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Abstract
Community detection is a fundamental problem in network science. In this paper, we consider
community detection in hypergraphs drawn from the hypergraph stochastic block model (HSBM),
with a focus on exact community recovery. We study the performance of polynomial-time algo-
rithms which operate on the similarity matrix W , where Wij reports the number of hyperedges
containing both i and j. Under this information model, while the precise information-theoretic
limit is unknown, Kim, Bandeira, and Goemans derived a sharp threshold up to which the natural
min-bisection estimator on W succeeds. As min-bisection is NP-hard in the worst case, they ad-
ditionally proposed a semidefinite programming (SDP) relaxation and conjectured that it achieves
the same recovery threshold as the min-bisection estimator.

In this paper, we confirm this conjecture. We also design a simple and highly efficient spectral
algorithm with nearly linear runtime and show that it achieves the min-bisection threshold. More-
over, the spectral algorithm also succeeds in denser regimes and is considerably more efficient than
previous approaches, establishing it as the method of choice. Our analysis of the spectral algorithm
crucially relies on strong entrywise bounds on the eigenvectors of W . Our bounds are inspired by
the work of Abbe, Fan, Wang, and Zhong, who developed entrywise bounds for eigenvectors of
symmetric matrices with independent entries. Despite the complex dependency structure in simi-
larity matrices, we prove similar entrywise guarantees.

Keywords: Community Detection, Hypergraph Stochastic Block Model, Spectral Algorithm

1. Introduction

Community detection is the problem of partitioning a network into densely connected clusters.
As a fundamental network science problem, community detection arises in numerous applications:
sociology (Goldenberg et al., 2010; Newman et al., 2002), protein interactions (Chen and Yuan,
2006; Marcotte et al., 1999), image applications (Shi and Malik, 2000), natural language processing
(Ball et al., 2011), webpage sorting (Kumar et al., 1999) and many more. In 1983, Holland et al.
(1983) introduced the stochastic block model (SBM), a probabilistic generative model for networks
with community structure. Since then, community detection in the SBM has been intensely studied
in the probability, statistics, and theoretical computer science communities (Dyer and Frieze, 1989;
McSherry, 2001; Decelle et al., 2011; Mossel et al., 2013; Massoulié, 2014; Abbe and Sandon,
2015a; Abbe et al., 2016; Abbe and Sandon, 2015b); also see Abbe (2017) for a survey.

In this paper, we consider an extension of the SBM to hypergraphs. A hypergraph is a general-
ization of a graph that captures higher-order interactions. For example, an academic co-authorship
network may be modeled as a hypergraph, where each hyperedge represents the author list of a
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paper. Formally, a hypergraph is specified by a set of vertices V and a set of hyperedges E. Each
hyperedge e ∈ E is a subset of V . We specialize to uniform hypergraphs, where each hyperedge
contains the same number of vertices. A d-uniform hypergraph satisfies |e| = d for all e ∈ E (in
particular, a graph is 2-uniform hypergraph). We then say that the hypergraph has order d.

We now describe the Hypergraph Stochastic Block Model (HSBM), which was first proposed by
Ghoshdastidar and Dukkipati (2014). We consider the version with two balanced communities and
equal inter-community edge probabilities. The model is specified by its order d and two parameters
1 ≥ pn > qn > 0. First, a community assignment vector σ∗ ∈ {±1}n is sampled uniformly at
random from the set {σ ∈ {±1}n : ⟨1n, σ⟩ = 0}1, where 1n ∈ Rn is the vector of all ones.

Conditioned on σ∗, we sample a hypergraphG = ([n], E) as follows. Each e = {i1, i2, . . . , id} ∈([n]
d

)
appears as a hyperedge independently with probability

P (e ∈ E) =

{
pn σ∗(i1) = σ∗(i1) = · · · = σ∗(id)

qn otherwise.

We then write G ∼ HSBM(d, n, pn, qn). Throughout, we consider d to be a constant and denote
E :=

([n]
d

)
to be the set of all possible hyperedges. We use the parametrization:

pn = αfn and qn = βfn; (1)

where either (fn = o(1) and α > β > 0) or (fn = 1 and 1 ≥ α > β > 0) for constants α, β.

We are interested in algorithms that recover all of the vertex labels. More formally, we say that an
estimator σ̂n achieves exact recovery if

lim
n→∞

P (σ̂n ∈ {±σ∗n}) = 1.

For clarity of presentation, we typically drop the dependence on n.
The limiting regime for the exact recovery problem is fn = Θ(logn/nd−1). That is, when fn =

o (logn/nd−1), exact recovery is not possible statistically. This is because the hypergraph will have
isolated vertices with a high probability, which are impossible to classify information theoretically.
On the other hand, when fn = ω (logn/nd−1), there are efficient algorithms for exact recovery (Chien
et al., 2019). In the logarithmic degree regime, we typically parametrize as fn = logn/(n−1

d−1). In
the corresponding model HSBM(d, n, αfn, βfn), there is a precise information-theoretic threshold,
determined by Kim et al. (2018). If Ifull(d, α, β) := 1

2d−1

(√
α−

√
β
)2
< 1, then exact recovery

is impossible, while if Ifull(d, α, β) > 1, then there are polynomial-time algorithms for the exact
recovery problem developed by Ghoshdastidar and Dukkipati (2015a,b, 2017); Ahn et al. (2018);
Chien et al. (2019), culminating in the work of Zhang and Tan (2022), whose algorithm applies to
a general class of HSBMs. Their results essentially show that there is no statistical-computational
gap for the exact recovery problem.

While the work of Zhang and Tan (2022) resolves the question of poly-time exact recovery even
for general HSBMs, the algorithm uses the full hypergraph information. Unfortunately, storing the
full hypergraph information can be prohibitively expensive; in the regime where pn, qn = Θ(1),
it requires Θ(nd) space. A natural question arises: is there some other way of storing the hyper-
graph information which uses less space than storing the full information, while still being powerful
enough for exact recovery? One candidate information model is the so-called similarity matrix.

1. For simplicity of exposition, we assume n is even, and thus, each community has exactly n/2 vertices.
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EXACT COMMUNITY RECOVERY FROM SIMILARITY MATRIX IN HYPERGRAPH SBM

Definition 1 (Similarity Matrix) Let G = ([n], E) be a hypergraph on n vertices. The similarity
matrix of G is the zero-diagonal matrix W whose entries are

Wij = |{e ∈ E : {i, j} ⊂ e}|

for i ̸= j. In other words, Wij counts the number of edges which contain both i and j. We also
write W = S(G) to define the similarity matrix transformation.

Even in the case when pn, qn = Θ(1), the similarity matrix requires only O(n2 log n) space to
store. Recent works (Lee et al., 2020; Kim et al., 2018; Cole and Zhu, 2020) have considered the
exact recovery problem, given the similarity matrix W = S(G), where G ∼ HSBM(d, n, pn, qn).
Lee et al. (2020) showed that the asymptotic regime under which the similarity matrix is powerful
enough for exact recovery is given by pn − qn = Ω

(√
pn log n/nd−1

)
. In the logarithmic degree

regime where fn = log n/
(
n−1
d−1

)
, while the precise information-theoretic threshold (in terms of

d, α, β) for exact recovery given W = S(G) remains unknown2, (Kim et al., 2018, Theorem 3)
analyzed the performance of a natural min-bisection estimator. Letting

I(d, α, β) = max
t≥0

1

2d−1

[
α
(
1− e−(d−1)t

)
+ β

d−1∑
r=1

(
d− 1

r

)(
1− e−(d−1−2r)t

)]
, (2)

the min-bisection estimator onW achieves exact recovery if I(d, α, β) > 1 and fails if I(d, α, β) <
1. Note that the min-bisection problem is NP-hard in the worst-case. Therefore, Kim et al. (2018)
additionally proposed a semidefinite programming (SDP) relaxation, showing that it succeeds in
exact recovery if ISDP(d, α, β) > 1, where

ISDP(d, α, β) =
(d− 1)

22d
· (α− β)2(
α d

2d
+ β

(
1− d

2d

)) .
Note that ISDP(d, α, β) > I(d, α, β) for d ≥ 3; see Figure 1 for an illustration. The authors conjec-
tured that the SDP achieves the min-bisection threshold; i.e. it succeeds whenever I(d, α, β) > 1
(Kim et al., 2018, Conjecture 1.2). This leaves an open question:

Can this sharp threshold for min-bisection be achieved by a polynomial time algorithm that only
uses the similarity matrix?

We also investigate the question of whether using the similarity matrix enables efficient, nearly
linear runtime algorithms. Motivated by the success of spectral algorithms for other community
detection problems (Abbe et al., 2020; Deng et al., 2021; Dhara et al., 2022a,b), and given their
efficiency, we ask:

Can we design a spectral algorithm with nearly linear runtime that achieves the min-bisection
threshold from the similarity matrix?

2. A previous version of this work claimed that I(d, α, β) = 1 is the information-theoretic threshold, when given the
similarity matrix. However, (Kim et al., 2018, Theorem 3) establishes I(d, α, β) = 1 as the threshold for the min-
bisection estimator, and it is not known whether this threshold coincides with the information-theoretic threshold
given the similarity matrix.
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Figure 1: Visualization of ISDP(d, α, β) = 1, I(d, α, β) = 1 and Ifull(d, α, β) = 1 when d = 6.

1.1. Our Contributions

Our first main contribution is to show that the SDP algorithm succeeds whenever I(d, α, β) > 1
(Theorem 2), achieving the min-bisection threshold. We note that there has been some follow-up
work on community recovery from the similarity matrix (Lee et al., 2020; Cole and Zhu, 2020), but
to our knowledge, we are the first to resolve (Kim et al., 2018, Conjecture 1.2). We also show that
the SDP is robust to monotone adversarial changes on the similarity matrix.

Our second main contribution is a simple spectral algorithm based on the similarity matrix that
also achieves the min-bisection threshold (Theorem 4). Our algorithm determines communities
based on the signs of the entries of the second eigenvector of the similarity matrix and does not
require any clean-up. Furthermore, the algorithm can be implemented in O(n log2 n) time in the
logarithmic degree regime, using the fast eigenvector computation method of Garber et al. (2016).
When fn = ω(log n/nd−1) and full hyperedge information is available, we may subsample the
hypergraph to return to the logarithmic degree regime. Since the subsampling procedure takes
O(n log n) time, the overall runtime is still O(n log2 n). Table 1 summarizes the runtime of the
algorithm, compared to other approaches in the literature (allowing for subsampling), including
results coming after our initial posting on arXiv. These works include Wang et al. (2023), which
proposed the Projected Tensor Power Method. The algorithm achieves the exact recovery thresh-
old Ifull(d, α, β) > 1, with a runtime of O(n log2(n)/ log log n), when initialized from a labeling
satisfying a certain partial recovery condition (Wang et al., 2023, Theorem 4.1). Most recently,
Dumitriu and Wang (2023) proposed a two-stage algorithm achieving exact recovery down to the
information-theoretic threshold. Dumitriu and Wang (2023) also identified the recovery threshold in
the non-uniform case, and showed that their algorithm achieves the information-theoretic threshold
in that case also.

We also compare runtimes when only the similarity matrix is available. In this situation, we
cannot subsample down to the logarithmic degree regime, due to the loss of hyperedge information.
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Nevertheless, we show that our spectral algorithm achieves exact recovery directly from W =
S(G), where G ∼ HSBM(d, n, pn, qn), in all the regimes of pn, qn captured by (1) as long as
fn = ω(log n/nd−1) (Theorem 5). Moreover, we show that its runtime is O(n2 log n) in the worst-
case; i.e. pn, qn = Θ(1). See Table 2.

Strategy (Reference) Runtime (all regimes)
Spectral (This work) O(n log2 n)

SDP (Kim et al., 2018) Õ(n3.5) (Jiang et al., 2020)
Spectral+refinement (Chien et al., 2019) O(n3 log n)

Projected Tensor Power Method (Wang et al., 2023) O(n log2(n)) 3

Spectral + refinement (Dumitriu and Wang, 2023) O(n log2(n))

Table 1: Runtime comparison when the full hypergraph is known.

Strategy Runtime Runtime
(Reference) (Logarithmic degree regime) (All regimes)

Spectral (This work) O(n log2 n) O(n2 log n)

SDP (Kim et al., 2018) Õ(n3.5) (Jiang et al., 2020)

Table 2: Runtime comparison when only the similarity matrix is known.

In order to analyze our spectral algorithm, inspired by the work of Abbe et al. (2020), we
develop ℓ∞ (entrywise) bounds for the eigenvectors of similarity matrices of a large class of random
hypergraph models (Theorem 7), which may be of independent interest. Roughly speaking, we show
that an eigenvector uk of a random similarity matrix W is close to its first order approximation
Wu∗k/λ

∗
k in the ℓ∞ norm under mild conditions, where (λ∗k, u

∗
k) is the corresponding eigenpair of

E [W ]. Our result addresses two important questions raised by Abbe et al. (2020) by: (1) providing
an example of entrywise eigenvector approximation beyond symmetric matrices with independent
entries, (2) expanding the class of graph-based matrices for which entrywise eigenvector guarantees
are known, beyond adjacency matrices (Abbe et al., 2020) and Laplacian matrices (Deng et al.,
2021).

Organization. Section 2 contains our main results. We give proof outlines of the SDP and spectral
algorithm results in Section 3 and 4, respectively. Directions for future work are proposed in Section
5. The proofs of our main results are provided in the appendix.

1.2. Further Related Work

Other recovery problems. While we only focus on exact recovery in this work, partial recovery
(recovering a non-trivial constant fraction of the community labels) and almost exact recovery (re-
covering all but a vanishing fraction of the community labels) have also been studied in the context
of the HSBM (Angelini et al., 2015; Zhang et al., 2022; Dumitriu et al., 2021; Zhen and Wang,

3. Given a suitable initialization that satisfies a certain partial recovery criterion, their algorithm runs in O( n log2 n
log logn

)
time; see (Wang et al., 2023, Theorem 4.1). However, to the best of our knowledge, this criterion can only be
achieved in O(n log2 n) time using current methods (Dumitriu and Wang, 2023).
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2022; Ke et al., 2019). Community recovery in the non-uniform HSBM has been studied (Ghosh-
dastidar and Dukkipati, 2017; Dumitriu et al., 2021; Alaluusua et al., 2023), with sharp results in the
exact recovery problem given by the very recent work of Dumitriu and Wang (2023). Additionally,
Dumitriu and Wang (2023) study almost exact recovery in non-uniform HSBM and show that it is
possible whenever the maximal expected degree diverges, and give an efficient algorithm for the
same.

Spectral methods. Spectral algorithms have been very successful in statistical inference prob-
lems, e.g. community detection (Newman, 2006; Rohe et al., 2011; McSherry, 2001; Abbe et al.,
2020; Dhara et al., 2022c; Deng et al., 2021), the Planted Clique Problem (Alon et al., 1998), clus-
tering (Von Luxburg, 2007; Ng et al., 2001), dimensionality reduction (Belkin and Niyogi, 2003)
and many more; see (Chen et al., 2021) for a survey on the topic.

Follow-up work. Alaluusua et al. (2023) considered a multi-layer version of the HSBM, where
each layer corresponds to an independent, regular HSBM. Their work provides a sufficient condition
for exact recovery from the aggregated similarity matrix (the sum of the similarity matrices of all
layers), using an SDP approach.

1.3. Notation

For any real numbers a, b ∈ R, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. Let
sgn : R → {±1} be the function defined by sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0. We
also extend the definition to vectors; let sgn : Rn → {±1}n be the map defined by applying the
sign function componentwise.

We use the notation R+ = (0,∞). For n ∈ N, we write [n] = {1, 2, . . . , n}. We use the
Bachmann–Landau notation o(.), O(.), ω(.), Ω(.), Θ(.) etc. throughout the paper. For nonnegative
sequences (an)n≥1 and (bn)n≥1, we write an ≲ bn to mean an ≤ Cbn for some constant C > 0.
The notation ≍ is similar, hiding two constants in upper and lower bounds. Moreover, we write
an ≈ bn as a shorthand for limn→∞

an
bn

= 1.
For any two vectors x, y ∈ Rn, ⟨x, y⟩ represents the standard inner product in Rn; we define

∥x∥2 = (
∑n

i=1 x
2
i )

1/2, ∥x∥1 =
∑n

i=1 |xi|, and ∥x∥∞ = maxi |xi|. For any matrix M ∈ Rn×n,
Mi· refers to its i-th row, which is a row vector, and M·i refers to its i-th column, which is a
column vector. The matrix spectral norm is ∥M∥2 = sup∥x∥2=1 ∥Mx∥2, the matrix 2 → ∞
norm is ∥M∥2→∞ = sup∥x∥2=1 ∥Mx∥∞ = supi ∥Mi·∥2, and the the matrix Frobenius norm is
∥M∥F = (

∑n
i=1

∑n
j=1M

2
ij)

1/2.

2. Main Results

Recall that σ∗n ∈ {±1}n denotes the true community assignment vector. Let G be a hypergraph on
n vertices, and let W = S(G) be its similarity matrix. Kim et al. (2018) proposed an SDP for exact
recovery (Algorithm 1). Our first main result states that, in the logarithmic degree regime, the SDP
relaxation achieves exact recovery whenever the min-bisection estimator does.

Theorem 2 Fix d ∈ {2, 3, . . . } and α > β > 0 such that I(d, α, β) > 1. Let fn = log n/
(
n−1
d−1

)
.

Suppose G ∼ HSBM(d, n, αfn, βfn), and let W = S(G). Let X̂ be the optimal solution to (3)
with input W . Then X̂ = σ∗σ∗⊤ with probability 1− o(1). It follows that

lim
n→∞

P (σ̂SDP ∈ {±σ∗}) = 1.
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Algorithm 1 SDP recovery algorithm (Kim et al., 2018)
Input: An n× n similarity matrix W

Output: An estimate of community assignments

1: Solve the following SDP, where X ∈ Rn×n.

max ⟨W,X⟩
subject to Xii = 1 for all i ∈ [n]

⟨X,11⊤⟩ = 0, X ⪰ 0.

(3)

2: Let X̂ be the optimal solution, and let X̂ =
∑n

i=1 λiviv
⊤
i denote the eigendecomposition of X̂ ,

where λ1 ≥ λ2 ≥ · · · ≥ λn.
3: Return σ̂SDP = sgn(v1).

Note that the SDP algorithm also works in denser regimes of (1) (Lee et al., 2020). We also establish
that the SDP continues to achieve exact recovery even under a monotone adversary model.

Lemma 3 Consider the modified SDP based on (3), with W replaced by W̃ such that W̃ij ≥ Wij

if σ∗(i) = σ∗(j), and W̃ij ≤ Wij if σ∗(i) ̸= σ∗(j). If I(d, α, β) > 1, then X∗ := σ∗σ∗⊤ is the
unique optimal solution to the modified SDP.

Having analyzed the performace of the SDP relaxation, we now propose a spectral algorithm.

Algorithm 2 Spectral recovery algorithm
Input: An n× n similarity matrix W

Output: An estimate of community assignments

1: Compute the second eigenpair of W , denoted by (λ2, u2), where λ1 ≥ λ2 ≥ · · · ≥ λn.
2: Return σ̂spec = sgn(u2).

We first establish Algorithm 2 achieves exact reovery up to the min-bisection threshold.

Theorem 4 Fix d ∈ {2, 3, . . . } and α > β > 0 such that I(d, α, β) > 1. Let fn = log n/
(
n−1
d−1

)
.

Suppose G ∼ HSBM(d, n, αfn, βfn), and let W = S(G). Let u2 be the second eigenvector of W .
Then with probability 1− o(1), there exist s ∈ {±1} and η = η(d, α, β) > 0 such that

√
nmin

i∈[n]
sσ∗(i)u2,i > η.

As a result, the estimator σ̂spec produced by Algorithm 2 on input W achieves exact recovery.

We also show that the spectral algorithm succeeds in all the super-logarithmic degree regimes in (1).

Theorem 5 Fix d ∈ {2, 3, . . . }. Let pn and qn be parameterized according to (1) for some fn
and constants α > β > 0. Suppose G ∼ HSBM(d, n, αfn, βfn), and let W = S(G). If
fn = ω(log n/nd−1), then the estimator σ̂spec produced by Algorithm 2 on input W achieves ex-
act recovery; i.e.

lim
n→∞

P (σ̂spec ∈ {±σ∗}) = 1.
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Our proofs of Theorem 4 and 5 crucially rely on entrywise bounds on the second eigenvector of
the similarity matrix. To this end, we develop entrywise bounds on the eigenvectors of similarity
matrices of a generic family of random hypergraphs (Definition 6).

Definition 6 (General random hypergraph) Let d ∈ {2, 3, . . . }, n ∈ N, and p ∈ [0, 1](
[n]
d ).

Define H(d, n, p) to be the distribution on d-uniform hypergraphs with n vertices, where each edge
e ∈

([n]
d

)
appears in the hypergraph with probability pe, independently.

We analyze the eigenvectors of W = S(G), where G ∼ H(d, n, p). Let (λi, ui)ni=1 denote
the eigenpairs of W , where λ1 ≥ λ2 ≥ · · · ≥ λn. Let W ∗ = E[W ], with ordered eigenpairs
(λ∗i , u

∗
i )

n
i=1. We use the convention λ0 = λ∗0 = +∞ and λn+1 = λ∗n+1 = −∞. We then define the

following eigengap quantity:

∆∗
k = min{λ∗k−1 − λ∗k, λ

∗
k − λ∗k+1}.

Our entrywise guarantee requires a spectral separation assumption. The assumption easily holds for
similarity matrices of (general) HSBMs, in all the parameter regimes we are interested in.

A1 (Spectral separation) There is a sequence {µn} in (0,∞) such that

max{pe : e ∈ E} ≤ µn, and n

(
n− 2

d− 2

)
µn ≥ c0 log n,

for some constant c0 > 0. Moreover, there is a constant c1 ≥ 1 such that

1

c1
nd−1µn ≤ |λ∗k|, |∆∗

k| ≤ c1n
d−1µn; i.e. |λ∗k|, |∆∗

k| = Θ(nd−1µn).

Under this assumption, we state our entrywise guarantee.

Theorem 7 Let k ∈ N and d ∈ {2, 3, . . . } be constants. Let p ∈ [0, 1](
[n]
d ), such that Assumption

1 holds for some µn and constants c0, c1 > 0. Let G ∼ H(d, n, p), and W = S(G). Then with
probability 1−O(n−3),

min
s∗∈{±1}

∥∥∥∥uk − s∗
Wu∗k
λ∗k

∥∥∥∥
∞

≤
c ∥u∗k∥∞
log log n

,

where c > 0 is some constant depending only on d, c0, and c1.

Remark 8 We remark that when d = 2, the similarity matrix of a graph is just its adjacency matrix
and our Theorem 7 recovers the entrywise bounds of Abbe et al. (2020). Moreover, I(2, α, β) =
(
√
α−

√
β)2/2, which is the information-theoretic threshold for exact recovery in the SBM setting

(Abbe et al., 2015). Therefore, our Theorem 2 and Theorem 4, respectively, recover (Hajek et al.,
2016a, Theorem 2) and (Abbe et al., 2020, Theorem 3.2).
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3. Analysis of the SDP Relaxation

Analyzing the SDP. We use a dual certificate strategy as in Kim et al. (2018). The dual of (3) is
given by

min trace(D)

subject to D is n× n diagonal matrix, ν ∈ R,
D + ν11⊤ −W ⪰ 0.

(4)

The form of the dual motivates the following sufficient condition, whose proof we include for com-
pleteness (see Appendix B).

Lemma 9 Suppose there is a diagonal matrix D ∈ Rn×n and ν ∈ R such that the following holds.
Letting S ≜ D + ν11⊤ −W , the matrix S is positive semidefinite, its second-smallest eigenvalue
λn−1(S) is strictly positive, and Sσ∗ = 0. Then X∗ := σ∗σ∗⊤ is the unique optimal solution to
(3).

To apply Lemma 9, we let D be the diagonal matrix whose diagonal entries are specified by

Dii =
∑
j∈[n]

Wijσ
∗(i)σ∗(j). (5)

Setting ν = 1, write S = D + 11⊤ −W . By construction, we have Sσ∗ = 0. It remains to show

P
(

inf
x⊥σ∗:∥x∥2=1

x⊤Sx > 0

)
= 1− o(1). (6)

This is where our proof diverges from Kim et al. (2018); rather than showing (6), Kim et al. (2018)
proceed through a different sufficient condition. Using steps similar to the proof of (Hajek et al.,
2016a, Theorem 2), we show that for all x ⊥ σ∗ such that ∥x∥2 = 1,

x⊤Sx ≥ min
i∈[n]

Dii − ∥W −W ∗∥2, (7)

where W ∗ is the expected value of W , conditioned on σ∗. It remains to (1) lower-bound Dii for
each i ∈ [n] and (2) upper-bound ∥W −W ∗∥2.

To lower-bound Dii, we condition on σ∗ and establish concentration of Dii around its mean. To
see why Dii should be positive and bounded away from zero, it helps to rewrite (5) as follows:

Dii =
∑

j∈[n]:σ∗(i)=σ∗(j)

Wij −
∑

j∈[n]:σ∗(i)̸=σ∗(j)

Wij .

While the values {Wij}nj=1 are dependent, they are functions of independent random variables
(namely, the hyperedge random variables). After re-expressing Dii in terms of the underlying hy-
peredge random variables, the proof proceeds by a Chernoff-style argument (Lemma 12). Whenever
I(d, α, β) > 1, we establish the existence of ϵ > 0 such that for each i, Dii ≥ ϵ log n with probabil-
ity 1− o(n−1). A union bound then implies mini∈[n]Dii ≥ ϵ log n with high probability. Next, we
need a tail bound on ∥W −W ∗∥2. While sharp concentration results are known Lee et al. (2020),
we note that we can also bound E [∥W −W ∗∥2] using much simpler techniques.
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Theorem 10 (Spectral norm expectation) Let d ∈ {2, 3, . . . } be fixed. Let p ∈ [0, 1](
[n]
d ), where

maxe pe ≤ c0 logn/(n−1
d−1) for some constant c0 > 0. Let G ∼ H(d, n, p), and W = S(G) whose

expectation is W ∗. Then there exists a constant c := c(d, c0) > 0 such that

E [∥W −W ∗∥2] ≤ c
√
log n.

Markov’s inequality immediately implies the desired tail bound. Returning to (7), we see that
x⊤Sx > 0 simultaneously for all x satisfying x ⊥ σ∗, ∥x∥2 = 1, with high probability, concluding
(6).

Spectral norm concentration. We highlight our proof technique for bounding E [∥W −W ∗∥2]
(Theorem 10). Similar bounds are well-known for the spectral norm ∥A−E[A]∥2 in the case where
A is a symmetric matrix with independent, bounded entries and suitably bounded expectation (Feige
and Ofek, 2005; Lei and Rinaldo, 2015; Hajek et al., 2016a). The first step in our proof is inspired
by the symmetrization argument of Hajek et al. (2016a). Let R be a symmetric tensor of order d
and dimension n with independent Rademacher entries. Let G ◦ R be the hypergraph where each
hyperedge is independently assigned to a +1 or −1 label. Let S(G ◦ R) denote the corresponding
similarity matrix, where the (i, j) entry is the sum of ±1-weighted hyperedges containing i, j. We
show that

E [∥W −W ∗∥2] ≤ 2E [∥S(G ◦R)∥2] .

A coupling argument then allows us to replaceG byG(1) ∼ HSBM(d, n, pmax, pmax), where pmax =
maxe pe. Unlike the matrixW−W ∗, the matrix S(G(1)◦R) has entries with identical distributions.
However, the entries are dependent.

Our next goal is to create independence. We invoke Jensen’s inequality, establishing

E [∥W −W ∗∥2] ≤ 2E

[∥∥∥∥∥
K∑

m=1

S(G(m) ◦R(m))

∥∥∥∥∥
2

]
,

where each G(m) is an independent copy of G(1), each R(m) is an independent copy of R, and
K = d2 − d. Note that

∑K
m=1 S(G(m) ◦ R(m)) is a sum of independent matrices with dependent

entries. For anym ∈ [K], observe that a given hyperedge random variable affects exactly 2×
(
d
2

)
=

K entries of S(G(m) ◦ R(m)). By adding K independent copies, we can rearrange the underlying
hyperedge random variables to achieve

∑K
m=1 S(G(m) ◦ R(m)) =

∑K
k=1C

(k), where
∑K

k=1C
(k)

is a sum of dependent matrices with independent entries. Then

E[∥W −W ∗∥2] ≤ 2E

[∥∥∥∥∥
K∑
k=1

C(k)

∥∥∥∥∥
2

]
≤ 2

K∑
k=1

E[∥C(k)∥2].

The final summation is then straightforwardly bounded using (Hajek et al., 2016a, Theorem 5); see
Appendix D for a complete proof.

4. Analysis of the Spectral Algorithm

Correctness of the spectral algorithm. Recall that u2 denotes the second eigenvector of W =
S(G). Since our algorithm determines communities based on the signs of u2, we need precise
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Figure 2: Consider HSBM(d, n, αfn, βfn) for d = 4, n = 1000, α = 50, β = 10 and
fn = log n/

(
n−1
d−1

)
. The boxplots show three different errors over 100 realizations:

(1)
√
n ∥u2 − u∗2∥∞, (2)

√
n∥u∗2 −Wu∗2/λ

∗
2∥∞, and (3)

√
n∥u2 −Wu∗2/λ

∗
2∥∞.

bounds on each entry of u2. A natural strategy would be to compare u2 to u∗2, since u∗2 =
1√
n
σ∗ due

to the block structure of W ∗. Unfortunately, ∥u2 − u∗2∥∞ is too large for our purposes, but still u2
recovers communities by sign. To gain intuition for this behavior, write

u2 − u∗2 =

(
Wu∗2
λ∗2

− u∗2

)
+

(
u2 −

Wu∗2
λ∗2

)
.

The first term on the right-hand side is the main term, while the second represents a smaller-order
term (see Figure 2). Such behavior was also observed in the SBM setting by Abbe et al. (2020).

Our first step is to apply Theorem 7, showing that

min
s∗∈{±1}

∥∥∥∥u2 − s∗
Wu∗2
λ∗2

∥∥∥∥
∞

= o(1/
√
n) (8)

(see Corollary 13). Therefore, if we can show that the vector Wu∗
2

λ∗
2

has the same signs as σ∗ (up to
a global sign flip), then the same is true for u2. Our goal is then to show that σ∗ and Wu∗2/λ

∗
2 have

the same signs, i.e.

min
i∈[n]

σ∗(i)

(
Wu∗2
λ∗2

)
i

> 0.

Fixing the orientation u∗2 =
1√
n
σ∗, we obtain that for i ∈ [n],

σ∗(i)

(
Wu∗2
λ∗2

)
i

=
σ∗(i)

∑
j∈[n]Wijσ

∗(j)

λ∗2
√
n

=
Dii

λ∗2
√
n
,

where Dii is defined in (5).
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In the logarithmic degree regime, we have that λ∗2 = Θ(log n). Moreover, as in the SDP analy-
sis, we note that for ϵ > 0 sufficiently small, mini∈[n]Dii ≥ ϵ log n with high probability, whenever

I(d, α, β) > 1. Therefore, the vector Wu∗
2

λ∗
2

has the same signs as σ∗. Moreover, the entries are of or-
der 1/

√
n; in turn, (8) implies that u2 also has the same signs as σ∗, up to a global sign flip, implying

Theorem 4. Similarly, when fn = ω(log n/nd−1), the we have that λ∗2 = Θ(nd−1fn). In this case,
using a Chernoff-style bound, we establish the existence of ϵ > 0 such that mini∈[n]Dii ≥ ϵ nd−1fn
with high probability for all α > β > 0, giving us Theorem 5.

Runtime analysis. Observe that Step 2 of Algorithm 2 requires only O(n) time. The bottleneck
is the time required for Step 1 (to compute the second eigenvector of W ). In order to compute
the eigenpairs, one can use the power method on the matrix W , which computes the top eigenpair
(λ1, u1) first. The method converges in O(log(n)/δ) iterations (see Garber et al. (2016)), where
δ = λ1−λ2

λ1
is the relative eigengap. In our setting, both λ1 − λ2 and λ1 are Θ(nd−1fn). This is

because the eigengap ∆∗
1 = λ∗1−λ∗2 ofW ∗ is Θ(nd−1fn) and ∥W −W ∗∥2 = o(nd−1fn) with high

probability using Lee et al. (2020). We conclude that δ = Θ(1) and the power method converges
in O(log n) iterations. In each iteration, it needs to multiply a vector with W . The cost of this
operation depends on the sparsity of W .

In the logarithmic degree regime, we have O(n log n) edges in the hypergraph, and thus, W has
at most O(n log n) non-zero entries, which is the effective cost of a matrix-vector multiplication.
Therefore, the total time to compute the first eigenpair (λ1, u1) of W is O(n log2 n). To obtain
the second eigenvector, we can deflate W by subtracting λ1u1u⊤1 . The new relative eigengap is
λ2−λ3
λ2

= Θ(1) since the other eigenvalues of W are close to 0. We emphasize that, even though
W − λ1u1u

⊤
1 may have n2 non-zero entries, a matrix-vector multiplication can still be done in

O(n log n) time by multiplying the vector with W and λ1u1u
⊤
1 separately and then taking the

difference. Thus, the power method requires O(n log2 n) time to obtain the second eigenvector.
In super-logarithmic degree regimes, a matrix-vector multiplication may take up to O(n2) time.

Therefore, the total runtime is O(n2 log n) in the worst-case.

Entrwise eigenvector analysis. Abbe et al. (2020) introduced a powerful entrywise eigenvector
bound, which has been used to show the optimality of spectral algorithms without the need of a
clean-up stage (Abbe et al., 2020; Dhara et al., 2022a,b,c). Unfortunately, the entrywise bound
(Abbe et al., 2020, Theorem 2.1) does not apply to W = S(G), since W violates a certain indepen-
dence assumption. The independence assumption is critically used in a leave-one-out argument; we
therefore carefully adapt this step. It also remains to prove a certain row concentration property of
the matrix W .

For simplicity, let λ = λk, λ∗ = λ∗k and ∆∗
k = ∆∗. For clarity of presentation, we assume the

orientation ⟨u, u∗⟩ ≥ 0, and make similar simplifying assumptions throughout the outline. Our goal
is then to show ∥∥∥∥u− Wu∗

λ∗

∥∥∥∥
∞

≲
∥u∗∥∞
log logn

.

We first relate λ to λ∗. By Weyl’s inequality, |λ − λ∗| ≤ ∥W −W ∗∥2. In turn, (Lee et al., 2020,
Theorem 4) implies ∥W −W ∗∥2 ≤ γλ∗ with high probability, for certain γ = γn = o(1). It then
follows that |λ−1 − λ∗−1| ≲ γ|λ∗|−1. Using this observation along with the triangle inequality, we
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can show∥∥∥∥u− Wu∗

λ∗

∥∥∥∥
∞

=

∥∥∥∥Wu

λ
− Wu∗

λ
+
Wu∗

λ
− Wu∗

λ∗

∥∥∥∥
∞
≤
∣∣∣∣ 1λ − 1

λ∗

∣∣∣∣ ∥Wu∗∥∞ +
1

|λ|
∥W (u− u∗)∥∞

≲
1

|λ∗|
(γ ∥Wu∗∥∞ + ∥W (u− u∗)∥∞) . (9)

Note that u∗ is a deterministic vector. Therefore, in order to bound the term ∥Wu∗∥∞, we derive
a row concentration result (Lemma 15). For a fixed vector v ∈ Rn, our row concentration result
controls ∥Wv∥∞ in terms of both ∥v∥∞ and ∥v∥2.

Since u depends on W , the second term in (9) requires a different strategy than the first. We
therefore apply the leave-one-out technique, motivated by other works using a similar strategy
(Bean et al., 2013; Javanmard et al., 2016; Zhong and Boumal, 2018; Abbe et al., 2020). Bound-
ing ∥W (u − u∗)∥∞ reduces to bounding |[W (u− u∗)]m| for each m ∈ [n]. To this end, we fix
m ∈ [n] and define a random matrix W (m) which is independent of the m-th row and column of
W . Let G(m) be the hypergraph formed from G by deleting all hyperedges containing m, and let
W (m) = S(G(m)) be its similarity matrix. Let u(m) be the k-th eigenvector of W (m). Applying the
triangle and Cauchy–Schwarz inequalities, we obtain

|[W (u− u∗)]m| ≤
∣∣∣Wm·(u− u(m))

∣∣∣+ ∣∣∣Wm·(u
(m) − u∗)

∣∣∣
≤ ∥W∥2→∞ ∥u− u(m)∥2 + |Wm·(u

(m) − u∗)|. (10)

Observe that Wm· and u(m) − u∗ are independent by the leave-one-out construction. Therefore, we
can bound the second term in (10) using our row concentration result. In order to bound ∥u−u(m)∥2,
we apply a version of the Davis–Kahan sin(θ) theorem (Davis and Kahan, 1970), which yields

∥u− u(m)∥2 ≲
∥(W −W (m))u∥2

∆∗ .

Our analysis so far is almost identical to that of Abbe et al. (2020); the main difference arises
here. Note that them-th row and columnW −W (m) are the same as those ofW . Since a hyperedge
containing the vertex m contributes to other entries of W , there will be additional non-zero entries
outside of the m-th row and column. Thus it is harder to find tight bounds on the quantities that
essentially are of main interest: ∥W −W (m)∥2 and ∥(W −W (m))u∥2. This complication arises
whenever d ≥ 3, and is absent from the analysis of Abbe et al. (2020), due to their independence
assumption. However, we are still able to prove similar probabilistic bounds for these quantities via
a series of careful (and non-trivial) lemmas that uses structural properties of the similarity matrix
along with the spectral norm concentration of Lee et al. (2020) to yield the final sharp bounds.

5. Discussion and future work

This paper contributes to a line of work which studies random graph inference problems under re-
stricted information. This paper considers aggregated information through the similarity matrix
transformation. Other recent works consider noisy or censored (Abbe et al., 2014; Hajek et al.,
2016b; Dhara et al., 2022a,b,c)] information models. While the similarity matrix is a lossy rep-
resentation of the full hypergraph information, it retains most of the information about the latent
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community structure. That is, the similarity matrix is sufficient for exact recovery in all denser
regimes, and even in the logarithmic degree regime, at least up to the threshold I(d, α, β) = 1
which is slightly worse than the threshold given the full information (see Figure 1). In Appendix
A, we further investigate the recovery problem given the adjacency matrix A ∈ {0, 1}n×n, where
Aij = 1 if i, j appear together in some hyperedge. In the logarithmic degree regime, our results
suggest that the adjacency matrix preserves much of the latent community structure, while in higher
degree regimes the adjacency matrix becomes uninformative.

Our work shows that, in the logarithmic degree regime, the spectral algorithm matches the
performance of min-bisection estimator, i.e. it succeeds whenever I(d, α, β) > 1. It is not clear
whether the exact recovery given only the similarity matrix is possible when I(d, α, β) < 1 but
Ifull(d, α, β) > 1. Deriving a precise information-theoretic threshold for exact recovery given the
similarity matrix remains an important direction for future work. We believe that I(d, α, β) is also
the information-theoretic limit, which would make the spectral and the SDP algorithms optimal.

Finally, the spectral algorithm is advantageous even when the full information is given, due to
its computational efficiency compared to existing approaches. To our knowledge, this constitutes
the first algorithm with a nearly linear runtime for exact recovery in the HSBM.

We include some directions for future work.

1. What is the sharp information-theoretic threshold for exact recovery given only the similarity
matrix in the logarithmic degree regime?

2. We show that the SDP is robust to a monotone adversary who operates on the similarity
matrix. What can we say about an adversary who instead operates on the hypergraph directly,
by adding intra-community edges and removing inter-community edges?

3. Can we find a simple proof for the sharp concentration ∥W −W ∗∥2, by leveraging our bound
on E [∥W −W ∗∥2] and using a concentration argument? While Talagrand’s inequality leads
to a sharp bound in the d = 2 case (Hajek et al., 2016a), it becomes vacuous in the d ≥ 3
case.

4. What is the precise recovery threshold given the adjacency matrixA, in the logarithmic degree
regime? Does the same spectral strategy (of recovering communities based on the signs of
the entries of the second eigenvector of A) achieve the information-theoretic limit?
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Appendix A. Similarity Matrix vs. Adjacency Matrix Information Models

In this section, we study the exact recovery problem given only the adjacency matrixA ∈ {0, 1}n×n,
where Aij = 1 whenever i, j ∈ [n] appear together in some hyperedge in G. For example, an
academic collaboration network can be modeled as a hypergraph, where each hyperedge represents
the authors of a paper. However, academic collaboration networks typically only record pairwise
information, describing whether two researchers have co-authored a paper together–motivating the
need to study this problem.

Logarithmic degree regime. We first consider fn = log n/
(
n−1
d−1

)
. We conjecture that the exact

recovery problem given A exhibits a sharp recovery threshold, analogously to the exact recovery
problem given W . Additionally, we expect the spectral algorithm that recovers communities based
on the second eigenvector of A to be optimal. In Figure 3, we present our empirical findings from
simulations.
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Figure 3: Visualizing the heat map of success of spectral algorithm on A alongside I(d, α, β) > 1.

Fix d = 4 and n = 500. Let G ∼ HSBM(d, n, αfn, βfn) for different values of (α, β)
and W = S(G). Then, the adjacent matrix A = min{W,11⊤}. We run the spectral algorithm
for various values α > β. We report the proportion of success, namely σ̂ ∈ {±σ∗}, out of 30
independent runs. Darker pixels represent higher chances of success in the heat map. We juxtapose
this with the thresholds I(d, α, β) = 1 and Ifull(d, α, β) = 1. We find all three of them to be
relatively close to each other, which suggests that the matrix A still continues to retain much of the
information about the ground truth community structure.

Since A is an adjacency matrix, it is also natural to compare it to an SBM G′ which produces
an adjacency matrix A′ with the same marginal edge probabilities. Of course, A has a compli-
cated dependency structure, while the entries of A′ are independent, conditioned on the community
structure. We plot the recovery threshold for the SBM in green. More precisely, we transform
the parameters (α, β) to corresponding SBM parameters (α′, β′) by solving the following. The

20



EXACT COMMUNITY RECOVERY FROM SIMILARITY MATRIX IN HYPERGRAPH SBM

intra-community probability

p′n =
α′ log n

n
= 1− (1− αfn)

(n/2−2
d−2 ) (1− βfn)

(n−2
d−2)−(

n/2−2
d−2 ) ,

and inter-community probability

q′n =
β′ log n

n
= 1− (1− βfn)

(n−2
d−2) .

This gives us α′ and β′ as functions of α, β and d. The line plots ISBM(d, α, β) = (
√
α′−

√
β′)2/2 =

1 on the (α, β) plane. This line falls below the recovery threshold corresponding to the full hyper-
graph information, which implies that the threshold corresponding to recovery from A is strictly
higher than the threshold corresponding to recovery from A′. In other words, even though A and A′

have the same marginal entry distributions, the dependency structure in A makes recovery strictly
harder.

From a memory and runtime standpoint, recovery using A or W is asymptotically equivalent
in the logarithmic degree regime, since with high probability each entry of W is upper bounded
by 4d = Θ(1) (see Section D, Equation 41). On the other hand, there are regimes in which the
similarity matrix approach succeeds while the adjacency matrix approach fails, which we discuss
below.

Denser regimes. Fix d and α > β > 0. Consider regimes such that fn = ω(log n/nd−2) and
G ∼ (d, n, αfn, βfn). For each pair i, j ∈ [n], the number of edges in involving (i, j) grows with
n. Therefore, with high probability, the adjacency matrix A is simply the matrix of all ones (up
to the diagonal). More precisely, P

(
A = (11⊤ − I)

)
= 1 − o(1), rendering the adjacency matrix

uninformative.
In these regimes, the adjacency matrix information model (or its variant whereA = min{W, c11⊤}

for any constant c > 0) requires only up to O(n2) space to maintain, but it does not preserve any
information. On the other hand, community recovery given the similarity matrix is still possible
(Theorem 5).

Appendix B. Proofs from Section 3: Analysis of the SDP Relaxation

We begin by noting a simple corollary of our spectral norm concentration theorem (Theorem 10) in
the context of the HSBM.

Corollary 11 Fix d ∈ {2, 3, . . . } andα > β > 0. Let fn = log n/
(
n−1
d−1

)
andG ∼ HSBM(d, n, αfn, βfn).

Let W = S(G) and W ∗ = E[W | σ∗]. Then

P
(
∥W −W ∗∥2 ≤ log3/4 n

)
≥ 1− o(1).

Proof By Theorem 10, E[∥W −W ∗∥2] ≤ c
√
log n, for some c > 0 that depends on α and d.

Therefore, using Markov’s inequality,

P
(
∥W −W ∗∥2 > log3/4 n

)
≤

E[∥W −W ∗∥2]
log3/4 n

≤ c
√
log n

log3/4 n
= o(1).
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We now show Lemma 9, which characterizes sufficient conditions under which X∗ = σ∗σ∗⊤ is the
unique solution of the SDP (3), using a dual certificate strategy.
Proof [Proof of Lemma 9] We first show that X∗ = σ∗σ∗⊤ is an optimal solution. For any X
satisfying the constraints in (3),

⟨W,X⟩ ≤ ⟨W,X⟩+ ⟨S,X⟩ (since S,X ⪰ 0)

= ⟨W,X⟩+ ⟨D + ν11⊤ −W,X⟩ = ⟨D,X⟩ (since X is primal feasible)

= ⟨D,X∗⟩ (as X∗
ii = Xii = 1 for all i ∈ [n])

= ⟨W + S − ν11⊤, X∗⟩ = ⟨W,X∗⟩+ ⟨S,X∗⟩ = ⟨W,X∗⟩.
(since ⟨S,X∗⟩ = (σ∗)⊤Sσ∗ = 0)

Therefore it only remains to establish the uniqueness of X∗. Consider an optimal solution X̃ . Then

⟨S, X̃⟩ = ⟨D + ν11⊤ −W, X̃⟩ = ⟨D −W, X̃⟩ (since ⟨11⊤, X̃⟩ = 0)

= ⟨D −W,X∗⟩ (as ⟨W,X∗⟩ = ⟨W, X̃⟩ and X∗
ii = X̃ii = 1)

= ⟨S,X∗⟩ = 0. (using Sσ∗ = 0)

Since X̃ ⪰ 0 and S ⪰ 0 and λn−1(S) > 0, we obtain that X̃ is also a rank-1 matrix and hence it
must be a multiple of σ∗σ∗⊤. Moreover, as X̃ii = 1 for all i ∈ [n], it must be that X̃ = X∗ =
σ∗σ∗⊤.

We now focus on showing that the choice ofD mentioned in (5) and ν = 1 satisfy the conditions
in Lemma 9 with high probability whenever I(d, α, β) > 1 to show Theorem 2. Towards this, we
prove a lemma that plays an important role in proving the theorem. Roughly speaking, it provides a
probabilistic lower bound on Dii defined in (5) for any i ∈ [n].

Lemma 12 Let d ∈ {2, 3, . . . }, and α > β > 0, such that I(d, α, β) > 1. Let fn = log n/
(
n−1
d−1

)
and W = S(G) where G ∼ HSBM(d, n, αfn, βfn). Then there exists a constant ϵ := ϵ(d, α, β) >
0 such that for any fixed i ∈ [n], with probability at least 1− o(n−1),∑

j∈[n]

Wijσ
∗(i)σ∗(j) ≥ ϵ log n.

Proof Fix i ∈ [n], and let X ≜
∑

j∈[n]Wijσ
∗(i)σ∗(j). Let E :=

([n]
d

)
be the set of possible edges.

For each e ∈ E , let Ae be the indicator that edge e is present. Let E(i) := {e ∈ E : i ∈ e} represent
the set of potential edges incident on i.

For any edge e ∈ E(i), let ni(e) := |{j ∈ e \ {i} : σ∗(i) ̸= σ∗(j)}| be the number of vertices in
e that belong to the opposite community as i. We can rewrite X as follows

X =
∑
e∈E(i)

∑
j∈e,j ̸=i

σ∗(i)σ∗(j)Ae

=
∑
e∈E(i)

((d− 1− ni(e))− ni(e))Ae

=
∑
e∈E(i)

(d− 1− 2ni(e))Ae.
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Next, observe that for r ∈ {0, 1, . . . , d− 1}, the set {e ∈ E(i) : ni(e) = r} has cardinality

Nr :=

(
n/2

r

)(
n/2− 1

d− 1− r

)
.

Let {Yr}d−1
r=0 be independent random variables, where Yr ∼ Bin(Nr, qr), with

qr =

{
α logn/(n−1

d−1), if r = 0;

β logn/(n−1
d−1), if 1 ≤ r ≤ d− 1.

We then further rewrite X as follows:

X =
d−1∑
r=0

∑
e∈E(i)

1{ni(e) = r} (d− 1− 2ni(e))Ae,

so that X is equal to
∑d−1

r=0(d− 1− 2r)Yr in distribution.
Let hr = d− 1− 2r. Fix ϵ ∈ R and t ≥ 0. Exponentiating and applying Markov’s inequality,

P (X ≤ ϵ log n) ≤ P
(
e−tX ≥ e−tϵ logn

)
≤ E [e−tX ]

e−tϵ logn

= etϵ logn E [e−t
∑d−1

r=0 hrYr ]

= etϵ logn
d−1∏
r=0

E [e−thrYr ]

= etϵ logn
d−1∏
r=0

(
1− qr(1− e−thr)

)Nr

≤ exp

(
tϵ log n−

d−1∑
r=0

Nrqr(1− e−hrt)

)
. (11)

Here, the second equality is due to independence of the Yr random variables, and the final step uses
1− x ≤ e−x. Next,

Nr =

(
n/2

r

)(
n/2− 1

d− 1− r

)
=

(
n/2
r

)(n/2−1
d−1−r

)(
n−1
d−1

) (
n− 1

d− 1

)
= (1 + o(1))

(n/2)r

r !
· (n/2)d−1−r

(d− 1− r) !
· (d− 1)!

nd−1
·
(
n− 1

d− 1

)
= (1 + o(1))

1

2d−1

(
d− 1

r

)(
n− 1

d− 1

)
.

Substituting into (11), we obtain

P (X ≤ ϵ log n) ≤ exp

(
tϵ log n− (1 + o(1))

2d−1

(
α(1− e−(d−1)t) +

d−1∑
r=1

β

(
d− 1

r

)
(1− e−(d−1−2r)t)

)
log n

)
.
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Let t = t∗(d, α, β), where

t∗(d, α, β) = argmax
t≥0

1

2d−1

(
α(1− e−(d−1)t) +

d−1∑
r=1

β

(
d− 1

r

)
(1− e−(d−1−2r)t)

)
:= argmax

t≥0
ψ(t).

We then obtain

P (X ≤ ϵ log n) ≤ exp
(
t∗ϵ log n− I(d, α, β) log n+ o(log n)

)
≤ n−I(d,α,β)+t∗ϵ+o(1).

Note that t∗ ̸= 0 as

lim
t→0+

ψ′(t) =
1

2d−1

(
α(d− 1) + β

d−1∑
r=1

(
d− 1

r

)
(d− 1− 2r)

)
= (α− β)(d− 1)/2d−1 > 0.

Furthermore, since I(d, α, β) > 1, one can choose ϵ = ϵ(d, α, β) > 0 sufficiently small such that

P

∑
j∈[n]

Wijσ
∗(i)σ∗(j) ≤ ϵ log n

 = o(n−1).

Finally, we make some important observations about the structure of W ∗. Observe that W ∗ has
a block structure (up to the diagonal entries). In particular, W ∗ is a zero diagonal symmetric matrix
whose non-diagonal entries are given by

W ∗
ij =

{
p′ ≜

(n/2−2
d−2

)
αfn +

((
n−2
d−2

)
−
(n/2−2

d−2

))
βfn, if σ∗(i) = σ∗(j);

q′ ≜
(
n−2
d−2

)
βfn, if σ∗(i) ̸= σ∗(j).

(12)

Observe that W ∗ can be decomposed as

W ∗ =

(
p′ + q′

2

)
11⊤ +

(
p′ − q′

2

)
σ∗σ∗⊤ − p′I. (13)

Proof [Proof of Theorem 2] The proof uses ideas from the proof of (Hajek et al., 2016a, Theorem
2). Let ν = 1 and S ≜ D + ν11⊤ −W = D + 11⊤ −W . The goal is to show that S satisfies the
conditions mentioned in Lemma 9 with high probability whenever I(d, α, β) > 1. Observe that, by
definition of D in (5), for any i ∈ [n], we have Diiσ

∗(i) =
∑

j∈[n]Wijσ
∗(j); i.e. Dσ∗ = Wσ∗.

Therefore, using the fact that ⟨1, σ∗⟩ = 0, we get

Sσ∗ = Dσ∗ + 11⊤σ∗ −Wσ∗ = 0.

Therefore, it remains to show that

P
({

inf
x⊥σ∗:∥x∥2=1

x⊤Sx > 0

})
≥ 1− o(1).
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For any x ⊥ σ∗ such that ∥x∥2 = 1,

x⊤Sx = x⊤Dx+ x⊤11⊤x− x⊤(W −W ∗)x− x⊤W ∗x

= x⊤Dx+ (1⊤x)2 − x⊤(W −W ∗)x−
(
p′ − q′

2

)
(x⊤σ∗)2 −

(
p′ + q′

2

)
(1⊤x)2 + p′

(using (13) to substitute W ∗)

= x⊤Dx+
(
1− (p′ + q′)/2

)
(1⊤x)2 − x⊤(W −W ∗)x+ p′ (since x ⊥ σ∗)

≥ x⊤Dx+ p′ − x⊤(W −W ∗)x (since p′, q′ = Θ(log n/n) are vanishing)

≥ min
i∈[n]

Dii − ∥W −W ∗∥2 . (by the definition of ∥.∥2 for matrices and the fact p′ ≥ 0)

We now use Lemma 12 and take a union bound over i to obtain mini∈[n]Dii ≥ ϵ log n with proba-
bility 1−o(1). Moreover, applying Corollary 11, ∥W −W ∗∥2 ≤ log3/4 nwith probability 1−o(1).
Therefore, one can conclude that x⊤Sx ≥ ϵ log n− log3/4 n > 0 for any x such that ∥x∥2 = 1 and
x ⊥ σ∗, completing the proof.

We additionally show that the SDP is robust to a monotone adversary (Lemma 3). Here, we
consider an adversary who can increase the value of Wij for any (i, j) in the same community,
and decrease the value of Wij for any (i, j) in opposite communities. The robustness of SDPs to
monotone adversaries is well-known (see e.g. Feige and Krauthgamer (2000); Feige and Kilian
(2001)). While the monotone adversary appears to provide helpful information, spectral algorithms
generally fail under such a semirandom model.
Proof [Proof of Lemma 3] Let X be a feasible solution to the modified SDP, and let X∗ be the
unique optimal solution to (3), which is guaranteed by Theorem 2. Due to uniqueness of X∗, we
have ⟨W,X⟩ < ⟨W,X∗⟩. Since X ⪰ 0, we can write

X =

n∑
l=1

λlvlv
⊤
l

as its eigendecomposition, where λl ≥ 0 for all l. Then by the Cauchy–Schwarz inequality,

X2
ij =

(
n∑

l=1

λlvl,ivl,j

)2

≤

(
n∑

l=1

λlv
2
l,i

)(
n∑

l=1

λlv
2
l,j

)
= Xii ·Xjj

= 1.

Therefore, |Xij | ≤ 1 for all i, j, which implies

⟨W̃ −W,X⟩ ≤
∑

i,j∈[n]

|W̃ij −Wij | = ⟨W̃ −W,X∗⟩.

Consequently,

⟨W̃ ,X⟩ = ⟨W,X⟩+ ⟨W̃ −W,X⟩ < ⟨W,X∗⟩+ ⟨W̃ −W,X∗⟩ = ⟨W̃ ,X∗⟩,
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establishing the unique optimality of X∗.

One could also consider another natural monotone adversary that operates directly on the under-
lying hypergraph instead of on its similarity matrix. More specifically, the adversary is allowed to
add intra-community edges and delete cross-community edges. It is not immediately clear whether
an SDP algorithm would be robust to such an adversary.

Appendix C. Proofs from Section 4: Analysis of the Spectral Algorithm

In Section C.1, we prove that the spectral algorithm succeeds up to the min-bisection threshold in
the logarithmic degree regime (Theorem 4). In Section C.2, we establish its correctness in denser
regimes (Theorem 5). Finally, in Section C.3, we present the proof of our general entrywise eigen-
vector bound (Theorem 7).

C.1. Proving Theorem 4

We first derive a corollary of Theorem 7, specific to HSBMs.

Corollary 13 Fix d ∈ {2, 3, . . . }. Choose any α > β > 0 and fn according to (1). Let G ∼
HSBM(d, n, αfn, βfn) and W = S(G). If fn = Ω(logn/nd−1), then with probability at least
1−O(n−3),

min
s∗∈{±1}

∥∥∥∥u2 − s∗
Wu∗2
λ∗2

∥∥∥∥
∞
≤ c√

n log logn
,

where c := c(d, α, β) is some positive constant that only depends on d, α, and β.

Proof Since each hyperedge exists with probability at most αfn, we can set µn as αfn. Moreover,
we have that n

(
n−1
d−1

)
µn ≥ c0 log nwhen fn = Ω(log n/nd−1), for some c0 that depends on d and α.

We now verify that Assumption 1 holds. LetW ∗ be the expectation ofW conditioned on σ∗, whose
entries are p′ and q′ as given by (12). By (13), W ∗+p′I is a rank-2 matrix. Its non-zero eigenvalues
are (p′ + q′)n/2 and (p′ − q′)n/2. Accounting for the diagonal matrix p′I , the eigenvalues of W ∗

are given by
λ∗1 = (1 + o(1))(p′ + q′)n/2 and λ∗2 = (1 + o(1))(p′ − q′)n/2.

Since p′ ≍ q′ ≍ nd−2fn, we have λ∗1, λ
∗
2 ≍ nd−1fn. Furthermore,

∆∗
2 = min {λ∗1 − λ∗2, λ

∗
2 − 0} = (1 + o(1))min

{
q′n,

(p′ − q′)n

2

}
≍ nd−1fn,

hiding constants in α, β and d. Therefore, Theorem 7 applies.
It remains to verify that ∥u∗2∥∞ = O(1/

√
n). We already know that the second eigenvector of

W ∗ + p′I is 1√
n
σ∗ by (13). Hence

u∗2 =
1 + o(1)√

n
σ∗. (14)

We next prove the correctness of the spectral algorithm in the logarithmic degree regime (Theorem
4).
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Proof [Proof of Theorem 4] Recall that fn = log n/
(
n−1
d−1

)
. Let us fix s = s∗ for which Corollary

13 holds. Using the corollary, with probability 1− o(1),
√
nmin

i∈[n]
sσ∗(i)u2,i ≥

√
nmin

i∈[n]
s2σ∗(i)(Wu∗2)i/λ

∗
2 − c(log log n)−1, (15)

where c is defined in Corollary 13. Note that s2 = 1. Also, using (14),

√
nσ∗(i)(Wu∗2)i = (1 + o(1))

∑
j∈[n]

Wijσ
∗(i)σ∗(j).

By Lemma 12, if I(d, α, β) > 1, then there exists a positive constant ϵ(d, α, β) > 0 such that for
a fixed i ∈ [n],

∑
j∈[n]Wijσ

∗(i)σ∗(j) ≥ ϵ log n with probability 1 − o(n−1). Therefore, a union
bound implies that with probability 1− o(1),

√
nmin

i∈[n]
s2σ∗(i)(Wu∗2)i ≥ (1 + o(1))ϵ log n.

Since λ∗2 ≍ log(n) when fn = log n/
(
n−1
d−1

)
, (15) implies that there exists η > 0 such that

√
nmin

i∈[n]
s∗σ∗(i)(u2)i ≥ (1 + o(1))ϵ log n/λ∗2 − c(log log n)−1 > η,

with probability 1− o(1), concluding the proof.

C.2. Proving Theorem 5

In this subsection, we prove the correctness of the spectral algorithm (Algorithm 2) in super-
logarithmic degree regimes. By Corollary 13, we already know that the entrywise bounds hold
in these regimes. Therefore, it remains to show that each entry of Wu∗2/λ

∗
2 is sufficiently bounded

away from zero with high probability. In order to achieve this, we show the following lemma, which
is similar in spirit to Lemma 12 but also captures denser regimes.

Lemma 14 Let d ∈ {2, 3, . . . }. Let pn and qn be parameterized according to (1) for some fn and
constants α > β > 0. Let W = S(G) where G ∼ HSBM(d, n, αfn, βfn). If fn = ω(log n/nd−1),
then there exists a constant ϵ := ϵ(d, α, β) > 0 such that for any fixed i ∈ [n], with probability at
least 1−O(n−4), ∑

j∈[n]

Wijσ
∗(i)σ∗(j) ≥ ϵ · nd−1fn.

Proof Let X ≜
∑

j∈[n]Wijσ
∗(i)σ∗(j). Define

Nr =

(
n/2

r

)(
n/2− 1

d− 1− r

)
qr =

{
αfn, if r = 0

βfn, if 1 ≤ r ≤ d− 1

hr = d− 1− 2r.
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Using identical steps as in the proof of Lemma 12, we can show

P
(
X ≤ ϵnd−1fn

)
≤ exp

(
tϵnd−1fn −

d−1∑
r=0

Nrqr(1− e−hrt)

)
. (16)

Further analyzing the asymptotic behavior of Nr, we see that

Nr = (1 + o(1))
1

2d−1

(
d− 1

r

)(
n− 1

d− 1

)
= (1 + o(1))

(
d−1
r

)
nd−1

2d−1(d− 1)!
.

Substituting into (16), we obtain

P
(
X ≤ ϵ nd−1fn

)
≤ exp

{[
tϵ− (1 + o(1))

2d−1(d− 1)!

(
α(1− e−(d−1)t) +

d−1∑
r=1

β

(
d− 1

r

)
(1− e−(d−1−2r)t)

)]
nd−1fn

}
.

(17)

Letting t = t⋆(d, α, β) > 0 as in the proof of Lemma 12, we obtain

P
(
X ≤ ϵ nd−1fn

)
≤ exp

((
t∗ϵ− I(d, α, β)

(d− 1)!
+ o(1)

)
nd−1fn

)
.

Therefore, for ϵ = ϵ(d, α, β) sufficiently small, there exists δ = δ(d, α, β) > 0 such that

P
(
X ≤ ϵ nd−1fn

)
≤ e−δ nd−1fn

for n sufficiently large. Finally, using fn = ω(log n/nd−1), we obtain

P

∑
j∈[n]

Wijσ
∗(i)σ∗(j) ≤ ϵ nd−1fn

 ≤ e−δ·ω(logn) ≤ e−4 logn = O(n−4).

We now combine this with entrywise bounds on the eigenvector u2 in Corollary 13 to show our
theorem.
Proof [Proof of Theorem 5] Since fn = ω(log n/nd−1), Corollary 13 holds for some s∗ ∈ {±1}.
Fixing s = s∗, and using the corollary we get that with probability 1−O(n−3),

√
nmin

i∈[n]
sσ∗(i)u2,i ≥

√
nmin

i∈[n]
s2σ∗(i)(Wu∗2)i/λ

∗
2 − c(log log n)−1, (18)

where c is the constant from Corollary 13. As s ∈ {±1}, we have that s2 = 1. Also, using (14),

√
nσ∗(i)(Wu∗2)i = (1 + o(1))

∑
j∈[n]

Wijσ
∗(i)σ∗(j).
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By Lemma 14, since α > β > 0, there exists a positive constant ϵ(d, α, β) > 0 such that for a fixed
i ∈ [n],

∑
j∈[n]Wijσ

∗(i)σ∗(j) ≥ ϵ nd−1fn with probability 1−O(n−4). Therefore, taking a union
bound, we obtain that with probability 1−O(n−3),

√
nmin

i∈[n]
s2σ∗(i)(Wu∗2)i ≥ (1 + o(1))ϵ nd−1fn.

Finally, note that λ∗2 ≍ nd−1fn. Therefore, (18) implies that with probability 1−O(n−3)

√
nmin

i∈[n]
s∗σ∗(i)(u2)i ≥ (1 + o(1)) ϵ nd−1fn/λ

∗
2 − c(log log n)−1 > η,

for some η(d, α, β) > 0, yielding the desired result.

C.3. Entrywise analysis

We begin by recalling the setup of Theorem 7. For simplicity, let λ = λk, λ∗ = λ∗k and ∆∗ = ∆∗
k,

dropping the subscript k. Let s = sgn(⟨u, u∗⟩), so that ⟨su, u∗⟩ ≥ 0. Also, for any fixedm ∈ [n], let
G(m) denote the hypergraph formed from G by deleting all the edges incident on m. Let W (m) =
S(G(m)), and let (λ(m), u(m)) be th k-th eigenpair of W (m). Let s(m) = sgn⟨u(m), u∗⟩, so that
⟨s(m)u(m), u∗⟩ ≥ 0. The notation ≲ and ≍ hide constants in d, c0, and c1 (defined as in Theorem 7)
throughout this section. Before proving the theorem, we require some additional observations and
results. We begin by making a simple observation about the deterministic matrix W ∗.

Observation 1 ∥W ∗∥2→∞ ≤
√
n
(
n−2
d−2

)
µn.

Proof Recall that maxe pe ≤ µn. Since each entry Wij is a sum of
(
n−2
d−2

)
Bernoulli random

variables, E [Wij ] =W ∗
ij ≤

(
n−2
d−2

)
µn. Therefore,

∥W ∗∥2→∞ = max
i

∥W ∗
i·∥2 ≤

√
nmax |W ∗

ij | ≤
√
n

(
n− 2

d− 2

)
µn.

Define the function φ : R+ → R+ such that

φ(x) =
2 + 8d/c0

(1 ∨ log(1/x))
, (19)

where c0 is as in the statement of Theorem 7. We note the following properties of φ(·).

Observation 2 φ(x) is non-decreasing and φ(x)/x is non-increasing on R+.

The next result provides a probabilistic upper bound on the inner product of a row of W −W ∗ and
a fixed vector v, in terms of the function φ(·). Intuitively, one can think that the rate of growth of
φ(·) essentially controls the strength of the concentration bound. Formally,

Lemma 15 (Row concentration) For any m ∈ [n] and any fixed non-zero v ∈ Rn,

P
(
|(W −W ∗)m·v| ≤ ∥v∥∞ φ

(
∥v∥2√
n ∥v∥∞

)
n

(
n− 2

d− 2

)
µn

)
≥ 1−O

(
1

n4

)
.
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Proof Recall the definition of E(m) = {e ∈ E : m ∈ e}. Let v ∈ Rn be a fixed vector. Let
X ≜ (W −W ∗)m·v. It is convenient to rewrite X as a sum of random variables {Ae}e∈E(m) , where
Ae is the indicator random variable associated with the hyperedge e:

X =
∑

e∈E(m)

 ∑
j∈e\{m}

vj

 (Ae − E[Ae]).

Without loss of generality, assume that ∥v∥∞= 1
d (otherwise, v may be scaled). By Markov’s

inequality, for any δ, t > 0,

P (X ≥ δ) ≤ P
(
etX ≥ etδ

)
≤ e−tδ

∏
e∈E(m)

E
(
et(

∑
j∈e\{m} vj)(Ae−E[Ae])

)
. (20)

For e ∈ E(m), we can bound the logarithm of the moment generating function as follows:

log
(
E
[
et(

∑
j∈e\{m} vj)(Ae−E[Ae])

])
= log

(
E
[
et(

∑
j∈e\{m} vj)Ae

])
− t

 ∑
j∈e\{m}

vj

E[Ae]

= log
(
1− pe + pee

t
∑

j∈e\{m} vj
)
− tpe

 ∑
j∈e\{m}

vj


≤ pe

(
et

∑
j∈e\{m} vj − 1

)
− tpe

∑
j∈e\{m}

vj , (21)

where we have used the fact that log(1 + x) ≤ x for x > 1 in the last step. Next, we use the fact
that ex ≤ 1 + x+ x2

2 e
r for |x| ≤ r to further upper-bound (21) by

pe

1 + t
∑

j∈e\{m}

vj +
etd∥v∥∞

2
· t2
 ∑

j∈e\{m}

vj

2

− 1

− tpe
∑

j∈e\{m}

vj

= pe
et

2
· t2
 ∑

j∈e\{m}

vj

2

≤ etpmaxt
2

2
· d

∑
j∈e\{m}

vj
2,

where maxe pe ≜ pmax.
Substituting our bounds on the log of moment generating functions into (20), we obtain

log(P (X ≥ δ)) ≤ −tδ + etpmaxd

2
t2
∑

e∈E(m)

∑
j∈e\{m}

vj
2

≤ −tδ + etpmaxd

2
· t2
(
n− 2

d− 2

)
∥v∥22 ,
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where the last step follows from the fact that each j ̸= m appears in
(
n−2
d−2

)
potential hyperedges in

E(m). Let t = 1
∨
log
( √

n
d∥v∥2

)
. Using the fact that (1 ∨ log x)2 ≤ x for x ≥ 1,

log(P (X ≥ δ)) ≤ −tδ + etpmaxd

2

√
n

d ∥v∥2

(
n− 2

d− 2

)
∥v∥22 .

Observe that ∥v∥2 ≤
√
n ∥v∥∞ =

√
n/d, so that log

( √
n

d∥v∥2

)
≥ 0. Therefore, et = e

1∨log(
√
n

d∥v∥2
) ≤

e
1+log(

√
n

d∥v∥2
) ≤ e

√
n

d∥v∥2 . Hence

log(P (X ≥ δ)) ≤ −tδ + epmaxd

2
·

√
n

d ∥v∥2

√
n

d ∥v∥2

(
n− 2

d− 2

)
∥v∥22 = −tδ +

epmaxn
(
n−2
d−2

)
2d

.

Let a = 8d/c0 and set δ = t−1d−1(2 + a)pmaxn
(
n−2
d−2

)
. We then obtain the bound

log(P (X ≥ δ)) ≤ −(2 + a)pmaxn

d

(
n− 2

d− 2

)
+
epmaxn

(
n−2
d−2

)
2d

≤ −
apmaxn

(
n−2
d−2

)
d

.

By replacing v with −v, we obtain a similar bound for the lower tail. The union bound gives

P (|X| ≥ δ) ≤ 2 exp

(
−
apmaxn

(
n−2
d−2

)
d

)
.

Substituting in the value of t and using Assumption 1 that n
(
n−2
d−2

)
µn ≥ c0 log n,

P

|(W −W ∗)m·v| ≥
(2 + a)n

(
n−2
d−2

)
µn

d
(
1
∨
log
( √

n
d∥v∥2

))
 ≤ 2e−

ac0 logn
d .

Finally, substituting the value of a,

P

|(W −W ∗)m·v| ≤
(2 + 8d/c0)n

(
n−2
d−2

)
µn

d
(
1
∨
log
( √

n
d∥v∥2

))
 ≥ 1− 2n−4.

Recalling that ∥v∥∞ = 1/d yields:

P

|(W −W ∗)m·v| ≤
(2 + 8d

c0
) ∥v∥∞ n

(
n−2
d−2

)
µn

1
∨
log
(√

n∥v∥∞
∥v∥2

)
 ≥ 1− 2n−4.

Since φ
(

∥v∥2√
n∥v∥∞

)
= (2 + 8d/c0)/(1 ∨ log

(√
n∥v∥∞
∥v∥2

)
, the lemma follows.

Lemma 16
∥∥W −W (m)

∥∥
2
≲ ∥W∥2→∞.
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Proof Note thatW −W (m) is the similarity matrix of the graph with edges present only from E(m).
Consider any i ̸= m. Since for any e ∈ E(m) with {i,m} ⊆ e, the edge e contributes to exactly
(d− 1) entries of the i-th row of W −W (m), we have

∥(W −W (m))i·∥1 = (d− 1)Wim. (22)

Therefore
∥∥(W −W (m))i·

∥∥
2
≤
∥∥(W −W (m))i·

∥∥
1
≤ (d− 1)Wim. Hence we get

∥W −W (m)∥2 ≤ ∥W −W (m)∥F

=

√∑
i∈[n]

∥∥(W −W (m))i·
∥∥2
2

≤
√
∥Wm·∥22 +

∑
i∈[n]\{m}

(d− 1)2W 2
im

≲
√

∥Wm·∥22 ≤ ∥W∥2→∞ .

We now record a sharp spectral norm concentration result of Lee, Kim, and Chung (Lee et al., 2020),
which will play a crucial role in our further analysis.

Lemma 17 (Lee et al., 2020, Special case of Theorem 4) Fix d ∈ {2, 3, . . . }. Let p ∈ [0, 1](
[n]
d ) be

such that Assumption 1 holds. Let G ∼ H(d, n, p) and W = S(G). Then there exists a constant
C = C(d, c0) > 0 such that

P

(
∥W −W ∗∥2 ≤ C

√
n

(
n− 2

d− 2

)
µn

)
≥ 1−O(n−11).

Let us define a parameter γ, which controls the concentration in the analysis from here.

γ = γn :=
C√

n
(
n−2
d−2

)
µn

∨ 1√
n
,

where C = C(d, c0) > 0 is the constant from Lemma 17. Recalling the definition of φ(·) (Equation
19), observe that

γ = o(1) and φ(γ) ≲

 1

1 ∨ log
√
n
(
n−2
d−2

)
µn

∨ 1

1 ∨ log
√
n

 ≲
1

log logn
= o(1), (23)

where we used Assumption 1 that n
(
n−2
d−2

)
µn ≥ c0 log n. We define the following event:

F0 :=

{
∥W −W ∗∥2 ≤ γ · n

(
n− 2

d− 2

)
µn

}
.

By Lemma 17,

P (F c
0 ) = P

(
∥W −W ∗∥2 > γ · n

(
n− 2

d− 2

)
µn

)
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≤ P

(
∥W −W ∗∥2 > C

√
n

(
n− 2

d− 2

)
µn

)
(by definition of γ)

= O(n−11). (using Lemma 17)

Therefore, P (F0) ≥ 1−O(n−11). We now derive some bounds on important quantities conditioned
on the above event.

Lemma 18 Conditioned on F0, we have |λ∗| ≍ |λ| ≍ nd−1µn.

Proof Conditioned on the event F0, Weyl’s inequality implies

|λ− λ∗| ≤ ∥W −W ∗∥2 ≤ γ · n
(
n− 2

d− 2

)
µn = o(nd−1µn),

where the last inequality follows since n
(
n−2
d−2

)
= Θ(nd−1) and γ = o(1) . Therefore, λ ∈ λ∗ ±

o(nd−1µn). Thus, Assumption 1 (i.e. |λ∗| ≍ nd−1µn) then ensures that |λ∗| ≍ |λ| ≍ nd−1µn.

Lemma 19 Conditioned on F0,

∥W∥2→∞ ≲ γ · nd−1µn and for all m ∈ [n],
∥∥∥W (m) −W ∗

∥∥∥
2
≲ γ · nd−1µn.

Proof By the triangle inequality,

∥W∥2→∞ ≤ ∥W −W ∗∥2 + ∥W ∗∥2→∞

≤

 C√
n
(
n−2
d−2

)
µn

+
1√
n

n

(
n− 2

d− 2

)
µn (using Lemma 17 and Observation 1)

≲ γ · nd−1µn (by definition of γ and n
(
n−2
d−2

)
= Θ(nd−1))

Similarly, using the triangle inequality and Lemma 16,

∥W (m) −W ∗∥2 ≤ ∥W −W ∗∥2 + ∥W −W (m)∥2 ≲ ∥W −W ∗∥2 + ∥W∥2→∞ ≲ γ · nd−1µn.

Having derived the above bounds, we now bound the ℓ2 and ℓ∞ norms of (s(m)u(m) − u∗) and
(su− s(m)u(m)) using two variants of the Davis and Kahan sin(θ) theorem. For completeness, we
include the less well-known variant here, which is a special case of (Deng et al., 2021, Theorem 3).

Proposition 20 (Generalized Davis and Kahan sin(θ) theorem (Deng et al., 2021)) LetM ∈ Rn×n

be a symmetric matrix and let X be the matrix that has the eigenvectors of M as columns. Then
M can be decomposed as M = XΛX⊤ = X1Λ1X1

⊤ + X2Λ2X2
⊤, where X = [X1 X2] and

Λ =

[
Λ1 0
0 Λ2

]
. Suppose δ = mini |(Λ2)ii − λ̂| is the absolute separation of some λ̂ from Λ2, then

for any vector û we have

sin(θ) ≤ ∥(M − λ̂I) û∥2
δ

,

where θ is the canonical angle between the span of X1 and û.
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Lemma 21 Conditioned on F0,

max
m∈[n]

∥s(m)u(m) − u∗∥2 ≲ γ, (24)

max
m∈[n]

∥su− s(m)u(m)∥2 ≲ (γ ∧ ∥u∥∞), (25)

max
m∈[n]

∥s(m)u(m) − u∗∥∞ ≲ (∥u∥∞ + ∥u∗∥∞). (26)

Proof For any m ∈ [n], we apply a variant of the Davis–Kahan sin(θ) theorem (Yu et al., 2014,
Corollary 3) to get

∥s(m)u(m) − u∗∥2 ≤
23/2

∥∥W (m) −W ∗∥∥
2

∆∗ ≲
γ · nd−1µn
nd−1µn

= γ,

where the second inequality follows from Lemma 19 and Assumption 1, concluding the proof of
(24). Similarly, we also get

∥su− s(m)u(m)∥2 ≤ ∥su− u∗∥2 + ∥s(m)u(m) − u∗∥2 ≲
∥W −W ∗∥2

∆∗ + γ ≲ γ. (27)

Therefore, ⟨su, s(m)u(m)⟩ ≥ 0. Let θ denote the angle between su and s(m)u(m). Then

∥su− s(m)u(m)∥2 ≤
√

∥u∥22 + ∥u(m)∥22 − 2∥u∥2∥u(m)∥2 cos θ ≤
√

2− 2 cos2θ =
√
2 sin θ.

We then apply Proposition 20 with M =W (m), X1 = [u(m)] and (λ̂, û) = (λ, u):

∥su− s(m)u(m)∥2 ≤
√
2 sin θ ≤

√
2
∥∥(W (m) − λI)u

∥∥
2

|λ(m)
k+1 − λ| ∧ |λ− λ

(m)
k−1|

≤
√
2
∥∥(W (m) −W )u

∥∥
2

(λk+1 − λk) ∧ (λk − λk−1)− ∥W −W (m)∥2

≲

∥∥(W −W (m))u
∥∥
2

∆∗ − 2∥W −W ∗∥2 − ∥W −W (m)∥2
.

Using Assumption 1, the definition of F0, and Lemmas 16, 19, we can lower-bound the denominator
by

∆∗ − 2∥W −W ∗∥2 − ∥W −W (m)∥2 ≳ (1− γ)nd−1µn.

Since γ = o(1) by (23), we obtain

∥su− s(m)u(m)∥2 ≲
∥(W −W (m))u∥2

nd−1µn
.

Let v = (W −W (m))u. We have already seen that the m-th row of W −W (m) is the same as W ,
so that vm = λum. Therefore, we bound the m-th entry of v and the rest of its entries separately.
Formally,

|vm| = |[Wu]m| ≤ |λ||um| ≤ |λ| ∥u∥∞ ,
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|vi| = |[(W −W (m))u]i| ≤ ∥(W −W (m))i·∥1 ∥u∥∞ ≲Wim ∥u∥∞ , for i ̸= m,

where the last inequality follows from (22). Therefore,

∥v∥2 ≲ ∥u∥∞
√
λ2 +

∑
i ̸=m

W 2
im ≲ ∥u∥∞

√
|λ∗|2 + ∥W∥22→∞, (28)

where the last step follows from Lemma 18. Substituting the bound (28):

∥su− s(m)u(m)∥2 ≲
∥v∥2
nd−1µn

≲
∥u∥∞

√
|λ∗|2 + ∥W∥22→∞

nd−1µn
≲ ∥u∥∞ , (29)

where the last inequality follows from Lemma 19 and Assumption 1. Observe that (27) and (29)
together imply (25). Finally, to prove (26), we apply the triangle inequality again and use (29).

∥s(m)u(m) − u∗∥∞ ≤ ∥su− s(m)u(m)∥2 + ∥u∥∞ + ∥u∗∥∞ ≲ ∥u∥∞ + ∥u∗∥∞ ,

concluding the proof.

Lemma 22 With probability at least 1−O(n−3),

∥(W −W ∗)u∗∥∞ ≲ ∥u∗∥∞ nd−1µn and ∥Wu∗∥∞ ≲ ∥u∗∥∞ nd−1µn.

Proof To prove the first inequality, we apply Lemma 15. For each m ∈ [n], we have

|(W −W ∗)m·u
∗| ≤ φ

(
∥u∗∥2√
n ∥u∗∥∞

)
∥u∗∥∞ n

(
n− 2

d− 2

)
µn

with probability 1−O(n−4). Using the monotonicity of φ (Observation 2) and ∥u∗∥2 ≤
√
n ∥u∥∞,

we obtain
|(W −W ∗)m·u

∗| ≲ φ(1) ∥u∗∥∞ nd−1µn

with probability 1 − O(n−4). Note that φ(1) = O(1). Taking a union bound over all m ∈ [n], we
have ∥(W −W ∗)u∗∥∞ ≲ ∥u∗∥∞ nd−1µn, with probability at least 1−O(n−3).

To get the second statement, we apply the first statement to show that with probability 1 −
O(n−3),

∥Wu∗∥∞ ≤ ∥W ∗u∗∥∞ + ∥(W −W ∗)u∗∥∞ ≲ |λ∗| ∥u∗∥∞ + ∥u∗∥∞ nd−1µn ≲ ∥u∗∥∞ nd−1µn.

The last inequality in the above follows from Assumption 1.

Lemma 23 With probability at least 1−O(n−3),

max
m∈[n]

|Wm·(s
(m)u(m) − u∗)| ≲ (γ + φ(γ))(∥u∥∞ + ∥u∗∥∞)nd−1µn.
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Proof We denote (s(m)u(m) − u∗) by v(m) for notational convenience. Recall that P (F0) ≥
1−O(n−11) by Lemma 12. Conditioned on F0, for all m ∈ [n]

|Wm·v
(m)| ≤ |W ∗

m·v
(m)|+ |(W −W ∗)m·v

(m)| (by the triangle inequality)

≤ ∥W ∗∥2→∞ ∥v(m)∥2 + |(W −W ∗)m·v
(m)| (by the Cauchy–Schwarz inequality)

≲
√
n · nd−2µn · γ + |(W −W ∗)m·v

(m)| (by Observation 1 and (24))

=
nd−1µn γ√

n
+ |(W −W ∗)m·v

(m)|

≤ γ ∥u∗∥∞ nd−1µn + |(W −W ∗)m·v
(m)|. (30)

We now focus on bounding the second term. We know that v(m) is independent of the randomness
in the m-th row of W . Therefore, by the row concentration result (Lemma 15), for a fixed m ∈ [n]

|(W −W ∗)m·v
(m)| ≤ ∥v(m)∥∞φ

(
∥v(m)∥2√
n∥v(m)∥∞

)
n

(
n− 2

d− 2

)
µn, (31)

holds with probability at least 1 − O(n−4). Let F be the event that (31) holds simultaneously for
all m ∈ [n]. By a union bound, P (F ) ≥ 1− O(n−3). Conditioned on the event F , let us consider
two different cases.

Case 1: Suppose ∥v(m)∥2√
n∥v(m)∥∞

≤ γ. Under this case, we use the fact that φ(x) is non-decreasing
(Observation 2) in (31) to get:

|(W −W ∗)m·v
(m)| ≤ φ(γ)∥v(m)∥∞n

(
n− 2

d− 2

)
µn.

Case 2: Suppose ∥v(m)∥2√
n∥v(m)∥∞

> γ. In this case, multiplying and dividing (31) by ∥v(m)∥2√
n

,

|(W −W ∗)m·v
(m)| ≤ ∥v(m)∥2√

n

√
n∥v(m)∥∞
∥v(m)∥2

φ

(
∥v(m)∥2√
n∥v(m)∥∞

)
· n
(
n− 2

d− 2

)
µn

≤ φ(γ)

γ

∥v(m)∥2√
n

· n
(
n− 2

d− 2

)
µn,

where we have used the fact that φ(x)/x is non-increasing (Observation 2). Combining both cases,
for all m ∈ [n]:

|(W −W ∗)m·v
(m)| ≤ φ(γ) · n

(
n− 2

d− 2

)
µn

(
∥v(m)∥∞ ∨ ∥v(m)∥2

γ
√
n

)
.

Substituting bounds from (24) and (26) in the above, and then using the fact that ∥u∗∥∞ ≥ ∥u∗∥2 /
√
n =

1/
√
n, we obtain

|(W−W ∗)m·v
(m)| ≲ φ(γ)·nd−1µn

(
(∥u∥∞ + ∥u∗∥∞) ∨ γ

γ
√
n

)
≲ φ(γ) (∥u∥∞ + ∥u∗∥∞)nd−1µn.
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Finally, we substitute into (30):

max
m∈[n]

|Wm·v
(m)| ≲ γ ∥u∗∥∞ nd−1µn + φ(γ)(∥u∥∞ + ∥u∗∥∞)nd−1µn

≤ (γ + φ(γ))(∥u∥∞ + ∥u∗∥∞)nd−1µn,

concluding the proof.

We finally prove Theorem 7.
Proof [Proof of Theorem 7] Recall the definition of the event F0 and P (F0) ≥ 1−O(n−11) (Lemma
17). Conditioned on F0, we have |λ| ≍ |λ∗| by Lemma 18; we use this throughout the proof.

We first bound ∥u∥∞ in terms of ∥u∗∥∞ as we need our final bounds only in terms of the latter.
By the triangle inequality,

∥u∥∞ =

∥∥∥∥sWu

λ

∥∥∥∥
∞
≤
∥∥∥∥Wu∗

λ

∥∥∥∥
∞
+

∥∥∥∥W (su− u∗)

λ

∥∥∥∥
∞

≲
1

|λ∗|

(
∥Wu∗∥∞ + max

m∈[n]
|Wm·(su− u∗)|

)
≤ 1

|λ∗|

(
∥Wu∗∥∞ + max

m∈[n]
|Wm·(su− s(m)u(m))|+ max

m∈[n]
|Wm·(s

(m)u(m) − u∗)|
)

≤ 1

|λ∗|

(
∥Wu∗∥∞ + ∥W∥2→∞ max

m∈[n]
∥su− s(m)u(m)∥2 + max

m∈[n]
|Wm·(s

(m)u(m) − u∗)|
)
.

We substitute the derived bounds from Lemma 22 in the first term, Lemmas 19 and 21 in the
second term, and Lemma 23 in the third term. In particular, we obtain that with probability at least
1−O(n−3),

∥u∥∞ ≲
1

|λ∗|

(
∥u∗∥∞ nd−1µn + (γ · nd−1µn) ∥u∥∞ + (γ + φ(γ))(∥u∥∞ + ∥u∗∥∞)nd−1µn

)
≲
(
(1 + γ + φ(γ)) ∥u∗∥∞ + (γ + φ(γ) ∥u∥∞

)
. (using Assumption 1)

Using the fact that γ, φ(γ) = o(1) from (23), we have that for some constant c3 > 0,

∥u∥∞ ≤ c3 ∥u∗∥∞ + o(1) ∥u∥∞
(1− o(1)) ∥u∥∞ ≤ c3 ∥u∗∥∞

∥u∥∞ ≤ c3
1− o(1)

∥u∗∥∞ ≲ ∥u∗∥∞ . (32)

Similarly, conditioned on F0, we bound the quantity of interest. Using the triangle inequality,∥∥∥∥su− Wu∗

λ∗

∥∥∥∥
∞

=

∥∥∥∥sWu

λ
− Wu∗

λ
+
Wu∗

λ
− Wu∗

λ∗

∥∥∥∥
∞

≤
∣∣∣∣ 1λ − 1

λ∗

∣∣∣∣ ∥Wu∗∥∞ +
1

|λ|
∥W (su− u∗)∥∞ .

Recalling that |λ| ≍ |λ∗|,∥∥∥∥su− Wu∗

λ∗

∥∥∥∥
∞

≲
1

|λ∗|
(γ ∥Wu∗∥∞ + ∥W (su− u∗)∥∞)
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≲
1

|λ∗|

(
γ ∥Wu∗∥∞ + ∥W∥2→∞ max

m∈[n]
∥su− s(m)u(m)∥2 + max

m∈[n]
|Wm·(s

(m)u(m) − u∗)|
)
.

We again substitute the bounds from Lemma 22 in the first term, Lemma 19 and 21 in the second
term, and Lemma 23 in the third term. In particular, we obtain that with probability at least 1 −
O(n−3),∥∥∥∥su− Wu∗

λ∗

∥∥∥∥
∞

≲
1

|λ∗|

(
γ ∥u∗∥∞ nd−1µn + (γ · nd−1µn) ∥u∥∞ + (γ + φ(γ))(∥u∥∞ + ∥u∗∥∞)nd−1µn

)
≲
(
(γ + φ(γ)) ∥u∗∥∞ + (γ + φ(γ) ∥u∥∞

)
(using Assumption 1)

≲ (γ + φ(γ)) ∥u∗∥∞ (using ∥u∥∞ ≲ ∥u∗∥∞ as shown in (32))

≲
∥u∗∥∞
log logn

. (γ = O(φ(γ)) and using (23))

This is precisely the bound we need, concluding the proof.

Appendix D. Spectral norm concentration for similarity matrices

In order to prove Theorem 10, we require the following result.

Lemma 24 Let A be a random matrix with independent entries, where Aij ∈ [a, b] for two con-
stants a < b. Suppose E [|Aij |] ≤ q for all i, j, where c2 logn

n ≤ q ≤ 1− c3 for arbitrary constants
c2, c3 > 0. Then, there exists a constant c′ := c′(c2, c3, a, b) > 0 such that

E [∥A− E [A]∥2] ≤ c′
√
nq.

Proof We use ideas from (Dhara et al., 2022c, Lemma 4.5), who showed a similar result for zero-
diagonal, symmetric matrices with independent entries. We first construct a symmetric matrix B
using A to reduce it to the symmetric case. Let

B =

[
0 A
A⊤ 0

]
.

Fix a vector x ∈ Rn such that ∥x∥2 = 1, and consider the vector y ∈ R2n such that y =

[
0n
x

]
.

Observe that ∥y∥2 = 1. Moreover,

(B − E[B])y =

[
(A− E[A])x

0n

]
.

Therefore,
∥(B − E[B])y∥2 = ∥(A− E[A])x∥2 ,

so that
∥(A− E[A])x∥2 = ∥(B − E[B])y∥2 ≤ ∥B − E[B]∥2.

Since x was arbitrary, we have shown ∥A− E [A]∥2 ≤ ∥B − E [B]∥2, and therefore

E[∥A− E [A]∥2] ≤ E[∥B − E [B]∥2]. (33)
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Thus, it suffices to bound E[∥B − E [B]∥2]. Let B+ = max{B, 0}, where the maximum is taken
entrywise. Similarly, let B− = −min{B, 0}. Then we can write B = B+ − B−. By the triangle
inequality,

E [∥B − E[B]∥2] ≤ E
[
∥B+ − E[B+]∥2

]
+ E

[
∥B− − E[B−]∥2

]
. (34)

Observe that B+ and B− are nonnegative, zero-diagonal, symmetric matrices with independent
entries. Also, for all i, j,

max{E[B+
ij ],E[B

−
ij ]} ≤ E[|Bij |] ≤ maxE[|Aij |] ≤ q.

If b ≤ 0, then ∥B+ − E[B+]∥2 = 0. Otherwise it follows from (Hajek et al., 2016a, Theorem 5)
that there exists c+ > 0 such that

E
[
1

b
(∥B+ − E[B+]∥2)

]
≤ c+

√
nq

b
.

Similarly, if a ≥ 0, then ∥B− − E[B−]∥2 = 0. Otherwise, we again use (Hajek et al., 2016a,
Theorem 5) to conclude that there exists a constant c− > 0 such that

E
[
1

|a|
(∥B− − E[B−]∥2)

]
≤ c−

√
nq

|a|
.

Combining these with (33) and (34) we get

E[∥A− E [A]∥2] ≤ c′
√
nq,

where c′ = c+
√

max{b, 0}+ c−
√

|min{a, 0}|.

Proof [Proof of Theorem 10] The symbols ≲ and ≍ hide constants in d, c0 throughout the proof.
Our goal is to bound E [∥S(G)− E [S(G)]∥2]. Let G′ be an independent copy of G. Observe that
for a fixed matrix X , the function f(Y ) = ∥X − Y ∥2 is convex. By Jensen’s inequality,

E [∥S(G)− E[S(G)]∥2] = E
[
∥S(G)− E[S(G′)]∥2

]
≤ E

[
∥S(G)− S(G′)∥2

]
.

We can extend the definition of S so that S(G−G′) = S(G)−S(G′); i.e. G−G′ is a “hypergraph”
with edges labeled by {1, 0,−1}.

Let R be a symmetric tensor of order d and dimension n with independent Rademacher entries;
i.e. the entries {R(i1, i2, . . . , id) : i1 ≤ i2 ≤ · · · ≤ id} are mutually independent. Let ◦ denote the
edge-wise product. Since G−G′ has the same distribution as (G−G′) ◦R, we obtain

E [∥S(G)− E[S(G)]∥2] ≤ E
[
∥S(G−G′)∥2

]
= E

[
∥S((G−G′) ◦R)∥2

]
≤ 2E [∥S(G ◦R)∥2] ,

(35)
where the last inequality follows from the triangle inequality. Let pmax ≜ c0 log n/

(
n−1
d−1

)
for sim-

plicity. Consider the hypergraph G+ that is coupled to G as follows. The hypergraph G+ does
not contain any edge that appears in G. Each edge e that is not present in G is present in G+ with
probability pmax−pe

1−pe
(independently across edges). LettingG(1) ∼ HSBM(d, n, pmax, pmax), we see

that (G+G+)◦R has the same distribution as G(1) ◦R. Also, E [S(G+ ◦R) | G] = 0. Using these
observations along with Jensen’s inequality, we obtain

E [∥S(G ◦R)∥2] = E [∥S(G ◦R) + E [S(G+ ◦R) | G] ∥2] ≤ E [∥S(G ◦R) + S(G+ ◦R)∥2]
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= E [∥S((G+G+) ◦R)∥2] = E
[
∥S(G(1) ◦R)∥2

]
.

Substituting this into (35), we have

E [∥S(G)− E [S(G)]∥2] ≤ 2E
[
∥S(G(1) ◦R)∥2

]
. (36)

Note that, even though S(G(1) ◦ R) has identically distributed entries, they are still dependent;
we want a matrix with independent entries instead to apply Lemma 24. To achieve this, we use a
somewhat involved symmetrization argument. For simplicity, consider the case when d = 2 (which
reduces to the adjacency matrix), where we have independent entries up to the symmetry. In other
words, each independent edge random variable appears exactly twice in the matrix. In this situation,
(Hajek et al., 2016a, Theorem 5) uses the standard symmetrization technique by adding another in-
dependent copy of S(G(1) ◦R) and rearranging random variables to create independence. However,
for a general d, this is not sufficient. But observe that the random variable (label) associated with
any fixed edge e is added to exactly K := 2 ·

(
d
2

)
= d2 − d entries of the similarity matrix when we

apply the map S(·). Thus, we instead addK independent copies to create enough independence and
show how to rearrange the hyperedge random variables such that each matrix has fully independent
entries after the rearrangement.

More formally, let G(m) and R(m) be independent copies of G(1) and R respectively for m ∈
[K]. Note that E [S(G(m) ◦R(m))] is the zero matrix. Thus, adding the zero matrix, and then using
Jensen’s inequality we get

E [∥S(G(1) ◦R)∥2] = E

[∥∥∥∥∥S(G(1) ◦R(1)) +
K∑

m=2

E [S(G(m) ◦R(m))]

∥∥∥∥∥
2

]

≤ E

[∥∥∥∥∥
K∑

m=1

S(G(m) ◦R(m))

∥∥∥∥∥
2

]
. (37)

Observe that
∑K

m=1 S(G(m) ◦R(m)) is the sum of independent copies of random matrices with
dependent entries. The goal is to re-express this same quantity as the sum of dependent matrices
with fully independent entries. To this end, let us consider the following construction. Let L(e) be
a fixed-ordered list of locations to which the random variable associated with the edge e is added.
Formally, L(e) := (op

(1)
e , . . . , op

(K)
e ) is an ordered list of all ordered pairs of e; i.e. (i, j) : i, j ∈ e.

For e ∈ E and m, ℓ ∈ [K] let X(e,m,ℓ) be the n× n matrix which has only one non-zero entry:

X
(e,m,ℓ)
ij =

{
A

(m)
e ◦R(m)

e (i, j) = op
(ℓ)
e

0 otherwise,

where A(m)
e denotes the indicator random variable associated with the edge e in G(m). By construc-

tion,
K∑

m=1

S(G(m) ◦R(m)) =
K∑

m=1

∑
e∈E

K∑
ℓ=1

X(e,m,ℓ) (38)

We will now re-express this summation as the sum of dependent matrices with independent entries.

Let Y =
∑(n−2

d−2)
i=1 XiZi, where Xi ∼ Bern(pmax) and Zi ∼ Rad are independent. Let D be a diag-

onal matrix whose diagonal entries are i.i.d. copies of Y . Let us consider matrices C(1), . . . , C(K),
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where

C(1) =
∑
e∈E

K∑
ℓ=1

X(e,ℓ,ℓ) +D

C(k) =
∑
e∈E

K∑
ℓ=1

X(e,(ℓ+k−1)%K,ℓ) + (−1)k+1D

Here % represents the standard modulo operation, except K%K is K instead of 0. Intuitively, C(1)

is the matrix for which the K locations corresponding to a given edge “consult” K independent
copies of G. Observe that all the entries of C(1) are independent copies of Y . To ensure that we
add the random variable associated with an edge of any given copy of G at all K locations in the
similarity matrix, we iterate over the list in a cyclic manner when constructing C(2), . . . , C(K).
Note that D has the same distribution as −D. Therefore, from the symmetry all C(k)s have the
same distribution. Moreover,

K∑
k=1

C(k) =

K∑
k=1

∑
e∈E

K∑
ℓ=1

X(e,(ℓ+k−1)%K,ℓ) + (−1)k+1D

=
∑
e∈E

K∑
ℓ=1

K∑
k=1

X(e,(ℓ+k−1)%K,ℓ) + (−1)k+1D

=
∑
e∈E

K∑
ℓ=1

K∑
m=1

X(e,m,ℓ)

=

K∑
m=1

S(G(m) ◦R(m)), (39)

where the last step follows from (38). Therefore, combining (36), (37), and (39)

E [∥W −W ∗∥2] ≤ 2E

[∥∥∥∥∥
K∑
k=1

C(k)

∥∥∥∥∥
2

]
≤ 2K E [∥C∥2], (40)

where C has the same distribution as C(1). Each entry of C is an independent copy of Y . Let F be
the event that all the entries of C are in the range [−4d, 4d]. By a union bound,

P (F c) ≤ n2 · P (|Y | ≥ 4d) ≤ n2 · P

(n−2
d−2)∑
i=1

Xi ≥ 4d

 .

Since
∑(n−2

d−2)
i=1 Xi ∼ Bin

((
n−2
d−2

)
, pmax

)
, by (Mitzenmacher and Upfal, 2017, Theorem 4.4, Equa-

tion 4.1)

P (F c) ≤ n2 · P

(
Bin

((
n− 2

d− 2

)
,
c0 log n(

n−1
d−1

) ) ≥ 4d

)
≤ n2

e4d

Θ(n/ log n)4d
= O

(
1

n4d−3

)
. (41)
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Therefore,

E [∥C∥2] = P (F )E [∥C∥2 | F ] + P (F c)E [∥C∥2 | F
c]

≤ E [∥C∥2 | F ] +O

(
1

n4d−3

)
E[∥C∥F | F c]

≤ E [∥C∥2 | F ] +O

(
1

n4d−3

)
n

(
n− 2

d− 2

)
= E [∥C∥2 | F ] +O

(
n3−4d+1+d−2

)
≤ E [∥C∥2 | F ] + o(1), (42)

where the second inequality uses the fact that each entry of C is at most
(
n−2
d−2

)
. Thus, it is only

left to show E [∥C∥2 | F ] = O(
√
log n). Note that the entries of C are independent even after

conditioning on F . Moreover, the entries are bounded in [−4d, 4d]. Thus

E [|Cij | | F ] =
4d∑
k=1

k · P (|Cij | = k | F ) ≤
4d∑
k=1

k · P (F ∩ |Cij | = k)

P (F )
=

4d∑
k=1

k · P (|Cij | = k)

1− o(1)

≲
4d∑
k=1

k · P (|Cij | = k) ≤ E [|Cij |] ≤
(
n− 2

d− 2

)
pmax =

(
n−2
d−2

)
c0 log n(

n−1
d−1

) ≲
log n

n
.

Therefore, by Lemma 24 and the fact that E [C | F ] is the zero matrix, we obtain

E [∥C∥2 | F ] = E[∥C − E [C | F ]∥2 | F ] ≤ c′
√
n
log n

n
≤ c′

√
log n.

Substituting this back in (40) and using (42),

E [∥W −W ∗∥2] ≤ 2K E[∥C∥2] ≤ 2K E[∥C∥2 | F ] + o(1) ≤ 2Kc′
√
log n+ o(1) ≤ c

√
log n,

for some c that depends on d and c0, concluding the proof.
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