor. We define
M+ = {M : Π→ ∆(R×O) | supM∈M supπ∈Π supE∈R⊗O

{M(E|π)
M(E|π)

}
≤ V (M)} as the space of

all models with rewards inR that obey the same density ratio bound; note that co(M) ⊆M+.

2. PAC Framework: Upper and Lower Bounds

In this section, we provide upper and lower bounds based on the constrained Decision-Estimation
Coefficient for the PAC framework. Our upper and lower bounds for regret (Appendix C) have a
nearly identical form, and build on the techniques we introduce here, but are more involved.

2.1. Lower Bounds

We provide a minimax lower bound for interactive decision making, which show for any model class
M and horizon T ∈ N, the worst-case PAC sample complexity for any algorithm is lower bounded
by the constrained DEC for an appropriate choice of the radius parameter ε > 0. To state the results,
define C(T ) := log(T ∧ V (M)).

Theorem 2.1 (Main Lower Bound: PAC). Let ε(T ) := c · 1√
TC(T )

, where c > 0 is a sufficiently

small numerical constant and C := 48
√

2. For all T ∈ N such that the condition

p-decc
ε(T )(M) ≥ C · ε(T ) (11)

is satisfied, it holds that for any PAC algorithm, there exists a model inM such that

E [RiskDM(T )] ≥ Ω(1) · sup
M∈M+

p-decc
ε(T )(M,M) ≥ Ω(1) · p-decc

ε(T )(M). (12)
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Theorem 2.1 shows that the constrained DEC is a fundamental limit for interactive decision
making in the PAC framework. We will show in a moment (Section 2.2) that the lower bound can be
achieved algorithmically, up to a difference in radius that depends on the estimation capacity forM
(
√

log|M|/T versus 1/
√
T for the case of finite classes). We defer a detailed comparison to prior

work to Appendix E, and take this time to build intuition as to the behavior of the lower bound.

Remark 2.1. Whenever V (M) = O(1), we have ε(T ) ∝ 1/
√
T in Theorem 2.1. In the general

case where V (M) is not bounded, we have ε(T ) ∝ 1/
√
T log(T ), and the lower bounds lose a

logarithmic factor. For many classes, one has V (M) = ∞, but there exists a subclassM′ ⊆ M
with V (M′) = O(1) and p-decc

ε(M′) & p-decc
ε(M). In this case, one can derive a tighter lower

bound with ε(T ) ∝ 1/
√
T by applying Theorem 2.1 toM′. See Foster et al. (2021) for examples.

Remark 2.2. Theorem 2.1 scales with the quantity supM∈M+ p-decc
ε(M,M) ≥ p-decc

ε(M), which
allows for reference models M /∈ co(M). We show in Appendix D.4 that maximizing over reference
models M ∈M+ does not increase the value of the DEC beyond what is attained by M ∈ co(M),
so this result does not contradict our upper bounds, which take the maximum over M ∈ co(M).3

We state the lower bounds in this form because 1) our proof works with M ∈M+ directly and does
not use the structure of co(M), and 2) allowing for M ∈M+ often simplifies calculations.

Understanding the lower bound. Let us give a sense for how the lower bound in Theorem 2.1
behaves for standard model classes; we refer to Appendix F for further examples and details.

•
√
T -rates. For the most well-studied classes found throughout the literature on bandits and

reinforcement learning, we have p-decc
ε(M) ∝ ε ·

√
Cprob, where Cprob > 0 is a problem-

dependent constant that reflects some notion of intrinsic complexity. In this case, the condition
(11) is satisfied whenever Cprob is larger than some numerical constant, and Theorem 2.1

gives E[RiskDM(T )] ≥ Ω̃

(√
Cprob

T

)
, which implies that Ω̃

(
Cprob

ε2

)
samples are required to

learn an ε-optimal policy. Examples (cf. Appendix F) include multi-armed bandits with A
actions, where Cprob ≥ A (leading to Ω̃

(
A
ε2

)
sample complexity), linear bandits in dimension

d, where Cprob ≥ d (leading to Ω̃
(
d
ε2

)
sample complexity), and tabular reinforcement learning

with S states, A actions, and horizon H , where Cprob ≥ HSA (leading to Ω̃
(
HSA
ε2

)
sample

complexity).

• Nonparametric rates. For nonparametric model classes, where the optimal rate is slower than
1√
T

, one typically has p-decc
ε(M) ∝ ε1−ρ for some ρ ∈ (0, 1). In this case, the condition

in Eq. (11) is satisfied whenever T is a sufficiently large constant, and Theorem 2.1 gives
E[RiskDM(T )] ≥ Ω̃(T−

(1−ρ)
2 ), which implies that Ω̃(ε

− 2
1−ρ ) samples are required to learn a

ε-optimal policy.

• Fast rates. For problems with low noise, such as noiseless bandits, the DEC can exhibit thresh-
old behavior, where p-decc

ε(M) ∝ I{ε ≥ 1/
√
Cprob} for a problem-dependent parameter

Cprob. In this case, Theorem 2.1 gives E[RiskDM(T )] ≥ Ω(1) until T = Ω̃(Cprob); that is, at
least Ω̃(Cprob) samples are required to learn beyond constant suboptimality.

3. In fact, the results of Appendix D.4 hold even ifM+ is defined to be the set of all models M : Π→ ∆(R×O).
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Proof techniques. We now highlight some of the key ideas behind the proof of Theorem 2.1; refer
to Appendix H.1 for the detailed proof. The high-level structure of the proof is as follows. For any
algorithm, one can construct a “hard” pair of models M1,M2 ∈M such that:

1. The laws of the history HT induced by the algorithm under M1 and M2 are close in total
variation (i.e., DTV(PM1 ,PM2) ≤ 1/4, where PM is the law of HT under M ).

2. Any algorithm with risk much smaller than the DEC must query substantially different deci-
sions in Π depending on whether the underlying model is M1 or M2.

Since PM1 are PM2 close in total variation, the algorithm will fail to distinguish the models with
constant probability, and since the optimal decisions for the models are (approximately) exclusive,
the lower bound follows.

To make this approach concrete, we select the pair of models (M1,M2) in an adversarial fashion
based on the algorithm under consideration, in a way that generalizes the approach taken in Foster et al.
(2021, 2022b). We fix an arbitrary model M1 ∈M, then, letting qM1

:= EM1

[
1
T

∑T
t=1 q

t(· | Ht−1)
]

and pM1
:= EM1 [p(· | HT )] denote the learner’s average play under this model, choose M2 as

the model that attains the maximum in Eq. (10) with (pM1
, qM1

) plugged in. This approach
suffices to prove lower bounds that scale with supM∈M p-decc

ε(M,M), but is not sufficient to
incorporate improper reference models and prove a lower bound that scales with p-decc

ε(M) =
supM∈co(M) p-decc

ε(M,M). Indeed, unless the classM is convex, there is no reason why an algo-
rithm with low risk for models inM should have low risk for improper mixtures M ∈ co(M). Thus,
naively choosing M1 = M ∈ co(M) is problematic, as we have no way to relate the algorithm’s
risk under M1 to that for models in the class.

To circumvent this issue, we iterate the process above: Given a potentially improper reference
model M ∈M+, we first obtain M1 by finding the model that attains the maximum in Eq. (10) with
(pM , qM) plugged in. With this model in hand, we obtain M2 in a similar fashion, but condition on
the event the learner behaves near-optimally for M1. That is, we find the maximizer for Eq. (10)
with the distribution (pM(· | E1), qM) plugged in, where E1 is the set of near-optimal decisions for
M1. This argument leads to lower bounds that scale with supM∈M+ p-decc

ε(M,M) ≥ p-decc
ε(M)

because the reference modelM acts only as a midpoint between M1 andM2 (whose existence allows
us to control the total variation between the models), and as a result is not required to live inM.

Benefits of the constrained DEC. The main technical advantage gained by working with the
constrained DEC over the offset DEC is that, by placing a hard constraint on the Hellinger distance
between models under consideration, we can appeal to stronger change-of-measure arguments than
those considered in prior work; this is key to deriving in-expectation (as opposed to low probability)
lower bounds. In particular, the radius ε(T ) ≈ 1/

√
T is the largest possible choice such that

for any algorithm, one can find a worst-case pair of models for which the total variation distance
DTV(PM1 ,PM2) is a small constant (say, 1/4). Whenever the total variation distance between the
induced laws is constant, the algorithm must fail to distinguish M1 and M2 with constant probability,
which entails large risk if the optimal decisions for M1 and M2 are significantly different.

Foster et al. (2021) emphasize that the Decision-Estimation Coefficient can be thought of as
interactive counterpart to the modulus of continuity in statistical estimation (Donoho and Liu, 1987,
1991a,b). We find the constrained DEC to be a more direct analogue than the offset DEC: The
modulus of continuity places a hard constraint on Hellinger distance for similar technical reasons,
and lower bounds based on the modulus make use of the same 1/

√
T radius.

9
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2.2. Upper Bounds

We now give an algorithm and upper bound on PAC sample complexity that complements the lower
bound in Theorem 2.1. Our algorithms—both for PAC and regret—make use of the Estimation-to-
Decisions paradigm of Foster et al. (2021), but incorporate substantial refinements tailored to the
constrained DEC. Our algorithm for regret (Appendix C) is particularly involved, and builds on the
ideas we introduce for PAC here.

2.2.1. ONLINE ESTIMATION

Our algorithms and regret bounds use the primitive of an online estimation oracle, denoted by
AlgEst, which is an algorithm that, given knowledge of some classM containing the true model
M?, estimates the underlying model M? from data on the fly. At each round t, given the data
Ht−1 = (π1, r1, o1), . . . , (πt−1, rt−1, ot−1) observed so far, the estimation oracle builds an estimate
M̂ t = AlgEst

(
{(πi, ri, oi)}t−1

i=1

)
for the true model M?. We measure the oracle’s estimation

performance in terms of cumulative Hellinger error, which we assume is bounded as follows.

Assumption 2.1 (Estimation oracle for M). At each time t ∈ [T ], an online estimation oracle
AlgEst forM returns, given Ht−1 = (π1, r1, o1), . . . , (πt−1, rt−1, ot−1) with (ri, oi) ∼M?(πi) and
πi ∼ pi, an estimator M̂ t ∈ co(M) such that whenever M? ∈M,

EstH(T ) :=

T∑
t=1

Eπt∼pt
[
D2

H

(
M?(πt), M̂ t(πt)

)]
≤ EstH(T, δ), (13)

with probability at least 1− δ, where EstH(T, δ) is a known upper bound.

Algorithms satisfying Assumption 2.1 can be obtained via online conditional density estimation
(that is, online learning with the logarithmic loss). Typically, the best possible estimation rate
EstH(T, δ) will reflect the statistical capacity of the classM. Standard examples include finite
classes, where the exponential weights algorithm (also known as Vovk’s aggregating algorithm)
achieves EstH(T, δ) ≤ O(log(|M|/δ)), and parametric classes in Rd, where one can achieve
EstH(T, δ) ≤ Õ(d). See Section 4 of Foster et al. (2021) for further background.

2.2.2. ALGORITHM AND UPPER BOUND FOR PAC

Algorithm 1 displays our main algorithm for the PAC framework, E2D+. The algorithm is built upon
the Estimation-to-Decisions paradigm of Foster et al. (2021), which uses the following scheme for
each round t: 1) Obtain an estimator M̂ t ∈ co(M) for M? from the online estimation oracle AlgEst,
2) Sample πt from a decision distribution obtained by solving the min-max optimization problem
that defines the DEC, with M̂ t plugged in as the reference model. E2D+ follows this template, but
incorporates non-trivial changes that are tailored to i) the constrained (as opposed to offset) DEC
and ii) PAC guarantees (as opposed to regret). Briefly, the algorithm consists of two phases, an
exploration phase and an exploitation phase, which we outline below.

Exploration phase. In the exploration phase, which consists of rounds t = 1, . . . , J , where
J = Ω̃(T ), Algorithm 1 repeatedly obtains an estimator M̂ t by querying the estimation oracle
AlgEst with the current dataset Ht−1 = (π1, r1, o1), . . . , (πt−1, rt−1, ot−1) (Line 5), then computes

10
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Algorithm 1 Estimation-to-Decisions (E2D+) for PAC
1: parameters:

Number of rounds T ∈ N.

Failure probability δ > 0.

Online estimation oracle AlgEst.

2: Define L := dlog 2/δe, J := T
L+1 , and EstH := EstH

(
2T

dlog 2/δe ,
δ

4dlog 2/δe

)
.

3: Set ε(T ) := 8

√
dlog 2/δe

T ·EstH.

/* Exploration phase */

4: for t = 1, 2, · · · , J do
5: Obtain estimate M̂ t = AlgEst

(
{(πi, ri, oi)}t−1

i=1

)
.

6: Compute

(pt, qt) := arg min
p,q∈∆(Π)

sup
M∈Hq,ε(T )(M̂

t)

Eπ∼p[fM(πM)− fM(π)],

with the convention that the value is zero ifHq,ε(T )(M̂
t) = ∅.

7: Sample decision πt ∼ qt and update estimation oracle AlgEst with (πt, rt, ot).

/* Exploitation phase */

8: Sample L indices t1, . . . , tL ∼ Unif([J ]) independently.

9: For each ` ∈ [L], draw J independent samples π1
` , . . . , π

J
` ∼ qt` , and observe (πj`, r

j

`, o
j

`) for

each j ∈ [J ].

10: For each ` ∈ [L] and j ∈ [J ], compute

M̃ j

` := AlgEst

(
{(πi`, ri`, oi`)}

j−1
i=1

)
,

and let M̃` := 1
J

∑J
j=1 M̃

j

` . // M̃` is a high-quality estimate for M? under qt`.

11: output: Set p̂ := pt̂̀ and output π̂ ∼ p̂, where ̂̀ := arg min`∈[L] Eπ∼qt`
[
D2

H

(
M̂ t`(π), M̃`(π)

)]
.

the pair of distributions (pt, qt) that solve the min-max problem that defines the PAC DEC (Eq. (10))
with M̂ t plugged in as the reference model (Line 6):

(pt, qt) := arg min
p,q∈∆(Π)

sup
M∈Hq,ε(T )(M̂

t)

Eπ∼p[fM(πM)− fM(π)]. (14)

By definition, the value above is always bounded by p-decc
ε(T )(M, M̂ t). Recall that pt may be

though of as an exploitation distribution, and that qt may be thought of as an exploration distribution.
With these distributions in hand, Algorithm 1 samples πt ∼ qt from the exploration distribution qt.
The distribution pt is not used in this phase, but is retained for the exploitation phase that follows.

11
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Exploitation phase. In the exploitation phase (or, post-processing phase), we aim to identify an
exploitation distribution pt ∈ {p1, . . . , pJ} from the collection computed during the exploration
phase that is “good” in the sense that it has sufficiently low suboptimality under M?. The motivation
behind this stage is as follows. From the expression (14) and the definition of the constrained DEC,
we are guaranteed that pt has

Eπ∼pt
[
fM

?
(πM?)− fM?

(πt)
]
≤ p-decc

ε(T )(M, M̂ t)

for any round t ∈ [J ] where M? ∈ Hqt,ε(T )(M̂
t). The challenge here is that the estimation oracle

ensures only that the cumulative estimation error for the estimators M̂ 1, . . . , M̂J is low; there is
no guarantee that the per-round estimation error Eπt∼qt

[
D2

H

(
M?(πt), M̂ t(πt)

)]
will decrease with

time, and for any fixed round t of interest, this quantity might be trivially large. This can lead to a
problem we term false exclusion, whereM? /∈ Hqt,ε(T )(M̂

t). False exclusion is problematic because
we have no control over the suboptimality under M? for rounds t ∈ [J ] where it occurs.

The good news is that while the online estimation oracle may lead to false exclusion for some
rounds, Markov’s inequality implies that (for our choice of ε(T ), which depends on EstH(T, δ)) the
true modelM? will be included inHqt,ε(T )(M̂

t) for at least half of the rounds t ∈ [J ]. Hence, the ex-
ploitation phase proceeds by sampling (on Line 8) a small number of rounds t1, . . . , tL ∈ [J ]—a loga-
rithmic number suffices to ensure that at least one is good with high probability—and performing a test
to identify a good distribution pt̂̀ from the set {pt1 , . . . , ptL}, which is then returned by the algorithm.

In more detail, the exploitation phase (Line 8 through Line 11) proceeds by gathering many
(namely, Θ(T/ log(2/δ))) samples from qt` for each of the L rounds {t`}`∈[L] and then, for each
` ∈ [L], using the estimation oracle AlgEst to produce an estimated model M̃` ∈M based on these
samples. Since many samples are used to produce the estimate M̃`, it is guaranteed to be close to
the true model M? under qt` . This means that by choosing a round t̂̀ that minimizes the Hellinger
distance between M̂ t̂̀ and M̃̂̀ (Line 11), we have that with high probability,M? ∈ H

q
t̂̀,ε(M̂ t̂̀), thus

solving the false exclusion problem, and ensuring that the exploitation distribution pt̂̀ has low risk.

Main result. We show that E2D+ enjoys the following guarantee for PAC.

Theorem 2.2 (Main Upper Bound: PAC). Fix δ ∈
(
0, 1

10

)
and T ∈ N. Suppose that Assumptions 1.1

and 2.1 hold, and let EstH := EstH

(
2T

dlog 2/δe ,
δ

4dlog 2/δe

)
. With ε(T ) := 8

√
dlog 2/δe

T ·EstH,
Algorithm 1 guarantees that with probability at least 1− δ,

RiskDM(T ) ≤ p-decc
ε(T )(M).

Thus, the expected risk achieved by Algorithm 1 is bounded by E[RiskDM(T )] ≤ p-decc
ε(T )(M) + δ.

This result matches the lower bound in Theorem 2.1, with the only gap being the choice of

radius ε > 0 for the constrained DEC: The lower bound (Theorem 2.1) has ε(T ) ∝
√

1
T , while

the upper bound (Theorem 2.2) has ε(T ) ∝
√

log(2/δ)·EstH
T . To make the result concrete, let us

instantiate it for some standard examples, focusing on the special case where M is finite and
EstH(T, δ) ≤ log(|M|/δ) for simplicity.

12
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• Whenever p-decc
ε(M) ∝ ε·

√
Cprob, Theorem 2.2 gives E[RiskDM(T )] ≤ Õ

(√
Cprob log|M|

T

)
,

which translates into Õ
(
Cprob log|M|

ε2

)
samples to learn an ε-optimal policy.

• Whenever p-decc
ε(M) ∝ ε1−ρ for ρ ∈ (0, 1), Theorem 2.2 gives E[RiskDM(T )] ≤ Õ((log|M|/T )

(1−ρ)
2 ),

which translates into Õ(log|M| · ε−
2

1−ρ ) samples to learn a ε-optimal policy.

• Whenever p-decc
ε(M) ∝ I{ε ≥ 1/

√
Cprob}, where Cprob is a problem-dependent parameter,

Theorem 2.2 gives RiskDM(T ) = 0 with high probability whenever T ≥ Ω̃(Cprob · log|M|).

See Appendix C for analogous guarantees for regret. As discussed in Foster et al. (2021), understand-
ing when the estimation complexity EstH . log|M| can be removed or weakened is subtle issue, as
there are some classesM for which this term is necessary, and others for which it is superfluous.
This is the main question left open by our research.
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Appendix A. Organization

Part I of the appendix presents the remainder of our main results, which are omitted from the main
body due to space constraints. In particular:

• Appendix C presents our main upper and lower bounds for the regret framework, building on
the PAC techniques in Section 2.

• Appendix D establishes structural results concerning the constrained DEC, the offset DEC,
and their relationship.

• Appendix E provides a detailed comparison to bounds from prior work.

• Appendix F gives additional examples.

All proofs are given in Part II of the appendix.

Appendix B. Preliminaries

Interactive decision making. We assume throughout the remainder of the paper thatR = [0, 1] un-
less otherwise stated. We letM+ = {M : Π→ ∆([0, 1]×O)| supM∈M supπ∈Π supE∈R⊗O

{M(E|π)
M(E|π)

}
≤

V (M)} denote the space of all possible models with rewards in [0, 1] that obey the same density
ratio bound asM. We adopt the shorthand gM(π) = fM(πM)− fM(π).

We adopt the same formalism for probability spaces as in Foster et al. (2021, 2022b). Decisions
are associated with a measurable space (Π,P), rewards are associated with the space (R,R),
and observations are associated with the space (O,O). The history up to time t is denoted by
Ht = (π1, r1, o1), . . . , (πt, rt, ot). We define

Ωt =
t∏
i=1

(Π×R×O), and F t =
t⊗
i=1

(P ⊗R ⊗ O)

so that Ht is associated with the space (Ωt,F t).

Divergences. For probability distributions P and Q over a measurable space (Ω,F ) with a common
dominating measure, we define the total variation distance as

DTV(P,Q) = sup
A∈F
|P(A)−Q(A)| = 1

2

∫
Ω
|dP− dQ|.

Appendix C. Regret Framework: Upper and Lower Bounds

We now prove upper and lower bounds based on the constrained Decision-Estimation Coefficient
for the regret framework. Both results build on our techniques for PAC, and have nearly identical
statements, but have more involved proofs.
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C.1. Lower Bounds

To state the lower bound for regret, recall that we define C(T ) := log(T ∧ V (M)).

Theorem C.1 (Main Lower Bound: Regret). There exist universal constants C,C ′ > 0 and c, c′ > 0
such that the following holds. Let ε(T ) := c · 1√

TC(T )
. For all T ∈ N such that the condition

r-decc
ε(T )(M) ≥ C · ε(T ) (15)

is satisfied, it holds that for any regret minimization algorithm, there exists a model inM such that

E[RegDM(T )] ≥ c′ · sup
M∈M+

r-decc
ε(T )(M∪ {M},M) · T

log T
− C ′ ·

√
T

log(T )
(16)

≥ c′ · r-decc
ε(T )(M) · T

log T
− C ′ ·

√
T

log(T )
.

Theorem C.1 shows that the constrained DEC is a fundamental limit for interactive decision
making in the regret framework. Importantly, this lower bound removes the notion of localization
required by prior work on regret, and shows that the DEC remains a lower bound even if one allows
for improper reference models M ∈ co(M); it is always tighter than the lower bounds found in
Foster et al. (2021, 2022b). As with PAC, we will show (Appendix C.2) that the lower bound can
be achieved algorithmically, up to a difference in radius that depends on the estimation capacity for
M (

√
log|M|/T versus 1/

√
T for the case of finite classes). A detail comparison to prior work for

regret is given in Appendix E.
Let us remark that, similar to our results for PAC, the lower bound in Theorem C.1 scales

with the quantity supM∈M+ r-decc
ε(M ∪ {M},M) ≥ r-decc

ε(M), which allows for arbitrary
reference models M /∈ co(M), while our upper bounds for regret scale with r-decc

ε(M) =
supM∈co(M) r-decc

ε(M ∪ {M},M) ≥ r-decc
ε(M)). We show in Appendix D.4 that maximiz-

ing over reference models M ∈M+ does not increase the value of the DEC beyond what is attained
by M ∈ co(M), so this result does not contradict our upper bounds.

Understanding the lower bound. Standard examples for Theorem C.1 are as follows.

•
√
T -rates. For the most well-studied classes found throughout the literature on bandits and

reinforcement learning, we have

r-decc
ε(M) ∝ ε ·

√
Cprob,

where Cprob > 0 is a problem-dependent constant that reflects some notion of intrinsic
complexity. In this case, the condition (15) is satisfied whenever Cprob is larger than some
numerical constant, and Theorem C.1 gives4

E[RegDM(T )] ≥ Ω̃
(√

Cprob · T
)
.

Examples (cf. Appendix F) include multi-armed bandits with A actions, where Cprob ≥ A

(leading to E[RegDM(T )] ≥ Ω̃(
√
AT )), linear bandits in dimension d, where Cprob ≥ d

(leading to E[RegDM(T )] ≥ Ω̃(
√
dT )), and tabular reinforcement learning with S states, A

actions, and horizon H , where Cprob ≥ HSA (leading to E[RegDM(T )] ≥ Ω̃(
√
HSAT )).

4. This requires V (M) = O(1) so that ε(T ) ∝ 1/
√
T ; see Remark 2.1.
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• Nonparametric rates. For nonparametric model classes, where the optimal regret is of larger
order than

√
T , one typically has

r-decc
ε(M) ∝ ε1−ρ

for some ρ ∈ (0, 1). In this case, the condition in Eq. (15) is satisfied whenever T is a
sufficiently large constant, and Theorem C.1 gives

E[RegDM(T )] ≥ Ω̃(T
1+ρ

2 ).

A standard example is Lipschitz bandits over [0, 1]d (Auer et al., 2007; Kleinberg et al., 2019),
where we have r-decc

ε(M) ∝ ε1− d
d+2 , leading to E[RegDM(T )] ≥ Ω̃

(
T
d+1
d+2
)
.

• Fast rates. For problems with low noise, such as noiseless bandits, the DEC typically exhibits
threshold behavior, with

r-decc
ε(M) ∝ I

{
ε ≥ 1/

√
Cprob

}
,

where Cprob is a problem-dependent parameter. For example, ifM consists of multi-armed
bandit instances with Π = {1, . . . , A} and noiseless, binary rewards, one can take Cprob ∝ A.
For such settings, the condition (15) is satisfied whenever T = Õ(Cprob), and Theorem C.1
gives

E[RegDM(T )] ≥ Ω̃
(
min{Cprob, T}

)
.

We refer to Appendix F for further examples and details.

Proof techniques. The proof of Theorem C.1 follows a similar approach to our lower bound for
PAC (Theorem 2.1). However, non-trivial difficulties arise in applying the iterative conditioning
scheme in the preceding discussion because there are no longer separate distributions for exploration
(qM ) and exploitation (pM ), causing the analysis of regret and information to be coupled. To address
this, we adopt a somewhat different two-part scheme.

1. First, we prove a lower bound that is similar to Theorem C.1, but qualitatively weaker in the
sense that the quantity r-decc

ε(T )(M) = supM∈co(M) r-decc
ε(T )(M,M) in Eq. (16) is replaced

by supM∈M r-decc
ε(T )(M,M); that is, the lower bound restricts to proper reference models.

This is proven using a similar approach to our lower bound for PAC.

2. Then, we upgrade this weaker result to the full claim of Theorem C.1, using the following
algorithmic result: for any model classM and anyM ∈M+ (not necessarily inM) satisfying
mild technical conditions, if there exists an algorithm that achieves expected regret at most
R with respect to the classM, then there exists an algorithm that achieves regret at most
O(R · log T ) with respect to the enlarged classM∪{M}. By then choosing M appropriately
and applying the proper lower bound from Part 1 to a slightly modified version of the class
M∪ {M}, we are able to establish Theorem C.1.

See Appendix H for the proof.
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Algorithm 2 Estimation-to-Decisions (E2D+) for Regret
1: parameters:

Number of rounds T ∈ N and failure probability δ ∈ (0, 1).

Online estimation oracle AlgEst.

Constant C1 > 1. // Specified in Appendix I.

2: Define N := dlog T e and L := dlog 1/δe.
3: Set εN :=

√
C1·EstH(T,δ)·L

T each εi :=
√

2N−i · εN for i ∈ [N ].

4: Split [T ] into 2N contiguous blocks E1∪R1∪· · ·∪EN ∪RN , w/ |Ri|, |Ei| ∈
[

2i

4 ,
2i

2

]
∀i ∈ [N ].

5: SetM1 :=M.

6: for i ∈ [N ] do
/* Exploration for epoch i */

7: Initialize instance of AlgEst, with horizon |Ei|, failure probability δ, and model classMi.

8: for t ∈ Ei do
9: Obtain estimate M̂ t := AlgEst({(πs, rs, os)}s∈Ei,s<t), where M̂ t ∈ co(Mi).

10: Compute pt := arg minp∈∆(Π) sup
M∈Hp,εi (M̂t)∪{M̂t} Eπ∼p[f

M(πM)− fM(π)].

11: Sample decision πt ∼ pt and update estimation oracle AlgEst with (πt, rt, ot).

/* Refinement for epoch i */

12: Sample a subset Si ⊂ Ei of size L uniformly at random (with replacement).

13: Initialize stmp
i =⊥. // With high probability, stmp

i will be updated in the for loop.

14: for s ∈ Si do
15: Initialize instance of AlgEst with horizon Ji := |Ri|/L, failure probability δ, and classMi.

16: for 1 ≤ j ≤ Ji do
17: Sample a decision πjs ∼ ps and update AlgEst with (πjs, r

j
s, o

j
s).

18: Obtain estimate M̃ j
s := AlgEst

(
{(πks , rks , oks)

j−1
k=1}

)
, where M̃ j

s ∈ co(Mi).

19: if
∑j

k=1 Eπ∼ps
[
D2

H

(
M̂ s(π), M̃ k

s (π)
)]

>
Jiε

2
i

4 then
20: Define Ji,s := j, and break out of the loop over j (i.e., move to next value in Si).

21: if j = Ji then
22: Set stmp

i = s and Ji,s = Ji.5

23: Set si = stmp
i if stmp

i 6=⊥, o.w. si ∈ Si arbitrarily. Set M̂i := 1
Ji,s

∑Ji,s
j=1 M̃

j
si , p̂i := psi .

24: for any remaining rounds t inRi do
25: Play πt ∼ psi (the rewards and observations can be ignored).

26: Set

Mi+1 :=

{
M ∈M | Eπ∼p̂i

[
D2

H

(
M(π), M̂i(π)

)]
≤ EstH(Ji, δ)

Ji

}
.
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C.2. Upper Bounds

We now present an algorithm and upper bound for regret that complements Theorem C.1. Our
algorithm, Algorithm 2, adapts E2D+ to the regret framework, and attains a regret bound that scales
with r-decc

ε(T )(M) · T for an appropriate radius ε(T ) > 0.

Online estimation. Algorithm 2 makes use of an online estimation oracle in the same fashion as
the PAC algorithm (Algorithm 1), but we require a slightly stronger oracle capable of incorporating
constraints on the model class, specified via a subsetM′ ⊆M.

Assumption C.1 (Constrained estimation oracle forM). A constrained estimation oracle forM
takes as input a constraint setM′ ⊆M. At each time t ∈ [T ], the online estimation oracle AlgEst

returns, given
Ht−1 = (π1, r1, o1), . . . , (πt−1, rt−1, ot−1)

with (ri, oi) ∼M?(πi) and πi ∼ pi, an estimator M̂ t ∈ co(M′) such that whenever M? ∈M′,

EstH(T ) :=
T∑
t=1

Eπt∼pt
[
D2

H

(
M?(πt), M̂ t(πt)

)]
≤ EstH(T, δ), (17)

with probability at least 1− δ, where EstH(T, δ) is a known upper bound.

This assumption is identical to the assumption made for PAC (Assumption 2.1), except that
i) the oracle takes a constraint setM′ ⊆ M as an input before the learning process begins, and
ii) the oracle is required to produce M̂ t ∈ co(M′); that is, the estimator is required to lie in the
convex hull of the constraint setM′. All estimation algorithms that we are aware of can achieve
this guarantee with minor or no modifications, including the exponential weights algorithm, which
satisfies Assumption C.1 with EstH(T, δ) ≤ O(log(|M|/δ)).

Overview of algorithm. Algorithm 2 employs the Estimation-to-Decisions principle of Foster
et al. (2021) but, like Algorithm 1, incorporates substantial modifications tailored to the constrained
(as opposed to offset) DEC. The core of the algorithm is Line 10, which—at each round t—obtains
an estimator M̂ t ∈ co(M), then computes an exploratory distribution pt by solving the min-max
problem that defines the regret DEC (Eq. (7)) with M̂ t plugged in:

pt := arg min
p∈∆(Π)

sup
M∈Hp,ε(M̂t)∪{M̂t}

Eπ∼p[fM(πM)− fM(π)], (18)

for an appropriate choice of ε > 0 that depends on t.
As with Algorithm 1, the main challenge Algorithm 2 needs to overcome is false exclusion:

Whenever M? ∈ Hpt,ε(M̂ t), it is immediate from the definition above that

Eπt∼pt
[
fM

?
(πM?)− fM?

(πt)
]
≤ r-decc

ε(M∪ {M̂ t}, M̂ t),

but what happens if M? /∈ Hpt,ε(M̂ t)? For PAC, the solution employed by Algorithm 1 is simple:
The online estimation guarantee for AlgEst ensures that M? is correctly included for at least half the
rounds, and we only need to identify a single round where it is included. For regret, this reasoning
no longer suffices: We cannot simply ignore the rounds in which M? is excluded, as the regret for
these rounds must be controlled.

5. Algorithm 2 will continue to work if we modify it to break out of the loop over s ∈ Si when this if statement is
reached, which is somewhat more natural. We use the version presented here because it slightly simplifies the proof.
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Epoch scheme. To address the issue of false exclusion, Algorithm 2 breaks the rounds 1, . . . , T into
epochs 1, . . . , N of doubling length, with each epoch i consisting of a contiguous set of exploration
rounds Ei ⊆ [T ] and refinement rounds Ri ⊆ [T ]. Each epoch proceeds in a similar fashion to
Algorithm 1, but takes advantage of the data collected in previous epochs to explore in a fashion that
is robust to false exclusions:

• Each exploration phase gathers data using a sequence of exploratory distributions {pt}t∈Ei
computed by solving the DEC with the estimated models {M̂ t}t∈Ei , following Eq. (18).
However, the estimated models M̂ t are restricted to lie in co(Mi), whereMi is a confidence
set computed using data from the previous epoch.

• The purpose of the refinement phase in epoch i is to use the distributions generated in the
exploration phase to compute a confidence setMi+1 for the next epoch that satisfies a certain
invariant that allows us to translate low regret with respect to models in the confidence set to
low regret under M?.

To describe the phases for an epoch i ∈ [N ] in greater detail, we define

αi := C0 · r-decc
εi(M) + 64εi,

for a constant C0 > 1 whose value is specified in the full proof (Appendix I).

Exploration phase. For each step t within the exploration phase Ei, we obtain an estimator
M̂ t ∈ co(Mi) from the estimation oracle and solve

pt := arg min
p∈∆(Π)

sup
M∈Hp,εi (M̂t)∪{M̂t}

Eπ∼p[fM(πM)− fM(π)]. (19)

whereMi ⊆M is the confidence set produced by the refinement phase in epoch i− 1. The setMi

is constructed so that M? ∈ Mi with high probability, but in addition, the following localization
property can be shown (using that M̂ t ∈ co(Mi) for all t ∈ Ei; see the proof of Lemma I.3):

fM
?
(πM?) ≤ f M̂t

(πM̂t) +
αi−1

2
∀t ∈ Ei. (20)

The condition (20) implies that we are always in a favorable position with respect to regret:

• IfM? ∈ Hpt,εi(M̂ t)— that is, the true model is not falsely excluded—we have Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]
≤

r-decc
εi(M) ≤ αi by definition.

• Even if M? is falsely excluded, Eq. (20) implies that up to certain nuisance terms, we have (as
shown in Lemma I.4):

Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]
. Eπ∼pt

[
f M̂

t
(πM̂t)− f M̂t

(π)
]
. αi−1,

where the latter inequality uses the definition (19), which implies that

Eπ∼pt
[
f M̂

t
(πM̂t)− f M̂t

(π)
]
≤ r-decc

εi(M∪ {M̂
t}, M̂ t) ≤ αi.

In both situations, we incur no more thanO(αi) regret per round. Due to the doubling epoch schedule,
the total contribution to regret for all exploration rounds is no more than Õ

(
r-decc

ε(T )(M) · T
)
.

23



FOSTER GOLOWICH HAN

Refinement phase. For the analysis of the exploration phase in epoch i + 1 to succeed, the
refinement phase at epoch i must construct a confidence setMi+1 so that the localization property
(20) is satisfied with scale αi. To achieve this, we use a similar approach to the exploitation phase in
Algorithm 1. For all the rounds t ∈ Ei for which M? is not falsely excluded, we are guaranteed that
i) M? ∈ Hpt,εi(M̂ t), and ii) all M ∈ Hpt,εi(M̂ t) satisfy

Eπ∼pt
[
fM(πM)− fM(π)

]
≤ r-decc

εi(M) ≤ αi
4
,

which can be shown to imply the localization property in Eq. (20) holds at epoch i (the proof of
this fact uses that M̂ t ∈ co(Mi+1) for all t ∈ Ei+1). In addition, the estimation guarantee for the
oracle (Assumption C.1) implies that M? is included in Hpt,εi(M̂ t) for at least half of the rounds
t ∈ Ei. Hence, to constructMi+1, we sample a small number of rounds t1, . . . , tL ∈ Ei (Line 12; a
logarithmic number L suffices) and perform a test based on Hellinger distance to identify a “good”
distribution pt` from the set {pt1 , . . . , ptL} with the property that M? ∈ Hpt` ,εi(M̂

t`). We then set
Mi+1 = Hpt` ,εi(M̂

t`), ensuring that M? ∈Mi+1 and the localization property is satisfied.

Main result. We now present the main regret guarantee for E2D+ (Algorithm 2). To state the result
in the simplest form possible, we assume that the regret DEC satisfies a mild growth condition.

Assumption C.2 (Regularity of DEC). The class M satisfies the following: for some constant
Creg > 1 and all ε ∈ (0, 2), we have

r-decc
ε(M) ≤ C2

reg · r-decc
ε/Creg

(M).

This condition asserts that the DEC does not shrink too quickly as a function of the parameter ε.
It is automatically satisfied whenever r-decc

ε(M) ∝ ερ for ρ ≤ 2, with ρ ≤ 1 corresponding to the
“
√
T -regret or greater” regime; regret bounds that hold under more general assumptions are given in

Appendix I.

Theorem C.2 (Main Upper Bound: Regret). Fix T ∈ N and δ ∈ (0, 1). Suppose that Assump-
tions 1.1, C.1 and C.2 hold, and let EstH := EstH(T, δ2). Then Algorithm 2, with C1 > 0 chosen
appropriately, ensures that with probability at least 1− δ,

RegDM(T ) ≤ r-decc
ε(T )(M) ·O(T log(T )) +O

(√
T log(1/δ) ·EstH

)
,

where ε(T ) := C ·
√

EstH·log(1/δ)
T for a numerical constant C > 0.

The proof of this result is deferred to Appendix I. As in the PAC setting, this upper bound
matches the corresponding lower bound (Theorem C.1), up to the radius for the constrained DEC

(ε(T ) ≈
√

1
T for Theorem C.1 versus ε(T ) ≈

√
EstH
T for Theorem C.2), and cannot be improved

beyond logarithmic factors without further assumptions.

Remark C.1 (Relaxing the regularity condition). It follows immediately from the proof of Theo-
rem C.2 that the following holds. Suppose that in place of Assumption C.2, we assume that there
is some function r(ε) so that, for all ε ∈ (0, 2), we have: (1) r-decc

ε(M) ≤ r(ε) and (2) r(ε) ≤
C2

reg ·r(ε/Creg). Then the regret bound of Theorem C.2 holds with r-decc
ε(T )(M) replaced by r(ε(T )).
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Examples of Theorem C.2, under the assumption thatM is finite (in which case, EstH(T, δ) ≤
O
(
log(|M|/δ)

)
) include:

• Whenever r-decc
ε(M) ∝ ε·

√
Cprob, Theorem C.2 gives E[RegDM(T )] ≤ Õ

(√
Cprob · T · log|M|

)
.

• Whenever r-decc
ε(M) ∝ ε1−ρ for ρ ∈ (0, 1), Theorem C.2 gives E[RegDM(T )] ≤ Õ

(
T

(1+ρ)
2 ·

log
1−ρ

2 |M|+ T
1
2 log

1
2 |M|

)
.

Appendix D. Decision-Estimation Coefficient: Structural Properties

The lower and upper bounds for PAC and regret in Section 2 and Appendix C, which are stated in
terms of the constrained Decision-Estimation Coefficient, are tight up to dependence on the model
estimation error EstH(T, δ) (recall that the lower bounds use scale ε(T ) = Ω̃

(√
1/T

)
, while the

upper bounds use scale ε(T ) = Õ
(√

EstH(T, δ)/T
)
). It is natural to ask how these results are

related to the lower and upper bounds in Foster et al. (2021, 2022b), which are stated in terms
of the offset DEC, and at first glance are not obviously comparable. Toward developing such an
understanding, this section establishes a number of structural properties for the DEC.

• In Appendix D.1, we show that the constrained and offset DEC are nearly equivalent for PAC.
For regret, we show that it is always possible to bound the constrained DEC by the offset DEC
in a tight fashion, but the converse is not true in general.

• In Appendix D.2, we show that the constrained DEC implicitly enforces a form of localization,
and uncover a tighter relationship between the constrained and offset variants of the regret
DEC for localized classes.

Appendices D.3 and D.4 investigate the role of the reference model M ∈M+.

• First, in Appendix D.3, we show that the definition r-decc
ε(M) = supM∈co(M) r-decc

ε(M∪
{M},M), which incorporates suboptimality under the reference model M , is critical to obtain
tight upper and lower bounds. This is a fundamental difference from PAC, where we show
that it suffices to use the definition p-decc

ε(M) = supM∈co(M) p-decc
ε(M,M), which does

not incorporate suboptimality under M .

• Then, in Appendix D.4, we show that allowing for arbitrary, potentially improper reference
models M ∈M+ never increases the value of the DEC beyond what is achieved by reference
models M ∈ co(M). This illustrates the fundamental role of convexity. In addition, we show
that a similar equivalence holds for variants of the DEC that incorporate randomized mixture
estimators.

Remark D.1 (Stronger definition ofM+). We remark that all results in this section in fact hold even
ifM+ is defined to be the set of all models M : Π → ∆([0, 1] × O), i.e., without the restriction
that M(E|π)

M(E|π) ≤ V (M) for all M ∈M, π ∈ Π, E ∈ R ⊗ O (since none of the proofs in this section
use this density ratio upper bound). This observation strengthens our results somewhat.
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D.1. Relationship Between Constrained and Offset DEC

It is immediate that one can bound the constrained DEC by the offset DEC in a tight fashion. Focusing
on regret for concreteness, we can use the method of Lagrange multipliers to show that for any
M ∈M and ε > 0,

r-decc
ε(M,M) = inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[gM(π)] | Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
= inf

p∈∆(Π)
sup
M∈M

inf
γ>0

{
Eπ∼p[gM(π)]− γ

(
Eπ∼p

[
D2

H

(
M(π),M(π)

)]
− ε2

)}
≤ inf

γ>0
inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[gM(π)]− γ

(
Eπ∼p

[
D2

H

(
M(π),M(π)

)]
− ε2

)}
= inf

γ>0

{
r-deco

γ(M,M) + γε2
}
. (21)

The same approach yields an analogous inequality for PAC. For general models M /∈ M, the
following slightly looser version of Eq. (21) holds.6

Proposition D.1. For all M ∈M+ and ε > 0, we have

r-decc
ε(M∪ {M},M) ≤ 8 · inf

γ>0

{
r-deco

γ(M,M) ∨ 0 + γε2
}

+ 7ε. (22)

Examples include:

• Whenever r-deco
γ(M) ∝ Cprob

γ , Proposition D.1 yields r-decc
ε(M) . ε

√
Cprob. In this

case, both our results and the bounds in Foster et al. (2021) lead to E[RegDM(T )] ≤
Õ
(√

Cprob · T ·EstH(T, δ)
)
.

• More generally, whenever r-deco
γ(M) ∝

(
Cprob

γ

)ρ
for some ρ < 1, then Proposition D.1

yields r-decc
ε(M) . C

ρ
1+ρ

prob · ε
2ρ

1+ρ .

In what follows we investigate when and to what extent the constrained and offset variants of the
DEC can be related in the opposite direction to Eq. (21)—both for regret and PAC.

D.1.1. PAC DEC: CONSTRAINED VERSUS OFFSET

For the PAC setting, the following result shows that the constrained and offset DEC are equivalent up
to logarithmic factors in most parameter regimes.

Proposition D.2. For all ε > 0 and M ∈M+, we have

p-decc
ε(M,M) ≤ inf

γ≥0

{
p-deco

γ(M,M) ∨ 0 + γε2
}
. (23)

On the other hand, for all γ ≥ 1 and M ∈M+, letting L := 2dlog 2γe, we have

p-deco
γ·(4L+1)(M,M) ≤2

γ
+ sup

ε>0

{
p-decc

ε(M,M)− γε2

4

}
. (24)

6. An inequality that replaces the right-hand side of Eq. (22) with r-deco
γ(M∪ {M},M) follows immediately by

applying Eq. (21) to the classM∪ {M}. The inequality (22) is stronger, and the proof is more involved.
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TIGHT GUARANTEES FOR INTERACTIVE DECISION MAKING

Whenever p-decc
ε(M) ∝ ερ for ρ ≤ 1, one loses only logarithmic factors by passing to the

offset DEC using Eq. (23) and using Eq. (24) to pass back to the constrained DEC. Yet, in
the case where the constrained DEC has “fast” behavior of the form p-decc

ε(M) ∝ Cprob · ε2

or p-decc
ε(M) ∝ I{ε ≥ 1/

√
Cprob}, this process is lossy (due to the 1

γ term in Eq. (24)), and
spoils the prospect of a faster-than-

√
T rate. This is why we present our results for PAC in terms

of the constrained DEC, and why we use a dedicated algorithm tailored to the constrained DEC
(Algorithm 1) as opposed to a direct adaptation of the algorithm based on the offset DEC in Foster
et al. (2021); taking the latter approach and combining it with Eq. (24) would not lead to fast rates.

D.1.2. REGRET DEC: CONSTRAINED VERSUS OFFSET

In light of the near-equivalence between constrained and offset DEC for the PAC setting, one
might hope that a similar equivalence would hold for regret. However, a naive adaptation of the
techniques used to prove Proposition D.2 only leads to the following, quantitatively weaker converse
to Proposition D.1.

Proposition D.3. For all γ > 0 and M ∈M+,

r-deco
γ(M,M) ≤ r-decc

γ−1/2(M,M). (25)

The bound on the offset DEC in Eq. (25) is unsatisfying due to the scale ε = γ−1/2 on the
right-hand side. For example, in the case of the multi-armed bandit with A actions, we have
r-decc

ε(M) ∝ ε
√
A and r-deco

γ(M) ∝ A
γ , yet Eq. (25) only yields the inequality r-decc

ε(M) .
√

A
γ .

This leads to a suboptimal A1/3T 2/3-type regret bound when plugged into the upper bounds from
Foster et al. (2021) (cf. Eq. (44)). Unfortunately, the following result shows that Proposition D.3 is
tight in general, even when M ∈M.

Proposition D.4. For all γ ≥ 1, there exists a model classM such that for all ε ∈ (0, 1),

r-decc
ε(M) = sup

M∈co(M)

r-decc
ε(M∪ {M},M) ≤ O

(
ε2γ1/2

)
,

so in particular r-decc
ε(M) ≤ O(ε) for ε ≤ γ−1/2. Yet, there exists M ∈M such that

r-deco
γ(M,M) ≥ Ω

(
γ−1/2

)
.

This rules out the possibility of an inequality tighter than Eq. (25), and shows that the constrained
and offset DEC have fundamentally different behavior for regret.

D.2. Localization

For a scale parameter α > 0 and reference model M ∈M+, define the following localized subclass
ofM:

Mα(M) := {M ∈M | fM(πM) ≤ fM(πM) + α}. (26)

The tightest upper and lower bounds on regret in Foster et al. (2021) are stated in terms of the
offset DEC for the localized class (26), for an appropriate choice of α > 0 that depends on T (see
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Appendix E for precise statements). Our bounds based on the constrained DEC avoid the explicit use
of localization, but in what follows, we show that the constrained DEC implicitly enforces a form of
localization.

Proposition D.5 (Localization for PAC DEC). For all ε > 0 and M ∈ M+, letting α(ε) :=√
3ε+ p-decc√

6ε
(M,M), we have

p-decc
ε(M,M) ≤ p-decc√

3ε
(Mα(ε)(M),M).

A similar result holds for regret, but we require that the DEC satisfies a slightly stronger version
of the regularity condition in Assumption C.2.

Definition D.1 (Strong regularity of DEC). For M ∈M+, the constrained DEC is said to satisfy
the strong regularity condition relative to M if there exist constants Creg ≥

√
2 and creg < Creg

such that for all ε > 0,

r-decc
Creg·ε(M,M) ≤ c2

reg · r-decc
ε(M,M). (27)

The constrained DEC is said to satisfy strong regularity relative to a classM′ ⊆ M+ if for all
ε > 0,

sup
M∈M′

r-decc
Creg·ε(M∪ {M},M) ≤ c2

reg · sup
M∈M′

r-decc
ε(M∪ {M},M). (28)

This condition is satisfied with Creg = 2 and creg = 2ρ/2 whenever r-decc
ε(M,M) ∝ ερ for

ρ < 2.

Proposition D.6 (Localization for regret DEC). Let M ∈ M+ be given, and assume that the
strong regularity condition (27) is satisfied relative to M . Then, for all ε > 0, letting α(ε) :=
Creg · ε+ r-decc

Creg·ε(M,M) ≤ C2
reg ·

(
ε+ r-decc

ε(M,M)
)
, we have

r-decc
ε(M,M) ≤ Cloc · r-decc

Creg·ε(Mα(ε)(M),M),

where Cloc :=
(

1
c2reg
− 1

C2
reg

)−1
.

Note that in the case where r-decc
ε(M,M) ∝ ερ for a constant ρ < 2, choosing Creg = 2 and

creg = 2ρ/2 gives Cloc = O(1). These results show that the constrained DEC—both for PAC and
regret—is equivalent (up to constants) to the constrained DEC for the localized subclassMα(M),
for a radius α that depends on the value of the DEC itself. In contrast, the offset DEC does not
automatically enforce any form of localization, which explains why it was necessary to explicitly
restrict to a localized subclass in prior work.

D.2.1. CONSTRAINED VERSUS OFFSET DEC: TIGHTER EQUIVALENCE FOR LOCALIZED

CLASSES

Building on the insights in the prequel, we now show that for localized classes, it is possible to
bound the offset DEC for regret by the constrained DEC in a tighter fashion that improves upon
Proposition D.3.
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Proposition D.7. Let α, γ > 0 and M ∈M+ be given. For all ε > 0, we have

r-deco
γ(Mα(M) ∪ {M},M) ≤ r-decc

ε(M∪ {M},M) + max

{
0, α+

1

2γ
− γε2

2

}
, (29)

which in particular yields

r-deco
γ(Mα(M) ∪ {M},M) ≤ r-decc√

2α/γ
(M∪ {M},M) +

1

2γ
. (30)

The bound in Eq. (30) replaces the term r-decc√
1/γ

(M) in Proposition D.3 with r-decc√
α/γ

(M),

leading to improvement when α � 1. Notably, the bound is strong enough that, by combining it
with Proposition D.6, it is possible to upper bound the constrained DEC by the localized offset DEC,
and then pass back to the constrained DEC in a fashion that loses only constant factors—at least
whenever r-decc

ε(M) & ε. The following result uses this approach to derive a near-equivalence
for the constrained DEC and localized offset DEC; we also use this approach within the proof of
Proposition D.11.

Proposition D.8. Whenever the strong regularity condition (27) in Definition D.1 is satisfied for
M ∈M+, it holds that for all ε > 0, letting α(ε, γ) := γε2,

c1 · sup
γ>c3ε−1

r-deco
γ(Mc2·α(ε,γ)(M),M) ≤ r-decc

ε(M∪ {M},M) ≤ c′1 · sup
γ>c′3ε

−1

r-deco
γ(Mc′2·α(ε,γ)(M),M) + c′4ε,

(31)

where c1, c2, c3 > 0 are numerical constants and c′1, c
′
2, c
′
3, c
′
4 > 0 are constants that depend only

on Creg and creg.

In light of this result, our upper bounds (Theorem C.2) can be thought of as improving prior
work by achieving the tightest possible localization radius (roughly, α = O(γε2) instead of α =
O(γε2 + r-deco

γ(M))). Appendix E gives examples for which this leads to quantitative improvement
in rate.

D.3. Reference Models: Role of Suboptimality

We now turn our attention to understanding the role of the reference model M with respect to which
the Decision-Estimation Coefficient is defined. Recall that for regret, our upper and lower bounds
scale with

r-decc
ε(M) = sup

M∈co(M)

r-decc
ε(M∪ {M},M) (32)

= sup
M∈co(M)

inf
p∈∆(Π)

sup
M∈M∪{M}

{
Eπ∼p[fM(πM)− fM(π)] | Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
.

By maximizing over M ∈ M ∪ {M}, this definition forces the min-player to choose p ∈ ∆(Π)
such that the suboptimality Eπ∼p

[
fM(πM)− fM(π)

]
under M is small. This is somewhat coun-

terintuitive, since M ∈ co(M) does not necessarily lie in the classM, yet our results show that
r-decc

ε(M) characterizes the minimax regret forM. A-priori, one might expect that the quantity
supM∈co(M) r-decc

ε(M,M), which does not incorporate suboptimality under M , would be a more
natural complexity measure. In what follows, we show that this quantity has fundamentally different
behavior from Eq. (32), and that incorporating suboptimality under M is essential to characterize
minimax regret.
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Proposition D.9. For any ε > 0 sufficiently small, there exists a model classM such that

sup
M∈co(M)

r-decc
ε(M,M) ≤ c · ε, (33)

yet

r-decc
ε(M) = sup

M∈co(M)

r-decc
ε(M∪ {M},M) ≥ c′ · ε2/3, (34)

where c, c′ > 0 are numerical constants.

It is straightforward to show that for the choice ε = ε(T ) ∝ 1/
√
T , the optimal regret for the

class in Proposition D.9 is E[RegDM(T )] = Θ̃(T 2/3). This result is recovered by Theorem C.1,
which scales with the quantity in Eq. (34). However, the quantity in Eq. (33) incorrectly suggests a√
T -type rate, which is not achievable.

For the offset DEC, the role of suboptimality underM is more subtle. It is possible to show that in
general, r-deco

γ(M∪{M},M)� r-deco
γ(M,M), analogous to Proposition D.9, but Proposition D.1

shows that the latter quantity suffices to upper bound bound r-decc
ε(M∪ {M},M).

While the preceding discussion shows that incorporating suboptimality under M /∈ M is
necessary to obtain tight guarantees for regret, the following result shows that this distinction is largely
inconsequential for PAC, and motivates the definition p-decc

ε(M) = supM∈co(M) p-decc
ε(M,M).

Proposition D.10. For all M ∈M+ and ε > 0,

p-decc
ε(M∪ {M},M) ≤ p-decc√

3ε
(M,M) + 4ε. (35)

D.4. Reference Models: Role of Convexity and Randomization

We now focus on understanding the role of improper reference models M /∈M. Focusing on regret,
our upper bound (Theorem C.2) scales with

r-decc
ε(T )(M) = sup

M∈co(M)

r-decc
ε(T )(M∪ {M},M), (36)

which maximizes over all possible reference models in the convex hull co(M). On the other hand,
our lower bound (Theorem C.1) scales with

sup
M∈M+

r-decc
ε(T )(M∪ {M},M) ≥ r-decc

ε(T )(M). (37)

Both results allow for improper models M /∈M, but the quantity (37) allows the reference model to
be unconstrained, and could be larger than the quantity (36) a-priori. Why is there no contradiction
here? In what follows, we show that for both the constrained and offset DEC, allowing for arbitrary,
reference models M ∈ M+ as in Eq. (37) can only increase the value beyond that achieved by
M ∈ co(M) by constant factors.

Before stating our results, let us mention a secondary, related goal, which is to understand the role
of randomized reference models. Foster et al. (2021) introduce a variant of the Decision-Estimation
Coefficient tailored to randomized (or, mixture) reference models, in which M is drawn from a
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distribution ν ∈ ∆(M). We define constrained and offset variants of this complexity measure for
ν ∈ ∆(M) as follows:

r-decc,rnd
ε (M, ν) = inf

p∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)] | EM∼ν Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

(38)

r-deco,rnd
γ (M, ν) = inf

p∈∆(Π)
sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ · EM∼ν

[
D2

H

(
M(π),M(π)

)]]
.

(39)

Recent work of Chen et al. (2022) extends the results of Foster et al. (2021) to provide regret bounds
that scale with supν∈∆(M) r-deco

γ(M, ν), which one might hope to be smaller than supM∈co(M) r-deco
γ(M,M)

(it is never larger, due to Jensen’s inequality). We show that this is not the case: For both constrained
and offset, the randomized DEC is sandwiched between the DEC with M ∈M+ and the DEC with
M ∈ co(M).

Proposition D.11. Suppose that Assumption G.1 is satisfied. For all γ > 0, we have

sup
M∈M+

r-deco
γ(M,M) ≤ sup

ν∈∆(M)
r-deco,rnd

γ/4 (M, ν) ≤ sup
M∈co(M)

r-deco
γ/4(M,M). (40)

In addition, suppose that the strong regularity condition (Definition D.1, Eq. (28)) is satisfied relative
toM+. Then for all ε > 0, we have

sup
M∈M+

r-decc
ε(M∪ {M},M) ≤ c1 sup

ν∈∆(M)
r-decc,rnd

c2ε (M∪ {Mν}, ν) + c3ε (41)

≤ c1 sup
M∈co(M)

r-decc
c2ε(M∪ {M},M) + c3ε, (42)

where Mν := EM ′∼ν [M ′] and c1, c2, c3 > 0 are constants that depend only on Creg, Cloc > 0.

A similar equivalence holds for PAC; see Appendix J.2.2. The main consequences of this result
are as follows.

• Since allowing for arbitrary reference models M ∈ M+ never increases the value over
reference modelsM ∈ co(M), one can freely work with whichever version is more convenient,
either for upper or lower bounds.

• From a statistical perspective, it is not possible to further tighten our results by working with
the DEC with randomized estimators, since this complexity measure is never smaller than the
variant with M ∈ co(M) by more than constant factors.

We mention in passing that the proof of the equivalence (40) for the offset DEC is a simple conse-
quence of the minimax theorem and convexity of squared Hellinger distance, but the proof of the
equivalence (41) is quite involved, and uses the tools developed in Appendix D.2 to pass back and
forth between the constrained and offset DEC. We are curious as to whether there is a simpler proof.

Appendix E. Improvement over Prior Work

In this section, we use the tools developed in Appendix D to show that the regret bounds in Theo-
rems C.1 and C.2 always improve upon those in prior work (Foster et al., 2021, 2022b). We then
highlight some concrete model classes for which our bounds provide meaningful improvement, and
discuss additional related work.
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Regret bounds from prior work. Recall that for a model classM and reference model M ∈M,
we define the localized subclass around M via

Mα(M) =
{
M ∈M : fM(πM) ≥ fM(πM)− α

}
. (43)

where α > 0 is the radius. Focusing on finite classes for simplicity, the best upper bounds from prior
work are those of Foster et al. (2021), which take the form

E[RegDM(T )] ≤ Õ(1) · min
γ>0

max

{
sup

M∈co(M)

r-deco
γ(M∆(γ,T )(M),M) · T, γ · log|M|

}
, (44)

for ∆(γ, T ) = Õ
(
r-deco

γ(M) + γ
T log|M| + γ−1

)
. The best lower bounds from prior work are

those of Foster et al. (2022b, Theorem D.1), which apply to all algorithms with “sub-Chebychev” tail
behavior,7 and scale as

E[RegDM(T )] ≥ Ω(1) · max
γ>
√
C(T )T

sup
M∈M

r-deco
γ(M∆(γ,T )(M),M) · T, (45)

where C(T ) := O(log(T ∧ V (M))) and ∆(γ, T ) := C(T )−1 · γT .

Our improvement. The following result, which follows immediately from Proposition D.8, implies
that the upper and lower bounds in Theorem C.2 and Theorem C.1, are always tighter than the
guarantees in Eq. (44) and Eq. (45), respectively, under an appropriate regularity condition.

Corollary E.1. Whenever the strong regularity condition (Definition D.1) is satisfied for M ∈M+

with Cloc, Creg = O(1), we have that for all ε > 0 and γ > 0,

r-decc
ε(M∪ {M},M) ≤ O

(
r-deco

γ(Mα(ε,γ)(M),M) ∨ 0 + γε2 + ε
)
, (46)

where α(ε, γ) = O
(
r-deco

γ(M,M) ∨ 0 + γε2 + γ−1
)
. In addition, for all ε > 0, γ ≥ Ω(ε−1), and

M ∈M+,

r-decc
ε(M∪ {M},M) ≥ r-deco

γ(Mα(ε,γ)(M),M), (47)

where α(ε, γ) = Ω
(
γε2
)
.

By applying Eq. (46) with ε(T ) = Õ
(√

log|M|
T

)
, we conclude that the upper bound in Theo-

rem C.2 is always bounded above by the quantity in Eq. (44) up to logarithmic factors in T and 1/δ.

Similarly, by applying Eq. (47) with ε(T ) = Ω̃
(√

1
T

)
we see that the lower bound in Theorem C.1

is always bounded below by the quantity in Eq. (45) up to log(T ) factors and an additive O(
√
T )

term. Beyond simply scaling with a larger complexity measure, Theorem C.1 1) holds for arbitrary
algorithms, removing the sub-Chebychev assumption used by Foster et al. (2022b), and 2) allows for
improper reference models M /∈M.

We now provide concrete model classes for which our results lead to quantitative improvements
in rates. Our first example is a model class for which our main upper bound (Theorem C.2) improves
over Foster et al. (2021) by (implicitly) achieving a tighter localization radius than Eq. (44).

7. Sub-Chebychev algorithms are those for which the root-mean-squared regret is of the same order as the
expected regret. Foster et al. (2021) provide lower bounds that do not require the assumption of sub-
Chebychev tail behavior, but these results depend on the DEC for a smaller subclass of the form M∞α (M) ={
M ∈M : |gM(π)− gM(π)| ≤ α ∀π ∈ Π

}
, and can be loose compared to Eq. (45).
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Example E.1 (Improvement from upper bound). Consider a model classMα,β parameterized by
α ∈ (0, 1/2], β ∈ (0, 1), and A ∈ N.

1. Π = [A] ∪ {π◦}, where π◦ is a “revealing” decision.

2. O = [A] ∪ {⊥}, where ⊥ is a null symbol.

3. We haveM = {Mα,i}i∈[A] ∪ {M̃}. For each i ∈ [A], the model Mα,i ∈ Mα,β has rewards
and observations defined as follows:

(a) For π ∈ [A], fMα,i(π) = 1
2 + α · 1 {π = i}, and fMα,i(π◦) = 0. All π ∈ Π have

r = fMα,i(π) almost surely under r ∼Mα,i(π).

(b) For π ∈ [A], we receive the observation o =⊥. Selecting π◦ gives the observation
o = i ∈ [A] with probability β and o =⊥ with probability 1− β.

4. The model M̃ is defined as follows:

(a) We have f M̃(π) = 1
2 for all π ∈ [A] and f M̃(π◦) = 0, with r = f M̃(π) almost surely

under r ∼ M̃(π) for all π ∈ Π.

(b) All π ∈ [A] have o =⊥ almost surely. For π◦, we observe o =⊥ with probability 1− β
and o ∼ Unif([A]) with probability β.

LetM :=Mα1,β ∪Mα2,β , with α1 = 1/2, α2 ∝ T−1/4, β ∝ T−1/2, and A ∝ T 2. Then:

• The E2D+ algorithm, via Theorem C.2, achieves E[RegDM(T )] ≤ Õ(
√
T ).

• The regret bound in Eq. (44) scales with Ω̃(T 5/8).

/

The next example is a model class for which our main lower bound (Theorem C.1) improves
over Foster et al. (2021), as a consequence of allowing for improper reference models M /∈M.

Example E.2 (Improvement from lower bound). Let A ∈ N and Π = {1, . . . , A}. Consider the
multi-armed bandit model classM = {M1, . . . ,MA} consisting models of the form

Mi(π) = Ber(fi(π)),

where fi(π) := 1
2 + ∆I{π = i}. Foster et al. (2021) show that regardless of how ∆ > 0 is

chosen, r-deco
γ(M,M) ≤ 1

γ for all γ > 0 and M ∈ M, so the lower bound (45) can at most give
E[RegDM(T )] ≥ Ω(

√
T ). On the other hand, by choosing M(π) = Ber(1

2), which has M /∈ M,
it is straightforward to see that whenever ∆ ∝ ε

√
A, we have r-decc

ε(M) ≥ r-decc
ε(M,M) ≥

Ω(ε
√
A). Setting ∆ ∝ ε(T ) ·

√
A, Theorem C.1 gives

E[RegDM(T )] ≥ Ω̃(
√
AT ),

which is optimal. This shows that in general, allowing for improper reference models M /∈ M is
necessary to obtain tight lower bounds. /
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E.1. Additional Related Work

Concurrent work of Chen et al. (2022) independently discovered the offset variant of the PAC
Decision-Estimation Coefficient, and used it to give upper and lower bounds for PAC sample
complexity by adapting the techniques of Foster et al. (2021). Our guarantees for both regret and
PAC are always tighter than these results, analogous to the improvement we obtain over Foster et al.
(2021) (see also Appendix D.4), but our techniques are otherwise complementary.

Additionally, recent work of Lattimore (2022) considers the closely related framework of adver-
sarial partial monitoring, and gives upper and lower bounds on regret based on a generalization of
the information ratio (Russo and Van Roy, 2014, 2018), which is related to the DEC (Foster et al.,
2022b). The upper and lower bounds on regret given by Lattimore (2022) are loose by poly(|Π|)
factors, and consequently it appears unlikely that this complexity measure can give tight guarantees
in the “large decision-space/model class” regime where T � min{|M|, |Π|}, which is our focus.

Appendix F. Additional Examples

We close with some brief examples that showcase the behavior of the constrained Decision-Estimation
Coefficient, as well as our upper and lower bounds, for standard model classes of interest. For regret,
Foster et al. (2021) provide lower bounds on the (localized) offset DEC for a number of canonical
models in bandits and reinforcement learning.8 It is straightforward to derive lower bounds on the
constrained DEC by combining these results with Corollary E.1.

Likewise, Foster et al. (2021) give global upper bounds on the offset DEC for the same examples,
which immediately lead to upper bounds on the constrained DEC via Proposition D.1. This approach
leads to lower and upper bounds on the constrained Decision-Estimation Coefficient for all of the
examples considered in Foster et al. (2021). We summarize these results and the implied lower
bounds on regret, in Table 1; the upper bounds on the DEC and regret are similar, but depend
additionally on EstH(T, δ). See Foster et al. (2021) for further background, including references to
papers originally deriving upper and lower bounds for each of the model classes.

Setting r-decc
ε(M) Lower Bound Regret Lower Bound (Theorem C.1)

Multi-Armed Bandit ε
√
A

√
AT

Multi-Armed Bandit w/ gap ∆I{ε > ∆/
√
A} A/∆

Linear Bandit ε
√
d

√
dT

Lipschitz Bandit ε1− d
d+2 T

d+1
d+2

ReLU Bandit I{ε > 2−Ω(d)} 2Ω(d)

Tabular RL ε
√
HSA

√
HSAT

Linear MDP ε
√
d

√
dT

RL w/ linear Q? I{ε ≥ 2−Ω(d) ∨ 2−Ω(H)} 2Ω(d) ∧ 2Ω(H)

Deterministic RL w/ linear Q? I{ε ≥ 1/
√
d} d

Table 1: Lower bounds for bandits and reinforcement learning recovered by the constrained
Decision-Estimation Coefficient, where A = #actions, ∆ = gap, d = feature dim.,
H = episode horizon, and S = #states. Numerical constants and log(T ) factors are
suppressed.

8. While many of their derived lower bounds are tight, some are not, such as the Linear Bandit and Linear MDP lower
bounds, which are off by poly(d), and poly(H, d) factors, respectively (see Foster et al. (2021) for details).
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Example: Multi-armed bandit. We now sketch the approach to lower bounds outlined above in
greater detail, focusing on multi-armed bandits for concreteness. Foster et al. (2021) show that for
whenM is the class of all multi-armed bandit instances with Π = {1, . . . , A} and Bernoulli rewards,
there exists M ∈M such that for all γ ≥ c1 ·A,

sup
M∈M

r-deco
γ(Mαγ (M),M) ≥ c2 ·

A

γ
,

where αγ := c3 · Aγ , and c1, c2, c3 > 0 are numerical constants. Corollary E.1 implies that for all
ε > 0 and M ∈M+,

r-decc
ε(M) ≥ sup

γ>0
r-deco

γ(Mα(ε,γ)(M),M),

where α(ε, γ) = c · γε2 for a sufficiently small numerical constant c. For any given ε > 0, if we
set γ = c′ ·A1/2/ε for a sufficiently large constant c′, we haveMαγ (M) ⊆Mα(ε,γ)(M), and we
conclude that

r-decc
ε(M) ≥ Ω

(
ε
√
A
)

for all ε ≤ c′′ · A−1/2, where c′′ is a sufficiently small constant. Plugging this lower bound on the
DEC into Theorem C.1 yields a lower bound on regret of the form E[RegDM(T )] ≥ Ω̃(

√
AT ).

Part II

Proofs
Appendix G. Preliminaries

G.1. Minimax Theorem

For certain structural results, we require that the offset Decision-Estimation Coefficient (either the
regret or PAC variant) is equal to its Bayesian counterpart. This is a consequence of the minimax
theorem whenever mild topological conditions are satisfied; note that our objective can always be
made convex-concave by writing

r-deco
γ(M,M) = inf

p∈∆(Π)
sup

µ∈∆(M)
Eπ∼p,M∼µ

[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
,

so all that is required to invoke the minimax theorem is compactness. We state this as an assumption
to avoid committing to a particular set of technical conditions.

Assumption G.1 (Minimax swap). For the regret DEC, we have

r-deco
γ(M,M) = r-deco

γ(M,M) (48)

:= sup
µ∈∆(M)

inf
p∈∆(Π)

Eπ∼p,M∼µ
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
. (49)

For the PAC DEC, we have

p-deco
γ(M,M) = p-deco

γ
(M,M) (50)

:= sup
µ∈∆(M)

inf
p,q∈∆(Π)

EM∼µ
[
Eπ∼p[fM(πM)− fM(π)]− γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]]
.
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As the simplest possible example, Assumption G.1 is satisfied whenever R is bounded and Π
is finite (cf. Proposition 4.2 in Foster et al. (2021)), but assumption can be shown to hold under
substantially more general conditions.

Appendix H. Proofs for Lower Bounds

In what follows, we prove the PAC lower bound (Theorem 2.1), then prove the lower bound for regret
(Theorem C.1); the latter is similar to the former, but carries a number of additional challenges that
lead to slightly different techniques.

H.1. Proof of PAC Lower Bound (Theorem 2.1)

Preliminaries. Formally, for T ∈ N, an algorithm for the PAC framework is a collection of
mappings (p, q) =

(
{qt(· | ·)}Tt=1, p(· | ·)

)
that (adaptively) draws decisions πt ∼ qt(· | Ht−1) (for

t ∈ [T ]), and then outputs the final decision π̂ ∼ p(· | HT ) conditioned on the history HT . We define
PM,(p,q) as the law of HT when the underlying model is M and the algorithm is (p, q). Throughout
the proof, we will use the elementary property DTV(P,Q) ≤ DH(P,Q).
Proof of Theorem 2.1. For later reference, we define a constant

c0 = 1/16,

and define C(T ) = 28 · log(T ∧ V (M)). Fix T ∈ N and an algorithm (p, q) = {qt(· | ·), p(· |
·)}Tt=1. For each model M ∈ M+, we use the abbreviation PM ≡ PM,(p,q), and write EM for the
corresponding expectation. In addition, we define

pM = EM [p(· | HT )] , and qM = EM
[

1

T

T∑
t=1

qt(· | Ht−1)

]
.

Choosing a hard pair of models. Fix an arbitrary reference model M ∈ M+ and define ε :=
1

10
√
C(T )·T

and ε(T ) := ε/
√

2. We will prove a lower bound in terms of p-decc
ε(T )(M,M). We

abbreviate δ := p-decc
ε(T )(M,M), so that the assumption (11) gives δ ≥ 48ε.

To begin, choose any model M1 ∈M satisfying:

M1 ∈
{
M ∈M : Eπ∼qM

[
D2

H

(
M(π),M(π)

)]
≤ ε2 ∧ Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
.

(51)

We will make use of the fact that, by Lemma J.3, we have that for all p ∈ ∆(Π),

decε/
√

2(M,M)

≤ sup
M∈M

{
Eπ∼p [gM(π)] | Eπ∼qM

[
D2

H

(
M(π),M(π)

)]
≤ ε2 ∧ Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

(52)

which implies (along with Eq. (11)) that the set in Eq. (51) is non-empty. For any model M ∈M+,
define

EM :=
{
π ∈ Π : gM (π) ≥ c0 · δ

}
,
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and define A1 := EM1 . Let p′ := pM(· | Ac
1), and set

M2 := arg max
M∈M

{
Eπ∼p′ [gM(π)] | Eπ∼qM

[
D2

H

(
M(π),M(π)

)]
≤ ε2 ∧ Eπ∼p′

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
;

(53)

as with M1, Lemma J.3 implies that this set is non-empty. Finally, define A2 := EM2 ∩ Ac
1.

Lower bounding the algorithm’s risk. We now recall Lemma A.13 from Foster et al. (2021),
which states that for all models M ,

D2
H

(
PM ,PM

)
≤ C(T ) · T · Eπ∼qM

[
D2

H

(
M(π),M(π)

)]
. (54)

By the data processing inequality, this further implies that

D2
TV(pM , pM) ≤ C(T ) · T · Eπ∼qM

[
D2

H

(
M(π),M(π)

)]
. (55)

Since Eπ∼qM
[
D2

H

(
Mi(π),M(π)

)]
≤ ε2 for i ∈ {1, 2}, our choice ε ≤ 1

10·
√
T ·C(T )

implies that

DTV

(
pMi , pM

)
≤ 1

10
, for i ∈ {1, 2}.

As a result, for each i ∈ {1, 2}, we have

Eπ∼pMi [gMi(π)] ≥ c0δ · pMi(π ∈ E
Mi) (56)

≥ c0δ ·
(
pM(π ∈ EMi)−DTV

(
pM , pMi

))
≥ c0δ · (pM(π ∈ EMi)− 1/10). (57)

Thus, to prove the theorem, it suffices to lower bound pM(π ∈ EMi) by 1/4 for at least one of
i ∈ {1, 2}, which will show that the quantity in Eq. (57) is at least 3c0δ

20 (in fact, any constant lower
bound greater than 1/10 suffices).

We assume henceforth that pM(Ac
1) ≥ 1/2, as otherwise we have pM(EM1) = pM(A1) ≥ 1/2,

in which case the result immediately follows from Eq. (57). Before continuing, we note that since
Eπ∼pM

[
D2

H

(
M1(π),M(π)

)]
≤ ε2 and

Eπ∼pM
[
1 {π ∈ Ac

1} ·D2
H

(
M2(π),M(π)

)]
≤ Eπ∼p′

[
D2

H

(
M2(π),M(π)

)]
≤ ε2,

the triangle inequality for Hellinger distance implies that Eπ∼pM
[
1 {π ∈ Ac

1} ·D2
H(M1(π),M2(π))

]
≤

4ε2. Hence, using the fact that |fM1(π)− fM2(π)| ≤
√
D2

H(M1(π),M2(π)) for all π and Jensen’s
inequality, we have

Eπ∼pM [1 {π ∈ Ac
1} · |fM1(π)− fM2(π)|] ≤

√
Eπ∼pM

[
1 {π ∈ Ac

1} ·D2
H(M1(π),M2(π))

]
≤ 2ε.

(58)
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Lower bounding the gap. To proceed, we will first establish that

fM2(πM2
) ≥ fM1(πM1

) +
δ

2
· (1− 4c0)− 2ε. (59)

To do this, we note that from the definition of M2,

Eπ∼pM [1 {π ∈ Ac
1} · gM2(π)] ≥ pM(Ac

1) · Eπ∼p′ [gM2(π)] ≥ 1

2
· p-decc

ε/
√

2
(M,M) =

δ

2
,

where we have used the assumption that pM(Ac
1) ≥ 1

2 . Thus,

Eπ∼pM [1 {π ∈ A2} · gM2(π)] = Eπ∼pM [1 {π ∈ Ac
1} · gM2(π)]− Eπ∼pM [1 {π ∈ Ac

1 ∩ (EM2)c} · gM2(π)]

≥ Eπ∼pM [1 {π ∈ Ac
1} · gM2(π)]− c0δ ≥

δ

2
· (1− 2c0) , (60)

where the first inequality follows because gM2(π) < c0δ for π ∈ (EM2)c.
Next, we compute

c0δ ≥ Eπ∼pM
[
1 {π ∈ A2} ·

(
fM1(πM1

)− fM1(π)
)]

= Eπ∼pM
[
1 {π ∈ A2} ·

(
fM2(πM2

)− fM1(π)
)]

+ pM(A2) ·
(
fM1(πM1

)− fM2(πM2
)
)

≥ Eπ∼pM
[
1 {π ∈ A2} ·

(
fM2(πM2

)− fM2(π)
)]
− 2ε+ pM(A2) ·

(
fM1(πM1

)− fM2(πM2
)
)

≥ δ

2
· (1− 2c0)− 2ε+ pM(A2) ·

(
fM1(πM1

)− fM2(πM2
)
)
,

where the first inequality follows because gM1(π) < c0δ for π ∈ A2 ⊂ Ac
1 = (EM1)c, the second-to-

last inequality follows from Eq. (58) and the fact that A2 ⊂ Ac
1, and the final inequality follows by

Eq. (60). Rearranging and using that pM(A2) ∈ [0, 1], we obtain

fM2(πM2
)− fM1(πM1

) ≥ pM(A2) ·
(
fM2(πM2

)− fM1(πM1
)
)

≥ δ

2
· (1− 4c0)− 2ε.

Lower bounding the failure probability and concluding. To finish the proof, we use the inequality
(59) to bound the probability pM((EM2)c ∩ Ac

1) as follows:

pM((EM2)c ∩ Ac
1) ·
(
δ

2
· (1− 4c0)− 2ε

)
≤ Eπ∼pM

[
1 {(EM2)c ∩ Ac

1} · (fM2(πM2
)− fM1(πM1

))
]

≤ Eπ∼pM
[
1 {(EM2)c ∩ Ac

1} ·
(
(fM2(πM2

)− fM2(π))− (fM1(πM1
)− fM1(π))

)]
+ 2ε

≤ Eπ∼pM [1 {(EM2)c ∩ Ac
1} · gM2(π)] + 2ε

≤ c0δ + 2ε,

where the first inequality uses Eq. (59), the second inequality uses Eq. (58) and the fact that
(EM2)c ∩Ac

1 ⊂ Ac
1, the third inequality uses that gM1 ≥ 0, and the final inequality uses the definition

of EM2 . Since we have assumed that ε ≤ δ
48 and c0 ≤ 1/16, it follows that pM((EM2)c ∩ Ac

1) ≤
δ/8
δ/4 = 1/2. Thus, we have established that

pM(A1) + pM(EM2) ≥ pM(A1 ∪ EM2) ≥ 1/2,
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which implies that either pM(EM1) = pM(A1) ≥ 1/4 or pM(EM2) ≥ 1/4. As a consequence, by Eq.
(57), we have that for some i ∈ {1, 2}, Eπ∼pMi [gMi(π)] ≥ 3c0δ

20 , thus establishing the desired lower
bound.

To wrap up, we note that the lower bound we have established holds for an arbitrary reference
model M ∈M+, so we are free to choose M ∈M+ to maximize p-decc

ε/
√

2
(M,M).

Remark H.1. The structure of the proof Theorem 2.1 bears some superficial similarities to that
of the classical two-point method (Donoho and Liu, 1987, 1991a,b; Yu, 1997; Tsybakov, 2008) in
statistics and information theory, but has a number of fundamental differences.

1. First, in our lower bound, the pair of models (M1,M2) is chosen in an adversarial fashion
based on the algorithm under consideration, while the classical approach selects a pair of
models obliviously. When considering only two models, choosing the models adversarially
is critical to capture the complexity of classesM that require distinguishing between many
distinct decisions. For example, even in the simple special case of multi-armed bandits, this is
necessary to make the number of actions A appear in the lower bound.

2. Second, and perhaps more importantly, the classical two-point argument cannot be directly
applied because the function gM(π) does not enjoy the metric structure required by this
approach. In particular, the classical “separation condition”, which takes the form gM1(π) +
gM2(π) ≥ δ ∀π when applied to our setting, does not hold. Instead, the crux of the proof is to
show that, as a consequence of our choice for M1 and M2, we have

Eπ∼pM1
[gM1(π)] + Eπ∼pM2

[gM2(π)] & δ.

To establish this inequality, we take advantage of the fact that 1) p-decc
ε(T )(M) & ε(T ), by

assumption, and 2) rewards r are observed and lie in the range [0, 1]; the latter implies that
|fM(π)− fM(π)| ≤ DH

(
M(π),M(π)

)
for all M,M ∈M+.

H.2. Proof of Regret Lower Bound (Theorem C.1)

In this section, we prove Theorem C.1. The proof proceeds in two parts:

• In Appendix H.2.1, we state and prove Lemma H.1, a lower bound which is similar to
Theorem C.1, but restricts to proper reference models (specifically, the lower bound scales
with supM∈M r-decc

ε(T )(M,M)).

• In Appendix H.2.2, we prove the following algorithmic result (Lemma H.2): For any class
M and any M ∈M+ (not necessarily inM), if there is an algorithm that achieves regret at
most R with respect to the model classM, then there is an algorithm that achieves regret at
most O(R · log T ) with respect to the model classM∪{M}. We then prove Theorem C.1 by
combining this result with Lemma H.1.

We mention in passing that the two-part approach in this section can also be applied to derive
lower bounds for the PAC framework, but we adopt the alternative approach in Appendix H.1 because
it leads to a result with fewer logarithmic factors.
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H.2.1. LOWER BOUND FOR PROPER REFERENCE MODELS (M ∈M)

In this section we prove Lemma H.1, a weaker lower bound analogous to the one stated in Theo-
rem C.1, but with the DEC replaced by a smaller quantity constrained to have M ∈M. This weaker
version is shown below.

Lemma H.1. Let ε̃(T ) := c1 · 1√
TC(T )

, where c1 > 0 is a sufficiently small numerical constant. For

all T ∈ N such that the condition

sup
M∈M

r-decc
ε̃(T )(M,M) ≥ 8 · ε̃(T ) (61)

is satisfied, we have that for any regret minimization algorithm, there exists a model inM such that,
under this model,

E[RegDM(T )] ≥ Ω(T ) · sup
M∈M

r-decc
ε̃(T )(M,M). (62)

We remark that the condition (61) can be relaxed by replacing the constant 8 on the right-hand
side with any constant strictly greater than 1.
Proof of Lemma H.1. Let the algorithm under consideration be fixed, and let PM denote the induced
law of HT when M is the underlying model. Let EM denote the corresponding expectation, and let
pM := EM

[
1
T

∑T
t=1 p

t

]
. Define ε := ε̃(T ) = c1√

TC(T )
, where the constant c1 > 0 will be specified

below. Let M ∈M be chosen to maximize r-decc
ε(M,M), and define δ := r-decc

ε(M,M).

Restricting to models performing poorly onM . If Eπ∼pM [gM(π)] ≥ δ/10, then, by the definition
of pM , we have EM [RegDM(T )] ≥ T · δ/10, completing the proof of the lemma. Hence, we may
assume going forward that Eπ∼pM [gM(π)] < δ/10.

Choosing an alternative model. Define

M = arg max
M∈M

{
Eπ∼pM [fM(πM)− fM(π)] | Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
, (63)

so that
Eπ∼pM [gM(π)] ≥ r-decc

ε(M,M) = δ. (64)

Let c2 ∈ (0, 1) be fixed and define E = {π : gM(π) ≥ c2 · δ}. Recall that by Lemma A.13 of Foster
et al. (2021), we have

D2
H

(
PM ,PM

)
≤ C(T ) · T · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
≤ C(T ) · T · ε2,

where we remind the reader that C(T ) = O(log(T ∧ V (M))). We choose the constant c1 > 0
in the definition of ε = ε̃(T ) to be sufficiently small so that D2

H

(
PM ,PM

)
≤ 1/100 and thus

DTV

(
PM ,PM

)
≤ 1

10 .
Observe that from the definition of E , we have

Eπ∼pM [fM(πM)− fM(π)] ≥ c2δ · pM(E) ≥ c2δ · (pM(E)−DTV

(
PM ,PM

)
)

≥ c2δ · (pM(E)− 1/10). (65)

Therefore, it suffices to lower bound pM(E) by 1/2.
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Lower bounding the gap. We now compute

fM(πM)− fM(πM) ≥ Eπ∼pM [gM(π)− gM(π)]− Eπ∼pM [|fM(π)− fM(π)|]

≥ Eπ∼pM [gM(π)]− δ

10
− ε

≥ 9

10
δ − ε, (66)

where the second inequality uses the assumption that EpM [gM ] < δ/10 and Lemma J.1, and the final
inequality uses Eq. (64).

Finishing up. We conclude by noting that

pM(Ec) ·
(

9

10
δ − ε

)
≤ Eπ∼pM [1 {Ec} · (fM(πM)− fM(πM))]

≤ Eπ∼pM [1 {Ec} · (gM(π)− gM(π))] + ε

≤ c2δ + ε,

where the first inequality uses Eq. (66), the second inequality uses Lemma J.1, and the third inequality
uses that gM(π) ≥ 0 for all π ∈ Π, as well as the fact that gM(π) < c2δ for π ∈ Ec. Rearranging,
we conclude that pM(Ec

1) ≤ 1/2 as long as c2 ≤ 1/8 and ε ≤ δ/8. Our choice of M , together with
the growth condition (61), ensures that we indeed have ε ≤ δ/8, thus establishing via Eq. (65), that
Eπ∼pM [gM(π)] ≥ Ω(δ) as desired.

H.2.2. REDUCING FROM IMPROPER (M ∈M+) TO PROPER (M ∈M)

In this section, we work with several choices for the model class and regret minimization algorithm.
To avoid ambiguity, let us introduce some additional notation. Recall that an algorithm for the
T -timestep interactive decision making problem (in the regret framework) is specified by a sequence
p = (p1, . . . , pT ), where for each t ∈ [T ], pt is a probability kernel from (Ωt−1,F t−1) to (Π,P).
Given an algorithm p, we let PM,p[·] denote the law it induces on HT when M ∈ M+ is the
underlying model, and let EM,p[·] denote the corresponding expectation. With this notation, the
algorithm’s expected regret when the underlying model is M ∈M+ is EM,p[RegDM(T )].

The following lemma is the main technical result of this section. It shows that any modelM ∈M
with bounded optimal value can be added to a model classM without substantially increasing the
minimax regret.

Lemma H.2. Let the time T ∈ N and model classM be fixed. Let M ∈ M+ be any model such
that for all M ∈ M, fM(πM) ≤ fM(πM) + δ for some δ > 0. The minimax regret for the model
classM∪ {M} is bounded above as follows:

inf
(p′)1,...,(p′)T

sup
M?∈M∪{M}

EM?,p′ [RegDM(T )] ≤ C log T · inf
p1,...,pT

sup
M?∈M

EM?,p[RegDM(T )] + C · (
√
T + δT ).

(67)

where C > 0 denotes a universal constant.
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Before proving Lemma H.2, we show how it implies Theorem C.1.
Proof of Theorem C.1. Fix T ∈ N, and write ε = ε(T ) = c1√

2TC(T )
, where the constant c1 > 0

is chosen as in Lemma H.1 (in particular, note that
√

2ε = ε̃(T ), where ε̃(T ) is as defined in
Lemma H.1). Let M ∈ M+ be chosen to maximize r-decc

ε(M∪ {M},M), so that r-decc
ε(M) =

r-decc
ε(M∪ {M},M). Define

M̃ := {M ∈M∪ {M} | fM(πM) ≥ fM(πM)−
√

2ε},

so that M ∈ M̃. Then by Lemma J.2, we have

r-decc
ε(M) = r-decc

ε(M∪ {M},M) ≤ r-decc√
2ε

(M̃,M) +
√

2ε, (68)

Note that for all M ∈ M̃, we have that fM(πM) ≤ fM(πM) +
√

2ε ≤ fM(πM) +
√

2ε. Thus, by
applying Lemma H.2 with δ =

√
2ε to the class M̃\{M}, we see that

inf
(p′)1,...,(p′)T

sup
M?∈M̃

EM?,p′ [RegDM(T )] ≤C log T · inf
p1,...,pT

sup
M?∈M̃\{M}

EM?,p[RegDM(T )] + C · (
√
T +
√

2εT )

≤C log T · inf
p1,...,pT

sup
M?∈M

EM?,p[RegDM(T )] + C · (
√
T +
√

2εT ),

(69)

where the second inequality follows since M̃\{M} ⊂ M.
To proceed, we will apply Lemma H.1 to the class M̃. To verify that the condition Eq. (61) is

satisfied for this class, we note that, as remarked above, ε̃(T ) =
√

2ε, so that

sup
M0∈M̃

r-decc
ε̃(T )(M̃,M0) = sup

M0∈M̃
r-decc√

2ε
(M̃,M0) ≥ r-decc√

2ε
(M̃,M) ≥ r-decc

ε(M)−
√

2ε ≥ 8ε,

where the second-to-last inequality uses Eq. (68) and the final inequality uses the assumption from
Eq. (15) that r-decc

ε(M) ≥ 10ε. Lemma H.1 gives that, for some universal constant c2 > 0,

inf
(p′)1,...,(p′)T

sup
M?∈M̃

EM?,p′ [RegDM(T )] ≥ c2 · T · sup
M0∈M̃

r-decc√
2ε

(M̃,M0)

≥ c2 · T · r-decc√
2ε

(M̃,M) ≥ c2 · T · (r-decc
ε(M)−

√
2ε),

(70)

where the final inequality uses Eq. (68). Combining Eq. (70) and Eq. (69) gives that

inf
p1,...,pT

sup
M?∈M

EM?,p[RegDM(T )] ≥ 1

C log T
·
(
c2 · T · (r-decc

ε(M)−
√

2ε)− C · (
√
T +
√

2εT )
)
,

which implies that for some constants C ′, C ′′, c′2 > 0, we have

inf
p1,...,pT

sup
M?∈M

EM?,p[RegDM(T )] ≥ 1

log T
·
(
c′2 · T · (r-decc

ε(M)− C ′ · ε)− C ′′ ·
√
T
)
.

As long as 1
2 · r-decc

ε(M) > C ′ · ε, it follows that

inf
p1,...,pT

sup
M?∈M

EM?,p[RegDM(T )] ≥ c′2 · T
2 log T

· r-decc
ε(M)− C ′′ ·

√
T

log T
,
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as desired.

Finally, we prove Lemma H.2.

Proof of Lemma H.2. Fix any algorithm p = (p1, . . . , pT ). We define a modified algorithm
p′ = ((p′)1, . . . , (p′)T ) in Algorithm 3. Roughly speaking, p′ runs p multiple times, re-initializing
p whenever the average reward for the current run falls too far below fM(πM). If the algorithm p′

finds that it has re-initialized p more than log(T ) times, it will switch to playing πM for all remaining
rounds. The crux of the proof will be to show that the worst-case regret of p′ for models inM∪{M}
is not much larger than the worst-case regret of p for models inM.

Algorithm 3 Algorithm p′ used in proof of Lemma H.2
1: parameters:

Number of rounds T ∈ N.

Algorithm p = (p1, . . . , pT ).

2: Initialize I = 1, T1 = 1, and R = 4 · supM?∈M EM?,p[RegDM(T )] + δT + 8
√
T .

3: for 1 ≤ t ≤ T do
4: Define (p′)t(·) to be the distribution pt−TI+1(· | {(πs, rs, os)}t−1

s=TI
).

5: Draw πt ∼ (p′)t, and observe (πt, rt, ot).

6: if
∑t

s=TI
(fM(πM)− rs) ≥ R then

7: Set TI+1 := t+ 1 and then increment I . // This has the effect of re-initializing p.

8: if I > dlog T e then
9: break out of loop.

10: For remaining time steps t (if any): play πt := πM (i.e., set (p′)t = IπM ).

As per our convention, in the context of Algorithm 3, we let F t denote the sigma-algebra
generated by {(πs, rs, os)}1≤s≤t. We bound the regret of the algorithm p′ by considering the
following cases for M? ∈M∪ {M}.

Case 1: M? = M . Let T0 ∈ [T + 1] be defined to be the smallest value of t for which the decision
πt is chosen using the rule at Line 10, or T + 1 if there is no such step. By construction, we have that

T0−1∑
t=1

(fM(πM)− rt) =
T∑
t=1

1 {t < T0} · (fM(πM)− rt) ≤ (R+ 1) · dlog T e. (71)
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Note that, for each t ∈ [T ], the variable 1 {t < T0} is measurable with respect to F t−1. As a result,
we have

EM,p
′
[RegDM(T )] = EM,p

′

[
T∑
t=1

(
fM(πM)− Eπt∼(p′)t [f

M(πt)]
)]

= EM,p
′

[
T∑
t=1

1 {t < T0} ·
(
fM(πM)− Eπt∼(p′)t [f

M(πt)]
)]

= EM,p
′

[
T∑
t=1

1 {t < T0} · (fM(πM)− rt)

]
+ EM,p

′

[
T∑
t=1

1 {t < T0} ·
(
rt − Eπt∼(p′)t [f

M(πt)]
)]

≤ (R+ 1) · log T,

where the final inequality uses Eq. (71) and the fact that for each t, we have

E
[
1 {t < T0} ·

(
rt − Eπt∼(p′)t [f

M(πt)]
)
|F t−1

]
= 1 {t < T0} · E

[
rt − Eπt∼(p′)t

[
fM(πt)

]
|F t−1

]
= 0.

Thus, in the case M? = M , we have verified that the claimed upper bound in Eq. (67) on the regret
of p′ holds.

Case 2: M? ∈M. We first state and prove two technical lemmas.

Lemma H.3. For the algorithm p, any model M? ∈ M+, and random variable τ (potentially
dependent on HT ) taking values in [T ], it holds that

EM?,p

[
τ∑
t=1

Eπt∼pt [fM
?
(πM?)− fM?

(πt)]

]
≤ EM?,p[RegDM(T )].

Proof of Lemma H.3. The result follows by noting that

EM?,p[RegDM(T )]− EM?,p

[
τ∑
t=1

Eπt∼pt [fM
?
(πM?)− fM?

(πt)]

]

= EM?,p

[
T∑
t=1

1 {τ < t} · Eπt∼pt [fM
?
(πM?)− fM?

(πt)]

]
≥ 0,

where we have used that the random variable Eπt∼pt [fM
?
(πM?)− fM?

(πt)] is non-negative a.s.

The next lemma concerns the probability that a single run of the algorithm p violates the condition
in Line 6 of Algorithm 3.

Lemma H.4. For any algorithm p = (p1, . . . , pT ) and model M? ∈M, it holds that

PM?,p

(
∃t ≤ T :

t∑
s=1

(fM(πM)− rs) > R

)
≤ 1

2
,

where R = 4 · supM?∈M EM?,p[RegDM(T )] + δT + 8
√
T .
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Proof of Lemma H.4. Let F t be the sigma-algebra generated by {(πs, rs, os)}ts=1. Fix M? ∈M
and define R0 := EM?,p[RegDM(T )]. By Markov’s inequality and the fact that the random variables
Eπt∼pt [fM

?
(πM?)− fM?

(πt)] are all non-negative, it holds that

PM?,p

(
sup
t≤T

t∑
s=1

Eπs∼ps [fM
?
(πM?)− fM?

(πs)] > 4R0

)

= PM?,p

(
T∑
t=1

Eπt∼pt [fM
?
(πM?)− fM?

(πt)] > 4R0

)
≤ 1

4
. (72)

Now, define X0 = 0 and Xt =
∑t

s=1

(
Eπs∼ps [fM

?
(πs)]− rs

)
for t ∈ [T ]. Note that (Xt)t≥0 is a

martingale with respect to the filtration F t. Therefore, by Theorem 4.5.1 of Durrett (2019), it holds
that

EM?,p

[
sup
t≤T
|Xt|2

]
≤ 4 · EM?,p

[
T∑
t=1

E
[
(Eπt∼pt [fM

?
(πt)]− rt)2 |F t−1

]]
≤ 4T,

where the final inequality uses that |Eπt∼pt [fM
?
(πt)]− rt| ≤ 1 for all t. By Jensen’s inequality and

Markov’s inequality, it follows that for any λ > 0,

PM?,p

(
sup
t≤T
|Xt| > 2λ

√
T

)
≤ 1

λ
,

and by choosing λ = 4, we see that

PM?,p

(
sup
t≤T

t∑
s=1

(
Eπs∼ps [fM

?
(πs)]− rs

)
> 8
√
T

)
≤ 1

4
. (73)

Combining Eq. (72) and Eq. (73), we have

PM?,p

(
∃t ≤ T :

t∑
s=1

Eπs∼ps [fM
?
(πM?)− rs] > 4R0 + 8

√
T

)
≤ 1

2
.

Since M? ∈M, and so fM?
(πM?) ≥ fM(πM)− δ, it follows that

PM?,p

(
∃t ≤ T :

t∑
s=1

Eπs∼ps [fM(πM)− rs] > 4R0 + 8
√
T + δT

)
≤ 1

2
,

as desired.
We now continue with the proof of Lemma H.2. Write L = dlog T e, and denote the final value of I
in Algorithm 3 by I ′ ≤ L+ 1. If I ′ ≤ L, then set TI′+1 = · · · = TL+1 = T + 1. Note that for each
` ∈ [L+ 1], T` − 1 is a stopping time (since the event {T` − 1 = t} is measurable with respect to
F t for each t ∈ [T ]), and thus T` is a stopping time as well.

Lemma H.4 together with the definition of (p′)t in Line 4 establishes that for each ` ∈ [L],

PM?,p′ (T`+1 ≤ T | T` ≤ T ) = PM?,p′

∃t s.t. T − 1 ≥ t ≥ T` and
t∑

s=T`

(fM(πM)− rs) > R | T` ≤ T

 ≤ 1

2
.
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Therefore, since the event {T` ≤ T} is equal to the event {T`′ ≤ T ∀`′ ≤ `},

PM?,p′ (TL+1 ≤ T ) = PM?,p′ (∀` ≤ L+ 1, T` ≤ T )

=
L∏
`=1

PM?,p′
(
T`+1 ≤ T | T`′ ≤ T ∀`′ ≤ `

)
=

L∏
`=1

PM?,p′ (T`+1 ≤ T | T` ≤ T )

≤ (1/2)L ≤ 1/T.

Furthermore, for each ` ∈ [L], we have

EM?,p′

T`+1−1∑
t=T`

Eπt∼(p′)t [f
M?

(πM?)− fM?
(πt)]

 (74)

= EM?,p′

[
T∑
t=1

1 {T` ≤ t < T`+1} · Eπt∼(p′)t [f
M?

(πM?)− fM?
(πt)]

]
≤ EM?,p[RegDM(T )],

where the inequality uses Lemma H.3 and the definition of p′ in Line 4 for steps T` ≤ t < T`+1. It
follows that

EM?,p′

[
T∑
t=1

Eπt∼(p′)t [f
M?

(πM?)− fM?
(πt)]

]

≤ T · PM?,p′(TL+1 ≤ T ) +
L∑
`=1

EM?,p′

T`+1−1∑
t=T`

Eπt∼(p′)t [f
M?

(πM?)− fM?
(πt)]


≤ 1 + L · EM?,p[RegDM(T )],

which verifies the claimed upper bound on regret in Eq. (67).

Appendix I. Proofs for Upper Bounds

In this section, we prove Theorem 2.2 and Theorem C.2. The upper bound for regret builds on the
ideas used in the proof of the upper bound for PAC, but is somewhat more involved.

I.1. Proof of PAC Upper Bound (Theorem 2.2)

We now prove Theorem 2.2. Before proceeding with the proof, we give some brief background on
the notion of online-to-batch conversion, which is used in the exploitation phase and its analysis.
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Background: Online-to-batch conversion. As discussed in the prequel, we assume access to
an online oracle AlgEst. We use the online guarantee the oracle the algorithm provides—namely,
that it ensures that the cumulative estimation error is bounded for an adaptively chosen sequence of
decisions—in a non-trivial fashion during the exploration phase, but our analysis additionally makes
use the fact that online oracles can be used to provide guarantees for offline estimation.

For offline estimation, we consider a setting in which there is some p ∈ ∆(Π) so that pt = p for all
t, and the algorithm must output a single model estimate M̂ such that Eπ∼p

[
D2

H

(
M̂(π),M?(π)

)]
≤

ε2. We can obtain such a guarantee using an online estimation oracle via the following online-to-batch
conversion process:

• For each t = 1, . . . , T , obtain M̂ t by running AlgEst on samples {(πi, ri, oi)}t−1
t=1, where

πt ∼ p and (rt, ot) ∼M?(πt).

• Let M̂ := 1
T

∑T
t=1 M̂

t ∈ co(M).

It is evident from Assumption 2.1 and convexity of the squared Hellinger distance that with probability
at least 1− δ, the estimator M̂ constructed above satisfies

Eπ∼p
[
D2

H

(
M?(π), M̂(π)

)]
= Eπ∼p

[
D2

H

(
M?(π),

1

T

T∑
t=1

M̂ t(π)

)]

≤ 1

T

T∑
t=1

Eπ∼p
[
D2

H

(
M?(π), M̂ t(π)

)]
≤ EstH(T, δ)

T
. (75)

This is the strategy employed in Line 10 of Algorithm 1. Standard offline estimation algorithms
(e.g., MLE) can be used to derive similar guarantees, but we make use of online-to-batch in order
to keep notation light, since Algorithm 1 already requires the online estimation algorithm for the
exploration phase.
Proof of Theorem 2.2. We begin by analyzing the exploitation phase. e Recall that we set
J := T

dlog 2/δe+1 ≥
T
2L . By Assumption 2.1, we have that with probability at least 1− δ

4L ,

J∑
t=1

Eπt∼qt
[
D2

H

(
M?(πt), M̂ t(πt)

)]
≤ EstH

(
J,

δ

4L

)
≤ EstH.

We denote this event by E0, and condition on it going forward. Since we have ε(T )2 ≥ 32
J ·EstH by

definition, it follows from Markov’s inequality that if s ∈ [J ] is chosen uniformly at random, then
with probability at least 1/2,

Eπs∼qs
[
D2

H

(
M?(πs), M̂ s(πs)

)]
≤ ε(T )2

16
. (76)

Going forward, our aim is to show that the exploitation phase identifies such an index s ∈ [J ]. Indeed,
for any s ∈ [J ] such that the inequality (76) holds, we have M? ∈ Hqs,ε(T )(M̂

s), and hence

Eπ∼ps
[
fM

?
(πM?)− fM?

(π)
]
≤ p-decc

ε(T )(M, M̂ s) ≤ p-decc
ε(T )(M)

from the expression (14) and the definition of the constrained DEC.
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To proceed, first observe that for the uniformly sampled indices t1, . . . , tL ∈ [J ], a standard
confidence boosting argument implies that with probability at least 1− 2−L ≥ 1− δ

2 , there is some
` ∈ [L] so that Eq. (76) is satisfied with s = t`. We denote this event by F .

Next, recall the definition M̃` = 1
J

∑J
j=1 M̃

j

` in Line 10 of Algorithm 1. Using Assumption 2.1
together with Eq. (75), we have that for each ` ∈ [L], there is an event that occurs with probability at
least 1− δ

4L , denoted by E`, such that under E` we have

Eπ∼qt`
[
D2

H

(
M?(π), M̃`(π)

)]
≤ EstH(J, δ/4L)

J
≤ EstH

J
≤ ε(T )2

32
,

where the second inequality uses our choice for ε(T ). Define E :=
⋂L
`=0 E`, so that E occurs with

probability at least 1 − (L+1)δ
4L ≥ 1 − δ

2 . We define E = F ∩
⋂L
`=0 E`, so that E occurs with

probability at least 1− (L+1)δ
4L − δ

2 ≥ 1− δ.
We now show that the exploitation phase succeeds whenever the event E holds. By the triangle

inequality for Hellinger distance, letting ` ∈ [L] be any index such that Eq. (76) is satisfied with
s = t`, we have

Eπ∼qt`
[
D2

H

(
M̃`(π), M̂ t`(π)

)]
≤2 ·

(
Eπ∼qt`

[
D2

H

(
M?(π), M̃`(π)

)
+D2

H

(
M?(π), M̂ t`(π)

)])
≤ ε(T )2

4
.

From the definition on Line 11, the index ̂̀∈ [L] satisfies

E
π∼qt̂̀

[
D2

H

(
M̃̂̀(π), M̂ t̂̀(π)

)]
≤ Eπ∼qt`

[
D2

H

(
M̃`(π), M̂ t`(π)

)]
≤ ε(T )2

4
.

Using the triangle inequality for Hellinger distance once more, we obtain that under the event E ,

E
π∼qt̂̀

[
D2

H

(
M̂ t̂̀(π),M?(π)

)]
≤ 2 ·

(
ε(T )2

4
+
ε(T )2

32

)
< ε(T )2,

which means that M? ∈ H
q
t̂̀,ε(T )

(M̂ t̂̀). It follows that whenever E holds,

RiskDM(T ) = E
π∼pt̂̀

[
fM

?
(πM?)− fM?

(π)
]
≤ sup

M∈H
q
t̂̀,ε(T )

(M̂
t̂̀)

E
π∼pt̂̀[fM(πM)− fM(π)]

= inf
p,q∈∆(Π)

sup
M∈Hq,ε(T )(M̂

t̂̀)

Eπ∼p[fM(πM)− fM(π)]

= p-decc
ε(M, M̂ t̂̀)

≤ sup
M∈co(M)

p-decc
ε(T )(M,M) = p-decc

ε(T )(M),

where the first equality follows from the choice of pt̂̀, qt̂̀ in Line 6. The bound on expected risk in
the theorem statement follows from the observation that RiskDM(T ) is bounded above by 1, as we
assume that rewards lie in [0, 1].
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I.2. Proof of Regret Upper Bound (Theorem C.2)

In this section we prove Theorem C.2, which shows that Algorithm 2 attains a regret bound based on
the constrained DEC. Toward proving the result., we introduce a few success events that will be used
throughout the analysis:

1. For each i ∈ [N ], Ai denotes the event that all of the following inequalities hold:

∀s ∈ Si,
Ji,s∑
j=1

Eπ∼ps
[
D2

H

(
M?(π), M̃ j

s(π)
)]
≤ EstH(Ji, δ), (77)

Eπ∼psi
[
D2

H

(
M̂i(π),M?(π)

)]
≤ EstH(Ji, δ)

Ji
, (78)

Eπ∼psi
[
D2

H

(
M̂ si(π),M?(π)

)]
≤ ε2

i , (79)

where we recall that si is the index defined on Line 23.

2. For each i ∈ [N ], Bi denotes the event that∑
t∈Ei

Eπ∼pt
[
D2

H

(
M?(π), M̂ t(π)

)]
≤ EstH(|Ei|, δ). (80)

3. For each i ∈ [N ], Ci denotes the event that M? ∈Mi.

4. For each i ∈ [N ], Di denotes the event that there is some s ∈ Si so that

Eπ∼ps
[
D2

H

(
M?(π), M̂ s(π)

)]
≤ ε2

i

16
.

In addition, we define

A =
⋂
i∈[N ]

Ai, B =
⋂
i∈[N ]

Bi, C =
⋂
i∈[N ]

Ci, and D =
⋂
i∈[N ]

Di.

We also recall the following notation, which will be used throughout the proof.

• For i ∈ [N ] we set
αi := C0 · r-decc

εi(M) + 64εi, (81)

with the convention that α0 = 1. The constant C0 > 0 in Eq. (81), as well as the constant
C1 > 0 specified in Algorithm 2, will need to be taken sufficiently large; in what follows, we
show that C0 ≥ 20 and C1 ≥ 128 will suffice.

I.2.1. TECHNICAL LEMMAS

Before proving Theorem C.2, we state and prove several technical lemmas concerning the perfor-
mance of Algorithm 2. The following lemma shows that the event A ∩B ∩ C occurs with high
probability.

Lemma I.1. Suppose that C1 ≥ 128. The event A ∩B ∩ C ∩D occurs with probability at least
1− 3LδN .

Proof of Lemma I.1. We show that P
(⋂

i′≤i Ai′ ∩Bi′ ∩ Ci′ ∩Di′

)
≥ 1− 3Lδi for each i ∈ [N ]

using induction on i. Fix i ∈ [N ] and let us condition on
⋂
i′<i(Ai′ ∩Bi′ ∩ Ci′ ∩Di′).
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Establishing that Ci holds. The fact that Ai−1 holds implies that Eπ∼p̂i−1

[
D2

H

(
M?(π), M̂i−1(π)

)]
≤

EstH(Ji−1,δ)
Ji−1

, which implies (by definition) that M? ∈Mi, i.e., Ci holds.

Establishing that Bi holds. Conditioned on Ci, it follows from Assumption C.1 that Bi holds
with probability at least 1− δ.

Establishing that Di holds. Note that as a consequence of our parameter settings,

ε2
i ≥ 2−i · T · ε2

N = 2−i · C1 ·EstH(T, δ) · L ≥ max

{
32 · EstH(Ji, δ)

Ji
, 32 · EstH(|Ei|, δ)

|Ei|

}
,

(82)

where we have used that C1 ≥ 128 and that EstH(T, δ) ≥ max{EstH(|Ei|, δ),EstH(Ji, δ)}.
Then since Bi (i.e., (80)) holds, at least |Ei|/2 rounds t ∈ Ei satisfy M? ∈ Hεi/4,pt(M̂ t). Since
|Si| = L ≥ log 1/δ, it follows that with probability at least 1− δ, there is some s ∈ Si, which we
denote by s?i , for which M? ∈ H

εi/4,p
s?i

(M̂ s?i ). In particular, conditioned on Bi, the event Di holds
with probability at least 1− δ.

Establishing that Ai holds. Next, from Assumption C.1 and the fact that Hellinger distance is
always non-negative, we have that with probability at least 1− Lδ, for all s ∈ Si,

Ji,s∑
j=1

Eπ∼ps
[
D2

H

(
M?(π), M̃ j

s(π)
)]
≤ EstH(Ji, δ), (83)

which verifies that (77) holds. Next, let us condition on the event that Di holds. Then applying
(83) to s = s?i and using the definition of s?i (recall that s?i is defined in the prequel so that
M? ∈ H

εi/4,p
s?i

(M̂ s?i )), we see that

Ji,s?
i∑

j=1

E
π∼ps

?
i

[
D2

H

(
M̂ s?i (π), M̃ j

s?i
(π)
)]
≤
Ji,s?

i∑
j=1

2E
π∼ps

?
i

[
D2

H

(
M̂ s?i (π),M?(π)

)]
+ 2E

π∼ps
?
i

[
D2

H

(
M?(π), M̃ j

s?i
(π)
)]

≤2Ji,s?i ·
ε2
i

16
+ 2

Ji,s?
i∑

j=1

E
π∼ps

?
i

[
D2

H

(
M?(π), M̃ j

s?i
(π)
)]

≤Jiε
2
i

8
+ 2 ·EstH(Ji, δ) ≤

3Jiε
2
i

16
,

where the final inequality uses Eq. (82). By the definition of Ji,s?i on Lines 20 and 22, it must be the
case that Ji,s?i = Ji, and thus stmp

i is assigned at least once on Line 22. Therefore, the value of si set
on Line 23 satisfies

Eπ∼psi
[
D2

H

(
M̂i(π),M?(π)

)]
≤ 1

Ji

Ji∑
j=1

Eπ∼psi
[
D2

H

(
M̃ j
si(π),M?(π)

)]
≤ EstH(Ji, δ)

Ji
,

where the first inequality uses convexity of the squared Hellinger distance and the second inequality
uses (83) together with the fact that Ji,si = Ji. The above display verifies (78); to verify (79), we

50



TIGHT GUARANTEES FOR INTERACTIVE DECISION MAKING

note that, since stmp
i is assigned at least once,

Ji∑
j=1

Eπ∼psi
[
D2

H

(
M̂ si(π), M̃ j

si(π)
)]
≤ Jiε

2
i

4
. (84)

Thus, we may compute

Eπ∼psi
[
D2

H

(
M̂ si(π),M?(π)

)]
≤2 · Eπ∼psi

[
D2

H

(
M̂i(π), M̂ si(π)

)]
+ 2 · Eπ∼psi

[
D2

H

(
M̂i(π),M?(π)

)]
≤ 2

Ji

Ji∑
j=1

Eπ∼psi
[
D2

H

(
M̂ si(π), M̃ j

si(π)
)]

+
2

Ji

Ji∑
j=1

Eπ∼psi
[
D2

H

(
M?(π), M̃ j

si(π)
)]

≤ε
2
i

2
+

2 ·EstH(Ji, δ)

Ji
≤ ε2

i ,

where the second inequality uses the convexity of squared Hellinger distance, the third inequality
uses (83) for s = si and (84), and the final inequality uses (82). As the above display verifies (79),
we conclude that conditioned on Di holding, Ai holds with probability at least 1− Lδ.

Wrapping up. Summarizing, conditioned on
⋂
i′<i Ai′ ∩Bi′ ∩ Ci′ ∩ Di′ , we have shown that

Ai ∩Bi ∩ Ci ∩Di holds with probability 1− 2δ − Lδ ≥ 1− 3Lδ. Thus, the inductive hypothesis
that P

(⋂
i′<i Ai′ ∩Bi′ ∩ Ci′

)
≥ 1 − 3Lδ(i − 1) implies that P

(⋂
i′≤i Ai′ ∩Bi′ ∩ Ci′ ∩Di′

)
≥

(1− 3Lδ(i− 1)) · (1− 3Lδ) ≥ 1− 3Lδi.
Summarizing, we get that P(A ∩B ∩ C ∩D) ≥ 1− 3LδN .

Lemma I.2 shows that the distributions p̂i computed in Algorithm 2 enjoy low suboptimality
with respect to M?.

Lemma I.2 (Accuracy of refined policies). Suppose that C0 ≥ 4. Then for each epoch i ∈ [N ],
under the event Ai, the distribution p̂i satisfies

Eπ∼p̂i
[
fM

?
(πM?)− fM?

(π)
]
≤ αi

4
. (85)

Proof of Lemma I.2. Conditioning on the event Ai gives that (79) holds, which can in particular be
written as M? ∈ Hεi,psi (M̂ si). Therefore, by the choice of p̂i = psi in Line 23 and the definition in
Line 10, under Ai,

Eπ∼psi
[
fM

?
(πM?)− fM?

(π)
]
≤ sup

M∈Hεi,psi (M̂
si )∪{M̂si}

Eπ∼psi [fM(πM)− fM(π)]

=r-decc
εi(M∪ {M̂

si}, M̂ si) ≤ sup
M∈co(M)

r-decc
εi(M∪ {M},M) ≤ αi

4
,

where the final inequality follows as long as C0 ≥ 4.

Lemma I.3 relates the suboptimality under M? for any distribution p ∈ ∆(Π) to that of any
modelM ∈ co(Mi+1), in terms of the distance betweenM andM?. We ultimately apply the lemma
with M = M̂ t for each t ∈ Ei+1 to derive the following lemma, Lemma I.4.
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Lemma I.3 (Comparison with models in refined class). Fix i ∈ [N ]. Then for all M ∈ co(Mi+1)
and all p ∈ ∆(Π), under the event Ai,

Eπ∼p
[
fM

?
(πM?)− fM?

(π)
]
≤ Eπ∼p [fM(πM)− fM(π)] +

αi
2

+
√
Eπ∼p

[
D2

H(M(π),M?(π))
]
.

(86)

Proof of Lemma I.3. We first upper bound the optimal value under M? by the optimal value
under any M ∈ co(Mi+1). To do so, first note that, by Lemma I.2 (in particular, the fact that Eq.
(85) holds at epoch i), we have that Eπ∼p̂i

[
fM

?
(πM?)− fM?

(π)
]
≤ αi

4 under Ai. Then, for any
M ∈Mi+1, we have that, under the event Ai,

Eπ∼p̂i
[
fM

?
(πM?)− fM(π)

]
≤ Eπ∼p̂i

[
fM

?
(πM?)− fM?

(π)
]

+
√
Eπ∼p̂i

[
D2

H(M(π),M?(π))
]

≤ αi
4

+

√
2Eπ∼p̂i

[
D2

H

(
M(π), M̂i(π)

)]
+ 2Eπ∼p̂i

[
D2

H

(
M̂i(π),M?(π)

)]
≤ αi

4
+ 2

√
EstH(Ji, δ)

Ji
≤ αi

2
, (87)

where the second-to-last inequality holds since M ∈Mi+1 and by assumption of the event Ai (in

particular, using (78)), and the final inequality holds since 2
√

EstH(Ji,δ)
Ji

≤ αi
4 by our choice of

αi ≥ 64εi and Eq. (82).
Now fix any M ∈ co(Mi+1), and note that we can write M = EM ′∼νM [M ′] for some νM ∈

∆(Mi+1). Then for all π ∈ Π, fM(π) = EM ′∼νM [fM
′
(π)], and it follows from Eq. (87) that (again

under Ai)

fM
?
(πM?)− fM(πM) ≤ Eπ∼p̂i

[
fM

?
(πM?)− fM(π)

]
= EM ′∼νMEπ∼p̂i

[
fM

?
(πM?)− fM′(π)

]
≤ αi

2
.

Given any M ∈ co(Mi+1), we have now that under Ai,

Eπ∼p
[
fM

?
(πM?)− fM?

(π)
]
≤ αi

2
+ Eπ∼p [fM(πM)− fM(π)] + Eπ∼p

[
|fM(π)− fM?

(π)|
]

≤ αi
2

+ Eπ∼p [fM(πM)− fM(π)] +
√
Eπ∼p

[
D2

H(M(π),M?(π))
]
,

as desired.

Our final technical lemma, Lemma I.4, bounds the sub-optimality for all policies played in each
epoch Ei. The need to establish a result of this type is a crucial difference between the regret and
PAC frameworks, and motivates many of the algorithm design choices behind Algorithm 2.

Lemma I.4 (“Backup” regret guarantee). Fix any i ∈ [N ]. Then for all t ∈ Ei, we have that under
the event Ai−1,

Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]
≤ r-decc

εi(M∪ {M̂
t}, M̂ t) +

αi−1

2
+

√
Eπ∼pt

[
D2

H

(
M̂ t(π),M?(π)

)]
.
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Proof of Lemma I.4. Fix any t ∈ Ei. The choice of pt in Line 10 ensures that

Eπ∼pt [f M̂
t
(πM̂t)− f M̂t

(π)] ≤ r-decc
εi(M∪ {M̂

t}, M̂ t). (88)

Next, under the event Ai−1, we have

Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]

≤ Eπ∼pt
[
f M̂

t
(πM̂t)− f M̂t

(π)
]

+
αi−1

2
+

√
Eπ∼pt

[
D2

H

(
M̂ t(π),M?(π)

)]
≤ r-decc

εi(M∪ {M̂
t}, M̂ t) +

αi−1

2
+

√
Eπ∼pt

[
D2

H

(
M̂ t(π),M?(π)

)]
,

where the first inequality uses Lemma I.3 at epoch i− 1 with p = pt and M = M̂ t, together with
the fact that M̂ t ∈ co(Mi) by construction, and the second inequality uses Eq. (88).

I.2.2. PROOF OF THEOREM C.2

Proof of Theorem C.2. Let us condition on the event A ∩B ∩C ∩D , which, by Lemma I.1, holds
with probability 1− 3Lδ = 1− 3dlog 1/δe · δ. Fix i ∈ [N ]. We analyze the regret in each epoch i
as follows.

• We first analyze the rounds in t ∈ Ei. By Lemma I.4, under the event Ai−1, we have∑
t∈Ei

Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]

≤ |Ei| ·

(
sup

M∈co(M)

r-decc
εi(M∪ {M},M) + αi−1

)
+
∑
t∈Ei

√
Eπ∼pt

[
D2

H

(
M̂ t(π),M?(π)

)]
≤ |Ei| · (αi + αi−1) +

√
|Ei| ·

∑
t∈Ei

Eπ∼pt
[
D2

H

(
M̂ t(π),M?(π)

)]
≤ 2 · |Ei| · αi−1 +

√
|Ei| ·EstH(|Ei|, δ), (89)

where the second-to-last inequality follows by our choice of αi and the final inequality follows
from the fact that Bi holds and αi ≤ αi−1.

• We next analyze the rounds inRi. We first analyze those rounds in which a decision πjs ∼ ps
was sampled on Line 17. To do so, fix any s ∈ Si. We first note that, by definition of Ji,s,

Ji,s∑
j=1

√
Eπ∼ps

[
D2

H

(
M̃ j
s(π), M̂ s(π)

)]
≤

√√√√√Ji,s ·
Ji,s∑
j=1

Eπ∼ps
[
D2

H

(
M̃ j
s(π), M̂ s(π)

)]

≤

√
Ji,s ·

(
Jiε2

i

4
+ 2

)
≤
√

2Ji + Jiεi/2.

53



FOSTER GOLOWICH HAN

Furthermore, since the event Ai holds (in particular, using (77)), we have

Ji,s∑
j=1

√
Eπ∼ps

[
D2

H

(
M̃ j
s(π),M?(π)

)]
≤

√√√√√Ji,s ·
Ji,s∑
j=1

Eπ∼ps
[
D2

H

(
M̃ j
s(π),M?(π)

)]
≤
√
Ji,s ·EstH(Ji, δ) ≤

√
J2
i ε

2
i /32 ≤ Jiεi,

where the second-to-last inequality uses (82). Using the above displays, we have

Ji,s∑
j=1

E
πjs∼ps

[
fM

?
(πM?)− fM?

(πjs)
]

≤Ji,s ·

(
r-decc

εi(M) + αi−1 +

√
Eπ∼ps

[
D2

H

(
M̂ s(π),M?(π)

)])

≤2Ji,s · αi−1 +

Ji,s∑
j=1

√
2Eπ∼ps

[
D2

H

(
M̂ s(π), M̃ j

s(π)
)]

+

√
2Eπ∼ps

[
D2

H

(
M?(π), M̃ j

s(π)
)]

≤2Ji · αi−1 +
3Jiεi

2
+
√

2Ji.

Next we analyze the rounds t ∈ Ri where πt ∼ psi = p̂i on Line 25. Since Ai holds, we have
from Lemma I.2 that Eπt∼p̂i [f

M?
(πM?)−fM?

(π)] ≤ αi/4, meaning that the total contribution
to the regret from such rounds t ∈ Ri is at most |Ri| · αi/4. Thus, the overall contribution to
regret from rounds inRi is bounded above as follows:∑

t∈Ri

Eπ∼pt [fM
?
(πM?)− fM?

(π)] ≤|Ri|αi
4

+ L ·
(

2Jiαi +
3Jiεi

2
+
√

2Ji

)
≤4|Ri|αi +

√
2L|Ri|,

where in the second inequality we have used that |Ri| = Ji · L and 3εi/2 ≤ αi.

Summarizing, under the event A ∩B ∩ C ∩D , the total regret is bounded above by

T∑
t=1

Eπ∼pt
[
fM

?
(πM?)− fM?

(π)
]
≤

N∑
i=1

(
4αi−1 · (|Ri|+ |Ei|) +

√
|Ei| ·EstH(|Ei|, δ) +

√
2L|Ri|

)
.

(90)

We now simplify the expression in Eq. (90). Recall that Assumption C.2 gives that for all ε > 0,

r-decc
ε(M) ≤ C2

reg · r-decc
ε/Creg

(M).

Applying this inequality a total of
⌈

log(εi/εN )
log(Creg)

⌉
times for each i ∈ [N ] gives that

r-decc
εi(M) ≤ C2

reg ·
(
εi
εN

)2

· r-decc
εN

(M) = C2
reg · 2N−i · r-decc

εN
(M).
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Then by the choice αi = C0 · r-decc
εi(M) + 64εi for each i ∈ [N ], we have

N∑
i=1

αi−1 · 2i ≤ 64

N∑
i=1

εi−1 · 2i + C0

N∑
i=1

2i · r-decc
εi−1

(M)

≤ 64
N∑
i=1

εN ·
√

2N+1+i +O

(
N∑
i=1

2N · r-decc
εN

(M)

)

≤ 128 ·
√
C1 ·EstH(T, δ) · L ·

N∑
i=1

√
2i+1 +O

(
NT · r-decc

εN
(M)

)
.

Therefore, we may upper bound the expression in Eq. (90) as follows (using that EstH(|Ei|, δ) ≤
EstH(T, δ) for each i):

N∑
i=1

(
4αi−1 · (|Ri|+ |Ei|) +

√
|Ei| ·EstH(|Ei|, δ) +

√
2L|Ri|

)
≤4

N∑
i=1

αi−1 · 2i +
√
EstH(T, δ)

N∑
i=1

√
2i +

√
2L

N∑
i=1

√
2i

≤O

(√
EstH(T, δ) · L

N∑
i=1

√
2i +

√
L

N∑
i=1

√
2i +NT · r-decc

εN
(M)

)
≤O

(√
T log(1/δ) ·EstH(T, δ) + T log(T ) · r-decc

εN
(M)

)
,

where we have used that L = O(log 1/δ) in the final inequality. The proof is completed by rescaling

from δ to δ2 and noting that, by construction, we have εN ≤ C ·
√

EstH(T,1/δ)·log 1/δ
T for a universal

constant C > 0.

Appendix J. Proofs and Additional Results from Appendix D

J.1. Technical Lemmas

Lemma J.1. Let M and M have R ⊆ [0, 1]. Then for all ε ≥ 0 and p ∈ ∆(Π), if M ∈ Hp,ε(M),
then

Eπ∼p
[
|fM(π)− fM(π)|

]
≤ ε. (91)

Proof of Lemma J.1. Since rewards are in [0, 1], we have

Eπ∼p
[
|fM(π)− fM(π)|

]
≤ Eπ∼p

[
DTV

(
M(π),M(π)

)]
≤
√

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≤ ε.
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Lemma J.2. Fix a model classM. Let M ∈M+ and ε > 0 be given, and set

M′ = {M ∈M | fM(πM) ≤ fM(πM) + ε}.
Then we have

r-decc
ε/
√

2
(M,M) ≤ r-decc

ε(M′,M) + ε.

Proof of Lemma J.2. Let p ∈ ∆(Π) achieve the value of r-decc
ε(M′,M), and set p′ = 1

2p+ 1
2IπM .

Let M ∈ Hp′,ε/√2(M) ⊆ Hp,ε(M) ∩HIπ
M
,ε(M). We claim that M ∈M′. Indeed,

fM(πM)− fM(πM) ≤ DH

(
M(πM),M(πM)

)
≤ ε

by Lemma J.1. It follows that

sup
M∈Hp′,ε/√2(M)

Eπ∼p[fM(πM)− fM(π)] ≤ sup
M∈Hp,ε(M)∩M′

Eπ∼p[fM(πM)− fM(π)] ≤ r-decc
ε(M′,M),

(92)

so that

sup
M∈Hp′,ε/√2(M)

Eπ∼p′ [fM(πM)− fM(π)] ≤ 1

2
r-decc

ε(M′,M) +
1

2
sup

M∈Hp′,ε/√2(M)

[fM(πM)− fM(πM)].

To bound the final term above, we have

sup
M∈Hp′,ε/√2(M)

[fM(πM)− fM(πM)] ≤ sup
M∈Hp′,ε/√2(M)

[
fM(πM)− fM(πM)

]
+ ε

≤ sup
M∈Hp′,ε/√2(M)

Eπ∼p
[
fM(πM)− fM(π)

]
+ ε

≤ sup
M∈Hp′,ε/√2(M)

Eπ∼p[fM(πM)− fM(π)] + 2ε

≤ r-decc
ε(M′,M) + 2ε,

where the first and third inequalities use Lemma J.1, and the last inequality applies Eq. (92).

Lemma J.3. For a model classM and reference model M ∈M+, define

p̃-dec
c

ε(M,M) = inf
p,q∈∆(Π)

sup
M∈Hp,ε(M)∩Hq,ε(M)

Eπ∼p[fM(πM)− fM(π)], (93)

with the convention that the value above is zero whenHp,ε(M) ∩Hq,ε(M) = ∅. For all M ∈M+

and ε > 0, we have

p̃-dec
c

ε(M,M) ≤ p-decc
ε(M,M) ≤ p̃-dec

c√
2ε(M,M). (94)

Proof of Lemma J.3. The first inequality is immediate. For the second, we have

p-decc
ε(M,M) ≤ inf

p,q∈∆(Π)
sup

M∈H 1
2 p+

1
2 q,ε

(M)

Eπ∼p[fM(πM)− fM(π)],

by observing that for any minimizer q for p-decc
ε, we can arrive at an upper bound by substituting

q′ = 1
2p+ 1

2q. The result now follows becauseH 1
2
p+ 1

2
q,ε(M) ⊆ Hp,√2ε(M) ∩Hq,√2ε(M).
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J.2. Additional Properties of the Decision-Estimation Coefficient

J.2.1. LOCALIZATION

The following result is an extension of Proposition D.7 which accommodates randomized estimators.

Proposition J.1. Let α, γ > 0 and ν ∈ ∆(M) be given. Let Mν = EM ′∼ν [M ′]. For all ε > 0, we
have

r-deco,rnd
γ (Mα(Mν) ∪ {Mν}, ν) ≤ r-decc,rnd

ε (M∪ {Mν}, ν) + max

{
0, α+

1

2γ
− γε2

2

}
.

(95)

which in particular yields

r-deco,rnd
γ (Mα(Mν) ∪ {Mν}, ν) ≤ r-decc,rnd√

2α/γ
(M∪ {Mν}, ν) +

1

2γ
. (96)

Proof of Proposition J.1. Fix ν ∈ ∆(M) and ε > 0, and let p ∈ ∆(Π) be a minimizer for
r-decc,rnd

ε (M ∪ {Mν}, ν). Fix any M ∈ Mα(Mν) ∪ {Mν}. We bound the regret under p by
considering two cases.
Case 1. If EM∼ν Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2, it follows from the definition r-decc,rnd

ε (M∪
{Mν}, ν) of that Eπ∼p [fM(πM)− fM(π)] ≤ r-decc,rnd

ε (M∪ {Mν}, ν).
Case 2. For the second case, suppose that EM∼ν Eπ∼p

[
D2

H

(
M(π),M(π)

)]
> ε2. We now compute

Eπ∼p [fM(πM)− fM(π)] ≤ α+ Eπ∼p
[
fMν (πMν )− fM(π)

]
≤ α+ Eπ∼p

[
fMν (πMν )− fMν (π)

]
+

1

2γ
+
γ

2
· Eπ∼p

[
(fM(π)− fMν (π))2

]
≤ α+ r-decc,rnd

ε (M∪ {Mν}, ν) +
1

2γ
+
γ

2
· Eπ∼p

[
D2

H

(
M(π),Mν(π)

)]
,

≤ α+ r-decc,rnd
ε (M∪ {Mν}, ν) +

1

2γ
+
γ

2
· EM∼ν Eπ∼p

[
D2

H

(
M(π),M(π)

)]
,

where the second inequality uses Young’s inequality and the final inequality uses convexity of the
squared Hellinger distance. Rearranging, we obtain

Eπ∼p
[
fM(πM)− fM(π)− γ · EM∼ν

[
D2

H

(
M(π),M(π)

)]]
≤ α+ r-decc,rnd

ε (M∪ {M}, ν) +
1

2γ
− γ

2
· EM∼ν Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ α+ r-decc,rnd

ε (M∪ {Mν},Mν) +
1

2γ
− γε2

2
.

Recalling that M can be any model inMα(Mν) ∪ {Mν}, we obtain

r-deco,rnd
γ (Mα(Mν) ∪ {Mν}, ν) (97)

≤ max

{
r-decc,rnd

ε (M∪ {Mν}, ν), α+
1

2γ
+ r-decc,rnd

ε (M∪ {Mν}, ν)− γε2

2

}
= r-decc,rnd

ε (M∪ {Mν}, ν) + max

{
0, α+

1

2γ
− γε2

2

}
.
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J.2.2. ROLE OF CONVEXITY FOR PAC DEC

For ν ∈ ∆(M), we define “randomized” variants of the PAC DEC, analogous to those introduced in
Appendix D, as follows:

p-decc,rnd
ε (M, ν) = inf

p,q∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)] | EM∼ν Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

(98)

p-deco,rnd
γ (M, ν) = inf

p,q∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)]− γ · EM∼ν Eπ∼q

[
D2

H

(
M(π),M(π)

)]}
.

(99)

The following result provides a PAC counterpart to Eq. (40) of Proposition D.11.

Proposition J.2. Suppose that Assumption G.1 holds. For all γ > 0, we have

sup
M∈M+

p-deco
γ(M,M) ≤ sup

ν∈∆(M)
p-deco,rnd

γ/4 (M, ν) ≤ sup
M∈co(M)

p-deco
γ/4(M,M). (100)

A PAC analogue of Eq. (41) can be proven by adapting the proof of Proposition D.11; we do not
include this result.
Proof of Proposition J.2. Let M ∈M+ and γ > 0 be given. We first prove the inequality (100).
By Assumption G.1, we have

p-deco
γ(M,M) = sup

µ∈∆(M)
inf

p,q∈∆(Π)
EM∼µ

[
Eπ∼p[fM(πM)− fM(π)]− γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]]
.

Since Hellinger distance satisfies the triangle inequality, we have that for all π ∈ Π,

EM,M ′∼µ
[
D2

H

(
M(π),M ′(π)

)]
≤ 2EM∼µ

[
D2

H

(
M(π),M(π)

)]
+ 2EM ′∼µ

[
D2

H

(
M ′(π),M(π)

)]
= 4EM∼µ

[
D2

H

(
M(π),M(π)

)]
.

It follows that

p-deco
γ(M,M)

≤ sup
µ∈∆(M)

inf
p,q∈∆(Π)

EM∼µ
[
Eπ∼p[fM(πM)− fM(π)]− γ

4
· EM ′∼µ Eπ∼q

[
D2

H

(
M(π),M ′(π)

)]]
≤ sup

ν∈∆(M)
sup

µ∈∆(M)
inf

p,q∈∆(Π)
EM∼µ

[
Eπ∼p[fM(πM)− fM(π)]− γ

4
· EM ′∼ν Eπ∼q

[
D2

H

(
M(π),M ′(π)

)]]
≤ sup

ν∈∆(M)
inf

p,q∈∆(Π)
sup
M∈M

{
Eπ∼p[fM(πM)− fM(π)]− γ

4
· EM ′∼ν Eπ∼q

[
D2

H

(
M(π),M ′(π)

)]}
= sup

ν∈∆(M)
p-deco,rnd

γ/4 (M, ν).

Jensen’s inequality further implies that supν∈∆(M) p-deco,rnd
γ/4 (M, ν) ≤ supM∈co(M) p-deco

γ/4(M,M).
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J.2.3. PAC DEC WITH GREEDY DECISIONS

For a model classM and reference model M ∈M+, define

p-decc,greedy
ε (M,M) = inf

q∈∆(Π)
sup
M∈M

{
fM(πM)− fM(πM) | Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
,

with the convention that the value above is zero whenHq,ε(M) = ∅.

Proposition J.3. For all ε > 0 and M ∈M+, we have

p-decc
ε(M,M) ≤ p-decc,greedy

ε (M,M) ≤ p-decc√
3ε

(M,M) + 4ε. (101)

Proof of Proposition J.3. It is immediate that p-decc,greedy
ε (M,M) ≥ p-decc

ε(M,M), so let us
prove the second inequality. Let M ∈ M and ε > 0 be given, and let (p, q) be minimizers for
p̃-dec

c

ε(M,M). Define q′ = 1
3q + 1

3p+ 1
3IπM . Note that Hq′,ε/√3(M) ⊆ Hq,ε(M) ∩ Hp,ε(M) ∩

HIπ
M
,ε(M). As a result, for all M ∈ Hq′,ε/√3(M), we have

fM(πM)− fM(πM) = fM(πM)− fM(πM) + (fM(πM)− fM(πM))

≤ fM(πM)− fM(πM) + ε

≤ Eπ∼p
[
fM(πM)− fM(π)

]
+ ε

≤ Eπ∼p[fM(πM)− fM(π)] + 2ε

≤ p̃-dec
c

ε(M,M) + 2ε

≤ p-decc
ε(M,M) + 2ε,

where the first and third inequalities use Lemma J.1 and the final inequality uses Lemma J.3.

J.3. Omitted Proofs

Proof of Proposition D.1. Let M ∈M+ be given. We first prove a more general result under the
assumption that for some δ > 0, fM(πM) ≤ fM(πM) + δ for all M ∈M:

r-decc
ε(M∪ {M},M) ≤ δ + inf

γ>0

{
r-deco

γ(M,M) ∨ 0 + 4γε2 + (4γ)−1
}
. (102)

Then, at the end of the proof, we show that it is possible to take δ = O(ε) without loss of generality.
Let γ > 0 be given and let p0 be the minimizer for r-deco

γ(M,M), so that

sup
M∈M

Eπ∼p0

[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
≤ r-deco

γ(M,M).

LetM? := arg minM∈M Eπ∼p0

[
D2

H

(
M(π),M(π)

)]
, and let ∆2 := Eπ∼p0

[
D2

H

(
M?(π),M(π)

)]
.

We will bound the constrained DEC, r-decc
ε(M∪ {M},M), by playing the distribution

p := (1− q) · IπM + q · p0,

where

q :=
2ε2

∆2
∧ 1.

Before proceeding, we state a basic technical lemma.
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Lemma J.4. The distribution p0 satisfies

Eπ∼p0

[
fM(πM)− fM(π)

]
≤ δ + r-deco

γ(M,M) + (4γ)−1 + 2γ∆2. (103)

We bound the value of the constrained DEC for p by considering two cases.
Case 1: q = 1. If q = 1, then ∆2 ≤ 2ε2, and p = p0. For models M ∈ Hp,ε(M), the definition of
p0 implies that

Eπ∼p[fM(πM)− fM(π)] ≤ r-deco
γ(M,M) + γ · Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ r-deco

γ(M,M) + γε2.

For the model M , Lemma J.4 implies that

Eπ∼p
[
fM(πM)− fM(π)

]
≤ δ + r-deco

γ(M,M) + (4γ)−1 + 4γε2.

Case 2: q < 1. If q < 1, then for all M ∈M, we have

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≥ q · Eπ∼p0

[
D2

H

(
M(π),M(π)

)]
≥ q · Eπ∼p0

[
D2

H

(
M?(π),M(π)

)]
= 2ε2 > ε2,

where the second inequality uses that M? minimizes Eπ∼p0

[
D2

H

(
M(π),M(π)

)]
, and the last in-

equality uses that q = 2ε2

∆2 whenever q < 1. It follows that Hp,ε(M) ∪ {M} = {M}, so we only
need to bound the regret of the distribution p under M . To do so, we observe that

Eπ∼p
[
gM(π)

]
= q · Eπ∼p0

[
gM(π)

]
≤ q ·

(
δ + r-deco

γ(M,M) + (4γ)−1 + 2γ∆2
)

≤ δ + r-deco
γ(M,M) ∨ 0 + (4γ)−1 + q · 2γ∆2

= δ + r-deco
γ(M,M) ∨ 0 + (4γ)−1 + 4γε2,

where the first inequality uses Lemma J.4, and the final equality uses that q = 2ε2

∆2 .
Finishing up. We have established that

r-decc
ε(M∪ {M},M) ≤ δ + inf

γ>0

{
r-deco

γ(M,M) ∨ 0 + 4γε2 + (4γ)−1
}

whenever fM(πM) ≤ fM(πM) + δ for all M ∈M. To conclude, we appeal to Lemma J.2 applied
to the classM∪ {M}, which implies that

r-decc
ε(M∪ {M},M) ≤ r-decc√

2ε
(M′ ∪ {M},M) +

√
2ε, (104)

whereM′ =
{
M ∈M | fM(πM) ≤ fM(πM) +

√
2ε
}

. Applying (102) to the quantity r-decc√
2ε

(M′∪
{M},M) and combining with (104) yields

r-decc
ε(M∪ {M},M) ≤ 2

√
2ε+ inf

γ>0

{
r-deco

γ(M,M) ∨ 0 + 8γε2 + (4γ)−1
}
.

To simplify this result slightly, we consider two cases. If r-deco
γ(M,M) ≤ (4γ)−1, then choos-

ing γ = (4ε)−1 gives infγ>0

{
r-deco

γ(M,M) + 4γε2 + (4γ)−1
}
≤ 4ε. Otherwise, we have

infγ>0

{
r-deco

γ(M,M) + 4γε2 + (4γ)−1
}
≤ infγ>0

{
2 · r-deco

γ(M,M) + 8γε2
}

.
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Proof of Lemma J.4. Observe that

Eπ∼p0

[
fM(πM)− fM(π)

]
≤ δ + Eπ∼p0

[
fM

?
(πM?)− fM(π)

]
≤ δ + Eπ∼p0

[
fM

?
(πM?)− fM?

(π)
]

+ ∆,

where the first inequality uses the fact that fM(πM) ≤ fM(πM)+δ for allM ∈M, and the second in-
equality uses Lemma J.1. In addition, the definition of p0 implies that Eπ∼p0

[
fM

?
(πM?)− fM?

(π)
]
≤

r-deco
γ(M,M) + γ∆2, so we have

Eπ∼p0

[
fM(πM)− fM(π)

]
≤ δ + r-deco

γ(M,M) + γ∆2 + ∆

≤ δ + r-deco
γ(M,M) + 2γ∆2 + (4γ)−1.

Proof of Proposition D.2. We first prove the inequality (23). Let ε > 0 and M ∈ M+ be fixed.
Using the method of Lagrange multipliers, we have

p-decc
ε(M,M) = inf

p,q∈∆(Π)
sup
M∈M

{
Eπ∼p[gM(π)] | Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

}
= inf

p,q∈∆(Π)
sup
M∈M

max

{
inf
γ≥0

{
Eπ∼p[gM(π)]− γ

(
Eπ∼q

[
D2

H

(
M(π),M(π)

)]
− ε2

)}
, 0

}
≤ inf

γ≥0
inf

p,q∈∆(Π)
sup
M∈M

max
{
Eπ∼p[gM(π)]− γ

(
Eπ∼q

[
D2

H

(
M(π),M(π)

)]
− ε2

)
, 0
}

≤ inf
γ≥0

{
p-deco

γ(M,M) ∨ 0 + γε2
}
.

We now prove the inequality (24). Let γ ≥ 1 and M ∈M+ be fixed. For integers i ≥ 0, define
εi = 2−i/2. For each i ≥ 0, let (pi, qi) denote a minimizer to the following expression:

inf
pi,qi∈∆(Π)

sup
M∈Hqi,εi (M)

Eπ∼pi [g
M (π)] = p-decc

εi(M,M).

Recalling that L = 2dlog 2γe, set

q =
1

2
· IπM +

q0 + · · ·+ qL−1

4L
+
p0 + · · ·+ pL−1

4L
, and p = IπM .

Consider any M ∈M. We will upper bound the value

Eπ∼p[fM(πM)− fM(π)]− 4γL · Eπ∼q
[
D2

H

(
M(π),M(π)

)]
.

Choose j ∈ {0, . . . , L− 1} as large as possible so that

Eπ∼q
[
D2

H

(
M(π),M(π)

)]
≤

ε2
j

4L
. (105)
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If such an index j does not exist, we must have Eπ∼q
[
D2

H

(
M(π),M(π)

)]
> 1/(4L). In this case,

we have

Eπ∼p[fM(πM)− fM(π)]− 4γL · Eπ∼q
[
D2

H

(
M(π),M(π)

)]
≤ 1− γ ≤ 0 ≤ p-decc

0(M,M).

Suppose going forward that 0 ≤ j ≤ L− 1 satisfying (105) exists. If j < L− 1, since we chose the

largest possible value of j, we have Eπ∼q
[
D2

H

(
M(π),M(π)

)]
≥ ε2j

8L . In addition, regardless of the
value of j ∈ {0, 1, . . . , L− 1}, by the definition of q, we have

Eπ∼qj
[
D2

H

(
M(π),M(π)

)]
≤ 4L · Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

j ,

and

Eπ∼pj
[
D2

H

(
M(π),M(π)

)]
≤ 4L · Eπ∼q

[
D2

H

(
M(π),M(π)

)]
≤ ε2

j ,

that is, M ∈ Hpj ,εj (M) ∩Hqj ,εj (M). It follows that

fM(πM)− fM(πM) ≤ Eπ∼pj
[
fM(πM)− fM(π)

]
≤ Eπ∼pj [fM(πM)− fM(π)] + εj

≤ p-decc
εj (M,M) + εj ,

where the second inequality uses that M ∈ Hpj ,εj (M) and the final inequality uses that M ∈
Hqj ,εj (M). As a result, we can compute

Eπ∼p [fM(πM)− fM(π)]− 4γL · Eπ∼q
[
D2

H

(
M(π),M(π)

)]
≤ fM(πM)− fM(πM)− 4γL

8L
· ε2
j · 1 {j < L− 1}

≤ fM(πM)− fM(πM) + p-decc
εj (M,M) + εj −

γ

2
ε2
j · 1 {j < L− 1}

≤ 1

2γ
+
γ

2
·
(
fM(πM)− fM(πM)

)2
+ p-decc

εj (M,M) + εj −
γ

2
ε2
j · 1 {j < L− 1}

≤ 1

2γ
+ γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]
+ p-decc

εj (M,M) + εj −
γ

2
ε2
j · 1 {j < L− 1}

≤ 1

γ
+ γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]
+ p-decc

εj (M,M) + εj −
γ

2
ε2
j ,

where the final inequality uses that ε2
L−1 ≤ 1/γ2 since L ≥ 2 log(2γ). Rearranging, we obtain

Eπ∼p[fM(πM)− fM(π)]− γ · (4L+ 1) · Eπ∼q[D2
H

(
M(π),M(π)

)
] (106)

≤ 1

γ
+ p-decc

εj (M,M) + εj −
γ

2
· ε2
j

≤ 2

γ
+ p-decc

εj (M,M)− γ

4
· ε2
j ,

as desired.
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Proof of Proposition D.3. Let γ > 0 and M ∈M+ be given. Fix ε > 0 to be chosen later, and let
p be the minimizer for r-decc

ε(M,M). Consider the value of the offset DEC for M ∈M:

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
.

We consider two cases. First, if M ∈ Hp,ε(M), it is immediate that

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
≤ Eπ∼p[fM(πM)− fM(π)] ≤ r-decc

ε(M,M).

On the other hand if M /∈ Hp,ε(M), we have Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≥ ε2, and since gM ≤ 1,

we have

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
≤ 1− γε2 ≤ 0

by choosing ε = γ−1/2. We conclude that

r-deco
γ(M,M) ≤ r-decc

γ−1/2(M,M).

Proof of Proposition D.4. Recall the model classesMα,β defined in Example E.1, parametrized
by α ∈ (0, 1/2], β ∈ (0, 1), A ∈ N. Consider any choice for α, β, and A; we will specify concrete
values below. Lemma K.2 gives that for all ε > 0,

r-decc
ε(Mα,β) = sup

M∈co(Mα,β)

r-decc
ε(Mα,β ∪ {M},M) ≤ O

(
ε2

β

)
.

On the other hand, Lemma K.1 gives that for the choice of M = M̃ ∈Mα,β , we have, for all γ > 0,

r-deco
γ(Mα,β, M̃) ≥ α

2 + 8γβ
− 4γ/A.

Given γ > 0, let us choose α = 1/2, β = 1/
√
γ, and A = 256γ2/β. Then the resulting model class

M =Mα,β satisfies r-decc
ε(M) ≤ O(ε2γ1/2) for all ε > 0, yet

sup
M∈M

r-deco
γ(M,M) ≥ 1

4 + 16γβ
− 4γ

A
≥ 1

32
·
(

1

γ1/2
∧ 1

)
− 4γ

A
≥ 1

64
·
(

1

γ1/2
∧ 1

)
≥ Ω(γ−1/2).

Proof of Proposition D.5. Recall the definition of p̃-dec
c

ε(M,M) in (93). Let ε > 0 and M ∈M+

be given, and let (p′, q′) be minimizers for p̃-dec
c

ε(M,M). Then for all M ∈ Hp′,ε(M)∩Hq′,ε(M),
we have

p̃-dec
c

ε(M,M) ≥ Eπ∼p′ [fM(πM)− fM(π)]

≥ Eπ∼p′
[
fM(πM)− fM(π)

]
− ε

≥ fM(πM)− fM(πM)− ε,
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where the second inequality uses Lemma J.1. That is, if we define α = ε+ p̃-dec
c

ε(M,M), we have
Hp′,ε(M) ∩Hq′,ε(M) ⊆Mα(M). Now, let (p, q) be minimizers for p-decc

ε(Mα(M),M), and set
q̄ = 1

3q + 1
3q
′ + 1

3p
′. We have

p-decc
ε/
√

3
(M,M) ≤ sup

M∈Hq̄,ε/√3(M)

Eπ∼p[fM(πM)− fM(π)]

≤ sup
M∈Hq,ε(M)∩Hp′,ε(M)∩Hq′,ε(M)

Eπ∼p[fM(πM)− fM(π)]

≤ sup
M∈Hq,ε(M)∩Mα(M)

Eπ∼p[fM(πM)− fM(π)]

= p-decc
ε(Mα(M),M).

Finally, using Lemma J.3, we have α ≤ ε+ p-decc√
2ε

(M,M).

Proof of Proposition D.6. We first prove the following result, which does not requite any regularity
condition.

Lemma J.5. Fix any M ∈M+ and ε > 0, and let α′ := ε+ r-decc
ε(M,M). Then for any constant

Creg ≥
√

2, it holds that

r-decc
ε/Creg

(M,M) ≤ 1

C2
reg

r-decc
ε(M,M) + r-decc

ε(Mα′(M),M).

Proof of Lemma J.5. Given ε > 0 and M , let p be the distribution that achieves the value for
r-decc

ε(M,M). Then for all M ∈ Hp,ε(M), we have

r-decc
ε(M,M) ≥ Eπ∼p[fM(πM)− fM(π)]

≥ Eπ∼p
[
fM(πM)− fM(π)

]
− ε

≥ fM(πM)− fM(πM)− ε,

where the second inequality uses Lemma J.1. Hence, for α′ := ε + r-decc
ε(M,M), we have

Hp,ε(M) ⊆Mα′(M).

Now, let p′ be the minimizer for r-decc
ε(Mα′(M),M). Set p̄ = 1

C2
reg
p +

(
1− 1

C2
reg

)
p′. Using

that

1

C2
reg

·
(

1− 1

C2
reg

)−1

≤ 1
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whenever Creg ≥
√

2, we have

r-decc
ε/Creg

(M,M) ≤ sup
M∈Hp̄,ε/Creg (M)

Eπ∼p̄[fM(πM)− fM(π)]

≤ sup
M∈Hp,ε(M)∩Hp′,ε(M)

Eπ∼p̄[fM(πM)− fM(π)]

≤ 1

C2
reg

sup
M∈Hp,ε(M)

Eπ∼p[fM(πM)− fM(π)] + sup
M∈Hp,ε(M)∩Hp′,ε(M)

Eπ∼p′ [fM(πM)− fM(π)]

=
1

C2
reg

r-decc
ε(M,M) + sup

M∈Hp,ε(M)∩Hp′,ε(M)

Eπ∼p′ [fM(πM)− fM(π)]

≤ 1

C2
reg

r-decc
ε(M,M) + sup

M∈Mα′ (M)∩Hp′,ε(M)

Eπ∼p′ [fM(πM)− fM(π)]

=
1

C2
reg

r-decc
ε(M,M) + r-decc

ε(Mα′(M),M).

We now complete the proof of Proposition D.6. Under the assumed growth condition, we have
r-decc

ε/Creg
(M,M) ≥ 1

c2reg
r-decc

ε(M,M), so rearranging the result of Lemma J.5 (with α′ = α(ε))
yields

r-decc
ε/Creg

(M,M) ≤
(

1

c2
reg

− 1

C2
reg

)−1

· r-decc
ε(Mα(ε)(M),M).

The result in the proposition follows by rescaling ε to ε · Creg.

For use later on, we also prove the following variant of Proposition D.6, which concerns the DEC
for the classM∪ {M}.

Proposition J.4 (Localization for regret DEC; global version). Consider any setM′ ⊆M+, and
assume that the strong regularity condition (28) is satisfied relative toM′. Then, for all ε > 0, letting
α(ε) := Creg·ε+supM∈M′ r-decc

Creg·ε(M∪{M},M) ≤ C2
reg·
(
ε+ supM∈M′ r-decc

ε(M∪ {M},M)
)
,

we have

sup
M∈M′

r-decc
ε(M∪ {M},M) ≤ Cloc · sup

M∈M′
r-decc

Creg·ε(Mα(ε)(M) ∪ {M},M),

where Cloc :=
(

1
c2reg
− 1

C2
reg

)−1
.

Proof of Proposition J.4. Define α := ε+ supM∈M′ r-decc
ε(M∪{M},M). Applying Lemma J.5

to the classM∪ {M} for each choice of M ∈M′, we obtain that

sup
M∈M′

r-decc
ε/Creg

(M∪{M},M) ≤ 1

C2
reg

sup
M∈M′

r-decc
ε(M∪{M},M)+ sup

M∈M′
r-decc

ε(Mα(M)∪{M},M).

(107)
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The growth condition (28) gives that

sup
M∈M′

r-decc
ε/Creg

(M∪ {M},M) ≥ 1

c2
reg

sup
M∈M′

r-decc
ε(M∪ {M},M).

Then rearranging (107) yields

sup
M∈M′

r-decc
ε/Creg

(M∪ {M},M) ≤
(

1

c2
reg

− 1

C2
reg

)−1

· sup
M∈M′

r-decc
ε(Mα(M) ∪ {M},M).

(108)
The result in the proposition statement follows by replacing ε with ε · Creg.

Proof of Proposition D.7. Fix M ∈ M+ and ε > 0, and let p ∈ ∆(Π) be a minimizer for
r-decc

ε(M∪{M},M). Fix any M ∈Mα(M)∪ {M}. We bound the regret under p by considering
two cases.
Case 1. If Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ ε2, thenM ∈ Hp,ε(M), and it follows that Eπ∼p [fM(πM)− fM(π)] ≤

r-decc
ε(M∪ {M},M).

Case 2. For the second case, suppose that Eπ∼p
[
D2

H

(
M(π),M(π)

)]
> ε2. We now compute

Eπ∼p [fM(πM)− fM(π)] ≤ α+ Eπ∼p
[
fM(πM)− fM(π)

]
≤ α+ Eπ∼p

[
fM(πM)− fM(π)

]
+

1

2γ
+
γ

2
· Eπ∼p

[
(fM(π)− fM(π))2

]
≤ α+ r-decc

ε(M∪ {M},M) +
1

2γ
+
γ

2
· Eπ∼p

[
D2

H

(
M(π),M(π)

)]
,

where the second inequality uses Young’s inequality. Rearranging, we obtain

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
≤ α+ r-decc

ε(M∪ {M},M) +
1

2γ
− γ

2
· Eπ∼p

[
D2

H

(
M(π),M(π)

)]
≤ α+ r-decc

ε(M∪ {M},M) +
1

2γ
− γε2

2
. (109)

Recalling that M can be any model inMα(M) ∪ {M}, we obtain

r-deco
γ(Mα(M) ∪ {M},M) ≤ max

{
r-decc

ε(M∪ {M},M), α+
1

2γ
+ r-decc

ε(M∪ {M},M)− γε2

2

}
= r-decc

ε(M∪ {M},M) + max

{
0, α+

1

2γ
− γε2

2

}
.

Proof of Proposition D.8. We begin with the upper bound on the constrained DEC. Let ε > 0 be
fixed. Using Proposition D.6, we have

r-decc
ε(M∪ {M},M) ≤ Cloc · r-decc

Cregε(Mα(M) ∪ {M},M),
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whereα = Cregε+r-decc
Cregε

(M∪{M},M) ≤ Cregε+c
2
regr-decc

ε(M∪{M},M) ≤ C2
reg

(
ε+ r-decc

ε(M,M)
)

(see Definition D.1). Next, for all γ > 0, using Proposition D.1, we have

r-decc
Cregε(Mα(M) ∪ {M},M) ≤ 8 ·

(
r-deco

γ(Mα(M),M) ∨ 0 + C2
regγε

2
)

+ 7Cregε,

so that

r-decc
ε(M∪ {M},M) ≤ 8Cloc ·

(
r-deco

γ(Mα(M),M) ∨ 0 + C2
regγε

2
)

+ 7ClocCregε.

We now set

γ? = (16C2
regCloc)

−1 · ε+ r-decc
ε(M∪ {M},M)

ε2
,

which satisfies γ? ≥ 1
16C2

regCloc·ε
and gives

r-decc
ε(M∪ {M},M) ≤ 8Cloc · r-deco

γ?(Mα(M),M) ∨ 0 +
1

2
· r-decc

ε(M∪M,M) + (7ClocCreg + 1/2)ε,

or after rearranging,

r-decc
ε(M∪ {M},M) ≤ 16Cloc · r-deco

γ?(Mα(M),M) ∨ 0 + 2(7ClocCreg + 1/2)ε.

In addition, we have

α ≤ C2
reg(16C2

regCloc) · γ?ε2 = C2
reg(16C2

regCloc) · α(ε, γ?).

To conclude, we over-bound by maximizing over γ? ≥ 1
16C2

regCloc·ε
.

For the lower bound on the constrained DEC, it is an immediate consequence of Proposition D.7
that for all ε > 0 and γ >

√
2 · ε−1, letting α = γε2

4 ,

r-deco
γ(Mα(M),M) ≤ r-decc

ε(M∪ {M},M) + max

{
α+

1

2γ
− γε2

2
, 0

}
= r-decc

ε(M∪ {M},M),

for all M ∈M+. Since we are free to maximize over γ ≥
√

2ε−1, this establishes the result.

Proof of Proposition D.9. Consider the following model classM, parametrized by α ∈ (0, 1/2):

1. Π = N ∪ {π◦}.

2. We haveM = {Ma}a∈N. For each a ∈ N, the model Ma ∈M has rewards and observations
defined as follows:

(a) For π ∈ N, fMa(π) = 1
2 + α · 1 {π = a}, while fMa(π◦) = 0.

(b) For all π ∈ Π, we have r = fMa(π) almost surely under r ∼Ma(π).

(c) For π ∈ N, we receive the observation o =⊥.

(d) Selecting π◦ gives the observation o ∈ {0, 1}N, where for each i ∈ N, oi ∼ Ber(1/2 +
α · 1 {a = i}) is drawn independently (thus, we have O = {0, 1}N ∪ {⊥}).
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Upper bound. We will show that there are constants c, C > 0 so that, for ε > 0,

sup
M∈co(M)

r-decc
ε(M,M) ≤ α · 1

{
ε ≥
√
c · α

}
≤ C · ε.

Since supM∈co(M) r-decc
ε(M,M) ≤ α for all ε ≥ 0 (as the choice of p = I1 satisfies Eπ∼p[fM(πM)−

fM(π)] ≤ α for all M ∈ M), it suffices to show that for ε <
√
c · α and for any M ∈ co(M), we

have r-decc
ε(M,M) = 0.

Given M ∈ co(M) and ε ≤ 1/2, we can write M(π) = EM ′∼ν [M ′(π)] for some ν ∈ ∆(M).
We define a distribution p ∈ ∆(Π) according to the following cases:

• If ν puts mass at most 2/3 on each model M ∈M, we define p = Iπ◦ .

• Otherwise, there is a unique choice for a? ∈ [A] so that ν(Ma?) ≥ 2/3, and in this case, we
define p = Ia? .

Now consider any model Ma ∈ M. Consider the first case above, and write o ∼ Ma(π◦) and
o ∼M(π◦). Note that oa ∼ Ber(1/2 +α), while oa ∼ Ber(1/2 + β) for some β ≤ 2

3 ·α. It follows
that

Eπ∼p
[
D2

H

(
Ma(π),M(π)

)]
= D2

H

(
Ma(π◦),M(π◦)

)
≥ D2

H(Ber(1/2 + α),Ber(1/2 + β)) ≥ c · α2,

for a numerical constant c > 0. Since cα2 > ε2, it follows that Ma 6∈ Hp,ε(M); since the choice of
Ma is arbitrary, we conclude thatHp,ε(M) = ∅ in this case.

Now, consider the second case above. For a = a?, we have that Eπ∼p [fMa(πMa)− fMa(π)] =
0. For a 6= a?, we have that Pr∼Ma(a?)(r 6= 1/2) = 0, while Pr∼M(a?)(r 6= 1/2) ≥ 2/3. As a
result,

Eπ∼p
[
D2

H

(
Ma(π),M(π)

)]
= D2

H

(
Ma(a

?),M(a?)
)
≥ D2

H(Ber(0),Ber(2/3)) ≥ 4/9 > ε2,
(110)

meaning that Ma 6∈ Hp,ε(M).
Lower bound. PickA ≥ 2, and letM = Unif({Ma}a∈[A]). Given p ∈ ∆(Π), let a = arg mina∈[A] p(a),
so that p(a) ≤ 1/A. We observe that

Eπ∼p[fMa(πMa)− fMa(π)] ≥ α(1− 1/A) ≥ α/2

and

Eπ∼p
[
D2

H

(
Ma(π),M(π)

)]
≤ p(π◦) ·D2

H

(
Ma(π◦),M(π◦)

)
+ 2p(a) +

∑
i∈[A],i 6=a

p(i)D2
H

(
Ma(i),M(i)

)
.

For all i 6= a, we have D2
H

(
Ma(i),M(i)

)
≤ D2

H(Ber(0),Ber(1/A)) ≤ 2/A, so that∑
i∈[A],i 6=a

p(i)D2
H

(
Ma(i),M(i)

)
≤ 2/A.
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As long as α is a sufficiently small numerical constant, we also have, using the tensorization property
of the squared Hellinger distance,

D2
H

(
Ma(π◦),M(π◦)

)
≤ D2

H(Ber(1/2 + α),Ber(1/2 + α/A)) + (A− 1) ·D2
H(Ber(1/2),Ber(1/2 + α/A))

≤ c ·
(
α2 + (A− 1) · α

2

A2

)
≤ C · α2,

where C, c > 0 are numerical constants. Altogether, this gives

Eπ∼p
[
D2

H

(
Ma(π),M(π)

)]
≤ p(π◦) · Cα2 + 4/A.

We choose A large enough such that 4/A ≤ ε2/2. There are now two cases to consider.

• If p(π◦) ≤ ε2

2Cα2 , then Ma ∈ Hp,ε(M), and

Eπ∼p[fMa(πMa)− fMa(π)] ≥ α

2
.

• If this is not the case, we have

Eπ∼p
[
fM(πM)− fM(π)

]
≥ 1

2
p(π◦) ≥

ε2

4Cα2
∧ 1.

By combining these cases, we conclude that there are numerical constants C, c > 0 such that

r-decc
ε(M∪ {M},M) ≥ C · αI

{
ε > c · α3/2

}
.

In particular, choosing α ∝ ε2/3 gives r-decc
ε(M∪ {M},M) ≥ Ω(ε2/3), while r-decc

ε(M,M) ≤
O(ε).

Proof of Proposition D.10. By Proposition J.3, we have that for all ε > 0 and M ∈M+,

p-decc
ε(M∪ {M},M) ≤ p-decc,greedy

ε (M∪ {M},M) = p-decc,greedy
ε (M,M) ≤ p-decc√

3ε
(M,M) + 4ε.

Proof of Proposition D.11. By Assumption G.1, we have

r-deco
γ(M,M) = sup

µ∈∆(M)
inf

p∈∆(Π)
Eπ∼p,M∼µ

[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
.

Observe that since Hellinger distance satisfies the triangle inequality, we have that for all π ∈ Π,

EM,M ′∼µ
[
D2

H

(
M(π),M ′(π)

)]
≤ 2EM∼µ

[
D2

H

(
M(π),M(π)

)]
+ 2EM ′∼µ

[
D2

H

(
M ′(π),M(π)

)]
= 4EM∼µ

[
D2

H

(
M(π),M(π)

)]
.
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As a result, we have

r-deco
γ(M,M) ≤ sup

µ∈∆(M)
inf

p∈∆(Π)
Eπ∼p,M∼µ

[
fM(πM)− fM(π)− γ

4
· EM ′∼µD2

H

(
M(π),M ′(π)

)]
≤ sup

ν∈∆(M)
sup

µ∈∆(M)
inf

p∈∆(Π)
Eπ∼p,M∼µ

[
fM(πM)− fM(π)− γ

4
· EM ′∼ν D2

H

(
M(π),M ′(π)

)]
≤ sup

ν∈∆(M)
inf

p∈∆(Π)
sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ

4
· EM ′∼ν D2

H

(
M(π),M ′(π)

)]
= sup

ν∈∆(M)
r-deco,rnd

γ/4 (M, ν).

For the second inequality in (40), it follows immediately from convexity of squared Hellinger distance
that supν∈∆(M) r-deco,rnd

γ (M, ν) ≤ supM∈co(M) r-deco
γ(M,M).

We now prove (41). Let ε > 0 be given. Since the strong regularity condition is satisfied relative
toM+, Proposition J.4 withM′ =M+ implies that

sup
M∈M+

r-decc
ε(M∪ {M},M) ≤ Cloc · sup

M∈M+

r-decc
Creg·ε(Mα(M) ∪ {M},M),

where α := C2
reg ·

(
ε+ supM∈M+ r-decc

ε(M∪ {M},M)
)
. Now, let

M̃α(M) =
{
M ∈M | fM(πM) ≤ fM(πM) + α, fM(πM) ≤ fM(πM) + α

}
.

Using Lemma J.2, along with the fact that α ≥ C2
reg · ε ≥

√
2Creg · ε since Creg ≥

√
2, we have that

sup
M∈M+

r-decc
Creg·ε(Mα(M) ∪ {M},M) ≤ sup

M∈M+

r-decc√
2Creg·ε

(M̃α(M) ∪ {M},M) +
√

2Cregε.

Let M̃ be the model inM+ that attains the maximum in the right-hand side above, and setM′ =
M̃α(M̃). Let γ > 0 be fixed. Using Proposition D.1, we have

r-decc√
2Cregε

(M′ ∪ {M̃}, M̃) ≤ 8 sup
M∈M+

r-deco
γ(M′,M) ∨ 0 + 16C2

regγε
2 + 7

√
2Cregε.

By Eq. (40), we have

sup
M∈M+

r-deco
γ(M′,M) ≤ sup

ν∈∆(M′)
r-deco,rnd

γ/4 (M′, ν).

Consider any ν ∈ ∆(M′) and let Mν := EM ′∼ν [M ′] ∈ co(M′) ⊆ co(M). Observe that if
M ∈M′ = M̃α(M̃), then

fM(πM) ≤ f M̃(πM̃) + α ≤ EM ′∼ν
[
fM
′
(πM̃)

]
+ 2α ≤ max

π∈Π
EM ′∼ν

[
fM
′
(π)
]

+ 2α = fMν (πMν ) + 2α.

Hence,M′ ⊆M2α(Mν), and we have the upper bound

sup
ν∈∆(M′)

r-deco,rnd
γ/4 (M′, ν) ≤ sup

ν∈∆(M)
r-deco,rnd

γ/4 (M2α(Mν), ν).
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For any ν ∈ ∆(M), Proposition J.1 implies that

r-deco,rnd
γ/4 (M2α(Mν), ν) ≤ r-decc,rnd

4
√
α/γ

(M∪ {Mν}, ν) +
2

γ
.

Putting everything together, this establishes that for all γ > 0,

sup
M∈M+

r-decc
ε(M∪ {M},M) ≤ Cloc ·

(
8 sup
ν∈∆(M)

r-decc,rnd

4
√
α/γ

(M∪ {Mν}, ν) + 8
√

2Cregε+ 16γC2
regε

2 +
16

γ

)

≤ Cloc ·

(
8 sup
ν∈∆(M)

r-decc,rnd

4
√
α/γ

(M∪ {Mν}, ν) + 24C2
regγε

2 +
24

γ

)
.

We choose γ = 1
24ClocC4

reg
· α
ε2

. Since ε2/α ≤ ε, this gives

sup
M∈M+

r-decc
ε(M∪ {M},M) ≤ c1 · sup

ν∈∆(M)
r-decc,rnd

c2ε (M∪ {Mν}, ν) +
1

2C2
reg

α+ c4ε,

≤ c1 · sup
ν∈∆(M)

r-decc,rnd
c2ε (M∪ {Mν}, ν) +

1

2
sup

M∈M+

r-decc
ε(M∪ {M},M) + c3ε,

where c1, c2, c3, c4 > 0 are constants that depend only on Creg and Cloc. Rearranging yields the first
inequality in Eq. (41); the second inequality now follows from Jensen’s inequality.

Appendix K. Omitted Proofs from Appendix E

Proof of Corollary E.1. The lower bound is an immediate corollary of Proposition D.8, so let us
prove the upper bound. Let ε > 0 be fixed. Using Proposition D.6, we have

r-decc
ε(M,M) ≤ Cloc · r-decc

Cregε(Mα(M),M),

where α = C2
reg ·

(
ε+ r-decc

ε(M,M)
)
. Recall that we assume Creg, Cloc = O(1). Hence, for all

γ > 0 be fixed, using Proposition D.1, we have

r-decc
Cregε(Mα(M),M) ≤ O

(
r-deco

γ(Mα(M),M) ∨ 0 + γε2 + ε
)
.

Proposition D.1 also gives

α = O(ε+ r-decc
ε(M,M)) ≤ O(ε+ r-deco

γ(M,M) ∨ 0 + γε2) ≤ O(r-deco
γ(M,M) ∨ 0 + γε2 + γ−1) = α(ε, γ),

where the second inequality is AM-GM. This establishes the result.

Proof for Example E.1. We first lower bound the quantity in Eq. (44), then prove an upper bound on
the regret of E2D+.
Lower bound on offset DEC and regret bound from Eq. (44). We start with a basic lower bound on
the offset DEC for the classMα,β .
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Lemma K.1. Let α ∈ (0, 1/4), β ∈ (0, 1) and A ≥ 2 be given. For all γ > 0,

r-deco
γ(Mα,β, M̃) = r-deco

γ(Mα,β
α (M̃), M̃) ≥ α

2 + 8γβ
− 4γ/A.

We now prove a lower bound on the quantity

R := min
γ>0

max

{
sup

M∈co(M)

r-deco
γ(M∆(γ,T )(M),M) · T, γ · log|M|

}
appearing in Eq. (44). We begin by lower bounding the localization radius

∆(γ, T ) = Ω
( γ
T

+ r-deco
γ(M)

)
.

We choose α1 = 1/2 and A = T 2, so that whenever T is a sufficiently large constant, Lemma K.1
gives

∆(γ, T ) ≥ Ω
( γ
T

+ r-deco
γ(Mα1,β, M̃)

)
≥ Ω

(
γ

T
+

1

1 + γβ
− 4γ/A

)
≥ Ω

(
γ

T
+

1

1 + γβ

)
≥ Ω

(√
1

βT
∧ 1

)
.

It follows that as long as β ≥ 1/T , if we set

α2 = c ·
√

1

βT
,

where c is a sufficiently small numerical constant, then regardless of how γ is chosen,

Mα2,β(M̃) ⊆M∆(γ,T )(M̃),

and

R ≥ min
γ>0

max

{
r-deco

γ(Mα2,β(M̃), M̃) · T, γ
}
.

Applying Lemma K.1 once more, we have

R ≥ Ω

(
min
γ>0

{
α2T

1 + γβ
+ γ

})
≥ Ω

(
α2T ∧

√
α2T

β

)
≥ Ω

(
β−1/2T 1/2 ∧ β−3/4T 1/4

)
.

We set β = T−1/2, which gives
R ≥ Ω(T 5/8),

as desired.
Upper bound on constrained DEC and regret of E2D+. We now bound the regret of E2D+ via
Theorem C.2. We first bound the constrained DEC.

Lemma K.2. Let β ∈ (0, 1) be given, and letMall := ∪α∈(0,1/2]Mα,β . Then for all ε > 0,

r-decc
ε(M) ≤ r-decc

ε(Mall) ≤ O
(
ε2

β

)
.
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Let β ∝ T−1/2 and A ∝ T 2 as in the prequel. Plugging the bound from Lemma K.2 into
Theorem C.2 (cf. Eq. (90)) gives

E[RegDM(T )] ≤ Õ
(
ε(T )2

β
· T +

√
T

)
= Õ

(√
T
)
,

since, with the usual choice of estimation oracle, we can take ε(T ) ≤ Õ
(√

log|M|
T

)
and log|M| ≤

O(log(A)) ≤ O(log(T )).

Proof of Lemma K.1. We first remark thatMα,β =Mα,β
α (M̃), since f M̃(π) = 1/2 for all π ∈ [A],

and all M ∈Mα,β have fM(πM) ≤ 1/2 + α.
We now lower bound the value of the offset DEC. Consider any distribution p ∈ ∆(Π), and let

i := arg mini∈[A] p(i), so that p(i) ≤ 1/A. We have

Eπ∼p
[
fMα,i(πMα,i)− f

Mα,i(π)
]
≥ α · (1− 1/A− p(π◦)) +

1

4
p(π◦) ≥

α

2
,

since α ≤ 1/4 and A ≥ 2. We now bound the Hellinger distance via

Eπ∼p
[
D2

H

(
Mα,i(π), M̃(π)

)]
≤ p(π◦) ·D2

H

(
Mα,i(π◦), M̃(π◦)

)
+ 2p(i).

Observe that D2
H

(
Mα,i(π◦), M̃(π◦)

)
≤ 2β and p(i) ≤ 1/A, so that

Eπ∼p
[
D2

H

(
Mα,i(π), M̃(π)

)]
≤ 2β · p(π◦) + 2/A.

Combining the calculations so far gives

Eπ∼p
[
fMα,i(πMα,i)− f

Mα,i(π)− γ ·D2
H

(
Mα,i(π), M̃(π)

)]
≥ α

2
− 2γβp(π◦)− 4γ/A.

On the other hand, by choosing M = M̃ , we have

Eπ∼p
[
f M̃(πM̃)− f M̃(π)− γ ·D2

H

(
M̃(π), M̃(π)

)]
=

1

2
p(π◦),

so that

r-deco
γ(Mα,β, M̃) ≥ min

p∈∆(Π)
max

{
α

2
− 2γβp(π◦),

1

2
p(π◦)

}
− 4γ/A,

≥ α

2 + 8γβ
− 4γ/A.

Proof of Lemma K.2. Let M ∈ co(Mall) and ε ≤ 1/10 be given. Assume that 25 ε
2

β ≤ 1/2, as the
result is trivial otherwise.
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Let i = arg maxi∈[A] Po∼M(π◦)
(o = i) and set p = (1− 25 ε

2

β )q + 25 ε
2

β Iπ◦ , where q ∈ ∆([A])

is another distribution whose value will be chosen shortly. We first observe that if Mα,j ∈Mα,β ⊆
Mall for some α > 0 and j 6= i, then since Po∼M(π◦)

(o = j) ≤ β/2, we have

D2
H

(
Mα,j(π◦),M(π◦)

)
≥
(√

Po∼Mα,j(π◦)(o = j)−
√
Po∼M(π◦)

(o = j)
)2
≥ (
√
β −

√
β/2)2 ≥ β

20
,

where we have used that Po∼Mα,j(π◦)(o 6=⊥) = Po∼M(π◦)
(o 6=⊥) = β, since M ∈ co(Mall). It

follows that regardless of how q ∈ ∆([A]) is chosen, Mα,j /∈ Hp,ε(M), since

Eπ∼p
[
D2

H

(
Mα,j(π),M(π)

)]
≥ 25β

20β
ε2 > ε2.

Hence, if we defineM′i = {Mα,i ∈ Mall | α ∈ (0, 1/2]}, we have Hp,ε(M) ∪ {M} ⊆ M′i ∪
{M̃} ∪ {M}, and it remains to choose q such that the regret on all of these models is small. We
note that Eπ∼p

[
gM̃
]
≤ 25 ε

2

β regardless of how q is chosen, so we restrict our attention to M andM′i
going forward.

Let M? = arg minM∈M′i D
2
H

(
M(i),M(i)

)
. We will show that

fM(πM)− fM(i) ≤ D2
H

(
M?(i),M(i)

)
. (111)

To establish this fact, first note that if πM = i, then (111) is immediate. Otherwise, let νM ∈ ∆(Mall)
be such that M(π) = EM ′∼νM [M ′(π)] for all π ∈ Π, and then

fM(πM)− fM(i) = max
π∈[A]

EM ′∼νM
[
fM
′
(π)− fM′(i)

]
≤ 1

2
· PM ′∼νM

(
M ′ 6∈ M′i

)
≤ 1

2
· Pr∼M(i) (r = 1/2) ,

(112)

where the final inequality follows since all models M ′ ∈ Mall\M′i satisfy r = 1/2 a.s. when
r ∼M ′(i). Recall the elementary fact that for all events A and distributions P and Q.

(P(A)−Q(A))2

P(A) + Q(A)
≤ 2D2

H(P,Q). (113)

Since M? ∈M′i, we have Pr∼M?(i)(r = 1/2) = 0, and so, using (113), it follows that

Pr∼M(i)(r = 1/2) ≤ 2D2
H

(
M(i),M?(i)

)
,

and combining with (112) establishes (111).
To proceed, we choose q ∈ ∆([A]) by setting q(i) = 4ε2

D2
H(M?(i),M(i))

∧ 1, and q(πM) = 1− q(i).

We consider two cases

• If q(i) = 1, it is immediate that for all M ∈M′i, Eπ∼p[gM(π)] ≤ 25 ε
2

β . In addition,

4ε2

D2
H

(
M?(i),M(i)

) ≥ 1,

so (111) implies that

fM(πM)− fM(i) ≤ 4ε2.

It follows that Eπ∼p
[
gM(π)

]
≤ 25 ε

2

β + (fM(πM)− fM(i)) ≤ 25 ε
2

β + 4ε2.
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• If q(i) < 1, then for all M ∈M′i,

Eπ∼p
[
D2

H

(
M(π),M(π)

)]
≥ 1

2
q(i)D2

H

(
M(i),M(i)

)
≥ 1

2
q(i)D2

H

(
M?(i),M(i)

)
= 2ε2,

so M /∈ Hp,ε(M). It follows thatHp,ε(M)∩M′i = ∅. All that remains is to bound the regret
under M , which we do as follows:

Eπ∼p[gM(π)] ≤ q(i)(fM(πM)− fM(π)) + 25
ε2

β
≤ q(i) ·D2

H

(
M?(i),M(i)

)
+ 25

ε2

β

= 4ε2 + 25
ε2

β
.

Putting the cases above together, we conclude that

sup
M∈co(Mall)

r-decc
ε(Mall ∪ {M},M) ≤ O

(
ε2

β

)
.
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