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Abstract
For many computational problems involving randomness, intricate geometric features of the so-
lution space have been used to rigorously rule out powerful classes of algorithms. This is often
accomplished through the lens of the multi Overlap Gap Property (m-OGP), a rigorous barrier
against algorithms exhibiting input stability. In this paper, we focus on the algorithmic tractability
of two models: (i) discrepancy minimization, and (ii) the symmetric binary perceptron (SBP), a
random constraint satisfaction problem as well as a toy model of a single-layer neural network.

Our first focus is on the limits of online algorithms. By establishing and leveraging a novel
geometrical barrier, we obtain sharp hardness guarantees against online algorithms for both the
SBP and discrepancy minimization. Our results match the best known algorithmic guarantees, up to
constant factors. Our second focus is on efficiently finding a constant discrepancy solution, given a
random matrix M ∈ RM×n. In a smooth setting, where the entries of M are i.i.d. standard normal,
we establish the presence of m-OGP for n = Θ(M logM). Consequently, we rule out the class
of stable algorithms at this value. These results give the first rigorous evidence towards Altschuler
and Niles-Weed (2022, Conjecture 1).

Our methods use the intricate geometry of the solution space to prove tight hardness results for
online algorithms. The barrier we establish is a novel variant of the m-OGP. Furthermore, it regards
m-tuples of solutions with respect to correlated instances, with growing values of m, m = ω(1).
Importantly, our results rule out online algorithms succeeding even with an exponentially small
probability.
Keywords: Discrepancy, Binary perceptron, overlap gap property, statistical-to-computational gap.

1. Introduction

In this paper, we study the discrepancy minimization problem and the perceptron model. Combi-
natorial discrepancy theory (Spencer, 1985; Matousek, 1999) is a central topic at the intersection
of combinatorics, probability, and algorithms. Given a matrix M ∈ RM×n, the central task in
discrepancy theory is computing or bounding the quantity

D(M) ≜ min
σ∈Σn

∥∥Mσ
∥∥
∞,
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known as the discrepancy of M.
The perceptron is a toy one-layer neural network model storing random patterns as well as a very

natural high-dimensional probabilistic model, see Joseph and Hay (1960); Winder (1961); Wendel
(1962); Cover (1965) for early works on it. Given random patterns Xi ∈ Rn, 1 ≤ i ≤ M , storage
is achieved if one finds a σ ∈ Rn ‘consistent’ with all Xi: ⟨σ, Xi⟩ ≥ 0 for 1 ≤ i ≤ M . The vector
σ is interpreted as synaptic weights; it can either lie on the sphere in Rn, ∥σ∥2 =

√
n, or have

binary entries, σ ∈ Σn = {−1, 1}n. The former is dubbed as the spherical perceptron, see Gardner
(1988); Shcherbina and Tirozzi (2003); Stojnic (2013); Talagrand (2011); Alaoui and Sellke (2020)
for relevant work. In this paper, we only focus on the latter, dubbed as the binary perceptron.
A fundamental object studied in the perceptron literature is the storage capacity: the maximum
number of (random) patterns that can be stored with a suitable σ, see Gardner (1987, 1988); Gardner
and Derrida (1988). Krauth and Mézard (1989) gave a detailed though non-rigorous characterization
of the storage capacity. More recently, perceptron models with an activation function U : R →
{0, 1} are considered, where a pattern Xi is stored with respect to (w.r.t.) U if U(⟨σ, Xi⟩) =
1. Of particular interest to us is the activation U(x) = 1|x|≤κ

√
n which defines the symmetric

binary perceptron (SBP) model proposed by Aubin et al. (2019) (see also Bolthausen et al. (2021);
Nakajima and Sun (2023) for results on more general perceptron models and Kızıldağ and Wakhare
(2023) for a version of the SBP where random labels independent of the disorder are incorporated
to the model). As we see below, the SBP is closely related to discrepancy minimization.

1.1. Discrepancy Minimization

The discrepancy literature pertains to both worst-case and average-case M. In the worst-case,
minimal structure is assumed on M, whereas in the average-case, the entries of M are random,
e.g. i.i.d. Bernoulli, Rademacher, or standard normal. Moreover, both existential as well as algorith-
mic results are sought in discrepancy theory.

Concerning the worst-case analysis, a landmark result in the area is due to Spencer (1985):
D(M) ≤ 6

√
n if M ∈ Rn×n with |Mij | ≤ 1 for 1 ≤ i, j ≤ n (‘six standard deviations suf-

fice’). The significance of this result is the improvement over the discrepancy guaranteed by the
basic probabilistic method: the discrepancy incurred by a random signing is of order Θ(

√
n log n)

which is substantially larger than O(
√
n). It is worth noting that Spencer’s result is worst-case and

non-constructive, but recent work by Bansal (2010); Lovett and Meka (2015); Levy et al. (2017);
Rothvoss (2017) has given efficient algorithms to find such low discrepancy solutions.

In this paper we focus on average-case discrepancy. Suppose M ∈ RM×n has i.i.d. N (0, 1)
entries and M = o(n). In this case, a line of work initiated in Karmarkar et al. (1986) (for M = 1)
and subsequently continued in Costello (2009); Turner et al. (2020) (for M ≥ 2) established that
D(M) = Θ(

√
n2−n/M ) w.h.p. Algorithmic results in this regime are found in Karmarkar and

Karp (1982); Yakir (1996); Turner et al. (2020). In the special case of M = 1, Gamarnik and
Kızıldağ (2021) gave rigorous evidence that finding a σ with ∥Mσ∥∞ = 2−ω(

√
n logn) may be

algorithmically intractable. On the other hand when M = Θ(n), then it turns out D(M) = Θ(
√
n)

and this case is closely related to the SBP, see Section 1.3 for more details.
Next suppose the entries of M are i.i.d. binary, e.g. Rademacher or Bernoulli(p). In this case,

while still D(M) = Θ(
√
n) w.h.p. when M = Θ(n), but it turns out that constant discrepancy, in

fact D(M) = 1, is possible when n is much larger than M . The sharpest possible result to this end
is due to Altschuler and Niles-Weed (2022) who completely resolved the question of exactly when
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D(M) ≤ 1: D(M) ≤ 1 if M consists of Bernoulli(p) entries with arbitrary p and n ≥ CM logM ,
where C is any arbitrary constant greater than (2 log 2)−1. Their result covers in particular the sparse
regime, p = o(1), and is the sharpest possible as n = Ω(M logM) is needed for D(M) to be O(1):
if n = CM logM for C < (2 log 2)−1 and p = 1/2, then w.h.p. no constant discrepancy solutions
exist. Earlier results towards this direction are found in Hoberg and Rothvoss (2019); Franks and
Saks (2020); Potukuchi (2018). Equipped with this existential guarantee from Altschuler and Niles-
Weed (2022), a natural algorithmic question is whether one can find such a constant discrepancy
solution in polynomial time. This task is conjecturally hard (see Altschuler and Niles-Weed, 2022,
Conjecture 1). The algorithmic tractability of this problem is a main focuses of the present paper.

1.2. Symmetric Binary Perceptron (SBP)

Fix κ > 0, α > 0, and set M = ⌊nα⌋ ∈ N. Let Xi ∼ N (0, In), 1 ≤ i ≤ M , be i.i.d. random vec-
tors, where N (0, In) is the centered multivariate normal distribution in Rn with identity covariance.
Consider the (random) set

Sα(κ) =
{
σ ∈ Σn : |⟨σ, Xi⟩| ≤ κ

√
n, 1 ≤ i ≤ M

}
=
{
σ ∈ Σn :

∥∥Mσ
∥∥
∞ ≤ κ

√
n
}
, (1)

where M ∈ RM×n with rows X1, . . . , XM . The word symmetric refers to the fact σ ∈ Sα(κ) iff
−σ ∈ Sα(κ). The SBP was put forth by Aubin, Perkins, and Zdeborová (2019) as a symmetric
counterpart to the asymmetric binary perceptron (ABP), where the constraints are instead of form
⟨σ, X⟩ ≥ κ

√
n, 1 ≤ i ≤ M . The ABP turns out very challenging mathematically, see Krauth and

Mézard (1989); Kim and Roche (1998); Talagrand (1999); Xu (2021); Ding and Sun (2019); Perkins
and Xu (2021); Abbe et al. (2021a); Gamarnik et al. (2022a); Kızıldağ (2022) for relevant work and
more details. The SBP, on the other hand, retains pertinent structural properties conjectured for the
ABP (Baldassi et al., 2020), while being more amenable to rigorous analysis thanks to the symmetry.

The SBP undergoes a sharp phase transition, conjectured in Aubin et al. (2019) and subse-
quently proven independently by Perkins and Xu (2021) and Abbe et al. (2021b). Let

αc(κ) ≜ − 1

log2 P[|Z| ≤ κ]
, where Z ∼ N (0, 1). (2)

Then

lim
n→∞

P
[
Sα(κ) ̸= ∅

]
=

{
0, if α > αc(κ)

1, if α < αc(κ)
. (3)

The part α > αc(κ) is due to Aubin et al. (2019) and established via an application of the first
moment method: E

[
|Sα(κ)|

]
= o(1) if α > αc(κ), so Sα(κ) = ∅ w.h.p. by Markov’s inequality.

The same paper also studies the case α < αc(κ) and establishes, through the second moment
method, that lim infn→∞ P

[
Sα(κ) ̸= ∅

]
> 0. Boosting this to a high probability guarantee requires

more powerful tools, see Perkins and Xu (2021) for a delicate martingale argument and Abbe,
Li, and Sly (2021b) for an argument based on a fully connected analog of the small subgraph
conditioning method. Furthermore, very recently, the critical window around αc(κ) was shown to
be of constant width, see Altschuler (2022); Sah and Sawhney (2023). These facts highlight that the
first moment ‘prediction’ for the precise location of the phase transition is correct, and the transition
is very sharp.
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Given that Sα(κ) is w.h.p. non-empty if α < αc(κ), a natural follow-up question is algorithmic:
can a solution σ ∈ Sα(κ) be found efficiently? And does the existence of efficient algorithms de-
pend on α? Efficient algorithms at small densities α were given in Kim and Roche (1998) and Abbe
et al. (2021a) for the ABP and SBP respectively while on the negative side, Gamarnik et al. (2022a)
studied the limits of efficient algorithms (see details below). The works Baldassi et al. (2007, 2015,
2020) put forth possible explanations for the success of efficient algorithms: while almost all solu-
tions are totally frozen (conjectured in Mézard et al. (2005); Huang and Kabashima (2014)), effi-
cient algorithms access rare solutions lying in large clusters. Recent works including Perkins and
Xu (2021); Abbe et al. (2021b,a) have studied these structural predictions.

1.3. Connections between Discrepancy Theory and the SBP

In order to explicate the connection between discrepancy minimization and the SBP, we focus on
the proportional regime, i.e. M = Θ(n). The discrepancy viewpoint is to take an M ∈ RM×n

with a fixed aspect ratio α = M/n, and to seek a σ such that ∥Mσ∥∞ is as small as possible.
The perceptron viewpoint, on the other hand, is the inverse: fix a κ > 0 first and seek the largest
α for which a solution σ with ∥Mσ∥∞ ≤ κ

√
n exists. Furthermore, the asymptotic value of the

average-case discrepancy in the proportional regime immediately follows from the sharp threshold
result for the SBP (3): D(M) = (1+o(1))f(α)

√
n w.h.p., where f(α) is the ‘inverse’ of αc(κ) (2).

Algorithmic Connections The connection between the SBP and discrepancy theory further ex-
tends to algorithmic domain: the best known efficient algorithm for the SBP comes from the dis-
crepancy literature. Suppose M ∈ RM×n has i.i.d. Rademacher entries. Bansal and Spencer (2020)
devised an efficient online algorithm that finds a σALG ∈ Σn such that ∥MσALG∥∞ = O(

√
M)

w.h.p. if n ≥ M = ω(1). Informally, an algorithm is online if the tth coordinate of the output σALG

depends only on first t columns of M, see Definition 7 for a formal definition. As an immediate
corollary, this yields an efficient algorithm for the SBP that finds a solution σ ∈ Sα(κ) w.h.p. if
α = O(κ2) (Gamarnik et al., 2022a, Corollary 3.6). In fact, this is the best known algorithmic
guarantee both for the SBP and for discrepancy in the random proportional regime, see Gamarnik
et al. (2022a, Section 3.3).

In light of these existential and algorithmic results, it appears that the SBPmay exhibit a striking
statistical-to-computational gap (SCG): the density below which solutions exist w.h.p., i.e.αc(κ),
is substantially larger than those below which polynomial-time search algorithms work. Further,
this SCG is most profound when κ → 0. While the Bansal-Spencer algorithm works only when
α = O(κ2), solutions do exist w.h.p. below αc(κ) which, per (2), is asymptotically 1

log2(1/κ)
.

Origins of this SCG were investigated in Gamarnik et al. (2022a), where it was shown that the
SBP exhibits an intricate geometrical property called the multi Overlap Gap Property (m-OGP)
when α = Ω(κ2 log2

1
κ) and consequently stable algorithms fail to find a satisfying solution for

α = Ω(κ2 log2
1
κ). It is worth noting, though, that stable algorithms need not include online algo-

rithms, which achieve the computational threshold for the SBP. What the limits of online algorithms
are is an open question we undertake in this paper.

In addition to the SBP, the discrepancy minimization problem — in particular the algorithmic
problem of efficiently finding a constant discrepancy solution when such solutions exist w.h.p. —
also exhibits a similar SCG. To recall, when M ∈ RM×n, then constant discrepancy solutions exist
w.h.p. as soon as n = Ω(M logM). On the other hand, the best known polynomial-time algorithm
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succeeds at a dramatically smaller value M = o(log n) (Bansal, 2022), highlighting another striking
SCG. This is our second focus in the present paper.

1.4. Main Results

Suppose M per (1) consists of i.i.d.N (0, 1) entries. Our first main result establishes that online
algorithms fail to find a satisfying solution for the SBP at densities α = Ω(κ2).

Theorem 1 (Informal, see Theorem 9) For densities α = Ω(κ2), online algorithms fail to find a
solution for the SBP w.p. greater than e−Θ(n).

Our next result extends Theorem 1 to the discrepancy minimization problem when M ∈ RM×n

consists of i.i.d. Rademacher or i.i.d. Bernoulli(p) entries.

Theorem 2 (Informal, see Theorems 10-11) There exists c > 0 such that online algorithms fail
to return a solution of discrepancy at most c

√
M w.p. greater than e−Θ(M).

If the entries of M are Rademacher, taking c = 1/24 suffices. For Bernoulli case, the implied
constant depends on p: it suffices to take c ≜ cp =

√
p− p2/24. Taken together, Theorems 1 and 2

collectively yield that among the class of online algorithms, Bansal-Spencer algorithm (Bansal and
Spencer, 2020) is optimal up to constants for both models. Our proof is based on a novel version
of m-OGP: we show the non-existence of tuples of solutions agreeing on first 1 − ∆ fraction of
coordinates for a suitable ∆ ∈ (0, 1), for a collection of m correlated instances, see below for
details. This barrier is more restricted than m-OGP, which asserts the non-existence of tuples of
solutions at a prescribed distance. Additionally, for Theorem 2, one has to consider m-tuples with
growing values of m, m = ω(1); this idea is originally due to Gamarnik and Kızıldağ (2021) for
lowering the m-OGP threshold.

To the best of our knowledge, Theorems 1-2 are the first (up-to-constants) tight hardness guar-
antees via geometrical barriers against classes beyond stable algorithms, see Section 1.5 for de-
tails. Furthermore, unlike prior work (Gamarnik et al., 2020; Wein, 2020; Huang and Sellke, 2021;
Gamarnik and Kızıldağ, 2021; Gamarnik et al., 2022a), the algorithms ruled out need not succeed
w.h.p. or even with a constant probability: an exponentially small success probability suffices. This
is made possible by using a clever application of Jensen’s inequality, originally due to Gamarnik
and Sudan (2017b).

A Technical Remark It is worth mentioning that a lower bound against online algorithms is
important also from a technical point of view. Online algorithms need not be stable, so a hardness
result for stable algorithms (via, e.g., the m-OGP) does not necessarily imply such a result for
online algorithms. For instance, it is not known whether the algorithm by Bansal and Spencer
(2020) is stable (in fact, it appears challenging to carry out a stability analysis due to the presence
of a certain non-linearity, see Gamarnik et al. (2022a) for details), therefore the hardness result
of Gamarnik et al. (2022a) does not apply to this algorithm. On the other hand, Theorems 1-2 yield
a tight lower bound against this algorithm through a different geometrical barrier. Furthermore, yet
another algorithm for the SBP is due to Abbe et al. (2021a), whose stability is left open in Gamarnik
et al. (2022a). It appears that this algorithm is ‘almost’ online, so the hardness result of Theorem 1
likely covers this algorithm as well, see the discussion following Theorem 9 for details.
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Proof Sketch We sketch the proof of Theorem 1, which is based on a new version of m-OGP
coupled with a contradiction argument. Suppose that such an online algorithm A with a success
probability of ps exists. Let M1 ∈ RM×n with i.i.d.N (0, 1) entries. Fix an m ∈ N and a ∆ ∈
(0, 1), generate random matrices Mi ∈ RM×n, 2 ≤ i ≤ m, by independently resampling the last
∆n columns of M1. Running A on each Mi, we obtain solutions σi ≜ A(Mi) ∈ Σn, 1 ≤ i ≤ m.
An application of Jensen’s inequality then reveals ∥Miσi∥∞ ≤ κ

√
n, 1 ≤ i ≤ m, w.p. at least

pms . Furthermore, since A is online, it is the case that any σi and σj necessarily have identical first
n − ∆n coordinates. Namely, if such an A exists, then w.p. at least pms , there exists an m-tuple
(σ1, . . . ,σm) of satisfying solutions that agree on first n − ∆n coordinates. We then establish,
using the first moment method, that for suitably chosen m,∆; the probability that such an m-tuple
exists is in fact strictly less than pms . This is a contradiction. The proof of Theorem 2 is similar,
though it requires additional technical steps. In particular, one needs an anti-concentration argument
for signed sums of binary variables via Berry-Esseen Theorem.

Our next focus is on the algorithmic problem of efficiently finding a constant discrepancy
solution, given a random M ∈ RM×n. To recall, such solutions exist w.h.p. as soon as n =
Ω(M logM) (Altschuler and Niles-Weed, 2022), while the best known polynomial-time algorithm
works only when M = o(log n) (Bansal, 2022). Further, it was conjectured in Altschuler and
Niles-Weed (2022) that this task is algorithmically hard. Towards this conjecture, we focus on a
smooth setting where the entries of M are i.i.d.N (0, 1). Our next main result shows the presence
of m-OGP with m = O(1) when n = Θ(M logM), giving a rigorous evidence of hardness at the
‘boundary’ n = Θ(M logM).

Theorem 3 (Informal, see Theorem 13) For n = Θ(M logM), the set of constant discrepancy
solutions exhibits m-OGP (with constant m) for suitably chosen parameters.

The regime log n ≪ M ≪ n/ log n as well as extensions beyond Gaussian disorder—in particular
to the Bernoulli or Rademacher case—are among the open problems we discuss in Section 1.6.

Our final main result leverages the m-OGP to show that stable algorithms fail to find a con-
stant discrepancy solution when n = Θ(M logM). Informally, an algorithm is stable if a small
perturbation of its inputs induces only a small change in its output σ, see Definition 14 for a
formal statement. The class of stable algorithm has been shown to capture powerful classes of
algorithms including low-degree polynomials (Gamarnik et al., 2020; Bresler and Huang, 2022),
Approximate Message Passing (AMP) (Gamarnik and Jagannath, 2021), and Boolean circuits of
low-depth (Gamarnik et al., 2021b).

Theorem 4 (Informal, see Theorem 15) For n = Θ(M logM), stable algorithms fail to find a
constant discrepancy solution w.p. greater than a certain constant.

The proof of Theorem 4 is based on a Ramsey-theoretic argument developed in Gamarnik and
Kızıldağ (2021) and also used in Gamarnik et al. (2022a) coupled with the m-OGP result, Theo-
rem 13; it rules out stable algorithms succeeding with a constant probability.

A Brief Summary of Main Results To navigate the reader, we recapitulate the algorithmic prob-
lems studied in this paper and summarize the content of each of our main algorithmic hardness
results. Our focus is on three algorithmic questions:

• P1: Given α, κ > 0 and an M ∈ RM×n (M = ⌊nα⌋) with i.i.d. entries, find a satisfying
solution to the SBP, i.e. a σ ∈ Σn such that ∥Mσ∥∞ ≤ κ

√
n. When κ → 0, such a σ exists

6
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when α = Oκ(
1

log(1/κ)) (Perkins and Xu, 2021; Abbe et al., 2021b), whereas the best known
polynomial-time algorithm works only when α = Oκ(κ

2) (Bansal and Spencer, 2020).

• P2: Given an M ∈ RM×n with i.i.d. entries, find a σ ∈ Σn such that ∥Mσ∥∞ is small.
When n ≥ M = ω(1), the best known online algorithm1 returns a solution of objective value
O(

√
M) (Bansal and Spencer, 2020).

• P3: Given an M ∈ RM×n with i.i.d. entries, find a σ ∈ Σn such that ∥Mσ∥∞ = O(1),
whenever it exists (w.h.p.). Such a σ exists (w.h.p.) iff n = Ω(M logM) (Altschuler and
Niles-Weed, 2022), whereas the best known polynomial-time algorithm works only when
M = o(log n) (Bansal, 2022).

Table 1: Summary of Main Results

Theorem Algorithmic Problem Disorder Hardness Against At Value
Theorem 9 P1 Gaussian Online Algorithms Ω(κ2)

Theorem 10 P2 Rademacher Online Algorithms Ω(
√
M)

Theorem 11 P2 Bernoulli Online Algorithms Ω(
√
M)

Theorem 15 P3 Gaussian Stable Algorithms Ω(M logM)

1.5. Background and Prior Work

Statistical-to-Computational Gaps (SCGs) Both the SBP and discrepancy minimization exhibit
an SCG: known efficient algorithms perform strictly worse than the existential guarantee. Such
gaps are a universal feature of many average-case algorithmic problems arising from random com-
binatorial structures and high-dimensional statistical inference. A partial list of problems with an
SCG include random CSPs (Mézard et al., 2005; Achlioptas and Ricci-Tersenghi, 2006; Achliop-
tas and Coja-Oghlan, 2008; Gamarnik and Sudan, 2017b; Bresler and Huang, 2022), optimization
over random graphs (Gamarnik and Sudan, 2014; Coja-Oghlan and Efthymiou, 2015; Wein, 2020),
spin glasses (Gamarnik and Jagannath, 2021; Huang and Sellke, 2021), planted clique (Deshpande
and Montanari, 2015; Barak et al., 2019), and tensor decomposition (Wein, 2022), see also the sur-
veys Gamarnik (2021); Gamarnik et al. (2022b). Unfortunately, standard computational complexity
theory is often useless due to the average-case nature of such problems2. Nevertheless, a very
promising line of research proposed various frameworks that provide rigorous evidence of hard-
ness. These frameworks include average-case reductions—often from the planted clique (Berthet
and Rigollet, 2013; Brennan et al., 2018; Brennan and Bresler, 2019)—as well as unconditional
lower bounds against restricted classes of algorithms, including the statistical query algorithms (Di-
akonikolas et al., 2017; Feldman et al., 2017, 2018), low-degree polynomials (LDP) (Hopkins, 2018;
Kunisky et al., 2022; Wein, 2022), sum-of-squares hierarchy (Hopkins et al., 2015, 2017; Raghaven-
dra et al., 2018; Barak et al., 2019), AMP (Zdeborová and Krzakala, 2016; Bandeira et al., 2018),
and MCMC (Jerrum, 1992; Dyer et al., 2002). Yet another such approach is based on the intricate
geometry of the solution space through the Overlap Gap Property.

1. It is worth noting though that for P2, the class of online algorithms yield the best known polynomial-time algorithmic
guarantee only in the proportional regime, n = Θ(M).

2. Modulo a few exceptions, see e.g. Ajtai (1996); Boix-Adserà et al. (2021); Gamarnik and Kızıldağ (2021).
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Intricate Geometry and the Overlap Gap Property (OGP) Prior work (Mézard et al., 2005;
Achlioptas and Ricci-Tersenghi, 2006; Achlioptas and Coja-Oghlan, 2008) discovered a very in-
triguing connection between intricate geometry and algorithmic hardness in the context of random
CSPs: the onset of algorithmic hardness roughly coincides with the emergence of an intricate ge-
ometry in the solution space. The OGP framework leverages insights from statistical physics to
rigorously link the intricate geometry to formal hardness. In the context of random optimization,
the OGP informally states that (w.h.p. over the randomness) any two near-optima are either ‘close’
or ‘far’: there exists 0 < ν1 < ν2 < 1 such that n−1 ⟨σ,σ′⟩ ∈ [0, ν1] ∪ [ν2, 1] for any pair of
near-optima σ,σ′ ∈ Σn. Namely, the region of normalized overlaps is topologically disconnected;
no pairs of near-optima at intermediate distances can be found. The OGP is a rigorous barrier for
large classes of algorithms exhibiting input stability—see below. See Gamarnik (2021) for a survey
on OGP.

Algorithmic Implications of OGP The first work establishing and leveraging OGP to rule out
algorithms is due to Gamarnik and Sudan (2014, 2017a). Their focus is on the problem finding
a large independent set in sparse random graphs on n vertices with average degree d, which ex-
hibits an SCG: the largest such independent set is of size 2 log d

d n (Frieze and Łuczak, 1992; Bayati
et al., 2010), whereas the best known efficient algorithm finds an independent set of size log d

d n.
They establish that any pair of independent sets of size larger than (1 + 1/

√
2) log dd n exhibit the

OGP. By leveraging the OGP, they then show that local algorithms fail to find an independent set of
size larger than (1 + 1/

√
2) log dd n. Subsequent research established and leveraged the OGP to rule

out other classes of algorithms (e.g., AMP (Gamarnik and Jagannath, 2021), low-degree polynomi-
als (Gamarnik et al., 2020; Wein, 2020; Bresler and Huang, 2022), Langevin dynamics (Gamarnik
et al., 2020; Huang and Sellke, 2021), low-depth circuits (Gamarnik et al., 2021b)) for various other
models (e.g., random graphs (Rahman and Virag, 2017; Gamarnik et al., 2020; Wein, 2020), spin
glass models (Chen et al., 2019; Gamarnik and Jagannath, 2021; Huang and Sellke, 2021), random
CSPs (Gamarnik and Sudan, 2017b; Bresler and Huang, 2022; Gamarnik et al., 2022a)). A very
important feature found across the algorithms ruled out by the OGP and other versions of intricate
geometry is input stability, similar to Definition 14 (apart from the failure of Monte Carlo Markov
Chain methods in planted models, e.g. Jerrum (1992); Arous et al. (2020); Gamarnik et al. (2021a)).
Our work marks the first instance of intricate geometry yielding tight algorithmic hardness against
classes beyond stable algorithms.

Multi OGP (m-OGP) The prior work by Gamarnik and Sudan (2014) discussed above establish
the failure of local algorithms at value (1 + 1/

√
2) log dd n. By considering a certain overlap pat-

tern involving many large independent sets, Rahman and Virag (2017) subsequently removed the
additional 1/

√
2 term; they showed that the onset of OGP precisely coincides with the algorithmic

log d
d n value. That is, one can potentially lower the onset of the OGP and rule out algorithms for a

broader range of parameters through more intricate overlap patterns. In a similar vein, Gamarnik
and Sudan (2017b) studied the Not-All-Equal k-SAT problem and showed the presence of the OGP
for the m-tuples of nearly equidistant satisfying assignments. Consequently, they obtained nearly
tight hardness guarantees against sequential local algorithms. A similar m-OGP was also employed
in Gamarnik and Kızıldağ (2021); Gamarnik et al. (2022a), and is also our focus here.

Recently, m-OGP for more intricate patterns were proposed. These forbidden patterns regard
m-tuples of solutions where for any 2 ≤ i ≤ m, the ith solution has ‘intermediate’ overlap with the
first i − 1 solutions. By doing so, tight hardness guarantees against low-degree polynomials were

8



GEOMETRIC BARRIERS FOR STABLE AND ONLINE ALGORITHMS

obtained for finding independent sets in sparse random graphs by Wein (2020) and for the random
k-SAT by Bresler and Huang (2022). Similarly, Huang and Sellke (2021) construct a very intricate
forbidden structure consisting of an ultrametric tree of solutions dubbed as the Branching OGP. By
leveraging the branching OGP, they obtain tight hardness guarantees against Lipschitz algorithms
for the p-spin model. Moreover, these papers establish the Ensemble m-OGP which regards m-
tuples that are near-optimal w.r.t. correlated instances. The Ensemble OGP emerged in Chen et al.
(2019); it has been instrumental in ruling out stable algorithms since. The investigation of m-tuples
of solutions w.r.t. correlated instances is at the core of our paper. Furthermore, we inspect m-tuples
with super-constant m, m = ω(1), to rule out online algorithms in Theorems 10-11. This idea
originated in Gamarnik and Kızıldağ (2021) for further lowering the m-OGP threshold.

Online Setting We highlight that online algorithms are not only meant to be simply one algorith-
mic approach to solving a problem. Instead, the online setting is a very important computational
model meant to address real-world decision making under uncertainty. This setting has been studied
extensively in the literature, in particular in machine learning (Rakhlin et al., 2010, 2011a,b; Rakhlin
and Sridharan, 2013) and convex optimization (Hazan et al., 2016). Moreover, the online setting
is of great importance also in the discrepancy literature, see e.g. Bansal et al. (2020, 2021); Bansal
and Spencer (2020) and the references therein. In particular, as we already mentioned, for both
the SBP and the random discrepancy in the proportional regime, the best known polynomial-time
algorithmic guarantee is online (Bansal and Spencer, 2020). Furthermore, many of the best known
polynomial-time algorithms for optimization in random structures, including the largest indepen-
dent set problem in a random graph and random constraint satisfaction problems (such as random
k-SAT), are greedy algorithms, which are implemented in an online fashion and thus are special
cases of online algorithms. Our results yield the first essentially tight unconditional lower bounds in
the online setting; they also yield a toolkit for establishing lower bounds against the class of online
algorithms for other average-case models exhibiting similar statistical-to-computational trade-offs
and transfer to different settings such as learning.

1.6. Open Problems

Geometrical Barriers for other Classes of Algorithms Prior work on OGP showed that intricate
geometry is a signature of algorithmic hardness, and gave lower bounds against stable algorithms.
Theorems 9, 10 and 11 extend this beyond stable algorithms; they leverage intricate geometry to
rule out online algorithms. It would be very interesting to rule out other classes of algorithms via
similar geometrical barriers.

Discrepancy Minimization beyond Gaussian Disorder Theorem 13 shows that, for M ∈ RM×n

with i.i.d. N (0, 1) entries and n = Θ(M logM), the set of constant discrepancy solutions ex-
hibits the m-OGP. A very interesting question is whether m-OGP still holds when the entries of
M are binary. Prior work established OGP both for models with discrete disorder (e.g., random
k-SAT (Gamarnik and Sudan, 2017b; Bresler and Huang, 2022), random graphs (Gamarnik and
Sudan, 2014, 2017a; Gamarnik et al., 2020; Wein, 2020)) as well as for models with continuous
disorder (e.g., spin glass models (Gamarnik and Jagannath, 2021; Huang and Sellke, 2021), num-
ber partitioning (Gamarnik and Kızıldağ, 2021), the SBP (Gamarnik et al., 2022a)). These results
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suggest that OGP exhibits universality: the distributional details of the disorder are immaterial3. In
light of these, we make the following conjecture:

Conjecture 5 For M ∈ RM×n with i.i.d. Rademacher or Bernoulli(p) entries and n = Θ(M logM),
set of constant discrepancy solutions exhibits m-OGP with suitable parameters.

Resolving Conjecture 5 may require understanding a probability term of the form P[Mv = x] for a
random v with i.i.d. binary entries and a deterministic M ∈ {−1, 1}m×n whose rows σ1, . . . ,σm

satisfy n−1 ⟨σi,σj⟩ = β for some fixed β and every 1 ≤ i < j ≤ m. One direction is to employ
local limit arguments; we leave this as an open problem for future investigation.

Discrepancy Minimization beyond n = Θ(M logM) Recall that constant discrepancy solutions
exist as soon as n = Θ(M logM), i.e. when M = O(n/ log n), while the best known polynomial-
time algorithm works only when M = o(log n). In light of these, Theorem 13 provides rigorous
evidence of hardness, yet only at the ‘boundary’. The regime log n ≪ M ≪ n/ log n is an interest-
ing direction left for future work. A potential avenue would be to consider a more intricate overlap
pattern, such as those in Wein (2020); Huang and Sellke (2021) or the branching OGP (Huang and
Sellke, 2021). To this end, we discover an intriguing phase transition (proof omitted):

Theorem 6 Let M ∈ RM×n with i.i.d. N (0, 1) entries. Fix a K > 0 and let S(m, δ,K) be the
set of (σ1, . . . ,σm) such that dH(σi,σj) = δ and maxi≤m ∥Mσi∥∞ ≤ K.

(a) If M = ω(log n) then E
[∣∣S(n log−O(1) n, logO(1) n,K

)∣∣] = o(1).

(b) If M = o(log n), then E
[∣∣S(n log−O(1) n, logO(1) n,K

)∣∣] = ω(1).

Namely, the value M = log n is the threshold at which the (expected) number of m-tuples of
constant discrepancy solutions at distance logO(1) n with m = Θ̃(n) undergoes a phase transition.
Whether this phase transition at value log n is coincidental or a signature of algorithmic hardness is
an open problem left for future work.

Paper Organization and Notation The rest of the paper is organized as follows. In Section 2, we
formalize the class of online algorithms and state our hardness results. Section 3 is devoted to the
algorithmic problem of finding constant discrepancy solutions. See Section 3.1 for preliminaries
and the definition of set of m-tuples regarding OGP, Section 3.2 for the main m-OGP result and
Section 3.3 for the hardness result against stable algorithms. Finally, see Appendix A for complete
proofs. Our notation is fairly standard, see the beginning of Appendix A for details.

2. Tight Hardness Guarantees for Online Algorithms

In this section, we explore the limits of online algorithms in the context of our two-models: the SBP
and average-case discrepancy. We begin by formalizing the class of online algorithms in the context
of these two models.

Definition 7

• (SBP) Fix a κ > 0 and an α < αc(κ). Let M ∈ Rαn×n with i.i.d.N (0, 1) entries.

3. In fact, such a universality result has already been established for the SBP, see Gamarnik et al. (2022a, Theorem 5.2).
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• (Discrepancy) Fix n ≥ M , let M ∈ RM×n has i.i.d. Rademacher or Bernoulli(p) entries.

Fix a ps > 0 and a K > 0. An algorithm A is (ps, α)-online for the SBP or (ps,K) online for
discrepancy if it satisfies the following. Let A(M) ≜ σALG = (σALG(i) : 1 ≤ i ≤ n) ∈ Σn.

• (Success) We have P
[∥∥MσALG

∥∥
∞ ≤ κ

√
n
]
≥ ps (for the SBP) and

P
[∥∥MσALG

∥∥
∞ ≤ K

]
≥ ps (for discrepancy).

• (Online) Let C1, . . . , Cn be the columns of M. There exists deterministic functions f1, . . . , fn
such that for 1 ≤ t ≤ n, σALG(t) = ft

(
C1, . . . , Ct

)
∈ {−1, 1}.

The parameter ps is the success guarantee of the algorithm, where the probability is taken w.r.t. the
randomness in M. The online nature of the algorithm admits the following interpretation. Columns
Ci arrive at a time. At the end of round t− 1, the signs σ(i) ∈ {−1, 1}, 1 ≤ i ≤ t− 1 are assigned,
and a new column Ct arrives. The sign σ(t) then depends only on the previous decisions σ(i),
1 ≤ i ≤ t − 1 and Ct. That is, σ(t) depends only on Ci, 1 ≤ i ≤ t. This abstraction captures, in
particular, the Bansal-Spencer algorithm:

Theorem 8 (Bansal and Spencer, 2020, Theorem 3.4) Let n ≥ M and M ∈ {−1, 1}M×n has
i.i.d. Rademacher entries. Then, there exists absolute constants C > 0 and γ < 1, and an online
algorithm A admitting M as its input and returning a σ ≜ A(M) such that

P
[∥∥Mσ

∥∥
∞ ≤ C

√
M
]
≥ 1− e−Θ(Mγ).

Theorem 8 immediately yields an efficient algorithm for the SBP when α ≤ κ2/C2, see Gamarnik
et al. (2022a, Corollary 4.6). As mentioned in the introduction, the Bansal-Spencer algorithm is
the best known polynomial-time algorithm both for the SBP and for the discrepancy minimization
in random proportional regime. In the sense of Definition 7, it is a (1 − e−Θ(nγ), κ2/C2)-online
algorithm for the SBP and a (1− e−Θ(Mγ), C

√
M)-online algorithm for the discrepancy.

Online Algorithms for the SBP Our first main result focuses on the SBP in the regime κ → 0
and establishes the following hardness for the class of online algorithms.

Theorem 9 Fix any small enough κ > 0 and any α ≥ 4κ2. Then there exists an n0 ∈ N and an
absolute constant c > 0 such that the following holds. For any n ≥ n0, there exists no (e−cn, α)-
online algorithm for the SBP in the sense of Definition 7.

We prove Theorem 9 in Appendix A.1. Several remarks are in order.
Theorem 9 establishes that in the regime κ → 0, online algorithms fail to find a satisfying

solution for the SBP for densities α = Ω(κ2). This substantially improves upon an earlier result
in Gamarnik et al. (2022a, Theorem 7.4), which showed the failure of online algorithms only when
α is sufficiently close to the satisfiability threshold αc(κ). Further, in light of Theorem 8, Theo-
rem 9 is the sharpest possible: Bansal-Spencer algorithm is optimal (up to constants) among online
algorithms; no online algorithm, in the sense of Definition 7, can improve upon it.

The algorithms Theorem 9 rules out need not succeed w.h.p. or even with a constant probability:
an exponentially small success guarantee suffices. This is a particular strength of Theorem 9; we
are unaware of any similar hardness guarantees for algorithms that succeed w.p. o(1). This is based
on a clever application of Jensen’s inequality that is originally due to Gamarnik and Sudan (2017b).
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We next remark on a polynomial-time algorithm devised by Abbe et al. (2021a) for the SBP. It
is not clear whether this algorithm is stable in the sense of Definition 14 below (in fact, the stability
of this algorithm is among the open questions raised in Gamarnik et al. (2022a)), therefore the
hardness result in Gamarnik et al. (2022a) does not apply to this algorithm. However, an inspection
of this algorithm reveals that it is in fact ‘almost’ online. The coordinates are iteratively determined
in chunks that are not so large in size; the assignment is based on previous columns and aims at
compensating for large discrepancies induced by the previous rounds. Consequently, it appears that
Theorem 9 might also be made to apply to this algorithm modulo minor tweaks. (We thank the
anonymous reviewer for this nice argument.)

Online Algorithms for the Discrepancy Minimization Our second main result extends Theo-
rem 9 to discrepancy minimization for the case when the entries of M are binary.

Theorem 10 Let c < 1/2 be arbitrary, n ≥ M = ω(1), and M ∈ {−1, 1}M×n with i.i.d. Rademacher
entries. Then there exists an M0 ∈ N such that the following holds. For every M ≥ M0, there exists
no
(
e−cM ,

√
M/24

)
-online algorithm for discrepancy in the sense of Definition 7.

Furthermore, Theorem 10 remains valid even when the entries of M are Bernoulli(p).

Theorem 11 Let c < 1/2 be arbitrary, n ≥ M = ω(1), and M ∈ {0, 1}M×n with i.i.d. Bernoulli(p)
entries. Then there exists an M0 ∈ N such that the following holds. For every (p − p2)M ≥ M0,
there exists no

(
e−cM ,

√
M(p− p2)/24

)
-online algorithm for discrepancy in the sense of Defini-

tion 7.

We prove Theorem 10 in Appendix A.2 and give the extension to Theorem 11 in Appendix A.3.
Theorems 10-11 collectively establish that up to constant factors the Bansal-Spencer algorithm

is optimal within the class of online algorithms for the discrepancy minimization problem. Once
again, the algorithms ruled out can succeed even with an exponentially small probability.

At a technical level, Theorems 10-11 are established by showing the non-existence of certain m-
tuples of solutions described earlier with growing values of m, m = ωM (1). The idea of considering
the ‘landscape’ of m-tuples with m = ω(1) was introduced in the context of random number parti-
tioning problem (Gamarnik and Kızıldağ, 2021). By doing so, the authors subsequently lowered the
m-OGP threshold and ruled out stable algorithms for a broader range of parameters than what one
can get for constant m. Ours is the first work leveraging such a barrier with growing values of m
beyond stable algorithms; it further illustrates the potential gain of considering super-constant tuples
for random computational problems. Another key ingredient of our proof is an anti-concentration
inequality for signed sum of Bernoulli/Rademacher variables, via the Berry-Esseen Theorem.

3. Algorithmic Barriers in Finding Constant Discrepancy Solutions

In this section, we focus on the algorithmic problem of finding a constant discrepancy solution.
More concretely, given a random M ∈ RM×n we ask the following question: for what values of M
and n, can a solution σ ∈ Σn of constant discrepancy, ∥Mσ∥∞ = O(1), be found efficiently?

To begin with, a simple first-moment calculation shows that n = Ω(M logM) is necessary for
such solutions to exist. This condition turns out to be sufficient, as well; Altschuler and Niles-Weed
(2022) showed that if M has i.i.d. Bernoulli(p) entries then D(M) ≤ 1 w.h.p. if n ≥ CM logM
where C is any arbitrary constant greater than (2 log 2)−1. On the other hand, the best known
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polynomial-time algorithm finding such a solution works only when M = o(log n) (Bansal, 2022).
This highlights a striking statistical-to-computational gap (SCG).

In this section, we study the nature of this SCG in a smooth setting where the entries of M are
i.i.d.N (0, 1), near the existential boundary n = Θ(M logM). We first focus on the ‘landscape’ of
the set of constant discrepancy solutions, and show the presence of Ensemble m-OGP, an intricate
geometrical property. We then leverage m-OGP to rule out the class of stable algorithms.

3.1. Technical Preliminaries

We formalize the set of tuples of constant discrepancy solutions under investigation.

Definition 12 Fix a K > 0, an m ∈ N, 0 < η < β < 1, and I ⊂ [0, π/2]. Let Mi ∈ RM×n, 0 ≤
i ≤ m, be i.i.d. random matrices, each having i.i.d.N (0, 1) entries. Denote by S(K,m, β, η, I) the
set of all m-tuples σi ∈ Σn, 1 ≤ i ≤ m, satisfying the following:

• (Pairwise Overlap Condition) For any 1 ≤ i < j ≤ m, β − η ≤ n−1 ⟨σi,σj⟩ ≤ β.

• (Constant Discrepancy Condition) There exists τ1, . . . , τm ∈ I such that
max1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K, where Mi(τi) = cos(τi)M0 + sin(τi)Mi ∈ RM×n.

Definition 12 concerns tuples of solutions of discrepancy at most K. The parameter m is the size
of tuples under consideration, and β and η collectively control the (forbidden) region of overlaps.
Finally, the set I is employed for generating correlated instances; this is necessary for establishing
the Ensemble m-OGP to rule out stable algorithms, see below for details.

3.2. Ensemble m-OGP in Discrepancy Minimization

Our next main result shows that the set of constant discrepancy solutions exhibits the m-OGP.

Theorem 13 Fix arbitrary constants C1 > c2 > 0 and a K > 0, suppose that C1M log2M ≥
n ≥ c2M log2M . Then, there exists an m ∈ N, a c > 0 and 0 < η < β < 1 such that the following
holds. Fix any I ⊂ [0, π/2] with |I| ≤ 2cn. Then, P

[
S(K,m, β, η, I) ̸= ∅

]
≤ 2−Θ(n).

We prove Theorem 13 in Appendix A.4. Several remarks are in order. Theorem 13 shows that for
any K > 0 and throughout the entire regime n = Θ(M logM), the set of solutions with discrepancy
at most K exhibits the m-OGP, for suitable m,β and η. In light of prior work discussed earlier, this
gives some rigorous evidence for algorithmic hardness at the boundary n = Θ(M logM), and
constitutes a first step towards Altschuler and Niles-Weed (2022, Conjecture 1).

Our proof is based on the first moment method: we show that the expected number of such
m-tuples is exponentially small for suitably chosen m,β, η and apply Markov’s inequality. Further,
our proof reveals that β ≫ η: Theorem 13 rules out m-tuples of constant discrepancy solutions
that are nearly equidistant. Moreover, the solutions need not be of constant discrepancy w.r.t. the
same instance: Mi(τi) appearing in Definition 12 are potentially correlated. This is known as the
Ensemble m-OGP and instrumental in ruling out stable algorithms in Theorem 15.

3.3. m-OGP Implies Failure of Stable Algorithms

In this section, we show that the Ensemble m-OGP established in Theorem 13 implies the failure
of stable algorithms in finding a constant discrepancy solution. We begin by elaborating on the
algorithmic setting and formalizing the class of stable algorithms we investigate.
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Algorithmic Setting An algorithm A is a mapping between RM×n and Σn, where randomization
is allowed: we assume there exists a probability space (Ω,Pω) such that A : RM×n×Ω → Σn. For
any ω ∈ Ω and M ∈ RM×n, we want ∥MσALG∥∞ = O(1), where σALG = A(M, ω) ∈ Σn. The
class of stable algorithms is formalized as follows.

Definition 14 Fix a K > 0. An algorithm A : RM×n × Ω → Σn is called (K, ρ, pf , pst, f, L)-
stable (for discrepancy minimization) if it satisfies the following for all sufficiently large M .

• (Success) For M with i.i.d.N (0, 1) entries, P(M,ω)

[∥∥MA(M, ω)
∥∥
∞ ≤ K

]
≥ 1− pf .

• (Stability) Let M,M ∈ RM×n be random matrices, each with i.i.d.N (0, 1) entries, such
that E

[
MijMij

]
= ρ for 1 ≤ i ≤ M and 1 ≤ j ≤ n. Then,

P(M,M,ω)

[
dH
(
A(M, ω),A(M, ω)

)
≤ f + L∥M−M∥F

]
≥ 1− pst.

Definition 14 is the same as Gamarnik et al. (2022a, Definition 3.1). W.p. at least 1− pf , A finds a
solution of discrepancy below K. A can tolerate an input correlation value of ρ; and the parameters
f and L quantify the sensitivity of the output of A to changes in its input. The stability guarantee
is probabilistic—w.r.t. both M,M and to the randomness ω of A—holding w.p. at least 1 − pst.
Finally, the term f makes our negative result only stronger: A is allowed to make f flips even when
M and M are ‘too close’. Our final main result is as follows.

Theorem 15 Fix a K > 0, C1 > c2 > 0 and a L > 0. Suppose C1M log2M ≥ n ≥ c2M log2M .
Let m ∈ N and 0 < η < β < 1 be the m-OGP parameters prescribed by Theorem 13. Set

C =
η2

1600
, Q =

4800Lπ
η2

, and T = exp2

(
24mQ log2 Q

)
. (4)

Then, there exists an n0 ∈ N such that the following holds. For every n ≥ n0, there exists no
randomized algorithm A : RM×n × Ω → Σn which, in the sense of Definition 14, is(

K, cos

(
π

2Q

)
,

1

9(Q+ 1)T
,

1

9Q(T + 1)
, Cn,L

√
n

M

)
− stable.

The proof of Theorem 15 is almost identical to that of Gamarnik et al. (2022a, Theorem 3.2), and
omitted for brevity. Several remarks are in order.

Firstly, there is no restriction on the running time of A: Theorem 15 rules out any A that is
stable with suitable parameters in the sense of Definition 14. Secondly, observe that m,β, η,L are
all O(1) (as n → ∞). Hence, C,Q, T per (4) are all O(1), as well. This is an important feature
of our result: Theorem 15 rules out algorithms with a constant success/stability guarantee. Lastly,
since C = O(1), A is still allowed to make Θ(n) bit flips even when M and M are nearly identical.
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cliques in Erdös–Rényi hypergraphs. SIAM Journal on Computing, (0):FOCS19–39, 2021.

Erwin Bolthausen, Shuta Nakajima, Nike Sun, and Changji Xu. Gardner formula for Ising percep-
tron models at small densities. arXiv preprint arXiv:2111.02855, 2021.

Matthew Brennan and Guy Bresler. Optimal average-case reductions to sparse pca: From weak
assumptions to strong hardness. arXiv preprint arXiv:1902.07380, 2019.

Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower bounds
for problems with planted sparse structure. arXiv preprint arXiv:1806.07508, 2018.

Guy Bresler and Brice Huang. The algorithmic phase transition of random k-sat for low degree poly-
nomials. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 298–309. IEEE, 2022.

Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman. Suboptimality of
local algorithms for a class of max-cut problems. The Annals of Probability, 47(3):1587–1618,
2019.

Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Structures & Algorithms, 47(3):436–486, 2015.

Kevin P Costello. Balancing gaussian vectors. Israel Journal of Mathematics, 172(1):145–156,
2009.

16



GEOMETRIC BARRIERS FOR STABLE AND ONLINE ALGORITHMS

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE transactions on electronic computers, (3):326–334,
1965.

Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden clique
and hidden submatrix problems. In Conference on Learning Theory, pages 523–562, 2015.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for robust
estimation of high-dimensional Gaussians and Gaussian mixtures. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 73–84. IEEE, 2017.

Jian Ding and Nike Sun. Capacity lower bound for the Ising perceptron. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 816–827, 2019.

Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs. SIAM
Journal on Computing, 31(5):1527–1541, 2002.

Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. Journal of the ACM (JACM), 64(2):
1–37, 2017.

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability
problems with planted solutions. SIAM Journal on Computing, 47(4):1294–1338, 2018.

Cole Franks and Michael Saks. On the discrepancy of random matrices with many columns. Ran-
dom Structures & Algorithms, 57(1):64–96, 2020.

Alan M Frieze and T Łuczak. On the independence and chromatic numbers of random regular
graphs. Journal of Combinatorial Theory, Series B, 54(1):123–132, 1992.

David Gamarnik. The overlap gap property: A topological barrier to optimizing over random struc-
tures. Proceedings of the National Academy of Sciences, 118(41), 2021.

David Gamarnik and Aukosh Jagannath. The overlap gap property and approximate message pass-
ing algorithms for p-spin models. The Annals of Probability, 49(1):180–205, 2021.
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Appendix A. Proofs

Additional Notation We commence this section with an additional list of notation. For any set A,
|A| denotes its cardinality. Given any event E, denote its indicator by 1{E}. For any v = (v(i) :

1 ≤ i ≤ n) ∈ Rn and p > 0, ∥v∥p =
(∑

1≤i≤n |v(i)|p
)1/p and ∥v∥∞ = max1≤i≤n |v(i)|. For

v, v′ ∈ Rn, ⟨v, v′⟩ ≜
∑

1≤i≤n v(i)v
′(i). For any σ,σ′ ∈ Σn ≜ {−1, 1}n, dH(σ,σ′) denotes

their Hamming distance: dH(σ,σ′) ≜
∑

1≤i≤n 1{σ(i) ̸= σ′(i)}. For any r > 0, logr(·) and
expr(·) denote, respectively, the logarithm and exponential functions base r; when r = e, we omit
the subscript. For p ∈ [0, 1], hb(p) ≜ −p log2 p − (1 − p) log2(1 − p). Denote by Ik the k × k
identity matrix, and by 1 the vector of all ones whose dimension will be clear from the context.
Given µ ∈ Rk and Σ ∈ Rk×k, denote by N (µ,Σ) the multivariate normal distribution in Rk with
mean µ and covariance Σ. Given a matrix M, ∥M∥F , ∥M∥2, and |M| denote, respectively, the
Frobenius norm, the spectral norm, and the determinant of M.

We employ standard Bachmann-Landau asymptotic notation throughout, e.g.Θ(·), O(·), o(·),
Ω(·), where the underlying asymptotics will often be clear from the context. In certain cases
where a confusion is possible, we reflect the underlying asymptotics as a subscript, e.g.Θκ(·). All
floor/ceiling operators are omitted for the sake of simplicity.
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A.1. Proof of Theorem 9

Let κ, α > 0, M = nα, m ∈ N, and ∆ ∈ (0, 12). Suppose M1 ∈ RM×n has i.i.d.N (0, 1)
entries and let M2, . . . ,Mm ∈ RM×n be random matrices obtained from M1 by independently
resampling the last ∆n columns of M1. Denote by Ξ(m,∆) the set of all m-tuples satisfying the
following:

• max1≤i≤m

∥∥Miσi

∥∥
∞ ≤ κ

√
n.

• For 1 ≤ i < j ≤ n and 1 ≤ k ≤ n−∆n, σi(k) = σj(k).

We establish the following proposition.

Proposition 16 Fix any κ > 0 small enough and let α ≥ 4κ2. Then, there exists an m ∈ N and a
∆ ∈ (0, 1/2) such that

P
[
Ξ(m,∆) = ∅

]
≥ 1− e−Θ(n).

We first assume Proposition 16 and show how to deduce Theorem 9. Fix a c > 0 and suppose, for
the sake of contradiction, that an (e−cn, α)-online A exists. For M1, . . . ,Mm ∈ RM×n described
above, set

σi ≜ A(Mi) ∈ Σn, 1 ≤ i ≤ m. (5)

Note that for any 1 ≤ i < j ≤ m, the first n − ∆n columns of Mi and Mj are identical.
Consequently,

σi(k) = σj(k) for 1 ≤ i < j ≤ m and 1 ≤ k ≤ n−∆n.

Next, we establish the following probability guarantee.

Lemma 17
P
[
max
1≤i≤m

∥∥Miσi

∥∥
∞ ≤ κ

√
n

]
≥ pms .

Proof Our argument is based on a clever application of Jensen’s inequality, due to Gamarnik and
Sudan (2017b, Lemma 5.3). Denote by ζ the first (1 − ∆)n columns of M1. That is, ζ is the
‘common randomness’ shared by M1, . . . ,Mm. Set

Ii = 1
{
∥Miσi∥∞ ≤ κ

√
n
}
.

Then,

P
[
max
1≤i≤m

∥∥Miσi
∥∥
∞ ≤ κ

√
n

]
= E

[
I1 · · · Im

]
.

We then complete the proof by noticing

E
[
I1 · · · Im

]
= Eζ

[
E
[
I1 · · · Im|ζ

]]
= Eζ [E[I1|ζ]m] ≥

(
Eζ

[
E[I1|ζ]

])m
= E[I1]m = pms ,

where we used fact that I1, . . . , Im are independent conditional on ζ and Jensen’s inequality.

Note that clearly (σ1, . . . ,σm) ∈ Ξ(m,∆), in particular Ξ(m,∆) is non-empty w.p. at least e−cmn.
Using Proposition 16, we obtain

e−Θ(n) ≥ P
[
Ξ(m,∆) ̸= ∅] ≥ e−cmn.
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If m is constant and c > 0 is sufficiently small, this is a contradiction for all large enough n.
Therefore, it suffices to establish Proposition 16.
Proof [of Proposition 16] Our proof is based on the first moment method. Let

S =
{
(σ1, . . . ,σm) : σi(k) = σj(k), 1 ≤ i < j ≤ m, 1 ≤ k ≤ n−∆n

}
.

Observe that ∣∣Ξ(m,∆)
∣∣ = ∑

(σ1,...,σm)∈S

1

{
max
1≤i≤m

∥Miσi∥∞ ≤ κ
√
n

}
. (6)

In what follows, we show that for a suitable m ∈ N and ∆ ∈ (0, 1/2),

E
[
|Ξ(m,∆)|

]
≤ e−Θ(n).

Counting Estimate We bound |S|. There are 2n choices for σ1 ∈ Σn. Having chosen a σ1, there
are 2∆n choices for any σi, 2 ≤ i ≤ m. So,

|S| ≤ 2n
(
2∆n

)m−1 ≤ exp2
(
n+ nm∆

)
(7)

Probability Estimate Fix any (σ1, . . . ,σm) ∈ S . Denote by R1, . . . , Rm ∈ Rn the first rows of
M1, . . . ,Mm, respectively; and set

Zi =
1√
n
⟨Ri,σi⟩

d
= N (0, 1), 1 ≤ i ≤ m.

Observe that if k ̸= k′ or n − ∆n + 1 ≤ k = k′ ≤ n, E
[
Ri(k)Rj(k

′)
]
= 0. Using this fact,

we immediately conclude that E[ZiZj ] = 1 −∆. In particular, (Z1, . . . , Zm) ∈ Rm is a centered
multivariate normal random vector with covariance Σ, where

Σ = ∆Im + (1−∆)11T ∈ Rm×m,

where 1 ∈ Rm is the vector of all ones. In particular, the spectrum of Σ consists of the eigenvalue
∆+(1−∆)m with multiplicity one and the eigenvalue ∆ with multiplicity m− 1. We then obtain

P
[
max
1≤i≤m

∥Miσi∥∞ ≤ κ
√
n

]
≤ P

[
max
1≤i≤m

∣∣⟨Ri,σi⟩
∣∣ ≤ κ

√
n

]αn
=

(
(2π)−

m
2 |Σ|−

1
2

∫
z∈[−κ,κ]m

exp

(
−zTΣ−1z

2

))αn

≤
(
(2π)−

m
2
(
∆+ (1−∆)m

)− 1
2∆−m−1

2 (2κ)m
)αn

. (8)

Estimating E[|Ξ(∆,m)|] We now combine (7) and (8) to arrive at

E
[∣∣Ξ(∆,m)

∣∣] ≤ exp2

(
nΨ(∆,m, α)

)
, (9)

where

Ψ(∆,m, α) = 1 +m∆− αm

2
log2(2π) + αm log2(2κ)−

α(m− 1)

2
log2∆− α

2
log2

(
∆+ (1−∆)m

)
.

Using the fact log2
1
∆ > 0 if ∆ < 1

2 , we further arrive at the bound

Ψ(∆,m, α) ≤ m

(
1

m
− α

2m
log2

(
∆+ (1−∆)m

)
+Υ(∆, α)

)
, (10)

for
Υ(∆, α) = ∆− α

2
log2(2π) + α log2(2κ)−

α

2
log2∆.

23



GAMARNIK KIZILDAĞ PERKINS XU

Analyzing Υ(∆, α) We set ∆ = (2κ)2, so that

α log2(2κ)−
α

2
log2∆ = 0.

Next, fix any α ≥ 4κ2. Then,

Υ(∆, α) = ∆− α

2
log2(2π) ≤ 4κ2 − 2κ2 log2(2π) = −κ2

(
2 log2(2π)− 4

)
= −Θκ(κ

2). (11)

Combining everything For fixed small κ > 0, α ≥ 4κ2, and ∆ = (2κ)2; we have Υ(∆, α) =
−Θκ(κ

2) < 0. Furthermore,

1

m
− α

2m
log2

(
∆+ (1−∆)m

)
= om(1)

as m → ∞. Note that Υ(∆, α) depends only on α, κ. So, for m ∈ N sufficiently large, (11) yields

1

m
− α

2m
log2

(
∆+ (1−∆)m

)
+Υ(∆, α) < 0.

Hence, combining (9) and (10), we get

E
[∣∣Ξ(m,∆)

∣∣] ≤ e−Θ(n).

From here, we conclude by Markov’s inequality as

P
[∣∣Ξ(∆,m)

∣∣ ≥ 1
]
≤ E

[∣∣Ξ(∆,m)
∣∣] = exp

(
−Θ(n)

)
.

A.2. Proof of Theorem 10

The proof of Theorem 10 is similar to that of Theorem 9. We first establish the following proposi-
tion.

Proposition 18 Let n ≥ M = ω(1), M1 ∈ {−1, 1}M×n with i.i.d. Rademacher entries and
m = ⌈2nM ⌉. Generate M2, . . . ,Mm ∈ {−1, 1}M×n by independently resampling the last M
columns of M1. Denote by Ξd(m,M) the set of all m-tuples σ1, . . . ,σm ∈ Σn satisfying the
following:

• max1≤i≤m ∥Miσi∥ ≤ Cu

√
M , where Cu ≜ 1

24 .

• For 1 ≤ i < j ≤ m and 1 ≤ k ≤ n−M , σi(k) = σj(k).

Then,
P
[
Ξd(m,M) = ∅

]
≥ 1− e−n.
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Before proving Proposition 18, we highlight that if n = ω(M) then m = ωM (1) and the frac-
tion ∆ = M/n of the resampled columns is vanishing. We first show how Proposition 18 yields
Theorem 10. Suppose, for the sake of contradiction, that an A : {−1, 1}M×n → Σn which is
(e−cM ,

√
M/24)-optimal (with c < 1/2 arbitrary) exists. For Mi, 1 ≤ i ≤ m, as in the proposi-

tion, define
σi ≜ A(Mi) ∈ Σn, 1 ≤ i ≤ n

and observe that

σi(k) = σj(k), for all 1 ≤ i < j ≤ m and 1 ≤ k ≤ n−M

as A is online. We then establish

Lemma 19

P

[
max
1≤i≤m

∥Miσi∥ ≤
√
M

24

]
≥
(
e−cM

)m ≥ e−2cn.

Proof of Lemma 19 is identical to Lemma 17. So, under the assumption that such an A exists, we
obtain Ξd(m,∆) ̸= ∅ w.p. at least e−2cn. Finally using Proposition 18,

e−n ≥ P
[
Ξd(m,M) ̸= ∅] ≥ e−2cn

which is a contradiction since c < 1/2. Hence, it suffices to establish Proposition 18.
Proof [of Proposition 18] The proof of Proposition 18 is similar to Proposition 16; it is based in
particular on the first moment method. Let

S̄ =
{
(σ1, . . . ,σm) : σi(k) = σj(k), 1 ≤ i < j ≤ m, 1 ≤ k ≤ n−M

}
.

Note that∣∣Ξd(m,M)
∣∣ = ∑

(σ1,...,σm)∈S̄

1

{
max
1≤i≤m

∥Miσi∥∞ ≤ Cu

√
M

}
, where Cu =

1

24
. (12)

Counting term We bound |S̄|. There are 2n choices for σ1 and having fixed it, there are 2M

choices for any σi, 2 ≤ i ≤ m. So,

|S̄| ≤ 2n(2M )m−1 ≤ exp2
(
n+mM

)
. (13)

Probability term. Fix an arbitrary (σ1, . . . ,σm) ∈ S̄. Let Ri ∈ {±1}n, 1 ≤ i ≤ m, denote
respectively the first rows of Mi, 1 ≤ i ≤ m. For each fixed i, the rows of Mi are independent.
So,

P
[
max
1≤i≤m

∥Miσi∥∞ ≤ Cu

√
M

]
= P

[
max
1≤i≤m

|⟨Ri,σi⟩| ≤ Cu

√
M

]M
. (14)

Next, let
Ri =

(
Rik : 1 ≤ k ≤ n

)
, 1 ≤ i ≤ m.

Fix any 1 ≤ i < j ≤ m. Observe that the random vectors(
Rik : 1 ≤ k ≤ n−M

)
and

(
Rjk : 1 ≤ k ≤ n−M

)
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are identical. For this reason, we drop the first index and use
(
Rk : 1 ≤ k ≤ n−M

)
instead. Next,

fix any v = (v1, . . . , vn−M ) ∈ {−1, 1}n−M and define

∆i(v) ≜
∑

1≤k≤n−M

vkσi(k) and Σi ≜
∑

n−M+1≤k≤n

Rikσi(k). (15)

Our goal is to control the right hand side in (14). To that end, our strategy is to condition on
R1, . . . , Rn−M and apply Berry-Esseen inequality for Σi. We establish the following auxiliary
result.

Lemma 20 Let Z1, . . . , ZM be i.i.d. Rademacher random variables, ϵi ∈ {−1, 1}, 1 ≤ i ≤ M , be
deterministic signs, and I ⊂ R be an interval of length |I| = ωM (1). Then

P
[
Z1ϵ1 + · · ·+ ZM ϵM ∈ I

]
≤ 3|I|√

M

for every large enough M .

Lemma 20 essentially rederives a classical Littlewood-Offord result; we provide a proof below for
completeness.
Proof [of Lemma 20] Let 1√

M
I denotes the set {c/

√
M : c ∈ I}. By the Central Limit Theorem,

1√
M

∑
1≤i≤M

Ziϵi ⇒ N (0, 1)

in distribution, where the speed of convergence is controlled by the Berry-Esseen inequality:∣∣∣∣∣∣P
 ∑
1≤i≤M

Ziϵi ∈ I

− P
[
N (0, 1) ∈ 1√

M
I

]∣∣∣∣∣∣ ≤ Cbe√
M

. (16)

Here, Cbe > 0 is an absolute constant. Furthermore, we have

P
[
N (0, 1) ∈ 1√

M
I

]
=

1√
2π

∫
u∈ 1√

M
I
exp(−u2/2) du ≤ |I|√

2πM
. (17)

Combining (16) and (17) via triangle inequality, we obtain that for all large enough M ,

P

 ∑
1≤i≤M

Ziϵi ∈ I

 ≤ 1√
M

(
Cbe +

|I|√
2π

)
≤ 3|I|√

M
, (18)

where we recalled |I| = ωM (1) and Cbe = OM (1). This establishes Lemma 20.

Next, fix any v ∈ {−1, 1}n−M and set

Ii(v) =
[
−Cu

√
M −∆i(v), Cu

√
M −∆i(v)

]
,

where we recall ∆i(v) from (15). In particular,∣∣Ii(v)∣∣ = 2Cu

√
M, for all 1 ≤ i ≤ m and v ∈ {−1, 1}n−M . (19)
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Next fix a 1 ≤ i ≤ m and recall Σi per (15). Applying Lemma 20, we conclude that

max
1≤i≤m

max
v∈{−1,1}n−M

P
[
Σi ∈ Ii(v)

]
≤ 6Cu. (20)

We are ready to bound the probability term (14) by conditioning on R1, . . . , Rn−M .

P
[
max
1≤i≤m

|⟨Ri,σi⟩| ≤ Cu

√
M

]
=

∑
v∈{−1,1}n−M

P
[
Σi ∈ Ii(v), 1 ≤ i ≤ m

∣∣∣(R1, . . . , Rn−M ) = v
]
P [(R1, . . . , Rn−M ) = v]︸ ︷︷ ︸

=2−(n−M)

(21)

= 2−(n−M)
∑

v∈{−1,1}n−M

P
[
Σi ∈ Ii(v), 1 ≤ i ≤ m

]
(22)

= 2−(n−M)
∑

v∈{−1,1}n−M

∏
1≤i≤m

P
[
Σi ∈ Ii(v)

]
(23)

≤ (6Cu)
m. (24)

We now justify the lines above. Equation (21) follows by conditioning on the ‘common randomness’
R1, . . . , Rn−M and recalling that they are uniform over {−1, 1}n−M . Equation (22) uses the fact
for any fixed 1 ≤ i ≤ m, Σi is independent of R1, . . . , Rn−M , and (23) uses the fact Σ1, . . . ,Σm is
also a collection of independent random variables. Finally, (24) uses (20).

Combining (14) with (24), we thus conclude

max
(σ1,...,σm)∈S̄

P
[
max
1≤i≤m

∥Miσi∥∞ ≤ Cu

√
M

]
≤ (6Cu)

mM . (25)

Bounding E
[∣∣Ξd(m,M)

∣∣] We are ready to estimate E
[∣∣Ξd(m,M)

∣∣]. Using (12), (13) and (25),

E
[∣∣Ξd(m,M)

∣∣] ≤ exp2

(
n+mM −mM log2

1

6Cu

)
.

Inserting the values Cu = 1/24 and m ≥ 2n/M , we obtain

n+mM −mM log2
1

6Cu
≤ −n,

so that E
[∣∣Ξd(m,M)

∣∣] ≤ e−n. Finally, we conclude by applying Markov’s inequality:

P
[
Ξd(m,M) ̸= ∅

]
= P

[∣∣Ξd(m,M)
∣∣ ≥ 1

]
≤ E

[∣∣Ξd(m,M)
∣∣] ≤ e−n.

A.3. Proof Sketch for Theorem 11

The proof of Theorem 11 is quite similar to Theorem 10; we only highlight the necessary changes.
Let M1 consists of i.i.d. Bernoulli(p) entries. Suppose that there exists an A : RM×n → Σn that is
(e−cM , C ′

u

√
M)-online in the sense of Definition 7, where c < 1/2 is arbitrary and

C ′
u =

√
p− p2

24
.
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We set m = 2n/M and show how to adapt Proposition 18 to this case. Once this is done, the
rest follows verbatim from Theorem 10. First, all instances of Cu in the proof of Theorem 10 are
replaced with C ′

u = Cu

√
p− p2. Next, the counting estimate per (13) remains intact. Lemma 20,

on the other hand, is replaced with the following.

Lemma 21 Let Z1, . . . , ZM be i.i.d. Bernoulli(p) random variables, ϵi ∈ {−1, 1}, 1 ≤ i ≤ M , be
deterministic signs, and I ⊂ R be an interval of length |I| = ω(p−p2)M (1). Then

P
[
Z1ϵ1 + · · ·+ ZM ϵM ∈ I

]
≤ 3|I|√

M(p− p2)
,

for every large enough M .

Similar to Lemma 20, Lemma 21 also follows from classical Littlewood-Offord results; we provide
a proof for completeness.
Proof Observe that E[Ziϵi] = pϵi and

Var(Ziϵi) = E[Z2
i ϵ

2
i ]− p2ϵ2i = p− p2,

as ϵi ∈ {−1, 1}. Thus by the CLT,

1√
(p− p2)M

 ∑
1≤i≤M

Ziϵi − p ⟨1, ϵ⟩

⇒ N (0, 1)

in distribution, where 1 ∈ RM is the vector of all ones and ϵ = (ϵi : 1 ≤ i ≤ M) ∈ {−1, 1}M .
Further, by the Berry-Esseen inequality, we have that∣∣∣∣∣∣P

 ∑
1≤i≤M

Ziϵi ∈ I

− P

[
N (0, 1) ∈ I − p ⟨1, ϵ⟩√

(p− p2)M

]∣∣∣∣∣∣ ≤ C′
be√

(p− p2)M

for some absolute constant C′
be > 0. Here,

I − p ⟨1, ϵ⟩√
(p− p2)M

=

{
c− p ⟨1, ϵ⟩√
(p− p2)M

: c ∈ I

}
,

so that ∣∣∣∣∣ I − p ⟨1, ϵ⟩√
(p− p2)M

∣∣∣∣∣ = |I|√
(p− p2)M

,

using the translation invariance of Lebesgue measure. From here, proceeding in the exact same way
as in the proof of Lemma 20, we establish Lemma 21.

Equipped with Lemma 21 and using the exact same notation, (20) modifies to (26) where

max
1≤i≤m

max
v∈{−1,1}n−M

P
[
Σi ∈ Ii(v)

]
≤ 6C ′

u√
p− p2

=
1

4
. (26)
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We now proceed analogously to lines (21)-(24). Note that for any arbitrary v ∈ {0, 1}n−M ,

P
[
Σi ∈ Ii(v), 1 ≤ i ≤ m

∣∣∣(R1, . . . , Rn−M ) = v
]
≤ 2−2m, (27)

using (26). Hence,

P
[
max
1≤i≤m

|⟨Ri,σi⟩| ≤ C ′
u

√
M

]
≤

∑
v∈{0,1}n−M

P
[
Σi ∈ Ii(v), 1 ≤ i ≤ m

∣∣∣(R1, . . . , Rn−M ) = v
]
P
[
(R1, . . . , Rn−M ) = v

]
≤ 2−2m

∑
v∈{0,1}n−M

P
[
(R1, . . . , Rn−M ) = v

]
= 2−2m,

where we used (27) in the penultimate line. This is precisely the same bound as (24), so the rest of
the proof remains intact. This completes the proof of Theorem 11.

A.4. Proof of Theorem 13

Fix a K > 0, C1 > c2 > 0, and suppose

C1M log2M ≥ n ≥ c2M log2M. (28)

We establish our result via the first-moment method. Notice that by Markov’s inequality,

P
[
S(K,m, β, η, I) ̸= ∅

]
= P

[∣∣S(K,m, β, η, I)
∣∣ ≥ 1

]
≤ E

[∣∣S(K,m, β, η, I)
∣∣].

So, it suffices to prove that
E
[∣∣S(K,m, β, η, I)

∣∣] ≤ 2−Θ(n).

We now estimate E
[∣∣S(K,m, β, η, I)

∣∣].
Counting term Fix m ∈ N, 0 < η < β < 1 and denote by M(m,β, η) the number of m-tuples
(σi ∈ Σn : 1 ≤ i ≤ m) such that β − η ≤ n−1 ⟨σi,σj⟩ ≤ β for 1 ≤ i < j ≤ m. We establish

Lemma 22 For m = O(1) as n → ∞,

M(m,β, η) ≤ exp2

(
n+ n(m− 1)hb

(
1− β + η

2

)
+O(log2 n)

)
.

Lemma 22 is verbatim from Gamarnik et al. (2022a, Lemma 6.7), we include the proof for com-
pleteness.
Proof Observe that ⟨σ,σ′⟩ = n − 2dH(σ,σ′) for any σ,σ′ ∈ Σn. There are 2n choices for σ1.
Having fixed a σ1, there are ∑

ρ: 1−β
2

≤ρ≤ 1−β+η
2

ρn∈N

(
n

nρ

)
≤
(

n

n1−β+η
2

)
nO(1),

choices for any σi, 2 ≤ i ≤ m, under the constraint β − η ≤ n−1 ⟨σ1,σi⟩ ≤ β. Next, for any
ρ ∈ (0, 1),

(
n
nρ

)
= exp2

(
nh(ρ) + O

(
log2 n

))
by Stirling’s approximation. Combining these and

recalling m = On(1), we obtain Lemma 22.
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Probability estimate Fix any (σ1, . . . ,σm) with

1

n
⟨σi,σj⟩ = β − ηij , 1 ≤ i < j ≤ m.

Clearly 0 ≤ ηij ≤ η. Further, let η = (ηij : 1 ≤ i < j ≤ m) ∈ Rm(m−1)/2. Then ∥η∥∞ ≤ η. Our
eventual choice of parameters β, η and m will ensure

η =
1− β

2m
. (29)

We now control the probability term.

Lemma 23 Let Σ(η) ∈ Rm×m with unit diagonal entries such that for 1 ≤ i < j ≤ m,(
Σ(η)

)
ij
=
(
Σ(η)

)
ji
= β − ηij .

Then, the following holds.

(a) Σ(η) is positive definite (PD) if η satisfies (29).

(b) Suppose that η satisfies (29). Then,

P
[
∃τ1, . . . , τm ∈ I : max

1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K

]
≤ |I|m(2π)−

mM
2

(
1− β

2

)−Mm
2
(
2K√
n

)Mm

.

Proof

Part (a) Let E ∈ Rm×m such that Eii = 0 and Eij = Eji = −ηij for 1 ≤ i < j ≤ m. Then,

Σ(η) = (1− β)I + β11T + E.

Note that the smallest eigenvalue of (1−β)I+β11T is 1−β and ∥E∥2 ≤ ∥E∥F < ηm. So, Σ(η)
is invertible if η < (1− β)/m. Recalling the fact it is a covariance matrix, so in particular positive
semidefinite, we establish part (a).

Part (b) As a first step, we take a union bound over I to obtain

P
[
∃τ1, . . . , τm ∈ I : max

1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K

]
≤ |I|m max

τi∈I,1≤i≤m
P
[
max
1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K

]
.

(30)
Next, denote by Ri ∼ N (0, In) the first row of Mi(τi) ∈ RM×n, 1 ≤ i ≤ m. Observe that using
the fact each Mi(τi) has independent rows,

P
[
max
1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K

]
≤ P

[
max
1≤i≤m

n− 1
2 |⟨Ri,σi⟩| ≤

K√
n

]M
. (31)

Next, we consider the multivariate normal random vector
(
n−1/2 ⟨Ri,σi⟩ : 1 ≤ i ≤ m

)
consisting

of standard normal coordinates. Let Σ denotes its covariance matrix, which depends on the choice
of τ1, . . . , τm. Observe that for 1 ≤ i < j ≤ m,

Σij =
1

n
E
[
⟨Ri,σi⟩ ⟨Rj ,σj⟩

]
=

1

n
(σi)

T E[RiR
T
j ]︸ ︷︷ ︸

=cos(τi) cos(τj)Im

σj = cos(τi) cos(τj)(β − ηij).

We now remove the dependence on τi by relying on a Gaussian comparison inequality, due to Sidák
(1968, Corollary 1). The version below is reproduced from Gamarnik et al. (2022a, Theorem 6.5).
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Theorem 24 Let (X1, . . . , Xk) ∈ Rk be a centered multivariate normal random vector. Suppose
that its covariance matrix Σ ∈ Rk×k has unit diagonal entries has the following form: there exists
0 ≤ λi ≤ 1, 1 ≤ i ≤ k, such that for any 1 ≤ i ̸= j ≤ k, Σij = λiλjρij where (ρij : 1 ≤ i ̸= j ≤
k) is a fixed arbitrary covariance matrix. Fix values c1, . . . , ck > 0, and set

P (λ1, . . . , λk) = P
[
|X1| < c1, |X2| < c2, . . . , |Xk| < ck

]
.

Then, P (λ1, . . . , λk) is a non-decreasing function of each λi, i = 1, 2, . . . , k, 0 ≤ λi ≤ 1. That is,

P (λ1, λ2, . . . , λk) ≤ P (1, 1, . . . , 1).

We now let (Z1, . . . , Zm) to be a centered multivariate normal random vector with covariance Σ(η).
Observe that

max
τ1,...,τm∈I

P
[
max
1≤i≤m

n− 1
2 |⟨Ri,σi⟩| ≤

K√
n

]
≤ P

[
max
1≤i≤m

|Zi| ≤
K√
n

]
(32)

= (2π)−
m
2 |Σ(η)|−

1
2

∫
z∈

[
− K√

n
, K√

n

]m exp

(
−zTΣ(η)−1z

2

)
dz

≤ (2π)−
m
2 |Σ(η)|−

1
2

(
2K√
n

)m

, (33)

where (32) follows from Theorem 24 and (33) follows from the trivial fact exp
(
−zTΣ(η)−1z

2

)
≤ 1.

We lastly bound |Σ(η)|. For this, we rely on the following tool from matrix analysis.

Theorem 25 (Hoffman-Wielandt Inequality) Let A ∈ Rm×m and A + E ∈ Rm×m be two
symmetric matrices with eigenvalues

λ1(A) ≥ · · · ≥ λm(A) and λ1(A+ E) ≥ · · · ≥ λm(A+ E).

Then, ∑
1≤i≤m

(
λi(A+ E)− λi(A)

)2 ≤ ∥E∥F .

See Horn and Johnson (2012, Corollary 6.3.8) for a reference, and Hoffman and Wielandt (1953)
for the original paper. We apply Theorem 25 to Σ(η). Let A = (1− β)I + β11T with eigenvalues
λ1 = 1− β + βm > λ2 = · · · = λm = 1− β and E be as above. Suppose that the eigenvalues of
A+ E are µ1 ≥ · · · ≥ µm. Fix any 2 ≤ i ≤ m. Theorem 25 yields∣∣µi − (1− β)

∣∣ ≤ ∥E∥F ≤ ηm =
1− β

2
,

yielding

µi ≥
1− β

2
, 2 ≤ i ≤ m.

Furthermore, this bounds extends to µ1, too, as

µ1 ≥ 1− β + βm− 1− β

2
>

1− β

2
.
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Since η ∈ Rm(m−1)/2 is arbitrary with ∥η∥∞ ≤ η ≤ 1−β
2m , we obtain

inf
η∈Rm(m−1)/2

∥η∥∞≤ 1−β
2m

∣∣Σ(η)∣∣ = ∏
1≤i≤m

µi ≥
(
1− β

2

)m

. (34)

Finally, combining (30), (31), (33), and (34) we establish the proof of part (b).

Estimating the expectation Let F(m,β, η) be the set of all m-tuples (σ1, . . . ,σm) such that
β − η ≤ n−1 ⟨σi,σj⟩ ≤ β, 1 ≤ i < j ≤ m. Then

∣∣S(K,m, β, η, I)
∣∣ = ∑

(σ1,...,σm)∈F(m,β,η)

1

{
∃τ1, . . . , τm ∈ I : max

1≤i≤m

∥∥Mi(τi)σi

∥∥
∞ ≤ K

}
.

Using linearity of expectation, Lemma 22, Lemma 23, and the fact log2 |I| ≤ cn, we obtain

E
[∣∣S(K,m, β, η, I)

∣∣] ≤ exp2

(
Ψ(m,β, η, c) +O(log2 n)

)
, (35)

where

Ψ(m,β, η, c) = n+mnhb

(
1− β + η

2

)
+ cmn+

mM

2
log2

4K2

π(1− β)
− Mm

2
log2 n. (36)

We set η and c as

η =
1− β

2m
and c =

1

m
, (37)

where we recalled η from (29); parameters β and m are to be tuned soon. We now recall the scaling
on n from (28). In particular,

log2 n ≥ log2 c2 + log2M + log2 log2M ≥ log2 c2 + log2M.

With this, we arrive at

Ψ

(
m,β,

1− β

2m
,
1

m

)
≤ 2C1M log2M +mC1M log2M · hb

(
1− β

2
+

1− β

4m

)
+

mM

2
log2

4K2

π(1− β)c2
− Mm

2
log2M. (38)

Note that if β ∈ (1/2, 1) and m ∈ N, we clearly have

hb

(
1− β

2
+

1− β

4m

)
≤ hb(1− β).

We choose β∗ > 1/2 such that

hb(1− β∗) = min

{
1

4C1
,
1

2

}
.
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So,

mC1M log2M · hb
(
1− β∗

2
+

1− β∗

4m

)
≤ Mm

4
log2M. (39)

Combining (38) and (39), we further upper bound

Ψ

(
m,β∗,

1− β∗

2m
,
1

m

)
≤ 2C1M log2M − Mm

4
log2M +Θ(mM). (40)

Finally, taking m = m∗ = max{2, 16C1}, we get

Ψ

(
m∗, β∗,

1− β∗

2m∗ ,
1

m∗

)
= −Θ(M log2M). (41)

Combining (35) with the fact O(log2 n) = O(log2M) = o(M log2M) as M = ω(1), we conclude
that

E
[∣∣S(K,m∗, β∗, η∗, I)

∣∣] ≤ exp2

(
Ψ

(
m∗, β∗,

1− β∗

2m∗ ,
1

m∗

)
+ o(M log2M)

)
= 2−Θ(M logM) = 2−Θ(n).

This completes the proof of Theorem 13.
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