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Abstract
We consider the setting of online convex optimization (OCO) with exp-concave losses. The best
regret bound known for this setting is O(n log T ), where n is the dimension and T is the num-
ber of prediction rounds (treating all other quantities as constants and assuming T is sufficiently
large), and is attainable via the well-known Online Newton Step algorithm (ONS). However, ONS
requires on each iteration to compute a projection (according to some matrix-induced norm) onto
the feasible convex set, which is often computationally prohibitive in high-dimensional settings and
when the feasible set admits a non-trivial structure. In this work we consider projection-free online
algorithms for exp-concave and smooth losses, where by projection-free we refer to algorithms that
rely only on the availability of a linear optimization oracle (LOO) for the feasible set, which in
many applications of interest admits much more efficient implementations than a projection ora-
cle. We present an LOO-based ONS-style algorithm, which using overall O(T ) calls to a LOO,
guarantees in worst case regret bounded by Õ(n2/3T 2/3) (ignoring all quantities except for n, T ).
However, our algorithm is most interesting in an important and plausible low-dimensional data
scenario: if the gradients (approximately) span a subspace of dimension at most ρ, ρ << n, the re-
gret bound improves to Õ(ρ2/3T 2/3), and by applying standard deterministic sketching techniques,
both the space and average additional per-iteration runtime requirements are only O(ρn) (instead
of O(n2)). This improves upon recently proposed LOO-based algorithms for OCO which, while
having the same state-of-the-art dependence on the horizon T , suffer from regret/oracle complexity
that scales with

√
n or worse.

Keywords: online learning, online convex optimization, projection-free, exp-concave, linear opti-
mization oracle

1. Introduction

This work contributes to the line of research on efficient projection-free algorithms for online convex
optimization (OCO), which has received a significant amount of interest in the theoretical machine
learning community in recent years, see for instance Hazan and Kale (2012); Garber and Hazan
(2013); Chen et al. (2019); Garber and Kretzu (2020); Kretzu and Garber (2021); Hazan and Mi-
nasyan (2020); Levy and Krause (2019); Wan and Zhang (2021); Ene et al. (2021); Chen et al.
(2018); Zhang et al. (2017); Garber and Kretzu (2022); Mhammedi (2021, 2022); Lu et al. (2022).
We recall that in the setting of OCO (Hazan, 2019; Shalev-Shwartz et al., 2012) (see formal defini-
tion in Section 2.2) a decision maker is required to iteratively choose an action — a point in some
convex and closed set K ⊆ Rn (fixed throughout all iterations)1, where after her selection, a convex
loss function from K to R is revealed and the decision maker incurs a loss which equals the value of
the loss function evaluated at the point chosen on that round. The performance of the decision maker

1. for ease of presentation we consider the underlying vector space to be Rn, however any finite Euclidean space will
work
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is measured via the standard notion of regret which is the difference between her accumulated loss
throughout all T rounds (where T here is assumed to be known in advanced) and that of the best
fixed point in K in hindsight. Throughout this work we consider the full-information setting, where
after each round, the decision maker gains full knowledge of the loss function used on that round.
The term projection-free refers to algorithms which avoid the computation of orthogonal projections
onto the feasible setK, as required by most standard algorithms, and instead only access the feasible
set via conceptually simpler computational primitives, such as an oracle for linear optimization over
K (LOO). The motivation for such methods is that indeed for many feasible sets of interest and for
high-dimensional problems, implementing the LOO can be much more efficient than projection, see
for instance detailed examples in Jaggi (2013); Hazan and Kale (2012) (see in the sequel discussion
on other projection-free oracles).

In this work we consider, to the best of our knowledge for the first time, efficient projection-free
LOO-based algorithms for OCO in case all loss functions are exp-concave. We recall that a function
f(x) is α-exp-concave for some α > 0, if the function e−αf(x) is concave2. Exp-concavity is a
property which is well known to allow for faster convergence rates (in terms of regret). In particular,
exp-concave losses underly some of the most important applications of OCO such as online linear
regression and online portfolio selection. More generally, any loss of the form f(x) = g(a>x) with
g : R→ R strongly convex, is exp-concave. While for general convex functions the optimal regret
bound attainable (by any algorithm) is O(

√
T ) (treating all quantities except for n, T as constants),

in case all losses are exp-concave, a regret bound of the form O(n log T ) is attainable (Hazan et al.,
2007; Hazan, 2019), which is faster for any fixed dimension n and T large enough. The latter regret
bound is attainable via a well-known algorithm known as Online Newton Step (ONS), however,
ONS requires on each iteration to compute a non-Euclidean projection onto the feasible set w.r.t. to
some matrix-induced norm (this matrix aggregates all the gradients of the losses observed so far),
and hence is often computationally prohibitive in high-dimensional settings and when the feasible
set K admits non-trivial structure.

Our main contribution is a novel projection-free LOO-based variant of ONS for exp-concave
and smooth (Lipschitz continuous gradient) losses. Using overall O(T ) calls to a LOO (throughout
all rounds), our algorithm guarantees in worst case Õ(n2/3T 2/3) regret (where currently for ease
of presentation we treat all quantitates except for n, T as constants, and Õ hides poly-logarithmic
factors). However, our algorithm is most interesting in a highly popular and plausible scenario
in high-dimensional analytics, namely when the observed gradients of the loss functions (the data
fed into the algorithm), approximately, span only a low dimensional subspace. Denoting by ρ the
(approximate) dimension of the subspace spanned by the gradients, by a simple tuning of param-
eters, our regret bound improves to Õ(ρ2/3T 2/3), which is independent of the ambient dimension
n. Moreover, by leveraging well-known efficient deterministic sketching techniques, as was already
proposed in Luo et al. (2016) (but not in the context of projection-free algorithms), we can also
reduce the memory and additional average runtime per iteration from O(n2) to only O(ρn), i.e.,
linear in the dimension for a constant ρ.

To put our results in perspective, the best previous regret bound for a LOO-based algorithm for
OCO (that holds for arbitrary convex losses and with no assumption on the span of the gradients)
which is dimension-independent isO(T 3/4) and requires overallO(T ) calls to the LOO (Hazan and
Kale, 2012; Garber and Kretzu, 2022). Two recently proposed LOO-based algorithms also improved

2. in linear regression one has g(x) = (x − b)2 for some b ∈ R, and in online portfolio selection one has g(x) =
− log(x), which is strongly convex on R>0
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the dependence on the horizon T from T 3/4 to T 2/3, however suffer from regret and/or oracle
complexity which scales with

√
n or worse: the regret bound of the Follow The Perturbed Leader-

based algorithm of Hazan and Minasyan (2020) has a regret bound of the form O(
√
nT 2/3), while

the Follow The Leader-based algorithm of Mhammedi (2022) (which is based on approximating
the feasible set with a strongly convex set, which leads to the faster rate) requires overall Õ(nT )
calls to the LOO and has a regret bound of the form O((R/r)2/3T 2/3), where R/r is the ratio
between an enclosing ball and an enclosed ball, which often scales with

√
n and even with n (e.g.,

for the simplex or the spectrahedron, see Mhammedi (2021)). Moreover, the additional runtime
per iteration of the algorithm in Mhammedi (2022) scales with n3. Unfortunately, such explicit
dependencies on the ambient dimension may be prohibitive for high-dimensional problems, which
is indeed the typical setting of interest for projection-free methods. Thus, it is interesting whether it
is possible to obtain a fast T 2/3 rate without explicit dependence on the ambient dimension.

A very popular approach to circumvent explicit dependencies on the ambient dimension, which
underlies numerous models in statistics/high-dimensional analytics and is observed frequently in
real-world scenarios, is the assumption that the data, at least approximately, lies only in a low-
dimensional subspace. In our context of OCO with exp-concave losses, as discussed above, many
losses of interest take the form ft(x) = gt(a

>
t x), gt : R → R, with the gradient vector be-

ing ∇ft(x) = g′t(a
>
t xt)at. Thus, when the data vectors a1, . . . ,aT approximately span only

a low-dimensional subspace (in the sense that the eigenvalues of the unnormalized covariance
λi(
∑T

t=1 ata
>
t ) are sufficiently small for all i ≥ ρ+1, for some ρ << n), our regret bound becomes

dimension-independent and thus suitable for such popular high-dimensional settings. To the best
of our knowledge, the fast (in terms of T , but not n) algorithms proposed in Hazan and Minasyan
(2020); Mhammedi (2022) cannot efficiently leverage low-dimensionality of the gradients.

Table 1 gives a short summery of our results as well as a comparison to related LOO-based
algorithms for OCO.

On the technical side, our work primarily builds on the recent approach of Garber and Kretzu
(2022) which suggested a LOO-based projection-free variant of the well known Euclidean Online
Projected Gradient Descent method (Zinkevich, 2003; Hazan, 2019), and is based on the concept of
approximately-feasible (Euclidean) projections3, which refers to the computation of points which
on one-hand, while infeasible w.r.t. the decision set K, still satisfy certain properties related to or-
thogonal projections and are sufficiently close to the feasible set, which drives the regret bound, and
on the other-hand, could be computed efficiently using only a limited number of queries to the LOO
of the feasible set via the classical Frank-Wolfe algorithm for offline convex minimization (Frank
and Wolfe, 1956; Jaggi, 2013). Here we provide a non-trivial extension of this framework, from
supporting only Euclidean (approximately feasible) projections, to supporting projections w.r.t.
matrix-induced norms as employed by ONS. We also substantially improve the bound on the or-
acle complexity required to compute such approximately-feasible projections, which is crucial to
obtaining our faster regret rate (T 2/3 instead of T 3/4 in Garber and Kretzu (2022)).

Other projection-free oracles: We mention in passing that while, as in this work, most literature
on projection-free OCO assumes the feasible set is accessible through a LOO, some recent works
have also considered other oracles such as a separation oracle or a membership oracle (Mhammedi,
2021; Garber and Kretzu, 2022; Lu et al., 2022). While each of these oracles could be implemented
via the others (see for instance Tat Lee et al. (2017)), none of them is generically superior to the

3. Garber and Kretzu (2022) originally used the terminology close infeasible projections
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Reference
Additional

assumptions
Based

on
Deter-

ministic?
LOO
calls

Additional
runtime

Regret

Hazan and Kale
(2012)

- RFTL X T nT RGT
3
4

Garber and
Kretzu (2022)

- OGD X T nT RGT
3
4

Mhammedi
(2022)

rB ⊆ K FTL × nT n3T GR(R/r)
2
3 T

2
3

Hazan and Mi-
nasyan (2020)

β-smooth
losses

FTPL × T nT R (G
√
n+ βR)T

2
3

Theorem 10
α-exp concave

and β-smooth losses
ONS X T n2T

(
G+ α−1

)
Rn

2
3 T

2
3

+βR2T
2
3

Theorem 11

1. α-exp concave
and β-smooth losses
2. gradients approx.

span ρ-dim. subspace (*)

ONS X T ρnT

(
G+ α−1

)
Rρ

2
3 T

2
3

+βR2T
2
3

Table 1: Summary of results and comparison to previous LOO-based methods (applicable to arbi-
trary convex and compact sets). G denotes an upper-bound on the `2 norm of the gradients,
R denotes the radius of the feasible setK, and B denotes the unit Euclidean ball centered at
the origin. Condition (*) should be understood as

∑n
i=ρ+1 λi

(∑T
t=1∇t∇>t

)
= O(T 2/3),

where λi(·) denotes the i-th largest eigenvalue and ∇t ∈ Rn denotes the gradient of the
loss observed on round t. The bounds omit constants and poly-logarithmic factors.

other (in terms of efficiency of implementation). Finally, the very recent work Mhammedi and
Gatmiry (2022) considers an efficient variant of ONS which is based on accessing the feasible set
only through a separation oracle, however it requires the feasible set K to by symmetric in the sense
that K = −K, which is fairly restrictive.

2. Preliminaries

2.1. Notation

We let ‖·‖ denote the Euclidean norm over Rn. For a positive semidefinite matrix A, we let
‖·‖A denote the induced semi-norm over Rn, i.e., for any x ∈ Rn, ‖x‖A =

√
x>Ax. We let

Sn,Sn+,Sn++ denote the space of real symmetric n × n matrices, the set of all real n × n (sym-
metric) positive semidefinite matrices, and the set of all real n × n (symmetric) positive definite
matrices, respectively. We use the standard notation A � 0 (A � 0) to denote that A ∈ Sn+
(A ∈ Sn++). For a matrix A ∈ Sn and i ∈ [n], we let λi(A) denote the i-th largest (signed)
eigenvalue of A. We denote by A • B the standard inner product between two matrices in Sn,
i.e., A • B =

∑n
i=1

∑n
j=1 Ai,jBi,j = Tr(AB>). We let B denote the unit Euclidean ball in Rn

centered at the origin. Given a convex and compact set C ⊂ Rn, a point x ∈ Rn, and a positive
definite matrix A ∈ Sn++, we let dist(x, C) and distA(x, C) denote the Euclidean distance of x from

4
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C and the distance induced by A of x from C, respectively. That is, dist(x, C) = miny∈C ‖x− y‖,
dist(x, C) = miny∈C ‖x− y‖A.

2.2. Problem setup: online exp-concave and smooth optimization with a LOO

We recall the setting of OCO (Hazan, 2019; Shalev-Shwartz et al., 2012), in which, a decision maker
is required for T rounds (T is assumed known in advanced for simplicity), to select on each round
some point xt ∈ K, where K ⊂ Rn is convex and closed (and fixed throughout all rounds). After
making her choice on round t, the decision maker observes a convex loss function ft : K → R and
incurs the loss ft(xt). The goal of the decision maker is to minimize her regret which is given by

RT =

T∑
t=1

ft(x
t)−min

x∈K

T∑
t=1

ft(x),

i.e., it is the difference between her cumulative loss, and the cumulative loss of the best fixed point
in K in hindsight.

Throughout this work we assume the feasible set is compact and accessible through a linear
optimization oracle, which means that for any g ∈ Rn we can efficiently compute some v∗ ∈
argminv∈K v

>g.
We now turn to discuss our specific assumptions on the loss functions f1, . . . , fT . In the follow-

ing definitions we let C denote a convex and compact subset of Rn.

Definition 1 We say f : C → R is β-smooth over C, for some β ≥ 0, if for every x,y ∈ C it holds
that ‖∇f(x)−∇f(x)‖ ≤ β ‖x− y‖.

Definition 2 We say f : C → R is α-exp concave over C, for some α > 0, if e−αf(x) is concave
over C.

We recall that an exp-concave function is in particular convex (see Hazan (2019)). In fact, we shall
consider a weaker condition than exp concavity, which we shall refer to as a curvature condition.

Definition 3 Let R denote the radius of C, i.e., maxx,y∈C ‖x− y‖ ≤ 2R. A differentiable function
f : C → R with gradients upper-bounded in `2 norm by some G > 0 over C, is said to satisfy the
curvature condition over C with some parameter α > 0, if for every η ≥ max{4GR, 2/α} and every
x,y ∈ C, it holds that f(x)− f(y) ≤ ∇f(x)> (x− y)− 1

2η (x− y)>∇f(x)∇f(x)> (x− y).

This condition is weaker than exp-concavity in the sense that an α-exp-convave function also satis-
fies the curvature condition with the same parameter α (Hazan, 2019).

The following assumption records all of our assumptions on the loss functions f1, . . . , fT , which
we assume to hold throughout the rest of the paper.

Assumption 1 The loss functions f1, . . . , fT , are all β-smooth, have gradients upper-bounded in
`2 norm by some G > 0, and satisfy the curvature condition with some parameter α > 0, over the
set 3RB, where R denotes the radius of a ball enclosing K and centered at the origin.4

4. The consideration of a set strictly containing K (the ball 3RB) in which these assumptions hold is required since
our algorithm will query gradients of the loss functions at infeasible points. For ease of presentation we consider the
enclosing set 3RB, however this could be very much relaxed to consider a set only slightly larger than K in which
the assumption needs to hold, see discussion in Section D.

5
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2.3. Online Newton step with approximately-feasible (matrix) projections

We now begin to discuss our high-level approach towards efficient LOO-based implementation of
the Online Newton Step method. As discussed, our approach builds on the one in Garber and Kretzu
(2022), which considered the Euclidean Online Gradient Descent method, and extends it to ONS
which requires non-Euclidean projections according to matrix-induced norms.

One of our central algorithmic building blocks is an oracle for computing approximately-feasible
projections onto the feasible set K w.r.t. to some matrix-induced norm, which we now define. In
the sequel we show how such an oracle could be implemented efficiently using only a LOO for the
feasible set K.

Definition 4 Given a convex and compact set K ⊂ Rn, a positive definite matrix A ∈ Sn++, and
a tolerance ε > 0, we say a function OAFP (y,A, ε,K) is an approximately-feasible projection
(AFP) oracle (for the set K with parameters A, ε), if for any input point y ∈ Rn, it returns some
(x, ỹ) ∈ K × Rn such that i. for all z ∈ K, ‖ỹ − z‖A ≤ ‖y − z‖A, and ii. ‖x− ỹ‖2A ≤ ε.

Equipped with the concept of an AFP oracle, we can now introduce our second central algo-
rithmic building block — a template for ONS-style algorithms that only accesses the feasible set
K through an AFP oracle. As opposed to the standard (projection-based) ONS which maintains
a single sequence of feasible points, Algorithm 1 maintains two main sequences: one sequence
({ỹm}m≥1}) which is infeasible and corresponds to an ONS-style update, and another sequence
({xm}m≥1}) which is feasible and point-wise close to the previous sequence. We refer to Algorithm
1 as a template since it does not explicitly state how to choose the matrices Am,m = 1, 2, . . . , used
in the algorithm, but only states some restrictions on them. This will be useful later on to derive our
two variants: one in which Am is based on exact aggregation of gradients (as in standard ONS),
and the other which is only a certain approximation via a matrix sketching technique and useful
for reducing memory and runtime requirements in case the gradients span (approximately) only a
low-dimensional subspace. Finally, Algorithm 1 partitions the prediction rounds 1, . . . , T into con-
secutive disjoint blocks of size K (denoted by a subscript of m). This will be important to make
sure the AFP oracle is called only once every K iterations, which will allow to upper bound the
number of LOO calls required to implement it according to our needs. The following lemma states
the regret bound of Algorithm 1 that will be used to derive all following regret bounds.

Lemma 5 Consider running Algorithm 1 with some block size K ∈ [T ]5 and with εI ≥ G2K2,
η ≥ max{12KGR, 2K

α }. Suppose further that for all m it holds that ỹm ∈ 3RB. Then, it holds
that

∀x ∈ K :
T∑
t=1

ft(x
t)− ft(x) ≤ 3βε

εI
T +

√√√√6εT

K

T/K∑
m=1

‖∇̄m‖2A−1
m

+
2R2εI
η

+
η

2

T/K∑
m=1

‖∇m‖2A−1
m
.

The proof, at a high level, builds on coupling the standard ONS proof (Hazan, 2019) with the
properties of the AFP oracle, to derive a regret bound on the infeasible sequence {ỹm}m≥1. The
smoothness assumption on the losses is then used (and only in this proof) to derive a regret bound
on the feasible sequence {xt}t≥1, without incurring terms which (eventually) will scale worse than
T 2/3.

5. without loosing much generality, throughout this paper we assume that the chosen block sizeK is integer and divides
T , which will ease the analysis. Waiving this convention will only add lower-order terms to our regret bounds

6
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Algorithm 1: Template for Online Newton Step Without Feasibility
Data: horizon T , block length K, learning rate η > 0, initialization parameter εI > 0, error

tolerance ε > 0, approximately-infeasible projection oracle OAFP (·, ·, ·,K)
x1 = ỹ1 ← arbitrary point in K
A0 = εIIn
for m = 1, . . . , T/K do

Set ∇̄m = 0
for s = 1, . . . ,K do

Play xt = xm for t = (m− 1)K + s
Set ∇t = ∇ft(ỹm) and update ∇̄m = ∇̄m +∇t

end
Update Am such that A0 � Am � Am−1 + ∇̄m∇̄>m
Update ym+1 = ỹm − ηA−1

m ∇̄m
Set (xm+1, ỹm+1)← OAFP (ym+1,Am, 3ε,K)

end

Proof [Proof of Lemma 5] Fix some block m ∈ {1, . . . , T/K}. Since ∇̄m =
∑mK

t=(m−1)K+1∇t,
it holds that ∇̄m∇̄>m � K2G2In. Thus, for the value of εI stated in the lemma and the choice of
Am−1, we have that ∇̄m∇̄>m � εIIn = A0 � Am−1. Additionally, since Am � Am−1 + ∇̄m∇̄>m,
we have that

‖xm − ỹm‖2Am
≤ ‖xm − ỹm‖2Am−1

+ ‖xm − ỹm‖2∇̄m∇̄>m ≤ 2‖xm − ỹm‖2Am−1
. (1)

Denote x∗ ∈ argminx∈K
∑T

t=1 ft(x), m(t) :=
⌈
t
K

⌉
, and gt = ∇ft(xm(t)) for all t ∈ [T ]. Using

the convexity of each ft(·), it holds that

T∑
t=1

ft(xm(t))− ft(x∗) ≤
T∑
t=1

g>t
(
xm(t) − ỹm(t)

)
+

T∑
t=1

ft(ỹm(t))− ft(x∗).

Since each ft(·) is β-smooth we have that,

T∑
t=1

ft(xm(t))− ft(x∗) ≤
T∑
t=1

(gt −∇t)>
(
xm(t) − ỹm(t)

)
+∇>t

(
xm(t) − ỹm(t)

)
+ ft(ỹm(t))− ft(x∗)

≤
T∑
t=1

β
∥∥xm(t) − ỹm(t)

∥∥2
+

T/K∑
m=1

∇̄m (xm − ỹm) +
T∑
t=1

ft(ỹm(t))− ft(x∗).

(2)

Since for every block m, (xm, ỹm) are the output of OAFP (ym,Am−1, 3ε,K), we have that

T∑
t=1

β
∥∥xm(t) − ỹm(t)

∥∥2
= K

T/K∑
m=1

β ‖xm − ỹm‖2 ≤
(a)

βK

εI

T/K∑
m=1

‖xm − ỹm‖2Am−1
≤
(b)

3βε

εI
T, (3)

7
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where (a) holds since, by the choice of Am−1, it holds that Am−1 � A0 = εIIn, and so, for any
z ∈ Rn we have that ‖z‖2Am−1

≥ εI‖z‖2, and (b) holds due to the gurantee of the AFP oracle.
Using Eq. (1) and the facts that for every blockm, ‖·‖Am , ‖·‖A−1

m
are dual norms, and (xm, ỹm)

are the outputs of OAFP , we have that∑T/K

m=1
∇̄>m (xm − ỹm) ≤

∑T/K

m=1
‖∇̄m‖A−1

m
‖xm − ỹm‖Am

≤
∑T/K

m=1
‖∇̄m‖A−1

m

√
2‖xm − ỹm‖Am−1 ≤

√
6ε
∑T/K

m=1
‖∇̄m‖A−1

m
,

where the last inequality is again due to the guarantee of the AFP oracle.
Using Jensen’s inequality, we have that

T/K∑
m=1

∇̄>m (xm − ỹm) ≤
√

6ε

√√√√√
T/K∑
m=1

‖∇̄m‖A−1
m

2

≤
√

6ε

√
T

K

√√√√T/K∑
m=1

‖∇̄m‖2A−1
m
. (4)

Now we turn to upper bound the third term in Eq. (2). For every block m, using the fact that ỹm+1

is the output of OAFP w.r.t. the input point ym+1, we have that

∀x ∈ K : ‖ỹm+1 − x‖2Am
≤ ‖ym+1 − x‖2Am

= ‖ỹm − ηA−1
m ∇̄m − x‖2Am

= ‖ỹm − x‖2Am
+ η2∇̄>mA−1

m ∇̄m − 2η∇̄>m(ỹm − x).

Rearranging, for every m ∈ [T/K], we have that

∇̄>m(ỹm − x) ≤
‖ỹm − x‖2Am

2η
−
‖ỹm+1 − x‖2Am

2η
+
η

2
‖∇̄m‖2A−1

m
. (5)

Before we continue, we upper bound the summation of ‖ỹm − x‖2Am
− ‖ỹm+1 − x‖2Am

over m ∈
[T/K]. Since ỹ1 ∈ K and A0 = εIIn, we have that

T/K∑
m=1

‖ỹm − x‖2Am
− ‖ỹm+1 − x‖2Am

≤ ‖ỹ1 − x‖2A1
+

T/K∑
m=2

(ỹm − x)> (Am −Am−1) (ỹm − x)

= ‖ỹ1 − x‖2A0
+

T/K∑
m=1

(ỹm − x)> (Am −Am−1) (ỹm − x)

≤ 4R2εI +

T/K∑
m=1

(ỹm − x)> (Am −Am−1) (ỹm − x).

Summing Eq. (5) overm ∈ [T/K], and using the fact that for all blocksm, Am−Am−1 � ∇̄m∇̄>m,
we have that

T/K∑
m=1

∇̄>m(ỹm − x) ≤ 2R2εI
η

+

T/K∑
m=1

(ỹm − x)>∇̄m∇̄>m(ỹm − x)

2η
+
η

2

T/K∑
m=1

‖∇̄m‖2A−1
m
.

Since η ≥ max{12KGR, 2K
α }, and ỹm ∈ 3RB for every m ∈ [T/K] (by the assumption of the

lemma), using Lemma 19 (sum of functions which satisfy the curvature condition in Definition 3,
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also satisfies this condition) we have that for every x ∈ K ⊆ 3RB, and every m ∈ [T/K], it holds
that

mK∑
t=(m−1)K+1

ft(ỹm)− ft(x) ≤ ∇̄>m (ỹm − x)− 1

2η
(ỹm − x)> ∇̄m∇̄>m (ỹm − x) .

Combining the last two inequalities we obtain that for every x ∈ K it holds that,

T∑
t=1

ft(ỹm(t))− ft(x) ≤2R2εI
η

+
η

2

T/K∑
m=1

‖∇m‖2A−1
m
.

Plugging-in the last equation, Eq. (4), and Eq. (3) into Eq. (2), we obtain

T∑
t=1

ft(xm(t))− ft(x∗) ≤
3βε

εI
T +
√

6ε

√
T

K

√√√√T/K∑
m=1

‖∇̄m‖2A−1
m

+
2R2εI
η

+
η

2

T/K∑
m=1

‖∇m‖2A−1
m
.

Finally, the lemma follows from recalling that with the notation of Algorithm 1, we have that for all
t ∈ [T ], xt = xm(t).

3. Efficient LOO-based Approximately-Feasible Projections

In this section we turn to discuss the technical heart of the paper — the efficient construction of an
AFP oracle for the feasible set K (Definition 4) using only a linear optimization oracle for K. As
already discussed, we build on the approach of Garber and Kretzu (2022) for Euclidean projection,
but expand on it in two ways: i. we extend it to projection w.r.t. matrix-induced norms, as em-
ployed by ONS, and ii. we critically improve certain parts of the analysis, which while not being a
bottleneck in the analysis of Garber and Kretzu (2022) (which has a T 3/4 regret bound), are indeed
crucial for our faster T 2/3 regret bounds.

At a high level, the construction relies on the following idea: given an infeasible point y, us-
ing only the LOO, we can either construct a generalized hyperplane that separates y from K with
sufficient margin (generalized in the sense that it separates w.r.t. to a given positive definite matrix
A, see in the sequel), or find a feasible point that is sufficiently close to y (in terms of the distance
induced by the matrix A). In case such a generalized hyperplane is found, it can then be used to
“pull” the infeasible point closer to K, and the process repeats itself.

We show that by applying the classical LOO-based Frank-Wolfe method (Frank and Wolfe,
1956; Jaggi, 2013) to the non-Euclidean projection problem minx∈K ‖x− y‖2A, we can indeed
either find such a separating hyperplane, or find a close-enough feasible point, w.r.t. the matrix A.

One may wonder: if we can directly approximate matrix-based projections, arbitrarily well,
using Frank-Wolfe, why do we need to go through the (conceptually more complex) approach of
using separating hyperplanes? The reason is that, has already discussed in Garber and Kretzu
(2022), such a simplified approach will lead to a worse regret/oracle complexity tradeoff (mainly
in terms of T ). In particular, when applying Frank-Wolfe to the problem minx∈K ‖x− y‖2A, we
will only compute a feasible point that is an approximated projection. On the other hand, with
our approach (recall the definition of the AFP oracle) we always return a valid (though infeasible)

9
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projection (and a feasible point that is sufficiently close to it), which allows for a tighter regret
analysis.

The following lemma shows how given an infeasible point y and such a generalized separating
hyperplane, we can “pull” y closer to the feasible set.

Lemma 6 Let K ⊂ Rn be convex and compact, let A ∈ Sn++, and let y ∈ Rn \ K. Let g ∈ Rn be
such that for all z ∈ K, (y − z)>Ag ≥ Q, for some Q ≥ 0. Consider the point ỹ = y − γg for
γ = Q/C2, where C ≥ ‖g‖A. It holds that

∀z ∈ K : ‖ỹ − z‖2A ≤ ‖y − z‖2A − (Q/C)2.

Proof Fix some z ∈ K. It holds that

‖ỹ − z‖2A = ‖y − z− γg‖2A = ‖y − z‖2A − 2γ(y − z)>Ag + γ2 ‖g‖2A .

Since (y − z)>Ag ≥ Q and C ≥ ‖g‖A, we indeed obtain

‖ỹ − z‖2A ≤ ‖y − z‖2A − 2γQ+ γ2C2 = ‖y − z‖2A −Q2/C2,

where the last equality follows from plugging-in the value of γ.

Algorithm 2 given below, which simply applies the Frank-Wolfe method (with line-search) for
smooth convex minimization over a convex and compact set (Jaggi, 2013) to the non-Euclidean
projection problem minx∈K ‖x− y‖2A, returns some feasible point x̃ ∈ K, that is either close
enough (w.r.t. ‖·‖A) to the infeasible point y, or can be used to construct a hyperplane which
separates y from K w.r.t. A and with sufficient margin.

Algorithm 2: Generalized Separating Hyperplane via Frank-Wolfe
Data: LOO for the feasible set K, error tolerance ε > 0, initial point x1 ∈ K, A ∈ Sn++,

infeasible point y
for i = 1, 2, . . . do

vi ∈ argmin
x∈K

{(xi − y)>Ax}; /* call to LOO of K */

if (xi − y)>A(xi − vi) ≤ ε or ‖xi − y‖2A ≤ 3ε then
return x̃← xi

σi = argmin
σ∈[0,1]

{‖y − xi − σ(vi − xi))‖2A}

xi+1 = xi + σi(vi − xi)
end

Lemma 7 Algorithm 2 terminates after at most
⌈(

27R2λ1(A)/ε
)
− 2
⌉

iterations, and returns a
point x̃ ∈ K satisfying:

1. ‖x̃− y‖2A ≤ ‖x1 − y‖2A.

2. At least one of the following holds: ‖x̃ − y‖2A ≤ 3ε or ∀z ∈ K : (y − z)>A(y − x̃) >
(2/3)‖x̃− y‖2A.

10
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3. If dist2A(y,K) ≤ ε, then ‖x̃− y‖2A ≤ 3ε.

Proof As discussed, Algorithm 2 is simply the well-known Frank-Wolfe method with line-search,
see Algorithm 3 in Jaggi (2013), when applied to minimizing the convex and λ1(A)-smooth func-
tion g(x) := 1

2‖x− y‖2A, whose gradient vector is given by ∇g(x) = A(x − y), over the set K.
Thus, the upper-bound on the number of iterations executed by Algorithm 2 follows immediately
from Theorem 2 in Jaggi (2013), which gives a convergence rate for the dual gap. For our choice of
g, the dual gap on any iteration i is given precisely by∇g(xi)

>(xi − vi) = (xi − y)>A(xi − vi),
which corresponds to one of the stopping conditions is Algorithm 2.

Since the line-search guarantees that the function value g(xi) = 1
2‖xi − y‖2A does not increase

when moving from iterate xi to xi+1, Item 1 holds trivially.
Item 2 follows from the stopping condition of the algorithm and by noting that, if for some

iteration i it holds that (xi−y)>A(xi−vi) ≤ ε and ‖xi − y‖2A > 3ε (in which case the algorithm
will return x̃ = xi) then, for all z ∈ K it holds that

(z− y)>A (xi − y) = (z− xi)
>A (xi − y) + ‖xi − y‖2A ≥ (vi − xi)

>A (xi − y) + ‖xi − y‖2A
≥ −ε+ ‖xi − y‖2A > −(‖xi − y‖2A/3) + ‖xi − y‖2A = (2/3)‖xi − y‖2A,

where the first inequality is due to the definition of vi.
Finally, to prove Item 3, denote x∗ = argminx∈K ‖x− y‖2A. Suppose by contradiction that

dist2A(y,K) = ‖x∗ − y‖2A ≤ ε, and ‖x̃− y‖2A > 3ε. By the stopping condition of the algorithm,
on the last iteration executed i, it must hold that (x̃−y)>A(x̃−vi) = maxv∈K∇g(x̃)>(x̃−v) ≤ ε,
which means that

‖x̃− y‖2A − dist2A(y,K) = 2g(x̃)− 2g(x∗) ≤ 2∇g(x̃)>(x̃− x∗) ≤ 2 max
v∈K
∇g(x̃)>(x̃− v) ≤ 2ε,

where the first inequality is due to the gradient inequality and the convexity of g(·). Thus, we have
that ‖x̃− y‖2A ≤ 2ε + dist2A(y,K) ≤ 3ε, which contradicts the assumption that ‖x̃− y‖2A > 3ε.

Our LOO-based implementation of a AFP oracle for the feasible set K is given as Algorithm 3.
The algorithm builds on iteratively using separating hyperplanes generated by Algorithm 2 to “pull
closer” the infeasible point y towards the feasible set K using the updates suggested in Lemma 6,
until it is sufficiently close.

The proof of the following lemma is given in the appendix.

Lemma 8 Setting γ = 2/3 in Algorithm 3 guarantees that it stops after at most

max

{
2.25 log

(
‖y1 − x0‖2A

ε

)
+ 1, 0

}
iterations, and returns (x,y) ∈ K ×

(
R+

√
3ε/λn(A)

)
B such that

∀z ∈ K : ‖y − z‖2A ≤ ‖y1 − z‖2A and ‖x− y‖2A ≤ 3ε.

It is important to note that Lemma 8 significantly and critically improves upon its Euclidean coun-
terpart in Garber and Kretzu (2022): while the number of iterations here scales only with log(1/ε),
in Garber and Kretzu (2022) it scales with 1/ε2. This improvement is critical for obtaining our
improved regret/oracle complexity tradeoffs.

11



GARBER KRETZU

Algorithm 3: Approximately-Feasible (matrix) Projection via a Linear Optimization Oracle
Data: LOO for the feasible set K, feasible point x0 ∈ K, initial point y1 ∈ Rn, A ∈ Sn++,

error tolerance ε > 0, step-size γ > 0
if ‖x0 − y1‖2A ≤ 3ε then

Return x← x0, y← y1

end
for i = 1, 2, . . . do

xi ← Output of Algorithm 2 when called with LLO of K, tolerance ε, feasible point xi−1,
positive definite matrix A, and initial point yi

if ‖xi − yi‖2A > 3ε then
yi+1 = yi − γ (yi − xi)

else
Return x← xi, y← yi

end
end

4. LOO-based Online Newton Step

In this section we present our main result — an efficient LOO-based ONS-style algorithm and its
regret and complexity guarantees.

The following lemma builds on the combination of our ONS Without Feasibility template (Al-
gorithm 1) together with our LOO-based construction for an AFP oracle (Algorithm 3). The proof
is given in the appendix.

Lemma 9 Fix block sizeK ∈ [T ]. Consider running Algorithm 1 with parameters η, ε, εI such that
η ≥ max{12KGR, 2K

α }, εI ≥ (KG)2, and 3ε
εI
≤ 4R2, and when the OAFP oracle is implemented

via Algorithm 3, where the initial feasible input to Algorithm 3 (the point x0 in Algorithm 3), when
called during block m in Algorithm 1, is the previous feasible output of Algorithm 3 — the point
xm, if m ≥ 2, and the initialization point of Algorithm 1 (the point x1), if m = 1. Then, the regret
is upper bounded by

T∑
t=1

ft(x
t)− min

x∗∈K

T∑
t=1

ft(x
∗) ≤ 3βε

εI
T +

√√√√6εT

K

T/K∑
m=1

‖∇̄m‖2A−1
m

+
2R2εI
η

+
η

2

T/K∑
m=1

‖∇m‖2A−1
m
,

and the overall number of calls to the LOO of K is upper bounded by

Ncalls ≤ 61R2 log

(
19 + 4

η2K2G2

εεI

)
εI +G2KT

Kε
T.

We are now ready to formally present our main result. Here for ease of presentation we present
a concise version only. A fully detailed version which specifics all choices of parameters and all
poly-logarithmic factors, as well as the proof, is given in the appendix.

Theorem 10 (short version) Consider the implementation of Algorithm 1 as described in Lemma
9 and when using the (standard ONS) update rule: Am = Am−1 + ∇̄m∇̄>m for every block m.
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1. If T ≥ T0 = Õ(1), there exists a choice for the parameters K, η, ε, εI in Algorithm 1 which
depends only on the quantities T, n,G,R, α and satisfies the assumptions of Lemma 9, such
that the regret is upper-bounded by

RT = Õ
(

(βR2 + (GR+ α−1)n2/3)T 2/3
)
. (6)

2. In continue to the previous item and under the same choice of parameters, for any ρ ∈ [n],
denoting Ωρ =

∑n
i=ρ+1 λi(

∑T
t=1∇t∇>t ) (∇t is as defined in Algorithm 1), the regret is

upper-bounded by

RT = Õ
(

(βR2 +GR(ρ1/2n1/6 + n1/3) + α−1n−1/3ρ)T 2/3
)

+ Õ
(
RT 1/3

√
Ωρ +G−2n−2/3(GR+ α−1)Ωρ

)
. (7)

3. Fix ρ ∈ [n]. If T ≥ T0 = Õ(1), there exists a choice for the parameters K, η, ε, εI in
Algorithm 1 which depends only on the quantities T, n,G,R, α and ρ, and satisfies the as-
sumptions of Lemma 9, such that the regret is upper-bounded by

RT = Õ
(

(βR2 + (GR+ α−1)ρ2/3)T 2/3 +RT 1/3
√

Ωρ +G−2ρ−2/3(GR+ α−1)Ωρ

)
.

(8)

Note this bound is not explicitly dependent on the ambient dimension n.

In all cases, the overall number of calls to the LOO ofK is upper-bounded byO(T +n1/3T 2/3), the
additional space requirement is O(n2), and using the Sherman-Morrison formula for fast matrix
inversion, the overall additional runtime is O(n2(T + n1/3T 2/3)).

Let us make a few comments regarding Theorem 10. The regret bounds (7), (8) may significantly
improve upon the worst case bound (6) in case the observed gradients approximately span a sub-
space of dimension at most ρ, for some ρ ∈ [n], in the sense that Ωρ = O(T 2/3) (note that Ωρ = 0
implies that the dimension of the subspace spanned by the gradients is at most ρ). In particu-
lar, the bound (7) holds simultaneously for all values of ρ (i.e., the algorithm is independent of
the choice of ρ), but still depends on the ambient dimension n (though with milder dependence
than (6)), while the bound (8) is completely independent of n, but requires a priori knowledge of
ρ. In case it indeed holds that Ωρ = O(T 2/3) for some known ρ << n, (8) translates into a
Õ
(
(βR2 + (GR+ α−1)ρ2/3)T 2/3

)
regret bound.

5. Leveraging Frequent Directions Sketching for Low-dimensional Data

While Theorem 10 yields a regret bound for Algorithm 1 which is independent of the ambient
dimension n and depends only on the (approximate) dimension of the subspace spanned by the
gradients (guarantee (8)), the space and average additional runtime requirements still scale with
n2. Following the approach of Luo et al. (2016), who considered the coupling of ONS with matrix
sketching techniques to reduce space and runtime requirements in case of low-dimensional data (but
not in a projection-free setting), in this section we discuss the implications of such coupling to our
LOO-based algorithm.
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Similarly to Luo et al. (2016), we consider the use of the well known deterministic Frequent
Directions sketching method (Ghashami et al., 2016). The idea is that instead of taking the matrix
Am for each block m in Algorithm 1 to be the exact aggregation of gradients as in Theorem 10 and
maintain it (and its inverse A−1

m ) explicitly, we shall only maintain a certain approximation of this
gradient information in a low-rank factorized form, see Algorithm 4 which shows how the Frequent
Directions sketch is used in synergy with Algorithm 1.

Algorithm 4: Frequent Directions Sketch for Algorithm 1
Data: sketch size ρ ∈ [n], εI > 0
Initialization: Set S0 = 0(ρ+1)×n, and A0 = εIIn
for m = 1 to T/K do

Receive ∇̄m ∈ Rn from Algorithm 1 and insert it as the last row of Sm−1

Compute eigendecomposition of S>m−1Sm−1: V>mΣ̂mVm = S>m−1Sm−1

Set σm = Σ̂m (ρ+ 1, ρ+ 1) and Σm = Σ̂m − σmIρ+1 . Σm(ρ+ 1, ρ+ 1) = 0

Set Sm = (Σm)
1
2 Vm . last row of Sm is now 0

Set Hm = diag
(

1
εI+Σm(1,1) , . . . ,

1
εI+Σm(ρ,ρ) ,

1
εI

)
.Hm =

(
εIIρ+1 + SmS

>
m

)−1

Set Am = A0 + S>mSm, A−1
m = ε−1

I

(
In − S>mHmSm

)
. not to be explicitly computed;

the expression for A−1
m follows from the Woodbury matrix identity

end

The full version of the following theorem, as well as the proof and additional details regarding
Algorithm 4, are given in the appendix.

Theorem 11 Fix ρ ∈ [n]. Consider the implementation of Algorithm 1 as described in Lemma 9,
and when the matrix Am for every block m in Algorithm 1 is generated by Algorithm 4. Denote
Ωρ =

∑n
i=ρ+1 λi

(∑T
t=1∇t∇>t

)
. If T ≥ T0 = Õ(1), then there exists a choice for the parame-

ters K, η, ε, εI in Algorithm 1 which depends only on the quantities T, ρ,G,R, α and satisfies the
assumptions of Lemma 9, such that the regret is upper bounded by

RT = Õ
((
βR2 +

(
GR+ α−1

)
ρ2/3

)
T 2/3 +Rρ1/2T 1/3

√
Ωρ +G−2ρ1/3

(
GR+ α−1

)
Ωρ

)
.

The overall number of calls to the LOO is upper bounded by O
(
ρ1/3T 2/3 + T

)
, the additional

space requirement isO(ρn), and the overall additional runtime isO(ρnT+ρ4/3nT 2/3+ρ7/3nT 1/3).

6. Discussion

We provided the first projection-free LOO-based algorithm for exp-concave and smooth losses that
in the case of (approximately) low-dimensional gradients, using O(T ) queries to the LOO, guaran-
tees regret that both scales only with T 2/3, and is independent of the ambient dimension.

It is interesting if a similar result could be obtained when removing one or more of the above
assumptions: smoothness of the losses, exp-concavity of the losses, low-dimensionality of the gra-
dients. In particular, the two recent works Hazan and Minasyan (2020); Mhammedi (2022) achieve
fast LLO-based regret bounds that scale with T 2/3 (but also with the dimension) without curvature
assumptions on the losses. It is thus interesting whether the exp-concavity assumption, or even
strong convexity (Kretzu and Garber, 2021), could lead to even faster rates than T 2/3.
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Appendix A. Proof of Lemma 8

Proof First, we note that in the special case that ‖x0−y1‖2A ≤ 3ε, since ‖y1‖−‖x0‖ ≤ ‖x0−y1‖ ≤√
λ−1
n (A)‖x0 − y1‖A, and since x ∈ K, it holds that ‖y1‖ ≤ R +

√
3ελ−1

n (A), and the lemma
holds trivially.

For the remaining of the proof we shall assume that ‖x0 − y1‖2A > 3ε. Let us denote by
k ≥ 1 the overall number of for loop iterations executed in Algorithm 3, i.e., ‖yk − xk‖2A ≤ 3ε
and ‖yi − xi‖2A > 3ε for all i < k. Using Lemma 7 we have that for all i < k it holds that
(yi − z)>A (yi − xi) ≥ (2/3)‖yi − xi‖2A for every z ∈ K. Thus, using Lemma 6 with g =
(yi − xi) , C = ‖yi − xi‖A, Q = (2/3)‖yi − xi‖2A, and γ = Q/C2 = 2/3, we have that for every
i < k,

∀z ∈ K : ‖yi+1 − z‖2A ≤ ‖yi − z‖2A − (4/9)‖yi − xi‖2A. (9)
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Thus, we obtain that for all z ∈ K it holds that ‖yk − z‖2A ≤ ‖y1 − z‖2A.
Now we continue to upper-bound the number of iterations until Algorithm 3 stops. Denote

x∗i = argminx∈K ‖yi − x‖2A for every iteration i < k. Using Eq. (9), for every iteration i < k it
holds that

dist2A(yi+1,K) = ‖yi+1 − x∗i+1‖2A ≤ ‖yi+1 − x∗i ‖2A
≤ ‖yi − x∗i ‖2A − (4/9)‖yi − xi‖2A ≤ e−(4/9)dist2A(yi,K),

where the last inequality is since dist2A(yi,K) = ‖yi − x∗i |2A ≤ ‖yi − xi‖2A, and by using the
inequality 1− x ≤ e−x. Unrolling the recursion we have,

dist2A(yk,K) ≤ e−(4/9)(k−1)dist2A(y1,K) ≤ e−(4/9)(k−1)‖y1 − x0‖2A.

Thus, after at most k−1 = 2.25 log
(
‖y1 − x0‖2A/ε

)
iterations, we obtain dist2A(yk,K) ≤ ε, which

by using Lemma 7, implies that the next iteration will be the last one, and the points xk,yk will
indeed satisfy ‖xk − yk‖2A ≤ 3ε. This proves the upper-bound on the overall number of for loop
iterations.

Finally, note that x ∈ K since it is the output of Algorithm 2, and since ‖y‖−‖x‖ ≤ ‖x−y‖ ≤√
λ−1
n (A)‖x− y‖A, we obtain ‖y‖ ≤ R+

√
3ελ−1

n (A) as required.

Appendix B. Full Version of Theorem 10 and Proof

Before we state the full version of Theorem 10 and prove it, we first prove Lemma 9 and an addi-
tional lemma.
Proof [Proof of Lemma 9] First, note that since for every block m in Algorithm 1 we have that
Am � A0 = εIIn, it holds that λn(Am) ≥ εI . By our assumption that 3ε

εI
≤ 4R2, using Lemma 8,

it follows that for every block m in Algorithm 1 we have that ỹm ∈ 3RB, which is in accordance
with the assumption of Lemma 5. Since η ≥ max{12KGR, 2K

α }, and εI ≥ (KG)2, the regret
bound stated in the lemma follows immediately from the one in Lemma 5.

Now we move on to upper-bound the overall number of calls to the LOO. We note that Eq. (1)
holds here as well from the same arguments stated in the proof of Lemma 5. Recall that the update
step of Algorithm 1 is ym+1 = ỹm − ηA−1

m ∇̄m. Thus, by using Eq. (1), and the fact that the
points xm, ỹm are the outputs of OAFP when called from Algorithm 1 with the input point ym, the
positive definite matrix Am−1, and an error tolerance of 3ε, we have that

‖xm − ym+1‖Am ≤ ‖xm − ỹm‖Am + ‖ỹm − ym+1‖Am ≤
√

6ε+ η‖A−1
m ∇̄m‖Am .

Using (a + b)2 ≤ 2a2 + 2b2 and since λ1(A−1
m ) = λ−1

n (Am) ≤ λ−1
n (A0) = 1/εI , we have that

for any block m in Algorithm 1,

‖xm − ym+1‖2Am
≤ 12ε+ 2η2‖∇̄m‖2A−1

m
≤ 12ε+ 2η2K2G2/εI , (10)

where the last inequality also uses the fact that ‖∇̄m‖ ≤ KG.
Using Lemma 8, each call to Algorithm 3 on some block m of Algorithm 1, makes at most

max{2.25 log
(
‖xm − ym+1‖2Am

/ε
)

+ 1, 0} iterations. On each such iteration it calls Algorithm 2
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which, according to Lemma 7, makes at most
⌈

27R2λ1(Am)
ε − 2

⌉
calls to the LOO. Recall that by

the update rule of Algorithm 1: λ1(Am) ≤ λ1(Am−1) + λ1(∇̄m∇̄>m) ≤ · · · ≤ εI + G2KT for
every m, where we again used the fact that ‖∇̄m‖ ≤ KG for every block m. Thus, Algorithm 1,
on each block m, makes at most

nm ≤
(

2.25 log

(
12ε+ 2η2K2G2/εI

ε

)
+ 1

)
27R2(εI +G2KT )

ε

= 2.25

(
log

(
12ε+ 2η2K2G2/εI

ε

)
+ log

(
e

4
9

)) 27R2(εI +G2KT )

ε

≤ 2.25 log

(
1.56

12ε+ 2η2K2G2/εI
ε

)
27R2(εI +G2KT )

ε

calls to the LOO. Thus, the overall number of calls to the LOO throughout the run of Algorithm 1 is

Ncalls =

T/K∑
m=1

nm ≤ 61R2 log

(
19 + 4

η2K2G2

εεI

)
T

Kε
(εI +G2KT ).

Lemma 12 Consider Algorithm 1 with the (standard ONS) update rule: Am = Am−1 + ∇̄m∇̄>m
for every block m. Then, for every ρ ∈ [n] it holds that,

T/K∑
m=1

∥∥∇̄m∥∥2

A−1
m
≤ ρ log

(
TKG2 + εI

εI

)
+
K

εI

n∑
i=ρ+1

λi

(
T∑
t=1

∇t∇>t

)
.

Proof For every m ≥ 1 it holds that∥∥∇̄m∥∥2

A−1
m

= ∇̄>mA−1
m ∇̄m = A−1

m • ∇̄m∇̄>m = A−1
m • (Am −Am−1).

Since Am,Am−1 � 0, using Lemma 20, for every m ≥ 1 we have that,∥∥∇̄m∥∥2

A−1
m
≤ log

|Am|
|Am−1|

.

Summing over m ∈ [T/K], we have

T/K∑
m=1

‖∇̄m‖2A−1
m
≤

T/K∑
m=1

log
|Am|
|Am−1|

= log
|AT/K |
|A0|

.

Since according to the update rule listed in the lemma we have that AT/K = εIIn+
∑T/K

m=1 ∇̄m∇̄>m,

and
∥∥∇̄m∥∥2 ≤ K2G2 then, λ1(AT/K) ≤ (εI + TKG2). Using Weyl’s inequality for the eigenval-

ues, we have that for every ρ ∈ [n] it holds that,

|AT/K | =
ρ∏
i=1

λi

εIIn +

T/K∑
m=1

∇̄m∇̄>m

 n∏
i=ρ+1

λi

εIIn +

T/K∑
m=1

∇̄m∇̄>m


≤
(
TKG2 + εI

)ρ n∏
i=ρ+1

εI + λi

T/K∑
m=1

∇̄m∇̄>m

 .

18



PROJECTION-FREE ONLINE EXP-CONCAVE OPTIMIZATION

Recall that A0 = εIIn. Since ∇̄m =
∑mK

t=(m−1)K+1∇t, it holds thatK
∑T

t=1∇t∇>t �
∑T/K

m=1 ∇̄m∇̄>m
(Lemma 18). Thus, we have that

|AT/K |
|A0|

≤
(

1 +
TKG2

εI

)ρ n∏
i=ρ+1

1 +
λi

(
K
∑T

t=1∇t∇>t
)

εI


≤
(

1 +
TKG2

εI

)ρ (
e(K/εI)

∑n
i=ρ+1 λi(

∑T
t=1∇t∇>t )

)
,

where the last inequality follows from using 1 + x ≤ ex.
Thus, we obtain

T/K∑
m=1

‖∇̄m‖2A−1
m
≤ log

( |AT/K |
|A0|

)
≤ ρ log

(
1 +

TKG2

εI

)
+
K

εI

n∑
i=ρ+1

λi

(
T∑
t=1

∇t∇>t

)
.

Theorem 13 (Full version of Theorem 10) Consider the implementation of Algorithm 1 as de-
scribed in Lemma 9 and when using the (standard ONS) update rule: Am = Am−1 + ∇̄m∇̄>m for
every block m.

1. Suppose T ≥ T0 = c log3
(
c+

(
c+ c

R2G2α2

)
n−

4
3T

1
3

)
, where c > 0 is a certain universal

constant. Setting

η = 8 max{6GR, 1

α
}n−

1
3T

2
3 , K = 4n−

1
3T

2
3 , εI = 32G2T

4
3 ,

ε = 96G2R2 log

(
19 + 8

(
12 +

1

3R2G2α2

)
n−

4
3T

1
3

)
T

in Algorithm 1, the regret is upper-bounded by

T∑
t=1

ft(x
t)− min

x∗∈K

T∑
t=1

ft(x
∗) ≤9βR2T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 2RGn

1
3T

2
3

+

(
36GR+

4

α

)
n

2
3T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
.

2. In continue to the previous item and under the same choice of parameters, for any ρ ∈ [n],
denoting Ωρ =

∑n
i=ρ+1 λi(

∑T
t=1∇t∇>t ) (∇t is as defined in Algorithm 1), the regret is
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upper-bounded by

T∑
t=1

ft(x
t)− min

x∗∈K

T∑
t=1

ft(x
∗) ≤9βR2T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 2RGn

1
3T

2
3

+ 36GRρ
1
2n

1
6T

2
3 log

((
c+

c
2G2α2

)
T

1
3

)
+

4

α
ρn−

1
3T

2
3 log

(
cT

1
3

)
+ 5RT

1
3

√
Ωρ

√
log
((
c+

c

R2G2α2

)
T

1
3

)
+

(
3GR+ 1

2α

)
G2n

2
3

Ωρ.

3. Fix ρ ∈ [n]. Suppose T ≥ T0 = c log3
(
c+

(
c+ c

R2G2α2

)
ρ−

4
3T

1
3

)
, where c is as in the

previous items. Setting

η = 8 max{6GR, 1

α
}ρ−

1
3T

2
3 , K = 4ρ−

1
3T

2
3 , εI = 32G2T

4
3 ,

ε = 96G2R2 log

(
19 + 8

(
12 +

1

3R2G2α2

)
ρ−

4
3T

1
3

)
T

in Algorithm 1, the regret is upper-bounded by

T∑
t=1

ft(x
t)− min

x∗∈K

T∑
t=1

ft(x
∗) ≤9βR2T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 2RGρ

1
3T

2
3

+

(
36GR+

4

α

)
ρ

2
3T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 5RT

1
3

√
Ωρ

√
log
((
c+

c

R2G2α2

)
T

1
3

)
+

(
3GR+ 1

2α

)
ρ

2
3G2

Ωρ.

Note this bound is not explicitly dependent on the ambient dimension n.

In all cases, the overall number of calls to the LOO is upper-bounded by 0.65
(

8n
1
3T

2
3 + T

)
, the

additional space requirement is O(n2), and using the Sherman-Morrison formula for fast matrix
inversion, the overall additional runtime is O(n2(T + n1/3T 2/3)).

Proof The regret bound for each of the three cases is obtained directly by combining Lemma 9
with Lemma 12, and plugging-in the values of the parameters listed in the theorem. The bound on
the overall number of calls follows also from the bound in Lemma 9 and plugging-in the values
of the parameters listed in the theorem. The space requirement is dominated by the storage of
Am,A

−1
m on each block m of Algorithm 1, and is thus upper-bounded by O(n2). Finally, in terms

of additional runtime, it can be seen that the most expensive arithmetic operation preformed is the

20



PROJECTION-FREE ONLINE EXP-CONCAVE OPTIMIZATION

multiplication of a n× n matrix (Am or A−1
m for some block m of Algorithm 1) with some vector

(including when updating A−1
m from A−1

m−1 via the Sherman-Morrison formula for rank-one update
of the inverse), which requires O(n2) time. It can thus be seen that the overall additional runtime is
dominated by the overall number of calls to the LOO (i.e., the overall number of iterations executed
by Algorithm 2 throughout the run of Algorithm 1) times O(n2), which by plugging-in the values
of the parameters in the theorem, gives the listed upper-bound on the overall additional runtime.

Appendix C. Missing Details from Section 5

In this section we provide additional details on the sketching algorithm, and give the full version of
Theorem 11 and its proof.

C.1. Properties of the sketching algorithm

The following observation shows that Algorithm 4 produces matrices Am, m = 0, . . . , T/K, that
indeed satisfy the requirements of Algorithm 1.

Observation 1 Fix iteration m ≥ 1 of Algorithm 4. It holds that A0 � Am � Am−1 + ∇̄m∇̄>m.

Proof The first inequality Am � A0 holds trivially due to the definition of Am in the algorithm.
We thus focus on the proof of the second inequality. Let Sm−1 be as at the beginning of the m-th
iteration of the for loop, and let S+

m−1 denote its value after setting its last row to ∇̄m (instead of
0). It holds that S+>

m−1S
+
m−1 = S>m−1Sm−1 + ∇̄m∇̄>m. By the definition of Sm in the algorithm we

have that,

S>mSm = S+>
m−1S

+
m−1 − σmV

>
mVm = S>m−1Sm−1 + ∇̄m∇̄>m − σmV>mVm.

Since Am−1 = εIIn + S>m−1Sm−1 and Am = εIIn + S>mSm, it indeed holds that

Am −Am−1 = S>mSm − S>m−1Sm−1 = ∇̄m∇̄>m − σmV>mVm (11)

� ∇̄m∇̄>m.

We now state several results regarding Algorithm 4 which will be required in order to prove
Theorem 11.

Theorem 14 (Theorem 1.1 in Ghashami et al. (2016)) Consider Algorithm 4 and let B ∈ R(T/K)×n

be the matrix which is received by the algorithm row by row (i.e., the ith row of B is ∇̄i). It holds
that

0 � B>B− S>T/KST/K � In

n∑
i=ρ+1

λi

(
B>B

)
.
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Lemma 15 Consider Algorithm 4 and let B ∈ R(T/K)×n be the matrix which is received by the
algorithm row by row (i.e., the ith row of B is ∇̄i). Denote Bρ its best rank-ρ approximation, i.e.
Bρ = argminC:rank(C)≤ρ ‖B−C‖F . It holds that

T/K∑
m=1

σm ≤ ‖B−Bρ‖2F ,

where σm is as defined in Algorithm 4.

Proof Let zi, i = 1, . . . , n denote the left singular vector of B corresponding to the singular value
σi (B). We denote S = ST/K , where ST/K is as defined in Algorithm 4, i.e., the last sketched
matrix. Using Property 3 in Ghashami et al. (2016) we have that,

(ρ+ 1)

T/K∑
m=1

σm ≤ ‖B‖2F − ‖S‖
2
F =

n∑
i=1

‖Bzi‖2 − ‖S‖2F =

ρ∑
i=1

‖Bzi‖2 +

n∑
i=ρ+1

‖Bzi‖2 − ‖S‖2F .

Since Bρ denotes the best rank-ρ approximation of B, the above inequality implies that,

(ρ+ 1)

T/K∑
m=1

σm ≤ ‖B−Bρ‖2F +

ρ∑
i=1

‖Bzi‖2 − ‖S‖2F . (12)

Note that

ρ∑
i=1

‖Szi‖2 =

ρ∑
i=1

z>i S
>Szi ≤ Tr(S>S) = ‖S‖2F .

Thus, using Property 2 in Ghashami et al. (2016) we have that,

ρ∑
i=1

‖Bzi‖2 − ‖S‖2F ≤
ρ∑
i=1

(
‖Bzi‖2 − ‖Szi‖2

)
≤ ρ

T/K∑
m=1

σm (13)

The lemma follows from plugging Eq. (13) into Eq. (12).

Lemma 16 Consider the run of Algorithm 4 with a sketch size ρ, and denote Ωρ =
∑n

i=ρ+1 λi

(∑T
t=1∇t∇>t

)
,

where∇t is as defined in Algorithm 1. It holds that,

T/K∑
m=1

∥∥∇̄m∥∥2

A−1
m
≤ ρ log

(
1 +

G2KT

εI

)
+

(ρ+ 1)KΩρ

εI
.

Proof Using Eq. (11) it holds that,

T/K∑
m=1

∥∥∇̄m∥∥2

A−1
m

=

T/K∑
m=1

A−1
m • ∇̄m∇̄>m =

T/K∑
m=1

A−1
m • (Am −Am−1) +

T/K∑
m=1

σmA
−1
m •V>mVm.
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Since λ1

(
A−1
m

)
≤ ε−1

I and Tr
(
V>mVm

)
= ρ + 1, it holds that A−1

m •V>mVm ≤ ε−1
I (ρ + 1) for

every m ∈ [T/K]. Since Am � 0 for every m, using Lemma 20 we have that,

T/K∑
m=1

∥∥∇̄m∥∥2

A−1
m
≤

T/K∑
m=1

log

(
|Am|
|Am−1|

)
+

(ρ+ 1)

εI

T/K∑
m=1

σm

= log

( |AT/K |
|A0|

)
+

(ρ+ 1)

εI

T/K∑
m=1

σm. (14)

Since rank(ST/K) ≤ ρ (recall the last row is 0), we have that

|AT/K | =
n∏
i=1

λi

(
εIIn + S>T/KST/K

)
= ε

(n−ρ)
I

ρ∏
i=1

(
εI + λi

(
S>T/KST/K

))
.

Since A0 = εIIn and S>T/KST/K �
∑T/K

m=1 ∇̄m∇̄>m (Theorem 14), we have that

log

( |AT/K |
|A0|

)
≤

ρ∑
i=1

log

1 +
λi

(∑T/K
m=1 ∇̄m∇̄>m

)
εI

 ≤ ρ log

(
1 +

G2KT

εI

)
, (15)

where the last inequality is since λi
(∑T/K

m=1 ∇̄m∇̄>m
)
≤
∑T/K

m=1

∥∥∇̄m∥∥2 ≤ (T/K)(KG)2 =

G2KT .
From Lemma 15 we have that

∑T/K
m=1 σm ≤

∑n
i=ρ+1 λi

(∑T/K
m=1 ∇̄m∇̄>m

)
. Since ∇̄m =∑mK

t=(m−1)K+1∇t, using Lemma 18 it holds that K
∑T

t=1∇t∇>t �
∑T/K

m=1 ∇̄m∇̄>m. Plugging
these observations and Eq. (15) into Eq.(14), we indeed obtain

T/K∑
m=1

∥∥∇̄m∥∥2

A−1
m
≤ ρ log

(
1 +

G2KT

εI

)
+

(ρ+ 1)K

εI

n∑
i=ρ+1

λi

(
T∑
t=1

∇t∇>t

)
.

C.2. Full version of Theorem 11 and its proof

Theorem 17 [Full version of Theorem 11] Consider the implementation of Algorithm 1 as de-
scribed in Lemma 9 and when using the update rule described in Algorithm 4: Am = A0 +S>mSm

for every block m. Fix ρ ∈ [n] and denote Ωρ =
∑n

i=ρ+1 λi

(∑T
t=1∇t∇>t

)
. Suppose T ≥ T0 =

c log3
(
c+

(
c+ c

R2G2α

)
ρ−

4
3T

1
3

)
, where c > 0 is a certain universal constant. Setting

η = 8 max{6GR, 1

α
}ρ−

1
3T

2
3 , K = 4ρ−

1
3T

2
3 , εI = 32G2T

4
3 ,

ε = 96G2R2 log

(
19 + 8

(
12 +

1

3R2G2α2

)
ρ−

4
3T

1
3

)
T
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in Algorithm 1, the regret is upper bounded by

T∑
t=1

ft(x
t)− min

x∗∈K

T∑
t=1

ft(x
∗) ≤9βR2T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 2RGρ

1
3T

2
3

+

(
36GR+

4

α

)
(ρ+ 1)

2
3 T

2
3 log

((
c+

c

R2G2α2

)
T

1
3

)
+ 5Rρ

1
2T

1
3

√
Ωρ

√
log
((
c+

c

R2G2α2

)
T

1
3

)
+

(
6GR+

1

α

)
ρ

1
3 Ωρ

G2
.

The overall number of calls to the LOO is upper bounded by 0.65
(

8ρ
1
3T

2
3 + T

)
, the additional

space requirement isO(ρn), and the overall additional runtime isO(ρnT+ρ4/3nT 2/3+ρ7/3nT 1/3).

Proof The upper-bound on the regret and number of calls to the LOO follows directly from com-
bining Lemma 9, Lemma 16, and plugging-in the values for parameters listed in the theorem. In
terms of space requirement, by only explicitly maintaining the (ρ+1)×nmatrices Sm,Vm and the
diagonal matrices Hm,Σm, Σ̂m on each blockm of Algorithm 1, i.e., Am,A

−1
m are never computed

explicitly, the space is upper-bounded by O(ρn). Finally, for upper-bounding the overall additional
runtime we note that the two most expensive arithmetic operations are i. computing a matrix-vector
product with either Am or A−1

m during some block m of Algorithm 1, and ii. computing the eigen-
decomposition of S>m−1Sm−1 ∈ Rn×n for some iteration m of Algorithm 4. Using the low-rank
factorizations of Am,A

−1
m in Algorithm 4 (i.e., by only explicitly maintaining Sm ∈ R(ρ+1)×n

and the diagonal matrix Hm), computing a matrix-vector product with either Am or A−1
m , could be

carried out in O(ρn) time. Computing the eigen-decomposition of each S>m−1Sm−1, could be done
in O(ρ2n) time by computing the SVD of Sm−1 ∈ R(ρ+1)×n. Note however that such an SVD
is computed only once during each block m of Algorithm 1. Thus, the overall runtime associated
with these SVD computations is O((T/K)ρ2n), which by plugging the value of K in the theo-
rem, is only O(ρ7/3nT 1/3). The overall additional runtime, excluding these SVD computations, is
thus dominated by the number of matrix-vector products, times the runtime required for each such
product which, as discussed, is O(ρn). As discussed in the proof of Theorem 13, the number of
matrix-vector products is dominated by the overall number of calls to the LOO (i.e., the overall
number of iterations executed by Algorithm 2). Combining these two contributions (matrix-vector
products and SVD computations) to the overall additional runtime, yields the bound listed in the
theorem.

Appendix D. Discussion of Assumption 1

We recall that while the feasible set is K, Assumption 1 assumes the losses are defined and satisfy
the various properties listed in the (potentially much) larger set 3RB, whereR is such thatK ⊆ RB.
This is because our Algorithm 1 queries gradients at infeasible points w.r.t. K, and thus we must
make sure these assumptions hold in these infeasible points, and for ease of presentation we simply
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make sure in our analysis that indeed all infeasible points ỹm in the instantiations of Algorithm 1,
lie inside the ball 3RB.

First, we note that our consideration of enclosing balls centered at the origin is w.l.o.g. since
one can apply translation. Second, with a slightly more involved analysis it suffices to require that
Assumption 1 holds only in the set K̃δ := {x ∈ Rn | dist(x,K) ≤ δ}, for some small δ > 0, as
we now explain. Note in particular that Lemma 8 guarantees that our LOO-based implementation
of the AFP oracle (Algorithm 3) returns an infeasible point y and a corresponding feasible point
x ∈ K, such that ‖x− y‖2A ≤ 3ε. This implies that dist(y,K) ≤ ‖x− y‖ ≤

√
3ε

λn(A) . Thus, when
used with our Algorithm 1 (as described in Lemma 9), for every block m we have that,

dist(ỹm,K) ≤

√
3ε

λn(Am−1)
≤

√
3ε

λn(A0)
=

√
3ε

εI
= Õ(T−1/6),

where the second inequality is due to the constraints on the matrices {Am}m≥1 in Algorithm 1, and
the last equality follows from plugging-in the values of ε, εI listed in our main theorems — Theorem
13 and Theorem 11.

Thus, already for δ = Õ(T−1/6), all the points in which our algorithm queries gradients lie in
K̃δ, and it suffices to require that the assumptions listed in Assumption 1 hold only in this set, which
becomes tighter around K as T increases.

Appendix E. Auxiliary Lemmas

Lemma 18 Let {vi}ki=1 ⊂ Rn, and u =
∑k

i=1 vi. Then, k
∑k

i=1 viv
>
i � uu>.

Proof From Jensen’s inequality we have that for every sequence of scalars {ai}ki=1 ⊂ R, it holds

that k
∑k

i=1 a
2
i ≥

(∑k
i=1 ai

)2
. Thus, for every z ∈ Rn we have that,

z>

(
k∑
i=1

viv
>
i

)
z =

k∑
i=1

(
v>i z

)2
≥ 1

k

(
k∑
i=1

v>i z

)2

=
1

k

(
u>z

)2
=

1

k
z>uu>z.

Lemma 19 Let C ⊂ Rn be convex and compact and such that C ⊆ RB. Let f1, . . . , fk be functions
C → R that are differentiable over C and have gradients upper-bounded in `2 norm by some G > 0
over C, and satisfy the curvature condition (Definition 3) over C with some parameter α > 0. Define
h(x) =

∑k
i=1 fi(x). For all η ≥ max{4kGR, 2k/α} and every x,y ∈ C it holds that,

h(x)− h(y) ≤ ∇h(x)> (x− y)− 1

2η
(y − x)>∇h(x)∇h(x)> (y − x)
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Proof Let η′ = max{4GR, 2/α} and fix some x,y ∈ C. It holds that

h(x)− h(y) =
k∑
i=1

fi(x)− fi(y)

≤
k∑
i=1

(
∇fi(x)> (x− y)

)
− 1

2η′

k∑
i=1

(
(y − x)>∇fi(x)∇fi(x)> (y − x)

)
= ∇h(x)> (x− y)− 1

2η′
(y − x)>

(
k∑
i=1

∇fi(x)∇fi(x)>

)
(y − x) .

Using Lemma 18 we have that k
∑k

i=1∇fi(x)∇fi(x)> �
(∑k

i=1∇fi(x)
)(∑k

i=1∇fi(x)
)>

and
thus,

h(x)− h(y) ≤ ∇h(x)> (x− y)− 1

2η′k
(y − x)>

( k∑
i=1

∇fi(x)

)(
k∑
i=1

∇fi(x)

)> (y − x)

≤ ∇h(x)> (x− y)− 1

2η
(y − x)>∇h(x)∇h(x)> (y − x) ,

where the last inequality holds since η ≥ kη′.

Lemma 20 Let A,B ∈ Sn be positive definite matrices. Then, A−1 • (A−B) ≤ ln |A||B| .

Proof It holds that,

A−1 • (A−B) = Tr
(
A−

1
2 (A−B)A−

1
2

)
=

n∑
i=1

(
λi

(
In −A−

1
2BA−

1
2

))
.

Since λi (In −A) = 1 − λn−i+1 (A), 1 − x ≤ − lnx for every x ∈ R+, and A−
1
2BA−

1
2 � 0, it

holds that

A−1 • (A−B) =
n∑
i=1

(
1− λi

(
A−

1
2BA−

1
2

))
≤ −

n∑
i=1

ln
(
λi

(
A−

1
2BA−

1
2

))
= − ln

(
n∏
i=1

λi

(
A−

1
2BA−

1
2

))
= − ln |A−

1
2BA−

1
2 |

= ln (|A|/|B|).
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