
Proceedings of Machine Learning Research vol 195:1–28, 2023 36th Annual Conference on Learning Theory

Online Nonconvex Optimization with Limited
Instantaneous Oracle Feedback

Ziwei Guan GUAN.283@BUCKEYEMAIL.OSU.EDU
2015 Neil Ave, Columbus, Ohio, USA

Yi Zhou YI.ZHOU@UTAH.EDU
50 Central Campus Dr #2110, Salt Lake City, Utah, USA

Yingbin Liang LIANG.889@OSU.EDU

2015 Neil Ave, Columbus, Ohio, USA

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We investigate online nonconvex optimization from a local regret minimization perspective. Pre-
vious studies along this line implicitly required the access to sufficient gradient oracles at each
time instance in order to design double-loop algorithms. In this work, we focus on more challeng-
ing but practical settings where only limited number of oracles are available in online nonconvex
optimization, including window-smoothed single gradient oracle (Window-SGO), single function
value oracle (Window-SVO) and multiple function value oracles (Window-MVO). Specifically, in
the Window-SGO setting which allows only single-loop algorithm design, we derive a local regret
lower bound, which indicates that single-loop algorithms are provably worse than double-loop al-
gorithms. Further, the simple classical OGD algorithm achieves the window-unconditioned lower
bound. Moreover, in the Window-SVO setting, we propose a novel single-loop online algorithm
named SkipOGD, and show that it achieves a near-optimal local regret that matches the Window-
SGO regret lower bound up to a factor of the dimension d due to the function value feedback. Lastly,
in the Window-MVO setting, we propose a new double-loop online algorithm named LoopOGD
and show that it achieves a smooth trade-off between regret minimization and sample complexity
over the number of oracle calls K per time instance. In particular, with K = 1 and wd, LoopOGD
respectively achieves our regret lower bound with Window-SGO (up to the factor d due to function
value feedback) and the existing regret lower bound with multiple gradient oracle feedback.
Keywords: Online nonconvex optimization; limited instantaneous oracle; window-smoothed func-
tion; local regret.

1. Introduction

As a popular and powerful machine learning framework, online optimization models the learning
process in a dynamic environment and has been extensively studied in the literature (Hazan et al.,
2016; Orabona, 2019). Specifically, the learning objective function ft : Rd → R in online opti-
mization varies over time t. At each time t, the agent has access to the historical information of
f1, . . . , ft−1, and is required to submit a control variable xt to the environment. Then, certain feed-
backs concerning ft (such as ft(xt) or∇ft(xt)) are revealed to the agent after the decision is made.
The goal of the agent is to minimize the gap between the cumulative function value at the decisions
and minimized with hindsight.

Most previous studies of online optimization have focused on the convex setting, where the
learning objectives are convex functions. Studies on online nonconvex optimization so far have
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been very limited. Among these studies, most work such as (Krichene et al., 2015; Agarwal et al.,
2019; Lesage-Landry et al., 2020; Héliou et al., 2020) studied the notion of the global regret with an
assumption that the access to global minimum points of nonconvex objective functions is available,
which is typically not feasible in practice. More recently, several studies (Hazan et al., 2017; Aydore
et al., 2019; Hallak et al., 2021) focused on a more feasible notion of the local regret, defined
as the cumulative gradient norm of window-smoothed objective functions, and studied the case
where only gradient oracles of nonconvex objective functions are available. Those studies further
designed algorithms and showed that the corresponding local regret decreases sublinearly as long as
the window size of objective functions is chosen properly. The success of these algorithms crucially
rely on a double-loop design, where the inner loop can obtain an accurate stationary point of the
window-smoothed objective functions. This requires that at each time, sufficiently many gradient
oracles are available in order to iteratively update the decision variables to a target accuracy. In
many practical applications (Roughgarden and Schrijvers, 2017; Hao et al., 2017), there are hard
constraints on the number of feedback oracles accessible at each time (for example, only a single
oracle feedback is available), and clearly the existing algorithms are not applicable.

In this paper, we investigate the local regret of online nonconvex optimization with the hard
constraint on the number of oracles accessible at each time, and we focus on the following three
main settings. Below we discuss the main challenges in each setting and describe our contributions.

(a) Window-smoothed single gradient oracle (Window-SGO) feedback, where only one in-
stantaneous gradient oracle, with respect to the window-smoothed objective functions, is available
at a time, and clearly no inner loop is allowed to update the variable to a target accuracy. This is
not an issue for online convex optimization, where the classical single-loop online gradient descent
(OGD) achieves the optimal regret. But for online nonconvex optimization, the existing literature
has been exclusively focused on double-loop design, and it is unclear whether single-loop algo-
rithms are provably worse than double-loop algorithms. To address this problem, we develop a
lower bound on the local regret that all such algorithms must satisfy, which indicates that it is
impossible for single-loop algorithms to achieve the same regret of O

(
T
w2

)
that double-loop algo-

rithms can achieve for all window size w, where T denotes the time horizon. Further, the simple
OGD algorithm achieves the regret of Ω

(
T
w

)
which is the best possible regret (that holds uniformly

for all window sizes) for single-loop algorithms.
(b) Window-smoothed single function value oracle (Window-SVO) feedback, where only

one oracle of the window-smoothed functions is available at a time, and no inner loop is allowed
to update the variable to a target accuracy. In this setting, we show that directly applying the best-
known one-point residual (OR) gradient estimator to the online case does not yield an optimal
regret (that matches the lower bound for single-loop algorithms). Our main contribution here lies
in proposing a novel algorithm (called SkipOGD), which queries the function values alternatively
at perturbed and un-perturbed point over adjacent times so that the oracle at un-perturbed point can
serve as a better residual to improve the gradient estimation accuracy. As a result, such a scheme
necessarily leads to skipped updates of variables (at un-perturbed times). Interestingly, we show that
the regret bound of SkipOGD matches the first-order lower bound in the dependency of window size
w and time T with the additional scaling factor dimension d due to the function value feedback. This
indicates that the benefit gained due to un-perturbed points significantly outweigh the potential loss
due to skipped updates.

(c) Window-smoothed multiple function value oracles (Window-MVO) feedback, where
multiple oracles of the window-smoothed functions are available at a time, but subject to the hard
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constraint of 2K (K ≥ 1) oracles per time. For such a setting, we design a double-loop algorithm
named LoopOGD, where the inner loop takes K updates and each update uses a two-point gra-
dient estimator. We show that LoopOGD achieves a full spectrum of regret performance between
the settings of single and multiple oracle calls. In particular, with K = 1 and wd, LoopOGD re-
spectively achieves our window-unconditioned regret lower bound of O

(
T
w

)
for Window-SGO (up

to the factor d due to function value feedback) and the existing regret lower bound of O
(

T
w2

)
for

window-smoothed multiple gradient oracle (Window-MGO).

2. Related Works

Online convex optimization: Online convex optimization has been extensively studied, both in
terms of static regret analysis, e.g., Zinkevich (2003); Hazan and Kale (2011); Rakhlin et al. (2011);
Shamir and Zhang (2013), and non-stationary regret, e.g., Besbes et al. (2015); Jadbabaie et al.
(2015); Zhang et al. (2018); Zhao et al. (2020, 2021). Interested readers can refer to (Hazan et al.,
2016; Orabona, 2019) and the references therein for a more comprehensive list of studies on online
convex optimization.

As first-order information is typically hard to obtain in many applications, online convex op-
timization with bandit feedback has attracted much attention in the past. Flaxman et al. (2005);
Saha and Tewari (2011) studied such a setting with a one-point gradient estimator. Later, Agarwal
et al. (2010) adopted a better two-point estimator, which significantly reduced gradient estimation
variance. Those one-point and two-point gradient estimators were further applied to other online
settings with functional constraints (Cao and Liu, 2018, 2019; Kim and Lee, 2023) and distributed
agents (Yi et al., 2020; Wang et al., 2022).

Online nonconvex optimization: One line of research on online nonconvex optimization stud-
ied the metric of the global regret. Specifically, Krichene et al. (2015) designed an algorithm by
generalizing the Hedge algorithm to the continuous and high-dimensional domain, which was later
improved by Yang et al. (2018) with a novel weighting strategy. Another set of studies assumed
that the offline global optimizers are available. Agarwal et al. (2019) provided an upper bound on
the global regret for the classical algorithm follow-the-perturbed-leader (FTPL), which was then
further improved by (Suggala and Netrapalli, 2020) via a refined analysis. Lesage-Landry et al.
(2020) investigated a slow-changing online nonconvex optimization problem and showed that the
Newton’s method can have a good track of the global minimum when given access to an offline
nonconvex optimization oracle. Besides, Gao et al. (2018) studied an online nonconvex problem
where functions satisfy weak pseudo-convex conditions and analyzed an online normalized gradi-
ent descent algorithm. Online nonconvex optimization with bandit feedback has also been studied
from the global regret aspect. Specifically, (Héliou et al., 2020) provided upper bounds on both the
global static and dynamic regret for a dual averaging algorithm with the access of function value
feedback. Those bounds were further improved in (Héliou et al., 2021). Gao et al. (2018) also
extended the aforementioned study to the zeroth-order type of algorithm.

Recently, several studies focused on the case where only gradient oracles of window-smoothed
nonconvex objective functions are available and provided bounds on the local regret. Specifically,
Hazan et al. (2017) provided a lower bound of Ω

(
T
w2

)
on the local regret, and proposed a double-

loop scheme that achieves such a lower bound. Later, Aydore et al. (2019); Hallak et al. (2021)
extended the results to dynamic environment applications and the nonsmooth settings, respectively.
All of the aforementioned studies require the access to sufficient gradient oracles at each time in
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order to design double-loop algorithms, which is often not satisfied. In contrast, we focus on charac-
terizing local regret online nonconvex optimization in a more practical setting with a hard threshold
on the number of oracle queries each time. Further, along this line of research on the local regret,
there has not been any study on the setting with bandit feedback, which is also the focus of our
paper.

Gradient estimation methods with bandit feedback: Various gradient estimation methods via
function values (i.e., bandit feedbacks) have been developed in the past. Existing such approaches
can be mainly divided into one-point methods (i.e., gradient estimation via one function value ora-
cle) (Flaxman et al., 2005; Dekel et al., 2015; Gasnikov et al., 2017), and two-point methods (i.e.,
gradient estimation via two function values) (Agarwal et al., 2010; Nesterov and Spokoiny, 2017;
Shamir, 2017). Compared to two-point methods, one-point methods yield much larger variance,
and consequently zeroth-order algorithms designed based on one-point methods have much slower
convergence. Recently, Zhang et al. (2022) proposed a variance-reduction technique for one-point
methods by subtracting the feedback from the previous iteration. Such a method, although yields
better convergence rate, still cannot match the performance of two-point gradient estimators. In this
paper, we proposed a novel mechanism to incorporate one-point gradient estimators in online setting
that features an alternating update scheme, so that the online algorithm matches the performance of
a two-point estimator based algorithm. We believe that such a design can inspire improved methods
in the future for both online optimization and offline zeroth-order optimization.

3. Problem Formulation

In this paper, we study the online nonconvex optimization problem. Specifically, consider a se-
quence of functions f1, f2, . . . , ft, . . ., which are assumed to be continuously differentiable. At
each time t, a player is required to submit a decision variable xt to the environment based on some
information such as the gradients or function values of the previous functions f1, . . . , ft−1. And
then the oracle information of ft is revealed to the player. In online convex optimization, the perfor-
mance of the player is typically evaluated by the cumulative function value of the decision variables
over time with comparison to that of the minimal point obtained with the full information of all func-
tions. However, for a nonconvex functions, finding its global minimum is typically NP-hard, and
hence such a minimal point may not be reasonable to serve as a baseline comparator. Instead, the
following local regret defined with respect to the stationary points of nonconvex functions is widely
adopted as a good performance metric for online nonconvex optimization (Hazan et al., 2017).

Definition 1 The (dynamic) local regret of online nonconvex optimization is defined as:

Rw(T ) :=

T∑
t=1

∥∇Ft,w(xt)∥2, (1)

where Ft,w(x) is the window-smoothed function with window size w ∈ {1, . . . , T} defined by

Ft,w(x) :=
1

w

t∑
i=t−w+1

fi(x). (2)

Note that in eq. (2), the function fi(x) is defined to be zero for all i ≤ 0.
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The above definition of the local regret in eq. (1) implicitly takes the comparator to be the zero
gradient norm each time, and therefore it can also be interpreted as dynamic regret with the envi-
ronment changing at each time. Further, the window-smoothed function in eq. (2) is necessarily
adopted in the definition of the local regret, because it has been shown in Theorem 2.7 of (Hazan
et al., 2017) that there exists a sequence of functions for which without window-smoothing (i.e.,
setting w = 1 in eq. (2)) sublinear regret is impossible to achieve.

Previous studies of the local regret on online nonconvex optimization required the access to
sufficient gradient oracles at each time instance in order to design double-loop algorithms, so that
the inner loop can iteratively update the decision variables to a target accuracy. Although the overall
number of oracle queries is upper-bounded, there is no instantaneous limit on the oracle access. In
this work, we focus on more challenging but practical settings where there are hard constraints on
the number of oracles available at each time. In particular, we will study the following three settings

• Window-smoothed single gradient oracle (Window-SGO) feedback: At each time t, only
the gradient of Ft,w at a single variable is provided. Hence, an inner loop that updates the
variable to a target accuracy is not allowed.

• Window-smoothed single function value oracle (Window-SVO) feedback: At each time
t, only one function value of Ft,w at a single variable is provided. Hence, an inner loop that
updates the variable to a target accuracy is not allowed.

• Window-smoothed multiple function value oracle (Window-MVO) feedback: At each
time t, the function values of Ft,w at 2K variables are provided. Here, K ∈ N is a prescribed
hard constraint threshold. Without loss of generality, we consider the number of oracles to be
even for the presentation convenience.

4. Online Nonconvex Optimization with Window-SGO Feedback

To our best knowledge, all existing algorithms as in (Hazan et al., 2017; Aydore et al., 2019; Hallak
et al., 2021) developed for achieving a good local regret in online nonconvex optimization require
querying sufficiently many gradient oracles of ∇Ft,w(x) at each time t. However, many online
learning systems may provide only a single gradient oracle (Window-SGO) feedback of Ft,w(x) at
each time t. It is thus interesting to investigate fundamentally what is the limit on the regret (i.e., a
lower bound on the regret) for such a Window-SGO system, and what is the regret that an algorithm
with Window-SGO feedback can achieve.

In this section, we first provide a regret lower bound for the Window-SGO setting that all algo-
rithms satisfying the linear-span assumption will satisfy. Then, we show that the single-loop online
gradient descent (OGD) algorithm indeed matches such a lower bound up to O(1).

We first specify the algorithm class that we consider.

Definition 2 (Linear-span (Nesterov, 2003)) The online learning algorithm A generates a se-
quence of {xt}∞t=1 that satisfies

xt+1 ∈

{
x1 +

t∑
i=1

aiGi(xi) : ai ∈ R, i = 1, . . . , t

}
,

where Gi(·) is either∇Fi,w(·) or its stochastic estimation.
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The algorithm class defined above takes only Window-SGO feedback and includes various classes
of first-order online methods such as online gradient descent, online accelerated gradient descent,
online gradient descent with momentum, etc.

We next make the following standard assumptions on the objective functions.

Assumption 1 For every t = 1, 2, . . ., the objective function ft is L0-Lipschitz continuous and
L1-smooth on Rd. Namely, for any x, y ∈ Rd, we have

|ft(x)− ft(y)| ≤ L0∥x− y∥,
∥∇ft(x)−∇ft(y)∥ ≤ L1∥x− y∥.

Furthermore, ft(x) is bounded, i.e., for all x ∈ Rd, we have |ft(x)| ≤M .

Assumption 2 For every t = 1, 2, . . ., the stochastic estimations Gt(x) of ∇Ft,w(x) are such that
for all x ∈ Rd,

E [Gt(x)] = ∇Ft,w(x), E

[
∥Gt(x)−∇Ft,w(x)∥2

]
≤ σ2.

Assumption 1 poses the smoothness and boundedness conditions on the functions ft’s, which are
standard and have been widely adopted for online learning (Agarwal et al., 2010; Flaxman et al.,
2005; Hallak et al., 2021; Hazan et al., 2017). Assumption 2 requires the stochastic gradient to
be unbiased and possess a bounded variance σ2. Any result assuming Assumption 2 can naturally
specialize to the exact gradient feedback case (i.e., Gt(x) = ∇Ft,w(x)) by setting σ = 0 and
removing the expectation concerning the randomness of Gt.

The following theorem provides a lower bound on the regret that all algorithms with Window-
SGO feedback defined in Definition 2 must satisfy.

Theorem 1 Suppose that the algorithm A satisfies Definition 2. Also suppose the window-size
satisfies w ≤ O (Tα) with 0 ≤ α ≤ 1, and let the constant γ ∈ ( 1α ,∞). Then, there exist {ft}∞t=1

and {Gt}∞t=1 satisfying Assumptions 1 and 2, respectively, for which

E [Rw(T )] ≥ Ω

(
T

wγ

)
+Ω

(
σT

w
γ
2

)
.

Discussion. To elaborate, consider the exact gradient feedback case (i.e., σ = 0). It is interesting
to observe that if 1/2 ≤ α ≤ 1, then Theorem 1 implies that Rw(T ) ≥ Ω

(
T
wγ

)
holds for any

γ > 2. This means that for any such window sizes, the regret of O
(

T
w2

)
is impossible to achieve

by Window-SGO algorithms with exact gradient. For the stochastic gradient feedback case (i.e.,
σ > 0), such a window further expands to 1/4 ≤ α ≤ 1, since E [Rw(T )] ≥ Ω

(
σT

w
γ
2

)
holds for

any γ > 4. However, it has been shown that algorithms with sufficiently many gradient oracles
(Hazan et al., 2017; Hallak et al., 2021) can achieve the regret ofO

(
T
w2

)
for any window size. Such

a comparison indicates that online nonconvex optimization with Window-SGO feedback is provably
more challenging (i.e., has a provably higher local regret) than that with window-smoothed multiple
gradient oracle (Window-MGO) feedback.

Further, the window size w is often required to take the values of Θ(T ) in practice, for example,
utilizing the regret bound to achieve the state-of-the-art computational complexity in nonconvex
offline optimization (Hazan et al., 2017; Hallak et al., 2021). In such a case (i.e., w = O(T )),
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Algorithm 1 Online Gradient Descent (OGD)
Input: Initial point x1, stepsizes η
for t = 1, . . . , T do

xt+1 = xt − ηGt(xt)
end for

the lower bound with Window-MGO feedback is Ω( 1
T ), which is attained by the adaptive Window-

MGO algorithm proposed by Hazan et al. (2017). As a comparison, Theorem 1 shows that al-
gorithms with Window-SGO have a much worse regret lower bound of Ω(1) with exact gradient
feedback and of Ω(

√
T ) with stochastic gradient feedback. The following corollary captures the

worst-case lower bound that holds uniformly for all choices of window size, which we call as the
window-unconditioned lower bound.

Corollary 1 Suppose the window-size is chosen arbitrarily from 1 to T and the sequences of func-
tions {ft}∞t=1 satisfy Assumption 1. Consider an algorithm A that satisfies Definition 2.

(i). For Window-SGO with exact gradient feedback, there exist objective functions {ft}∞t=1, for
which

Rw(T ) ≥ Ω

(
T

w

)
.

(ii). For Window-SGO with stochastic gradient feedback, there exist objective functions {ft}∞t=1

and stochastic gradients {Gt}∞t=1 satisfying Assumption 2, for which

E [Rw(T )] ≥ Ω

(
σT√
w

)
.

Corollary 1 further illustrates the hardness of the Window-SGO setting. We next show that
as a natural Window-SGO algorithm satisfying Definition 2, the online gradient descent (OGD)
algorithm achieves a sublinear regret, which matches the window-unconditioned lower bound. The
OGD algorithm with window size w is provided in Algorithm 1, where at each time t, the next
variable xt+1 is updated based on a single Window-SGO feedback.

The following theorem characterizes the regret of OGD for online nonconvex optimization.

Theorem 2 Consider Algorithm 1 with η ≤ 1
2L1

. Suppose Assumptions 1 and 2 hold. Then the
regret satisfies:

E [Rw(T )] ≤ O
(

T

wη

)
+O

(
ησ2T

)
. (3)

The regret upper bound in Theorem 2 consists of two terms: the convergence error of xt to the sta-
tionary points of Ft,w(x) captured byO

(
T
wη

)
, and the variance of the stochastic gradients captured

by O
(
ησ2T

)
. By choosing the stepsize η properly in Theorem 2, we obtain the best regret upper

bounds for OGD in the Window-SGO setting with exact and stochastic gradient oracles, respec-
tively.

Corollary 2 Consider the same setting as Theorem 2.

7



GUAN ZHOU LIANG

(i). When given access to exact gradients, i.e., σ = 0, by taking η = 1
2L1

, the regret of
Algorithm 1 satisfies

Rw(T ) ≤ O
(
T

w

)
.

(ii). When given access to stochastic gradients, i.e., σ > 0, by taking η = min
{

1
2L1

, 1
σ
√
w

}
,

the regret of Algorithm 1 satisfies

E [Rw(T )] ≤ O
(
σT√
w

)
.

Clearly, the above regret upper bound matches the lower bound in Corollary 1, which indicates
that OGD is optimal for online nonconvex optimization with Window-SGO feedback.

5. Online Nonconvex Optimization with Window-SVO Feedback

In this section, we study the online nonconvex optimization problem with the player having only
a single function value oracle (Window-SVO) feedback at each time instance. Such a Window-
SVO scenario is much more challenging than Window-SGO, because with only a single function
value, the gradient of the function cannot be estimated accurately. Although there are single-point
gradient estimators available in the existing research of offline optimization problems (Flaxman
et al., 2005; Dekel et al., 2015; Gasnikov et al., 2017; Zhang et al., 2022), applying these estimators
straightforwardly cannot yield the desired regret for online nonconvex optimization as we elaborate
in Section 5.1. Hence, we are motivated to develop a novel approach for Window-SVO feedback
and establish its regret performance in online nonconvex optimization.

5.1. Straightforward Method based on Offline Optimization with Window-SVO Feedback

In the existing literature of offline optimization, two main gradient estimators with Window-SVO
(i.e., one-point gradient estimators) have been proposed. In this section, we explain that straightfor-
ward applications of these estimators to online optimization do not yield desirable regret bounds.

First, the following one-point gradient estimator (Flaxman et al., 2005) was commonly used in
offline gradient-free algorithms and in online convex optimization (Agarwal et al., 2010):

gt :=
d

δ
f(xt + δut)ut, (4)

where δ > 0 is a perturbation hyperparameter and ut is sampled from the unit surface uniformly
at random. By applying such an estimator to replace the window gradient in Algorithm 1 of the
single-point OGD algorithm, we can show that the resulting algorithm achieves a regret bound of
O
(

dT
w1/3

)
(see Appendix B for the detailed proof). Such a bound has a clear gap in terms of the

order dependency on w compared to the lower bound for the Window-SGO setting. This is mainly
because the gradient estimator in eq. (4) has a large bias.

More recently, the following one-point gradient estimator was proposed in (Zhang et al., 2022)
by incorporating the residual feedback (called OR), which is given below.

gt :=
d

δ
(f(xt + δut)− f(xt−1 + δut−1))ut,
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which mimics the two-point gradient estimator by further subtracting the function value at the per-
turbation of the previous point in order to reduce the estimation bias. Applying the above estimator
to online nonconvex optimization yields the following window-smoothed gradient estimator:

∇̄Ft,w(xt) =
d

δ
(Ft,w(xt + δut)− Ft−1,w(xt−1 + δut−1))ut, (5)

which can be shown to have the following variance bound

E

[∥∥∇̄Ft,w(xt)
∥∥2] ≤ 3d2η2L2

0

δ2
E

[∥∥∇̄Ft−1,w(xt−1)
∥∥2]+ 12M2d2

w2δ2
+ 12d2L2

0. (6)

To control the iterative upper bound of the variance in eq. (6), we need to set η = O( δd). Otherwise
the bound explodes exponentially fast. Such a requirement of η slows down the convergence speed
of xt to a stationary point, since the increment in each iteration satisfies ∥xt+1 − xt∥ ≤ O(η).
Indeed, by setting η = 1

3L0d
√
w

and δ = 1√
w

, we can obtain the following optimized regret bound
by leveraging the convergence of the gradient descent update of xt and the variance bound in eq. (6)
(see Appendix C for the detailed proof).

E [Rw(T )] ≤ O
(

dT√
w

)
. (7)

The above regret bound improves the regret bound of O
(

dT
w1/3

)
for the algorithm based on the

one-point estimator in eq. (4). Intuitively, this is because by iteratively applying eq. (6), the variance
of ∇̄Ft,w(xt) can be shown to be bounded by an improved dependency of O(d2).

However, there is still a performance gap in terms of the dependency on w compared to the
regret lower bound of Window-SGO with exact gradient in Corollary 1, which indicates that the
best upper bound can scale with O( 1

w ). Hence, it is interesting to explore if online nonconvex
optimization with Window-SVO feedback can match the regret lower bound with exact gradient in
terms of the dependency on w.

5.2. A Novel Window-SVO Scheme with Improved Regret

In this subsection, we propose a novel online design that improves the method discussed in the
previous subsection based on the straightforward use of the OR estimator in eq. (5). The main
drawback there is that both function values in the gradient estimator in eq. (5) are evaluated at
perturbed points, which causes a large variance. To address this issue, we propose the following
new one-point residual gradient estimator.

∇̂Ft,w(xt) :=
d

δ
(Ft,w(xt + δut)− Ft−1,w(xt))ut, (8)

where we subtract the previous oracle at the unperturbed current point xt. As we will show in
Lemma 1 that such an estimator indeed has a much smaller variance. On the other hand, since such
a gradient estimator evaluates Ft,w and Ft−1,w respectively at different points xt + δut and xt, we
need two iterations to generate one gradient estimator and hence one gradient descent update. This
leads to an algorithm design with skipped updates as shown in Algorithm 2 (named SkipOGD).
Specifically, we query the function value of xt in the odd iterations and that of xt + δut in the
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Algorithm 2 OGD with Skipped One-point Residual Estimation (SkipOGD)
Input: Initial point x1 ∈ Rd, stepsizes η, estimation radius δ
for t = 1, . . . , T − 1 do

if t = 2j + 1 then
Observe Ft,w(xt)
xt+1 = xt

else
Drawn ut uniformly from Sd−1 independently
Observe Ft,w(xt + δut)
Estimate gradient based on Equation (8)
xt+1 = xt − η∇̂Ft,w(xt)

end if
end for

even iterations to construct the gradient estimation in eq. (8). Consequently, such an algorithm
design skips one variable update for every two iterations. It turns out for those odd time instances,
although their variable updates are skipped, the sliding window functions still track the desirable
variable good enough such that the overall regret performance of SkipOGD is better than the original
algorithm that takes one update in every iteration using the OR estimator in eq. (5). Essentially, this
implies that the variance reduction due to skipped updates outweighs the all-time update scheme
with the OR estimator, leading to the match of the regret lower bound in the dependency on w as
we show in Corollary 3.

The following lemma captures the advantage of the gradient variance of our estimator in eq. (8)
over the OR estimator in eq. (5).

Lemma 1 Suppose Assumption 1 holds. For every even t, we have

E

[∥∥∥∇̂Ft,w(xt)
∥∥∥2∣∣∣∣Ft

]
≤ 3d ∥∇Ft,w(xt)∥2 +

12M2d2

w2δ2
+ L2

1d
2δ2, (9)

where Ft is the filtration defined as Ft := σ (u2, u4, . . . , ut−2).

Comparing the above variance bound with that of the OR estimation in (6), the variance of our
estimator no longer depends on the previous updates and therefore does not pose any restriction
on the stepsize η. Thus, such a new variance bound allows a better flexibility of choosing a larger
stepsize, and can hence lead to faster convergence intuitively. The next theorem formally establishes
an improved regret bound of our proposed SkipOGD.

Theorem 3 Under Assumption 1, Algorithm 2 with η = 1
3L1d

satisfies the following regret bound.

E [Rw(T )] ≤ O
(
dT

w

)
+O

(
dT

w2δ2

)
+O(dδ2T ).

The above regret bound captures three different algorithmic statistics: (a) the term O(dTw ) captures
the convergence error of xt to the stationary points of Ft−1,w(x); (b) the termO(dδ2T ) captures the
gradient estimation bias; and (c) the term O

(
dT

w2δ2

)
captures the variance of gradient estimation.

10
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We note that the first and third terms in the previous variance bound (9) are absorbed into the
convergence error and estimation bias, respectively, as they take the same order. In particular, the
proof of the above regret bound critically leverages the variance bound in Lemma 1 and incorporates
it into the convergence analysis for nonconvex optimization.

Choosing proper hyperparameters in the above theorem, we further obtain the following corol-
lary that indicates that the regret of our new algorithm SkipOGD matches the regret lower bound
with exact gradient oracles in (i) of Corollary 1 on the dependency of w and T . The gap of a fac-
tor of O(d) is due to the bandit feedback which is somewhat unavoidable even for online convex
optimization.

Corollary 3 Let η = 1
3L1d

and δ = 1√
w

. Theorem 3 implies that Algorithm 2 has the regret bound

E [Rw(T )] ≤ O
(
dT

w

)
.

6. Online Nonconvex Optimization with Window-MVO Feedback

In this section, we study online nonconvex optimization under the setting where up to 2K (K ≥ 1)
function value oracles can be queried at each time t. In such a setting with window-smoothed
multiple function value oracle (Window-MVO) queries, the regret can be improved in two aspects:
(a) better gradient estimation based on two-point estimators; and (b) an inner-loop update of the
variable to a better tracking of a stationary point of Ft,w(x).

Regarding the first aspect, our design of Algorithm 3 adopts the following standard two-point
gradient estimator:

∇̃Ft,w(x) =
d

δ
(Ft,w(x+ δu)− Ft,w(x))u, (10)

where u is drawn uniformly from Sd−1. The following lemma captures the variance bound of the
two-point gradient estimator.

Lemma 2 Suppose Assumption 1 hold. For every even t, we have

E

[∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2∣∣∣∣Fk

t

]
≤ 2d

∥∥∥∇Ft,w(y
k
t )
∥∥∥2 + L2

1d
2δ2

2
, (11)

where Fk
t is the filtration defined as Fk

t := σ
(
u1t , u

2
t , . . . , u

k−2
t , uk−1

t

)
.

Compared with Lemma 1 for the one-point gradient estimator ∇̂Ft,w(xt), the variance of ∇̃Ft,w(y
k
t )

in Lemma 2 not only has smaller constants, but also is exempted from having the 12M2d2

w2δ2
term

caused by the difference between adjacent Ft,w(x).
Regarding the second aspect, we adopt a double-loop structure in Algorithm 3 (and hence our al-

gorithm is called LoopOGD), where the inner loop takes K updates due to the hard oracle constraint.
Such an algorithm is different from the existing double-loop algorithms for online nonconvex opti-
mization (Hazan et al., 2017; Hallak et al., 2021), where the update steps in each inner loop there
do not satisfy a hard constraint on the number of oracle queries. Hence, our regret analysis is also
different, because our inner loop does not guarantee to output a variable with a target accuracy to
a stationary point. The following theorem provides the regret bound for Algorithm 3 based on the
two-point gradient estimator.

11
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Algorithm 3 OGD with Looped Two-Point Estimation (LoopOGD)
Input: Initial point x1 ∈ Rd, stepsizes η, constant ξ, estimation radius δ
for t = 1, . . . , T − 1 do
y0t ← yKt−1 (y01 ← x1)
for k = 0, . . . ,K − 1 do

Drawn ukt from Sd−1 uniformly at random
Observe Ft,w(y

k
t ) and Ft,w(y

k
t + δukt )

Estimate ∇̃Ft,w(y
k
t ) based on eq. (10)

yk+1
t = ykt − η∇̃Ft,w(y

k
t )

end for
Pick It from 0, 1, . . . ,K − 1 uniformly at random
xt+1 = yItt

end for

Theorem 4 Suppose Assumption 1 holds. Consider Algorithm 3. Let η = 1
2L1d

. We have

E [Rw(T )] ≤ O
(

dT

wK

)
+O

(
T

w2

)
+O

(
dδ2T

)
. (12)

The above regret bound consists of three terms: (a) the termO
(
dT
wK

)
that captures the convergence

error of xt to the stationary points of Ft−1,w(x); (b) the term O(dδ2T ) that captures the gradient
estimation bias; and (c) the term O

(
T
w2

)
that captures the error caused by the time-variation of the

window function Ft,w(x). Note that the first and second term in eq. (11) are absorbed into the above
convergence error and gradient estimation bias terms, respectively, as they are of the same order.

Corollary 4 Let η = 1
2L1d

and δ = 1√
dw

. Theorem 4 implies that Algorithm 3 has the following
regret bound:

E [Rw(T )] ≤ O
(

dT

wK

)
+O

(
T

w2

)
.

Corollary 4 has the following implications. (i). By taking K = 1, Algorithm 3 becomes a single-
loop algorithm (i.e., the OGD algorithm with gradients replaced by their two-point estimators),
which matches the regret lower bound of the Window-SGO with exact gradient feedback up to a
gap ofO(d) (due to the bandit feedback). Interestingly, our one-point single-loop Algorithm 2 even
matches the regret of such a two-point algorithm up to a constant. (ii). By taking K = wd, Algo-
rithm 3 matches the existing regret lower bound (up to a gap ofO(d) due to the bandit feedback) for
online nonconvex optimization with window-smoothed multiple gradient oracle (Window-MGO)
feedback given in (Hazan et al., 2017). Compared with the fact that the first-order algorithms need
the numberO(w) of exact gradient oracles on average per time instance (Hazan et al., 2017; Hallak
et al., 2021), Algorithm 3 requires O(d) times more accesses to the function value oracles, which
reflects the typical relationship between gradient and function value feedback; And (iii). By set-
ting K between 1 and wd, Algorithm 3 provides a full spectrum of the tradeoff between the regret
O( dT

wK ) and the computational complexity O(KT ).
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7. Conclusion

In this paper, we study online nonconvex optimization with multiple types of limited instantaneous
oracle feedback, including the Window-SGO, Window-SVO and Window-MVO settings, which
are different from the existing studies that allows sufficiently many Window-MGOs at each time.
We develop tight lower regret bounds in the Window-SGO setting and show that the classic OGD
algorithm achieves the lower bound. We further develop novel gradient estimators and algorithm
schemes in the more challenging Window-SVO and Window-MVO settings and show that they
achieve near-optimal local regrets. We anticipate that the new one-point gradient estimator that we
devise as well as our design of online algorithms with the skipping mechanism can be useful more
generally in online learning with hard instantaneous constraints on oracle queries.
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Appendix A. Proofs of Section 4

A.1. Proof of Theorem 1

We develop the proof with two cases, i.e., σ = 0 and σ > 0. When σ = 0, we aim to show
Rw(T ) ≥ Ω

(
T
wγ

)
; and when σ > 0, Ω

(
σT

w
γ
2

)
is the dominating term and we want to show that

E [Rw(T )] ≥ Ω
(

σT

w
γ
2

)
.

Case (a). σ = 0: We prove Rw(T ) ≥ Ω
(

T
wγ

)
by contradiction. Suppose Rw(T ) ≤ O

(
T
wγ

)
.

Then, there exists a constant c > 0 such that Rw(T ) ≤ cT
wγ for all T . Moreover, we let w = CTα

for some 0 < C < 1. Then, let ft(x) = f(x) for all t with f(x) satisfying the smoothness and
boundedness conditions in Assumption 1. Hence, Ft,w(x) = f(x) for all t ≥ w. By the definition
of the local regret, we have that

1

T − w

T∑
t=w+1

∥∇f(xt)∥2 ≤
1

T − w

T∑
t=1

∥∇f(xt)∥2 =
Rw(T )

T − w
≤ c

CγTαγ(1− CTα−1)
. (13)

Next, we observe that

inf
t=1,...,T

∥∇f(xt)∥
(i)

≤

√∑T
t=w+1 ∥∇f(xt)∥2

T − w

(ii)

≤
√
c√

Cγ(1− C)T
αγ
2

, (14)

where (i) follows because

inf
t=1,...T

∥∇f(xt)∥2 ≤ inf
t=w+1,...T

∥∇f(xt)∥2 ≤
∑T

t=w+1 ∥∇f(xt)∥2

T − w
,

and (ii) follows from eq. (13) and 1− CTα−1 ≥ 1− C.

Thus, for all T ≥ c
1
αγ

C
1
α (1−C)

1
αγ ϵ

2
αγ

where ϵ > 0 is a given target accuracy, we have

inf
t=1,...,T

∥∇f(xt)∥ ≤ ϵ. (15)

Since Ft,w(x) = f(x) for all t and w, f(x) can be viewed as the objective function of an
offline nonconvex optimization problem. For such a problem, we take the standard computational
complexity to achieve an ϵ-accurate stationary point as

Tϵ(A, f) := inf{t ∈ N : ∥∇f(xt)∥ ≤ ϵ},

where xt = A(x1, {∇f(xi)}t−1
i=1). Then the condition on T to obtain eq. (15) implies that

Tϵ(A, f) ≤ O
(

1

ϵ
2
αγ

)
= o

(
1

ϵ2

)
. (16)

The above bound contradicts the lower bound on Tϵ(A, f) given in Theorems 1 and 2 of (Carmon
et al., 2020) with p = 1 for offline nonconvex optimization, which requires Tϵ(A, f) ≥ Ω( 1

ϵ2
). This

completes the proof.
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Case (b). σ > 0: We also prove by contradiction. Suppose there exists an algorithm satisfying
Definition 2 and E [Rw(T )] ≤ O( σT

w
γ
2
). Then, there exists a constant c > 0 such that E [Rw(T )] ≤

cσT

w
γ
2

for all T . Moreover, let w = CTα for some 0 < C < 1 and set ft(x) = f(x) for some f(x)

satisfying the smoothness and boundedness conditions in Assumption 1. Then, we have Ft,w(x) =
f(x) for all t ≥ w. Let {Gt(x)}∞t=1 be a sequence of independent random functions over t and
satisfy Assumption 2. We further define the filtration Ft = σ (G1, . . . , Gt−1). Then we obtain that

E

[∑T
t=w+1 ∥∇f(xt)∥

2

T − w

]

= E

∑T
t=w+1E

[
∥∇f(xt)∥2

∣∣∣Ft

]
T − w

 ≤ E
∑T

t=w+1E

[
∥∇Gt(xt)∥2

∣∣∣Ft

]
T − w


= E

[∑T
t=w+1 ∥∇Gt(xt)∥2

T − w

]
≤ E

[∑T
t=1 ∥∇Gt(xt)∥2

T − w

]
=
E [Rw(T )]

T − w
≤ cσ

C
γ
2 (1− C)T

αγ
2

.

(17)

Here, eq. (17) implies that

inf
t=1,...,T

E [∥∇f(xt)∥] ≤
√

inf
t=w+1,...,T

E [∥∇f(xt)∥2] ≤
√
cσ

C
γ
4 (1− C)

1
2T

αγ
4

. (18)

Equation (18) implies that inft=1,...,T E [∥∇f(xt)∥] ≤ ϵ for all ϵ > 0 when T ≥ (cσ)
2
αγ

C
1
α (1−C)

2
αγ ϵ

4
αγ

.

Since Ft,w(x) = f(x) for all t and w, f(x) can be viewed as the objective function of an
offline nonconvex optimization problem solved via a stochastic gradient algorithm. For such a
problem, we take the standard computational complexity to achieve an ϵ-accurate stationary point
as mϵ := inf {t ∈ N|E [∥∇f(xt)∥] ≤ ϵ}. Then we have that

mϵ ≤
(cσ)

2
αγ

C
1
α (1− C)

2
αγ ϵ

4
αγ

.

If γ > 1
α , the above inequality implies that mϵ ≤ o

(
σ2

ϵ4

)
, which contradicts the lower bound pro-

vided in (Arjevani et al., 2022, Theorem 3) for first-order stochastic algorithms for offline nonconvex
optimization, which requires mϵ ≥ Ω

(
σ2

ϵ4

)
.

A.2. Proof of Theorem 2

By the gradient L1-Lipschitz continuity, we have that

Ft,w(xt+1) ≤ Ft,w(xt) + ⟨∇Ft,w(xt), xt+1 − xt⟩+
L1∥xt+1 − xt∥2

2

= Ft,w(xt)− η ⟨∇Ft,w(xt), Gt(xt)⟩+
L1η

2∥Gt∥2

2

= Ft,w(xt)− η ⟨∇Ft,w(xt), Gt(xt)⟩+
L1η

2∥∇Ft,w(xt) +Gt −∇Ft,w(xt)∥2

2
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≤ Ft,w(xt)− η ⟨∇Ft,w(xt), Gt(xt)⟩+ L1η
2∥∇Ft,w(xt)∥2 + L1η

2∥Gt −∇Ft,w(xt)∥2.
(19)

Taking the conditioned expectation (on xt) on both sides of eq. (19), we obtain that

E [Ft,w(xt+1)|xt] ≤ Ft,w(xt)− η (1− L1η) ∥∇Ft,w(xt)∥2 + L1η
2
E
[
∥Gt −∇Ft,w(xt)∥2

∣∣xt]
(i)

≤ Ft,w(xt)− η (1− L1η) ∥∇Ft,w(xt)∥2 + L1η
2σ2

(ii)

≤ Ft,w(xt)−
η

2
∥∇Ft,w(xt)∥2 + L1η

2σ2, (20)

where (i) follows from Assumption 2 and (ii) follows from the choice η ≤ 1
2L1

.
Taking expectation on both sides of eq. (20), rearranging the terms, and telescoping from t = 1

to T , we obtain that

E [Rw(T )]

=
T∑
t=1

E
[
∥∇Ft,w(xt)∥2

]
≤ 2

η

T∑
t=1

(
E [Ft,w(xt)− Ft,w(xt+1)] + L1η

2σ2
)

=
2 (F1,w − FT+1,w(xT+1))

η
+

2

η

T∑
t=1

(Ft+1,w(xt+1)− Ft,w(xt+1)) + 2ηL1σ
2T

(i)

≤ 4M

η
+

4MT

wη
+ 2ηL1σ

2T,

where (i) follows from the boundedness condition in Assumption 1 and the fact that

Ft+1,w(xt+1)− Ft,w(xt+1)

=

∣∣∣∣∣ 1w
t+1∑

i=t−w+2

fi(xt+1)−
1

w

t∑
i=t−w+1

fi(xt+1)

∣∣∣∣∣
=

1

w
|ft+1(xt+1)− ft−w+1(xt+1)| ≤

2M

w
.

Appendix B. Analysis of OGD with One-point Gradient Estimator in eq. (4)

In this section, we apply the one-point gradient estimator in eq. (4) in a straightforward way to
OGD, and the resulting algorithm (see Algorithm 4) can be used for the Window-SVO setting.

Theorem 5 Suppose Assumption 1 holds. Then, Algorithm 4 satisfies the following regret.

E [Rw(T )] ≤ O
(

T

ηw

)
+O

(
d2ηT

δ2

)
+O(δ2T ).

Corollary 5 By taking η = 1
dw2/3 and δ = 1

w1/6 , Theorem 5 implies that the regret bound for
Algorithm 5 satisfies

E [Rw(T )] ≤ O
(
dT

w
1
3

)
.
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Algorithm 4 OGD with one-point estimator eq. (4)
Input: Initial point x1 ∈ Rd, stepsizes η, estimation radius δ
for t = 1, . . . , T − 1 do

Drawn ut uniformly from Sd−1 independently
Observe Ft,w(xt + δut)
Construct residual feedback estimator as

∇̆Ft,w(xt) =
d

δ
Ft,w(xt + δut).

xt+1 = xt − η∇̆Ft,w(xt)
end for

B.1. Proof of Theorem 5

Let Ft,w,δ(x) := E [Ft,w(x+ δu)] with u being a random vector drawn uniformly from the unit
sphere Sd−1. Then Ft,w,δ(x) is also L1-gradient Lipschitz because

∥∇Ft,w,δ(x)−∇Ft,w,δ(y)∥ = ∥∇E[Ft,w(x+ δu)]−∇E[Ft,w(y + δu)]∥
≤ E [∥∇Ft,w(x+ δu)−∇Ft,w(x+ δu)∥]
(i)

≤ L1∥x− y∥, (21)

where (i) follows from the L1-Lipschitz continuity condition of Assumption 1.
By the gradient L1-Lipschitz condition of Ft,w,δ(x), we obtain that

Ft,w,δ(xt+1) ≤ Ft,w,δ(xt) + ⟨∇Ft,w,δ(xt), xt+1 − xt⟩+
L1

2
∥xt+1 − xt∥2

= Ft,w,δ(xt)− η
〈
∇Ft,w,δ(xt), ∇̆Ft,w(xt)

〉
+

L1η
2

2
∥∇̆Ft,w(xt)∥2. (22)

Taking expectation on both sides of eq. (22) conditioned on xt, and then taking expectation with
respect to xt, we obtain that

E [Ft,w,δ(xt+1)] ≤ E [Ft,w,δ(xt)]− ηE
[
∥∇Ft,w,δ(xt)∥2

]
+

L1η
2

2
E

[∥∥∥∇̆Ft,w(xt)
∥∥∥2] . (23)

Rearranging eq. (23), we obtain that

E

[
∥∇Ft,w,δ(xt)∥2

] (i)

≤
E[Ft,w,δ(xt)− Ft,w,δ(xt+1)]

η
+

L1d
2M2η

δ2
, (24)

where (i) follows from the fact that

E

[∥∥∥∇̆Ft,w(xt)
∥∥∥2] =

d2

δ2
E

[
(Ft,w(xt + δut))

2
]
≤ d2M2

δ2
.

On the other hand, recall that

∥∇Ft,w(xt)∥2 = ∥∇Ft,w,δ(xt)−∇Ft,w,δ(xt) +∇Ft,w(xt)∥2
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≤ 2 ∥∇Ft,w,δ(xt)∥2 + 2 ∥∇Ft,w(xt)−∇Ft,w,δ(xt)∥2

≤ 2 ∥∇Ft,w,δ(xt)∥2 + 2L2
1δ

2. (25)

Combining eqs. (24) and (25), we obtain that

E [Rw(T )] =

T∑
t=1

E

[
∥∇Ft,w(xt)∥2

]
≤

2
∑T

t=1E[Ft,w,δ(xt)− Ft,w,δ(xt+1)]

η
+

2L1d
2M2ηT

δ2
+ 2L2

1δ
2T

=
2E[F1,w,δ(x1)− FT+1,w,δ(xT+1)]

η
+

2
∑T

t=1E[Ft+1,w,δ(xt+1)− Ft,w,δ(xt+1)]

η

+
2L1d

2M2η

δ2
+ 2L2

1δ
2T

(i)

≤ 4M

η
+

4MT

ηw
+

2L1d
2M2η

δ2
+ 2L2

1δ
2T, (26)

where (i) follows from the facts that |Ft,w,δ(x)| ≤M for all t, x and

|Ft+1,w,δ(xt+1)− Ft,w,δ(xt+1)| =
1

w
|ft+1,δ(xt+1)− ft+1−w,δ(xt+1)| ≤

2M

w
.

Appendix C. Analysis of OGD with One-point Gradient Estimator OR in eq. (5)

In this section, we apply the one-point gradient estimator OR in eq. (5) in a straightforward way to
OGD, and the resulting algorithm (see Algorithm 5) can be used for the Window-SVO setting.

Algorithm 5 OGD with gradient estimator OR in eq. (5)
Input: Initial point x1 ∈ Rd, stepsizes η, estimation radius δ
for t = 1, . . . , T − 1 do

Drawn ut uniformly from Sd−1 independently
Observe Ft,w(xt + δut)
Construct residual feedback estimator as

∇̄Ft,w(xt) =
d

δ
(Ft,w(xt + δut)− Ft−1,w(xt−1 + δut−1))ut,

where we take Ft,w(xt + δut) = 0 for t ≤ 0.
xt+1 = xt − η∇̄Ft,w(xt)

end for

We first show that the gradient estimator OR satisfies the following iterative upper bound as
given in eq. (6).

Lemma 3 Suppose Assumption 1 holds, we have

E

[∥∥∇̄Ft,w(xt)
∥∥2] ≤ 3d2η2L2

0

δ2
∥∥∇̄Ft−1,w(xt−1)

∥∥2 + 12M2d2

w2δ2
+ 12d2L2

0. (27)
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Proof By the definition of ∇̄Ft,w(xt), we have∥∥∇̄Ft,w(xt)
∥∥2

=
d2

δ2
(Ft,w(xt + δut)− Ft−1,w(xt−1 + δut−1))

2

=
d2

δ2
(Ft,w(xt + δut)− Ft−1,w(xt + δut) + Ft−1,w(xt + δut)− Ft−1,w(xt−1 + δut)

+Ft−1,w(xt−1 + δut)− Ft−1,w(xt−1 + δut−1))
2

≤ 3d2

δ2
(Ft,w(xt + δut)− Ft−1,w(xt + δut))

2 +
3d2

δ2
(Ft−1,w(xt + δut)− Ft−1,w(xt−1 + δut))

2

+
3d2

δ2
(Ft−1,w(xt−1 + δut)− Ft−1,w(xt−1 + δut−1))

2

(i)

≤ 3d2η2L2
0

δ2
∥∥∇̄Ft−1,w(xt−1)

∥∥2 + 12M2d2

w2δ2
+ 12d2L2

0, (28)

where (i) follows from the update rule of xt, Assumption 1 and the fact that

|Ft,w(z)− Ft−1,w(z)| =
1

w
|ft(z)− ft−w(z)| ≤

2M

w
.

Based on Lemma 3 and the gradient Lipschitz continuity, we prove the following regret bound of
Algorithm 5.

Theorem 6 Suppose Assumption 1 holds and η ≤ δ
3dL0

. Then Algorithm 5 satisfies the following
regret bound.

E [Rw(T )] ≤ O
(

T

ηw

)
+O

(
δ2T

)
+O

(
d2ηT

w2δ2

)
+O

(
d2ηT

)
+O

(
d2η

δ2

)
.

By properly choosing η and δ, Theorem 6 implies the regret bound of O
(

dT√
w

)
as given by the

following corollary.

Corollary 6 Taking η = 1
3L0d

√
w

, and δ = 1√
w

, Theorem 6 implies that the regret bound for
Algorithm 5 satisfies

E [Rw(T )] ≤ O
(

dT√
w

)
.

C.1. Proof of Theorem 6

Let Ft,w,δ(x) := E [Ft,w(x+ δu)] with u being a random vector drawn uniformly from the unit
sphere Sd−1. By the gradient L1-Lipschitz continuity of Ft,w,δ(x) (see eq. (21)), we obtain that

Ft,w,δ(xt+1) ≤ Ft,w,δ(xt) + ⟨∇Ft,w,δ(xt), xt+1 − xt⟩+
L1

2
∥xt+1 − xt∥2

= Ft,w,δ(xt)− η
〈
∇Ft,w,δ(xt), ∇̄Ft,w(xt)

〉
+

L1η
2

2
∥∇̄Ft,w(xt)∥2. (29)

22



ONLINE NONCONVEX OPTIMIZATION WITH LIMITED INSTANTANEOUS ORACLE FEEDBACK

Taking expectation on both sides of Equation (29) conditioned on xt, and then taking expectation
with respect to xt, we have

E [Ft,w,δ(xt+1)] ≤ E [Ft,w,δ(xt)]− ηE
[
∥∇Ft,w,δ(xt)∥2

]
+

L1η
2

2
E

[∥∥∇̄Ft,w(xt)
∥∥2] . (30)

Rearranging eq. (30), we obtain that

E

[
∥∇Ft,w,δ(xt)∥2

]
≤
E[Ft,w,δ(xt)− Ft,w,δ(xt+1)]

η
+

L1η

2
E

[∥∥∇̄Ft,w(xt)
∥∥2] . (31)

On the other hand, recall that

∥∇Ft,w(xt)∥2 = ∥∇Ft,w,δ(xt)−∇Ft,w,δ(xt) +∇Ft,w(xt)∥2

≤ 2 ∥∇Ft,w,δ(xt)∥2 + 2 ∥∇Ft,w(xt)−∇Ft,w,δ(xt)∥2

≤ 2 ∥∇Ft,w,δ(xt)∥2 + 2L1δ
2. (32)

Combining eqs. (31) and (32), we obtain that

E [Rw(T )] =
T∑
t=1

E

[
∥∇Ft,w(xt)∥2

]
≤

2
∑T

t=1E[Ft,w,δ(xt)− Ft,w,δ(xt+1)]

η
+ L1η

T∑
t=1

E

[∥∥∇̄Ft,w(xt)
∥∥2]+ 2L1δ

2T

=
2E[F1,w,δ(x1)− FT+1,w,δ(xT+1)]

η
+

2
∑T

t=1E[Ft+1,w,δ(xt+1)− Ft,w,δ(xt+1)]

η

+ L1η
T∑
t=1

E

[∥∥∇̄Ft,w(xt)
∥∥2]+ 2L1δ

2T

(i)

≤ 2M

η
+

2MT

ηw
+ L1η

T∑
t=1

E

[∥∥∇̄Ft,w(xt)
∥∥2]+ 2L1δ

2T, (33)

where (i) follows from the facts that |Ft,w,δ(x)| ≤M for all t, x and

|Ft+1,w,δ(xt+1)− Ft,w,δ(xt+1)| =
1

w
|ft+1,δ(xt+1)− ft+1−w,δ(xt+1)| ≤

2M

w
.

Based on eq. (33), we conclude that the upper bound of Rw(T ) can be obtained through the up-
per bounds of

∑T
t=1 ∥∇̄Ft,w(xt)∥2. Thus, we proceed with bounding this term. Iteratively applying

Lemma 3, we have that

E

[∥∥∇̄Ft,w(xt)
∥∥2] ≤ (

12M2d2

w2δ2
+ 12d2L2

0

) t∑
i=0

(
3d2η2L2

0

δ2

)i

+

(
3d2η2L2

0

δ2

)t−1 ∥∥∇̄F0,w(x0)
∥∥2

(i)

≤ 24M2d2

w2δ2
+ 24d2L2

0 +
d2M2

δ2

(
1

2

)t−1

, (34)

where (i) follows from the fact that 3d2η2L2
0

δ2
≤ 1

2 when η ≤ δ
3dL0

.
Substituting eq. (34) into eq. (33), we obtain that

E [Rw(T )] ≤
2M

η
+

2MT

ηw
+ 2L1δ

2T +
24M2d2L1ηT

w2δ2
+ 24d2L2

0L1ηT +
2d2M2L1η

δ2
.
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Appendix D. Proof in Section 5

D.1. Proof of Lemma 1

By the definition of ∇̂Ft,w(xt), we have

∇̂Ft,w(xt) =
d

δ
(Ft,w(xt + δut)− Ft−1,w(xt−1))ut

=
d

δ
(Ft,w(xt + δut)− Ft,w(xt) + Ft,w(xt)− Ft−1,w(xt−1))ut

(i)
=

d

δ

(∫ δ

0
⟨∇Ft,w(xt + vut), ut⟩dv

)
ut +

d

δ
(Ft,w(xt)− Ft−1,w(xt−1))

=
d

δ

(∫ δ

0
⟨∇Ft,w(xt) +∇Ft,w(xt + vut)−∇Ft,w(xt), ut⟩dv

)
ut

+
d

δ
(Ft,w(xt)− Ft−1,w(xt−1))ut

=
d

δ

(∫ δ

0
⟨∇Ft,w(xt)−∇Ft,w(xt + vut), ut⟩dv

)
ut

+
d

δ

(∫ δ

0
⟨∇Ft,w(xt), ut⟩dv

)
ut +

d

δ
(Ft,w(xt)− Ft−1,w(xt−1))ut

(ii)

≤ dut
δ

∫ δ

0
L1vdv + d⟨∇Ft,w(xt), ut⟩ut +

2Mdut
wδ

=
L1dδut

2
+ d⟨∇Ft,w(xt), ut⟩ut +

2Mdut
wδ

, (35)

where (i) follows from the law of Calculus, and (ii) follows from the L1-gradient Lipschitz conti-
nuity of Ft,w(xt), and because xt = xt−1 when t is even, and

|Ft,w(x)− Ft−1,w(x)| =
1

w
|ft(x)− ft−w(x)| ≤

2M

w
.

Using the fact that ∥a+ b+ c∥2 ≤ 3∥a∥2+3∥b∥2+3∥c∥2 and applying eq. (18), we obtain that∥∥∥∇̂Ft,w(xt)
∥∥∥2 ≤ 3d2 |⟨∇Ft,w(xt), ut⟩|2 +

12M2d2

w2δ2
+ L2

1d
2δ2. (36)

In order to bound
∥∥∥∇̂Ft,w(xt)

∥∥∥2, we need to bound the term |⟨∇Ft,w(xt), ut⟩|2. Let l = ∇Ft,w(xt)
∥∇Ft,w(xt)∥ ,

we have that |⟨∇Ft,w(xt), ut⟩|2 = ∥∇Ft,w(xt)∥2|⟨l, ut⟩|2. Moreover, let z = |⟨l, ut⟩|. Equa-
tion (36) can be written as∥∥∥∇̂Ft,w(xt)

∥∥∥2 ≤ 3d2∥∇Ft,w(xt)∥2z2 +
12M2d2

w2δ2
+ L2

1d
2δ2. (37)

Since ut is uniformly sampled from the unit sphere, the probability density function of z follows

f(z) =

{
2Γ(d/2)√

πΓ((d−1)/2)
(1− z2)(d−3)/2, 0 ≤ z ≤ 1

0, o.w.
,
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where Γ(·) is the gamma-function.
We then have

E[z2] =

∫ 1

z=0
z2f(z)dz =

1

d
. (38)

Taking expectation on both sides of eq. (37) conditioned on Ft and applying eq. (38), we obtain that

E

[∥∥∥∇̂Ft,w(xt)
∥∥∥2∣∣∣∣Ft

]
≤ 3d ∥∇Ft,w(xt)∥2 +

12M2d2

w2δ2
+ L2

1d
2δ2.

D.2. Proof of Theorem 3

Let Ft,w,δ(x) := E [Ft,w(x+ δu)] with u being a random vector drawn uniformly from the unit
sphere Sd−1. For any t = 2j with some j ∈ N+, by the gradient Lipschitz continuity of Ft,w,δ(x)
(see eq. (21)), we have that

Ft,w,δ(xt+1) ≤ Ft,w,δ(xt) + ⟨∇Ft,w,δ(xt), xt+1 − xt⟩+
L1

2
∥xt+1 − xt∥2

= Ft,w,δ(xt)− η
〈
∇Ft,w,δ(xt), ∇̂Ft,w(xt)

〉
+

L1η
2

2
∥∇̂Ft,w(xt)∥2. (39)

Defining the filtration Ft := σ

(
u1, u2, . . . , u2

⌊
t
2

⌋
−2

)
, and taking expectation on both sides of

eq. (39), we obtain that

E [Ft,w,δ(xt+1)|Ft]

≤ Ft,w,δ(xt)− η
〈
∇Ft,w,δ(xt),E

[
∇̂Ft,w(xt)

∣∣∣Ft

]〉
+

L1η
2

2
E

[
∥∇̂Ft,w(xt)∥2

∣∣∣Ft

]
(i)
= Ft,w,δ(xt)− η ∥∇Ft,w,δ(xt)∥2 +

L1η
2

2
E

[
∥∇̂Ft,w(xt)∥2

∣∣∣Ft

]
(ii)

≤ Ft,w,δ(xt)− η

(
1− 3L1dη

2

)
∥∇Ft,w,δ(xt)∥2 +

6L1η
2M2d2

w2δ2
+

L3
1η

2d2δ2

2
, (40)

where (i) follows from the fact that E
[
∇̂Ft,w(xt)

∣∣∣Ft

]
= ∇Ft,w,δ(xt), and (ii) follows from

Lemma 1.
Using the fact that η = 1

3L1d
and rearranging eq. (40), we have

∥∇Ft,w,δ(xt)∥2 ≤
2(Ft,w,δ(xt)−E [Ft,w,δ(xt+1)|Ft])

η
+

12L1ηM
2d2

w2δ2
+ L3

1ηd
2δ2. (41)

Recall the definition of regret

Rw(T ) =

T∑
t=1

∥∇Ft,w(xt)∥2

=

T∑
t=1

∥∇Ft,w(xt)−∇Ft,w,δ(xt) +∇Ft,w,δ(xt)∥2
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(i)

≤ 2
T∑
t=1

∥∇Ft,w(xt)−∇Ft,w,δ(xt)∥2 + 2
T∑
t=1

∥∇Ft,w,δ(xt)∥2

(ii)

≤ 2
T∑
t=1

∥∇Ft,w,δ(xt)∥2 + 2L2
1δ

2T, (42)

where (ii) follows from the fact that ∥∇Ft,w(xt) − ∇Ft,w,δ(xt)∥ ≤ L1δ for all t = 1, . . . , T , and
(i) follows from the fact that

∥∇Ft,w(xt)−∇Ft,w,δ(xt)∥ = ∥∇Ft,w(xt)−E [∇Ft,w(xt + δu)] ∥
≤ E[∥∇Ft,w(xt)−∇Ft,w(xt + δu)∥]
≤ L1δ.

Let T̄ := 2
⌊
T
2

⌋
+ 1. Taking expectation on both sides of eq. (42), we obtain that

E[Rw(T )]

≤ 2E

[
T∑
t=1

∥∇Ft,w,δ(xt)∥2
]
+ 2L2

1δ
2T

≤ 2E

⌊
T
2 ⌋∑

j=1

∥∇F2j,w,δ(x2j)∥2

+ 2E

⌊
T
2 ⌋+1∑
j=1

∥∇F2j−1,w,δ(x2j−1)∥2

+ 2L2
1δ

2T

(i)

≤ 4E

⌊
T
2 ⌋∑

j=1

∥∇F2j,w,δ(x2j)∥2

+
4L2

0T

w2
+ 2L2

1δ
2T

(ii)

≤
⌊T2 ⌋∑
j=1

8E [F2j,w,δ(x2j)− F2j,w,δ(x2j+1)])

η
+

24L1ηM
2Td2

w2δ2
+ 2L3

1ηd
2δ2T +

4L2
0T

w2
+ 2L2

1δ
2T

=
4E

[
F1,w,δ(x1)− FT̄ ,w,δ (xT̄ )

]
η

+

4E

[∑⌊T2 ⌋
j=1 F2j+2,w,δ(x2j+2)− F2j,w,δ(x2j+1)

]
η

+
24L1ηM

2Td2

w2δ2
+ 2L3

1ηd
2δ2T +

4L2
0T

w2
+ 2L2

1δ
2T

(iii)

≤ 8M

η
+

8MT

wη
+

24L1ηM
2d2T

w2δ2
+ 2L3

1ηd
2δ2T +

4L2
0T

w2
+ 2L2

1δ
2T

= 24L1dM +
24L1dMT

w
+

8M2dT

w2δ2
+

2L2
1dδ

2T

3
+

L2
0T

w2
+ 2L2

1δ
2T, (43)

where (i) follows from xt = xt−1 when t is odd and ∥∇Ft,w(x)−∇Ft−1,w(x)∥ ≤ 2L0
w , (ii) follows

by telescoping eq. (41), and (iii) follows from Assumption 1 and the facts that x2j+1 = x2j+2 and

|F2j+2,w(x2j+2)− F2j+1,w(x2j+1)|

=
1

w
|f2j+2(x2j+2) + f2j+2(x2j+2)− f2j+2−2(x2j+2)− f2j+1−w(x2j+2)|

≤ 4M

w
.
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Appendix E. Proofs of Section 6

E.1. Proof of Lemma 2

Following the steps similar to those deriving eq. (35), we obtain that

∇̃Ft,w(y
k
t ) ≤ d⟨∇Ft,w(y

k
t ), u

k
t ⟩ukt +

L1dδu
k
t

2
. (44)

Using the fact that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and eq. (44), we obtain that∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2 ≤ 2d2

∣∣∣⟨∇Ft,w(y
k
t ), u

k
t ⟩
∣∣∣2 + L2

1d
2δ2

2
.

Following the proof similar to that of Lemma 1 in Appendix D.1, we obtain that

E

[∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2∣∣∣∣Fk

t

]
≤ 2d

∥∥∥∇Ft,w(y
k
t )
∥∥∥2 + L2

1d
2δ2

2
.

E.2. Proof of Theorem 4

Let Ft,w,δ(x) := E [Ft,w(x+ δu)] with u being a random vector drawn uniformly from the unit
sphere Sd−1. By the gradient Lipschitz condition of Ft,w,δ(x) (see eq. (21)), we have

Ft,w,δ(y
k+1
t ) ≤ Ft,w,δ(y

k
t ) +

〈
∇Ft,w,δ(y

k
t ), y

k+1
t − ykt

〉
+

L1

2

∥∥∥yk+1
t − ykt

∥∥∥2
= Ft,w,δ(y

k
t )− η

〈
∇Ft,w,δ(y

k
t ), ∇̃Ft,w(y

k
t )
〉
+

L1η
2

2

∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2 . (45)

Let Ft,k = σf (u
1
1, . . . , u

K
1 , . . . , u1t , . . . , u

k−1
t ). Taking expectation on both sides conditioned on

Ft,k, we have

E

[
∥∇Ft,w,δ(y

k+1
t )∥2

∣∣∣Ft,k

]
≤ Ft,w,δ(y

k
t )− η

〈
∇Ft,w,δ(y

k
t ),E

[
∇̃Ft,w(y

k
t )
∣∣∣Ft,k

]〉
+

L1η
2

2
E

[∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2∣∣∣∣Ft,k

]
(i)
= Ft,w,δ(y

k
t )− η

∥∥∥∇Ft,w,δ(y
k
t )
∥∥∥2 + L1η

2

2
E

[∥∥∥∇̃Ft,w(y
k
t )
∥∥∥2∣∣∣∣Ft,k

]
(ii)

≤ Ft,w,δ(y
k
t )− η(1− L1ηd)

∥∥∥∇Ft,w,δ(y
k
t )
∥∥∥2 + L3

1η
2d2δ2

4
, (46)

where (i) follows from E
[
Ft,w(y

k
t )
∣∣Ft,k

]
= Ft,w,δ(y

k
t ) and (ii) follows from Lemma 2.

Using the fact that η = 1
2L1d

and rearranging eq. (46), we obtain

∥∥∥∇Ft,w,δ(y
k
t )
∥∥∥2 ≤ 2

(
Ft,w,δ(y

k
t )−E

[
Ft,w,δ(y

k+1
t )

∣∣∣Ft,k

])
η

+
L3
1ηd

2δ2

2
. (47)

Taking expectation on both sides of eq. (47), we have

E

[∥∥∥∇Ft,w,δ(y
k
t )
∥∥∥2] ≤ 2E

[
Ft,w,δ(y

k
t )− Ft,w,δ(y

k+1
t )

]
η

+
L3
1ηd

2δ2

2
. (48)
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Recall the definition of the generation of It and that xt+1 = yItt . Then, we have

E
[
∥∇Ft,w(xt+1)∥2

]
=

1

K

K−1∑
k=0

E

[
∥∇Ft,w(y

k
t )∥2

]
≤ 2

K

K−1∑
k=0

E

[
∥∇Ft,w,δ(y

k
t )∥2

]
+

2

K

K∑
k=0

E

[
∥∇Ft,w,δ(y

k
t )−∇Ft,w(y

k
t )∥2

]
(i)

≤
2E

[
Ft,w,δ(y

0
t )− Ft,w,δ(y

K
t )

]
ηK

+ L3
1ηd

2δ2 + 2L2
1δ

2, (49)

where (i) follows from telescoping eq. (48) and because ∥∇Ft,w,δ(z) − ∇Ft,w(z)∥ ≤ L2
1δ

2 holds
for arbitrary z.

Using eq. (49) and the fact

∥∇Ft,w(x)∥2 ≤ 2∥∇Ft+1,w(x)∥2 +
8L2

0

w2
,

we obtain

E
[
∥∇Ft+1,w(xt+1)∥2

]
≤

4E
[
Ft,w,δ(y

0
t )− Ft,w,δ(y

K
t )

]
ηK

+
8L2

0

w2
+ 2L3

1ηd
2δ2 + 4L2

1δ
2. (50)

We then have

E [Rw(T )] =
T∑
t=1

E
[
∥∇Ft,w(xt)∥2

]
(i)

≤
4
∑T

t=1E
[
Ft,w,δ(y

0
t )− Ft,w,δ(y

K
t )

]
ηK

+
8L2

0T

w2
+ 2L3

1ηd
2δ2T + 4L2

1δ
2T

≤
4(F1,w,δ(y

0
1)− FT+1,w,δ(y

K
T+1)) + 4

∑T
t=1E

[
Ft+1,w,δ(y

0
t+1)− Ft,w,δ(y

K
t )

]
ηK

+
8L2

0T

w2
+ 2L3

1ηd
2δ2T + 4L2

1δ
2T

(ii)

≤ 8M

ηK
+

8MT

ηwK
+

8L2
0T

w2
+ 2L3

1ηd
2δ2T + 4L2

1δ
2T

= 16ML1d+
16L1dMT

wK
+

8L2
0T

w2
+ L2

1dδ
2T + 4L2

1δ
2T, (51)

where (i) follows from telescoping eq. (50) and (ii) follows from the fact that yKt = y0t+1 and, for
all x,

∥Ft,w,δ(x)− Ft+1,w,δ(x)∥ ≤
2M

w
.
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